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ABSTRACT 

Software Evolution is unavoidable because software systems are subject to 

continuous change, continuing growth and increasing complexity. As software 

systems become mission-critical and large in size, the complexity in software 

development is now focused on software evolution rather than construction. In 

this work, we view a software system as an entity that is evolving throughout 

its lifetime, during development and maintenance. Based on a broad survey of 

software evolution approaches, we propose an architecture-based solution for 

software evolution, which is defined in terms of evolution specific operations on 

architectural elements, that is, adding, removing, replacing components and 

(or) connectors, transforming configurations according to the required changes. 

In our view of software architectures, connectors are more likely to change since 

they are the architectural elements which reflect business rules. This work is 

focused on the evolution of connectors in architectures describing detailed de­

sign. Coordination contracts are introduced by Fiadeiro et al. as a realization 

of connectors at this detailed architecture level, which enables a three-layer 

architecture to separate concerns of components, connectors and configuration 

during evolution. Furthermore, to constrain the evolution in a predictable 

direction, we have established a matching scheme for justifying behavioral re­

lationships between coordination contracts by specification matching based on 

pre- and postconditions of contracts and methods. A number of specification 

matches, with various degrees of similarity between the evolved and evolving 

contracts, have been developed for system behaviors after evolution operations. 

Case studies are exhibited give a better understanding of these matches. 
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Preface and Thesis Outline 

This thesis is the final product of my Master of Science studies in Computer 
Science at the Department of Computing and Software, McMaster University, 
Canada. It serves as documentation of my research work during these studies, 
which have been carried out from Fall 2005 until Summer 2007. The work has 
been funded by my supervisor Dr. Tom Maibaum, NSERC, the Department, 
and the University. 

The objective of this thesis is to propose an approach to software evolution 
based on software architectures, in particular for the detailed design level of 
development. We define architecture-based software evolution as adding, re­
moving, modifying components and (or) connectors, and transforming configu­
rations of components and connectors. However, most techniques for modeling 
Software Evolution do not model connectors, or they model connectors, but 
have no mechanisms to evolve them effectively. On the other hand, the ap­
proaches to modeling connectors in Architecture Description Languages rarely 
support the evolution of connectors, and some of them do not even model 
connectors as first-class entities. As a consequence, we need a way to model 
connectors as first-class entities and evolve connectors effectively. Coordina­
tion contracts are a realization of connectors at the detailed design level. With 
a three-layer approach, where the coordination layer models business rules by 
means of contracts, we are able to separate the concerns of components and 
connectors and focus on the evolution of coordination contracts. Generally 
speaking, we would like to see incremental and predictable evolution. There­
fore, in principle, adding and modifying coordination contracts are predictable 
evolutionary operations. To evolve software systems predicably, firstly, we 
consider two evolving systems to be related by evolutionary operations by 
characterizing their change histories. When adding and modifying contracts, 
the signatures of two contracts should match, which means the types of each 
rule's input and output parameters, as well as the exceptions that may be 
raised, must match. Then, we compare their behaviors in terms of specifica­
tion matching based on pre- and postconditions. In order to do this, we have 
to develop a pre- and postcondition characterization of contracts. We then 
propose a matching scheme with 5 cases, which relate the pre- and postcon-
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ditions of two contracts with different conditions. The evolution of contracts 
is defined to be predictable up to the limits imposed by these specification 
matches. The research in this thesis has been influenced by work in several ar­
eas: software architecture, software evolution, architectural connectors, formal 
specifications, UML, coordination contracts. 

The thesis consists of seven main chapters. 

The first chapter contains a general introduction to the research back­
ground and an evaluation of the current state of the art. The discussion 
starts with fundamental knowledge of software maintenance, software evolu­
tion and software architecture, as a basis for our research motivation for evo­
lution based on software architecture. We define architecture-based software 
evolution from a reconfiguration perspective, as adding, removing, replacing 
components and/ or connectors, according to the required changes. 

In Chapter 2, we survey the literature on techniques for modeling software 
evolution. Three relevant techniques are selected for the purpose of comparison 
and evaluated from two aspects, the representation of changes in architectures 
and the mechanism to evolve connectors. We find that two common problems 
with these techniques are that they either lack the architectural granularity 
of connectors or have not established an effective mechanism for evolution of 
connectors. 

Chapter 3 investigates techniques for modeling architectural connectors 
and gains us an understanding of connectors. We demonstrate the significance 
of connectors being represented as first-class architectural citizens. We also 
explore several taxonomies of connector types. Notations and approaches for 
modeling connectors are discussed. A new light-weight way is suggested to 
represent connectors and support evolving architectural connectors using co­
ordination contracts, which define a modeling and implementation primitive 
that allows transparent interception of method calls. 

Chapter 4 provides a necessary background in coordination contracts. We 
compare coordination contracts with some popular techniques that may sup­
port modeling of architecture based software evolution. A three-layer architec­
ture applied on coordination contracts is proposed to facilitate separation of 
concerns. We introduce graphical and textual notations of contracts, as well as 
a tool for developing contracts. Several applications of coordination contracts 
are also presented. 

Chapter 5 proposes an approach to evolution of the coordination dimen­
sion. We characterize change histories that in a way enables control of system 
evolution in a predictable direction. Moreover, we define pre- and postcondi­
tions of method calls, coordination rules and coordination contracts, and make 
use of specification matching to justify the behavioral relationships between 

2 
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coordination contracts by means of pre- and postconditions. Additionally, we 
provide a framework to assess different cases of specification matches, and 
demonstrate proof sketches and properties of a variety of matches. 

Chapter 6 demonstrates the ideas on some case studies of a banking exam­
ple to instantiate the corresponding concepts and approaches in the previous 
Chapter. In particular, we explored Exact Pre/Post Match and Plug-in Match 
with this example. 

Chapter 7 contains the conclusions with emphases on this thesis's original 
contributions and proposes some future research goals for extending this work. 

3 
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Chapter 1 

Introduction 

1.1 Motivations for Software Evolution 

1.1.1 Origins of the Research on Software Evolution 

The research on Software Evolution originated in the 1970's by Lehman [87] 
when studying over twenty releases of the IBM OS/360 operating system. 
Based on these experiences, Lehman and Belady proposed a group of laws for 
software evolution [88]. Many of these laws are still relevant even today [90]. 
From these laws, we are aware of the fact that software systems are subject to 
continuous change, continuing growth and increasing complexity. 

Almost in the same period as Lehman's work, Parnas emphasized the sig­
nificant impact of the fundamental principles of Software Evolution as early as 
the 1970s and 1980s. The concept of "information hiding" [118] decomposes 
a design into modules, which yields modularization as a basic design decision. 
The underlying intention is to encapsulate design decisions within individual 
modules so that changing design decisions will affect only some of the modules, 
rather than the whole software. Parnas also proposed the ideas of "design for 
change" and "anticipation of changes" as crucial aspects in software engineer­
ing [119], which are motivations for research on Software Evolution. In 1994, 
Parnas dealt with the issue of software evolution in more details [120]. 

1.1.2 The Ability to Accommodate Changes 

It is evident that an increasing percentage of information systems as e-Business 
and e-Commerce is in need, which are mission-critical and large in size. Build­
ing such software systems is a big challenge for software practitioners. The 

5 
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complexity and the pressure are not only from techniques or collaborations 
among people, but also from time-to-market, economic resources, severe con­
straints, as well as demanding from the software producer discipline and ef­
ficiency. Software Evolution is unavoidable both before and after deploy­
ment [111], so that software systems need to be evolvable in order to build 
large, complex, multi-lingual, multi-platform, long-running systems economi­
cally. 

Thus, an intractable problem has come up: how can we construct software 
systems gracefully adapted to changing requirements over time? [5:~] gives us 
a general guideline - "the ability to change is now more important than the 
ability to create e-commerce systems in the first place. Changes become a 
first-class design goal and require business and technology architecture whose 
components can be added, modified, replaced, and reconfigured". 

Technically speaking, most of these systems are modeled by component­
centric software development, where business rules are reflected as volatile 
relations among components. When components become more complicated, 
the complexity of components' interactions will grow exponentially. Therefore, 
the complexity in software development is now focused on evolution rather than 
construction. We review a software system as an entity under development as 
well as evolution. 

1.2 Software Evolution versus Software Main­
tenance 

The waterfall model categorizes the development cycle of a software project 
into several phases. Though the waterfall model assumes the development 
to be a "linear" process, which is not true generally, we follow the model 
to introduce the concept of Software Maintenance and Software Evolution. 
Software Maintenance in Figure 1.1 is the very last stage, as well as the longest 
phase in the software life cycle. 

The IEEE Standard 1219 [4] defines Software Maintenance as "the modi­
fication of a software product after delivery to correct faults, to improve per­
formance or other attributes, or to adapt the product to a modified environ­
ment." Sommerville concluded that Software Maintenance has rich function­
alities, such as maintenance to repair software faults, maintenance to adapt 
software systems to a different operating environment, maintenance to add to 
or modify the system's functionality [141]. 

However, the fact that Software Maintenance is the most cost-intensive in 
the entire software development life cycle surprised many software practition-

6 
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Requirement 
~ 

Analysis 

- Specification -

McMaster- Computing and Software 

- Design h 
'------r------IJ 1 

..__ Implementation~ 

Test 

- Maintenance 

Figure 1.1: Software Development Lifecycle Waterfall Model 

ers. According to Sommerville, approximately 60% of the cost of software 
system construction occurs during maintenance period [141]. A relatively new 
assessment in [ 81] even declares that the cost for maintaining software and 
managing its evolution now amounts to more than 90% of the total cost. These 
numbers have properly illustrated the magnitude of such a serious situation. 

The concept of Software Evolution and Software Maintenance are highly 
related. In 2000, Lehman and Ramil [39] defined Software Evolution as "all 
programming activity that is intended to generate a new software version from 
an earlier operational version". However, a list of various definitions in [39] 
shows that there is not a consensus yet on how to define Software Evolution. 
Considering this, firstly we will induce a general definition of Software Evolu­
tion by referring to that of Software Maintenance. 

From the analyses above, compared to Software Maintenance, Software 
Evolution should support a more general concept for being involved in all 
phases of development. Ghezzi [66] argues that evolution should be planned 
throughout software development activities. Experiences already testified to 
the fact that software systems with an evolvable architecture cost less to main­
tain and Software Evolution is a key to software productivity [111]. 

Toward reducing the cost of software evolution, making it more effective 

7 
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and positioning our research objectives, we will explore Software Evolution 
from various perspectives. 

Chikofsky et al. classifies three different activities in constructing software: 
requirements, design and implementation [:n]. From these criteria, they built 
concept of Forward Engineering, Reverse Engineering and Re-engineering. 
Forward Engineering is the traditional process of moving from high-level ab­
stractions and logical, implementation-independent designs to the physical im­
plementation of a system. Reverse Engineering is the process of analyzing a 
subject system to identify the system's components and their interrelationships 
and to create representations of the system in another form or at a higher level 
of abstraction. A typical reverse engineering framework is presented by Sar­
tipi [ 1 :n, page 15]. Re-engineering is the examination and alteration of a 
subject system to reconstitute it in a new form and the subsequent implemen­
tation of the new form. 

In consequence, research on Software Evolution in the early stages of reverse 
engineering and re-engineering was mainly operating on legacy systems. The 
process of evolution within this scope usually involves analyzing, understand­
ing the program that has to be changed, implementing required changes [141], 
versioning resulting systems, architectural recovery, etc. Techniques have fo­
cused on reducing the complexity through automatic support for program com­
prehension, which includes visualization and reverse engineering techniques 
like artifact extraction, as well as focused on restructuring or refactoring1

, 

which includes problem detection and problem correction. Thus, practition­
ers have to reason from experiences or source code even in the absence of 
an explicit architecture. However, by patching the problematic areas, they 
may introduce more problems and by applying immense modifications, design 
decisions will drift [G5]. 

It has been shown that the after-delivery Software Evolution is extremely 
expensive because it requires understanding, analyzing and evaluating the ap­
plication or system thoroughly. If the original system is hard to comprehend 
or even itself has poor software quality, software evolution in such a context 
will encounter great impediments. To avoid the high cost, we want to em­
phasize the importance of Software Evolution at the initial phases in software 
development, curbing the deteriorating situation. 

Furthermore, the timing of evolution unfolds two new notions for us: static 
evolution which happens at the design or specification time, and dynamic evo­
lution which happens at the execution time (run-time or dynamic). Changes 
are provided at many levels of granularity, so that the corresponding evolution 

1 Refactoring is defined as structural transformations on source code that do not affect 
the external behavior of the code. 
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pervades all development activities: coarse-grain as in specification, frame­
work, design, architecture and fine-grain as in data, schemas, source-code, 
modules, test cases, etc. 

Moreover, research on Software Evolution is dedicated in two aspects ac­
cording to Mens and Wermelinger [10-!]: the what and why studies evolution 
as a noun in the sense of observing phenomena, nature and underlying moti­
vations of Software Evolution; and the how involves the methods, tools and 
practices for evolving a system, in particular for a constantly changing model, 
a specification of the system and the system implementation. 

In summary, though recognizing the importance of Software Evolution, 
most of the support for evolution research has been focused on techniques 
or tools for dealing with structural complexity, finer-grain software artifacts 
and the "what and why" aspect of software evolution. For the purpose of 
our research, we are using forward engineering approach of construction to 
discuss evolution, performing static evolution as early as design time on the 
architectural level concerning coarser-grain artifacts and considering the "how" 
of software evolution. 

1.3 Architecture-Based Software Evolution 

1.3.1 Motivations 

To address the recently-emerged problems in engineering large, complex soft­
ware systems, three popular techniques come up: Component-Based Software 
Development (CBSD), middleware platforms and software architecture [102] 2 . 

Component-based software development highlight components and their inter­
relationship, but ignore the importance of connectors, which we will mention 
later. Software architecture has come to the fore and become an indispensable 
area in software engineering. Researchers and practitioners have started to 
consider software development processes from an architecture point of view. 

Since the beginning, software architecture based approaches have taken 
over the previous absolute authority of modules. Architectural design is the 
initial design process of identifying sub-systems and establishing a framework 
for sub-system control and communication [141]. As the output of the design 
process, software architectures describe the structure of a system or a program 
and its global properties. Once determined, any change in architectures will 
impact a substantial set of functional and non-functional properties. By raising 

2Generally speaking, architecture-based development is top-down decomposition and 
component-based development is bottom-up composition. 
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the level of abstraction, software architecture is a way to control software 
development, evolution costs and challenges and to improve software quality. 

Surprisingly, most definitions of software architecture do not explicitly men­
tion evolution. Though in recognition of the fact that software evolution will 
extract huge costs after initial development, software processes and design 
techniques still concentrate on software construction, so that current support 
for architecture-based software evolution has been insufficient. It is important 
for evolution to be based on the architectural level to make the decision effec­
tive throughout the whole life cycle of a system. As a saying goes, prevention 
is better than cure. 

Jazayeri even argued that the primary goal of a software architecture is 
to guide the evolution of the system [78]. Such ideas of integrating software 
architecture with evolution motivates our research. 

To make our motivation more explicit, we position our notion of software 
evolution by dimensions under timing and granularity in Figure 1.23 . During 
design time, the architecture is still under development; pre-execution time is 
when the architecture has already been specified and implemented but not yet 
running; runtime means the architecture can be modified dynamically while 
running. 

runtime 

pre-execution time 

design time 

requirements 

evolution time 

level of abstraction 

high-level detailed source 
arch. arch. code 

Figure 1.2: Software Evolution Dimensions under Timing and Granularity 

1.3.2 Software Architecture as a Buzzword 

The word "architecture" is not original to, nor specific to software engineer­
ing. Since the day it was introduced, controversy on how to define it has not 

3In the "evolution time" direction, we adopt concepts by Mens et al. [ LO;~]. 

10 



Master's Thesis- Huan Wang McMaster- Computing and Software 

stopped. The website of Software Engineering Institute (SEI) [3], exhibits over 
90 definitions to interpret various perspectives of an architecture. 

We will adopt the definition by Bass et al. [27]: the software architecture 
of a program or computing system is the structure or structures of the system, 
which comprise software elements, the externally visible properties of those 
elements, and the relationships among them. 

In spite of the existing dissension on how to define software architecture, 
there is an almost-clear consensus on elements of software architecture, which 
are components, connectors and configurations [G-!]. Components represent 
the primary computational elements and data stores of a system. Connectors 
represent the interactions among components. System represents hierarchical 
organizations of components and connectors. An instance architecture is a 
topology of a particular set of components and connectors. 

What benefits do we desire for software architecture? Software architec­
tures not only function as a bridge between requirements and implementa­
tion [62], but also represent several roles, such as enhancing understanding of 
system, supporting reuse at different levels, directing construction, facilitating 
evolution, analysis and management [61]. 

1.3.3 Documenting Software Architecture 

Generally speaking, architecture documentation may serve as a means of ed­
ucating associated people, ease communication among different stakeholders, 
support the basis for system analysis [34]. Notations in architecture documen­
tations could be either graphical or textual, or both. In any case, they all 
should be capable of describing architectures in multi-faceted and systematic 
ways. 

The "4+1" View Model 

As a straightforward graphical representation applied universally, box-and-line 
approaches [135] represent components as nodes and connectors as edges so 
that an architecture of a system is a directed graph. While enjoying simplicity, 
one has to compensate for the ambiguous meaning of every unit, perspectives 
from different stakeholders and analysis or reasoning about architectures. 

The "4+1" view [84] was created to reflect concerns from involved stake­
holders. As its name indicates, the "4+ 1" view is illustrated by five organized 
views: the logical view (end-user functionality) models objects of the design 
using an Object-Oriented method; the development view (programmers, soft­
ware management) describes the static organization of the software; as a com-

11 



Master's Thesis- Huan Wang McMaster - Computing and Software 

plement to the development view, the process view (integrators, performance, 
scalability) captures the concurrency and synchronization aspects of the de­
sign; the physical view (system engineers, topology, communications) maps 
the software to the hardware and explicates distributed properties. The fifth 
view is the scenario view, representing dynamic aspects shared in the other 
views. To a large degree, UML (Unified Modeling Language) is influenced by 
this seminal idea. 

ADL 

Prior to Architecture Description Languages (ADL), Module Interconnection 
Languages (MIL) and Interface Description Languages (IDL) tried to serve a 
similar purpose for the source code. The two languages specify relationships 
between modules at the source code level but lack the capability of architec­
tural level abstraction. 

The way ADLs named suggests that ADL is used to describe the archi­
tecture of a software system. With the indispensable architecture elements 
discussed in Section 1.3.2 (page 10), ADL should adequately capture compo­
nents, connectors, and the system configuration. 

Over the past 10 years, a lot of ADLs come into play. Medvidovic et al. 
set up a classification and comparison framework for several ADLs [100]. In 
2007, they advocated a creative idea that the second generation ADLs should 
consider "three lampposts" [9G] - not only from insights of pure technology 
as the first generation also from two other aspects- domain, and business. 

1.3.4 Software Evolution at the Architectural Level 

Most earlier research works on software architectures are dealing with spec­
ifying, describing, analyzing, implementing, evaluating issues. On the other 
hand, though research works on software evolution have been proceeding for 
almost thirty years since Parnas and Lehman, only recent phenomena and the 
related underlying significance have started to be realized [89]. While the two 
companies working alone separately for a long time, current advances in both 
sides lead to develop architecture-based software evolution coincidentally. 

Research on architecture-based software evolution is not only essential to 
evolve software architecture also to assess an architecture design, facilitate 
architecture-based development, enhance software quality and increase confi­
dence on products by managing changes more successfully. Software architec­
ture is evolvable, so are its elements - components, connectors, and system 
configurations. 

12 
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In favor of our research, evolution of architectures is managed on archi­
tectural elements through a particular set of strategies or rules. Then we 
define software evolution by means of architecture re-configuration as evolving 
operations on architectural elements - that is, adding, removing, replacing 
component and/ or connectors, according to the required changes. 

1.4 Summary 

In this Chapter, we have introduced fundamental knowledge of software main­
tenance, software evolution and software architecture as a basis for our research 
motivation for evolution based on software architecture. Software systems are 
subject to continuous change, continuing growth and increasing complexity so 
that evolution is unavoidable. We define architecture-based software evolution 
from a reconfiguration perspective, as adding, removing, replacing components 
and/ or connectors, according to the required changes. 

13 
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Chapter 2 

Techniques for Modeling 
Software Evolution 

Many approaches to modeling software evolution are predominantly based on 
a relatively low level of abstraction, being programming language specific, or 
operating in an ad-hoc way. After extensively surveying the literature, we have 
found that current research on evolution at the architectural level essentially 
applying some logical formalism, type theory and graph transformation tech­
niques. In this chapter, we will present some related work and compare them 
using two main criteria: the representation of changes in architectures and the 
mechanism to evolve connectors. 

2.1 Logical Framework 

Lucena and Alencar [10, 94] proposed a theorem-proving based logical frame­
work for software architecture analysis and evolution by structural and func­
tional descriptions that allow validation of architectural changes and to assess 
the generated impacts. The support formalism is many-sorted deontic modal 
action logic which describes transitions that may occur in software evolution 
(defined as a sequence of change processes). They describe the evolution by 
means of architectural configuration where transitions are represented as ac­
tions with deontic constraints given by the statement of "permission" and 
"obligation" allowing deduction about the validity of transitions. 

They proposed a formal software architectural description which consists 
of features like versions, modules and subsystem families. Furthermore, they 
defined a tuple SS = (SG, SR, SV, SI, SC) to represent an architecture. SG is 
an acyclic structure graph which describes the hierarchical relations between 
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module families and subsystem families. SR contains the resource-related 
information. Likewise, SV holds version-related information, Sf the interface­
related information, SC the configuration-related information. Each element 
in tuple SS is also defined in terms of tuples as shown in Figure 2.1. Figure 2.21 

is an expanded overview of S S. 

relations between I hierarchical j 
r::;-;:::---;7;---::;-;:-;-;::--::;-:--\-------========-- module families 

~---~~ SG - (N , FN,S,.,E} J l and subsystem 
0 families 

c ----~{,. ( ' ]L-~====.' resource-related 
. r information - : SR = R, P" R., T , Tn t t 

4 SI=(f, AIS, f' , CIS) 

·1- _!version-related l 
I I information 

1--~~===1 interface-related j 
l information 

-- J SC = (C c . M p 1• R T. ) ~ ~onfigur~tion-related 
~. , s , c, c, qc, c _I ~ mformat1on 

Figure 2.1: Software Architecture Denoted by Tuples 

The logical framework for modeling software evolution is based on architec­
ture configuration. Each particular architectural description is instantiated by 
S Si ( i E N), which consists of a sequence of system configuration states. The 
initial description SS0 = (SG0 , SR0 , SVo, SI0 , SC0). From the start, an archi­
tecture evolves to SSi through executing a chain of transition rules rj (j EN) 

until arriving at an expected architecture, i.e., SS0 ~ SS1 --+ .. . --+ SSi-r ~ 
SSi. Like the possible changes on each element in the tuples shown in Fig­
ure 2.2, the rules can be accordingly imposed on structures, resources, versions, 
configurations, functionalities, or static and dynamic properties of the archi­
tectural configuration transformation. 

