
SOFTWARE EVOLUTION

ARCHITECTURE-BASED SOFTWARE EVOLUTION:

A MULTI-DIMENSIONAL APPROACH

By

HUAN WANG, B.ENG., M.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Huan Wang, August 2007

MASTER OF SCIENCE (2007)

(Computing and Software)

McMaster University

Hamilton, Ontario

TITLE: Architecture-Based Software Evolution: A Multi-Dimensional Approach

AUTHOR: Huan Wang, B.ENG., M.ENG. (China Agricultural University)

SUPERVISOR: Professor Thomas S. E. Maibaum

NUMBER OF PAGES: xvi, 136

11

ABSTRACT

Software Evolution is unavoidable because software systems are subject to

continuous change, continuing growth and increasing complexity. As software

systems become mission-critical and large in size, the complexity in software

development is now focused on software evolution rather than construction. In

this work, we view a software system as an entity that is evolving throughout

its lifetime, during development and maintenance. Based on a broad survey of

software evolution approaches, we propose an architecture-based solution for

software evolution, which is defined in terms of evolution specific operations on

architectural elements, that is, adding, removing, replacing components and

(or) connectors, transforming configurations according to the required changes.

In our view of software architectures, connectors are more likely to change since

they are the architectural elements which reflect business rules. This work is

focused on the evolution of connectors in architectures describing detailed de­

sign. Coordination contracts are introduced by Fiadeiro et al. as a realization

of connectors at this detailed architecture level, which enables a three-layer

architecture to separate concerns of components, connectors and configuration

during evolution. Furthermore, to constrain the evolution in a predictable

direction, we have established a matching scheme for justifying behavioral re­

lationships between coordination contracts by specification matching based on

pre- and postconditions of contracts and methods. A number of specification

matches, with various degrees of similarity between the evolved and evolving

contracts, have been developed for system behaviors after evolution operations.

Case studies are exhibited give a better understanding of these matches.

iii

IV

ACKNOWLEDGEMENTS

It has been a great pleasure working with the faculty, staff, and students at

McMaster University, during my life journey.

I start showing my sincere appreciation to my master's advisor, Dr. Tom

Maibaum, for his invaluable guidance, advice and financial support, for his

confidence in me to carry out this work, and for his considerable assistance in

writing of this thesis. I am thankful for his insights on the "big picture" of this

research area, as well as for many technical details in this specific topic. He is

always willing to help me through when I have any difficulty in work and life.

I wish to thank my fellow students at the Software Engineering Research

Group, especially Zhe (Jessie) Li, Rongshu (Bill) Yi, Xiang Ling and Yazhi

Wang, for their kind support, and also Salvador Garcia, Pablo Castro and

Jorge Santos, for the enjoyable time we have spent together.

Thanks to Jessica Stewart, for her every smile on her face and "paper"

I am deeply indebted to Dr. Wolfram Kahl and the reviewers of my thesis,

Dr. Emil Sekerinski and Dr. Spencer Smith, whose comments and suggestions

have contributed to the quality of this work.

I would also like to thank Jonathan (Yumeng) Li for sharing me with faith

in God.

I appreciate a number of people not listed explicitly above, whom I am so

fortunate to receive help from.

To God Be the Glory! This work is an offering to Him.

v

Vl

DEDICATION

To MY PARENTS AND MY ENTIRE FAMILY,

FOR THEIR UNCONDITIONAL SUPPORT,

EVERLASTING PATIENCE, ENDLESS ENCOURAGEMENT,

AND UNFAILING LOVE.

vii

Vlll

Contents

Title Page

Descriptive Note

Abstract

Acknowledgements

Dedication

Contents

List of Tables

List of Figures

Preface and Outline of the Thesis

1 Introduction

1.1 Motivations for Software Evolution

1.1.1 Origins of the Research on Software Evolution

1.1.2 The Ability to Accommodate Changes ..

1.2 Software Evolution versus Software Maintenance .

1.3 Architecture-Based Software Evolution ...

1.3.1 Motivations

1.3.2 Software Architecture as a Buzzword

1.3.3 Documenting Software Architecture .

1.3.4 Software Evolution at the Architectural Level

IX

i

ii

Ill

v

vii

IX

xiii

XV

1

5

5

5

5

6

9

9

10

11

12

1.4 Summary . 13

2 Techniques for Modeling Software Evolution

2.1 Logical Framework

2.2 Architectural Type Theory

2.2.1 Palsberg and Schwartzbach's Type System

2.2.2 Evolving Architectural Components . . .

2.3 Transformation Techniques

2.3.1 UML-based Algebraic Graph Rewriting .

2.3.2 Fiadeiro & Wermelinger's Approach .

2.4 Other Related Approaches

2.5 Summary

3 Architectural Connectors

3.1 Connector as a First-Class Architectural Citizen

3.2

3.3

3.4

Connectors Taxonomies

3.2.1 Architectural Styles

3.2.2 Bures's Types of Component Interaction

3.2.3 Mehta et al. 's Taxonomy of Connectors .

3.2.4 Other Categories

Notations and Approaches for Modeling Software Connectors .

3.3.1 ADLs

3.3.2 UML

3.3.3 Formal Notations

3.3.4 Coordination Contract

Summary

4 Coordination Contract

4.1 Introduction to Coordination Contract

4.2 Contract Abstraction Levels

4.3 The Three-Layer Architecture

4.4 Notations

4.4.1 Graphical Notation

4.4.2 Textual Notation

4.5 Patterns for Coordination Contract

X

15

15

18

18

19

25

25

27

29

29

31

31

32

32

33

34

38

38

39

41

44

44

46

47

47
49

51

52

52

53

59

4.5.1 The Component Part . .

4.5.2 The Coordination Part .

4.6 Coordination Development Tool

4. 7 Applications of Coordination Contracts .

4.8 Summary

5 Our Approach to Architecture-Based Evolution

5.1 The Multi-Dimensional Evolution Approach

5.1.1 The Component Dimension

5.1.2 The Coordination Dimension

5.2 Predictable Evolution

5.2.1 Permissible Changes

5.2.2 Change Histories ..

60

61

63

64

64

65

65

66

66

67

67

70

5.3 Inspirations from Related Work 72

5.3.1 Subtyping 72

5.3.2 Pre- and Postconditions 72

5.3.3 Behavioral Subtyping . . 73

5.4 Specification Level Representation of Coordination Contracts . 74

5.4.1 Contract Specification Revisited 7 4

5.4.2 Pre- and Postconditions of the Method Being Called 75

5.4.3 Preconditions of Coordination Rules 75

5.4.4 Postconditions of Coordination Rules 76

5.4.5 Pre- and postcondition of Coordination Contracts . 76

5.5 Behavioral Relationships between Coordination Contracts 78

5.5.1 Outline of Behavioral Specification Matching . 80

5.5.2 Exact Pre/Post Match 81

5.5.3 Plug-in Match 83

5.5.4 Relaxed Plug-in Match

5.5.5 Guarded Generalized Match

5.5.6 Generalized Match

5.5. 7 Summary

5.6 Summary

xi

86

88

91

93

94

6 Case Studies

6.1 Introduction to the Banking Application

6.2 System Change Histories

6.3 Behavioral Relationships and Specification Matching

97

97

98

. 104

6.3.1 Changes to the Precondition of Coordination Contracts . 105

6.3.2 Changes to the Postcondition of Coordination Contracts 105

6.3.3 Changes to the Precondition and Postcondition of Co-

ordination Contracts

6.4 Summary

7 Conclusions and Future Work

7.1 Conclusions .

7.2 Future Work .

Bibliography

Index

xii

. 109

. 112

115

. 115

. 116

119

133

List of Tables

2.1 Subtype Relationships Established on Figure 2.3 . 19

3.1 Architectural Styles and Vocabularies . 33

4.1 The Abstract Language 54

4.2 Coordination Rules Specification 55

4.3 The Language Supported by CDE. 57

5.1 Contract Specification Revisited . . 74

6.1 ContractBank with WithdrawRule . 99

6.2 The withdraw method in Account Class . . 100

6.3 ContractBank with BalanceRule 100

6.4 The getBalance method in Account Class . . 100

6.5 ContractBank with WithdrawRule and BalanceRule . 100

6.6 ContractBankl with WithdrawRulel . 102

6.7 ContractBank2 with WithdrawRule2 . 103

6.8 ContractBank3 with WithdrawRule3 . 106

6.9 ContractBank4 with BalanceRulel . 106

6.10 ContractBank5 with BalanceRule2 . 107

6.11 ContractBank6 with BalanceRule3 . 108

6.12 ContractBank7 with BalanceRulel and WithdrawRulel . 109

6.13 ContractBank8 with BalanceRule2 and WithdrawRule4 . 110

6.14 ContractBank9 with BalanceRule2 and WithdrawRulel . 112

6.15 ContractBankl 0 with BalanceRulel and WithdrawRule3 . 113

Xlll

xiv

List of Figures

1.1 Software Development Lifecycle Waterfall Model 7

1.2 Software Evolution Dimensions under Timing and Granularity 10

2.1 Software Architecture Denoted by Tuples . . 16

2.2 Expanded Software Architecture Description 17

2.3 Subclassing Mechanism 19

2.4 C2 Component Elements 21

2.5 A Demo for C2 Component-Connector Architecture 21

2.6 A Framework for Understanding 00 Subtyping Relationships 22

2. 7 Examples of Component Subtyping Relationships 23

2.8 An Evolution Model 26

2.9 Adding a Class E . . 27

2.10 Removing a Class E 28

3.1 Bures's Communication Styles

3.2 A Taxonomy of Connectors

3.3 A Connector Type- Procedure Call

3.4 A Connector Type- Event

3.5 A Connector Type- Stream

3.6 The Gap between Specification and Implementation of Archi-

tectures

3. 7 UML Diagrams

3.8 UML Connector as an Association

3.9 UML Connector as an Association Class

4.1 Level of Contracts

4.2 A Coordination-based Three-Layer Architecture

XV

34

35

36

37

37

41

42

43

43

50

52

4.3 An Example Architecture with a Coordination Contract 53

4.4 The Abstract and CDE Specification of Coordination Contract . 54

4.5 Multiple Coordination Contracts 58

4.6 A Proposed Contract Inheritance Mechanism 59

4. 7 A Design Pattern for Coordination Contracts 60

4.8 A Design Pattern for Account and Contracts in Figure 4.6 62

4.9 Design Pattern for Account without Contracts ... 62

5.1 An Old System SYS and an Evolved System SYS' 67

5.2 Executing a Coordination Contract as a Transition System 69

5.3 Possible Changes in an Evolved System against the Old System 69

5.4 System Evolution - Case 1 . 70

5.5 System Evolution- Case 1'

5.6 System Evolution - Case 2 .

5. 7 System Evolution - Case 3 .

5.8 System Evolution- Case 3'

5.9 Contract Behavioral Relationships .

5.10 Contract Specification Matches . .

5.11 Contract Specification Matches (Simplified)

6.1 Case Studies Class Diagrams

6.2 Case Studies - A Bank Application

6.3 Case 1 - Adding/Modifying a Different Rule

6.4 Case 1 - Accumulating the Changes of Two Rule .

6.5 Case 1- Changing the Current Rule

6.6 Case 1- Accumulating Changes of the Same Rule

6.7 Case 2 .

6.8 Case 2' .

6.9 Case 3 .

6.10 Case 3' .

6.11 A More Specific Example for Case 3 .

xvi

70

71

71

71

79

80

94

98
99

. 101

. 101

. 101

. 101

. 102

. 103

. 104

. 104

. 111

Preface and Thesis Outline

This thesis is the final product of my Master of Science studies in Computer
Science at the Department of Computing and Software, McMaster University,
Canada. It serves as documentation of my research work during these studies,
which have been carried out from Fall 2005 until Summer 2007. The work has
been funded by my supervisor Dr. Tom Maibaum, NSERC, the Department,
and the University.

The objective of this thesis is to propose an approach to software evolution
based on software architectures, in particular for the detailed design level of
development. We define architecture-based software evolution as adding, re­
moving, modifying components and (or) connectors, and transforming configu­
rations of components and connectors. However, most techniques for modeling
Software Evolution do not model connectors, or they model connectors, but
have no mechanisms to evolve them effectively. On the other hand, the ap­
proaches to modeling connectors in Architecture Description Languages rarely
support the evolution of connectors, and some of them do not even model
connectors as first-class entities. As a consequence, we need a way to model
connectors as first-class entities and evolve connectors effectively. Coordina­
tion contracts are a realization of connectors at the detailed design level. With
a three-layer approach, where the coordination layer models business rules by
means of contracts, we are able to separate the concerns of components and
connectors and focus on the evolution of coordination contracts. Generally
speaking, we would like to see incremental and predictable evolution. There­
fore, in principle, adding and modifying coordination contracts are predictable
evolutionary operations. To evolve software systems predicably, firstly, we
consider two evolving systems to be related by evolutionary operations by
characterizing their change histories. When adding and modifying contracts,
the signatures of two contracts should match, which means the types of each
rule's input and output parameters, as well as the exceptions that may be
raised, must match. Then, we compare their behaviors in terms of specifica­
tion matching based on pre- and postconditions. In order to do this, we have
to develop a pre- and postcondition characterization of contracts. We then
propose a matching scheme with 5 cases, which relate the pre- and postcon-

1

Master's Thesis- Huan Wang McMaster- Computing and Software

ditions of two contracts with different conditions. The evolution of contracts
is defined to be predictable up to the limits imposed by these specification
matches. The research in this thesis has been influenced by work in several ar­
eas: software architecture, software evolution, architectural connectors, formal
specifications, UML, coordination contracts.

The thesis consists of seven main chapters.

The first chapter contains a general introduction to the research back­
ground and an evaluation of the current state of the art. The discussion
starts with fundamental knowledge of software maintenance, software evolu­
tion and software architecture, as a basis for our research motivation for evo­
lution based on software architecture. We define architecture-based software
evolution from a reconfiguration perspective, as adding, removing, replacing
components and/ or connectors, according to the required changes.

In Chapter 2, we survey the literature on techniques for modeling software
evolution. Three relevant techniques are selected for the purpose of comparison
and evaluated from two aspects, the representation of changes in architectures
and the mechanism to evolve connectors. We find that two common problems
with these techniques are that they either lack the architectural granularity
of connectors or have not established an effective mechanism for evolution of
connectors.

Chapter 3 investigates techniques for modeling architectural connectors
and gains us an understanding of connectors. We demonstrate the significance
of connectors being represented as first-class architectural citizens. We also
explore several taxonomies of connector types. Notations and approaches for
modeling connectors are discussed. A new light-weight way is suggested to
represent connectors and support evolving architectural connectors using co­
ordination contracts, which define a modeling and implementation primitive
that allows transparent interception of method calls.

Chapter 4 provides a necessary background in coordination contracts. We
compare coordination contracts with some popular techniques that may sup­
port modeling of architecture based software evolution. A three-layer architec­
ture applied on coordination contracts is proposed to facilitate separation of
concerns. We introduce graphical and textual notations of contracts, as well as
a tool for developing contracts. Several applications of coordination contracts
are also presented.

Chapter 5 proposes an approach to evolution of the coordination dimen­
sion. We characterize change histories that in a way enables control of system
evolution in a predictable direction. Moreover, we define pre- and postcondi­
tions of method calls, coordination rules and coordination contracts, and make
use of specification matching to justify the behavioral relationships between

2

Master's Thesis - Huan Wang McMaster- Computing and Software

coordination contracts by means of pre- and postconditions. Additionally, we
provide a framework to assess different cases of specification matches, and
demonstrate proof sketches and properties of a variety of matches.

Chapter 6 demonstrates the ideas on some case studies of a banking exam­
ple to instantiate the corresponding concepts and approaches in the previous
Chapter. In particular, we explored Exact Pre/Post Match and Plug-in Match
with this example.

Chapter 7 contains the conclusions with emphases on this thesis's original
contributions and proposes some future research goals for extending this work.

3

Master's Thesis- Huan Wang McMaster- Computing and Software

4

Chapter 1

Introduction

1.1 Motivations for Software Evolution

1.1.1 Origins of the Research on Software Evolution

The research on Software Evolution originated in the 1970's by Lehman [87]
when studying over twenty releases of the IBM OS/360 operating system.
Based on these experiences, Lehman and Belady proposed a group of laws for
software evolution [88]. Many of these laws are still relevant even today [90].
From these laws, we are aware of the fact that software systems are subject to
continuous change, continuing growth and increasing complexity.

Almost in the same period as Lehman's work, Parnas emphasized the sig­
nificant impact of the fundamental principles of Software Evolution as early as
the 1970s and 1980s. The concept of "information hiding" [118] decomposes
a design into modules, which yields modularization as a basic design decision.
The underlying intention is to encapsulate design decisions within individual
modules so that changing design decisions will affect only some of the modules,
rather than the whole software. Parnas also proposed the ideas of "design for
change" and "anticipation of changes" as crucial aspects in software engineer­
ing [119], which are motivations for research on Software Evolution. In 1994,
Parnas dealt with the issue of software evolution in more details [120].

1.1.2 The Ability to Accommodate Changes

It is evident that an increasing percentage of information systems as e-Business
and e-Commerce is in need, which are mission-critical and large in size. Build­
ing such software systems is a big challenge for software practitioners. The

5

Master's Thesis- Huan Wang McMaster- Computing and Software

complexity and the pressure are not only from techniques or collaborations
among people, but also from time-to-market, economic resources, severe con­
straints, as well as demanding from the software producer discipline and ef­
ficiency. Software Evolution is unavoidable both before and after deploy­
ment [111], so that software systems need to be evolvable in order to build
large, complex, multi-lingual, multi-platform, long-running systems economi­
cally.

Thus, an intractable problem has come up: how can we construct software
systems gracefully adapted to changing requirements over time? [5:~] gives us
a general guideline - "the ability to change is now more important than the
ability to create e-commerce systems in the first place. Changes become a
first-class design goal and require business and technology architecture whose
components can be added, modified, replaced, and reconfigured".

Technically speaking, most of these systems are modeled by component­
centric software development, where business rules are reflected as volatile
relations among components. When components become more complicated,
the complexity of components' interactions will grow exponentially. Therefore,
the complexity in software development is now focused on evolution rather than
construction. We review a software system as an entity under development as
well as evolution.

1.2 Software Evolution versus Software Main­
tenance

The waterfall model categorizes the development cycle of a software project
into several phases. Though the waterfall model assumes the development
to be a "linear" process, which is not true generally, we follow the model
to introduce the concept of Software Maintenance and Software Evolution.
Software Maintenance in Figure 1.1 is the very last stage, as well as the longest
phase in the software life cycle.

The IEEE Standard 1219 [4] defines Software Maintenance as "the modi­
fication of a software product after delivery to correct faults, to improve per­
formance or other attributes, or to adapt the product to a modified environ­
ment." Sommerville concluded that Software Maintenance has rich function­
alities, such as maintenance to repair software faults, maintenance to adapt
software systems to a different operating environment, maintenance to add to
or modify the system's functionality [141].

However, the fact that Software Maintenance is the most cost-intensive in
the entire software development life cycle surprised many software practition-

6

Master's Thesis- Huan Wang

Requirement
~

Analysis

- Specification -

McMaster- Computing and Software

- Design h
'------r------IJ 1

..__ Implementation~

Test

- Maintenance

Figure 1.1: Software Development Lifecycle Waterfall Model

ers. According to Sommerville, approximately 60% of the cost of software
system construction occurs during maintenance period [141]. A relatively new
assessment in [81] even declares that the cost for maintaining software and
managing its evolution now amounts to more than 90% of the total cost. These
numbers have properly illustrated the magnitude of such a serious situation.

The concept of Software Evolution and Software Maintenance are highly
related. In 2000, Lehman and Ramil [39] defined Software Evolution as "all
programming activity that is intended to generate a new software version from
an earlier operational version". However, a list of various definitions in [39]
shows that there is not a consensus yet on how to define Software Evolution.
Considering this, firstly we will induce a general definition of Software Evolu­
tion by referring to that of Software Maintenance.

From the analyses above, compared to Software Maintenance, Software
Evolution should support a more general concept for being involved in all
phases of development. Ghezzi [66] argues that evolution should be planned
throughout software development activities. Experiences already testified to
the fact that software systems with an evolvable architecture cost less to main­
tain and Software Evolution is a key to software productivity [111].

Toward reducing the cost of software evolution, making it more effective

7

Master's Thesis- Huan Wang McMaster- Computing and Software

and positioning our research objectives, we will explore Software Evolution
from various perspectives.

Chikofsky et al. classifies three different activities in constructing software:
requirements, design and implementation [:n]. From these criteria, they built
concept of Forward Engineering, Reverse Engineering and Re-engineering.
Forward Engineering is the traditional process of moving from high-level ab­
stractions and logical, implementation-independent designs to the physical im­
plementation of a system. Reverse Engineering is the process of analyzing a
subject system to identify the system's components and their interrelationships
and to create representations of the system in another form or at a higher level
of abstraction. A typical reverse engineering framework is presented by Sar­
tipi [1 :n, page 15]. Re-engineering is the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent implemen­
tation of the new form.

In consequence, research on Software Evolution in the early stages of reverse
engineering and re-engineering was mainly operating on legacy systems. The
process of evolution within this scope usually involves analyzing, understand­
ing the program that has to be changed, implementing required changes [141],
versioning resulting systems, architectural recovery, etc. Techniques have fo­
cused on reducing the complexity through automatic support for program com­
prehension, which includes visualization and reverse engineering techniques
like artifact extraction, as well as focused on restructuring or refactoring1

,

which includes problem detection and problem correction. Thus, practition­
ers have to reason from experiences or source code even in the absence of
an explicit architecture. However, by patching the problematic areas, they
may introduce more problems and by applying immense modifications, design
decisions will drift [G5].

It has been shown that the after-delivery Software Evolution is extremely
expensive because it requires understanding, analyzing and evaluating the ap­
plication or system thoroughly. If the original system is hard to comprehend
or even itself has poor software quality, software evolution in such a context
will encounter great impediments. To avoid the high cost, we want to em­
phasize the importance of Software Evolution at the initial phases in software
development, curbing the deteriorating situation.

Furthermore, the timing of evolution unfolds two new notions for us: static
evolution which happens at the design or specification time, and dynamic evo­
lution which happens at the execution time (run-time or dynamic). Changes
are provided at many levels of granularity, so that the corresponding evolution

1 Refactoring is defined as structural transformations on source code that do not affect
the external behavior of the code.