To conclude, Lucena and Alencar's logical framework identified a concep­
tual model evolving through architecture configurations based on transitions , 
and worked "as a programming-in-the-large transformation process applied to 
architectural descriptions of software systems" [10]. Theorem provers are used 
as tools to reason about software evolution in this logical framework. From the 

1 Both Figure 2.1 and Figure 2. 2 are adapted from [ 10 ]. 
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perspective of software architecture, components appeared as either a module 
family or a subsystem family. However, this approach does not model con­
nectors as a first-class citizen, nor even distinguish the notion of connectors. 
Thus, inter-component changes can hardly be expressed. 

2.2 Architectural Type Theory 

Garlan argued that an architectural style can be viewed as a system of types, 
where the architectural vocabularies (components and connectors) are defined 
as a set of types [59]. Medvidovic et al. 's work focuses on how to develop and 
realize the idea and make architecture be married to type theory "blissfully". 
Their fruitful work has produced a new ADL- C2ADL, as well as a novel 
architecture style - C2. This introductory section is heavily based on the 
work of Medvidovic et al. [95, 99, 110, 14:3, llG]. 

2.2.1 Palsberg and Schwartzbach's Type System 

Type theory is generally applied to programming languages. In Object-Oriented 
programming languages, all types in the type universe are inter-related and 
composed into a type hierarchy [139]. The subtype relationship [117, J 26] is 
formalized as a collection of inference rules and denoted as S <: T, where we 
call S is a subtype ofT or T is a supertype of S. Subtyping is typically a 
partial-order relation, and if S is a subtype ofT, then any object of type S is 
also an object of type T. Subtypes must preserve all features of supertypes, 
but may have more. 

Pals berg et al. 's work shed light on the type theory applied to architectural 
evolution [117]. Patterns of type conformance are identified, such as arbitrary 
subclasses, name compatibility, interface conformance, monotone subclassing, 
behavior conformance and strictly monotone subclassing. In arbitrary sub­
classes, any class is allowable to be declared as a subtype of an arbitrary class 
so that class methods can be added, deleted or redefined freely. Name compat­
ibility requires a shared set of named methods. Interface conformance takes 
the types of a method's arguments into consideration, besides their names (i.e., 
signatures). M anatone subclassing preserves interfaces by adding or redefining 
methods while preserving the interfaces of the superclass. In behavior confor­
mance, the desired methods are specified by means of pre- and postconditions. 
Strictly monotone subclassing only allows adding methods and requires the 
preservation of a particular implementation. When going right from left in 
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Figure 2.32
, the typing mechanism becomes more expressive and rigorous by 

considering more object features. Table 2.1 builds a correspondence between 
patterns of type conformance and the subtyping relations. 

name 

compatibility 

class + monotone 

subclasses 
class+ strictly monotone 

subclasses 

class + arbitrary 

subclasses Interfaces behavior 

Figure 2.3: Subclassing Mechanism 

Table 2.1: Subtype Relationships Established on Figure 2.3 

Patterns of Type Conformance Subtyping Representation 
class + subclasses sub classing 
name compatibility more methods 
interface conformance 

behavior 
weaker preconditions, 
stronger postconditions 
weaker preconditions, 

strictly monotone subclassing stronger postconditions, 
other specs to preserve implementation 

2.2.2 Evolving Architectural Components 

As shown by Medvidovic et al. [99], the notion of subtyping adopted by ADLs 
is richer than that typically provided by programming languages; that is, it in­
volves constraints on both syntactic (e.g., naming and interface) and semantic 
(e.g., behavior) aspects of a component or a connector. The subtype relations 
that are currently captured in [99] allow a subtype to preserve its supertype's 
interface, behavior, or both. 

2Figure 2.3 is adapted from [117]. 
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C2 Architecture Style 

Originally intended to model Graphical User Interface (GUI) intensive appli­
cations, the C2 architecture style is generally applied to build architectures 
of large-scale, highly-distributed, heterogeneous, evolvable, and dynamic sys­
tems, and is independent of implementation language. 

In a C2-style architecture, each component or connector has two defined 
interfaces- "top" and "bottom" (see also the filled black circles in Figure 2.5), 
maintaining messages sent and received, respectively. One such component 
interface may be attached to at most one connector. However, a connector 
may be attached to multiple components or connectors, transferring messages 
between them. A C2 architecture, where components are linked together by 
connectors into a hierarchical network, follows a principle of limited visibility 
( a.k.a., implicit invocation or substrate independence), i.e., a component is 
only aware of services provided from "above" but has no knowledge of services 
provided "beneath". Thus C2 messages (event-based) are of two kinds -
requests (sent up) and notifications (sent down). Passing these two kinds 
of messages via connectors is the only way for components to communicate 
(direct communication between components is disallowed). C2ADL is an ADL 
for defining architectures built according to the C2 style. 

C2 Component 

Indicated in the above sections, a C2 component is a unit of computation, 
maintaining states or a data store, performing operations and exchanging mes­
sages (synchronous and asynchronous) with other components via two inter­
faces, "top" and "bottom". A well-formed definition of C2 component is shown 
in Figure 2.43

. C2ADL treats each component specification in an architecture 
as a type and supports its evolution via subtyping. C2 specifies component's 
semantics in FOL (First Order Logic). 

Formally, each component is identified as a type and represented as a tuple, 
Component =< nam, int*, beh, imp >, which consists of a name, a set of 
interfaces, a behavior and an implementation as in Figure 2.4. 

• Each interface element has a direction indicator and a set of parameters, 
int =< dir, inLnam,param* >,where 

dir: direction indicator (provided, required); 

int_nam: interface name; 

3Figure 2.4 is adapted from [99]. 
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C2 Component 

a a set of interface elements associated behavior implementation (possibly) 

Figure 2.4: C2 Component Elements 

(a) 
(b) 

Conn1 Conn1 

requ sts <= 

(d) (c) 

Figure 2.5: A Demo for C2 Component-Connector Architecture 

param*: a set of parameters, each parameter has a name and a 
type: param = < param_nam,param _type >. 

• The behavior has an invariant and a set of operations , each operation 
has pre- and postconditions and a result (if there is any): 

beh = < inv, oper* > 

oper =< pre, post , result > 
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C2 Connector 

The responsibilities of connectors are to combine components into a hierarchi­
cal architecture, to route, broadcast and filter messages among components 
and connectors. Filtering and broadcast policies for messages, such as no fil­
tering, notification filtering, prioritized and message sink, may be provided by 
connectors. Connector interfaces are specifically defined as ports. C2 connec­
tors are unique in that these defined interfaces are context-reflective, i.e., they 
are inherently evolvable to support any components that interact through the 
connector. C2ADL only supports message passing connectors. C2 does not 
provide techniques for connector evolution that are similar to its component 
subtyping relation to be discussed. Instead, the context-reflective interfaces 
of C2 connectors, and modification of the filter mechanism to support addi­
tion or removal of components are two techniques to realize evolution of C2 
connectors. 

Evolving Framework for C2 Components 

The construction of an architectural type system based on Section 2.2.1 (page 
18) can be expressed by several set operations, shown as Venn diagrams in 
Figure 2.64 . U is the universal set. Set Int (interface) and Beh (behavior) 
demand two conforming types share interfaces and behaviors respectively. Set 
Imp (implementation) demands a type share particular implementations of all 
supertype methods. Set N am (name) demands shared method names. 

u 

Figure 2.6: A Framework for Understanding 00 Subtyping Relationships 

• interface conformance (int as in Figure 2.7(a)) applies interface sub­
typing to provide a new implementation for a component of the original 

4Figure 2.6 and Figure 2.7 are adapted from [D!J]. 

22 



Master's Thesis- Huan Wang McMaster- Computing and Software 

u u 

(a) int (b) int and beh 

u u 

(c) int and imp (d) imp and not int 

Figure 2.7: Examples of Component Subtyping Relationships 

architecture, which is useful for interchanging components without af­
fecting dependent components. 

• behavioral conformance (the intersection of int and beh as in Fig­
ure 2. 7(b)) requires that both interface and behavior of a type be pre­
served in demonstrating correctness during component substitution. 

• strictly monotone subclassing ( int and imp as in Figure 2. 7 (c)) extends 
the behavior of an existing component while preserving correctness rel­
ative to the rest of the architecture, so as to evolve a component with 
additional functionalities. 

• implementation conformance with different interfaces (imp and not int 
as in Figure 2. 7( d)) is useful specifically in describing domain translators5 

in C2, which allow a component to be fitted into an alternate domain of 
discourse. 

• multiple conformance mechanisms allow to create a new type by subtyp­
ing from several types, potentially using different subtyping mechanisms. 

In most Object-Oriented Programming Languages (OOPL), the subtyp­
ing mechanisms above would be realized by different programming languages 

5Domain translators provide functionality similar to that of the adapter design pattern. 
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since every single OOPL supports at most one such mechanism. It is worth 
mentioning again that architectural types are not of the same meaning as the 
general notion of types in programming languages (integers, strings, arrays, 
records, etc.). When scaled up to the architectural level, they all may need to 
be supported by more than one language. 

Medvidovic proposed a framework for evolving software architecture by 
using type theory with regard to architectural elements like components and 
configurations [95]. 

• a component evolves by means of a heterogeneous subtyping theory for 
software architectures; 

• a connector evolves by context-reflective interfaces to support any com­
ponents that interact through the connector and by heterogeneous infor­
mation filtering mechanisms; 

• a configuration evolves by employing heterogeneous, flexible connec­
tors and minimal component interdependencies using implicit invocation, 
asynchronous communication or substrate independence. 

In such a context, evolution of components can be represented by a sub­
typing relationship between two components, i.e., cj :::; ci, as the disjunction 
of sets nam, int, beh and imp, which are shown in Figure 2.6 (page 22). Thus, 
the subtyping relation can be defined intuitively as: 

(VCi, Ci :Component)( CJ :::; Ci {::} 
Ci:::;nameCi V Cj:::;intCi V Cj:::;behCi V Ci:::;impCi), 

i.e., by the disjunction of name subtyping, interface subtyping, behavior sub­
typing, implementation subtyping. 

ArchStudio 3 [llG] is an architecture-driven software development environ­
ment that supports the C2 architectural style. Mae [128] is an external change 
management tool assistant for ArchStudio in providing revisions of components 
and connectors. 

To sum up, this approach is notable in its support for components and 
configurations evolution. The subtyping mechanisms for evolving components 
are claimed to be independent from domain, style, and ADLs [08], where 
each component specification is treated as a type and evolved via subtyping 
rules. However, the evolution of connectors is largely dependent on components 
by means of context-reflective interfaces and information filtering mechanism, 
which makes addition, removal, replacement, and reconnection of connectors 
difficult and not flexible. 
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2.3 Transformation Techniques 

According to Heckel et al. [72], a general concept of transformation refers to 
"the manual, interactive, or automatic manipulation of artifacts according to 
pre-defined rules, either as a conceptual abstraction of human software en­
gineering activities, or as the implementation of mappings on and between 
modeling and programming languages". Favre et al. [47] summarized a few 
transformation formalisms applied to software evolution: program transforma­
tion (over Java, C, or C++, etc.); model transformation (over UMLand other 
visual languages); graph transformation; term rewriting, category theory, al­
gebra, and logic. Transformation techniques such as model transformation, 
graph transformation and category theory are appropriate for software evolu­
tion at the architectural abstraction level. Especially, it is very straightforward 
to describe software architecture as a directed graph, where components are 
represented by nodes and connectors are the edges connecting nodes. In what 
follows, we will introduce two approaches in this category. 

2.3.1 UML-based Algebraic Graph Rewriting 

We have discussed in Section 1.3.2 (page 10) that UML reflects different views 
of software architectures. Recognized as a de facto standard in industry, UML 
has been used for modeling, analyzing and designing Object-Oriented software 
development. To describe architectural level evolution, Ciraci et al. [3:3] models 
designs by using UML (especially class and interaction diagrams), and is based 
on category theory, where software architecture is a typed graph and evolution 
processes can be viewed as morphisms between components (e.g., classes); see 
Figure 2.86 . Actually, they present a model as a class diagram and focuses on 
addition and removal as representative evolving operations for components. In 
Figure 2.8, the four nodes in the abstract software evolution model are: 

• Component: the components which are going to evolve 

• New Component: the components after evolving 

• System: the system with original components 

• New System: the system with evolved components 

The evolution requests can be viewed as morphisms on the architectural 
components. The evolution model in Figure 2.8 can be depicted as a pushout, 
where the input consists of morphisms Embedding: Component ---+ SYSTEM 

6The following example is taken from [33]. 
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Figure 2.8: An Evolution Model 

and Evolution: Component -t New Component, and the output consists of 
Glue2: SYSTEM -t NEW SYSTEM and Gluel: New Component -t NEW 
SYSTEM, so that the diagram commutes. Evolution defines which rewriting 
should be done. Embedding identifies the occurrence of the part of Component 
that should be rewritten. 

Ciraci et al. [:.{;~] allow three levels of adding and removing components: 
parameter and return value level, method and attribute level, class level. For 
simplicity and relevance, we will concentrate on class level operations. 

Suppose that, as in Figure 2.9, the Component node is composed of two 
classes, F and D. Via Embedding morphism the System node contains rela­
tionship aggregation between classes F and D. The New Component node has 
one more class E with the generalization relation to class F and aggregation 
relation to class D. The Glue morphism contains the new class and its relation­
ship with existing classes, as well as the relationships between existing classes. 
Thus, the New System node contains the new relations while preserving the 
relation between classes F and D in the System node. 

In Figure 2.10, to demonstrate removal operations on classes, we will re­
move class E from the System, which will cause the edges connecting class E 
to its superclass F and to class D to be removed as well. The marked items ( *) 
stay in the graph temporarily but have a "discarded" status. Once removing 
the marked items will not cause any dangling arcs, the items can be removed 
from the system completely. So in this case, we are able to remove E safely. 

Graph transformation theory provides the power to reason between ver­
sions. GXL (Graph Transformation Language) [130] is a programmable graph 
rewriting language that aims to address the limitations of both graph rewriting 
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Figure 2.9: Adding a Class E 

and tree rewriting by a synthesis of the two that uses the strengths of each one 
to address the weaknesses of the other. To represent graph rewriting as used 
by Ciraci et al. [:B], GXL is an advisable choice. Tools which can "speak" 
the GXL dialect will support software evolution by means of algebraic graph 
rewriting techniques. 

This method employs UML as a modeling language, where adding and 
removing classes have proven to be feasible. However, component's addition 
and removal are only a partial version of software evolution described in Sec­
tion 1.3 (page 9). Connectors and related evolving operations are absent from 
the model. 

2.3.2 Fiadeiro & Wermelinger's Approach 

By applying algebraic graph rewriting, as described in Section 2.3.1 (page 25), 
Fiadeiro and Wermelinger [52, 14G, 147] have proposed an approach to model­
ing software evolution at the architecture level. It is motivated by the research 
status quo that arbitrary reconfigurations are not possible, the languages used 
for representing computations are very simple and at a low level of abstrac­
tion, and that the combination of reconfiguration and computations leads to 
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Figure 2.10: Removing a Class E 

additional formal constructs. Nowadays, the application of category theory 
to software engineering is a very active research area. This method uses a 
uniform algebraic framework based on category theory and a program design 
language with explicit states, representing a software architecture via an ADL 
- COMMUNITY. 

COMMUNITY [114, 148] is a UNITY-like parallel programming design lan­
guage to describe computations, which represents architectures by diagrams 
in Category Theory, thus specifying reconfigurations by graph transformation 
rules. An instance architecture in COMMUNITY is composed of nodes and in­
teractions between the nodes, where a component is a COMMUNITY design, a 
node is a component instance, interactions could be connections between input 
and output channels of different nodes or synchronization of actions of differ­
ent nodes. A design is a unit of computation which has input/output/private 
attributes (called "channels" in COMMUNITY) and shared/private actions. 

The COMMUNITY workbench [~W] is a graphical integrated development 
environment for COMMUNITY programs which also supports the configura­
tion and reconfiguration of architectures of complex systems as well as the 
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management of a library of components and connectors. 

Software evolution in COMMUNITY is reconfiguration-based through con­
ditional graph rewriting rules on the state of involved components. These rules 
are defined by using the double-pushout approach to graph transformation and 
category theory. Thus, primitive operations defined in Section 1.3.4 (page 12) 
for evolving connectors at architectural level are feasible. Comparing changes 
in different versions of architectures is via underlying formalism such as graph 
transformation theory and category theory. The coordination contracts we 
will discuss in Chapter 4 have the same semantics as COMMUNITY. 

2.4 Other Related Approaches 

There are innumerable other related techniques and methods that may or may 
not have direct impact on modeling software evolution at an architectural level. 
For example, Ducasse et al. [44] model software evolution by treating history 
as a first-class entity, represents evolution by means of a matrix and represents 
release history by a meta-model, focusing on evolution of properties. The lack 
of consideration of connectors and their evolution is a major impediment to the 
management of evolving software architectures with current methodologies. 

2.5 Summary 

We have surveyed the literature on techniques for modeling software evolution. 
Three relevant techniques are selected for the purpose of comparison in this 
Chapter, that is, Lucena and Alencar's logical framework, Medvidovic et al.'s 
architectural type theory and transformation techniques including a UML­
based Algebraic Graph Rewriting and Fiadeiro et al. 's approach. We evaluate 
these approaches with two criteria: the representation of changes in architec­
tures and the mechanism to evolve connectors. As a result, we find that two 
common problems with some of these techniques are that they either lack the 
granularity of connectors or have not established an effective mechanism for 
evolution of connectors. 
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Chapter 3 

Architectural Connectors 

3.1 Connector as a First-Class Architectural 
Citizen 

Categorized as architectural elements, "Connectors mediate interactions among 
components; that is, they establish the rules that govern component interac­
tion and auxiliary mechanisms required" [137]. In the literature, connectors 
may also be named as connections, bindings, component connectors [95]. The 
concept of connectors also appears in middleware specifications, for example, 
J2EE connectors [J J. However, a connector in such a sense is out of the scope 
of this thesis since connectors are regularly hidden in the pre-defined middle­
ware infrastructures, not easily extensible or evolvable, so that specification 
and description techniques are much less clear. 

The main difference between components and connectors can be derived 
from their definitions, which we have presented in Section 1.3.2 (page 10). 
Components are computational elements independent of the context, to pro­
vide functionalities. In contrast, as the interactions among components, con­
nectors are completely dependent on the context to connect components so 
that connectors may not "correspond to compilation units in an implemented 
system" [100]. 

For historical reasons, many theories, methodologies and tools still pre­
dominantly focus on components in design decisions, which makes connectors 
less obvious as compared to components. This fact leads to "fat components", 
where the code for connectors is interwoven with that of components at im­
plementation time, and places the description of connectors implicit. Hence, 
connectors lose their identity, more or less. Many problems in modeling archi­
tectures are thus caused by the expressive shortcoming of "inadequacies of the 
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mechanisms for defining component interconnection" [ 1:34]. 

Addressed in Section 1.1.2 (page 5), a current trend is that business rules 
and their interactions constitute most of the complexity in software develop­
ment. The ability to deal with the situation in the Software Engineering com­
munity, however, has not increased accordingly [107]. Connectors are exactly 
the corresponding elements which reflect the trend in the setting of software 
architecture. 

Therefore, the idea of treating architectural connectors as first-class entities 
is proposed by Shaw [13-!]. Shaw models connectors as first-class entities to 
give the benefits for localizing interaction related code in connectors, increasing 
the reusability of components, enhancing the performance and maintenance of 
a software architecture, and supporting dynamic changes and evolution in 
system connectivity. 

In light of connectors being first-class citizens, not only components but 
also connectors should be evolved at the architectural level. In the follow­
ing sections, based on a survey of architectural connectors, we will introduce 
taxonomies of connector types, discuss notations and approaches for modeling 
connectors and explore a light-weight way to support architectural connector 
evolution. 

3.2 Connectors Taxonomies 

Connectors are complex and rich enough to deserve a taxonomy to show re­
lations among similar kinds of connectors [1:31]. A connector type "expresses 
the designer's intention about the general class of connection to be provided 
by the connector; it restricts the numbers, types, and specifications of prop­
erties and roles" [136]. The fact that there are fewer connector types than 
components makes it easier to work with them. Admittedly, some taxonomies 
tend to be ambiguous in some aspects. But, in general, they are beneficial 
to understanding architectures, to optimizing the underlying mechanism, to 
facilitating implementation of family architectures and software development. 

3.2.1 Architectural Styles 

An architectural style typically "defines a vocabulary of components and con­
nectors types, a set of constraints on how they can be combined" [1:37]. From 
the definition, we assume the knowledge that a style includes a set of specific 
connector types. 

Some other novel terms have come up very recently such as "frameworks", 
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"architectural patterns1
", "idioms", etc. In this thesis, we do not emphasize 

these distinctions, so that all of them are recognizing a pre-defined architecture 
at some abstraction level, representing a set of architectural instances. Any 
architectural style may have several variations. A software product can be 
constructed in or associated with more than one architectural style. 

Table 3.1: Architectural Styles and Vocabularies 
Architectural Style Component Connector 
pipes and filters filters pipes 
object-oriented objects messages, 
organization method invocations 
event-based events procedures for 
(implicit invocation) certain event 

layered system layer protocols of layer interaction 

repositories 
data-related data access 
structure or store 

Though not proposed for evolution, architectural styles are very appealing 
to identify connectors. A few styles are so named as to manifest connectors, 
e.g., pipe-and-filter and event-based style, etc., which facilitate further under­
standing of connector vocabulary, in some sense. Completely depending on 
the connector types appearing in these styles, however, would be considerably 
confusing, for identification and characterization of styles are not comprehen­
sive. The concepts of such types in Table 3.1 are intentionally ambiguous 
on specific values of components and connectors presented. In addition, the 
mapping between architectural styles and their implementations is generally 
poorly understood. 

3.2.2 Bures's Types of Component Interaction 

Bures et al. [:31] present a generic connector framework, reflecting middleware, 
to capture communication styles, where a communication style represents a 
"basic contract" among components. Though excluding connectors in the 
context of middleware infrastructures, we find Bures et al. [:n] contribute a 
similar categorization in our context. Shown in Figure 3.12 , communication 
styles generally fall into one of the four interaction types - procedure call, 
messaging, streaming and blackboard. 

1 Note that design patterns are not architectural. 
2Figure 3.1 is adapted from [:n ]. 
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procedure call 

a classical client-server 
call, e.g., CORBA, RMI 

an asynchronous 
message delivery from a 
producer to the 
subscribed listeners, 
e.g., CORBA message 
service, JMS, JORAM 

""-. stream of data between _j' a uni- or bidirectional 1 

\ ~
treaming . a sender and (multiple) 

recipients, e.g., Unix 
pipe, Helix DNA ) 
-----~ 

a communicatio·n via ) 
shared memory, e.g ., I 
JavaSpaces, RDBMS 

Figure 3.1: Bures 's Communication Styles 

The striking refinement is that Bures's connector types identify an initial 
framework to classify connectors. However, limited to the studied entities, 
connectors in middlewares are mostly variations of message-passing and RPC 
(Remote Procedure Call), which does not cover a large portion of connectors 
in architectural styles. 

3.2.3 Mehta et al.'s Taxonomy of Connectors 

To illustrate types of connectors with less ambiguity, Mehta et al. 's four-layer 
classification framework [101 , 102] uses service categories, connector types, di­
mensions , sub-dimensions and values for dimensions or sub-dimensions. The 
service category comprises four groups of primitive services (interactions) -
communication, coordination, conversion, and facilitation . Communication 
connectors support transfer of data among components. Coordination connec­
tors support transfer of control among components. Conversion connectors 
convert the interaction required by one component to formats provided by 
another, so as to enable heterogeneous component interactions. Facilitation 
connectors mediate and streamline component interaction, providing mecha­
nisms for facilitating and optimizing interactions among heterogeneous com­
ponents. Instance connector types could provide one of these or composite 
connector types. The category generates 8 connector types: procedure call, 
data access, linkage, stream, event, arbitrator , adaptor, and distributor , see 
also Figure 3.2 (with an extra initial "T_" to denote types of connectors in the 
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;{ T _Event ]<±>-(COm munication, Coordination ) 
I 

1
/ ' T _Data Access f~ Communication, Conversion } 

j, { T _Linkage }I~ Facilitation j 
;/ / 

!,/ / 

Taxonomy of 
Connectors 

~ · T _Arbitrator + Coordination, Facilitation 

~ T _Adaptor ~ Conversion } 

· · T _Distributor ~r>i Facilitation } 

\{ T _Stream JG-1 Communication } 

T _Procedure call + Communication, Coordination 

Figure 3.2: A Taxonomy of Connectors 

four-layer classification). 

• procedure call provides coordination and communication services. Such 
connectors model the control flow among components by invocation and 
transfer data among the interacting components via parameters; see Fig­
ure 3.33 . Typical examples are functions, procedures, object-oriented 
methods, callback invocations, operating system calls, etc. 

• event provides coordination and communication services. Such connec­
tors also model the control flow among components, as in a procedure 
call , except that the flow is related with events. Or the event messages 
carry information for communicating; see Figure 3.4. Typical examples 
are GUI events, interrupts and page faults caused by hardware. 

• stream provides communication service. Streams perform data transfers 
between autonomous processes; see Figure 3.54

. Typical examples are 
Unix pipes, TCP /UDP communications. 

• data access provides coordination and conversion services. Such con­
nectors allow components to "access data maintained by a data store 

3Initial "D_" denotes dimensions, "SD_" denotes sub-dimensions, and "V _,.denotes values 
for the dimensions or sub-dimensions in the four-layer classification. 

4F igure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5 are adapted from [102]. 
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Figure 3.3: A Connector Type - Procedure Call 

component" [101] and perform the conversion of data formats. Typical 
examples are SQL, File I/0, etc. 

• linkage provides facilitation services. Such connectors combine the sys­
tem components. Typical examples are linkage connectors in the C2 
architectural style and Java dynamic class loader. 

• arbitrator provides facilitation and coordination services. Arbitrators 
mediate system operations, resolve any conflicts (facilitation), and redi­
rect the flow of control (coordination), when components cannot pre­
sume other existing components' needs and states. Typical examples are 
multi-threaded systems that require shared memory access use concur­
rency control. 

• adaptor provides conversion services. Adaptors "provide facilities to sup­
port interaction between components that have not been designed to 
inter-operate". A typical example is virtual memory translation. 

• distributor provides facilitation services. Distributors "perform the iden­
tification of interaction paths and subsequent routing of communication 
and coordination information among components along these paths" . A 
typical example is DNS (Domain Name System). 

In their later work, Mehta et al. [101] have tried to further develop the 
framework and characterize connector compatibility by means of a matrix, but 
it is not guaranteed to be orthogonal for each dimension. Regardless of this 
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weakness, the taxonomy is useful for building product family architectures [4t>] 
in terms of connectors, and also useful for directing connector evolution. 

3.2.4 Other Categories 

Primitive & Complex Connectors 

The first-class representations of the connectors above, such as procedure calls 
in Figure 3.3 and events in Figure 3.4, are primitive connectors. However, 
connectors may be very sophisticated, as with parameterizable connectors, i.e., 
complex connectors or higher-order connectors [GO, 9:{]. Higher-order connec­
tors are so named because they take connectors as parameters and produce 
connectors as results, and because they are constructed by operations on con­
nectors like bundling, monitoring, confirmation, security, compression [60]. For 
example, API (Application Programming Interface) is generated by bundling 
procedure calls to a single entity. By adding security features, a connector is en­
riched with encryption or authentication facilities. The data that a connector 
is transmitting may be compressed by compression operation. Confirmation 
operations can be applied on RPC connectors to acquire an acknowledgement 
or a verification. Monitoring operations are able to upgrade a connector to 
transmit communication services that a monitoring component may require. 

Periodic Table of Connectors 

Hirsch et al. [7 -1] created a periodic table for a canonical set of connector 
properties, such as knows target, request/reply, synchronous, etc., so that the 
table provides a framework for comparing, refining and reusing connectors. 
However, there is no guarantee that these properties are orthogonal [102]. 

3.3 Notations and Approaches for Modeling 
Software Connectors 

To capture and construct connectors, researchers have created an abundance 
of notations and techniques for modeling and analysis, from abstract formal 
models to practical languages, which endow connectors with rich semantics. 

Allen and Garlan [11] were concerned with three properties for an expres­
sive notation for connectors. Firstly, it should allow the specification of com­
mon types of architectural interaction; see Table 3.1. Secondly, it should be 
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able to describe complex dynamic interactions among components. Thirdly, it 
should allow for "fine-grained distinctions between variations of a connector" . 

3.3.1 ADLs 

Wright ADL 

Wright is a general purpose ADL created by Carnegie Mellon University, sup­
porting specification and analyzing interactions between components ( specif­
ically, deadlock analysis), with process algebra as the formal basis. The goal 
of Wright is to define architectural connectors as "explicit semantic entities". 
Wright is implementation language independent, since for an architectural de­
scription in Wright, the ways to perform implementation are not specified. 

A Wright architecture typically consists of three parts: component and 
connector types; component and connector instances; configuration of com­
ponent and connector instances (11]. Wright components cannot be directly 
connected and are enforced to communicate through a connector. Unlike C2, 
Wright excludes the possibility that two connectors are directly attached to 
one another. A component type is "described as a set of ports (component 
interfaces) and a component-spec that specifies the component's abstract be­
havior". Connector types specification characterize the protocols of interaction 
between components provided by CSP-like notation (Communicating Sequen­
tial Processes). A connector type is composed of a set of roles (connector 
interfaces) to describe the expected local behavior of each of the interacting 
parties and a glue specification to describe how the activities of the roles are 
coordinated. Connector types in Wright are defined by users so that Wright 
allows arbitrary connector types. Component and connector instances are used 
to specify actual entities in configuration. These instances are combined into a 
configuration by the way how component ports are attached to (or instantiate) 
connector roles. 

UniCon 

UniCon (Universal Connector) is an ADL developed at Carnegie Mellon Uni­
versity, which is intended to provide a rich selection of abstractions for the 
connectors that mediate interactions among components [136]. Supported by 
a library of built-in types of connectors, UniCon is known as a connector­
oriented ADL. 

Each UniCon component has an interface that defines computational rules 
and constraints. UniCon has defined a group of component types, such as 
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filter, SharedData etc. Connectors are specified by protocols defining how 
components may interact. The built-in connector types are Pipe, FileiO, Pro­
cedureCall, DataAccess, PLBundler, RemoteProcCall and RTScheduler. Ac­
cording to type categorizations in Section 3.2 (page 32), we conclude that all 
connectors in UniCon are primitive. However, the pre-defined types of compo­
nents and connectors are all enumerated so that there is no room for change, 
consequently support no evolution according to the definition in Section 1.3.4 
(page 12). 

ArchJava 

Software architectures are described using specialized ADLs as we have learned 
in Section 1.3.3 and the above subsections, while implementations are de­
scribed using programming languages. There is no intermediate language 
to guide the transition between these two phases, causing problems in the 
analysis, implementation, understanding, and even the evolution of software 
systems. Figure 3.6 shows the abstraction gap between specification and im­
plementation. 

ArchJava [9] is proposed with a motivation to bridge the gap, where an ar­
chitecture is composed of a hierarchy of components communicating through 
explicitly described connections, and every component is an instance of a com­
ponent class. Components in ArchJava are special kinds of objects described 
with an extended Java language, their connections allow components to com­
municate. Ports are the endpoints of connections [1'1] to represent a two-way 
interface with provided and required methods. Connections bind each required 
method to a provided method with the same name and signature. The goal of 
ArchJava is also to enforce communication integrity of components, i.e., com­
ponents can only communicate with other components through interactions 
declared in the architecture. 

ArchJava specifies component interactions- user-defined connector types 
with a clear relation to their implementation, and unifies architectural struc­
ture and implementation into one language, so that dynamic co-evolution of 
architecture and implementation is feasible. 

Summary 

So far, we have analyzed some ADLs in this section to show different per­
spectives to model connectors. First generation ADLs (e.g., Wright, UniCon) 
were constructed for specific purposes and few take evolution of architecture 
into considerations. Even fewer ADLs support evolution of connectors than 
do evolution of components. ADLs that do not model connectors as first-class 
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Specification 

Implementation 

Figure 3.6: The Gap between Specification and Implementation of Architec­
tures 

entities (Darwin, MetaH, and Rapide) therefore provide no facilities for their 
evolution. ArchJava uses a single mechanism for specifying the semantics of 
both components and connectors. Coordination contracts, which we will see 
later in this Chapter, follow the idea of components as objects and user-defined 
connector types in ArchJava to separate concerns and facilitate evolution of 
connectors. 

3.3.2 UML 

Many specification languages have been introduced to specify and model the 
architectures of system. To explore the feasibility and evaluate the suitability 
of UML for modeling software architectures, research assignments such as [34, 
63, 77, 97] have been accomplished as milestones. Motivation of these research 
comes from two needs. On the one hand, multiple design perspectives help 
software architects to build complex architectures easily, such as the Kruchten 
"4+1" view in Section 1.3 .3 (page 11). On the other hand, ADLs have not been 
broadly applied in the industry, where "standard" notations and languages are 
generally required. 

The UML 2.0 standard includes a collection of graphical notations, com­
prising 13 types of diagrams [29]; see Figure 3. 7. 

• Structure Diagrams include the Class Diagram, Object Diagram, Com­
ponent Diagram, Composite Structure Diagram, Package Diagram, and 
Deployment Diagram. 

• Behavior Diagrams include the Use Case Diagram, Activity Diagram, 
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and State Machine Diagram. 

• Interaction Diagrams include the Sequence Diagram, Communication 
Diagram, Timing Diagram, and Interaction Overview Diagram. 

Figure 3.7: UML Diagrams 

Documenting Connectors 

"UML as an ADL" claims UML is able to provide strong supports for model­
ing software architectures. The key argument is that each of Kruchten's "4+ 1" 
views can be mapped into UML diagrams. For instance, the logical view is 
formalized by Class diagrams, the process view is mapped to Activity dia­
grams, the implementation and deployment views are modeled by Component 
and Deployment diagrams, respectively. The scenarios view is represented by 
Sequence and Collaboration diagrams, etc. Consequently, given the suitability 
of representing architectural views, UML once was promoted as a "universal" 
notation one-size-fits-all. 

Despite weaknesses, when it comes to rigorous semantic concerns, UML 
2.0 standard targets improving software architecture modeling and enhances 
the expressiveness for connectors. Informally defined, in UML 2.0, a connec­
tor represents "a communication link between two or more instances". The 
relationship between UML classes and objects can simulate that of component 
types and instances so that connectors can be documented as UML associa­
tions, UML association classes or UML classes [77]. 

A UML association is "a structural relationship among classes that de­
scribes a set of links, a link being a connection among objects that are in­
stances of the classes" [2D]. For example, in Figure 3.8, the link "«pipe»" 
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between two Filter objects simulates a pipe connector. An association class is 
"a modeling element that has both association and class properties, which can 
be seen as an association that also has class properties or as a class that also 
has association properties" [29). For example, in Figure 3.95 , an instance of as­
sociation class Pipe expresses a pipe connector. Association classes have richer 
semantics, as compared to associations, e.g., providing attributes, behavioral 
descriptions and even substructures, hence is more expressive. 

<<pipe>> 

Figure 3.8: UML Connector as an Association 

Figure 3.9: UML Connector as an Association Class 

Documenting Behavior Views 

Software architecture derives behaviors of a system from the behaviors of ar­
chitectural elements, i.e., components and the way they interact through con­
nectors. We focus on functional behaviors in this context. 

Documenting behaviors of a software architecture is essential since it ex­
hibits the functionality of each component and interactions between compo­
nents. There are many ways to specify behavior of the elements in an archi­
tectural model, ranging from plain English to sophisticated formal methods. 

5 Figure 3.8 and Figure 3.9 are adapted from [77]. 
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Garlan [62] summarizes some formal techniques applicable, such as pre- and 
postconditions, process algebras, statecharts, PO Sets (Partially Ordered Set), 
rewrite rules, and the like. Behavior diagrams in UML can also be used to doc­
ument behaviors of software architectures. It is worth noticing that in UML 
interaction diagrams are derived from the behavior diagrams (Figure 3. 7). 

3.3.3 Formal Notations 

Formal notations are used to put architectural connectors on a more "solid" 
footing, such as FOL, process algebra (CSP), 1r-calculus and category theory. 
Many ADLs depend on an underlying semantic model. For example, Wright 
ADL, introduced in Section 3.3.1 (page 39), models connector glue and event 
trace specifications with CSP. Category Theory is a branch of mathematics 
that provides "universal constructions to describe properties of mathematical 
structures like sets, groups, graphs etc" [48, 12G]. As discussed in Section 2.3.2 
(page 27), COMMUNITY [G2] is an ADL with category theory as its formalism 
basis. 

Some formalisms describe connectors without support of architectural lan­
guages, for example, Barbosa et al. [25] specify connectors by using co-algebras. 
Formal notations and approaches have their place in modeling connectors. 
However, the high cost of using formal methods prohibit their application in 
industries to a certain degree, except for safety or security critical systems. 

3.3.4 Coordination Contract 

Figure 1.2 (page 10) has illustrated that architectures are not always described 
at a higher level of abstraction. Such a lower level architecture is required be­
cause the high level software architecture falls short in support for software 
engineers at the important level of program abstraction. Additionally, in Sec­
tion 3.3.1 (page 40) we learned that, as a representative of existing ADLs, 
ArchJava provides support for evolution by treating an architectural descrip­
tion as a conventional program and relying on a special implementation lan­
guage, which is limited. 

To bridge the gap between the architectural level and implementation level 
of connectors and to direct evolution in a wider spectrum by separating con­
cerns, we are in need of a substantially independent language for connectors 
from the programming languages of the components. It turns out that Andrade 
and Fiadeiro have introduced the notion of coordination contract as an alterna­
tive to connectors when developing financial systems for Grupo Espirito Santo 
in Portugal [1 :3]. Modeled as a first-class abstraction, coordination contracts 
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are able to ensure that global properties will emerge, represent connectors 
throughout the entire application life cycle, and seriously enhance component 
reusability. This section is a summary of [14, 17, 19, 68, 86] and in Chapter 4 
we will introduce coordination contracts in a systematic way. 

A coordination contract is a modeling and implementation primitive that 
allows "transparent interception" of method calls and, as such, interferes with 
the execution of the service in the client [19]. Thus, coordination contracts take 
over the function of connectors in software architectures. The evolutionary 
operations defined in Section 1.3.4 (page 12), such as adding, removing and 
replacing connectors, will be defined via coordination contracts instead without 
breaking into the functionality of components. 

The construction of coordination contracts consists of a collection of con­
straints and rules describing coordination effects (as the glue of connectors) 
that are superposed on the involved component partners, which then enables 
evolution of connectors as a means of localizing change. 

What is Coordination? 

Coordination models and languages are used to provide a specification-level 
description of detailed architectures, to enforce separation of components and 
connectors [76], where the two dimensions are able to change at a different rate 
with less impact on each other. Generally, coordination contracts are used to 
implement connector types in Section 3.2.3 (page 34), such as procedure call, 
data access and event. However, it is worth mentioning that the notion of 
coordination in "coordination contract" is different from that of Mehta et al. 's 
classification of connector types, which refers to transfer of control among 
components specifically. We claim that coordination contract provides a foun­
dation for a general notion of connector or even higher-order connector. 

Coordination in "coordination contract" is based on superposition (or su­
perimposition) in parallel program design [138]. A superposition denotes a 
structure preserving transformation on designs through the extension of their 
state space and control activity while preserving their properties [52]. The 
notion of coordination describes process interaction by abstracting away the 
details of computation and focusing on the interactions [21], as well as bridging 
the gap between the high-level architecture and detailed architecture so that 
interacting and evolving processes are managed. 
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What is a Contract? 

Like many terms, the concept of contracts is overloaded in the literature and 
supports different design intentions. In legal terms, a contract involves agree­
ment, consideration, certainty, order or intention, etc. As opposed to it, con­
tract serves as a functional specification in software engineering society6 and 
often stands for Design by Contract ™(DbC), pioneered by Meyer [lOt>], which 
is widely acknowledged as a powerful technique for constructing reliable soft­
ware. DbC is used to build the relationship between a class and its clients, us­
ing a formal agreement, and to express each party's rights and obligations [106]. 
The three key ingredients of DbC are pre-conditions, post-conditions and class 
invariants. However, its semantics supports only pre- and postconditions of 
methods and invariants of individual classes. 

Coordination contracts are different from contracts in DbC because they 
are superposed on classes in stead of being operated on a single class. However, 
we can still consider coordination contracts such as an "extension" of DbC ['!!)]. 
One of the principal purposes of coordination contracts is to facilitate evolution 
of connectors in program architectures. 

3.4 Summary 

In this Chapter, we demonstrate the significance of connectors being repre­
sented as first-class architectural citizens. We also explore several taxonomies 
of connector types, and study Mehta et al. 's taxonomy in detail. Notations 
and techniques for modeling connectors have been discussed, such as Wright 
ADL, UniCon, ArchJava. The feasibility of UML as an ADL to modeling soft­
ware architectures with UML is presented. In the end, a new light-weight way 
is suggested to support evolving architectural connectors. As a realization of 
connectors, coordination contract is a modeling and implementation primitive 
that allows transparent interception of method calls and, as such, interferes 
with the execution of the service in the client. The evolutionary operations 
defined in Section 1.3.4 (page 12), such as adding, removing and replacing 
connectors, are defined via coordination contracts. 

6Different meanings of contracts also appeared in ['22, IG, 7:)]. 
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Chapter 4 

Coordination Contract 

4.1 Introduction to Coordination Contract 

In Section 3.3.4 (page 44) we have presented a general overview of the coordi­
nation contracts. The separation of architectural connectors from components 
allows for the explicit representation of object interactions in the form of con­
tracts, communication objects or connectors. Coordinations and coordinated 
entities are independent so that they can evolve separately. Coordination 
contracts define a declarative modeling language, other than a programming 
language. In the following subsections, we will inspect the ability of several 
popular techniques to support modeling of architecture based software evolu­
tion, such as Object-Oriented Design (OOD), design patterns, AOP (Aspect­
Oriented Programming) and the association class in UML. 

Object-Oriented Design 

Before exploring the mechanisms of coordination contracts, we test similar 
ideas in 00. As we talked about in Section 1.1.2 (page 5), the development 
complexity is focused now on software evolution rather than construction. This 
phenomenon has a ripple effect on the methodologies previously adopted for 
software construction. Those methods should be re-evaluated for the purpose 
of evolution, for example, the most popular one, Object-Oriented Design. 

OOD provides only two ways to "use" a class, to inherit from it or to be­
come a client of it [105]. We define new subclasses by reusing the behaviors 
of an existing class or we establish client/supplier relations between objects 
through feature calls. With the two characteristics, OOD broadly encapsu­
lates data, controls the construction complexity and enhances the reusability 
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of software artifacts. For example, a minimal version of BlueJ1 , an Integrated 
Development Environment (IDE) for Java applications, only "uses" and "in­
herits" associations are supported. 

However, objects are abstracted as "white-boxes", in the sense that any 
subtle changes require knowledge of implementation details and will be per­
formed on their internal structure, which is not desirable for evolution. On the 
other hand, the clientship practice makes components highly coupled, which 
contradicts principles of flexible interactions discussed in Section 1.1.2 (page 5) 
and thus incurs the solicitation to separate components and coordinations. 
However, most OOPLs have not the corresponding language construction for 
connectors, and then interactions are directly implemented in the code for 
components. 