8

Master's Thesis-- Huan Wang McMaster - Computing and Software

pervades all development activities: coarse-grain as in specification, frame­
work, design, architecture and fine-grain as in data, schemas, source-code,
modules, test cases, etc.

Moreover, research on Software Evolution is dedicated in two aspects ac­
cording to Mens and Wermelinger [10-!]: the what and why studies evolution
as a noun in the sense of observing phenomena, nature and underlying moti­
vations of Software Evolution; and the how involves the methods, tools and
practices for evolving a system, in particular for a constantly changing model,
a specification of the system and the system implementation.

In summary, though recognizing the importance of Software Evolution,
most of the support for evolution research has been focused on techniques
or tools for dealing with structural complexity, finer-grain software artifacts
and the "what and why" aspect of software evolution. For the purpose of
our research, we are using forward engineering approach of construction to
discuss evolution, performing static evolution as early as design time on the
architectural level concerning coarser-grain artifacts and considering the "how"
of software evolution.

1.3 Architecture-Based Software Evolution

1.3.1 Motivations

To address the recently-emerged problems in engineering large, complex soft­
ware systems, three popular techniques come up: Component-Based Software
Development (CBSD), middleware platforms and software architecture [102] 2 .

Component-based software development highlight components and their inter­
relationship, but ignore the importance of connectors, which we will mention
later. Software architecture has come to the fore and become an indispensable
area in software engineering. Researchers and practitioners have started to
consider software development processes from an architecture point of view.

Since the beginning, software architecture based approaches have taken
over the previous absolute authority of modules. Architectural design is the
initial design process of identifying sub-systems and establishing a framework
for sub-system control and communication [141]. As the output of the design
process, software architectures describe the structure of a system or a program
and its global properties. Once determined, any change in architectures will
impact a substantial set of functional and non-functional properties. By raising

2Generally speaking, architecture-based development is top-down decomposition and
component-based development is bottom-up composition.

9

Master's Thesis- Huan Wang McMaster- Computing and Software

the level of abstraction, software architecture is a way to control software
development, evolution costs and challenges and to improve software quality.

Surprisingly, most definitions of software architecture do not explicitly men­
tion evolution. Though in recognition of the fact that software evolution will
extract huge costs after initial development, software processes and design
techniques still concentrate on software construction, so that current support
for architecture-based software evolution has been insufficient. It is important
for evolution to be based on the architectural level to make the decision effec­
tive throughout the whole life cycle of a system. As a saying goes, prevention
is better than cure.

Jazayeri even argued that the primary goal of a software architecture is
to guide the evolution of the system [78]. Such ideas of integrating software
architecture with evolution motivates our research.

To make our motivation more explicit, we position our notion of software
evolution by dimensions under timing and granularity in Figure 1.23 . During
design time, the architecture is still under development; pre-execution time is
when the architecture has already been specified and implemented but not yet
running; runtime means the architecture can be modified dynamically while
running.

runtime

pre-execution time

design time

requirements

evolution time

level of abstraction

high-level detailed source
arch. arch. code

Figure 1.2: Software Evolution Dimensions under Timing and Granularity

1.3.2 Software Architecture as a Buzzword

The word "architecture" is not original to, nor specific to software engineer­
ing. Since the day it was introduced, controversy on how to define it has not

3In the "evolution time" direction, we adopt concepts by Mens et al. [LO;~].

10

Master's Thesis- Huan Wang McMaster- Computing and Software

stopped. The website of Software Engineering Institute (SEI) [3], exhibits over
90 definitions to interpret various perspectives of an architecture.

We will adopt the definition by Bass et al. [27]: the software architecture
of a program or computing system is the structure or structures of the system,
which comprise software elements, the externally visible properties of those
elements, and the relationships among them.

In spite of the existing dissension on how to define software architecture,
there is an almost-clear consensus on elements of software architecture, which
are components, connectors and configurations [G-!]. Components represent
the primary computational elements and data stores of a system. Connectors
represent the interactions among components. System represents hierarchical
organizations of components and connectors. An instance architecture is a
topology of a particular set of components and connectors.

What benefits do we desire for software architecture? Software architec­
tures not only function as a bridge between requirements and implementa­
tion [62], but also represent several roles, such as enhancing understanding of
system, supporting reuse at different levels, directing construction, facilitating
evolution, analysis and management [61].

1.3.3 Documenting Software Architecture

Generally speaking, architecture documentation may serve as a means of ed­
ucating associated people, ease communication among different stakeholders,
support the basis for system analysis [34]. Notations in architecture documen­
tations could be either graphical or textual, or both. In any case, they all
should be capable of describing architectures in multi-faceted and systematic
ways.

The "4+1" View Model

As a straightforward graphical representation applied universally, box-and-line
approaches [135] represent components as nodes and connectors as edges so
that an architecture of a system is a directed graph. While enjoying simplicity,
one has to compensate for the ambiguous meaning of every unit, perspectives
from different stakeholders and analysis or reasoning about architectures.

The "4+1" view [84] was created to reflect concerns from involved stake­
holders. As its name indicates, the "4+ 1" view is illustrated by five organized
views: the logical view (end-user functionality) models objects of the design
using an Object-Oriented method; the development view (programmers, soft­
ware management) describes the static organization of the software; as a com-

11

Master's Thesis- Huan Wang McMaster - Computing and Software

plement to the development view, the process view (integrators, performance,
scalability) captures the concurrency and synchronization aspects of the de­
sign; the physical view (system engineers, topology, communications) maps
the software to the hardware and explicates distributed properties. The fifth
view is the scenario view, representing dynamic aspects shared in the other
views. To a large degree, UML (Unified Modeling Language) is influenced by
this seminal idea.

ADL

Prior to Architecture Description Languages (ADL), Module Interconnection
Languages (MIL) and Interface Description Languages (IDL) tried to serve a
similar purpose for the source code. The two languages specify relationships
between modules at the source code level but lack the capability of architec­
tural level abstraction.

The way ADLs named suggests that ADL is used to describe the archi­
tecture of a software system. With the indispensable architecture elements
discussed in Section 1.3.2 (page 10), ADL should adequately capture compo­
nents, connectors, and the system configuration.

Over the past 10 years, a lot of ADLs come into play. Medvidovic et al.
set up a classification and comparison framework for several ADLs [100]. In
2007, they advocated a creative idea that the second generation ADLs should
consider "three lampposts" [9G] - not only from insights of pure technology
as the first generation also from two other aspects- domain, and business.

1.3.4 Software Evolution at the Architectural Level

Most earlier research works on software architectures are dealing with spec­
ifying, describing, analyzing, implementing, evaluating issues. On the other
hand, though research works on software evolution have been proceeding for
almost thirty years since Parnas and Lehman, only recent phenomena and the
related underlying significance have started to be realized [89]. While the two
companies working alone separately for a long time, current advances in both
sides lead to develop architecture-based software evolution coincidentally.

Research on architecture-based software evolution is not only essential to
evolve software architecture also to assess an architecture design, facilitate
architecture-based development, enhance software quality and increase confi­
dence on products by managing changes more successfully. Software architec­
ture is evolvable, so are its elements - components, connectors, and system
configurations.

12

Master's Thesis-- Huan Wang McMaster- Computing and Software

In favor of our research, evolution of architectures is managed on archi­
tectural elements through a particular set of strategies or rules. Then we
define software evolution by means of architecture re-configuration as evolving
operations on architectural elements - that is, adding, removing, replacing
component and/ or connectors, according to the required changes.

1.4 Summary

In this Chapter, we have introduced fundamental knowledge of software main­
tenance, software evolution and software architecture as a basis for our research
motivation for evolution based on software architecture. Software systems are
subject to continuous change, continuing growth and increasing complexity so
that evolution is unavoidable. We define architecture-based software evolution
from a reconfiguration perspective, as adding, removing, replacing components
and/ or connectors, according to the required changes.

13

Master's Thesis - Huan Wang McMaster- Computing and Software

14

Chapter 2

Techniques for Modeling
Software Evolution

Many approaches to modeling software evolution are predominantly based on
a relatively low level of abstraction, being programming language specific, or
operating in an ad-hoc way. After extensively surveying the literature, we have
found that current research on evolution at the architectural level essentially
applying some logical formalism, type theory and graph transformation tech­
niques. In this chapter, we will present some related work and compare them
using two main criteria: the representation of changes in architectures and the
mechanism to evolve connectors.

2.1 Logical Framework

Lucena and Alencar [10, 94] proposed a theorem-proving based logical frame­
work for software architecture analysis and evolution by structural and func­
tional descriptions that allow validation of architectural changes and to assess
the generated impacts. The support formalism is many-sorted deontic modal
action logic which describes transitions that may occur in software evolution
(defined as a sequence of change processes). They describe the evolution by
means of architectural configuration where transitions are represented as ac­
tions with deontic constraints given by the statement of "permission" and
"obligation" allowing deduction about the validity of transitions.

They proposed a formal software architectural description which consists
of features like versions, modules and subsystem families. Furthermore, they
defined a tuple SS = (SG, SR, SV, SI, SC) to represent an architecture. SG is
an acyclic structure graph which describes the hierarchical relations between

15

Master 's Thesis - Huan Wang McMaster - Computing and Software

module families and subsystem families. SR contains the resource-related
information. Likewise, SV holds version-related information, Sf the interface­
related information, SC the configuration-related information. Each element
in tuple SS is also defined in terms of tuples as shown in Figure 2.1. Figure 2.21

is an expanded overview of S S.

relations between I hierarchical j
r::;-;:::---;7;---::;-;:-;-;::--::;-:--\-------========-- module families

~---~~ SG - (N , FN,S,.,E} J l and subsystem
0 families

c ----~{,. (']L-~====.' resource-related
. r information - : SR = R, P" R., T , Tn t t

4 SI=(f, AIS, f' , CIS)

·1- _!version-related l
I I information

1--~~===1 interface-related j
l information

-- J SC = (C c . M p 1• R T.) ~ ~onfigur~tion-related
~. , s , c, c, qc, c _I ~ mformat1on

Figure 2.1: Software Architecture Denoted by Tuples

The logical framework for modeling software evolution is based on architec­
ture configuration. Each particular architectural description is instantiated by
S Si (i E N), which consists of a sequence of system configuration states. The
initial description SS0 = (SG0 , SR0 , SVo, SI0 , SC0). From the start, an archi­
tecture evolves to SSi through executing a chain of transition rules rj (j EN)

until arriving at an expected architecture, i.e., SS0 ~ SS1 --+ .. . --+ SSi-r ~
SSi. Like the possible changes on each element in the tuples shown in Fig­
ure 2.2, the rules can be accordingly imposed on structures, resources, versions,
configurations, functionalities, or static and dynamic properties of the archi­
tectural configuration transformation.

To conclude, Lucena and Alencar's logical framework identified a concep­
tual model evolving through architecture configurations based on transitions ,
and worked "as a programming-in-the-large transformation process applied to
architectural descriptions of software systems" [10]. Theorem provers are used
as tools to reason about software evolution in this logical framework. From the

1 Both Figure 2.1 and Figure 2. 2 are adapted from [10].

16 j

Master's Thesis - Huan Wang McMaster - Computing and Software

SG = (N, FN,S., . E)

R: a finite non-empty set of rcsoLlJ' ccs

Pr: n totnJ function N ---> :il
Rq: a t otal function JV -t '.!."

. 1': a non-cmpl)' set of t}l> CS

Tu: H JUtdiHI run clio ll n. X N 4 T

hierarchical
relations botwoon
module families
and subsystem
famllloa

'-:;~:;:(J~P..-n~r,:f.);-1.--=====~ rcsou rcc-rclatcd '-------<11 SR.= (R, P., R,,T, TH) Information

. R: a finite nou- empt;y set of resources

. r•,·: a total ftlllCLion N _, zH
RTJ! II tQt>t l fun ·lion N _, zH.
T: a non-empty set of types

Tn: H p a r·li HI furu:Liou R X N -t 7'

SV = (S1 , V, fl•f,,, I , fl f, Prv, Rqv , Tv)

, S 1 : n tom l funct ion N ---7 { s f ,m!J

·r= sf : subsystem family
mf: modulo family

\': a fiui te se t of Inndult~ V(~rsi c:m.s

fl•fv: 11 partial in jedive funct ion N -) 2v

version-f'elated
Information

1: a finite non-empty se t of implcment.ation

• fl.f1 : a bijection 'V ---7 I
f'rv: a tot.al fun ction V -.... 21

'

n, '" "tota l fuu c liuu v
T

S l =(!, ;li S, f', C J S) •~-~====~[interface-re lated]
,- Information _

~----------------~

f: the set o f all formulns of functionru
prnp P. rt.i P.~ in nh~tnu~t. spt-~ e I J-JnguagP. T~

.'U S: a partiru function N 21

f': the set ur a ll formul as uf fuucl iuuul

properties in cont~•·ete spec language L'

C l S: a p>t rl ia l fund ion V -> 21'

G,: u St:!t. uf couH g, Lu·at.iou::s

C s : " parlial fun d.ion N ---7 -2'=

configuration-related
information

Me(~) = {((Sn(k.), j' m ,)), ... , ((S.,(k,) fm,)) }

., (I.;) (fori = J. 1) : Lh c uuruo o f a mod ule o r sub yM lmu fluuily

j'm 1: tbc name of a family mcn1bor of k;

Pr c: a total fun ction C ---t '.!.H

flqc a totll.l fun ct-ion C ---7 "J11

Tc: a pa.·L ia l function R x C ---> T

17
Figure 2.2: Expanded Software Architecture Description

Master's Thesis- Huan Wang McMaster- Computing and Software

perspective of software architecture, components appeared as either a module
family or a subsystem family. However, this approach does not model con­
nectors as a first-class citizen, nor even distinguish the notion of connectors.
Thus, inter-component changes can hardly be expressed.

2.2 Architectural Type Theory

Garlan argued that an architectural style can be viewed as a system of types,
where the architectural vocabularies (components and connectors) are defined
as a set of types [59]. Medvidovic et al. 's work focuses on how to develop and
realize the idea and make architecture be married to type theory "blissfully".
Their fruitful work has produced a new ADL- C2ADL, as well as a novel
architecture style - C2. This introductory section is heavily based on the
work of Medvidovic et al. [95, 99, 110, 14:3, llG].

2.2.1 Palsberg and Schwartzbach's Type System

Type theory is generally applied to programming languages. In Object-Oriented
programming languages, all types in the type universe are inter-related and
composed into a type hierarchy [139]. The subtype relationship [117, J 26] is
formalized as a collection of inference rules and denoted as S <: T, where we
call S is a subtype ofT or T is a supertype of S. Subtyping is typically a
partial-order relation, and if S is a subtype ofT, then any object of type S is
also an object of type T. Subtypes must preserve all features of supertypes,
but may have more.

Pals berg et al. 's work shed light on the type theory applied to architectural
evolution [117]. Patterns of type conformance are identified, such as arbitrary
subclasses, name compatibility, interface conformance, monotone subclassing,
behavior conformance and strictly monotone subclassing. In arbitrary sub­
classes, any class is allowable to be declared as a subtype of an arbitrary class
so that class methods can be added, deleted or redefined freely. Name compat­
ibility requires a shared set of named methods. Interface conformance takes
the types of a method's arguments into consideration, besides their names (i.e.,
signatures). M anatone subclassing preserves interfaces by adding or redefining
methods while preserving the interfaces of the superclass. In behavior confor­
mance, the desired methods are specified by means of pre- and postconditions.
Strictly monotone subclassing only allows adding methods and requires the
preservation of a particular implementation. When going right from left in

18

Master's Thesis - Huan Wang McMaster- Computing and Software

Figure 2.32
, the typing mechanism becomes more expressive and rigorous by

considering more object features. Table 2.1 builds a correspondence between
patterns of type conformance and the subtyping relations.

name

compatibility

class + monotone

subclasses
class+ strictly monotone

subclasses

class + arbitrary

subclasses Interfaces behavior

Figure 2.3: Subclassing Mechanism

Table 2.1: Subtype Relationships Established on Figure 2.3

Patterns of Type Conformance Subtyping Representation
class + subclasses sub classing
name compatibility more methods
interface conformance

behavior
weaker preconditions,
stronger postconditions
weaker preconditions,

strictly monotone subclassing stronger postconditions,
other specs to preserve implementation

2.2.2 Evolving Architectural Components

As shown by Medvidovic et al. [99], the notion of subtyping adopted by ADLs
is richer than that typically provided by programming languages; that is, it in­
volves constraints on both syntactic (e.g., naming and interface) and semantic
(e.g., behavior) aspects of a component or a connector. The subtype relations
that are currently captured in [99] allow a subtype to preserve its supertype's
interface, behavior, or both.

2Figure 2.3 is adapted from [117].

19

Master's Thesis - Huan Wang McMaster- Computing and Software

C2 Architecture Style

Originally intended to model Graphical User Interface (GUI) intensive appli­
cations, the C2 architecture style is generally applied to build architectures
of large-scale, highly-distributed, heterogeneous, evolvable, and dynamic sys­
tems, and is independent of implementation language.

In a C2-style architecture, each component or connector has two defined
interfaces- "top" and "bottom" (see also the filled black circles in Figure 2.5),
maintaining messages sent and received, respectively. One such component
interface may be attached to at most one connector. However, a connector
may be attached to multiple components or connectors, transferring messages
between them. A C2 architecture, where components are linked together by
connectors into a hierarchical network, follows a principle of limited visibility
(a.k.a., implicit invocation or substrate independence), i.e., a component is
only aware of services provided from "above" but has no knowledge of services
provided "beneath". Thus C2 messages (event-based) are of two kinds -
requests (sent up) and notifications (sent down). Passing these two kinds
of messages via connectors is the only way for components to communicate
(direct communication between components is disallowed). C2ADL is an ADL
for defining architectures built according to the C2 style.

C2 Component

Indicated in the above sections, a C2 component is a unit of computation,
maintaining states or a data store, performing operations and exchanging mes­
sages (synchronous and asynchronous) with other components via two inter­
faces, "top" and "bottom". A well-formed definition of C2 component is shown
in Figure 2.43

. C2ADL treats each component specification in an architecture
as a type and supports its evolution via subtyping. C2 specifies component's
semantics in FOL (First Order Logic).

Formally, each component is identified as a type and represented as a tuple,
Component =< nam, int*, beh, imp >, which consists of a name, a set of
interfaces, a behavior and an implementation as in Figure 2.4.

• Each interface element has a direction indicator and a set of parameters,
int =< dir, inLnam,param* >,where

dir: direction indicator (provided, required);

int_nam: interface name;

3Figure 2.4 is adapted from [99].

20

Master's Thesis - Huan Wang McMaster - Computing and Software

C2 Component

a a set of interface elements associated behavior implementation (possibly)

Figure 2.4: C2 Component Elements

(a)
(b)

Conn1 Conn1

requ sts <=

(d) (c)

Figure 2.5: A Demo for C2 Component-Connector Architecture

param*: a set of parameters, each parameter has a name and a
type: param = < param_nam,param _type >.

• The behavior has an invariant and a set of operations , each operation
has pre- and postconditions and a result (if there is any):

beh = < inv, oper* >

oper =< pre, post , result >

21

Master's Thesis- Huan Wang McMaster- Computing and Software

C2 Connector

The responsibilities of connectors are to combine components into a hierarchi­
cal architecture, to route, broadcast and filter messages among components
and connectors. Filtering and broadcast policies for messages, such as no fil­
tering, notification filtering, prioritized and message sink, may be provided by
connectors. Connector interfaces are specifically defined as ports. C2 connec­
tors are unique in that these defined interfaces are context-reflective, i.e., they
are inherently evolvable to support any components that interact through the
connector. C2ADL only supports message passing connectors. C2 does not
provide techniques for connector evolution that are similar to its component
subtyping relation to be discussed. Instead, the context-reflective interfaces
of C2 connectors, and modification of the filter mechanism to support addi­
tion or removal of components are two techniques to realize evolution of C2
connectors.

Evolving Framework for C2 Components

The construction of an architectural type system based on Section 2.2.1 (page
18) can be expressed by several set operations, shown as Venn diagrams in
Figure 2.64 . U is the universal set. Set Int (interface) and Beh (behavior)
demand two conforming types share interfaces and behaviors respectively. Set
Imp (implementation) demands a type share particular implementations of all
supertype methods. Set N am (name) demands shared method names.

u

Figure 2.6: A Framework for Understanding 00 Subtyping Relationships

• interface conformance (int as in Figure 2.7(a)) applies interface sub­
typing to provide a new implementation for a component of the original

4Figure 2.6 and Figure 2.7 are adapted from [D!J].

22

Master's Thesis- Huan Wang McMaster- Computing and Software

u u

(a) int (b) int and beh

u u

(c) int and imp (d) imp and not int

Figure 2.7: Examples of Component Subtyping Relationships

architecture, which is useful for interchanging components without af­
fecting dependent components.

• behavioral conformance (the intersection of int and beh as in Fig­
ure 2. 7(b)) requires that both interface and behavior of a type be pre­
served in demonstrating correctness during component substitution.

• strictly monotone subclassing (int and imp as in Figure 2. 7 (c)) extends
the behavior of an existing component while preserving correctness rel­
ative to the rest of the architecture, so as to evolve a component with
additional functionalities.

• implementation conformance with different interfaces (imp and not int
as in Figure 2. 7(d)) is useful specifically in describing domain translators5

in C2, which allow a component to be fitted into an alternate domain of
discourse.

• multiple conformance mechanisms allow to create a new type by subtyp­
ing from several types, potentially using different subtyping mechanisms.

In most Object-Oriented Programming Languages (OOPL), the subtyp­
ing mechanisms above would be realized by different programming languages

5Domain translators provide functionality similar to that of the adapter design pattern.

23

Master's Thesis - Huan Wang McMaster- Computing and Software

since every single OOPL supports at most one such mechanism. It is worth
mentioning again that architectural types are not of the same meaning as the
general notion of types in programming languages (integers, strings, arrays,
records, etc.). When scaled up to the architectural level, they all may need to
be supported by more than one language.

Medvidovic proposed a framework for evolving software architecture by
using type theory with regard to architectural elements like components and
configurations [95].

• a component evolves by means of a heterogeneous subtyping theory for
software architectures;

• a connector evolves by context-reflective interfaces to support any com­
ponents that interact through the connector and by heterogeneous infor­
mation filtering mechanisms;

• a configuration evolves by employing heterogeneous, flexible connec­
tors and minimal component interdependencies using implicit invocation,
asynchronous communication or substrate independence.