Mechanisms, such as inheritance and clientship, do not provide connection 
as a first-class entity, like contracts, which leads to inheritance and composi­
tion being even more intrusive. As a consequence, OOD does not facilitate 
evolution in relation to our concerns. 

Design Patterns 

The similarities of Design Patterns [58] to architectural styles drive one to con­
sider the possibilities of modifying patterns to support the architecture-level 
evolution. To clarify this, we distinguish architecture from design first. Soft­
ware architecture is concerned with architectural elements, their interactions 
and related constraints on these elements and interactions [124]. Design is 
concerned with "the modularization and detailed interfaces of the design ele­
ments, their algorithms and procedures, and the data types needed to support 
the architecture and to satisfy the requirements" [124]. Once instantiated, 
component interactions implemented by design patterns require evolution to 
be intrusive because they were not initially conceived to be evolvable. 

Such patterns do not provide modeling of connection as a first class entity 
like contracts do. The behaviors of components are scattered in compound 
classes. Therefore, design patterns have more to do with capturing design 
construction rather than dealing with the evolution of software. We will learn 
later in this Chapter how a micro-architecture based on design patterns is 
generated for transforming contracts into a chosen implementation platform. 

1http://www.bluej.org/ 
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Aspect-Oriented Programming 

In addition to the separation of concerns (SoC), AOP [79, 80] aims to model 
cross-cutting concerns specifically when composing software artifacts. AOP is 
also nominated as a post-object-oriented programming paradigm. However, 
the notion of contract is not cross-cutting, as is explained by Balzer et al. [2-!]. 
Besides this, AOP is operating at a very low abstraction level, which cannot 
satisfy our requirements at architectural level. AOP is principally dealing with 
modification or evolution at implementation time. We will not benefit from 
aspectization during design time if component interactions are implemented 
by coordination contracts. 

To conclude, the techniques such as OOD, Design Patterns or AOP have no 
mechanism to prioritize connectors as first-class entities, so that the behaviors 
of interaction between components merge in classes. 

The Association Class in UML 

From the discussion in Section 3.3.2 (page 41), an association class can be 
treated as an association that is also a class and has both association and class 
properties [ 11 G]. Though a coordination rule should be processed as an atomic 
transaction which cannot be satisfied by association classes, the facilities that 
association classes model class interactions as first-class citizens and the suffi­
cient interior organization are appreciable. In later sections we will show that a 
coordination contract is a variation of association classes whose semantics rely 
on principles used in software architectures and coordination languages and 
reflect changes in the business rules. Coordination contracts externalize the 
interactions between participant components (objects) and support evolution 
of systems with respect to changes of business requirements in a compositional 
way. To achieve this goal, contracts require a rich internal structure with pri­
vate attributes and operations since the components should not be able to 
access these features. 

4.2 Contract Abstraction Levels 

We have claimed in Section 3.3.4 (page 44) that coordination contracts are 
operating on a different level of abstraction in contrast to DbC. Beugnard et 
al. [28] presents a four-level contracts model as in Figure 4.12

, where each level 
corresponds to a class of contracts. 

2Figure 4.1 is adapted from [28]. 
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• Basic contract (or syntactic contract) is required simply to make the 
system work. Interface specifications are as contracts between a client of 
an interface and a provider of an implementation of the interface [142, 
page 43]. Typical examples are Interface Definition Languages (IDLs) 
and typed OOPLs. 

• Behavioral contract improves the level of confidence in a sequential con­
text; typical examples are DbC applied in the Eiffel language, pre- and 
postcondition and OCL. 

• Synchronization contract specifies the global behavior of objects in terms 
of synchronization between method calls, so that it improves confidence 
in distributed or concurrency contexts. 

• Quality-of-service contract (non-functional) specifies all behavioral prop­
erties, including even non-functional properties like availability, through­
put, latency and capacity. 

Quality Attributes 

Protocols 

Assertions 

Signatures 

Figure 4.1: Level of Contracts 

By virtue of this model, the proposed coordination contracts belong to level 
3 - synchronization contracts. It is true that we will present an approach to 
justifying predictable software evolution using pre- and postconditions in the 
next Chapter. Concerning this, one may argue that such contracts mainly are 
of level 2 as behavioral contracts. We undertake that coordination contracts 
are synchronization contracts essentially for three reasons. First of all, co­
ordination contracts are used as a top-level abstraction to specify the global 
behaviors of objects, synchronize objects and superpose behaviors upon com­
ponents which reside in a distributed or concurrent environment, to provide 
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more flexibility in terms of connector evolution. Moreover, we take the ad­
vantage of pre- and postcondition as a facility to justify relationships between 
contracts for predictable software evolution, where coordination contracts have 
their specific syntax and semantics independent of these pre- and postcondi­
tions. However, the level 2 contracts, in the role of behavioral contracts, are 
structured in the form of pre- and postconditions. It is also important to 
notice that coordination contracts are working in both design modeling and 
implementation phases. 

Collet et al. [J5] consider that a contract must provide: a specification 
formalism; a rule of conformance, to allow substitution; a runtime monitoring 
technique, if the contract cannot be enforced before runtime. In the rest of 
this Chapter we will present specification languages for coordination contracts 
and a runtime environment but will leave the rules of conformance to the next 
Chapter. 

4.3 The Three-Layer Architecture 

In the architecture model adopted when using coordination contracts, to sep­
arate coordination from computation, connectors are modeled explicitly as 
first-class entities and evolved by reasoning about coordination contracts be­
tween components so as to reflect changes of business rules. By architecture, 
we mean the structure of applications at the program level, which is also called 
detailed architectures in Figure 1.2 (page 10). The three-layer architecture [19] 
applied on coordination contracts is organized into computation layer, coordi­
nation layer and configuration layer, see Figure 4.23 . 

• Computation layer models business entities and encapsulates function­
alities of services performed locally in components. Components should 
be as simple as possible, providing only the core functionalities not vul­
nerable to be changed. 

• Coordination layer models business rules and consists of contracts coor­
dinating interactions between components so that the global properties 
are able to emerge. The purpose of contracts is exactly to provide mech­
anisms for this layer to be modeled and implemented in a compositional 
way [14]. 

• Configuration layer models business context and manages the current 
configuration of contracts and components (also called "coordination 
context") where the reconfiguration operations and rules for evolution 

3Figure 4.2 is adapted from [19]. 
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are executed. We constrain contracts as connectors to not have a direct 
relation with other contracts. 

Coordination 
Resources 

Figure 4.2: A Coordination-based Three-Layer Architecture 

4.4 Notations 

We claim that coordination contracts are declarative since they regulate what 
must hold instead of what should be done to enforce a contract, so that we 
are not worried about enforcement or penalty for contract breach. The se­
mantics for contracts is based on COMMUNITY, as described in Section 2.3.2 
(page 27) and 3.3.3 (page 44) . Fiadeiro and Andrade [-19] used the notion of 
superposition for parallel program design to define the semantics when mul­
tiple contracts manage the same components. For brevity, we will show its 
semantics informally while presenting the syntax. 

4.4.1 Graphical Notation 

UML is used to model the three-layer architecture in Section 4.3 (page 51) 
with the aim to describe, represent and analyze systems. Though UML 2.0 
is still not fully formal, we will take advantage of the features it provides and 
illustrates a coordination contract as a "scroll" by extending a notation for 
UML, see Figure 4.3. With this extended notation, we are able to enrich UML 
to model architectures with coordination contracts. Sometimes, a coordination 
contract is called an association contract [85]. 
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1

1 obj1: Class1 I 
-~----- -----
f-----~~ -----

1 ~ --

obj2: Class2 

Contract1 

obj3: Class3 

Figure 4.3: An Example Architecture with a Coordination Contract 

4.4.2 Textual Notation 

In textual notations for contracts, we identify what is needed to be coordinated 
(i.e., entities, processes and resources) and how these objects are coordinated 
(i.e., rules). The language of coordination contracts is originally from the 
OBLOG (OBject LOGic) specification language [112]. The language for con­
tracts is ideally independent from the language for objects. In the literature 
of coordination contracts, two levels of representation are described: an im­
plementation neutral language, which is abstract, free of technical details and 
specifying only business rules, and an implementation specific language, which 
is a refinement of the former to include technical details in Java, supported 
by CDE4 (Coordination Development Environment), a software environment 
for coordination contracts. Ideally, the relationships between these two levels 
and the fundamental semantics are shown in Figure 4.4 [5]. If there was a def­
inite formalization of the operational semantics we could have proved that the 
translation between the abstract and CDE specification is correct by proving 
that the diagram in Figure 4.4 commutes. 

4CDE will be introduced in Section 4.6, page 63. 
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Coordination Contract 
Abstract Specification 

Coordination Contract 
CDE Specification 

/ 
Operational Semantics 

Figure 4.4: The Abstract and CDE Specification of Coordination Contract 

The Abstract Language 

The abstract version of specification is very straightforward, independent of 
specific choices of design languages and behavioral models, where a coordina­
tion rule is shown below: 

Table 4.1: The Abstract Language 

contract <name> 
participants <list of component instances> 
constants <local constants> 
attributes <local variables> 
operations <local methods> 
invariant <properties required> 
coordination <coordination rules> 

end contract 

The name of a contract is its unique identity in the coordination layer. 
participants are instantiated participant components from the computation 
layer with coordination interfaces. These instantiated participant components 
exist as UML classes or Java objects, which make assumptions about their be­
haviors interacting with other instances. The state of an object is given by the 
set of values of the object's attributes and interfaces changing the attribute val­
ues through setters and getters. Contracts can operate on one or more objects. 
A unary contract is allowable on a single object. As we noted when talking 
about representing coordination contracts by means of association classes in 
UML, a contract may have private attributes, constants, operations and in­
variants. The attributes clause declares variables for an instance contract 
and constants can be thought of as special kinds of attributes whose values 
do not change. An invariant states the properties required to be true when 
executing the contract. Invariants and constants are important for reasoning 
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about a contract. The difference between them is that a predicate p is an in­
variant if p is true at all times in the execution, and a predicate p is a constant 
if it either always remains true or always remains false. 

Under the coordination clause, coordination rules are defined to perform 
actions on participant components. An action is a primitive operation whose 
execution is like an atomic, uninterrupted transaction guarded by a predicate. 
Either all the actions that the rule describes will happen, or none of them 
will. Thus, an action is a "step" relation between two sets of values of state 
variables. When an action can be executed, we say it is enabled [107]. The 
language regulates that coordination rules cannot be nested. 

Coordination Rules Specification 

Table 4.2: Coordination Rules Specification 

coordination rulename: 
when <triggers> by keyword "AND" to extend trigger conditions 
with <condition> guards 
do <set of actions> 

A rule is activated by the trigger given in when, and superposes the ser­
vice/reaction/method in the rule body. The triggers can be a conjunction (by 
logical operation "AND") of conditions on the state of participants, requests 
for a certain service, or messages received by one or more participants, etc. All 
these conditions should be satisfied at the same time, or the contract would 
be marked inactive and the same trigger in other contracts (if there is any) or 
the method call in the original component will be executed. There is the only 
place to decide if a rule will be triggered and whether a method invocation 
will be intercepted. 

Rules are guarded atomic actions, where guard conditions are Boolean 
conditions composed of predicates. If the guard conditions are omitted, their 
effects will be evaluated to be true. The guard in the with clause uses local 
variables or state conditions of components, for example, (x >= y) 1\ (obj == 
o). When the occurrence of given triggers is detected, the firing of an action 
is possible if its guard holds true. For example, the allow Withdraw rule in 
Figure 4.6 in the Ownership contract may only fire when a.balance() >= n is 
true5 . If any condition under the with clause is not satisfied, no actions in 
the rule will be executed, and instead, we will see it later that an exception 
will be thrown as a result. 

5We will learn in Chapter 5 that trigger is not the only decisive condition. 
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A more specific notation for contracts supported by CDE [G] is as follows; 
it is dependent on the Java language [2]. 

The Language Supported by CDE 

In practice, we desire to carry through the spirit of "separation of concerns" 
so that we model components and connectors by different abstraction levels of 
languages, with the former in the Java programming language and the latter 
in the contract language supported by CDE. The contract language details will 
vary depending upon the implementation techniques and standards that are 
selected. For the language supported by the latest version of CD E, v 1.1.1, coor­
dination contracts are compiled into Java [67, G8]. However, we have to admit 
that contracts will lose generality when interpreted into a specific language. 
Fortunately, the other side of a coin is that we thus manage to integrate a 
rich architectural description into a mainstream programming language. Such 
a representation can be used by technical people for implementing contracts. 
The current version of the contract language CDE supports is a combination 
of Java code and fragments from an abstract specification of contracts. 

participants are existing Java classes as components and implemented by 
Java source code documents, defined in the form of "participantName: Class;" 
or "Class participantName;". attributes are declared as in Java syntax. 
These attributes are private to the contract, therefore, no modifiers such as 
public, private are required. For example, we declare "double balance;" 
instead of "private double balance;". CDE will automatically generate two 
public methods for each attribute: a setter to set its value and a getter to 
get the current value. For instance, the setter for "double balance;" is "void 
setBalance(double _balance){balance =_balance;}", and the getter is "double 
getBalance(){ return balance;}". As to the underscore notation before the 
variable name, as in "_balance", we will explain its role later in Section 4.5.1 
(page 60). operations are local to the contract and conform to Java language 
conventions as well. 

In the coordination rule section, the CDE specification has refined the ab­
stract version and provided two kinds of coordination rules: the TriggerRule 
for intercepting method calls on participants, with the form of "when *- > > 
participanti.operation(arguments)", and the StateConditionRule for rules re­
acting to state conditions, with the form of "when ? (condition in Java) on 
participant1, participant2 ... ". State condition rules are declared initially by 
a question mark (?) with the condition statements specified in Java. Only 
statements that do not change the state of the participants may be used to 
define conditions in state rules; they are sometimes called query operations. 

In principle, all public methods provided by the participants can be coor-
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Table 4.3: The Language Supported by CDE 

contract contractN arne 
participants //contract participants 

participant!: Class; /for declared as "Class participantName" 
participant2: Class; //e.g., obj: Object; 

attributes //private attributes of the contract 
JavaType name 1; //e.g., int limit; 
JavaType name 2; 

operations //private operations of the contract 
//operation body in Java 

coordination //rules 
TriggerRuleN a me: 

when*- >> participanti.operation(arguments) 
&& (trigger conditions in Java) 

with (JavaGuardConditions) 
failure (Java guard failure actions throw 

an exception or return a value) 
before {actions in Java to be executed before 

participanti.operation( arguments) } ; 
do {actions in Java to be executed replacing 

participanti.operation( arguments) } ; 
after {actions in Java to be executed after 

participanti.operation( arguments) } ; 
StateConditionRuleName: 

when? (condition in Java) on participant!, participant2 ... 
do {operations in Java}; 

end contract 

dinated, except for the constructors and the Java operations from Java API 
(e.g., toStringO). When the trigger in "when*->> participantl.operation 
(arguments) && (trigger conditions in Java)" is a call like*- >>obj .x(a) 
(*- >> means any call to that operation), it denotes the call of method x 
on object obj with the sequence of arguments a. The contract is listening to 
the actual interaction x, and will intercept the call and superpose the forms 
of functional behaviors it prescribes. 

If any condition under the with clause is false, none of the actions in the 
rule is executed. Accordingly, exceptions will be thrown and failures will be 
reported to the object that called the operation. The notion of exception is 
represented here as the failure statement dealing with errors not able to be 
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processed by contracts. The failure clause should be ended with either a 
throw Exception or a return statement. 

In Figure 4.56 , before actions are performed before obj .x(a) is executed. 
after actions are carried out after the execution on obj .x(a). The do action 
is carried out to replace the original method body of obj . x (a) (if the trigger 
occurs and the guard is true), or the original operation will execute if there 
is no do block (namely, do is omitted as a shorthand). The semantics of 
contracts regulate that only one do block is executed at the same time to 
prevent the conflict of two alternative valid actions for the same trigger. If rulel 
in Contractl and rule2 in Contract2 are triggered for the same call obj .x(a), 
all guards will be evaluated first. If any guard is false, the corresponding 
failure part is executed and actions in that rule abort. If all guards are 
true, then all before actions will be executed, interleaving them without 
conflict. The do action, however, will be assigned to the first coming contract 
rule by the time stamp when created. When the do actions finish, all after 
actions will be executed . 

............................................................................................................................... \ 
: I : 
~ ~ 

I 

before before t-
I 
I 
I 

+ do t-

X 

Triggerlon 
0 bj.x(a1 I+ after after . 

I 

i .............................................................. : ............................................................. J 
Contract1: rule1 Contract2: rule2 

Figure 4.5: Multiple Coordination Contracts 

Lano and Fiadeiro [85] present a more general version of specification with 
extends to build a composite contract. The semantics of the contract in­
heritance mechanism and nested contracts were not yet clear at the time of 
developing this thesis. Such an extended contract is informally called a "sub­
class contract", where rules and features will be inherited and overridden. In 

6Figure 4.5 is adapted from [19]. 
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Figure 4.67 the new contract VIPownership, which "inherits" from Ownership, 
has a weaker with guard, i.e., a.balance >= n =} a.balance+limit >= n (sup­
pose limit >= 0), and they both are triggered by a call to c.withdraw(n, a). 

In a coordination contract, we are able to identify the similar three kinds of 
expressions that DbC delivers: preconditions, postconditions and invariants. 
In the next Chapter, we will make efforts to explain the meaning of extends 
and design a method to preserve the functionality of the original operation in 
the do action by means of a pre- and postcondition specification in order to 
ensure predictable evolution. 

{when*->> c.wlthdraw(n, a 
with a. balance >= n 
do a.debit(n) } - - _ 

{when*->> c.wlthdraw(n, a 
with a. balance+ limit>= n 
do a.deblt(n)} - __ 

VIP 
OWnership 

limit: lnt 

allowVIP 
lthdraw() 

Figure 4.6: A Proposed Contract Inheritance Mechanism 

4.5 Patterns for Coordination Contract 

Fiadeiro and Lopes [51] proposed a categorical pattern for coordination and 
provided a clear separation between components and contracts in a formal 
way. To implement the categorical pattern where the contract is language­
independent, [12, 20, G8] came up with a micro-architecture (design pattern) 
that can be used to implement contracts in standards for commercial compo­
nent models like CORBA (Common Object Request Broker Architecture), Jav­
aBean, DCOM (Distributed Component Object Model) and .NET. The generic 
micro-architectures managed, with well-known design patterns [58] (such as 
Proxy and Chain of Responsibility), to transform contracts into working en­
vironments that the solution required. However, the mathematical mapping 

7Figure 4.6 is adapted from [8G]. 
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between categorical pattern and micro-architecture is not available due to the 
lack of support formalisms in those business component standards and chosen 
platforms. 

The micro-architecture8 consists of two parts: mechanisms for components 
in the computation layer, and mechanisms for the contracts in the coordination 
layer. Figure 4. 79 shows one feasible solution. 

Coordination Pattern 
I 
I 
I 

Chain of responsibility 

~I 
ISubjectPartner 

<<abstract>> 

't 
I I 

Ct_1_SubjectConnector Ct_n_SubjectConnector 

1 1 

1 1 

Contract_1 Contract_n 

(l (l 

Component Pattern 

Subjectlnterface 

<<abstract>> 

I I 
ISubjectProxy - SubjectToProxyAdapter 

<<abstract>> operation() 

~ 
_operation() 

~ : 

Subject 

_operation() 

request for operation() 

--1> extends 

............. (> Implements 

Figure 4.7: A Design Pattern for Coordination Contracts 

4.5.1 The Component Part 

The classes in the component part are organized by using the Proxy pattern, 
which provides a surrogate or placeholder for another object to control access 
to it. 

8There may be alternatives for implementing coordination contracts other than this one. 
9Figure 4.7 is adapted from [(i8]. 
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• Subjectlnterface is an abstract class (type) where the public operations 
under coordination are predescribed. According to the "implements" re­
lationship of classes in Figure 4. 7, the interface consists of the common 
interface of services in SubjectToProxyAdapter and ISubjectProxy. Sub­
jectToProxyAdapter and ISubjectProxy must implement, or realize, the 
behavior specified by Subjectlnterface. 

• Subject is a concrete class with implementation subjected to coordina­
tion. The class extends SubjectToProxyAdapter. Before executing the 
object, Subject intercepts the service request on the object, and endows 
the contract with rights to judge the validity of the request and rules to 
perform, so as to realize the superposition of the contract. 

• SubjectToProxyAdapter is a concrete class which enables the proxy pat­
tern for the original methods in Subject, and employs proxy at run time, 
for delegating requests to ISubjectPartner, which links the Subject to 
its relevant contracts. We will show later that if no contract (proxy) is 
defined, it forwards requests directly to _operation() in Subject. 

• ISubjectProxy is an abstract class that defines the common interfaces 
of Subject and ISubjectParlner. It represents an object with the capa­
bility of implementing the Subject interface. The interface is inherited 
from Subjectlnterface to guarantee that all these classes offer the same 
interface as Subject, with which real subject clients have to interact. 

4.5.2 The Coordination Part 

• ISubjectParlner contains the connection between Subject as the real ob­
ject and the contracts. JSubjectPartner delegates the received requests 
to CLi_SubjectConnector using the Chain-of-Responsibility pattern. 

• CLi_SubjectConnector represents the particular coordination for those 
contracts where Subject is a participant. For each contract superposed, 
there is exactly one Ct_i_SubjectConnector. 

• Contract-i is a coordination instance that will be superimposed on Sub­
ject as the real object. 

If there are no contracts coordinating a real object, the micro-architecture 
can be simplified. For the component pattern, there is a call from SubjectTo­
ProxyAdapter to Subject, which is shown in Figure 4.9 as a call from Account­
ToProxyAdapter to Account. 
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Figure 4.8: A Design Pattern for Account and Contracts in Figure 4.6 
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Figure 4.9: Design Pattern for Account without Contracts 
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The micro-architecture gives a blueprint for OOPLs to achieve coordination 
contracts. In what follows, we will present a development tool built using this 
micro-architecture. 

4.6 Coordination Development Tool 

Coordination contracts come along with a supporting toolset - CDE [69], 
which has been developed by ATX Software [6] with JDK 1.2 (as of CDE 
vl.l.l) under Windows operating systems. The tool enables us to specify, 
analyze, evolve systems and provides us the following functionalities: 

• Registration: before being declared as contract participants, components 
under coordination should already exist as Java classes. 

• Editing: defines a contract for components using the CDE specific lan­
guage illustrated in Section 4.4.2 (page 53). 

• Deployment: with the micro-architecture introduced in Section 4.5 (page 
59), CDE automatically generates a Java implementation for a coordi­
nation contract from contract specifications. 

• Animation: assists in testing/prototyping of contracts for both the devel­
opment environment and runtime management purposes. The animator 
can dynamically perform operations such as create, destroy and execute 
objects and contract instances, monitor objects' states and operations 
in a sequence diagram, hence simulating applications. A sequence dia­
gram [29, page 95] is an interaction diagram that emphasizes the time 
ordering of messages between objects involved in the interaction. A se­
quence diagram shows a set of roles and the messages sent and received 
by the instances playing the roles, which illustrates the behavior of the 
system. 

The project source files are grouped in src where Java classes under coor­
dination are located in the components subdirectory. The Java files generated 
by CDE to implement the micro-architecture are in the generation directory. 
The compiled class bytecode files are in classes. 

With CDE, Java classes can be automatically generated to implement con­
tracts and to adapt component classes in order to work with contracts. At run 
time, the system can be reconfigured by activating and deactivating contracts 
which enables run-time evolution. The CDE compiler will not check semantics 
of contracts, but checks if a contract instance conforms to the CDE language 
with respect to Java syntax. 
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In Section 4.4.1 (page 52) we have shown how UML extends the notion of 
coordination contract as a special kind of association class with enriched its 
semantics. Thus, any development of such an application would be based on 
the MDA (Model-Driven Architecture) approach, where the PIM (Platform­
Independent Model) contains business rules declared in terms of contract spec­
ifications, PIM to PSM (Platform-Specific Model) transformation is accom­
plished by using Java language with the support for CDE. 

4. 7 Applications of Coordination Contracts 

Coordination contracts have enlightened many related research areas. Silva 
et al. 's approach extends the concept of coordination contracts with a fault­
tolerant scheme, which integrates C2 architectural style (Section 2.2.2, page 19) 
and the coordination layer (Section 4.3, page 51) where connectors are repre­
sented as contracts [~)8]. Bruel [:30] puts forward a service-oriented implemen­
tation of component associations where the layered design regarding coordi­
nation contracts is purposed. Gahide et al. [57] promote their early work on 
component reuse by merging AOP with CBSD and the coordination contract 
approach in an architecture model, where coordination is modeled as a trans­
verse functional aspect. Moreover, coordination contracts have demonstrated 
their surprisingly expressive power in software applications for many indus­
try sectors, such as telecommunications [82], financial services [Hi, 83], trans­
ports [109], energy supplies [G], web-services technology [15], service-oriented 
development [18] etc. 

4.8 Summary 

First of all, we have compared coordination contracts with some techniques 
that may support modeling of architecture based software evolution, such as 
Object-Oriented Design, design patterns, AOP and the association class in 
UML. We characterize coordination contracts as synchronization contracts ac­
cording to a category of contract abstraction levels. A three-layer architecture 
applied on coordination contracts is proposed with the computation layer, co­
ordination layer and configuration layer. We introduce graphical and textual 
notations of contracts, where a scroll notation is created to extend UML, an 
abstract language and a CDE specific language to implement contracts. To 
develop contracts based applications, a development tool built using a micro­
architecture is used to specify, analyze, evolve systems and provides us the 
functionalities like registration, editing, deployment and animator. In the end, 
several applications of coordination contracts are presented. 
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Chapter 5 

Our Approach to 
Architecture-Based Evolution 

5.1 The Multi-Dimensional Evolution Approach 

Section 4.3 describes support to facilitate software evolution using a three­
layer architecture, which includes a computation layer, a coordination layer 
and a configuration layer. In addition, the approach supports the divide-and­
conquer law in Software Engineering by dealing with concerns separately. As 
a result, we view an architecture using a multiple dimensional perspective1 in 
order to reduce the complexity of evolution, where "dimension" is formalized 
into these three supporting layers thanks to coordination contracts. 

Although ideally, the principles of software evolution should be independent 
from implementation details at the architectural level, software development 
strategies and paradigms of programming languages2 [56] have a substantial 
impact on the target software system under evolution. In this thesis, we are 
particularly interested in the evolution of Object-Oriented software systems. 

For the purpose of focusing on connectors in this thesis, components and 
connectors may exist at different levels of abstraction. Stating this more 
clearly, components in the computational dimension are 00 classes (in UML or 
Java), and connectors, reflecting business rules in the coordination dimension, 
are defined at a relatively higher level of abstraction, in contrast to compo­
nents. Subsequently, we will take advantage of the mechanism of multiple 
dimensions, and in such a context we are able to discipline our approach to 
software evolution at the architectural level. 

1 Mikkonen [107] proposed a two-dimension architecture with components and their con­
nections similar in spirit to our treatment. 

2 Paradigm refers to a category of entities that share a common characteristic. 
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5.1.1 The Component Dimension 

The thesis's main concern is the fundamental support for the evolution of 
connectors in terms of coordination contracts. Evolution of components is not 
the issue of most concern, but as an indispensable part of a system, we will 
cover it briefly in this section. In the architectures that we are working on, an 
architectural component is similar to an 00 class (probably a class in UML 
or Java). The permissible evolution operations on components are adding, 
modifying, and removing classes or their instances. 

The components (specifications or instances) in the system that need to 
be evolved may change in some way as part of contracts, which is to say, the 
evolved system would result in introducing new components (adding compo­
nents) to the old system that make the new contracts work. For example, a 
monitor component (class) may be included in a contract to assist in logging 
activities of classes being coordinated [5]. However, we will not give support 
in this thesis for how these components might evolve. The assumption is made 
so that this thesis is able to exclusively focus on how evolution of connectors 
will be managed. 

The approach that we have discussed in Section 2.2 (page 18) seems very 
constructive for directing the evolution of components using type theory, when 
studying the evolution of detailed architectures3 . In addition, we are working 
on the architecture of programs with the intention to bridge the gap between 
specification and implementation of architectural connectors. The state-of-art 
of coordination contracts supports Java implementations, so that subtyping in 
Java with pre- and postcondition specifications for Java methods is sufficient. 

5.1.2 The Coordination Dimension 

Considering the requirement for adapting changes in Section 1.1.2 (page 5) 
and various modeling techniques in Chapter 2, we decided to use coordination 
contracts in place of architectural connectors in Chapter 3, and the features 
of coordination contracts have been presented in Chapter 4. Coordination 
contracts conduct affairs and interactions between a chosen set of partners, 
defining the interactions superposed transparently on partners' behaviors [ :2(i]. 
In Section 1.3 (page 9), we have reasoned that our approach to evolution is 
still at specification time prior to executing code, since the architecture is still 
under development, at least for the contract/ connector dimension in the co­
ordination layer, even if the rest of the system may be partially implemented. 

3We have clarified the evolution time and the level of abstraction that we are studying 
in Section 1.3, page 9. 
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Just as we are able to evolve components via certain operations, the evolu­
tion of connectors depends on well-defined operations like adding, removing or 
substituting connectors. 

We conclude that our approach to evolution is based on reconfiguration of 
architectures, which is achieved through the addition, deletion, substitution of 
components and/or coordination contracts. 

5.2 Predictable Evolution 

5.2.1 Permissible Changes 

It is difficult to predict which behavior will emerge when evolving a system 
in an arbitrary way; probably, "unexpected" or "undesired" behaviors would 
mess up the system after composition or deletion. We thus desire a simple and 
safe approach to evolving architectures. Contracts as connectors are instant 
plug-n-play modules while preserving the system behaviors in a preferred de­
gree during evolution (see Section 5.5, page 78). For this reason, special care 
is needed to rule out unexpected results by regulating the kinds of possible 
extensions of the original system. 

We have been examining contracts isolated in an individual system in Chap­
ter 4 and the first few sections in this chapter so far. When considering whether 
an evolved system (SYS' in Figure 5.1) has predictable properties after per­
forming permissible evolution operations on contracts, we have to inspect the 
behaviors of the original system ( SY S in Figure 5.1) and even the change 
histories. 

I SYSI I---~·1 SYS' I 
Old System SYS New System SYS' 

Figure 5.1: An Old System SYS and an Evolved System SYS' 

For a coordination rule defined in a contract4 , the atomic execution process 
of which can be represented as a transition system, where nodes are states, 
arrows are transitions. Inside the frame in Figure 5.2, there is a transition sys­
tem composed of 4 states and 3 transitions as a sequence of actions that occurs 

4For readers who are not familiar with the specification language of contracts, referring 
to Section 4.4.2 (page 53) is highly encouraged. 
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in executing the contract. By "atomic", we mean if any state or transition can­
not be reached as prescribed, execution of the entire transition system will be 
aborted. As far as the contracts are concerned, transition systems are relevant 
only when we compute the relation between inputs and outputs. Apparently, 
we intend to describe static behaviors [129] of contracts (or called input-output 
behaviors in the context), which means behavioral properties of a system at 
specific "snapshots", especially before and after the system's execution. 

Admittedly, static behaviors are not expressive enough to represent how the 
internal states are reached. Accordingly, dynamic behaviors [129] of contracts 
complement static behaviors with a more detailed view of how the computa­
tion proceeds in the internal states via transitions during execution. Desirable 
state-based specification techniques that may be used to model dynamic be­
haviors are FSM (Finite State Machine), temporal logic [7], etc. 

However, at this stage, we are not worried about the intermediate states 
and the associated transitions yet. In Section 4.4 (page 52), we claim that the 
language for coordination contracts is declarative because declarative specifi­
cations generally do not give details of intermediate steps, whereas operational 
specifications describe a series of steps that a functionality performs. 

Figure 5.2 shows the observable behavior as a direct transformation from 
the input states (i.e., the states in which the rule is invoked) to the output 
states (i.e., the states resulting from the execution of the rule), viz., the dashed 
line T{ from 8 1 to S4 . We are interested in the input and the overall effect of 
the contract that are being preserved in evolution. In Section 5.4 (page 74) 
we will demonstrate that pre- and postconditions can be used to characterize 
the behavior of contracts. 

Consequently, our approach is to compare the observable input-output 
functional behavior of an old contract to that of a new contract, and authorize 
changes only if the behaviors are "predictable". To achieve this, we will base 
our work on two fundamental techniques, which are pre- and postconditions 
formally capturing observable behaviors and comparing those conditions via 
logical proof 

Figure 5.3 illustrates the arrow appearing in Figure 5.1 by showing the 
possible evolution operations performed on contracts. For example, a contract 
C1 in the old system SY S has been removed in the new system SY S'. C2 

is added in SY S'. Though its name is kept, the functionality of C3 has been 
changed. C4 stays unchanged both syntactically and semantically. 

Generally speaking, we anticipate an incremental and predictive evolution 
so that we do not allow changes in a subtractive way, for example, removing 
a part of or the entire contract, such as C1 in Figure 5.3, as this is less pre­
dictable and error-prone. However, we will include one possibility, namely that 
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T' 1 

Input 

Observable Behavior 

output 

Figure 5.2: Executing a Coordination Contract as a Transition System 

c1 removed 

added c2 
modified 

c3 c3 

c4 unchanged 
c4 

\. 

Old System SYS New System SYS' 

Figure 5.3: Possible Changes in an Evolved System against the Old System 

one or more of the participants required by the contract is absent from the 
system for some reason. Once having detected the absence of participant(s), 
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removing contract(s) involving them seems reasonable, though it might not be 
predictable for the whole system. 

5.2.2 Change Histories 

Are we able to compare two arbitrary systems in terms of evolution? Certainly, 
we do not desire to compare any two systems. It is also a rare case that we 
evolve a system in the absence of prior knowledge of it. So first of all, we will 
characterize change histories in a way that enables control if system evolution 
in a predictable direction. In addition, how different are these versions allowed 
to be in terms of contracts? In the rest of this section, we will answer the first 
question and leave the second one to the following sections. 

Basically, we will start to compare two consecutive evolving systems. For 
example, we have 3 systems including the original system, SY S, and two 
evolving systems, SYS1 and SYS2 . If SYS has no contracts yet, we assume 
contracts to pass on exactly the original method call, while preserving the 
behaviors of the original method calls without introducing any new features. 
How are these systems related to each other? 

Case 1: SYS, SYS1 and SYS2 in Figure 5.4 are systems evolving "sequen­
tially" from each other. If the evolution processes E1 and E2 are predictable 
from SY S and SY S 1 , respectively, we are able to combine these two cumu­
lative changes into Figure 5.5 and make an evolution E~ from SY S to SY S2 

directly. 

SYS E, ·I svs, E, ·I svs, 

Figure 5.4: System Evolution- Case 1 

Figure 5.5: System Evolution - Case 1' 

Case 2: SYS1 and SYS2 in Figure 5.6 are evolving "individually" based on 
SY S. Suppose the evolution processes E 1 and E 2 are predictable from SY S; 
we may not be able to fully justify the relationship between SYS1 and SYS2 , 

though they are each predictable from SY S, respectively. Probably, there is 
no direct or obvious relationship between SYS1 and SYS2• 
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SYS 

Figure 5.6: System Evolution- Case 2 

Case 3: SYS1 and SYS2 are systems evolved from SYS individually, SYS3 

can be achieved either from evolution on SYS1 or SYS2 in Figure 5.7. If the 
evolution processes E 1 , E2 , E1a, E23 are predictable from SYS, SYS1 and 
SYS2 , respectively, we say SYS3 is jointly predictable by using both paths 
from E1 , E13 and E2 , E23 . By imitating the example in Figure 5.5, we combine 
the changes E1 and E 13 into E3 , E2 and E23 into E~ in Figure 5.8. 

SYS SYS3 

Figure 5. 7: System Evolution - Case 3 

SYS :I 
Figure 5.8: System Evolution - Case 3' 

Until now, we have shown three different scenarios of change histories that 
systems may have. The second question, "how different these versions are 
allowed to be in terms of contracts", is abstractly illustrated as arrows E1 , E2 , 

etc., in above figures. To illuminate it, some form of specification is required to 
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capture the specific evolution constraints between contracts in the two different 
versions, demanding the preservation of specific properties, such as behaviors. 

5.3 Inspirations from Related Work 

5.3.1 Subtyping 

We have introduced the concept of subtype in Section 2.2.1 (page 18) when 
discussing the approach to modeling component evolution. The subtyping 
relationship is represented asS<: T ( <: is used to mean "is a subtype of"). 

Object-Oriented programming languages like Java have set up a universe 
of types; all types are related in some way in a type hierarchy. Inferior types 
in the hierarchy are ideally compatible with more general superior types in 
the hierarchy. Types are generally used to give information on the syntax of 
methods or components. Type checkers are created to guarantee no type errors 
occur when subtype objects replace supertype objects in a piece of executable 
program. The role of coordination contracts is similar to types, in the sense 
that they are able to specify properties and behaviors. 

5.3.2 Pre- and Postconditions 

Pre- and postconditions, proposed by Floyd [5t>] and further refined by Hoare 
[7G] and Dijkstra [41], have contributed much to the art of program devel­
opment. The Hoare triple [75], named after C.A.R. Hoare, is denoted as 
{P}S{Q}, where Pis a precondition, Sa program and Q a postcondition, 
P and Q are assertions. Note that the assertions are Boolean expressions 
in FOL other than the assertions appearing in [2:3] when making a contract 
between two agents working on the same state independently of each other. 
Precondition P specifies the initial values of variables in the state space of the 
program before the execution of S, and the postcondition Q specifies the final 
values and/or their relations with the initial values. Consequently, {P}S{Q} 
may be read as "if the assertion P is true before execution of S, S will termi­
nate in a state where the assertion Q is true" .5 Duan [4:3] has compared these 
notions of pre- and postconditions and some relevant work. 

A formal specification is "the expression in some formal language and at 
some level of abstraction, of a collection of properties some system should sat­
isfy" [145]. Specification technique based on pre- and postconditions has been 

5Total correctness is assumed here, by which we mean a particular execution of a contract 
must terminate, given an event or a condition. But not all contracts should be terminating. 
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proven to offer a useful modeling paradigm to documenting contracts up to 
the behavioral level6

. We will show later that coordination contracts, which 
belong to synchronization contracts, are unexceptional in this regard, so that 
pre- and postconditions can be effectively used to represent the functionality 
of coordination contracts. Unfortunately, the formal semantics of coordina­
tion contracts and their relation with program logic cannot be easily inferred 
without involving the soundness and the internal structure of contracts, and 
consequently is beyond the scope of this thesis. 

5.3.3 Behavioral Subtyping 

A behavioral subtyping specification includes both syntactic and semantic as­
pects in contrast to that of a subtyping relation. Behavioral subtyping is used 
to guarantee that no surprising or unexpected behavior occurs when subtype 
objects replace supertype objects. 

The Liskov Substitution Principle (LSP) [91, 92] is presented as one of the 
cornerstones for reasoning about behavioral subtyping and substitutability. In 
LSP, objects of a subtype can only match or if they: 

• weaken the preconditions of the supertype, not strengthen them (as con­
travariance). 

• strengthen the postconditions of the supertype, not weaken them (as 
covariance). 

• strengthen the invariants of the supertype, not weaken them. 

The LSP is surprisingly similar in spirit to the Assertion Redeclaration Rule 
in Design by Contract [lOG, page 573], which defines "a routine redeclaration 
may only replace the original precondition by one equal or weaker, and the 
original postcondition by one equal or stronger". Consequently, we will try to 
deal with relationships between coordination contracts by means of pre- and 
postcondition specification. 

6 Different types of contracts are discussed in Section 4.2, page 49. 
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5.4 Specification Level Representation of Co­
ordination Contracts 

5.4.1 Contract Specification Revisited 

In Section 4.4.2 (page 53), we have introduced two specification languages for 
coordination contracts at distinct abstraction levels. The principal differences 
are explicit constants and invariants in the abstract specifications, and Java 
specific syntax in CDE specifications. Considering the importance of con­
stants and invariants for specifications, we will include them in order to reason 
about the relations between contracts. The language we adopt is a mixture of 
abstract and CDE specifications. 

A contract may have two kinds of rules. The trigger rule may be invoked 
by method calls, while the state condition rule may be invoked by a condition 
on participant objects. The guard condition imposes additional limits on the 
trigger. The actions describe the behavior defined by the rule in terms of extra 
behaviors to be executed before or after action (in the before or after block), 
or behaviors to replace the original method call (in the do block). If the guard 
is not true, the failure clause will throw an exception or return a value. 

Table 5.1: Contract Specification Revisited 

coordination //rules 
Trigger RuleN a me: 

when*->> participantl.operation(arguments) 
&& (trigger conditions in Java) 

with ( J avaGuardConditions) 
failure (Java guard failure 

actions throw an exception or return a value) 
before { before actions in Java }; 
do { replace actions in Java } ; 
after {after actions in Java}; 

State ConditionRuleN a me: 
when ? (condition in Java) on participant!, participant2 ... 
do {operations in Java}; 

Pre- and postconditions of coordination contracts are used to specify the 
observable behaviors (see also Figure 5.2, page 69) in terms of the input trigger 
and/or guard condition and the effect of output. Our approach is to compare 
the observed behaviors of an old contract to the observed behaviors of a new 
contract, and to permit the changes only if the behavior ensures predictability. 

Contracts are specified by individual elements composed in the contract 
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specification language (Section 4.4.2, page 53). Pre- and postcondition of con­
tracts in the old and new system may or may not include changes of each 
element. For example, though probably not being included in pre- and post­
conditions, intuitively, syntactic alterations such as renaming contracts or rules 
are claimable by matching their signatures 7 . The new contract may have the 
same set or more constants, attributes and operations than the old contract. 
According to Section 5.1.1 (page 66), participant components may be intro­
duced in a new contract. Every contract may have an arbitrary number of 
invariants. Following the treatment of LSP in Section 5.3.3 (page 73), invari­
ants private to the new contract maintain or strengthen invariants in the old 
contract. 

From the specification language and the discussion above, an obvious fact is 
that the pre- and postconditions are not part of the contract working code. To 
reason about the prediction of software evolution, we will show in the following 
subsections how pre- and postconditions of methods, pre- and postconditions 
of coordination rules, pre- and postconditions of coordination contracts are 
defined. 

5.4.2 Pre- and Postconditions of the Method Being Called 

The pre- and postconditions of the individual method being called are defined 
as the pre- and postcondition specification of the corresponding method sub­
jected to coordination in the UML or Java class. We have defined such pre­
and postconditions in Section 5.3.2 (page 72). 

5.4.3 Preconditions of Coordination Rules 

Considering the two kinds of rules supported by coordination contracts, we 
will define the precondition for each case respectively. The precondition of a 
coordination rule must be satisfied, otherwise the rule will not be invoked. 

• If a trigger is a request for a method call, the precondition of a rule in 
a contract is the precondition of the original method being called and 
additional conditions in the when clause, and extra conditions in the with 
clause, i.e.' preop 1\ trigger call 1\ withcall· 

• If a trigger is a request for a method call, and what a contract does when 
executing a rule is pass on the original method call without imposing 
extra behaviors, then it is evident that the effect of when and with is 

7Signature matching is roughly defined in Section 5.5, page 78. 

75 



Master's Thesis - Huan Wang McMaster- Computing and Software 

evaluated to be true, pre0PI\triggercalll\withcall pre0PI\truel\true -
preop· The precondition of the coordination rule is thus the precondition 
of the original method. 

• If a trigger is a state condition on participant components, the precon­
dition of a rule in a contract is exactly the condition in this rule, which 
is composed of conditions in the when clause, i.e., triggerstate· 

5.4.4 Postconditions of Coordination Rules 

Following the methodology of the above subsection, we will define the post­
condition of rules for each case separately. Any violation of postcondition 
established by coordination rules will undo the entire execution. 

• If a trigger is a request for a method call, the postcondition of the rule in 
a contract is a joint effect of the rule in a contract (before-do-after call). 
We define "joint effect" as the effect of do (if there is any) and the effect 
of before (if there is any) and the effect of after (if there is any). In 
a word, the effect of before-do-after block is an accumulated effect 
of these sequential activities. If before, do and after are empty, the 
postcondition of the rule is post0 P' shown as follows. 