In such a context, evolution of components can be represented by a sub­
typing relationship between two components, i.e., cj :::; ci, as the disjunction
of sets nam, int, beh and imp, which are shown in Figure 2.6 (page 22). Thus,
the subtyping relation can be defined intuitively as:

(VCi, Ci :Component)(CJ :::; Ci {::}
Ci:::;nameCi V Cj:::;intCi V Cj:::;behCi V Ci:::;impCi),

i.e., by the disjunction of name subtyping, interface subtyping, behavior sub­
typing, implementation subtyping.

ArchStudio 3 [llG] is an architecture-driven software development environ­
ment that supports the C2 architectural style. Mae [128] is an external change
management tool assistant for ArchStudio in providing revisions of components
and connectors.

To sum up, this approach is notable in its support for components and
configurations evolution. The subtyping mechanisms for evolving components
are claimed to be independent from domain, style, and ADLs [08], where
each component specification is treated as a type and evolved via subtyping
rules. However, the evolution of connectors is largely dependent on components
by means of context-reflective interfaces and information filtering mechanism,
which makes addition, removal, replacement, and reconnection of connectors
difficult and not flexible.

24

Master's Thesis- Huan Wang McMaster- Computing and Software

2.3 Transformation Techniques

According to Heckel et al. [72], a general concept of transformation refers to
"the manual, interactive, or automatic manipulation of artifacts according to
pre-defined rules, either as a conceptual abstraction of human software en­
gineering activities, or as the implementation of mappings on and between
modeling and programming languages". Favre et al. [47] summarized a few
transformation formalisms applied to software evolution: program transforma­
tion (over Java, C, or C++, etc.); model transformation (over UMLand other
visual languages); graph transformation; term rewriting, category theory, al­
gebra, and logic. Transformation techniques such as model transformation,
graph transformation and category theory are appropriate for software evolu­
tion at the architectural abstraction level. Especially, it is very straightforward
to describe software architecture as a directed graph, where components are
represented by nodes and connectors are the edges connecting nodes. In what
follows, we will introduce two approaches in this category.

2.3.1 UML-based Algebraic Graph Rewriting

We have discussed in Section 1.3.2 (page 10) that UML reflects different views
of software architectures. Recognized as a de facto standard in industry, UML
has been used for modeling, analyzing and designing Object-Oriented software
development. To describe architectural level evolution, Ciraci et al. [3:3] models
designs by using UML (especially class and interaction diagrams), and is based
on category theory, where software architecture is a typed graph and evolution
processes can be viewed as morphisms between components (e.g., classes); see
Figure 2.86 . Actually, they present a model as a class diagram and focuses on
addition and removal as representative evolving operations for components. In
Figure 2.8, the four nodes in the abstract software evolution model are:

• Component: the components which are going to evolve

• New Component: the components after evolving

• System: the system with original components

• New System: the system with evolved components

The evolution requests can be viewed as morphisms on the architectural
components. The evolution model in Figure 2.8 can be depicted as a pushout,
where the input consists of morphisms Embedding: Component ---+ SYSTEM

6The following example is taken from [33].

25

Master's Thesis- Huan Wang McMaster- Computing and Software

Evolution
/ '

Component New Component

./
Oil
c:

:.a --o v
;::l u

13 .0
E :..::

c Component J Glue2 New Component

SYSTEM NEW SYSTEM

Figure 2.8: An Evolution Model

and Evolution: Component -t New Component, and the output consists of
Glue2: SYSTEM -t NEW SYSTEM and Gluel: New Component -t NEW
SYSTEM, so that the diagram commutes. Evolution defines which rewriting
should be done. Embedding identifies the occurrence of the part of Component
that should be rewritten.

Ciraci et al. [:.{;~] allow three levels of adding and removing components:
parameter and return value level, method and attribute level, class level. For
simplicity and relevance, we will concentrate on class level operations.

Suppose that, as in Figure 2.9, the Component node is composed of two
classes, F and D. Via Embedding morphism the System node contains rela­
tionship aggregation between classes F and D. The New Component node has
one more class E with the generalization relation to class F and aggregation
relation to class D. The Glue morphism contains the new class and its relation­
ship with existing classes, as well as the relationships between existing classes.
Thus, the New System node contains the new relations while preserving the
relation between classes F and D in the System node.

In Figure 2.10, to demonstrate removal operations on classes, we will re­
move class E from the System, which will cause the edges connecting class E
to its superclass F and to class D to be removed as well. The marked items (*)
stay in the graph temporarily but have a "discarded" status. Once removing
the marked items will not cause any dangling arcs, the items can be removed
from the system completely. So in this case, we are able to remove E safely.

Graph transformation theory provides the power to reason between ver­
sions. GXL (Graph Transformation Language) [130] is a programmable graph
rewriting language that aims to address the limitations of both graph rewriting

26

Master's Thesis- Huan Wang

8 8
Component

System

McMaster- Computing and Software

Evolution

Glue2

0
..E!
0

New System

Figure 2.9: Adding a Class E

and tree rewriting by a synthesis of the two that uses the strengths of each one
to address the weaknesses of the other. To represent graph rewriting as used
by Ciraci et al. [:B], GXL is an advisable choice. Tools which can "speak"
the GXL dialect will support software evolution by means of algebraic graph
rewriting techniques.

This method employs UML as a modeling language, where adding and
removing classes have proven to be feasible. However, component's addition
and removal are only a partial version of software evolution described in Sec­
tion 1.3 (page 9). Connectors and related evolving operations are absent from
the model.

2.3.2 Fiadeiro & Wermelinger's Approach

By applying algebraic graph rewriting, as described in Section 2.3.1 (page 25),
Fiadeiro and Wermelinger [52, 14G, 147] have proposed an approach to model­
ing software evolution at the architecture level. It is motivated by the research
status quo that arbitrary reconfigurations are not possible, the languages used
for representing computations are very simple and at a low level of abstrac­
tion, and that the combination of reconfiguration and computations leads to

27

Master's Thesis - Huan Wang McMaster- Computing and Software

Evolution

Component New Component

Glue2

System New System

Figure 2.10: Removing a Class E

additional formal constructs. Nowadays, the application of category theory
to software engineering is a very active research area. This method uses a
uniform algebraic framework based on category theory and a program design
language with explicit states, representing a software architecture via an ADL
- COMMUNITY.

COMMUNITY [114, 148] is a UNITY-like parallel programming design lan­
guage to describe computations, which represents architectures by diagrams
in Category Theory, thus specifying reconfigurations by graph transformation
rules. An instance architecture in COMMUNITY is composed of nodes and in­
teractions between the nodes, where a component is a COMMUNITY design, a
node is a component instance, interactions could be connections between input
and output channels of different nodes or synchronization of actions of differ­
ent nodes. A design is a unit of computation which has input/output/private
attributes (called "channels" in COMMUNITY) and shared/private actions.

The COMMUNITY workbench [~W] is a graphical integrated development
environment for COMMUNITY programs which also supports the configura­
tion and reconfiguration of architectures of complex systems as well as the

28

Master's Thesis -- Huan Wang McMaster - Computing and Software

management of a library of components and connectors.

Software evolution in COMMUNITY is reconfiguration-based through con­
ditional graph rewriting rules on the state of involved components. These rules
are defined by using the double-pushout approach to graph transformation and
category theory. Thus, primitive operations defined in Section 1.3.4 (page 12)
for evolving connectors at architectural level are feasible. Comparing changes
in different versions of architectures is via underlying formalism such as graph
transformation theory and category theory. The coordination contracts we
will discuss in Chapter 4 have the same semantics as COMMUNITY.

2.4 Other Related Approaches

There are innumerable other related techniques and methods that may or may
not have direct impact on modeling software evolution at an architectural level.
For example, Ducasse et al. [44] model software evolution by treating history
as a first-class entity, represents evolution by means of a matrix and represents
release history by a meta-model, focusing on evolution of properties. The lack
of consideration of connectors and their evolution is a major impediment to the
management of evolving software architectures with current methodologies.

2.5 Summary

We have surveyed the literature on techniques for modeling software evolution.
Three relevant techniques are selected for the purpose of comparison in this
Chapter, that is, Lucena and Alencar's logical framework, Medvidovic et al.'s
architectural type theory and transformation techniques including a UML­
based Algebraic Graph Rewriting and Fiadeiro et al. 's approach. We evaluate
these approaches with two criteria: the representation of changes in architec­
tures and the mechanism to evolve connectors. As a result, we find that two
common problems with some of these techniques are that they either lack the
granularity of connectors or have not established an effective mechanism for
evolution of connectors.

29

Master's Thesis- Huan Wang McMaster- Computing and Software

30

Chapter 3

Architectural Connectors

3.1 Connector as a First-Class Architectural
Citizen

Categorized as architectural elements, "Connectors mediate interactions among
components; that is, they establish the rules that govern component interac­
tion and auxiliary mechanisms required" [137]. In the literature, connectors
may also be named as connections, bindings, component connectors [95]. The
concept of connectors also appears in middleware specifications, for example,
J2EE connectors [J J. However, a connector in such a sense is out of the scope
of this thesis since connectors are regularly hidden in the pre-defined middle­
ware infrastructures, not easily extensible or evolvable, so that specification
and description techniques are much less clear.

The main difference between components and connectors can be derived
from their definitions, which we have presented in Section 1.3.2 (page 10).
Components are computational elements independent of the context, to pro­
vide functionalities. In contrast, as the interactions among components, con­
nectors are completely dependent on the context to connect components so
that connectors may not "correspond to compilation units in an implemented
system" [100].

For historical reasons, many theories, methodologies and tools still pre­
dominantly focus on components in design decisions, which makes connectors
less obvious as compared to components. This fact leads to "fat components",
where the code for connectors is interwoven with that of components at im­
plementation time, and places the description of connectors implicit. Hence,
connectors lose their identity, more or less. Many problems in modeling archi­
tectures are thus caused by the expressive shortcoming of "inadequacies of the

31

Master's Thesis- Huan Wang McMaster- Computing and Software

mechanisms for defining component interconnection" [1:34].

Addressed in Section 1.1.2 (page 5), a current trend is that business rules
and their interactions constitute most of the complexity in software develop­
ment. The ability to deal with the situation in the Software Engineering com­
munity, however, has not increased accordingly [107]. Connectors are exactly
the corresponding elements which reflect the trend in the setting of software
architecture.

Therefore, the idea of treating architectural connectors as first-class entities
is proposed by Shaw [13-!]. Shaw models connectors as first-class entities to
give the benefits for localizing interaction related code in connectors, increasing
the reusability of components, enhancing the performance and maintenance of
a software architecture, and supporting dynamic changes and evolution in
system connectivity.

In light of connectors being first-class citizens, not only components but
also connectors should be evolved at the architectural level. In the follow­
ing sections, based on a survey of architectural connectors, we will introduce
taxonomies of connector types, discuss notations and approaches for modeling
connectors and explore a light-weight way to support architectural connector
evolution.

3.2 Connectors Taxonomies

Connectors are complex and rich enough to deserve a taxonomy to show re­
lations among similar kinds of connectors [1:31]. A connector type "expresses
the designer's intention about the general class of connection to be provided
by the connector; it restricts the numbers, types, and specifications of prop­
erties and roles" [136]. The fact that there are fewer connector types than
components makes it easier to work with them. Admittedly, some taxonomies
tend to be ambiguous in some aspects. But, in general, they are beneficial
to understanding architectures, to optimizing the underlying mechanism, to
facilitating implementation of family architectures and software development.

3.2.1 Architectural Styles

An architectural style typically "defines a vocabulary of components and con­
nectors types, a set of constraints on how they can be combined" [1:37]. From
the definition, we assume the knowledge that a style includes a set of specific
connector types.

Some other novel terms have come up very recently such as "frameworks",

32

Master's Thesis - Huan Wang McMaster- Computing and Software

"architectural patterns1
", "idioms", etc. In this thesis, we do not emphasize

these distinctions, so that all of them are recognizing a pre-defined architecture
at some abstraction level, representing a set of architectural instances. Any
architectural style may have several variations. A software product can be
constructed in or associated with more than one architectural style.

Table 3.1: Architectural Styles and Vocabularies
Architectural Style Component Connector
pipes and filters filters pipes
object-oriented objects messages,
organization method invocations
event-based events procedures for
(implicit invocation) certain event

layered system layer protocols of layer interaction

repositories
data-related data access
structure or store

Though not proposed for evolution, architectural styles are very appealing
to identify connectors. A few styles are so named as to manifest connectors,
e.g., pipe-and-filter and event-based style, etc., which facilitate further under­
standing of connector vocabulary, in some sense. Completely depending on
the connector types appearing in these styles, however, would be considerably
confusing, for identification and characterization of styles are not comprehen­
sive. The concepts of such types in Table 3.1 are intentionally ambiguous
on specific values of components and connectors presented. In addition, the
mapping between architectural styles and their implementations is generally
poorly understood.

3.2.2 Bures's Types of Component Interaction

Bures et al. [:31] present a generic connector framework, reflecting middleware,
to capture communication styles, where a communication style represents a
"basic contract" among components. Though excluding connectors in the
context of middleware infrastructures, we find Bures et al. [:n] contribute a
similar categorization in our context. Shown in Figure 3.12 , communication
styles generally fall into one of the four interaction types - procedure call,
messaging, streaming and blackboard.

1 Note that design patterns are not architectural.
2Figure 3.1 is adapted from [:n].

33

Master 's Thesis - Huan Wang McMaster - Computing and Software

procedure call

a classical client-server
call, e.g., CORBA, RMI

an asynchronous
message delivery from a
producer to the
subscribed listeners,
e.g., CORBA message
service, JMS, JORAM

""-. stream of data between _j' a uni- or bidirectional 1

\ ~
treaming . a sender and (multiple)

recipients, e.g., Unix
pipe, Helix DNA)
-----~

a communicatio·n via)
shared memory, e.g ., I
JavaSpaces, RDBMS

Figure 3.1: Bures 's Communication Styles

The striking refinement is that Bures's connector types identify an initial
framework to classify connectors. However, limited to the studied entities,
connectors in middlewares are mostly variations of message-passing and RPC
(Remote Procedure Call), which does not cover a large portion of connectors
in architectural styles.

3.2.3 Mehta et al.'s Taxonomy of Connectors

To illustrate types of connectors with less ambiguity, Mehta et al. 's four-layer
classification framework [101 , 102] uses service categories, connector types, di­
mensions , sub-dimensions and values for dimensions or sub-dimensions. The
service category comprises four groups of primitive services (interactions) -
communication, coordination, conversion, and facilitation . Communication
connectors support transfer of data among components. Coordination connec­
tors support transfer of control among components. Conversion connectors
convert the interaction required by one component to formats provided by
another, so as to enable heterogeneous component interactions. Facilitation
connectors mediate and streamline component interaction, providing mecha­
nisms for facilitating and optimizing interactions among heterogeneous com­
ponents. Instance connector types could provide one of these or composite
connector types. The category generates 8 connector types: procedure call,
data access, linkage, stream, event, arbitrator , adaptor, and distributor , see
also Figure 3.2 (with an extra initial "T_" to denote types of connectors in the

34

Master)s Thesis- Huan Wang McMaster - Computing and Software

;{ T _Event]<±>-(COm munication, Coordination)
I

1
/ ' T _Data Access f~ Communication, Conversion }

j, { T _Linkage }I~ Facilitation j
;/ /

!,/ /

Taxonomy of
Connectors

~ · T _Arbitrator + Coordination, Facilitation

~ T _Adaptor ~ Conversion }

· · T _Distributor ~r>i Facilitation }

\{ T _Stream JG-1 Communication }

T _Procedure call + Communication, Coordination

Figure 3.2: A Taxonomy of Connectors

four-layer classification).

• procedure call provides coordination and communication services. Such
connectors model the control flow among components by invocation and
transfer data among the interacting components via parameters; see Fig­
ure 3.33 . Typical examples are functions, procedures, object-oriented
methods, callback invocations, operating system calls, etc.

• event provides coordination and communication services. Such connec­
tors also model the control flow among components, as in a procedure
call , except that the flow is related with events. Or the event messages
carry information for communicating; see Figure 3.4. Typical examples
are GUI events, interrupts and page faults caused by hardware.

• stream provides communication service. Streams perform data transfers
between autonomous processes; see Figure 3.54

. Typical examples are
Unix pipes, TCP /UDP communications.

• data access provides coordination and conversion services. Such con­
nectors allow components to "access data maintained by a data store

3Initial "D_" denotes dimensions, "SD_" denotes sub-dimensions, and "V _,.denotes values
for the dimensions or sub-dimensions in the four-layer classification.

4F igure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5 are adapted from [102].

35

Master's Thesis- Huan Wang

V_Prlvato

v Protected - D_Accessibility
~

V _Asynchronous ./ .. /

v_synchronous Je@_Synchronicity f

McMaster- Computing and Software

V _ Default valuo.s

SO_ Seman_tic.s r-.. V Ke word aramelors

.@ arameters , ... · v _lnllno aramo lors

SO Rolurn v3luos

V _Push from L to R

so tnvocotlon rocord
8

[v Push from R to L

V _Hash table

SD_Multiple

D_Entry point }-~~lc

Figure 3.3: A Connector Type - Procedure Call

component" [101] and perform the conversion of data formats. Typical
examples are SQL, File I/0, etc.

• linkage provides facilitation services. Such connectors combine the sys­
tem components. Typical examples are linkage connectors in the C2
architectural style and Java dynamic class loader.

• arbitrator provides facilitation and coordination services. Arbitrators
mediate system operations, resolve any conflicts (facilitation), and redi­
rect the flow of control (coordination), when components cannot pre­
sume other existing components' needs and states. Typical examples are
multi-threaded systems that require shared memory access use concur­
rency control.

• adaptor provides conversion services. Adaptors "provide facilities to sup­
port interaction between components that have not been designed to
inter-operate". A typical example is virtual memory translation.

• distributor provides facilitation services. Distributors "perform the iden­
tification of interaction paths and subsequent routing of communication
and coordination information among components along these paths" . A
typical example is DNS (Domain Name System).

In their later work, Mehta et al. [101] have tried to further develop the
framework and characterize connector compatibility by means of a matrix, but
it is not guaranteed to be orthogonal for each dimension. Regardless of this

36

l

I

I

Master's Thesis - Huan Wang

..:...====-if=> S D _Hardware

.'{_§.!_gnals 13(D_Mode f'
v _GUI input/output =l>-'s"'o""'-=s-"o'-'tt'"'w-"a'-'ro'-'r

V Tr iggers

McMaster - Computing and Software

SO Producers

J' D Cardinality - so Observers

SD_Event patterns

nchronous

II
~ _ V Absolute

-@a~ Relative

V_ Polled I
V Publish/s ubscribe } I

v Central/u date ={ D_Notificati~r
V Qu e ued dispatch

'\

\{ D _Priority

Figure 3.4: A Connector Type- Event

-'--===== +:{ D_Synchronicity Ja-,
V Time outs

V_Multi sender

V Multi rece iver

V Multi senderfrecelver

SD_Binary

SO N-ar ~:?(D_Cardi;;ality

V Bou nded

v Unbounded ~--~ D_Bounds }

V Stateless 1/
v Slateful)-c.j D_State fl

./
/

,_;;.,o,-..:...__.~

\

V Best effort

1
V Exactly once

<j D_Delivery jE: v At most once

V At least once

V Atom ic units

--1· 0_ Throughput r~~ V=Higher-order units

V Buffered

j D_Buffering je{ v Unbuffered

' ~ D_Locality } - '-'-=~-"-'-"-
V Local

Figure 3.5: A Connector Type - Stream

37

Master's Thesis- Huan Wang McMaster- Computing and Software

weakness, the taxonomy is useful for building product family architectures [4t>]
in terms of connectors, and also useful for directing connector evolution.

3.2.4 Other Categories

Primitive & Complex Connectors

The first-class representations of the connectors above, such as procedure calls
in Figure 3.3 and events in Figure 3.4, are primitive connectors. However,
connectors may be very sophisticated, as with parameterizable connectors, i.e.,
complex connectors or higher-order connectors [GO, 9:{]. Higher-order connec­
tors are so named because they take connectors as parameters and produce
connectors as results, and because they are constructed by operations on con­
nectors like bundling, monitoring, confirmation, security, compression [60]. For
example, API (Application Programming Interface) is generated by bundling
procedure calls to a single entity. By adding security features, a connector is en­
riched with encryption or authentication facilities. The data that a connector
is transmitting may be compressed by compression operation. Confirmation
operations can be applied on RPC connectors to acquire an acknowledgement
or a verification. Monitoring operations are able to upgrade a connector to
transmit communication services that a monitoring component may require.

Periodic Table of Connectors

Hirsch et al. [7 -1] created a periodic table for a canonical set of connector
properties, such as knows target, request/reply, synchronous, etc., so that the
table provides a framework for comparing, refining and reusing connectors.
However, there is no guarantee that these properties are orthogonal [102].

3.3 Notations and Approaches for Modeling
Software Connectors

To capture and construct connectors, researchers have created an abundance
of notations and techniques for modeling and analysis, from abstract formal
models to practical languages, which endow connectors with rich semantics.

Allen and Garlan [11] were concerned with three properties for an expres­
sive notation for connectors. Firstly, it should allow the specification of com­
mon types of architectural interaction; see Table 3.1. Secondly, it should be

38

Master's Thesis -- Huan Wang McMaster- Computing and Software

able to describe complex dynamic interactions among components. Thirdly, it
should allow for "fine-grained distinctions between variations of a connector" .

3.3.1 ADLs

Wright ADL

Wright is a general purpose ADL created by Carnegie Mellon University, sup­
porting specification and analyzing interactions between components (specif­
ically, deadlock analysis), with process algebra as the formal basis. The goal
of Wright is to define architectural connectors as "explicit semantic entities".
Wright is implementation language independent, since for an architectural de­
scription in Wright, the ways to perform implementation are not specified.

A Wright architecture typically consists of three parts: component and
connector types; component and connector instances; configuration of com­
ponent and connector instances (11]. Wright components cannot be directly
connected and are enforced to communicate through a connector. Unlike C2,
Wright excludes the possibility that two connectors are directly attached to
one another. A component type is "described as a set of ports (component
interfaces) and a component-spec that specifies the component's abstract be­
havior". Connector types specification characterize the protocols of interaction
between components provided by CSP-like notation (Communicating Sequen­
tial Processes). A connector type is composed of a set of roles (connector
interfaces) to describe the expected local behavior of each of the interacting
parties and a glue specification to describe how the activities of the roles are
coordinated. Connector types in Wright are defined by users so that Wright
allows arbitrary connector types. Component and connector instances are used
to specify actual entities in configuration. These instances are combined into a
configuration by the way how component ports are attached to (or instantiate)
connector roles.