• If a trigger is a request for a method call, and what a contract does when 
executing a rule is pass on the original method call without imposing 
extra behaviors, then it is evident that the effect of before-do-after is 
evaluated to be that of the original method, so that the postcondition of 
the coordination rule is the postcondition of the original method (post0 p). 

• If a trigger is a request for a method call, and the guard for a rule is not 
satisfied, the rule will not be executed regardless of which condition it 
is triggered on, so that the postcondition of the rule will be the effect of 
exceptions in the failure clause (failurecall). 

• If a trigger is a query on state conditions of participant components, the 
postcondition of the rule in a contract is the effect of do block (do state). 
Since there is no with clause guarding state condition rules, so that no 
failure is defined in the rule body. 

5.4.5 Pre- and postcondition of Coordination Contracts 

Therefore, the pre- and postcondition of contracts is a combination of the pre­
and postcondition of each individual rule. 
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• If a trigger is a request for a method call, 

- The precondition of a contract may include two parts. For each 
rule, the fixed part is the corresponding precondition of the original 
method (pre0 p). The changing part consists of additional conditions 
in the when clause (triggercall), and extra conditions in the with 
clause ( withcall)· 

- The postcondition of a contract also has three exclusive possibili­
ties. One is the corresponding postcondition of the original method 
(postop) if a call to which is eventually made. The other is the joint 
effect in before-do-after block (before-do-after call) if the block is 
executed in place of the original call. Another is the effect of ex­
ceptions declared in failure clause (failurecall) if the guard fails. 

• If a trigger is a state condition on participant components, 

- The precondition of a contract is subjected to change, which is the 
condition in this rule (triggerstate)· 

- The postcondition of a contract is the effect in do block (dostate)· 

In a contract, we may define different pre- and postconditions for the same 
trigger because of different when and/or with conditions, as well as different 
do blocks. 

The pre- and postcondition relation of a contract may be coarsely repre­
sented as ( (prerulel ::::} postrulel) I\ (prerule2 ::::} postrule2) I\ ... I\ (prerulen ::::} 
postrulen)), where prerulei can be either (preopi I\ trigger calli I\ withcalli) or 
triggerstatei depending on the type of trigger, and postrulei is one of post0 Pi' 
before-do-after calli, f ailurecalli if the trigger is a method call, or dOstatei if 
the trigger is a query on states. If a rule has both postop and failurecal/l 
or before-do-aftercall and failurecall' the effect of the rule will be considered 
separately. 

If a contract just passes on a particular method call without extra be­
haviors, the pre- and postcondition of the contract and that of the original 
invoked method are the same. Or if two contracts are logically equivalent 
(Section 5.5.2). In these cases, it turns out that the new contract is as good 
as the old contract. 

Multiple rules may be included in a contract, regardless of being invoked by 
the same trigger (on method call or state) or not. In this case, when replacing 
a contract with a new one, firstly we will examine if the same rule(s) exists 
(signatures matched); the new contract may have additional rules. Then for 
each rule these two contracts have in common, efforts in inspecting the relation 
between their pre- and postconditions are required. 
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We have made a commitment in Section 5.2 to solving a more demanding 
situation, how different these versions are allowed to be in terms of contracts. 
In the rest of this Chapter, we will discuss this issue from a perspective of 
specification matching. By checking the logical relations between their pre- and 
postcondition specifications, we will be able to identify a diversity of relevant 
connections between contracts. 

5.5 Behavioral Relationships between Coordi­
nation Contracts 

Specification matching has been used to evaluate component relations and 
to retrieve software components for reuse at an abstract level by means of 
pre- and postcondition analysis in [149]. We take advantage of specification 
matching as a method for justifying the behavioral relationships between two 
coordination contracts. A specification match is a binary Boolean functional 
relation defined as match : Spec x Spec ~ {true, false}. For a match (match), 
two specification of contracts 51 and S2 , if match(S1 , S2 ) = true, we say S1 

matches 52 according to match. It is worthy to notice that most matches 
are not symmetric: match(S1 , S2) does not necessarily imply match(S2 , S1). 

Since the name of a contract is its unique identity in the coordination layer, 
we use the name of a contract to stand for its specification, i.e., C1 and C2 in 
match(C1 , C2 ) are used to denote specifications for C1 and C2 , respectively. 

Before talking about specification matching, we assume that the signatures 
of two contracts match, which means the list of types of each rule's input 
and output parameters and the exceptions that may be raised match. These 
parameters may consist of parameters used in the original method call, in 
the rule, or attributes and constants used in the contract. To perform the 
signature matching, techniques such as currying, type coercion, signature re­
ordering, etc., may be involved. However, to realize the signature matching of 
coordination contracts is out of the thesis's scope. 

In this thesis, we will stick to the convention that the logical operator =? 

means implication, {:::} means equivalence and ~ means reverse implication. 
An assertion A is said to be stronger than another assertion B, if A logically 
implies B, i.e. A =? B. If A is stronger than B, then B is said to be weaker 
than A. 

We treat specifications from a relational view, i.e., a specification is con­
sidered as a pair of pre- and postcondition, ( Cpre, Cpost). As illustrated in 
Figure 5.9, OCpre is the precondition of the old contract ( OC) and OCpost 
the postcondition, and likewise for NCpre and NCpost, which are the pre-
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and postcondition of the new contract ( N C). If OCpre holds before the con­
tract performs, then OCpost holds after successful execution (total correctness 
assumed), the same for NCpre and NCpost· According to the definition of be­
havioral subtyping rule (LSP in Section 5.3.3, page 73), a new contract whose 
specification guarantees NCpre ::::} NCpost may replace an old contract whose 
specification guaranteed OCpre::::} OCpost (dashed arrow in Figure 5.9), if the 
new contract has a weaker precondition and a stronger postcondition as op­
posed to that of the old contract, i.e., OCpre ::::} NCpre and NCpost ::::} OCpost 
(solid arrows in Figure 5.9). For example, for the same method being called, 
the precondition of the old contract OCpre is j = i + 1 ( i, j E N) and the 
precondition of the new contract N Cpre is i =I= j, then j = i + 1 ::::} i =I= j. We 
conclude that the new contract has a weaker precondition, OCpre ::::} NCpre· 
Arrows in Figure 5.9 denote program control flow or logical implication in 
specifications, the different meanings are shown as the figure legend . 

os,,. 
.................. 
~ ................. . 
: Old : 

·························• : Contract : ·························• . . . . . . . . 
11: • 
~ .............. . 

New 
Contract 

............ Execution of OC 

Execution of N C 

c:::=::::::> Implication 

Figure 5.9: Contract Behavioral Relationships 

To calculate their relations, we will use expressions in First Order Logic 
(FOL) or Object Constraint Language (OCL) [1U], which is integrated in the 
UML standard, to annotate pre- and postconditions of contracts. Checking 
pre- and postconditions and their implication can be done in several ways: by 
a hand-proof, a theorem prover or even at runtime. However, we have to state 
that the type checker for Java is not able to handle the proving, since the 
syntax and the semantics of language for contract is not Java yet and working 
at the specification time. To automate the calculation, a specification match 
maker is needed. 
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5.5.1 Outline of Behavioral Specification Matching 

Determining the behavioral relationship between coordination contracts is a 
principal task for this thesis to compare different contracts during evolution. 
We establish a semantic foundation for connecting and reasoning about specifi­
cation matches in Figure 5.108 , which provides a framework to assess different 
cases of contract specification match. We will show in the next Chapter by 
multiple case studies on how a set of these matches will help establish pre­
dictable software evolutions practically. 

Exact Pre Match Exact Post Match 

I (OCpre=}NCprel A (NC post=}OC post) I Plug-In Match 

-------------------------------------------------------------------- .,_ 

I (OCpre=}NCpre) A ({OCpreANC post )=}OC post) I =t> n: Relaxed Plug-In Match : 

I (OCpre=}NCpre) A ((NCpre=}NC post)=}(0Cpre=}0Cpostl) I ! 
-------------------------------------------------------------------- -· U Guarded Generalized Match 

Plug-In Post Match 

I NC post=}OC post 

u 
Guarded Post Match 

Stronger 

u 
I (NCpre=}NC post )=}(0Cpre=}0C post) j Generalized Match Weaker 

Figure 5.10: Contract Specification Matches 

An arrow in Figure 5.10 between two matches indicates that the match 
at the base of the arrow is stronger than the match at its end, i.e., match1 

is stronger than match2 if match1 (C1 , C2 ) :::} match2 (C1 , C2). On the other 
hand, the match at its end match2 (C1 , C2) is more relaxed than the match at 
the base of the arrow match1(C1 , C2 ). The formal notation is abbreviated by 
dropping the universal quantifications and respective parameters for the pred­
icates. For example, OCpre :::} NCpre is equivalent to Vp. (p satisfies OCpre) :::} 
(p satisfies NCpre), given p is an assertion. 

8Figure 5.10 is adapted by referring to [:12, 144, 1-19]. 
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In what follows, we will testify and adapt the matches for components 
in [149] to be applied for contracts and establish 5 major specification matches9 . 

Generally, all these matching variants are derived from two definitions: one re­
lates the preconditions and postconditions of two contracts separately, whereas 
the other relates the specification predicates of two contracts together [132]. 
Sections 5.5.2 through 5.5.6 will demonstrate proof sketches and properties for 
matches, where the fundamental proof techniques can be found in [127] or [71]. 
As later demonstrated, the proving tasks are straightforward and based on the 
properties of predicate logic. 

5. 5. 2 Exact Pre /Post Match 

Exact Pre/Post Match is proposed by Zaremski and Wing [149], denoted as 
matchexact(NC, OC) = (OCvre ¢::> NCpre)/\(NCvost ¢::> OCvost)· In Figure 5.10, 
ExactPre/Post Match appears to be the strongest match. Two contracts ex­
actly match if and only if their preconditions and postconditions are logically 
equivalent. Hence, the two contracts are interchangeable. However, the equiv­
alence relationship is a strict and rare case in evolution when only signatures 
of contracts are modified, for example, renaming rules or parameters. Subse­
quently, we will discuss a variety of cases where the new contract may safely 
match the old contract in the system by relaxing the Exact Pre/Post Match, 
such as Plug-in Match, Relaxed Plug-in Match, Guarded Generalized Match 
and Generalized Match. For example, Plug-in Match relaxes the¢::> arrows in 
Exact Pre/Post Match to=} arrows. 

A match relation (match) is an equivalence match if the following conditions 
are satisfied: 

• Reflexive: match( C, C) for all contract specifications C 

• Transitive: If match(C1 , C2 ) and match(C2 , C3 ), then match(C1 , C3 ) 

• Symmetric: If match(C1 , C2), then match(C2 , CI) 

We claim that matchexact is reflexive, symmetric and transitive, so that it 
is an equivalent match. 

• Reflexive: 
9We have been taking efforts to strike a balance between flexibility and predictability. 

However, sometimes it requires to sacrifice flexibility for predictability. 
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• Transitive: 

matchexact ( C, C) 
(Definition of matchexact) 

( Cpre ~ Cpre) 1\ ( Cpost ~ Cpost) 

{=::::} (Reflexivity of ~: p ~ p true) 

true 1\ true 

{=::::} (Reflexivity of 1\ : p 1\ p- p) 

true I 

Suppose we have, 

(1) matchexact(CI, C2) = (C2pre ~ Clpre) 1\ (Clpost ~ C2post), and 

(2) matchexact(C2, C3) = (C3pre ~ C2pre) 1\ (C2post ~ C3post), then by 
the definition of transitivity, we will show matchexact(CI, C3) = (C3pre ~ 
clpre) 1\ ( clpost ~ c3post). 

Given (1) and (2), 

( ( c2pre ~ clpre) 1\ ( clpost ~ c2post)) 

/\( ( c3pre ~ c2pre) 1\ ( c2post ~ c3post)) 
{=::::} (Symmetry of 1\ : p 1\ q _ q 1\ p) 

( ( c2pre ~ clpre) 1\ ( c3pre ~ c2pre)) 

/\( ( clpost ~ c2post) 1\ ( c2post ~ c3post)) 

{=::::} (Transitivity of ~: (p ~ q) 1\ (q ~ r) ~ (p ~ r)) 

( c3pre ~ clpre) 1\ ( clpost ~ c3post) 

(Definition of matchexact) 

matchexact(CI, C3) I 

• Symmetric: 
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matchexact(CI, C2) 
(Definition of matchexact) 

( c2pre {::} clpre) 1\ ( clpost {::} c2post) 
(Symmetry of {::}: p {::} q- q {::} p) 

( clpre {::} c2pre) 1\ ( c2post {::} clpost) 
(Definition of matchexact) 

matchexact(C2, CI) I 

5.5.3 Plug-in Match 

Plug-in Match is proposed by Zaremski and Wing [149], which is a relaxed form 
of Exact Pre/Post Match, and defined as matchptug-in(NC, OC) = (OCpre:::} 
NCpre) 1\ (NCpost :::} OCpost)· We have illustrated the case in Figure 5.9, where 
Plug-in Match succeeds when the precondition of the new contract is weaker, 
and its postcondition is stronger than that of the old contract, respectively. In 
other words, the new contract allows at least all the conditions that the old 
contract allows, and provides a guarantee at least as strong as the old contract 
provides. 

Recall the concept of behavioral subtyping in Section 5.4 (page 74), the pur­
pose of which is to enforce the preservation of behavioral properties. Following 
LSP, we are able to split the plug-in match into two conditions: the precondi­
tion rule ( OCpre :::} N Cpre) means a weakening of the precondition ( contravari­
ance) and the postcondition rule (NCpost:::} OCpost) means a strengthening of 
the postcondition (covariance). 

The relation matchexact(NC, OC):::} matchplug-in(NC, OC) in Figure 5.10 
is proved as follows: 

Step 1: 

matchexact(NC, OC) 

(Definition of matchexact) 

(OCpre {::} NCpre) 1\ (NCpost {::} OCpost) 
===} (Definition of {::}: p {::} q = (p:::} q) 1\ (p <==: q), and 

Implication- Weakening: p 1\ q:::} p) 

(OCpre {::} NCpre) 1\ (NCpost:::} OCpost) (3) 
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Step 2: 

matchexact(NC, OC) 

(Definition of matchexact) 

(OCpre {:::} NCpre) 1\ (NCpost {:::} OCpost) 
===} (Definition of {:::}: p {:::} q (p =? q) 1\ (p-¢:: q), and 

Implication- Weakening: p 1\ q =? p) 

(OCpre =? NCpre) 1\ (NCpost {:::} OCpost) (4) 

Step 3: 

Given (3) and (4), 

((OCpre {:::} NCpre) 1\ (NCpost =? OCpost)) 

1\((0Cpre =? NCpre) 1\ (NCpost {:::} OCpost)) 
<¢::=} (Definition of {:::}: p {:::} q _ (p =? q) 1\ (p-¢:: q)) 

(((OCpre =? NCpre) 1\ (OCpre-¢:: NCpre)) 1\ (NCpost =? OCpost)) 

1\((0Cpre =? NCpre) 1\ ((NCpost =? OCpost) 1\ (NCpost-¢:: OCpost))) 

<¢::=} (Associativity and Idem potency of 1\ : (p 1\ q) 1\ r _ p 1\ ( q 1\ r), 

p 1\p = p) 

(OCpre =? NCpre) 1\ (NCpost =? OCpost) 

1\(0Cpre-¢:: NCpre) 1\ (NCpost-¢:: OCpost) 
===} (Implication- Weakening: p 1\ q =? p) 

(OCpre =? NCpre) 1\ (NCpost =? OCpost) 
(Definition of matchplug-in) 

matchplug-in(NC, OC) I 

A match relation (match) is a partial order match if following conditions 
are satisfied: 

• Reflexive: match( C, C) for all contract specifications C 

• Transitive: If match(C1 , C2) and match(C2 , C3), then match(C1 , C3) 

• Antisymmetric: Given match(C1 , C2) and match(C2 , C1), a correspond­
ing match can be inferred as an equivalence match 

We claim that matchplug-in is reflexive, transitive and antisymmetric, so 
that it is a partial order match. 
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• Reflexive: 

• Transitive: 

matchplug-in ( C, C) 

(Definition of matchplug-in) 

( Cpre ::::} Cpre) 1\ ( Cpost ::::} Cpost) 

~ (Reflexivity of =?: p =? p true) 

true 1\ true 

~ (Reflexivity of 1\ : p 1\ p _ p) 

true I 

Suppose we have, 

(5) matchptug-in(Cl,C2) = (C2pre =? Clpre) 1\ (Clpost =? C2post), and 

(6) matchptug-in(C2, C3) = (C3pre =? C2pre) 1\ (C2post =? C3post), then 
by the definition of transitivity, we will show matchplug-in(Cl, C3) 
( c3pre ::::} clpre) 1\ ( clpost ::::} c3post). 

Given (5) and (6), 

( ( c2pre ::::} clpre) 1\ ( clpost ::::} c2post)) 

/\( ( C3pre =? C2pre) 1\ ( C2post =? C3post)) 

~ (Symmetry of 1\: p 1\ q = q 1\ p) 

( ( c2pre ::::} clpre) 1\ ( c3pre ::::} c2pre)) 

/\( ( clpost ::::} c2post) 1\ ( c2post ::::} c3post)) 

==? (Transitivity: (p =? q) 1\ ( q =? r) =? (p =? r)) 

• Antisymmetric: 

Suppose we have, 

( c3pre ::::} clpre) 1\ ( clpost ::::} c3post) 

(Definition of matchplug-in) 

matchplug-in(Cl, C3) I 

(5) matchptug-in(CI, C2) = (C2pre =? Clpre) 1\ (Clpost =? C2post), and 

(7) matchptug-in(C2, C1) = (Cipre =? C2pre) 1\ (C2post =? Clpost), then 
by the definition of antisymmetry, we will show matchptug-in(CI, C2) 1\ 

matchplug-in(C2, C1) infers an equivalence relation matchexaet(CI, C2). 
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Given(5) and (7), 

( c2pre ::::} clpre) 1\ ( clpost ::::} c2post) 

/\( clpre ::::} c2pre) 1\ ( c2post ::::} clpost) 

{::=::? (Definition of {::}: p {::} q - (p =? q) 1\ (p ~ q)) 

( c2pre {::} clpre) 1\ ( clpost {::} c2post) 

(Definition of matchexact) 

matchexact(Cl, C2) I 

5.5.4 Relaxed Plug-in Match 

Relaxed Plug-in Match [:32] is also called the satisfies match in [122], or plug-in 
compatibility in [G4, 1:33]. matchrelexed-plug-in(NC, OC), defined by (OCpre =? 

NCpre) 1\ ((OCpre 1\ NCpost) =? OCpost), is based on the Plug-in Match, but 
puts the precondition of the old contract on the postcondition as a guard 
to constrain the condition. Intuitively, the postcondition relation ( N Cpost =? 

OCpost) only holds for inputs that satisfy the old contract's precondition OCpre 
(domain restriction). 

We have dropped quantifiers and parameters of contracts in Section 5.5.1 
(page 80) for simplicity. However, to discuss the semantics of Relaxed Plug-in 
Match more formally, we need to include these constructions. 

First of all, we may consider a rule Si in a contract C under evolution 
pertains to a problem domain and problem range, similar techniques can be 
found in [121, 12:3, 1:3;~, 140]. In Section 5.2.1 (page 67), we have discussed to 
involve the input and the output states only. The specification of rules will 
then be described in terms of a problem, where Dis the input domain and R 
is the output domain (range). We define I is a relation on D called the input 
condition which expresses any properties for the desired rule. 0 is a relation 
on D x R called the output condition which expresses the properties that an 
output should hold after executing the rule. Inputs satisfying I are called legal 
inputs. Any output value z such that O(x, z) holds is called a feasible output 
with respect to an input x. We say a specification is total if for every legal 
input there exists at least one feasible output. Otherwise, a specification is 
partial if for some legal inputs there is not a feasible output. Thus, a (total) 
specification of a rule is a tuple (D, R, I, 0), where Vx : D, :Jz : R. I(x) =? 

O(x, z). Considering the relationship between X and z through the rule si, we 
may represent the above form as Vx : D, :Jz : R. I(x) =? O(x, fs;(x)), where 
fs; : D---+ R. Therefore, z can be thought as an output which is generated by a 
well defined function f S; over legal in puts (determinism assumed), z = f S; ( x). 
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A rule Si satisfies the specification if for any legal input, Si terminates with 
a feasible output (total correctness assumed). In contrast, a specification is 
unsatisfiable if no feasible output can be found for each legal input. 

In Section .5.4.5 (page 76), we say the pre- and postcondition of contracts 
is a combination of the pre- and postcondition of each individual rule, and 
represented by a conjunction of (prerulei :::} postrulei). We suppose two con­
tracts cl and c2 have the same coordination rule si and the signatures of si 
in the two contracts match10 . For a base case, we compare contracts C1 and 
C2 with rule Si first. A contract C2 satisfies a specification of a contract C1 

with respect to Si: if for any of C1 's legal inputs to Si, Si in C2 results in one 
of C1 's corresponding feasible outputs. Formally, C2 satisfies C1 with respect 
to si if both of the following conditions hold: 

1. Vx : Dsi . Ic1 (x) '* Ic2 (x). Any legal input to Si in C1 will be a legal 
input to Si in C2 . The specification of Si in C2 assures that a legal input 
to it results in a feasible output. 

2. Vx: Dsi . Ic1 (x) 1\ Oc2 (x, fsi(x)) '* Oc1 (x, fsi(x)). All feasible outputs 
of Si in C2 for a legal Si input in C1 are valid outputs of Si in C1 . 

We say a contract C2 satisfies a contract C1 if for every rule Si ( i E N) in C1 

there is a corresponding rule of C2 and the above conditions hold for these rules. 
But there may be additional rules in C2 , which are absent in C1 . However, if 
some rules in C1 are dropped in C2 , like the deletion operation in Figure .5.3 
(page 69), we may not predict the behaviors of the evolved system. Intuitively, 
Vx: D. Ic(x) for all rules Si (i EN) is the precondition of a contract C if only 
legal inputs are allowed, and Vx: D, 3z: R. O(x, fsi(x)) for all rules Si (i EN) 
is its postcondition if feasible outputs are guaranteed. We then rewrite the 
above requisites to: 1. (OCpre:::} NCpre), and 2. ((OCpre/\NCpost):::} OCpost)· 
This is the way matchrelexed-plug-in(NC, OC) defined. 