UniCon

UniCon (Universal Connector) is an ADL developed at Carnegie Mellon Uni­
versity, which is intended to provide a rich selection of abstractions for the
connectors that mediate interactions among components [136]. Supported by
a library of built-in types of connectors, UniCon is known as a connector­
oriented ADL.

Each UniCon component has an interface that defines computational rules
and constraints. UniCon has defined a group of component types, such as

39

Master's Thesis- Huan Wang McMaster- Computing and Software

filter, SharedData etc. Connectors are specified by protocols defining how
components may interact. The built-in connector types are Pipe, FileiO, Pro­
cedureCall, DataAccess, PLBundler, RemoteProcCall and RTScheduler. Ac­
cording to type categorizations in Section 3.2 (page 32), we conclude that all
connectors in UniCon are primitive. However, the pre-defined types of compo­
nents and connectors are all enumerated so that there is no room for change,
consequently support no evolution according to the definition in Section 1.3.4
(page 12).

ArchJava

Software architectures are described using specialized ADLs as we have learned
in Section 1.3.3 and the above subsections, while implementations are de­
scribed using programming languages. There is no intermediate language
to guide the transition between these two phases, causing problems in the
analysis, implementation, understanding, and even the evolution of software
systems. Figure 3.6 shows the abstraction gap between specification and im­
plementation.

ArchJava [9] is proposed with a motivation to bridge the gap, where an ar­
chitecture is composed of a hierarchy of components communicating through
explicitly described connections, and every component is an instance of a com­
ponent class. Components in ArchJava are special kinds of objects described
with an extended Java language, their connections allow components to com­
municate. Ports are the endpoints of connections [1'1] to represent a two-way
interface with provided and required methods. Connections bind each required
method to a provided method with the same name and signature. The goal of
ArchJava is also to enforce communication integrity of components, i.e., com­
ponents can only communicate with other components through interactions
declared in the architecture.

ArchJava specifies component interactions- user-defined connector types
with a clear relation to their implementation, and unifies architectural struc­
ture and implementation into one language, so that dynamic co-evolution of
architecture and implementation is feasible.

Summary

So far, we have analyzed some ADLs in this section to show different per­
spectives to model connectors. First generation ADLs (e.g., Wright, UniCon)
were constructed for specific purposes and few take evolution of architecture
into considerations. Even fewer ADLs support evolution of connectors than
do evolution of components. ADLs that do not model connectors as first-class

40

Master's Thesis - Huan Wang McMaster - Computing and Software

Specification

Implementation

Figure 3.6: The Gap between Specification and Implementation of Architec­
tures

entities (Darwin, MetaH, and Rapide) therefore provide no facilities for their
evolution. ArchJava uses a single mechanism for specifying the semantics of
both components and connectors. Coordination contracts, which we will see
later in this Chapter, follow the idea of components as objects and user-defined
connector types in ArchJava to separate concerns and facilitate evolution of
connectors.

3.3.2 UML

Many specification languages have been introduced to specify and model the
architectures of system. To explore the feasibility and evaluate the suitability
of UML for modeling software architectures, research assignments such as [34,
63, 77, 97] have been accomplished as milestones. Motivation of these research
comes from two needs. On the one hand, multiple design perspectives help
software architects to build complex architectures easily, such as the Kruchten
"4+1" view in Section 1.3 .3 (page 11). On the other hand, ADLs have not been
broadly applied in the industry, where "standard" notations and languages are
generally required.

The UML 2.0 standard includes a collection of graphical notations, com­
prising 13 types of diagrams [29]; see Figure 3. 7.

• Structure Diagrams include the Class Diagram, Object Diagram, Com­
ponent Diagram, Composite Structure Diagram, Package Diagram, and
Deployment Diagram.

• Behavior Diagrams include the Use Case Diagram, Activity Diagram,

41

Master's Thesis- Huan Wang McMaster- Computing and Software

and State Machine Diagram.

• Interaction Diagrams include the Sequence Diagram, Communication
Diagram, Timing Diagram, and Interaction Overview Diagram.

Figure 3.7: UML Diagrams

Documenting Connectors

"UML as an ADL" claims UML is able to provide strong supports for model­
ing software architectures. The key argument is that each of Kruchten's "4+ 1"
views can be mapped into UML diagrams. For instance, the logical view is
formalized by Class diagrams, the process view is mapped to Activity dia­
grams, the implementation and deployment views are modeled by Component
and Deployment diagrams, respectively. The scenarios view is represented by
Sequence and Collaboration diagrams, etc. Consequently, given the suitability
of representing architectural views, UML once was promoted as a "universal"
notation one-size-fits-all.

Despite weaknesses, when it comes to rigorous semantic concerns, UML
2.0 standard targets improving software architecture modeling and enhances
the expressiveness for connectors. Informally defined, in UML 2.0, a connec­
tor represents "a communication link between two or more instances". The
relationship between UML classes and objects can simulate that of component
types and instances so that connectors can be documented as UML associa­
tions, UML association classes or UML classes [77].

A UML association is "a structural relationship among classes that de­
scribes a set of links, a link being a connection among objects that are in­
stances of the classes" [2D]. For example, in Figure 3.8, the link "«pipe»"

42

Master's Thesis -- Huan Wang McMaster- Computing and Software

between two Filter objects simulates a pipe connector. An association class is
"a modeling element that has both association and class properties, which can
be seen as an association that also has class properties or as a class that also
has association properties" [29). For example, in Figure 3.95 , an instance of as­
sociation class Pipe expresses a pipe connector. Association classes have richer
semantics, as compared to associations, e.g., providing attributes, behavioral
descriptions and even substructures, hence is more expressive.

<<pipe>>

Figure 3.8: UML Connector as an Association

Figure 3.9: UML Connector as an Association Class

Documenting Behavior Views

Software architecture derives behaviors of a system from the behaviors of ar­
chitectural elements, i.e., components and the way they interact through con­
nectors. We focus on functional behaviors in this context.

Documenting behaviors of a software architecture is essential since it ex­
hibits the functionality of each component and interactions between compo­
nents. There are many ways to specify behavior of the elements in an archi­
tectural model, ranging from plain English to sophisticated formal methods.

5 Figure 3.8 and Figure 3.9 are adapted from [77].

43

Master's Thesis- Huan Wang McMaster- Computing and Software

Garlan [62] summarizes some formal techniques applicable, such as pre- and
postconditions, process algebras, statecharts, PO Sets (Partially Ordered Set),
rewrite rules, and the like. Behavior diagrams in UML can also be used to doc­
ument behaviors of software architectures. It is worth noticing that in UML
interaction diagrams are derived from the behavior diagrams (Figure 3. 7).

3.3.3 Formal Notations

Formal notations are used to put architectural connectors on a more "solid"
footing, such as FOL, process algebra (CSP), 1r-calculus and category theory.
Many ADLs depend on an underlying semantic model. For example, Wright
ADL, introduced in Section 3.3.1 (page 39), models connector glue and event
trace specifications with CSP. Category Theory is a branch of mathematics
that provides "universal constructions to describe properties of mathematical
structures like sets, groups, graphs etc" [48, 12G]. As discussed in Section 2.3.2
(page 27), COMMUNITY [G2] is an ADL with category theory as its formalism
basis.

Some formalisms describe connectors without support of architectural lan­
guages, for example, Barbosa et al. [25] specify connectors by using co-algebras.
Formal notations and approaches have their place in modeling connectors.
However, the high cost of using formal methods prohibit their application in
industries to a certain degree, except for safety or security critical systems.

3.3.4 Coordination Contract

Figure 1.2 (page 10) has illustrated that architectures are not always described
at a higher level of abstraction. Such a lower level architecture is required be­
cause the high level software architecture falls short in support for software
engineers at the important level of program abstraction. Additionally, in Sec­
tion 3.3.1 (page 40) we learned that, as a representative of existing ADLs,
ArchJava provides support for evolution by treating an architectural descrip­
tion as a conventional program and relying on a special implementation lan­
guage, which is limited.

To bridge the gap between the architectural level and implementation level
of connectors and to direct evolution in a wider spectrum by separating con­
cerns, we are in need of a substantially independent language for connectors
from the programming languages of the components. It turns out that Andrade
and Fiadeiro have introduced the notion of coordination contract as an alterna­
tive to connectors when developing financial systems for Grupo Espirito Santo
in Portugal [1 :3]. Modeled as a first-class abstraction, coordination contracts

44

Master's Thesis-- Huan Wang McMaster- Computing and Software

are able to ensure that global properties will emerge, represent connectors
throughout the entire application life cycle, and seriously enhance component
reusability. This section is a summary of [14, 17, 19, 68, 86] and in Chapter 4
we will introduce coordination contracts in a systematic way.

A coordination contract is a modeling and implementation primitive that
allows "transparent interception" of method calls and, as such, interferes with
the execution of the service in the client [19]. Thus, coordination contracts take
over the function of connectors in software architectures. The evolutionary
operations defined in Section 1.3.4 (page 12), such as adding, removing and
replacing connectors, will be defined via coordination contracts instead without
breaking into the functionality of components.

The construction of coordination contracts consists of a collection of con­
straints and rules describing coordination effects (as the glue of connectors)
that are superposed on the involved component partners, which then enables
evolution of connectors as a means of localizing change.

What is Coordination?

Coordination models and languages are used to provide a specification-level
description of detailed architectures, to enforce separation of components and
connectors [76], where the two dimensions are able to change at a different rate
with less impact on each other. Generally, coordination contracts are used to
implement connector types in Section 3.2.3 (page 34), such as procedure call,
data access and event. However, it is worth mentioning that the notion of
coordination in "coordination contract" is different from that of Mehta et al. 's
classification of connector types, which refers to transfer of control among
components specifically. We claim that coordination contract provides a foun­
dation for a general notion of connector or even higher-order connector.

Coordination in "coordination contract" is based on superposition (or su­
perimposition) in parallel program design [138]. A superposition denotes a
structure preserving transformation on designs through the extension of their
state space and control activity while preserving their properties [52]. The
notion of coordination describes process interaction by abstracting away the
details of computation and focusing on the interactions [21], as well as bridging
the gap between the high-level architecture and detailed architecture so that
interacting and evolving processes are managed.

45

Master's Thesis- Huan Wang McMaster- Computing and Software

What is a Contract?

Like many terms, the concept of contracts is overloaded in the literature and
supports different design intentions. In legal terms, a contract involves agree­
ment, consideration, certainty, order or intention, etc. As opposed to it, con­
tract serves as a functional specification in software engineering society6 and
often stands for Design by Contract ™(DbC), pioneered by Meyer [lOt>], which
is widely acknowledged as a powerful technique for constructing reliable soft­
ware. DbC is used to build the relationship between a class and its clients, us­
ing a formal agreement, and to express each party's rights and obligations [106].
The three key ingredients of DbC are pre-conditions, post-conditions and class
invariants. However, its semantics supports only pre- and postconditions of
methods and invariants of individual classes.

Coordination contracts are different from contracts in DbC because they
are superposed on classes in stead of being operated on a single class. However,
we can still consider coordination contracts such as an "extension" of DbC ['!!)].
One of the principal purposes of coordination contracts is to facilitate evolution
of connectors in program architectures.

3.4 Summary

In this Chapter, we demonstrate the significance of connectors being repre­
sented as first-class architectural citizens. We also explore several taxonomies
of connector types, and study Mehta et al. 's taxonomy in detail. Notations
and techniques for modeling connectors have been discussed, such as Wright
ADL, UniCon, ArchJava. The feasibility of UML as an ADL to modeling soft­
ware architectures with UML is presented. In the end, a new light-weight way
is suggested to support evolving architectural connectors. As a realization of
connectors, coordination contract is a modeling and implementation primitive
that allows transparent interception of method calls and, as such, interferes
with the execution of the service in the client. The evolutionary operations
defined in Section 1.3.4 (page 12), such as adding, removing and replacing
connectors, are defined via coordination contracts.

6Different meanings of contracts also appeared in ['22, IG, 7:)].

46

Chapter 4

Coordination Contract

4.1 Introduction to Coordination Contract

In Section 3.3.4 (page 44) we have presented a general overview of the coordi­
nation contracts. The separation of architectural connectors from components
allows for the explicit representation of object interactions in the form of con­
tracts, communication objects or connectors. Coordinations and coordinated
entities are independent so that they can evolve separately. Coordination
contracts define a declarative modeling language, other than a programming
language. In the following subsections, we will inspect the ability of several
popular techniques to support modeling of architecture based software evolu­
tion, such as Object-Oriented Design (OOD), design patterns, AOP (Aspect­
Oriented Programming) and the association class in UML.

Object-Oriented Design

Before exploring the mechanisms of coordination contracts, we test similar
ideas in 00. As we talked about in Section 1.1.2 (page 5), the development
complexity is focused now on software evolution rather than construction. This
phenomenon has a ripple effect on the methodologies previously adopted for
software construction. Those methods should be re-evaluated for the purpose
of evolution, for example, the most popular one, Object-Oriented Design.

OOD provides only two ways to "use" a class, to inherit from it or to be­
come a client of it [105]. We define new subclasses by reusing the behaviors
of an existing class or we establish client/supplier relations between objects
through feature calls. With the two characteristics, OOD broadly encapsu­
lates data, controls the construction complexity and enhances the reusability

47

Master's Thesis- Huan Wang McMaster- Computing and Software

of software artifacts. For example, a minimal version of BlueJ1 , an Integrated
Development Environment (IDE) for Java applications, only "uses" and "in­
herits" associations are supported.

However, objects are abstracted as "white-boxes", in the sense that any
subtle changes require knowledge of implementation details and will be per­
formed on their internal structure, which is not desirable for evolution. On the
other hand, the clientship practice makes components highly coupled, which
contradicts principles of flexible interactions discussed in Section 1.1.2 (page 5)
and thus incurs the solicitation to separate components and coordinations.
However, most OOPLs have not the corresponding language construction for
connectors, and then interactions are directly implemented in the code for
components.

Mechanisms, such as inheritance and clientship, do not provide connection
as a first-class entity, like contracts, which leads to inheritance and composi­
tion being even more intrusive. As a consequence, OOD does not facilitate
evolution in relation to our concerns.

Design Patterns

The similarities of Design Patterns [58] to architectural styles drive one to con­
sider the possibilities of modifying patterns to support the architecture-level
evolution. To clarify this, we distinguish architecture from design first. Soft­
ware architecture is concerned with architectural elements, their interactions
and related constraints on these elements and interactions [124]. Design is
concerned with "the modularization and detailed interfaces of the design ele­
ments, their algorithms and procedures, and the data types needed to support
the architecture and to satisfy the requirements" [124]. Once instantiated,
component interactions implemented by design patterns require evolution to
be intrusive because they were not initially conceived to be evolvable.

Such patterns do not provide modeling of connection as a first class entity
like contracts do. The behaviors of components are scattered in compound
classes. Therefore, design patterns have more to do with capturing design
construction rather than dealing with the evolution of software. We will learn
later in this Chapter how a micro-architecture based on design patterns is
generated for transforming contracts into a chosen implementation platform.

1http://www.bluej.org/

48

Master's Thesis -- Huan Wang McMaster- Computing and Software

Aspect-Oriented Programming

In addition to the separation of concerns (SoC), AOP [79, 80] aims to model
cross-cutting concerns specifically when composing software artifacts. AOP is
also nominated as a post-object-oriented programming paradigm. However,
the notion of contract is not cross-cutting, as is explained by Balzer et al. [2-!].
Besides this, AOP is operating at a very low abstraction level, which cannot
satisfy our requirements at architectural level. AOP is principally dealing with
modification or evolution at implementation time. We will not benefit from
aspectization during design time if component interactions are implemented
by coordination contracts.

To conclude, the techniques such as OOD, Design Patterns or AOP have no
mechanism to prioritize connectors as first-class entities, so that the behaviors
of interaction between components merge in classes.

The Association Class in UML

From the discussion in Section 3.3.2 (page 41), an association class can be
treated as an association that is also a class and has both association and class
properties [11 G]. Though a coordination rule should be processed as an atomic
transaction which cannot be satisfied by association classes, the facilities that
association classes model class interactions as first-class citizens and the suffi­
cient interior organization are appreciable. In later sections we will show that a
coordination contract is a variation of association classes whose semantics rely
on principles used in software architectures and coordination languages and
reflect changes in the business rules. Coordination contracts externalize the
interactions between participant components (objects) and support evolution
of systems with respect to changes of business requirements in a compositional
way. To achieve this goal, contracts require a rich internal structure with pri­
vate attributes and operations since the components should not be able to
access these features.

4.2 Contract Abstraction Levels

We have claimed in Section 3.3.4 (page 44) that coordination contracts are
operating on a different level of abstraction in contrast to DbC. Beugnard et
al. [28] presents a four-level contracts model as in Figure 4.12

, where each level
corresponds to a class of contracts.

2Figure 4.1 is adapted from [28].

49

Master's Thesis- Huan Wang McMaster- Computing and Software

• Basic contract (or syntactic contract) is required simply to make the
system work. Interface specifications are as contracts between a client of
an interface and a provider of an implementation of the interface [142,
page 43]. Typical examples are Interface Definition Languages (IDLs)
and typed OOPLs.

• Behavioral contract improves the level of confidence in a sequential con­
text; typical examples are DbC applied in the Eiffel language, pre- and
postcondition and OCL.

• Synchronization contract specifies the global behavior of objects in terms
of synchronization between method calls, so that it improves confidence
in distributed or concurrency contexts.

• Quality-of-service contract (non-functional) specifies all behavioral prop­
erties, including even non-functional properties like availability, through­
put, latency and capacity.

Quality Attributes

Protocols

Assertions

Signatures

Figure 4.1: Level of Contracts

By virtue of this model, the proposed coordination contracts belong to level
3 - synchronization contracts. It is true that we will present an approach to
justifying predictable software evolution using pre- and postconditions in the
next Chapter. Concerning this, one may argue that such contracts mainly are
of level 2 as behavioral contracts. We undertake that coordination contracts
are synchronization contracts essentially for three reasons. First of all, co­
ordination contracts are used as a top-level abstraction to specify the global
behaviors of objects, synchronize objects and superpose behaviors upon com­
ponents which reside in a distributed or concurrent environment, to provide

50

Master's Thesis-- Huan Wang McMaster- Computing and Software

more flexibility in terms of connector evolution. Moreover, we take the ad­
vantage of pre- and postcondition as a facility to justify relationships between
contracts for predictable software evolution, where coordination contracts have
their specific syntax and semantics independent of these pre- and postcondi­
tions. However, the level 2 contracts, in the role of behavioral contracts, are
structured in the form of pre- and postconditions. It is also important to
notice that coordination contracts are working in both design modeling and
implementation phases.

Collet et al. [J5] consider that a contract must provide: a specification
formalism; a rule of conformance, to allow substitution; a runtime monitoring
technique, if the contract cannot be enforced before runtime. In the rest of
this Chapter we will present specification languages for coordination contracts
and a runtime environment but will leave the rules of conformance to the next
Chapter.

4.3 The Three-Layer Architecture

In the architecture model adopted when using coordination contracts, to sep­
arate coordination from computation, connectors are modeled explicitly as
first-class entities and evolved by reasoning about coordination contracts be­
tween components so as to reflect changes of business rules. By architecture,
we mean the structure of applications at the program level, which is also called
detailed architectures in Figure 1.2 (page 10). The three-layer architecture [19]
applied on coordination contracts is organized into computation layer, coordi­
nation layer and configuration layer, see Figure 4.23 .

• Computation layer models business entities and encapsulates function­
alities of services performed locally in components. Components should
be as simple as possible, providing only the core functionalities not vul­
nerable to be changed.

• Coordination layer models business rules and consists of contracts coor­
dinating interactions between components so that the global properties
are able to emerge. The purpose of contracts is exactly to provide mech­
anisms for this layer to be modeled and implemented in a compositional
way [14].

• Configuration layer models business context and manages the current
configuration of contracts and components (also called "coordination
context") where the reconfiguration operations and rules for evolution

3Figure 4.2 is adapted from [19].

51

Master's Thesis - Huan Wang McMaster- Computing and Software

are executed. We constrain contracts as connectors to not have a direct
relation with other contracts.

Coordination
Resources

Figure 4.2: A Coordination-based Three-Layer Architecture

4.4 Notations

We claim that coordination contracts are declarative since they regulate what
must hold instead of what should be done to enforce a contract, so that we
are not worried about enforcement or penalty for contract breach. The se­
mantics for contracts is based on COMMUNITY, as described in Section 2.3.2
(page 27) and 3.3.3 (page 44) . Fiadeiro and Andrade [-19] used the notion of
superposition for parallel program design to define the semantics when mul­
tiple contracts manage the same components. For brevity, we will show its
semantics informally while presenting the syntax.

4.4.1 Graphical Notation

UML is used to model the three-layer architecture in Section 4.3 (page 51)
with the aim to describe, represent and analyze systems. Though UML 2.0
is still not fully formal, we will take advantage of the features it provides and
illustrates a coordination contract as a "scroll" by extending a notation for
UML, see Figure 4.3. With this extended notation, we are able to enrich UML
to model architectures with coordination contracts. Sometimes, a coordination
contract is called an association contract [85].

52

J

Master's Thesis -- Huan Wang McMaster- Computing and Software

1

1 obj1: Class1 I
-~----- -----
f-----~~ -----

1 ~ --

obj2: Class2

Contract1

obj3: Class3

Figure 4.3: An Example Architecture with a Coordination Contract

4.4.2 Textual Notation

In textual notations for contracts, we identify what is needed to be coordinated
(i.e., entities, processes and resources) and how these objects are coordinated
(i.e., rules). The language of coordination contracts is originally from the
OBLOG (OBject LOGic) specification language [112]. The language for con­
tracts is ideally independent from the language for objects. In the literature
of coordination contracts, two levels of representation are described: an im­
plementation neutral language, which is abstract, free of technical details and
specifying only business rules, and an implementation specific language, which
is a refinement of the former to include technical details in Java, supported
by CDE4 (Coordination Development Environment), a software environment
for coordination contracts. Ideally, the relationships between these two levels
and the fundamental semantics are shown in Figure 4.4 [5]. If there was a def­
inite formalization of the operational semantics we could have proved that the
translation between the abstract and CDE specification is correct by proving
that the diagram in Figure 4.4 commutes.