The relation matchplug-in(NC, OC) :::} matchrelexed-plug-in(NC, OC) m 
Figure 5.10 is proved as follows: 

10Signature matching of contracts is defined in page 78. 
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matchplug-in ( N C, OC) 

(Definition of matchplug-in) 

(OCpre:::} NCpre) 1\ (NCpost:::} OCpost) 

-{=:::} (Definition of =?: p =? q = •p V q) 

( OCpre :::} NCpre) 1\ ( •NCpost V OCpost) 

===? (Implication - Weakening : p :::} p V q) 

( OCpre :::} N Cpre) 1\ ( -,QCpre V •N Cpost V OCpost) 
-{=:::} (Definition of =?: p :::} q _ •p V q) 

(OCpre:::} NCpre) 1\ ((OCpre 1\ NCpost):::} OCpost) 

(Definition of matchrelexed-plug-in) 

matchrelexed-plug-in(NC, OC) I 

5.5.5 Guarded Generalized Match 

Guarded Generalized Match is proposed by [-±0], and defined as matchguarded-gen 
(NC, OC) = (OCpre =? NCpre) 1\ ((NCpre =? NCpost) =? (OCpre =? OCpost)). 
In Figure 5.10, the dotted frame indicates that matchguarded-gen is logically 
equivalent to matchrelaxed-plug-in· We will address the proof obligation on 
their equivalence via a relation OCpre :::} ( N Cpre 1\ ( N Cpost :::} OCpost)). 

Step 1: 

matchrelaxed-plug-in ( N C, OC) 

Step 2: 

(Definition of matchrelaxed-plug-in) 

(OCpre:::} NCpre) 1\ ((OCpre 1\ NCpost) :::} OCpost) 

-{=:::} (Implication - Shunting: p 1\ q =? r _ p :::} ( q :::} r)) 

(OCpre:::} NCpre) 1\ (OCpre:::} (NCpost:::} OCpost)) 

-{=:::} ( (p :::} q) 1\ (p =? r) p =? ( q 1\ r) ) 

OCpre:::} (NCpre 1\ (NCpost:::} OCpost)) 

(OCpre:::} (NCprei\(NCpost:::} OCpost))) ¢:? ((OCpre:::} NCpre)I\((NCpre:::} 
NCpost) :::} (OCpre :::} OCpost))) (8) can be easily shown, for instance, by a 
truth table that (8) is a tautology. 

So far, we have proved that match9uarded-gen and matchrelaxed-plug-in are 
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equivalent11
. I 

We claim that matchguarded-gen is reflexive, transitive and antisymmetric, 
so that it is a partial order match. Because of its proven equivalence with 
matchretaxed-ptug-in and OCpre::::} (NCpre 1\ (NCpast ::::} OCpast)), we can infer 
that these two equivalences also have the partial order property. 

• Reflexive: 

match9uarded-gen(C, C) 

(Definition of matchguarded-gen) 

( Cpre ::::} Cpre) 1\ ( ( Cpre ::::} Cpost) ::::} ( Cpre ::::} Cpost)) 

~ (Reflexivity of ::::}: p ::::} p _ true) 

true 1\ true 

~ (Reflexivity of 1\: p 1\ p = p) 

true I 

• Transitive: 

Suppose we have, 

(9) matchguarded-gen(CI, C2) = (C2pre ::::} Clpre) 1\ ((Clpre ::::} Clpost) ::::} 
( c2pre ::::} c2post))' and 

(10) match9uarded-gen(C2, Ca) = (Capre ::::} C2pre) 1\ ((C2pre ::::} C2post) ::::} 
(Capre::::} Capost)), then by the definition of transitivity in Section 5.5.3, 
we will show 

match9uarded-gen(CI, Ca) = (Capre::::} Clpre)A((Clpre::::} Clpost)::::} (Capre::::} 
Capost)) · 

11 Beware of the difference between equivalent match defined in Section 5.5.2 and the claim 
that two matches are equivalent. 
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Given (9) and (10), 

( ( c2pre =?- clpre) 1\ ( ( clpre =?- clpost) =?- ( c2pre =?- c2post))) 
/\( ( Capre =?- C2pre) 1\ ( ( C2pre =?- C2post) =?- ( Capre =?- Capost))) 

{=::::} (Symmetry of 1\ : p 1\ q _ q 1\ p) 

( ( C2pre =?- Clpre) 1\ ( Capre =?- C2pre)) 1\ 

((Clpre =?- Clpost) =?- (C2pre =?- C2post)) 

/\( ( C2pre =?- C2post) =?- ( Capre =?- Capost)) 
===?- (Transitivity of =?-: (p =?- q) 1\ ( q =?- r) =?- (p =?- r)) 

( Capre =?- Clpre) 1\ ( ( Clpre =?- Clpost) =?- ( Capre =?- Capost)) 

(Definition of match9uarded-gen) 

matchguarded-gen(Cl, Ca) I 

• Antisymmetric: 

Suppose we have, 

(9) match9uarded-gen(CI, C2) = (C2pre =?- Clpre) 1\ ((Clpre =?- Clpost) =?­

( c2pre =?- c2post))' and 

(11) match9uarded-gen(C2, C1) = (Clpre =?- C2pre) 1\ ((C2pre =?- C2post) =?­

( C1pre =?- Clpost)), then by the definition of antisymmetry in Section 5.5.3, 
we will show match9uarded-gen ( C1, C2) 1\ match9uarded-gen ( C2, CI) infers 
an equivalence relation ( c2pre {::} clpre) 1\ ( ( clpre =?- clpost) {::} ( c2pre =?­

c2post)). 

Given (9) and (11), 

( c2pre =?- clpre) 1\ ( clpre =?- c2pre) 
/\( ( clpre =?- clpost) =?- ( c2pre =?- c2post)) 

/\( ( c2pre =?- c2post) =?- ( clpre =?- clpost)) 
{=::::} (Definition of {::}: p {::} q _ (p =?- q) 1\ (p <¢== q) 

( c2pre {::} clpre) 1\ ( ( clpre =?- clpost) {::} ( c2pre =?- c2post)) 

It is easy to show that ( C2pre {::} Clpre) 1\ ( ( C1pre =?- Clpost) {::} ( C2pre =?­

C2post)) is an equivalence match according to the definition in Section 5.5.2. 

I 
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5.5.6 Generalized Match 

The Generalized (Predicate) Match is defined in [U9]. In Exact Pre/Post 
Match, Plug-in Match, Relaxed Plug-in Match and the like, pre- and postcon­
ditions of different contracts are treated as parts; now we consider the rela­
tionship of the specifications as a whole. By specification, we mean the pair of 
pre- and postcondition of a contract (see definitions in Section 5.4.5 and 5.5.4). 
Following [149], Generic Predicate Match is defined as matchpred(NC, OC) = 

NCpred R OCpred, where relation R is =>, {::}or¢. A contract predicate has 
two definitions: Cpre => Cpost and a relatively stronger form, Cpre 1\ Cpost· In 
this thesis, we will adopt the former definition and n is an implication ( => ), so 
that match9en(NC, OC) is defined as (NCpre => NCpost) => (OCpre => OCpost)· 
We gain insight into the meaning of matchgen, given that a new contract has a 
stronger specification than the old contract. Following the explanation in Sec­
tion 5.5.4 (page 86) for Relaxed Plug-in Match, (Cpre => Cpost) is constructive 
because the precondition serves as a guard for the postcondition. The com­
bined assertion "precondition implies postcondition" defines what a contract 
does [108]. 

Consequently, the overall goal of a contract predicate is to prove that the 
precondition of the contract ( Cpre) implies its postcondition ( Cpost) through 
the contract (C). From predicate logic, the predicate p => q is false only 
when p is true but q is false. In this case, we mean when the precondi­
tion of a contract holds, its postcondition is not satisfied, the predicate for 
the contract fails12 . As is normal in mathematical proofs, we may work out 
such a proof Cpre => Cpost in a forward direction from the precondition to­
wards the postcondition. However, it is empirically easier in program proofs 
to work backwards from the postcondition towards the precondition. Gener­
ally, in program logic, we use weakest preconditions [41, 42] to prove program 
specifications. That is, we denote a system (machine, mechanism) by S and 
the desired postcondition by Q, if the weakest precondition is wp(S, Q), and 
the precondition P => wp(S, Q), then { P}S{ Q} is true13

. wp(S, Q) is called a 
"predicate transformer". According to [70, page 109], {P}S{Q} is a statement 
in the Hoare logic and equivalent to P => wp(S, Q). 

However, since we do not have a logic for contracts corresponding to Hoare 
logic and the weakest precondition calculus, we may be incapable of demon­
strating an example for match yen ( N C, OC). 

The Generalized Match appears as a weaker match than the Guarded 
Generalized Match, i.e., matchguarded-gen(NC, OC) => matchgen(NC, OC), as 

12 An exception in contracts is that if only the with clause for a rule is broken in the 
precondition, the effect of failure serves as its postcondition. 

13Total correctness is assumed. 
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shown in Figure 5.10. 

match9uarded-gen(NC, OC) 
(Definition of matchguarded-gen) 

(OCpre ==? NCpre) 1\ ((NCpre ==? NCpast) ==? (OCpre ==? OCpost)) 
==} (Implication- Weakening: p 1\ q ==? p) 

(NCpre ==? NCpast) ==? (OCpre ==? OCpast) 

(Definition of matchgen) 

matchgen(NC, OC) I 

We claim that matchgen is reflexive, transitive and antisymmetric, so that 
it is a partial order match. 

• Reflexive: 

• Transitive: 

matchgen ( C, C) 
(Definition of matchgen) 

( Cpre ==? Cpast) ==? ( Cpre ==? Cpast) 
~ (Reflexivity of ==?: p ==? p =true) 

true I 

Suppose we have, 

(12) match9en(CI, C2) = (Clpre ==? Clpost) =* (C2pre =* C2post), and 

(13) match9en(C2, Ca) = (C2pre =* C2post) =* (Capre =* Capast), then by 
the definition of transitivity in Section 5.5.3, we will show 

match9en(CI, Ca) = (Cipre =* Clpost) =* (Capre =* Capost)· 
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Given (12) and (13), 

( ( C1pre ::::} Clpost) ::::} ( C2pre ::::} C2post)) 

/\( ( c2pre ::::} c2post) ::::} ( c3pre ::::} c3post)) 
(Transitivity of::::}: (p::::} q) 1\ (q::::} r) ::::} (p::::} r)) 

( C1pre ::::} Clpost) ::::} ( C3pre ::::} C3post) 
(Definition of matchgen) 

matchgen(CI, C3) I 

• Antisymmetric: 

Suppose we have, 

(12) match9en(CI, C2) = (Clpre::::} Clpost)::::} (C2pre::::} C2post), and 

(14) match9en(C2, C1) = (C2pre ::::} C2post) ::::} (Cipre ::::} Clpost), then 
by the definition of antisymmetry, we will show matchgen(C1, C2 ) 1\ 

match9en(C2, C1) equals to (Cipre ::::} Clpost) ¢::} (C2pre ::::} C2post), which 
is an equivalence relation. 

Given (12) and (14), 

( ( clpre ::::} clpost) ::::} ( c2pre ::::} c2post)) 
/\((C2pre::::} C2post)::::} (Cipre::::} Clpost)) 

=::::} (Definition of {:::}: p {:::} q = (p::::} q) 1\ (p {= q), and 

Implication -Weakening: p 1\ q ::::} p) 

( clpre ::::} clpost) ¢::} ( c2pre ::::} c2post) 

It is easy to show that ( C1pre ::::} Clpost) ¢::} ( C2pre ::::} C2post) is an equiv­
alence match according to the definition in Section 5.5.2. I 

5.5.7 Summary 

Several cases of specification matches have been discussed for defining a vari­
ety of behavioral relationships between coordination contracts. In Figure 5.10 
(page 80), we cannot afford to use only plug-in post match relation or guarded 
post match, etc., with preconditions are dropped. Considering the postcon­
dition of contracts only is insignificant in this context, the precondition is 
required to hold initially and serves as a guard for postcondition. Without the 
validity of the precondition, the contract is even not performed, not to mention 
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its any potential effects. Thus, we simplify Figure 5.10 into Figure 5.11, where 
Exact Pre/Post Match is the most rigorous match, Generalized Match is the 
weakest one, and Relaxed Plug-In Match is equivalent to Guarded Generalized 
Match. 

I (OCpre{=}NCprel A (NCpost{=}OC post) 
Exact Pre/Post Match 

u 
I (OCpre=}NCprel A (NC post=}OC post) I Plug-In Match 

u 
I (OCpre=}NCprel A ((OCpreANC post )=}OC post> I Relaxed Plug-In Match 

tt 
I (OCpre=}NCprel A ((NCpre=}NC post )=}(OCpre=}OC post)) I 

JJ Guarded Generalized Match 

Generalized Match 

Figure 5.11: Contract Specification Matches (Simplified) 

From the specification matches and the matching hierarchy, we are able to 
tell how different two contracts can be in terms of predictable evolution of co­
ordination contracts. As a result, we conclude that the evolution is predictable 
up to the limits of these specification matches. 

5.6 Summary 

In the three-dimensional architecture constructed with coordination contracts, 
the thesis aims at evolution of the coordination dimension. This Chapter is 
mainly dealing with two issues. One is to characterize change histories in a 
way that enables control of system evolution in a predictable direction. The 
other is the allowable relationships between these versions in terms of con­
tracts. Generally speaking, we would like to see incremental and predictive 
evolution so that we do not allow changes in a subtractive way. We define pre­
and postconditions of method calls, coordination rules and coordination con­
tracts, and use specification matching to justify the behavioral relationships 
between coordination contracts by means of pre- and postcondition specifica­
tion. Additionally, we provide a framework to assess different cases of speci­
fication matches, and demonstrate proof sketches and properties of a variety 
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of matches, such as Exact Pre/Post Match, Plug-in Match, Relaxed Plug-in 
Match, Guarded Generalized Match and Generalized Match. 
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Chapter 6 

Case Studies 

The goal of this Chapter is to provide an opportunity to conduct studies on 
a set of examples to demonstrate our approach in Chapter 5 to evolving soft­
ware systems in terms of coordination contracts. This approach cannot be 
fully comprehensible in theory only, but needs simple and adequate case stud­
ies in practical settings to illustrate its application. Driven by examples, we are 
about to discuss how we characterize the system change histories and how be­
haviors of coordination contracts are related more concretely in real examples. 
UML extended with a scroll notation for contracts in Section 4.4.1 (page 52) is 
used to describe program architectures graphically. The language for contracts 
and definitions of pre- and postconditions in Section 5.4 (page 74) are used to 
reason about contracts. In the subsequent examples, coordination contracts 
are mostly used to implement method invocations as the intention with which 
we develop this section is present representative examples rather than try to 
be exhaustive. 

6.1 Introduction to the Banking Application 

The Object-Oriented banking example is a common demonstration of OOD 
by attempting to model a bank account and a customer class. We base the 
case studies and parts of the source code on examples in the documentation 
distributed with CDE 1.1.1 [6], as well as on those examples appearing in the 
literature that we surveyed to introduce coordination contracts in Chapter 4. 
In this example, we do not deal with advanced features, for instance, multi­
threaded bank account classes or concurrent transactions, etc. 

We have two participant components, Account (Figure 6.1(a)) and Cus­
tomer (Figure 6.1(b)). For simplicity reason, the banking example is up to 
binary relationships. However, when applied, contracts may involve more than 
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two partners. According to their class diagrams, a customer can invoke sev­
eral operations on an account. In this Chapter, for ease, we particularly are 
concerned in basic services as follows: 

• double get Balance(), this operation returns the balance of an account 
(see Table 6.4); 

• void deposit (double amount, Customer c), this operation increases the 
balance held by customer c by amount, and returns nothing; 

• void withdraw (double amount, Customer c), this operation decreases 
the balance held by customer c by amount, and returns nothing (see 
Table 6.2). 

The withdraw and deposit methods have no restrictions, except that the 
amount sought must not be negative and withdrawals may only be authorized 
to a customer who owns the account. The ownership can be checked by the 
owns() method in the Customer class or the ownedBy () method in the Account 
class. 

Account 
l~number 
~balance Customer 
~owners ~id 

•getNumberQ 
•getBalanceQ 
•getOwnersQ 
•ownedByQ 
•depositO 
~ithdrawQ 
•addOwnerQ 
•re moveOwnerQ 
•AccountQ 

~name 
~accounts 

•customerQ 
•getldQ 
•getNameQ 
•getAccountsQ 
•own sO 
•addAccountQ 
•removeAccountQ 

(a) Account Class (b) Customer Class 

Figure 6.1: Case Studies Class Diagrams 

6.2 System Change Histories 

In Section 5.2 (page 67), we have demonstrated several change histories that 
may support evolution in an incremental and predictable way. Now we ex­
amine these cases with the banking application, which is composed of the 
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Account class, the Customer class and a contract ContractBank coordinating 
the objects of these two classes (Figure 6.2). As a desirable feature of coor­
dination contracts, Account and Customer are not aware of the existence of 
ContractBank. We suppose systems SYS, SYS1 and SYS2 are instantiating 
the proposed architecture and varying only in the contract ContractBank. 

Account 
Customer ,.number 

~id ~balance 
~name ~owners 
~accounts 

owns ~getNumberO 
•customerO ~getBalance() 
•getldQ •getOwnersQ 
•getNameQ 1 .. •ownedByQ 
•getAccountsQ •depositO 
•own sO 'withdrawQ 
•addAccountQ ~addOwnerQ 
•removeAccountQ ~removeOwnerQ 

r...t ) ~AccountQ 

ContractBank 

t!a 

Figure 6.2: Case Studies- A Bank Application 

Initially, a contract ContractBank either has the WithdrawRule as in Ta­
ble 6.1, or the BalanceRule as in Table 6.3, or both rules as in Table 6.5. The 
functionalities of WithdrawRule and BalanceRule are pass on method calls, 
where Table 6.2 and Table 6.4 include the code for original methods with­
draw() and getBalance() in the Account class, individually. 

Table 6.1: ContractBank with WithdrawRule 

contract ContractBank 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRule: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with (account.getBalance() >=amount) 

end contract 
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Table 6.2: The withdraw method in Account Class 

public void withdraw (double amount, Customer c) 
throws AccountException { 

} 

if (amount < 0) 
throw new AccountException(this, amount, c, 

NEGATIVE_AMOUNT); 
if (!ownedBy(c)) 

throw new AccountException(this, amount, c, NOT _OWNER); 
balance-= amount; 

Table 6.3: ContractBank with BalanceRule 

contract ContractBank 
participants 

account : Account; 
coordination 

BalanceRule: 
when *- > > account.getBalance() 

end contract 

Table 6.4: The getBalance method in Account Class 

public double getBalance() { return balance; } 

Table 6.5: ContractBank with WithdrawRule and BalanceRule 

contract ContractBank 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRule: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with (account.getBalance() >=amount) 

BalanceRule: 
when *- > > account.getBalance() 

end contract 

Case 1 

SYS, SYS1 and SYS2 in Figure 6.3 are systems evolving "sequentially" from 
each other like a relay. Supposedly, the ContractBank in SY S has only one 
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coordination rule for withdraw() in Table 6.1. SYS1 evolves from SYS with 
this WithdrawRule 1 in Table 6.6 by considering an exception, and SYS2 evolv­
ing from SY S 1 by adding or modifying a rule, BalanceRule2 in Table 6.3. The 
ContractBank in the evolved system SY 8 2 then takes the form in Table 6.5. 

Hence, we are able to combine these two cumulative changes into Figure 6.4, 
and make a direct evolution process with both of the two coordination rules 
WithdrawRule and BalanceRule in the contract(s) from SYS to SYS2 . It is 
also possible that SYS2 modifies the WithdrawRule based on SYS1 , following 
the previous change from SYS to SYS1 ; see Figure 6.5 and Figure 6.6. The 
sequence of transitions from Table 6.1 to Table 6.6 then Table 6.8 illustrates 
an occurrence of the described process. 

WithdrawRule BalanceRule 
SYS .. SYS1 .. SYS2 ... ,.... 

Figure 6.3: Case 1- Adding/Modifying a Different Rule 

WithdrawRule & 

SYS ...... -------I~HI SYS2 
____ .. BalanceRule ~... ___ __. 

Figure 6.4: Case 1 - Accumulating the Changes of Two Rule 

WithdrawRule WithdrawRule' 
SYS 1lo. SYS1 .. SYS2 ... ... 

Figure 6.5: Case 1- Changing the Current Rule 

WithdrawRule & 

SYS 1-------.. •1 SYS2 
..____ WithdrawRule' ._ ___ .. 

Figure 6.6: Case 1 - Accumulating Changes of the Same Rule 

1 In practice, the rule may be newly added to a contract or modified an existing contract 
in SYS. 

2The rule may or may not be in the same contract as the WithdrawRule. 
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Table 6.6: ContractBankl with WithdrawRulel 

contract ContractBankl 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRulel: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with ( account.getBalance() >= amount) 
failure { 
throw new AccountException( account, amount, c, 

AccountExceptionTypes.LIMIT _EXCEEDED); } 

end contract 

Case 2 

SYS1 and SYS2 in Figure 6.7 are evolving "individually" based on SYS. 
SYS1 evolves SYS with the coordination rule WithdrawRule in a contract, and 
SY 5 2 evolves SY S with BalanceRule in the same or a different contract from 
WithdrawRule. We may not be able to fully justify the predictable relationship 
between SY S 1 and SY S 2 by means of the behavioral specification matching 
approach in Section 5.5. 

WithdrawRule 

SYS 

Figure 6.7: Case 2 

Furthermore, we argue that even though SYS1 and SYS2 may evolve SYS, 
respectively, with the same coordination rule WithdrawRule in the same con­
tract (see Figure 6.83) in a different way, we still may not make a full justifica­
tion of prediction between SYS1 and SYS2 by the relations of ContractBank 

3We name WithdrawRule by WithdrawRule1 and WithdrawRule2 in Figure 6.8 only to 
show their any potential difference in versions. In their specifications, the two coordination 
rules may have the same name. 
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since we compare the effect of the do block and the failure clause indepen­
dently. 