4CDE will be introduced in Section 4.6, page 63.

53

Master's Thesis- Huan Wang McMaster- Computing and Software

Coordination Contract
Abstract Specification

Coordination Contract
CDE Specification

/
Operational Semantics

Figure 4.4: The Abstract and CDE Specification of Coordination Contract

The Abstract Language

The abstract version of specification is very straightforward, independent of
specific choices of design languages and behavioral models, where a coordina­
tion rule is shown below:

Table 4.1: The Abstract Language

contract <name>
participants <list of component instances>
constants <local constants>
attributes <local variables>
operations <local methods>
invariant <properties required>
coordination <coordination rules>

end contract

The name of a contract is its unique identity in the coordination layer.
participants are instantiated participant components from the computation
layer with coordination interfaces. These instantiated participant components
exist as UML classes or Java objects, which make assumptions about their be­
haviors interacting with other instances. The state of an object is given by the
set of values of the object's attributes and interfaces changing the attribute val­
ues through setters and getters. Contracts can operate on one or more objects.
A unary contract is allowable on a single object. As we noted when talking
about representing coordination contracts by means of association classes in
UML, a contract may have private attributes, constants, operations and in­
variants. The attributes clause declares variables for an instance contract
and constants can be thought of as special kinds of attributes whose values
do not change. An invariant states the properties required to be true when
executing the contract. Invariants and constants are important for reasoning

54

Master's Thesis- Huan Wang McMaster- Computing and Software

about a contract. The difference between them is that a predicate p is an in­
variant if p is true at all times in the execution, and a predicate p is a constant
if it either always remains true or always remains false.

Under the coordination clause, coordination rules are defined to perform
actions on participant components. An action is a primitive operation whose
execution is like an atomic, uninterrupted transaction guarded by a predicate.
Either all the actions that the rule describes will happen, or none of them
will. Thus, an action is a "step" relation between two sets of values of state
variables. When an action can be executed, we say it is enabled [107]. The
language regulates that coordination rules cannot be nested.

Coordination Rules Specification

Table 4.2: Coordination Rules Specification

coordination rulename:
when <triggers> by keyword "AND" to extend trigger conditions
with <condition> guards
do <set of actions>

A rule is activated by the trigger given in when, and superposes the ser­
vice/reaction/method in the rule body. The triggers can be a conjunction (by
logical operation "AND") of conditions on the state of participants, requests
for a certain service, or messages received by one or more participants, etc. All
these conditions should be satisfied at the same time, or the contract would
be marked inactive and the same trigger in other contracts (if there is any) or
the method call in the original component will be executed. There is the only
place to decide if a rule will be triggered and whether a method invocation
will be intercepted.

Rules are guarded atomic actions, where guard conditions are Boolean
conditions composed of predicates. If the guard conditions are omitted, their
effects will be evaluated to be true. The guard in the with clause uses local
variables or state conditions of components, for example, (x >= y) 1\ (obj ==
o). When the occurrence of given triggers is detected, the firing of an action
is possible if its guard holds true. For example, the allow Withdraw rule in
Figure 4.6 in the Ownership contract may only fire when a.balance() >= n is
true5 . If any condition under the with clause is not satisfied, no actions in
the rule will be executed, and instead, we will see it later that an exception
will be thrown as a result.

5We will learn in Chapter 5 that trigger is not the only decisive condition.

55

Master's Thesis- Huan Wang McMaster- Computing and Software

A more specific notation for contracts supported by CDE [G] is as follows;
it is dependent on the Java language [2].

The Language Supported by CDE

In practice, we desire to carry through the spirit of "separation of concerns"
so that we model components and connectors by different abstraction levels of
languages, with the former in the Java programming language and the latter
in the contract language supported by CDE. The contract language details will
vary depending upon the implementation techniques and standards that are
selected. For the language supported by the latest version of CD E, v 1.1.1, coor­
dination contracts are compiled into Java [67, G8]. However, we have to admit
that contracts will lose generality when interpreted into a specific language.
Fortunately, the other side of a coin is that we thus manage to integrate a
rich architectural description into a mainstream programming language. Such
a representation can be used by technical people for implementing contracts.
The current version of the contract language CDE supports is a combination
of Java code and fragments from an abstract specification of contracts.

participants are existing Java classes as components and implemented by
Java source code documents, defined in the form of "participantName: Class;"
or "Class participantName;". attributes are declared as in Java syntax.
These attributes are private to the contract, therefore, no modifiers such as
public, private are required. For example, we declare "double balance;"
instead of "private double balance;". CDE will automatically generate two
public methods for each attribute: a setter to set its value and a getter to
get the current value. For instance, the setter for "double balance;" is "void
setBalance(double _balance){balance =_balance;}", and the getter is "double
getBalance(){ return balance;}". As to the underscore notation before the
variable name, as in "_balance", we will explain its role later in Section 4.5.1
(page 60). operations are local to the contract and conform to Java language
conventions as well.

In the coordination rule section, the CDE specification has refined the ab­
stract version and provided two kinds of coordination rules: the TriggerRule
for intercepting method calls on participants, with the form of "when *- > >
participanti.operation(arguments)", and the StateConditionRule for rules re­
acting to state conditions, with the form of "when ? (condition in Java) on
participant1, participant2 ... ". State condition rules are declared initially by
a question mark (?) with the condition statements specified in Java. Only
statements that do not change the state of the participants may be used to
define conditions in state rules; they are sometimes called query operations.

In principle, all public methods provided by the participants can be coor-

56

Master's Thesis -- Huan Wang McMaster- Computing and Software

Table 4.3: The Language Supported by CDE

contract contractN arne
participants //contract participants

participant!: Class; /for declared as "Class participantName"
participant2: Class; //e.g., obj: Object;

attributes //private attributes of the contract
JavaType name 1; //e.g., int limit;
JavaType name 2;

operations //private operations of the contract
//operation body in Java

coordination //rules
TriggerRuleN a me:

when*- >> participanti.operation(arguments)
&& (trigger conditions in Java)

with (JavaGuardConditions)
failure (Java guard failure actions throw

an exception or return a value)
before {actions in Java to be executed before

participanti.operation(arguments) } ;
do {actions in Java to be executed replacing

participanti.operation(arguments) } ;
after {actions in Java to be executed after

participanti.operation(arguments) } ;
StateConditionRuleName:

when? (condition in Java) on participant!, participant2 ...
do {operations in Java};

end contract

dinated, except for the constructors and the Java operations from Java API
(e.g., toStringO). When the trigger in "when*->> participantl.operation
(arguments) && (trigger conditions in Java)" is a call like*- >>obj .x(a)
(*- >> means any call to that operation), it denotes the call of method x
on object obj with the sequence of arguments a. The contract is listening to
the actual interaction x, and will intercept the call and superpose the forms
of functional behaviors it prescribes.

If any condition under the with clause is false, none of the actions in the
rule is executed. Accordingly, exceptions will be thrown and failures will be
reported to the object that called the operation. The notion of exception is
represented here as the failure statement dealing with errors not able to be

57

Master's Thesis- Huan Wang McMaster- Computing and Software

processed by contracts. The failure clause should be ended with either a
throw Exception or a return statement.

In Figure 4.56 , before actions are performed before obj .x(a) is executed.
after actions are carried out after the execution on obj .x(a). The do action
is carried out to replace the original method body of obj . x (a) (if the trigger
occurs and the guard is true), or the original operation will execute if there
is no do block (namely, do is omitted as a shorthand). The semantics of
contracts regulate that only one do block is executed at the same time to
prevent the conflict of two alternative valid actions for the same trigger. If rulel
in Contractl and rule2 in Contract2 are triggered for the same call obj .x(a),
all guards will be evaluated first. If any guard is false, the corresponding
failure part is executed and actions in that rule abort. If all guards are
true, then all before actions will be executed, interleaving them without
conflict. The do action, however, will be assigned to the first coming contract
rule by the time stamp when created. When the do actions finish, all after
actions will be executed .

... \
: I :
~ ~

I

before before t-
I
I
I

+ do t-

X

Triggerlon
0 bj.x(a1 I+ after after .

I

i .. : ... J
Contract1: rule1 Contract2: rule2

Figure 4.5: Multiple Coordination Contracts

Lano and Fiadeiro [85] present a more general version of specification with
extends to build a composite contract. The semantics of the contract in­
heritance mechanism and nested contracts were not yet clear at the time of
developing this thesis. Such an extended contract is informally called a "sub­
class contract", where rules and features will be inherited and overridden. In

6Figure 4.5 is adapted from [19].

58

Master's Thesis - Huan Wang McMaster- Computing and Software

Figure 4.67 the new contract VIPownership, which "inherits" from Ownership,
has a weaker with guard, i.e., a.balance >= n =} a.balance+limit >= n (sup­
pose limit >= 0), and they both are triggered by a call to c.withdraw(n, a).

In a coordination contract, we are able to identify the similar three kinds of
expressions that DbC delivers: preconditions, postconditions and invariants.
In the next Chapter, we will make efforts to explain the meaning of extends
and design a method to preserve the functionality of the original operation in
the do action by means of a pre- and postcondition specification in order to
ensure predictable evolution.

{when*->> c.wlthdraw(n, a
with a. balance >= n
do a.debit(n) } - - _

{when*->> c.wlthdraw(n, a
with a. balance+ limit>= n
do a.deblt(n)} - __

VIP
OWnership

limit: lnt

allowVIP
lthdraw()

Figure 4.6: A Proposed Contract Inheritance Mechanism

4.5 Patterns for Coordination Contract

Fiadeiro and Lopes [51] proposed a categorical pattern for coordination and
provided a clear separation between components and contracts in a formal
way. To implement the categorical pattern where the contract is language­
independent, [12, 20, G8] came up with a micro-architecture (design pattern)
that can be used to implement contracts in standards for commercial compo­
nent models like CORBA (Common Object Request Broker Architecture), Jav­
aBean, DCOM (Distributed Component Object Model) and .NET. The generic
micro-architectures managed, with well-known design patterns [58] (such as
Proxy and Chain of Responsibility), to transform contracts into working en­
vironments that the solution required. However, the mathematical mapping

7Figure 4.6 is adapted from [8G].

59

Master's Thesis- Huan Wang McMaster- Computing and Software

between categorical pattern and micro-architecture is not available due to the
lack of support formalisms in those business component standards and chosen
platforms.

The micro-architecture8 consists of two parts: mechanisms for components
in the computation layer, and mechanisms for the contracts in the coordination
layer. Figure 4. 79 shows one feasible solution.

Coordination Pattern
I
I
I

Chain of responsibility

~I
ISubjectPartner

<<abstract>>

't
I I

Ct_1_SubjectConnector Ct_n_SubjectConnector

1 1

1 1

Contract_1 Contract_n

(l (l

Component Pattern

Subjectlnterface

<<abstract>>

I I
ISubjectProxy - SubjectToProxyAdapter

<<abstract>> operation()

~
_operation()

~ :

Subject

_operation()

request for operation()

--1> extends

............. (> Implements

Figure 4.7: A Design Pattern for Coordination Contracts

4.5.1 The Component Part

The classes in the component part are organized by using the Proxy pattern,
which provides a surrogate or placeholder for another object to control access
to it.

8There may be alternatives for implementing coordination contracts other than this one.
9Figure 4.7 is adapted from [(i8].

60

Master's Thesis- Huan Wang McMaster- Computing and Software

• Subjectlnterface is an abstract class (type) where the public operations
under coordination are predescribed. According to the "implements" re­
lationship of classes in Figure 4. 7, the interface consists of the common
interface of services in SubjectToProxyAdapter and ISubjectProxy. Sub­
jectToProxyAdapter and ISubjectProxy must implement, or realize, the
behavior specified by Subjectlnterface.

• Subject is a concrete class with implementation subjected to coordina­
tion. The class extends SubjectToProxyAdapter. Before executing the
object, Subject intercepts the service request on the object, and endows
the contract with rights to judge the validity of the request and rules to
perform, so as to realize the superposition of the contract.

• SubjectToProxyAdapter is a concrete class which enables the proxy pat­
tern for the original methods in Subject, and employs proxy at run time,
for delegating requests to ISubjectPartner, which links the Subject to
its relevant contracts. We will show later that if no contract (proxy) is
defined, it forwards requests directly to _operation() in Subject.

• ISubjectProxy is an abstract class that defines the common interfaces
of Subject and ISubjectParlner. It represents an object with the capa­
bility of implementing the Subject interface. The interface is inherited
from Subjectlnterface to guarantee that all these classes offer the same
interface as Subject, with which real subject clients have to interact.

4.5.2 The Coordination Part

• ISubjectParlner contains the connection between Subject as the real ob­
ject and the contracts. JSubjectPartner delegates the received requests
to CLi_SubjectConnector using the Chain-of-Responsibility pattern.

• CLi_SubjectConnector represents the particular coordination for those
contracts where Subject is a participant. For each contract superposed,
there is exactly one Ct_i_SubjectConnector.

• Contract-i is a coordination instance that will be superimposed on Sub­
ject as the real object.

If there are no contracts coordinating a real object, the micro-architecture
can be simplified. For the component pattern, there is a call from SubjectTo­
ProxyAdapter to Subject, which is shown in Figure 4.9 as a call from Account­
ToProxyAdapter to Account.

61

Master's Thesis- Huan Wang McMaster- Computing and Software

Accou ntlnterface

<<abstract>>

Coordination Pattern
I I

delegate the request IAccountProxy AccountToProxyAdapter
link t•~e subject to
the contracts <<abs~tract» withdraw{)

'---""'7r---'-- _withdraw() . ..,..... ... /'., I
Chain of responsibility

· request
IAccountPartner Account

<<abstract>> 1---------T---l _withdraw() -
,___'t~

OWnersh I pContract_
AccountConnector

OWnership

VIPOwnershlpContract_
AccountConnector

1 I 1

VIPOwnershlp

request for withdraw()

Account Pattern

forward the
request to proxy

Figure 4.8: A Design Pattern for Account and Contracts in Figure 4.6

Coordination Pattern
AccountToProxyAdapter .. ,~w withdraw()

_withdraw()
request

1 forward

Chain of responsibility / request
the
to proxy

OWnershlpContract_ Account

I AccountConnector
_withdraw()

~ VIPOwnershlpContract_ I I

AccountConnector I
I request for wit
I

hdraw()

I
I

I Ownership I
I Account Patt

(l
I
I

ern
I

VIPOwnershlp

(l

Figure 4.9: Design Pattern for Account without Contracts

62

Master's Thesis -- Huan Wang McMaster- Computing and Software

The micro-architecture gives a blueprint for OOPLs to achieve coordination
contracts. In what follows, we will present a development tool built using this
micro-architecture.

4.6 Coordination Development Tool

Coordination contracts come along with a supporting toolset - CDE [69],
which has been developed by ATX Software [6] with JDK 1.2 (as of CDE
vl.l.l) under Windows operating systems. The tool enables us to specify,
analyze, evolve systems and provides us the following functionalities:

• Registration: before being declared as contract participants, components
under coordination should already exist as Java classes.

• Editing: defines a contract for components using the CDE specific lan­
guage illustrated in Section 4.4.2 (page 53).

• Deployment: with the micro-architecture introduced in Section 4.5 (page
59), CDE automatically generates a Java implementation for a coordi­
nation contract from contract specifications.

• Animation: assists in testing/prototyping of contracts for both the devel­
opment environment and runtime management purposes. The animator
can dynamically perform operations such as create, destroy and execute
objects and contract instances, monitor objects' states and operations
in a sequence diagram, hence simulating applications. A sequence dia­
gram [29, page 95] is an interaction diagram that emphasizes the time
ordering of messages between objects involved in the interaction. A se­
quence diagram shows a set of roles and the messages sent and received
by the instances playing the roles, which illustrates the behavior of the
system.

The project source files are grouped in src where Java classes under coor­
dination are located in the components subdirectory. The Java files generated
by CDE to implement the micro-architecture are in the generation directory.
The compiled class bytecode files are in classes.

With CDE, Java classes can be automatically generated to implement con­
tracts and to adapt component classes in order to work with contracts. At run
time, the system can be reconfigured by activating and deactivating contracts
which enables run-time evolution. The CDE compiler will not check semantics
of contracts, but checks if a contract instance conforms to the CDE language
with respect to Java syntax.

63

Master's Thesis- Huan Wang McMaster- Computing and Software

In Section 4.4.1 (page 52) we have shown how UML extends the notion of
coordination contract as a special kind of association class with enriched its
semantics. Thus, any development of such an application would be based on
the MDA (Model-Driven Architecture) approach, where the PIM (Platform­
Independent Model) contains business rules declared in terms of contract spec­
ifications, PIM to PSM (Platform-Specific Model) transformation is accom­
plished by using Java language with the support for CDE.

4. 7 Applications of Coordination Contracts

Coordination contracts have enlightened many related research areas. Silva
et al. 's approach extends the concept of coordination contracts with a fault­
tolerant scheme, which integrates C2 architectural style (Section 2.2.2, page 19)
and the coordination layer (Section 4.3, page 51) where connectors are repre­
sented as contracts [~)8]. Bruel [:30] puts forward a service-oriented implemen­
tation of component associations where the layered design regarding coordi­
nation contracts is purposed. Gahide et al. [57] promote their early work on
component reuse by merging AOP with CBSD and the coordination contract
approach in an architecture model, where coordination is modeled as a trans­
verse functional aspect. Moreover, coordination contracts have demonstrated
their surprisingly expressive power in software applications for many indus­
try sectors, such as telecommunications [82], financial services [Hi, 83], trans­
ports [109], energy supplies [G], web-services technology [15], service-oriented
development [18] etc.

4.8 Summary

First of all, we have compared coordination contracts with some techniques
that may support modeling of architecture based software evolution, such as
Object-Oriented Design, design patterns, AOP and the association class in
UML. We characterize coordination contracts as synchronization contracts ac­
cording to a category of contract abstraction levels. A three-layer architecture
applied on coordination contracts is proposed with the computation layer, co­
ordination layer and configuration layer. We introduce graphical and textual
notations of contracts, where a scroll notation is created to extend UML, an
abstract language and a CDE specific language to implement contracts. To
develop contracts based applications, a development tool built using a micro­
architecture is used to specify, analyze, evolve systems and provides us the
functionalities like registration, editing, deployment and animator. In the end,
several applications of coordination contracts are presented.

64

Chapter 5

Our Approach to
Architecture-Based Evolution

5.1 The Multi-Dimensional Evolution Approach

Section 4.3 describes support to facilitate software evolution using a three­
layer architecture, which includes a computation layer, a coordination layer
and a configuration layer. In addition, the approach supports the divide-and­
conquer law in Software Engineering by dealing with concerns separately. As
a result, we view an architecture using a multiple dimensional perspective1 in
order to reduce the complexity of evolution, where "dimension" is formalized
into these three supporting layers thanks to coordination contracts.

Although ideally, the principles of software evolution should be independent
from implementation details at the architectural level, software development
strategies and paradigms of programming languages2 [56] have a substantial
impact on the target software system under evolution. In this thesis, we are
particularly interested in the evolution of Object-Oriented software systems.

For the purpose of focusing on connectors in this thesis, components and
connectors may exist at different levels of abstraction. Stating this more
clearly, components in the computational dimension are 00 classes (in UML or
Java), and connectors, reflecting business rules in the coordination dimension,
are defined at a relatively higher level of abstraction, in contrast to compo­
nents. Subsequently, we will take advantage of the mechanism of multiple
dimensions, and in such a context we are able to discipline our approach to
software evolution at the architectural level.

1 Mikkonen [107] proposed a two-dimension architecture with components and their con­
nections similar in spirit to our treatment.

2 Paradigm refers to a category of entities that share a common characteristic.

65

Master's Thesis- Huan Wang McMaster- Computing and Software

5.1.1 The Component Dimension

The thesis's main concern is the fundamental support for the evolution of
connectors in terms of coordination contracts. Evolution of components is not
the issue of most concern, but as an indispensable part of a system, we will
cover it briefly in this section. In the architectures that we are working on, an
architectural component is similar to an 00 class (probably a class in UML
or Java). The permissible evolution operations on components are adding,
modifying, and removing classes or their instances.

The components (specifications or instances) in the system that need to
be evolved may change in some way as part of contracts, which is to say, the
evolved system would result in introducing new components (adding compo­
nents) to the old system that make the new contracts work. For example, a
monitor component (class) may be included in a contract to assist in logging
activities of classes being coordinated [5]. However, we will not give support
in this thesis for how these components might evolve. The assumption is made
so that this thesis is able to exclusively focus on how evolution of connectors
will be managed.

The approach that we have discussed in Section 2.2 (page 18) seems very
constructive for directing the evolution of components using type theory, when
studying the evolution of detailed architectures3 . In addition, we are working
on the architecture of programs with the intention to bridge the gap between
specification and implementation of architectural connectors. The state-of-art
of coordination contracts supports Java implementations, so that subtyping in
Java with pre- and postcondition specifications for Java methods is sufficient.

5.1.2 The Coordination Dimension

Considering the requirement for adapting changes in Section 1.1.2 (page 5)
and various modeling techniques in Chapter 2, we decided to use coordination
contracts in place of architectural connectors in Chapter 3, and the features
of coordination contracts have been presented in Chapter 4. Coordination
contracts conduct affairs and interactions between a chosen set of partners,
defining the interactions superposed transparently on partners' behaviors [:2(i].
In Section 1.3 (page 9), we have reasoned that our approach to evolution is
still at specification time prior to executing code, since the architecture is still
under development, at least for the contract/ connector dimension in the co­
ordination layer, even if the rest of the system may be partially implemented.

3We have clarified the evolution time and the level of abstraction that we are studying
in Section 1.3, page 9.

66

Master's Thesis- Huan Wang McMaster- Computing and Software

Just as we are able to evolve components via certain operations, the evolu­
tion of connectors depends on well-defined operations like adding, removing or
substituting connectors.

We conclude that our approach to evolution is based on reconfiguration of
architectures, which is achieved through the addition, deletion, substitution of
components and/or coordination contracts.

5.2 Predictable Evolution

5.2.1 Permissible Changes

It is difficult to predict which behavior will emerge when evolving a system
in an arbitrary way; probably, "unexpected" or "undesired" behaviors would
mess up the system after composition or deletion. We thus desire a simple and
safe approach to evolving architectures. Contracts as connectors are instant
plug-n-play modules while preserving the system behaviors in a preferred de­
gree during evolution (see Section 5.5, page 78). For this reason, special care
is needed to rule out unexpected results by regulating the kinds of possible
extensions of the original system.

We have been examining contracts isolated in an individual system in Chap­
ter 4 and the first few sections in this chapter so far. When considering whether
an evolved system (SYS' in Figure 5.1) has predictable properties after per­
forming permissible evolution operations on contracts, we have to inspect the
behaviors of the original system (SY S in Figure 5.1) and even the change
histories.

I SYSI I---~·1 SYS' I
Old System SYS New System SYS'

Figure 5.1: An Old System SYS and an Evolved System SYS'

For a coordination rule defined in a contract4 , the atomic execution process
of which can be represented as a transition system, where nodes are states,
arrows are transitions. Inside the frame in Figure 5.2, there is a transition sys­
tem composed of 4 states and 3 transitions as a sequence of actions that occurs

4For readers who are not familiar with the specification language of contracts, referring
to Section 4.4.2 (page 53) is highly encouraged.

67

Master's Thesis- Huan Wang McMaster- Computing and Software

in executing the contract. By "atomic", we mean if any state or transition can­
not be reached as prescribed, execution of the entire transition system will be
aborted. As far as the contracts are concerned, transition systems are relevant
only when we compute the relation between inputs and outputs. Apparently,
we intend to describe static behaviors [129] of contracts (or called input-output
behaviors in the context), which means behavioral properties of a system at
specific "snapshots", especially before and after the system's execution.

Admittedly, static behaviors are not expressive enough to represent how the
internal states are reached. Accordingly, dynamic behaviors [129] of contracts
complement static behaviors with a more detailed view of how the computa­
tion proceeds in the internal states via transitions during execution. Desirable
state-based specification techniques that may be used to model dynamic be­
haviors are FSM (Finite State Machine), temporal logic [7], etc.

However, at this stage, we are not worried about the intermediate states
and the associated transitions yet. In Section 4.4 (page 52), we claim that the
language for coordination contracts is declarative because declarative specifi­
cations generally do not give details of intermediate steps, whereas operational
specifications describe a series of steps that a functionality performs.

Figure 5.2 shows the observable behavior as a direct transformation from
the input states (i.e., the states in which the rule is invoked) to the output
states (i.e., the states resulting from the execution of the rule), viz., the dashed
line T{ from 8 1 to S4 . We are interested in the input and the overall effect of
the contract that are being preserved in evolution. In Section 5.4 (page 74)
we will demonstrate that pre- and postconditions can be used to characterize
the behavior of contracts.

Consequently, our approach is to compare the observable input-output
functional behavior of an old contract to that of a new contract, and authorize
changes only if the behaviors are "predictable". To achieve this, we will base
our work on two fundamental techniques, which are pre- and postconditions
formally capturing observable behaviors and comparing those conditions via
logical proof

Figure 5.3 illustrates the arrow appearing in Figure 5.1 by showing the
possible evolution operations performed on contracts. For example, a contract
C1 in the old system SY S has been removed in the new system SY S'. C2

is added in SY S'. Though its name is kept, the functionality of C3 has been
changed. C4 stays unchanged both syntactically and semantically.

Generally speaking, we anticipate an incremental and predictive evolution
so that we do not allow changes in a subtractive way, for example, removing
a part of or the entire contract, such as C1 in Figure 5.3, as this is less pre­
dictable and error-prone. However, we will include one possibility, namely that

68

Master's Thesis -- Huan Wang McMaster- Computing and Software

T' 1

Input

Observable Behavior

output

Figure 5.2: Executing a Coordination Contract as a Transition System

c1 removed

added c2
modified

c3 c3

c4 unchanged
c4

\.

Old System SYS New System SYS'

Figure 5.3: Possible Changes in an Evolved System against the Old System

one or more of the participants required by the contract is absent from the
system for some reason. Once having detected the absence of participant(s),

69

Master's Thesis- Huan Wang McMaster- Computing and Software

removing contract(s) involving them seems reasonable, though it might not be
predictable for the whole system.

5.2.2 Change Histories

Are we able to compare two arbitrary systems in terms of evolution? Certainly,
we do not desire to compare any two systems. It is also a rare case that we
evolve a system in the absence of prior knowledge of it. So first of all, we will
characterize change histories in a way that enables control if system evolution
in a predictable direction. In addition, how different are these versions allowed
to be in terms of contracts? In the rest of this section, we will answer the first
question and leave the second one to the following sections.

Basically, we will start to compare two consecutive evolving systems. For
example, we have 3 systems including the original system, SY S, and two
evolving systems, SYS1 and SYS2 . If SYS has no contracts yet, we assume
contracts to pass on exactly the original method call, while preserving the
behaviors of the original method calls without introducing any new features.
How are these systems related to each other?

Case 1: SYS, SYS1 and SYS2 in Figure 5.4 are systems evolving "sequen­
tially" from each other. If the evolution processes E1 and E2 are predictable
from SY S and SY S 1 , respectively, we are able to combine these two cumu­
lative changes into Figure 5.5 and make an evolution E~ from SY S to SY S2

directly.

SYS E, ·I svs, E, ·I svs,

Figure 5.4: System Evolution- Case 1

Figure 5.5: System Evolution - Case 1'

Case 2: SYS1 and SYS2 in Figure 5.6 are evolving "individually" based on
SY S. Suppose the evolution processes E 1 and E 2 are predictable from SY S;
we may not be able to fully justify the relationship between SYS1 and SYS2 ,

though they are each predictable from SY S, respectively. Probably, there is
no direct or obvious relationship between SYS1 and SYS2•

70

Master's Thesis -- Huan Wang McMaster- Computing and Software

SYS

Figure 5.6: System Evolution- Case 2

Case 3: SYS1 and SYS2 are systems evolved from SYS individually, SYS3

can be achieved either from evolution on SYS1 or SYS2 in Figure 5.7. If the
evolution processes E 1 , E2 , E1a, E23 are predictable from SYS, SYS1 and
SYS2 , respectively, we say SYS3 is jointly predictable by using both paths
from E1 , E13 and E2 , E23 . By imitating the example in Figure 5.5, we combine
the changes E1 and E 13 into E3 , E2 and E23 into E~ in Figure 5.8.

SYS SYS3

Figure 5. 7: System Evolution - Case 3

SYS :I
Figure 5.8: System Evolution - Case 3'

Until now, we have shown three different scenarios of change histories that
systems may have. The second question, "how different these versions are
allowed to be in terms of contracts", is abstractly illustrated as arrows E1 , E2 ,

etc., in above figures. To illuminate it, some form of specification is required to

71

Master's Thesis- Huan Wang McMaster- Computing and Software

capture the specific evolution constraints between contracts in the two different
versions, demanding the preservation of specific properties, such as behaviors.

5.3 Inspirations from Related Work

5.3.1 Subtyping

We have introduced the concept of subtype in Section 2.2.1 (page 18) when
discussing the approach to modeling component evolution. The subtyping
relationship is represented asS<: T (<: is used to mean "is a subtype of").

Object-Oriented programming languages like Java have set up a universe
of types; all types are related in some way in a type hierarchy. Inferior types
in the hierarchy are ideally compatible with more general superior types in
the hierarchy. Types are generally used to give information on the syntax of
methods or components. Type checkers are created to guarantee no type errors
occur when subtype objects replace supertype objects in a piece of executable
program. The role of coordination contracts is similar to types, in the sense
that they are able to specify properties and behaviors.

5.3.2 Pre- and Postconditions

Pre- and postconditions, proposed by Floyd [5t>] and further refined by Hoare
[7G] and Dijkstra [41], have contributed much to the art of program devel­
opment. The Hoare triple [75], named after C.A.R. Hoare, is denoted as
{P}S{Q}, where Pis a precondition, Sa program and Q a postcondition,
P and Q are assertions. Note that the assertions are Boolean expressions
in FOL other than the assertions appearing in [2:3] when making a contract
between two agents working on the same state independently of each other.
Precondition P specifies the initial values of variables in the state space of the
program before the execution of S, and the postcondition Q specifies the final
values and/or their relations with the initial values. Consequently, {P}S{Q}
may be read as "if the assertion P is true before execution of S, S will termi­
nate in a state where the assertion Q is true" .5 Duan [4:3] has compared these
notions of pre- and postconditions and some relevant work.

A formal specification is "the expression in some formal language and at
some level of abstraction, of a collection of properties some system should sat­
isfy" [145]. Specification technique based on pre- and postconditions has been

5Total correctness is assumed here, by which we mean a particular execution of a contract
must terminate, given an event or a condition. But not all contracts should be terminating.

72

Master's Thesis-- Huan Wang McMaster- Computing and Software

proven to offer a useful modeling paradigm to documenting contracts up to
the behavioral level6

. We will show later that coordination contracts, which
belong to synchronization contracts, are unexceptional in this regard, so that
pre- and postconditions can be effectively used to represent the functionality
of coordination contracts. Unfortunately, the formal semantics of coordina­
tion contracts and their relation with program logic cannot be easily inferred
without involving the soundness and the internal structure of contracts, and
consequently is beyond the scope of this thesis.

5.3.3 Behavioral Subtyping

A behavioral subtyping specification includes both syntactic and semantic as­
pects in contrast to that of a subtyping relation. Behavioral subtyping is used
to guarantee that no surprising or unexpected behavior occurs when subtype
objects replace supertype objects.

The Liskov Substitution Principle (LSP) [91, 92] is presented as one of the
cornerstones for reasoning about behavioral subtyping and substitutability. In
LSP, objects of a subtype can only match or if they:

• weaken the preconditions of the supertype, not strengthen them (as con­
travariance).

• strengthen the postconditions of the supertype, not weaken them (as
covariance).

• strengthen the invariants of the supertype, not weaken them.

The LSP is surprisingly similar in spirit to the Assertion Redeclaration Rule
in Design by Contract [lOG, page 573], which defines "a routine redeclaration
may only replace the original precondition by one equal or weaker, and the
original postcondition by one equal or stronger". Consequently, we will try to
deal with relationships between coordination contracts by means of pre- and
postcondition specification.

6 Different types of contracts are discussed in Section 4.2, page 49.

73

Master's Thesis- Huan Wang McMaster- Computing and Software

5.4 Specification Level Representation of Co­
ordination Contracts

5.4.1 Contract Specification Revisited

In Section 4.4.2 (page 53), we have introduced two specification languages for
coordination contracts at distinct abstraction levels. The principal differences
are explicit constants and invariants in the abstract specifications, and Java
specific syntax in CDE specifications. Considering the importance of con­
stants and invariants for specifications, we will include them in order to reason
about the relations between contracts. The language we adopt is a mixture of
abstract and CDE specifications.

A contract may have two kinds of rules. The trigger rule may be invoked
by method calls, while the state condition rule may be invoked by a condition
on participant objects. The guard condition imposes additional limits on the
trigger. The actions describe the behavior defined by the rule in terms of extra
behaviors to be executed before or after action (in the before or after block),
or behaviors to replace the original method call (in the do block). If the guard
is not true, the failure clause will throw an exception or return a value.

Table 5.1: Contract Specification Revisited

coordination //rules
Trigger RuleN a me:

when*->> participantl.operation(arguments)
&& (trigger conditions in Java)

with (J avaGuardConditions)
failure (Java guard failure

actions throw an exception or return a value)
before { before actions in Java };
do { replace actions in Java } ;
after {after actions in Java};

State ConditionRuleN a me:
when ? (condition in Java) on participant!, participant2 ...
do {operations in Java};

Pre- and postconditions of coordination contracts are used to specify the
observable behaviors (see also Figure 5.2, page 69) in terms of the input trigger
and/or guard condition and the effect of output. Our approach is to compare
the observed behaviors of an old contract to the observed behaviors of a new
contract, and to permit the changes only if the behavior ensures predictability.

Contracts are specified by individual elements composed in the contract

74

Master's Thesis - Huan Wang McMaster- Computing and Software

specification language (Section 4.4.2, page 53). Pre- and postcondition of con­
tracts in the old and new system may or may not include changes of each
element. For example, though probably not being included in pre- and post­
conditions, intuitively, syntactic alterations such as renaming contracts or rules
are claimable by matching their signatures 7 . The new contract may have the
same set or more constants, attributes and operations than the old contract.
According to Section 5.1.1 (page 66), participant components may be intro­
duced in a new contract. Every contract may have an arbitrary number of
invariants. Following the treatment of LSP in Section 5.3.3 (page 73), invari­
ants private to the new contract maintain or strengthen invariants in the old
contract.

From the specification language and the discussion above, an obvious fact is
that the pre- and postconditions are not part of the contract working code. To
reason about the prediction of software evolution, we will show in the following
subsections how pre- and postconditions of methods, pre- and postconditions
of coordination rules, pre- and postconditions of coordination contracts are
defined.

5.4.2 Pre- and Postconditions of the Method Being Called

The pre- and postconditions of the individual method being called are defined
as the pre- and postcondition specification of the corresponding method sub­
jected to coordination in the UML or Java class. We have defined such pre­
and postconditions in Section 5.3.2 (page 72).

5.4.3 Preconditions of Coordination Rules

Considering the two kinds of rules supported by coordination contracts, we
will define the precondition for each case respectively. The precondition of a
coordination rule must be satisfied, otherwise the rule will not be invoked.

• If a trigger is a request for a method call, the precondition of a rule in
a contract is the precondition of the original method being called and
additional conditions in the when clause, and extra conditions in the with
clause, i.e.' preop 1\ trigger call 1\ withcall·

• If a trigger is a request for a method call, and what a contract does when
executing a rule is pass on the original method call without imposing
extra behaviors, then it is evident that the effect of when and with is

7Signature matching is roughly defined in Section 5.5, page 78.

75

Master's Thesis - Huan Wang McMaster- Computing and Software

evaluated to be true, pre0PI\triggercalll\withcall pre0PI\truel\true -
preop· The precondition of the coordination rule is thus the precondition
of the original method.

• If a trigger is a state condition on participant components, the precon­
dition of a rule in a contract is exactly the condition in this rule, which
is composed of conditions in the when clause, i.e., triggerstate·

5.4.4 Postconditions of Coordination Rules

Following the methodology of the above subsection, we will define the post­
condition of rules for each case separately. Any violation of postcondition
established by coordination rules will undo the entire execution.

• If a trigger is a request for a method call, the postcondition of the rule in
a contract is a joint effect of the rule in a contract (before-do-after call).
We define "joint effect" as the effect of do (if there is any) and the effect
of before (if there is any) and the effect of after (if there is any). In
a word, the effect of before-do-after block is an accumulated effect
of these sequential activities. If before, do and after are empty, the
postcondition of the rule is post0 P' shown as follows.

• If a trigger is a request for a method call, and what a contract does when
executing a rule is pass on the original method call without imposing
extra behaviors, then it is evident that the effect of before-do-after is
evaluated to be that of the original method, so that the postcondition of
the coordination rule is the postcondition of the original method (post0 p).

• If a trigger is a request for a method call, and the guard for a rule is not
satisfied, the rule will not be executed regardless of which condition it
is triggered on, so that the postcondition of the rule will be the effect of
exceptions in the failure clause (failurecall).

• If a trigger is a query on state conditions of participant components, the
postcondition of the rule in a contract is the effect of do block (do state).
Since there is no with clause guarding state condition rules, so that no
failure is defined in the rule body.

5.4.5 Pre- and postcondition of Coordination Contracts

Therefore, the pre- and postcondition of contracts is a combination of the pre­
and postcondition of each individual rule.

76

Master's Thesis -- Huan Wang McMaster- Computing and Software

• If a trigger is a request for a method call,

- The precondition of a contract may include two parts. For each
rule, the fixed part is the corresponding precondition of the original
method (pre0 p). The changing part consists of additional conditions
in the when clause (triggercall), and extra conditions in the with
clause (withcall)·

- The postcondition of a contract also has three exclusive possibili­
ties. One is the corresponding postcondition of the original method
(postop) if a call to which is eventually made. The other is the joint
effect in before-do-after block (before-do-after call) if the block is
executed in place of the original call. Another is the effect of ex­
ceptions declared in failure clause (failurecall) if the guard fails.

• If a trigger is a state condition on participant components,

- The precondition of a contract is subjected to change, which is the
condition in this rule (triggerstate)·

- The postcondition of a contract is the effect in do block (dostate)·

In a contract, we may define different pre- and postconditions for the same
trigger because of different when and/or with conditions, as well as different
do blocks.

The pre- and postcondition relation of a contract may be coarsely repre­
sented as ((prerulel ::::} postrulel) I\ (prerule2 ::::} postrule2) I\ ... I\ (prerulen ::::}
postrulen)), where prerulei can be either (preopi I\ trigger calli I\ withcalli) or
triggerstatei depending on the type of trigger, and postrulei is one of post0 Pi'
before-do-after calli, f ailurecalli if the trigger is a method call, or dOstatei if
the trigger is a query on states. If a rule has both postop and failurecal/l
or before-do-aftercall and failurecall' the effect of the rule will be considered
separately.

If a contract just passes on a particular method call without extra be­
haviors, the pre- and postcondition of the contract and that of the original
invoked method are the same. Or if two contracts are logically equivalent
(Section 5.5.2). In these cases, it turns out that the new contract is as good
as the old contract.

Multiple rules may be included in a contract, regardless of being invoked by
the same trigger (on method call or state) or not. In this case, when replacing
a contract with a new one, firstly we will examine if the same rule(s) exists
(signatures matched); the new contract may have additional rules. Then for
each rule these two contracts have in common, efforts in inspecting the relation
between their pre- and postconditions are required.

77

Master's Thesis- Huan Wang McMaster- Computing and Software

We have made a commitment in Section 5.2 to solving a more demanding
situation, how different these versions are allowed to be in terms of contracts.
In the rest of this Chapter, we will discuss this issue from a perspective of
specification matching. By checking the logical relations between their pre- and
postcondition specifications, we will be able to identify a diversity of relevant
connections between contracts.

5.5 Behavioral Relationships between Coordi­
nation Contracts

Specification matching has been used to evaluate component relations and
to retrieve software components for reuse at an abstract level by means of
pre- and postcondition analysis in [149]. We take advantage of specification
matching as a method for justifying the behavioral relationships between two
coordination contracts. A specification match is a binary Boolean functional
relation defined as match : Spec x Spec ~ {true, false}. For a match (match),
two specification of contracts 51 and S2 , if match(S1 , S2) = true, we say S1

matches 52 according to match. It is worthy to notice that most matches
are not symmetric: match(S1 , S2) does not necessarily imply match(S2 , S1).

Since the name of a contract is its unique identity in the coordination layer,
we use the name of a contract to stand for its specification, i.e., C1 and C2 in
match(C1 , C2) are used to denote specifications for C1 and C2 , respectively.

Before talking about specification matching, we assume that the signatures
of two contracts match, which means the list of types of each rule's input
and output parameters and the exceptions that may be raised match. These
parameters may consist of parameters used in the original method call, in
the rule, or attributes and constants used in the contract. To perform the
signature matching, techniques such as currying, type coercion, signature re­
ordering, etc., may be involved. However, to realize the signature matching of
coordination contracts is out of the thesis's scope.

In this thesis, we will stick to the convention that the logical operator =?

means implication, {:::} means equivalence and ~ means reverse implication.
An assertion A is said to be stronger than another assertion B, if A logically
implies B, i.e. A =? B. If A is stronger than B, then B is said to be weaker
than A.

We treat specifications from a relational view, i.e., a specification is con­
sidered as a pair of pre- and postcondition, (Cpre, Cpost). As illustrated in
Figure 5.9, OCpre is the precondition of the old contract (OC) and OCpost
the postcondition, and likewise for NCpre and NCpost, which are the pre-

78

Master's Thesis - Huan Wang McMaster- Computing and Software

and postcondition of the new contract (N C). If OCpre holds before the con­
tract performs, then OCpost holds after successful execution (total correctness
assumed), the same for NCpre and NCpost· According to the definition of be­
havioral subtyping rule (LSP in Section 5.3.3, page 73), a new contract whose
specification guarantees NCpre ::::} NCpost may replace an old contract whose
specification guaranteed OCpre::::} OCpost (dashed arrow in Figure 5.9), if the
new contract has a weaker precondition and a stronger postcondition as op­
posed to that of the old contract, i.e., OCpre ::::} NCpre and NCpost ::::} OCpost
(solid arrows in Figure 5.9). For example, for the same method being called,
the precondition of the old contract OCpre is j = i + 1 (i, j E N) and the
precondition of the new contract N Cpre is i =I= j, then j = i + 1 ::::} i =I= j. We
conclude that the new contract has a weaker precondition, OCpre ::::} NCpre·
Arrows in Figure 5.9 denote program control flow or logical implication in
specifications, the different meanings are shown as the figure legend .

os,,.
..................
~
: Old :

·························• : Contract : ·························•
11: •
~

New
Contract

............ Execution of OC

Execution of N C

c:::=::::::> Implication

Figure 5.9: Contract Behavioral Relationships

To calculate their relations, we will use expressions in First Order Logic
(FOL) or Object Constraint Language (OCL) [1U], which is integrated in the
UML standard, to annotate pre- and postconditions of contracts. Checking
pre- and postconditions and their implication can be done in several ways: by
a hand-proof, a theorem prover or even at runtime. However, we have to state
that the type checker for Java is not able to handle the proving, since the
syntax and the semantics of language for contract is not Java yet and working
at the specification time. To automate the calculation, a specification match
maker is needed.

79

Master's Thesis- Huan Wang McMaster- Computing and Software

5.5.1 Outline of Behavioral Specification Matching

Determining the behavioral relationship between coordination contracts is a
principal task for this thesis to compare different contracts during evolution.
We establish a semantic foundation for connecting and reasoning about specifi­
cation matches in Figure 5.108 , which provides a framework to assess different
cases of contract specification match. We will show in the next Chapter by
multiple case studies on how a set of these matches will help establish pre­
dictable software evolutions practically.