SYS 

Figure 6.8: Case 2' 

Now we demonstrate this scenario with an example. SY S has the initial 
version of WithdrawRule in Table 6.1. Suppose in SY S 1 , we evolve to the 
ContractBankl with the WithdrawRulel in Table 6.6. The do block is omitted 
so that the original method withdraw will be executed instead. If the guard in 
the with clause, "account.getBalance() >= amount", is false, the contract 
raises a defined exception accordingly. However, in SYS2 in Table 6.7, there 
is no such with clause. Even if "account.getBalance() >= amount" is false, 
the ContractBank2 in Table 6.7 is able to perform the withdraw function and 
decreases that account by the amount of its remaining balance. Based on this 
understanding, we conclude that even though the evolved systems SYS1 and 
SYS2 are related to SYS in some sense, the relationship between SYS1 and 
SYS2 in terms of the WithdrawRule in ContractBank is as yet unclear. 

Table 6. 7: ContractBank2 with WithdrawRule2 

contract ContractBank2 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRule2: 
when*- >> account.withdraw(amount, c) && (customer== c) 
before {System.out.println("Amount asked for: " +amount);} 
do { account._withdraw(Math.min( account.getBalance(), 

amount), c);} 

end contract 

103 



Master's Thesis- Huan Wang McMaster- Computing and Software 

Case 3 

SYS1 and SYS2 are systems evolved from SYS individually, such as the situ­
ation in Figure 6.7. SYS3 can be achieved in evolving either SYS1 or SYS2 in 
Figure 6.9 by extending the contract(s) with BalanceRule and WithdrawRule, 
respectively. Following the scenario in Case 1 (Figure 6.4), we combine these 
two cumulative changes in Figure 6.10, that is, either accumulating the effects 
of WithdrawRule then BalanceRule on SY S, or vice versa. We will cover this 
case with an example in Section 6.3.3. 

WithdrawRule 

SYS 

Balance Rule 

Figure 6.9: Case 3 

SYS :1 SYS3 

BalanceRule & WithdrawRule 

WithdrawRule & BalanceRule 

Figure 6.10: Case 3' 

6.3 Behavioral Relationships and Specification 
Matching 

In what follows, we will study a variety of contracts applied in the banking ap­
plication with reasoning their behavioral relationships and the matching rules 
discussed in Chapter 5. By "changes", we principally refer to the behavioral 
changes rather than the syntactic ones. If we modify the contract merely syn­
tactically, for example, renaming the rules or contracts, Exact Pre/Post Match 
succeeds since their preconditions, their postconditions and any other effects 
are the same. However, Exact Pre/Post Match is a case not likely to occur 
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often. In addition, to prove the equivalence of two contracts completely, we 
may need a proper semantics for contracts, which is left for future work. 

6.3.1 Changes to the Precondition of Coordination Con­
tracts 

To promote a monthly package, a new withdraw rule WithdrawRule3 in Ta­
ble 6.8 is substituted for the WithdrawRulel in Table 6.6. However, With­
drawRule3 has a weaker guard than WithdrawRulel, since in the with clauses, 
(account.getBalance() >= amount) =? ((account.getBalance() + limit) >= 
amount), given limit 2: 0. By the definition in Section 5.4.3 (page 75), the rele­
vant precondition of coordination rules is defined as pre0PI\trigger caul\withcall· 
For the case of WithdrawRulel and WithdrawRule3, they both have the same 
preop as the original method withdraw() in class Account, and the same trigger, 
"when*- >> account.withdraw (amount, c) && (customer== c)". 

On the other hand, in the WithdrawRule3, other than the with clause, 
the rest parts are intact as compared to the WithdrawRulel. Because the do 
block is skipped in both rules, they have the same postcondition of withdraw() 
(postop) if the guard is enabled. If the guard fails, they raise of the same ex­
ception as defined in the rule body. Consequently, the effect and exceptions of 
these rules are identical. Therefore, by the definition in Section 5.4.4 (page 76), 
the postconditions of WithdrawRulel and WithdrawRule3 are the same. 

Recognizing these facts and the definitions in Section 5.4.5, we infer that 
ContractBank3 with WithdrawRule3 (Table 6.8) has a weaker precondition 
than ContractBankl with WithdrawRulel (Table 6.6), and ContractBank3 
has the same postcondition as ContractBankl, i.e., (ContractBanklpre =? 

ContractBank3pre) 1\ (ContractBank3post {::} ContractBanklpost)· 

6.3.2 Changes to the Postcondition of Coordination Con­
tracts 

In Section 6.1, the method call getBalance() is declared in Table 6.4. We 
initiate a contract ContractBank in Table 6.3 for passing on this call merely. 
To avoid any ambiguity, we rename the ContractBank to ContractBank4, and 
BalanceRule to BalanceRulel in Table 6.9. As we discussed in the beginning of 
this section, the ContractBank4 (Table 6.9) is equivalent to the ContractBank 
in Table 6.3 due to the syntactic changes. 

To save daily operation costs, we secure the banking accounts with a new 
rule BalanceRule2 in Table 6.10, which requires a minimum balance in ac-
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Table 6.8: ContractBank3 with WithdrawRule3 

contract ContractBank3 
participants 

customer : Customer; account : Account; 
attributes 

double limit = 100.0; 
coordination 

WithdrawRule3: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with ((account.getBalance() +limit) >=amount) 
failure { 

throw new AccountException(account, limit+amount, c, 
AccountExceptionTypes.LIMIT _EXCEEDED); } 

end contract 

Table 6.9: ContractBank4 with BalanceRule1 

contract ContractBank4 
participants 

account : Account; 
coordination 

BalanceRule: 
when *- > > account.getBalance() 

end contract 

counts. After returning the balance of the account, we check the current 
balance and the status of a Boolean variable lock. If the balance is less than 
the required minimum amount, and if it is not locked yet, we then lock the ac­
count and prohibit any withdrawal. If the current balance is greater than the 
minimum amount and the account is locked, then we unlock the account. The 
new feature will not lock the deposit() method; though withdraw() is disabled, 
deposit() can be used to unlock the account by increasing the balance. 

The two rules, BalanceRule1 and BalanceRule2, have the same precondi­
tion, since they have the same precondition as the original method, the same 
trigger condition and the same guard, i.e., pre0P 1\ triggercall

1 
1\ withcalh -

preop 1\ trigger call
2 

1\ withcall2 • Hence, we say contracts ContractBank5 (Ta­
ble 6.10) and ContractBank4 (Table 6.9) have an equivalent precondition by 
the definitions in Section 5.4.3 (page 75) and Section 5.4.5 (page 76). 

On the other hand, the two rules have the same postcondition of the method 
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getBalance() in class Account, denoted as postop· The effects of the do blocks 
in both rules are the same since they both omit this part, so that the original 
method is performed as the default. On examination, BalanceRule2 has an 
extra after block compared to BalanceRulel. As a result, the former rule has 
a stronger postcondition than the latter since it has a stronger joint effect in 
the before-do-after block by the definition in Section 5.4.4 (page 76). No 
failure part is available to compare in both rules. 

Taking account of the above facts and the definitions in Section 5.4.5 
(page 76), we infer that the contract ContractBank5 with BalanceRule2 (Ta­
ble 6.10) has a stronger postcondition than the contract ContractBank4 with 
BalanceRulel (Table 6.9), and ContractBank5 has the same precondition as 
ContractBank4, i.e., 

( ContractBank4pre {:::} ContractBank5pre) 1\ ( ContractBank5post ::::} 
ContractBank4post)· 

Table 6.10: ContractBank5 with BalanceRule2 

contract ContractBank5 
participants 

account : Account; 
attributes 

double MIN = 10.0; 
boolean lock = false; 

coordination 
BalanceRule2: 
when *- > > account.getBalance() 
after { 

} 

if (account.getBalance() < MIN && lock== false) { 
lock= true; 

} 
else if ( account.getBalance() >= MIN && lock == true) { 

lock = false; 
} 

end contract 

In Table 6.11, we introduce a customer participant in ContractBank6 with 
BalanceRule3 to print out the account's owner and the account's ID. The 
customer instances can be created by instantiating the Customer class existing 
in the architecture (Figure 6.2, page 99). Actually, an object of a newly-
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introduced class is permissible in the contract as well, for example, an instance 
that realizes the logging information of the account objects [5]. 

Applying a similar reasoning in the above subsections, we infer that Bal­
anceRule3 has a stronger postcondition than BalanceRule2, so that Contract­
Bank6 strengthens the postcondition of ContractBankS, as expected. The 
two rules have the same precondition, so that ContractBank6 has the same 
precondition as ContractBankS. 

Table 6.11: ContractBank6 with BalanceRule3 

contract ContractBank6 
participants 

customer : Customer; account : Account; 
attributes 

double MIN = 10.0; 
boolean lock = false; 
long number; 

coordination 
BalanceRule3: 
when *- > > account.getBalance() 
after { 

} 

if (account.getBalance() < MIN && lock== false) { 
lock= true; 

} 

number= account.getNumber(); 
customer = account.getOwners(); 
System.out. println( customer.getN arne() + " 's account" 

+number+ "is locked."); 

else if ( account.getBalance() >= MIN && lock == true) { 
lock = false; 

} 

number= account.getNumber(); 
customer = account.getOwners(); 
System.out. println( customer.getN arne() + " 's account" 

+ number + "is unlocked."); 

end contract 
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6.3.3 Changes to the Precondition and Postcondition of 
Coordination Contracts 

We integrate the BalanceRulel (Table 6.9) and the WithdrawRulel (Table 6.6) 
into Table 6.12 to make a new contract ContractBank7 including both rules. 
The BalanceRulel passes on the original method call getBalance() and returns 
the balance. The WithdrawRulel checks if the desired withdrawal amount is 
greater than the balance, throws an exception if it is not, or it executes the 
original method withdraw() alternatively. According to the change histories 
we discussed, ContractBank7 extends ContractBankl in Table 6.6 with Bal­
anceRulel, and extends ContractBank4 in Table 6.9 with WithdrawRulel. 

Table 6.12: ContractBank7 with BalanceRulel and WithdrawRulel 

contract ContractBank7 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRulel: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with (account.getBalance() >=amount) 
failure { 
throw new AccountException( account, amount, c, 

AccountExceptionTypes.LIMIT _EXCEEDED); } 
BalanceRulel: 
when *- > > account.getBalance() 

end contract 

The intention of lock added in BalanceRule2 in Table 6.10 is to supervise 
affected operations like withdraw. To reflect such changes on WithdrawRule3 
in Table 6.8, we need the WithdrawRule4 in Table 6.13. A before block is 
inserted, which checks the status of lock before performing the do block. By 
the definition in Section 5.4.4 (page 76), the before block is a part of the 
postcondition for rules. 

Following the similar analysis above, we conclude that, 

• WithdrawRule4 in Table 6.13 has a weaker precondition and stronger 
postcondition than WithdrawRulel in Table 6.12. 

• BalanceRule2 in Table 6.13 has a stronger postcondition than BalanceRulel 
in Table 6.12. 
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Table 6.13: ContractBank8 with BalanceRule2 and WithdrawRule4 

contract ContractBank8 
participants 

customer : Customer; account : Account; 
attributes 

double limit = 100.0; 
double MIN = 10.0; 
boolean lock = false; 

coordination 
WithdrawRule4: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with ((account.getBalance() +limit) >=amount) 
before { 

if (lock == true) { 

} 

System.out.println( "Balance is Not Enough! 
This account is LOCKED!"); 

System. exit(); 

failure { 
throw new AccountException(account, limit+amount, c, 

AccountExceptionTypes.LIMIT _EXCEEDED); } 
BalanceRule2: 
when *- > > account.getBalance() 
after { 

if (account.getBalance() +limit < MIN && lock== false) { 
lock= true; 

} 
else if (account.getBalance() +limit >=MIN && lock== true) 
{ 

lock = false; 
} 

} 

end contract 

By the definition of pre- and postcondition of coordination contracts in 
Section 5.4.5 (page 76), and the concept of Plug-in Match in Section 5.5.3 
(page 83), the relationship between ContractBank8 and ContractBank7 satis­
fies the Plug-in Match, that is, 

matchplug-in( ContractBank8, ContractBank7) = ( ContractBank7 pre :::} 
ContractBank8pre) 1\ ( ContractBank8post:::} ContractBank7post)· 
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Since the Plug-in Match is the second strongest match in the strength ordering 
in Figure 5.11, the relationship between ContractBank8 and ContractBank7 
also satisfies the inferior matches. 

In Section 4.4.2 (page 53), when introducing the CDE-specific language for 
contracts, we have illustrated a proposed idea of "inheritance" of contracts in 
Figure 4.6 (page 59) without a formal explanation of the exact meaning. At 
this moment, we have acquired an understanding of "inheritance" as this kind 
by the Plug-in Match relationship between contracts. 

To represent the third case of change histories in Section 6.2 (page 98) 
more concretely, we assume that the system with ContractBank8 is SY 8 3 

in Figure 6.11. SYS has the initial version of ContractBank in Table 6.5. 
SYS1 evolves from SYS by WithdrawRule3 in ContractBanklO (Table 6.15), 
and SYS2 evolves from SYS by BalanceRule2 in ContractBank9 (Table 6.14). 
SYS3 can be achieved in evolving either from ContractBank9 by WithdrawRule4, 
or from ContractBankl 0 by WithdrawRule4 and BalanceRule2. Comparing 
Figure 6.11 and Figure 6.9, the difference is in the evolution process from 
SYS1 to SYS3 , where changes in WithdrawRule and BalanceRule are required 
in the former. The modification of WithdrawRule3 is performed because With­
drawRule3 is supposed to be dependent on the new feature of BalanceRule2 
according to the specification. 

Given other examples, if the effect of a rule changes but its dependent rules 
do not reflect those changes correspondingly, we argue that the evolution is 
still well-defined in the sense that the kind of matching can be characterized. 
It is the designer's obligation to make sure that contracts are well-designed 
and implemented. 

ContractBank10 

The initial Contract Bank 
(Table 6.5) 

ContractBank9 

Figure 6.11: A More Specific Example for Case 3 
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Table 6.14: ContractBank9 with BalanceRule2 and WithdrawRulel 

contract ContractBank9 
participants 

customer : Customer; account : Account; 
attributes 

double limit = 100.0; 
double MIN = 10.0; 
boolean lock= false; 

coordination 
WithdrawRulel: 
when*- >> account.withdraw(amount, c) && (customer== c) 
with (account .get Balance() > = amount) 
failure { 
throw new AccountException(account, amount, c, 

AccountExceptionTypes.LIMIT _EXCEED ED); } 
BalanceRule2: 
when *- > > account.getBalance() 
after { 

if (account.getBalance() +limit < MIN && lock== false) { 
lock= true; 

} 
else if (account.getBalance() +limit >=MIN && lock== true) 
{ 

lock = false; 
} 

} 

end contract 

6.4 Summary 

In this Chapter, we performed some case studies on a banking example to 
instantiate the corresponding concepts and approaches in the previous Chap­
ter. In particular, we demonstrated Exact Pre/Post Match and Plug-in Match 
with this example. 
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Table 6.15: ContractBankl 0 with BalanceRulel and WithdrawRule3 

contract ContractBanklO 
participants 

customer : Customer; account : Account; 
coordination 

WithdrawRule3: 
when *- > > account. withdraw( amount, c) && (customer == c) 
with (account.getBalance() +limit>= amount) 
failure { 
throw new AccountException(account, amount +limit, c, 

AccountExceptionTypes.LIMIT _EXCEEDED); } 
BalanceRulel: 
when *- > > account.getBalance() 

end contract 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The research in this thesis was motivated by an apparent lack of techniques 
to support predictable Software Evolution based on architectures, especially 
on architectural connectors. We present an incremental, lightweight approach 
which addresses the problem by means of coordination contracts. Several 
contributions toward the resolution of this problem have been made. 

This thesis has been concerned with the research position of Software Evo­
lution and Software Architecture. Software Evolution is usually defined by 
referring to Software Maintenance. Software Maintenance and Software Evolu­
tion are the longest and the most expensive phase in the software development 
life cycle, and usually performed after delivery. To enhance the system's ability 
to change and save cost, we arrive to the assertion that Software Evolution is 
unavoidable, and review a software system as an entity under development as 
well as evolution. As the output of the design process, software architectures 
describe the structure of a system or a program and its global properties. By 
elevating the abstraction level to an earlier phase, we define Software Evolu­
tion by means of architecture re-configuration in terms of evolving operations 
on architectural elements, that is, adding, removing, replacing components 
and/or connectors, according to the required changes. 

Some previous work for modeling Software Evolution have been reviewed 
using two main criteria: the representation of changes in architectures and the 
mechanism to evolve connectors. The representative work includes Lucena and 
Alencar's logical framework, Medvidovic et al. 's architectural type theory and 
transformation techniques, including a UML-based Algebraic Graph Rewrit­
ing, and Fiadeiro et al.'s approach. Except for Fiadeiro et al.'s approach, 
these approaches either have not an explicit representation of connectors or 
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they have not established an effective mechanism for connectors. 

We have also conducted another literature survey with the goal of repre­
senting architectural connectors. Connectors deserve to be first-class entities 
primarily because they are exactly the corresponding elements which reflect 
the increasingly complex business rules and their interactions in the setting 
of software architecture. Taxonomies of connector types, notations and tech­
niques for modeling connectors have been discussed extensively. To bridge 
the gap between architectural level and implementation level of connectors, 
coordination contracts were introduced by Fiadeiro et al. as a realization of 
connectors in program architectures. A coordination contract is a modeling 
and implementation primitive superposing behaviors on participant compo­
nents that allows "transparent interception" of method calls. The approach 
transcends the phases of software design and implementation according to the 
definition. We call our approach multiple dimensional since a three-layer archi­
tecture applied on coordination contracts is proposed to separate concerns of 
components, connectors and configuration during evolution. For the evolution 
of the component dimension, we assume Medvidovic et al. 's work on C2 com­
ponents is constructive, which evolve using subtyping theory as a framework 
for reasoning about evolution. 

This thesis's major contribution is to provide a foundation for applying 
specification matching based methods to contracts to predict software evolu­
tion. We borrow specification matching techniques for components and com­
pose them in an original way that is tailored to our specific needs for coordi­
nation contracts. Change histories which may relate several evolving systems 
are characterized to increase the efficiency of the approach. To capture observ­
able behaviors of contracts, we describe pre- and postcondition specification 
for coordination contracts using a combination of abstract and CDE language 
for contracts. Behavioral relationships between coordination contracts have 
been established by a range of matches with various degrees of similarity, such 
as Exact Pre/Post Match, Plug-in Match, Relaxed Plug-in Match, Guarded 
Generalized Match and Generalized Match. These matches provide support 
for preserving the system behaviors in a preferred level and help to control the 
evolution in a predictable direction. 

7.2 Future Work 

We have demonstrated an approach for modeling predicable software evolu­
tion on connectors using coordination contracts. However, the problem of 
architecture-based software evolution is by no means completely solved, much 
remains to be done. 
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• Complements to the Approach 
This approach will be extended in various ways in the future. A number 
of features that were assumed above, but are not included in this work 
could be studied and implemented. 

For the component dimension, although Medvidovic et al. 's subtyp­
ing theory to evolve C2 components is proposed to be applied on 
participant components being coordinated in contracts, details are 
left to explore. 

Before we present specification matching, signature matching of 
contracts is assumed. To match parameters and their types for 
each rule in contracts is still an open issue. 

- It will be interesting and worthwhile to find out relevant situations 
that our approach does not fully cover. For instance, even though 
their specifications mismatch when considering preconditions and 
postconditions separately or together, two contracts may be related 
in some sense. 

- Due to the lack of a logic for contracts corresponding to Hoare logic 
and the weakest precondition calculus, the specification matching 
approach is short of a precise representation. With such a formal 
mapping, we can better answer the question and demonstrate more 
case studies. 

• Correctness of Coordination Contracts 
In this thesis, we characterize a contract in terms of pre- and postcondi­
tion specification because the execution of contracts is basically a set of 
sequential activities. However, we have not talked about the correctness 
of coordination contracts yet, so that this thesis does not present a sound 
way to reason about contracts. Proof obligations might be developed to 
show the consistency of contracts. The presentation of mathematical se­
mantics for coordination contracts is based on COMMUNITY, [49, 50, 51] 
are some references where this topic is discussed. For knowledge of COM­

MUNITY and Category Theory, referring to [48] and [52] and the like is 
advisable. 

• Non-Functional Property (NFP) 
In Section 4.2 (page 49), we have discussed four levels of contract abstrac­
tion. Coordination contracts are classified into the group of synchroniza­
tion contracts and used primarily to analyze functional properties in this 
thesis. The "top" level is the quality-of-service contract, which specifies 
all behavioral properties including even NFPs like availability, through­
put, latency and capacity, etc. Since our approach to software evolution 
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is based on a three-layer architecture which may have NFPs, further 
study in such aspect seems necessary as well. 

• Scalability 

In Section 3.3.1 (page 40), we state our standpoint in employing coordi­
nation contracts to bridge the gap between specification and implemen­
tation of software architectures, so that our approach is at the detailed 
architecture to source code level (Figure 1.2, page 10). However, systems 
or applications may further grow in size and complexity because of the 
incremental approach of evolution. System scale will pose challenges to a 
broad range of software development issues. Thus, scalability is an open 
question. Although some case studies have been carried out in Chap­
ter 6, a larger size example to match more complicated contracts is still 
needed to make the case more convincing. 

• Detecting Invariants 
Invariants are one of the indispensable constituents in studies of science of 
programming, which is a set of properties that are true over the observed 
executions, and prevents changes from violating assumptions for correct 
behaviors. We do not address the puzzle in our approach, how to discover 
invariants in coordination contracts. Daikon1 is an invariant detector 
that discovers them from the code by static analysis and dynamic analysis 
in annotated programs. But many popular methods created for programs 
may not be applied to contracts directly. In addition, the previously 
held invariants may change when introducing more components to the 
contract during evolution, which makes the situation more complicated. 

• Software Environments 
In Section 5.5 (page 78), we suggest FOL or OCL be used to formulate 
pre- and postconditions of contracts. Therefore, an matchmaker may 
be integrated in CDE 1.1.1 to prove relationships between contracts au­
tomatically. In addition, an evolution manager is proposed to control 
system change histories. 

1http://pag.csail.mit.edu/daikon/ 
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