Exact Pre Match Exact Post Match

I (OCpre=}NCprel A (NC post=}OC post) I Plug-In Match

-- .,_

I (OCpre=}NCpre) A ({OCpreANC post)=}OC post) I =t> n: Relaxed Plug-In Match :

I (OCpre=}NCpre) A ((NCpre=}NC post)=}(0Cpre=}0Cpostl) I !
-- -· U Guarded Generalized Match

Plug-In Post Match

I NC post=}OC post

u
Guarded Post Match

Stronger

u
I (NCpre=}NC post)=}(0Cpre=}0C post) j Generalized Match Weaker

Figure 5.10: Contract Specification Matches

An arrow in Figure 5.10 between two matches indicates that the match
at the base of the arrow is stronger than the match at its end, i.e., match1

is stronger than match2 if match1 (C1 , C2) :::} match2 (C1 , C2). On the other
hand, the match at its end match2 (C1 , C2) is more relaxed than the match at
the base of the arrow match1(C1 , C2). The formal notation is abbreviated by
dropping the universal quantifications and respective parameters for the pred­
icates. For example, OCpre :::} NCpre is equivalent to Vp. (p satisfies OCpre) :::}
(p satisfies NCpre), given p is an assertion.

8Figure 5.10 is adapted by referring to [:12, 144, 1-19].

80

Master's Thesis -- Huan Wang McMaster- Computing and Software

In what follows, we will testify and adapt the matches for components
in [149] to be applied for contracts and establish 5 major specification matches9 .

Generally, all these matching variants are derived from two definitions: one re­
lates the preconditions and postconditions of two contracts separately, whereas
the other relates the specification predicates of two contracts together [132].
Sections 5.5.2 through 5.5.6 will demonstrate proof sketches and properties for
matches, where the fundamental proof techniques can be found in [127] or [71].
As later demonstrated, the proving tasks are straightforward and based on the
properties of predicate logic.

5. 5. 2 Exact Pre /Post Match

Exact Pre/Post Match is proposed by Zaremski and Wing [149], denoted as
matchexact(NC, OC) = (OCvre ¢::> NCpre)/\(NCvost ¢::> OCvost)· In Figure 5.10,
ExactPre/Post Match appears to be the strongest match. Two contracts ex­
actly match if and only if their preconditions and postconditions are logically
equivalent. Hence, the two contracts are interchangeable. However, the equiv­
alence relationship is a strict and rare case in evolution when only signatures
of contracts are modified, for example, renaming rules or parameters. Subse­
quently, we will discuss a variety of cases where the new contract may safely
match the old contract in the system by relaxing the Exact Pre/Post Match,
such as Plug-in Match, Relaxed Plug-in Match, Guarded Generalized Match
and Generalized Match. For example, Plug-in Match relaxes the¢::> arrows in
Exact Pre/Post Match to=} arrows.

A match relation (match) is an equivalence match if the following conditions
are satisfied:

• Reflexive: match(C, C) for all contract specifications C

• Transitive: If match(C1 , C2) and match(C2 , C3), then match(C1 , C3)

• Symmetric: If match(C1 , C2), then match(C2 , CI)

We claim that matchexact is reflexive, symmetric and transitive, so that it
is an equivalent match.

• Reflexive:
9We have been taking efforts to strike a balance between flexibility and predictability.

However, sometimes it requires to sacrifice flexibility for predictability.

81

Master's Thesis- Huan Wang McMaster- Computing and Software

• Transitive:

matchexact (C, C)
(Definition of matchexact)

(Cpre ~ Cpre) 1\ (Cpost ~ Cpost)

{=::::} (Reflexivity of ~: p ~ p true)

true 1\ true

{=::::} (Reflexivity of 1\ : p 1\ p- p)

true I

Suppose we have,

(1) matchexact(CI, C2) = (C2pre ~ Clpre) 1\ (Clpost ~ C2post), and

(2) matchexact(C2, C3) = (C3pre ~ C2pre) 1\ (C2post ~ C3post), then by
the definition of transitivity, we will show matchexact(CI, C3) = (C3pre ~
clpre) 1\ (clpost ~ c3post).

Given (1) and (2),

((c2pre ~ clpre) 1\ (clpost ~ c2post))

/\((c3pre ~ c2pre) 1\ (c2post ~ c3post))
{=::::} (Symmetry of 1\ : p 1\ q _ q 1\ p)

((c2pre ~ clpre) 1\ (c3pre ~ c2pre))

/\((clpost ~ c2post) 1\ (c2post ~ c3post))

{=::::} (Transitivity of ~: (p ~ q) 1\ (q ~ r) ~ (p ~ r))

(c3pre ~ clpre) 1\ (clpost ~ c3post)

(Definition of matchexact)

matchexact(CI, C3) I

• Symmetric:

82

Master's Thesis- Huan Wang McMaster - Computing and Software

matchexact(CI, C2)
(Definition of matchexact)

(c2pre {::} clpre) 1\ (clpost {::} c2post)
(Symmetry of {::}: p {::} q- q {::} p)

(clpre {::} c2pre) 1\ (c2post {::} clpost)
(Definition of matchexact)

matchexact(C2, CI) I

5.5.3 Plug-in Match

Plug-in Match is proposed by Zaremski and Wing [149], which is a relaxed form
of Exact Pre/Post Match, and defined as matchptug-in(NC, OC) = (OCpre:::}
NCpre) 1\ (NCpost :::} OCpost)· We have illustrated the case in Figure 5.9, where
Plug-in Match succeeds when the precondition of the new contract is weaker,
and its postcondition is stronger than that of the old contract, respectively. In
other words, the new contract allows at least all the conditions that the old
contract allows, and provides a guarantee at least as strong as the old contract
provides.

Recall the concept of behavioral subtyping in Section 5.4 (page 74), the pur­
pose of which is to enforce the preservation of behavioral properties. Following
LSP, we are able to split the plug-in match into two conditions: the precondi­
tion rule (OCpre :::} N Cpre) means a weakening of the precondition (contravari­
ance) and the postcondition rule (NCpost:::} OCpost) means a strengthening of
the postcondition (covariance).

The relation matchexact(NC, OC):::} matchplug-in(NC, OC) in Figure 5.10
is proved as follows:

Step 1:

matchexact(NC, OC)

(Definition of matchexact)

(OCpre {::} NCpre) 1\ (NCpost {::} OCpost)
===} (Definition of {::}: p {::} q = (p:::} q) 1\ (p <==: q), and

Implication- Weakening: p 1\ q:::} p)

(OCpre {::} NCpre) 1\ (NCpost:::} OCpost) (3)

83

Master's Thesis- Huan Wang McMaster- Computing and Software

Step 2:

matchexact(NC, OC)

(Definition of matchexact)

(OCpre {:::} NCpre) 1\ (NCpost {:::} OCpost)
===} (Definition of {:::}: p {:::} q (p =? q) 1\ (p-¢:: q), and

Implication- Weakening: p 1\ q =? p)

(OCpre =? NCpre) 1\ (NCpost {:::} OCpost) (4)

Step 3:

Given (3) and (4),

((OCpre {:::} NCpre) 1\ (NCpost =? OCpost))

1\((0Cpre =? NCpre) 1\ (NCpost {:::} OCpost))
<¢::=} (Definition of {:::}: p {:::} q _ (p =? q) 1\ (p-¢:: q))

(((OCpre =? NCpre) 1\ (OCpre-¢:: NCpre)) 1\ (NCpost =? OCpost))

1\((0Cpre =? NCpre) 1\ ((NCpost =? OCpost) 1\ (NCpost-¢:: OCpost)))

<¢::=} (Associativity and Idem potency of 1\ : (p 1\ q) 1\ r _ p 1\ (q 1\ r),

p 1\p = p)

(OCpre =? NCpre) 1\ (NCpost =? OCpost)

1\(0Cpre-¢:: NCpre) 1\ (NCpost-¢:: OCpost)
===} (Implication- Weakening: p 1\ q =? p)

(OCpre =? NCpre) 1\ (NCpost =? OCpost)
(Definition of matchplug-in)

matchplug-in(NC, OC) I

A match relation (match) is a partial order match if following conditions
are satisfied:

• Reflexive: match(C, C) for all contract specifications C

• Transitive: If match(C1 , C2) and match(C2 , C3), then match(C1 , C3)

• Antisymmetric: Given match(C1 , C2) and match(C2 , C1), a correspond­
ing match can be inferred as an equivalence match

We claim that matchplug-in is reflexive, transitive and antisymmetric, so
that it is a partial order match.

84

Master's Thesis -- Huan Wang McMaster- Computing and Software

• Reflexive:

• Transitive:

matchplug-in (C, C)

(Definition of matchplug-in)

(Cpre ::::} Cpre) 1\ (Cpost ::::} Cpost)

~ (Reflexivity of =?: p =? p true)

true 1\ true

~ (Reflexivity of 1\ : p 1\ p _ p)

true I

Suppose we have,

(5) matchptug-in(Cl,C2) = (C2pre =? Clpre) 1\ (Clpost =? C2post), and

(6) matchptug-in(C2, C3) = (C3pre =? C2pre) 1\ (C2post =? C3post), then
by the definition of transitivity, we will show matchplug-in(Cl, C3)
(c3pre ::::} clpre) 1\ (clpost ::::} c3post).

Given (5) and (6),

((c2pre ::::} clpre) 1\ (clpost ::::} c2post))

/\((C3pre =? C2pre) 1\ (C2post =? C3post))

~ (Symmetry of 1\: p 1\ q = q 1\ p)

((c2pre ::::} clpre) 1\ (c3pre ::::} c2pre))

/\((clpost ::::} c2post) 1\ (c2post ::::} c3post))

==? (Transitivity: (p =? q) 1\ (q =? r) =? (p =? r))

• Antisymmetric:

Suppose we have,

(c3pre ::::} clpre) 1\ (clpost ::::} c3post)

(Definition of matchplug-in)

matchplug-in(Cl, C3) I

(5) matchptug-in(CI, C2) = (C2pre =? Clpre) 1\ (Clpost =? C2post), and

(7) matchptug-in(C2, C1) = (Cipre =? C2pre) 1\ (C2post =? Clpost), then
by the definition of antisymmetry, we will show matchptug-in(CI, C2) 1\

matchplug-in(C2, C1) infers an equivalence relation matchexaet(CI, C2).

85

Master's Thesis- Huan Wang McMaster- Computing and Software

Given(5) and (7),

(c2pre ::::} clpre) 1\ (clpost ::::} c2post)

/\(clpre ::::} c2pre) 1\ (c2post ::::} clpost)

{::=::? (Definition of {::}: p {::} q - (p =? q) 1\ (p ~ q))

(c2pre {::} clpre) 1\ (clpost {::} c2post)

(Definition of matchexact)

matchexact(Cl, C2) I

5.5.4 Relaxed Plug-in Match

Relaxed Plug-in Match [:32] is also called the satisfies match in [122], or plug-in
compatibility in [G4, 1:33]. matchrelexed-plug-in(NC, OC), defined by (OCpre =?

NCpre) 1\ ((OCpre 1\ NCpost) =? OCpost), is based on the Plug-in Match, but
puts the precondition of the old contract on the postcondition as a guard
to constrain the condition. Intuitively, the postcondition relation (N Cpost =?

OCpost) only holds for inputs that satisfy the old contract's precondition OCpre
(domain restriction).

We have dropped quantifiers and parameters of contracts in Section 5.5.1
(page 80) for simplicity. However, to discuss the semantics of Relaxed Plug-in
Match more formally, we need to include these constructions.

First of all, we may consider a rule Si in a contract C under evolution
pertains to a problem domain and problem range, similar techniques can be
found in [121, 12:3, 1:3;~, 140]. In Section 5.2.1 (page 67), we have discussed to
involve the input and the output states only. The specification of rules will
then be described in terms of a problem, where Dis the input domain and R
is the output domain (range). We define I is a relation on D called the input
condition which expresses any properties for the desired rule. 0 is a relation
on D x R called the output condition which expresses the properties that an
output should hold after executing the rule. Inputs satisfying I are called legal
inputs. Any output value z such that O(x, z) holds is called a feasible output
with respect to an input x. We say a specification is total if for every legal
input there exists at least one feasible output. Otherwise, a specification is
partial if for some legal inputs there is not a feasible output. Thus, a (total)
specification of a rule is a tuple (D, R, I, 0), where Vx : D, :Jz : R. I(x) =?

O(x, z). Considering the relationship between X and z through the rule si, we
may represent the above form as Vx : D, :Jz : R. I(x) =? O(x, fs;(x)), where
fs; : D---+ R. Therefore, z can be thought as an output which is generated by a
well defined function f S; over legal in puts (determinism assumed), z = f S; (x).

86

Master's Thesis -- Huan Wang McMaster- Computing and Software

A rule Si satisfies the specification if for any legal input, Si terminates with
a feasible output (total correctness assumed). In contrast, a specification is
unsatisfiable if no feasible output can be found for each legal input.

In Section .5.4.5 (page 76), we say the pre- and postcondition of contracts
is a combination of the pre- and postcondition of each individual rule, and
represented by a conjunction of (prerulei :::} postrulei). We suppose two con­
tracts cl and c2 have the same coordination rule si and the signatures of si
in the two contracts match10 . For a base case, we compare contracts C1 and
C2 with rule Si first. A contract C2 satisfies a specification of a contract C1

with respect to Si: if for any of C1 's legal inputs to Si, Si in C2 results in one
of C1 's corresponding feasible outputs. Formally, C2 satisfies C1 with respect
to si if both of the following conditions hold:

1. Vx : Dsi . Ic1 (x) '* Ic2 (x). Any legal input to Si in C1 will be a legal
input to Si in C2 . The specification of Si in C2 assures that a legal input
to it results in a feasible output.

2. Vx: Dsi . Ic1 (x) 1\ Oc2 (x, fsi(x)) '* Oc1 (x, fsi(x)). All feasible outputs
of Si in C2 for a legal Si input in C1 are valid outputs of Si in C1 .

We say a contract C2 satisfies a contract C1 if for every rule Si (i E N) in C1

there is a corresponding rule of C2 and the above conditions hold for these rules.
But there may be additional rules in C2 , which are absent in C1 . However, if
some rules in C1 are dropped in C2 , like the deletion operation in Figure .5.3
(page 69), we may not predict the behaviors of the evolved system. Intuitively,
Vx: D. Ic(x) for all rules Si (i EN) is the precondition of a contract C if only
legal inputs are allowed, and Vx: D, 3z: R. O(x, fsi(x)) for all rules Si (i EN)
is its postcondition if feasible outputs are guaranteed. We then rewrite the
above requisites to: 1. (OCpre:::} NCpre), and 2. ((OCpre/\NCpost):::} OCpost)·
This is the way matchrelexed-plug-in(NC, OC) defined.

The relation matchplug-in(NC, OC) :::} matchrelexed-plug-in(NC, OC) m
Figure 5.10 is proved as follows:

10Signature matching of contracts is defined in page 78.

87

Master's Thesis- Huan Wang McMaster- Computing and Software

matchplug-in (N C, OC)

(Definition of matchplug-in)

(OCpre:::} NCpre) 1\ (NCpost:::} OCpost)

-{=:::} (Definition of =?: p =? q = •p V q)

(OCpre :::} NCpre) 1\ (•NCpost V OCpost)

===? (Implication - Weakening : p :::} p V q)

(OCpre :::} N Cpre) 1\ (-,QCpre V •N Cpost V OCpost)
-{=:::} (Definition of =?: p :::} q _ •p V q)

(OCpre:::} NCpre) 1\ ((OCpre 1\ NCpost):::} OCpost)

(Definition of matchrelexed-plug-in)

matchrelexed-plug-in(NC, OC) I

5.5.5 Guarded Generalized Match

Guarded Generalized Match is proposed by [-±0], and defined as matchguarded-gen
(NC, OC) = (OCpre =? NCpre) 1\ ((NCpre =? NCpost) =? (OCpre =? OCpost)).
In Figure 5.10, the dotted frame indicates that matchguarded-gen is logically
equivalent to matchrelaxed-plug-in· We will address the proof obligation on
their equivalence via a relation OCpre :::} (N Cpre 1\ (N Cpost :::} OCpost)).

Step 1:

matchrelaxed-plug-in (N C, OC)

Step 2:

(Definition of matchrelaxed-plug-in)

(OCpre:::} NCpre) 1\ ((OCpre 1\ NCpost) :::} OCpost)

-{=:::} (Implication - Shunting: p 1\ q =? r _ p :::} (q :::} r))

(OCpre:::} NCpre) 1\ (OCpre:::} (NCpost:::} OCpost))

-{=:::} ((p :::} q) 1\ (p =? r) p =? (q 1\ r))

OCpre:::} (NCpre 1\ (NCpost:::} OCpost))

(OCpre:::} (NCprei\(NCpost:::} OCpost))) ¢:? ((OCpre:::} NCpre)I\((NCpre:::}
NCpost) :::} (OCpre :::} OCpost))) (8) can be easily shown, for instance, by a
truth table that (8) is a tautology.

So far, we have proved that match9uarded-gen and matchrelaxed-plug-in are

88

Master's Thesis - Huan Wang McMaster- Computing and Software

equivalent11
. I

We claim that matchguarded-gen is reflexive, transitive and antisymmetric,
so that it is a partial order match. Because of its proven equivalence with
matchretaxed-ptug-in and OCpre::::} (NCpre 1\ (NCpast ::::} OCpast)), we can infer
that these two equivalences also have the partial order property.

• Reflexive:

match9uarded-gen(C, C)

(Definition of matchguarded-gen)

(Cpre ::::} Cpre) 1\ ((Cpre ::::} Cpost) ::::} (Cpre ::::} Cpost))

~ (Reflexivity of ::::}: p ::::} p _ true)

true 1\ true

~ (Reflexivity of 1\: p 1\ p = p)

true I

• Transitive:

Suppose we have,

(9) matchguarded-gen(CI, C2) = (C2pre ::::} Clpre) 1\ ((Clpre ::::} Clpost) ::::}
(c2pre ::::} c2post))' and

(10) match9uarded-gen(C2, Ca) = (Capre ::::} C2pre) 1\ ((C2pre ::::} C2post) ::::}
(Capre::::} Capost)), then by the definition of transitivity in Section 5.5.3,
we will show

match9uarded-gen(CI, Ca) = (Capre::::} Clpre)A((Clpre::::} Clpost)::::} (Capre::::}
Capost)) ·

11 Beware of the difference between equivalent match defined in Section 5.5.2 and the claim
that two matches are equivalent.

89

Master's Thesis- Huan Wang McMaster - Computing and Software

Given (9) and (10),

((c2pre =?- clpre) 1\ ((clpre =?- clpost) =?- (c2pre =?- c2post)))
/\((Capre =?- C2pre) 1\ ((C2pre =?- C2post) =?- (Capre =?- Capost)))

{=::::} (Symmetry of 1\ : p 1\ q _ q 1\ p)

((C2pre =?- Clpre) 1\ (Capre =?- C2pre)) 1\

((Clpre =?- Clpost) =?- (C2pre =?- C2post))

/\((C2pre =?- C2post) =?- (Capre =?- Capost))
===?- (Transitivity of =?-: (p =?- q) 1\ (q =?- r) =?- (p =?- r))

(Capre =?- Clpre) 1\ ((Clpre =?- Clpost) =?- (Capre =?- Capost))

(Definition of match9uarded-gen)

matchguarded-gen(Cl, Ca) I

• Antisymmetric:

Suppose we have,

(9) match9uarded-gen(CI, C2) = (C2pre =?- Clpre) 1\ ((Clpre =?- Clpost) =?­

(c2pre =?- c2post))' and

(11) match9uarded-gen(C2, C1) = (Clpre =?- C2pre) 1\ ((C2pre =?- C2post) =?­

(C1pre =?- Clpost)), then by the definition of antisymmetry in Section 5.5.3,
we will show match9uarded-gen (C1, C2) 1\ match9uarded-gen (C2, CI) infers
an equivalence relation (c2pre {::} clpre) 1\ ((clpre =?- clpost) {::} (c2pre =?­

c2post)).

Given (9) and (11),

(c2pre =?- clpre) 1\ (clpre =?- c2pre)
/\((clpre =?- clpost) =?- (c2pre =?- c2post))

/\((c2pre =?- c2post) =?- (clpre =?- clpost))
{=::::} (Definition of {::}: p {::} q _ (p =?- q) 1\ (p <¢== q)

(c2pre {::} clpre) 1\ ((clpre =?- clpost) {::} (c2pre =?- c2post))

It is easy to show that (C2pre {::} Clpre) 1\ ((C1pre =?- Clpost) {::} (C2pre =?­

C2post)) is an equivalence match according to the definition in Section 5.5.2.

I

90

Master's Thesis- Huan Wang McMaster- Computing and Software

5.5.6 Generalized Match

The Generalized (Predicate) Match is defined in [U9]. In Exact Pre/Post
Match, Plug-in Match, Relaxed Plug-in Match and the like, pre- and postcon­
ditions of different contracts are treated as parts; now we consider the rela­
tionship of the specifications as a whole. By specification, we mean the pair of
pre- and postcondition of a contract (see definitions in Section 5.4.5 and 5.5.4).
Following [149], Generic Predicate Match is defined as matchpred(NC, OC) =

NCpred R OCpred, where relation R is =>, {::}or¢. A contract predicate has
two definitions: Cpre => Cpost and a relatively stronger form, Cpre 1\ Cpost· In
this thesis, we will adopt the former definition and n is an implication (=>), so
that match9en(NC, OC) is defined as (NCpre => NCpost) => (OCpre => OCpost)·
We gain insight into the meaning of matchgen, given that a new contract has a
stronger specification than the old contract. Following the explanation in Sec­
tion 5.5.4 (page 86) for Relaxed Plug-in Match, (Cpre => Cpost) is constructive
because the precondition serves as a guard for the postcondition. The com­
bined assertion "precondition implies postcondition" defines what a contract
does [108].

Consequently, the overall goal of a contract predicate is to prove that the
precondition of the contract (Cpre) implies its postcondition (Cpost) through
the contract (C). From predicate logic, the predicate p => q is false only
when p is true but q is false. In this case, we mean when the precondi­
tion of a contract holds, its postcondition is not satisfied, the predicate for
the contract fails12 . As is normal in mathematical proofs, we may work out
such a proof Cpre => Cpost in a forward direction from the precondition to­
wards the postcondition. However, it is empirically easier in program proofs
to work backwards from the postcondition towards the precondition. Gener­
ally, in program logic, we use weakest preconditions [41, 42] to prove program
specifications. That is, we denote a system (machine, mechanism) by S and
the desired postcondition by Q, if the weakest precondition is wp(S, Q), and
the precondition P => wp(S, Q), then { P}S{ Q} is true13

. wp(S, Q) is called a
"predicate transformer". According to [70, page 109], {P}S{Q} is a statement
in the Hoare logic and equivalent to P => wp(S, Q).

However, since we do not have a logic for contracts corresponding to Hoare
logic and the weakest precondition calculus, we may be incapable of demon­
strating an example for match yen (N C, OC).

The Generalized Match appears as a weaker match than the Guarded
Generalized Match, i.e., matchguarded-gen(NC, OC) => matchgen(NC, OC), as

12 An exception in contracts is that if only the with clause for a rule is broken in the
precondition, the effect of failure serves as its postcondition.

13Total correctness is assumed.

91

Master's Thesis - Huan Wang McMaster- Computing and Software

shown in Figure 5.10.

match9uarded-gen(NC, OC)
(Definition of matchguarded-gen)

(OCpre ==? NCpre) 1\ ((NCpre ==? NCpast) ==? (OCpre ==? OCpost))
==} (Implication- Weakening: p 1\ q ==? p)

(NCpre ==? NCpast) ==? (OCpre ==? OCpast)

(Definition of matchgen)

matchgen(NC, OC) I

We claim that matchgen is reflexive, transitive and antisymmetric, so that
it is a partial order match.

• Reflexive:

• Transitive:

matchgen (C, C)
(Definition of matchgen)

(Cpre ==? Cpast) ==? (Cpre ==? Cpast)
~ (Reflexivity of ==?: p ==? p =true)

true I

Suppose we have,

(12) match9en(CI, C2) = (Clpre ==? Clpost) =* (C2pre =* C2post), and

(13) match9en(C2, Ca) = (C2pre =* C2post) =* (Capre =* Capast), then by
the definition of transitivity in Section 5.5.3, we will show

match9en(CI, Ca) = (Cipre =* Clpost) =* (Capre =* Capost)·

92

Master's Thesis -- Huan Wang McMaster- Computing and Software

Given (12) and (13),

((C1pre ::::} Clpost) ::::} (C2pre ::::} C2post))

/\((c2pre ::::} c2post) ::::} (c3pre ::::} c3post))
(Transitivity of::::}: (p::::} q) 1\ (q::::} r) ::::} (p::::} r))

(C1pre ::::} Clpost) ::::} (C3pre ::::} C3post)
(Definition of matchgen)

matchgen(CI, C3) I

• Antisymmetric:

Suppose we have,

(12) match9en(CI, C2) = (Clpre::::} Clpost)::::} (C2pre::::} C2post), and

(14) match9en(C2, C1) = (C2pre ::::} C2post) ::::} (Cipre ::::} Clpost), then
by the definition of antisymmetry, we will show matchgen(C1, C2) 1\

match9en(C2, C1) equals to (Cipre ::::} Clpost) ¢::} (C2pre ::::} C2post), which
is an equivalence relation.

Given (12) and (14),

((clpre ::::} clpost) ::::} (c2pre ::::} c2post))
/\((C2pre::::} C2post)::::} (Cipre::::} Clpost))

=::::} (Definition of {:::}: p {:::} q = (p::::} q) 1\ (p {= q), and

Implication -Weakening: p 1\ q ::::} p)

(clpre ::::} clpost) ¢::} (c2pre ::::} c2post)

It is easy to show that (C1pre ::::} Clpost) ¢::} (C2pre ::::} C2post) is an equiv­
alence match according to the definition in Section 5.5.2. I

5.5.7 Summary

Several cases of specification matches have been discussed for defining a vari­
ety of behavioral relationships between coordination contracts. In Figure 5.10
(page 80), we cannot afford to use only plug-in post match relation or guarded
post match, etc., with preconditions are dropped. Considering the postcon­
dition of contracts only is insignificant in this context, the precondition is
required to hold initially and serves as a guard for postcondition. Without the
validity of the precondition, the contract is even not performed, not to mention

93

Master's Thesis - Huan Wang McMaster- Computing and Software

its any potential effects. Thus, we simplify Figure 5.10 into Figure 5.11, where
Exact Pre/Post Match is the most rigorous match, Generalized Match is the
weakest one, and Relaxed Plug-In Match is equivalent to Guarded Generalized
Match.

I (OCpre{=}NCprel A (NCpost{=}OC post)
Exact Pre/Post Match

u
I (OCpre=}NCprel A (NC post=}OC post) I Plug-In Match

u
I (OCpre=}NCprel A ((OCpreANC post)=}OC post> I Relaxed Plug-In Match

tt
I (OCpre=}NCprel A ((NCpre=}NC post)=}(OCpre=}OC post)) I

JJ Guarded Generalized Match

Generalized Match

Figure 5.11: Contract Specification Matches (Simplified)

From the specification matches and the matching hierarchy, we are able to
tell how different two contracts can be in terms of predictable evolution of co­
ordination contracts. As a result, we conclude that the evolution is predictable
up to the limits of these specification matches.

5.6 Summary

In the three-dimensional architecture constructed with coordination contracts,
the thesis aims at evolution of the coordination dimension. This Chapter is
mainly dealing with two issues. One is to characterize change histories in a
way that enables control of system evolution in a predictable direction. The
other is the allowable relationships between these versions in terms of con­
tracts. Generally speaking, we would like to see incremental and predictive
evolution so that we do not allow changes in a subtractive way. We define pre­
and postconditions of method calls, coordination rules and coordination con­
tracts, and use specification matching to justify the behavioral relationships
between coordination contracts by means of pre- and postcondition specifica­
tion. Additionally, we provide a framework to assess different cases of speci­
fication matches, and demonstrate proof sketches and properties of a variety

94

Master's Thesis -- Huan Wang McMaster- Computing and Software

of matches, such as Exact Pre/Post Match, Plug-in Match, Relaxed Plug-in
Match, Guarded Generalized Match and Generalized Match.

95

Master's Thesis - Huan Wang McMaster- Computing and Software

96

Chapter 6

Case Studies

The goal of this Chapter is to provide an opportunity to conduct studies on
a set of examples to demonstrate our approach in Chapter 5 to evolving soft­
ware systems in terms of coordination contracts. This approach cannot be
fully comprehensible in theory only, but needs simple and adequate case stud­
ies in practical settings to illustrate its application. Driven by examples, we are
about to discuss how we characterize the system change histories and how be­
haviors of coordination contracts are related more concretely in real examples.
UML extended with a scroll notation for contracts in Section 4.4.1 (page 52) is
used to describe program architectures graphically. The language for contracts
and definitions of pre- and postconditions in Section 5.4 (page 74) are used to
reason about contracts. In the subsequent examples, coordination contracts
are mostly used to implement method invocations as the intention with which
we develop this section is present representative examples rather than try to
be exhaustive.

6.1 Introduction to the Banking Application

The Object-Oriented banking example is a common demonstration of OOD
by attempting to model a bank account and a customer class. We base the
case studies and parts of the source code on examples in the documentation
distributed with CDE 1.1.1 [6], as well as on those examples appearing in the
literature that we surveyed to introduce coordination contracts in Chapter 4.
In this example, we do not deal with advanced features, for instance, multi­
threaded bank account classes or concurrent transactions, etc.

We have two participant components, Account (Figure 6.1(a)) and Cus­
tomer (Figure 6.1(b)). For simplicity reason, the banking example is up to
binary relationships. However, when applied, contracts may involve more than

97

Master's Thesis - Huan Wang McMaster - Computing and Software

two partners. According to their class diagrams, a customer can invoke sev­
eral operations on an account. In this Chapter, for ease, we particularly are
concerned in basic services as follows:

• double get Balance(), this operation returns the balance of an account
(see Table 6.4);

• void deposit (double amount, Customer c), this operation increases the
balance held by customer c by amount, and returns nothing;

• void withdraw (double amount, Customer c), this operation decreases
the balance held by customer c by amount, and returns nothing (see
Table 6.2).

The withdraw and deposit methods have no restrictions, except that the
amount sought must not be negative and withdrawals may only be authorized
to a customer who owns the account. The ownership can be checked by the
owns() method in the Customer class or the ownedBy () method in the Account
class.

Account
l~number
~balance Customer
~owners ~id

•getNumberQ
•getBalanceQ
•getOwnersQ
•ownedByQ
•depositO
~ithdrawQ
•addOwnerQ
•re moveOwnerQ
•AccountQ

~name
~accounts

•customerQ
•getldQ
•getNameQ
•getAccountsQ
•own sO
•addAccountQ
•removeAccountQ

(a) Account Class (b) Customer Class

Figure 6.1: Case Studies Class Diagrams

6.2 System Change Histories

In Section 5.2 (page 67), we have demonstrated several change histories that
may support evolution in an incremental and predictable way. Now we ex­
amine these cases with the banking application, which is composed of the

98

Master's Thesis - Huan Wang McMaster - Computing and Software

Account class, the Customer class and a contract ContractBank coordinating
the objects of these two classes (Figure 6.2). As a desirable feature of coor­
dination contracts, Account and Customer are not aware of the existence of
ContractBank. We suppose systems SYS, SYS1 and SYS2 are instantiating
the proposed architecture and varying only in the contract ContractBank.

Account
Customer ,.number

~id ~balance
~name ~owners
~accounts

owns ~getNumberO
•customerO ~getBalance()
•getldQ •getOwnersQ
•getNameQ 1 .. •ownedByQ
•getAccountsQ •depositO
•own sO 'withdrawQ
•addAccountQ ~addOwnerQ
•removeAccountQ ~removeOwnerQ

r...t) ~AccountQ

ContractBank

t!a

Figure 6.2: Case Studies- A Bank Application

Initially, a contract ContractBank either has the WithdrawRule as in Ta­
ble 6.1, or the BalanceRule as in Table 6.3, or both rules as in Table 6.5. The
functionalities of WithdrawRule and BalanceRule are pass on method calls,
where Table 6.2 and Table 6.4 include the code for original methods with­
draw() and getBalance() in the Account class, individually.

Table 6.1: ContractBank with WithdrawRule

contract ContractBank
participants

customer : Customer; account : Account;
coordination

WithdrawRule:
when*- >> account.withdraw(amount, c) && (customer== c)
with (account.getBalance() >=amount)

end contract

99

Master's Thesis - Huan Wang McMaster- Computing and Software

Table 6.2: The withdraw method in Account Class

public void withdraw (double amount, Customer c)
throws AccountException {

}

if (amount < 0)
throw new AccountException(this, amount, c,

NEGATIVE_AMOUNT);
if (!ownedBy(c))

throw new AccountException(this, amount, c, NOT _OWNER);
balance-= amount;

Table 6.3: ContractBank with BalanceRule

contract ContractBank
participants

account : Account;
coordination

BalanceRule:
when *- > > account.getBalance()

end contract

Table 6.4: The getBalance method in Account Class

public double getBalance() { return balance; }

Table 6.5: ContractBank with WithdrawRule and BalanceRule

contract ContractBank
participants

customer : Customer; account : Account;
coordination

WithdrawRule:
when*- >> account.withdraw(amount, c) && (customer== c)
with (account.getBalance() >=amount)

BalanceRule:
when *- > > account.getBalance()

end contract

Case 1

SYS, SYS1 and SYS2 in Figure 6.3 are systems evolving "sequentially" from
each other like a relay. Supposedly, the ContractBank in SY S has only one

100

Master's Thesis - Huan Wang McMaster- Computing and Software

coordination rule for withdraw() in Table 6.1. SYS1 evolves from SYS with
this WithdrawRule 1 in Table 6.6 by considering an exception, and SYS2 evolv­
ing from SY S 1 by adding or modifying a rule, BalanceRule2 in Table 6.3. The
ContractBank in the evolved system SY 8 2 then takes the form in Table 6.5.

Hence, we are able to combine these two cumulative changes into Figure 6.4,
and make a direct evolution process with both of the two coordination rules
WithdrawRule and BalanceRule in the contract(s) from SYS to SYS2 . It is
also possible that SYS2 modifies the WithdrawRule based on SYS1 , following
the previous change from SYS to SYS1 ; see Figure 6.5 and Figure 6.6. The
sequence of transitions from Table 6.1 to Table 6.6 then Table 6.8 illustrates
an occurrence of the described process.

WithdrawRule BalanceRule
SYS .. SYS1 .. SYS2 ... ,....

Figure 6.3: Case 1- Adding/Modifying a Different Rule

WithdrawRule &

SYS -------I~HI SYS2
____ .. BalanceRule ~... ___ __.

Figure 6.4: Case 1 - Accumulating the Changes of Two Rule

WithdrawRule WithdrawRule'
SYS 1lo. SYS1 .. SYS2

Figure 6.5: Case 1- Changing the Current Rule

WithdrawRule &

SYS 1-------.. •1 SYS2
..____ WithdrawRule' ._ ___ ..

Figure 6.6: Case 1 - Accumulating Changes of the Same Rule

1 In practice, the rule may be newly added to a contract or modified an existing contract
in SYS.

2The rule may or may not be in the same contract as the WithdrawRule.

101

Master's Thesis- Huan Wang McMaster- Computing and Software

Table 6.6: ContractBankl with WithdrawRulel

contract ContractBankl
participants

customer : Customer; account : Account;
coordination

WithdrawRulel:
when*- >> account.withdraw(amount, c) && (customer== c)
with (account.getBalance() >= amount)
failure {
throw new AccountException(account, amount, c,

AccountExceptionTypes.LIMIT _EXCEEDED); }

end contract

Case 2

SYS1 and SYS2 in Figure 6.7 are evolving "individually" based on SYS.
SYS1 evolves SYS with the coordination rule WithdrawRule in a contract, and
SY 5 2 evolves SY S with BalanceRule in the same or a different contract from
WithdrawRule. We may not be able to fully justify the predictable relationship
between SY S 1 and SY S 2 by means of the behavioral specification matching
approach in Section 5.5.

WithdrawRule

SYS

Figure 6.7: Case 2

Furthermore, we argue that even though SYS1 and SYS2 may evolve SYS,
respectively, with the same coordination rule WithdrawRule in the same con­
tract (see Figure 6.83) in a different way, we still may not make a full justifica­
tion of prediction between SYS1 and SYS2 by the relations of ContractBank

3We name WithdrawRule by WithdrawRule1 and WithdrawRule2 in Figure 6.8 only to
show their any potential difference in versions. In their specifications, the two coordination
rules may have the same name.

102

Master's Thesis- Huan Wang McMaster- Computing and Software

since we compare the effect of the do block and the failure clause indepen­
dently.

SYS

Figure 6.8: Case 2'

Now we demonstrate this scenario with an example. SY S has the initial
version of WithdrawRule in Table 6.1. Suppose in SY S 1 , we evolve to the
ContractBankl with the WithdrawRulel in Table 6.6. The do block is omitted
so that the original method withdraw will be executed instead. If the guard in
the with clause, "account.getBalance() >= amount", is false, the contract
raises a defined exception accordingly. However, in SYS2 in Table 6.7, there
is no such with clause. Even if "account.getBalance() >= amount" is false,
the ContractBank2 in Table 6.7 is able to perform the withdraw function and
decreases that account by the amount of its remaining balance. Based on this
understanding, we conclude that even though the evolved systems SYS1 and
SYS2 are related to SYS in some sense, the relationship between SYS1 and
SYS2 in terms of the WithdrawRule in ContractBank is as yet unclear.

Table 6. 7: ContractBank2 with WithdrawRule2

contract ContractBank2
participants

customer : Customer; account : Account;
coordination

WithdrawRule2:
when*- >> account.withdraw(amount, c) && (customer== c)
before {System.out.println("Amount asked for: " +amount);}
do { account._withdraw(Math.min(account.getBalance(),

amount), c);}

end contract

103

Master's Thesis- Huan Wang McMaster- Computing and Software

Case 3

SYS1 and SYS2 are systems evolved from SYS individually, such as the situ­
ation in Figure 6.7. SYS3 can be achieved in evolving either SYS1 or SYS2 in
Figure 6.9 by extending the contract(s) with BalanceRule and WithdrawRule,
respectively. Following the scenario in Case 1 (Figure 6.4), we combine these
two cumulative changes in Figure 6.10, that is, either accumulating the effects
of WithdrawRule then BalanceRule on SY S, or vice versa. We will cover this
case with an example in Section 6.3.3.

WithdrawRule

SYS

Balance Rule

Figure 6.9: Case 3

SYS :1 SYS3

BalanceRule & WithdrawRule

WithdrawRule & BalanceRule

Figure 6.10: Case 3'

6.3 Behavioral Relationships and Specification
Matching

In what follows, we will study a variety of contracts applied in the banking ap­
plication with reasoning their behavioral relationships and the matching rules
discussed in Chapter 5. By "changes", we principally refer to the behavioral
changes rather than the syntactic ones. If we modify the contract merely syn­
tactically, for example, renaming the rules or contracts, Exact Pre/Post Match
succeeds since their preconditions, their postconditions and any other effects
are the same. However, Exact Pre/Post Match is a case not likely to occur

104

Master's Thesis- Huan Wang McMaster- Computing and Software

often. In addition, to prove the equivalence of two contracts completely, we
may need a proper semantics for contracts, which is left for future work.

6.3.1 Changes to the Precondition of Coordination Con­
tracts

To promote a monthly package, a new withdraw rule WithdrawRule3 in Ta­
ble 6.8 is substituted for the WithdrawRulel in Table 6.6. However, With­
drawRule3 has a weaker guard than WithdrawRulel, since in the with clauses,
(account.getBalance() >= amount) =? ((account.getBalance() + limit) >=
amount), given limit 2: 0. By the definition in Section 5.4.3 (page 75), the rele­
vant precondition of coordination rules is defined as pre0PI\trigger caul\withcall·
For the case of WithdrawRulel and WithdrawRule3, they both have the same
preop as the original method withdraw() in class Account, and the same trigger,
"when*- >> account.withdraw (amount, c) && (customer== c)".

On the other hand, in the WithdrawRule3, other than the with clause,
the rest parts are intact as compared to the WithdrawRulel. Because the do
block is skipped in both rules, they have the same postcondition of withdraw()
(postop) if the guard is enabled. If the guard fails, they raise of the same ex­
ception as defined in the rule body. Consequently, the effect and exceptions of
these rules are identical. Therefore, by the definition in Section 5.4.4 (page 76),
the postconditions of WithdrawRulel and WithdrawRule3 are the same.

Recognizing these facts and the definitions in Section 5.4.5, we infer that
ContractBank3 with WithdrawRule3 (Table 6.8) has a weaker precondition
than ContractBankl with WithdrawRulel (Table 6.6), and ContractBank3
has the same postcondition as ContractBankl, i.e., (ContractBanklpre =?

ContractBank3pre) 1\ (ContractBank3post {::} ContractBanklpost)·

6.3.2 Changes to the Postcondition of Coordination Con­
tracts

In Section 6.1, the method call getBalance() is declared in Table 6.4. We
initiate a contract ContractBank in Table 6.3 for passing on this call merely.
To avoid any ambiguity, we rename the ContractBank to ContractBank4, and
BalanceRule to BalanceRulel in Table 6.9. As we discussed in the beginning of
this section, the ContractBank4 (Table 6.9) is equivalent to the ContractBank
in Table 6.3 due to the syntactic changes.

To save daily operation costs, we secure the banking accounts with a new
rule BalanceRule2 in Table 6.10, which requires a minimum balance in ac-

105

Master's Thesis- Huan Wang McMaster- Computing and Software

Table 6.8: ContractBank3 with WithdrawRule3

contract ContractBank3
participants

customer : Customer; account : Account;
attributes

double limit = 100.0;
coordination

WithdrawRule3:
when*- >> account.withdraw(amount, c) && (customer== c)
with ((account.getBalance() +limit) >=amount)
failure {

throw new AccountException(account, limit+amount, c,
AccountExceptionTypes.LIMIT _EXCEEDED); }

end contract

Table 6.9: ContractBank4 with BalanceRule1

contract ContractBank4
participants

account : Account;
coordination

BalanceRule:
when *- > > account.getBalance()

end contract

counts. After returning the balance of the account, we check the current
balance and the status of a Boolean variable lock. If the balance is less than
the required minimum amount, and if it is not locked yet, we then lock the ac­
count and prohibit any withdrawal. If the current balance is greater than the
minimum amount and the account is locked, then we unlock the account. The
new feature will not lock the deposit() method; though withdraw() is disabled,
deposit() can be used to unlock the account by increasing the balance.

The two rules, BalanceRule1 and BalanceRule2, have the same precondi­
tion, since they have the same precondition as the original method, the same
trigger condition and the same guard, i.e., pre0P 1\ triggercall

1
1\ withcalh -

preop 1\ trigger call
2

1\ withcall2 • Hence, we say contracts ContractBank5 (Ta­
ble 6.10) and ContractBank4 (Table 6.9) have an equivalent precondition by
the definitions in Section 5.4.3 (page 75) and Section 5.4.5 (page 76).

On the other hand, the two rules have the same postcondition of the method

106

Master's Thesis-- Huan Wang McMaster- Computing and Software

getBalance() in class Account, denoted as postop· The effects of the do blocks
in both rules are the same since they both omit this part, so that the original
method is performed as the default. On examination, BalanceRule2 has an
extra after block compared to BalanceRulel. As a result, the former rule has
a stronger postcondition than the latter since it has a stronger joint effect in
the before-do-after block by the definition in Section 5.4.4 (page 76). No
failure part is available to compare in both rules.

Taking account of the above facts and the definitions in Section 5.4.5
(page 76), we infer that the contract ContractBank5 with BalanceRule2 (Ta­
ble 6.10) has a stronger postcondition than the contract ContractBank4 with
BalanceRulel (Table 6.9), and ContractBank5 has the same precondition as
ContractBank4, i.e.,

(ContractBank4pre {:::} ContractBank5pre) 1\ (ContractBank5post ::::}
ContractBank4post)·

Table 6.10: ContractBank5 with BalanceRule2

contract ContractBank5
participants

account : Account;
attributes

double MIN = 10.0;
boolean lock = false;

coordination
BalanceRule2:
when *- > > account.getBalance()
after {

}

if (account.getBalance() < MIN && lock== false) {
lock= true;

}
else if (account.getBalance() >= MIN && lock == true) {

lock = false;
}

end contract

In Table 6.11, we introduce a customer participant in ContractBank6 with
BalanceRule3 to print out the account's owner and the account's ID. The
customer instances can be created by instantiating the Customer class existing
in the architecture (Figure 6.2, page 99). Actually, an object of a newly-

107

Master's Thesis - Huan Wang McMaster- Computing and Software

introduced class is permissible in the contract as well, for example, an instance
that realizes the logging information of the account objects [5].

Applying a similar reasoning in the above subsections, we infer that Bal­
anceRule3 has a stronger postcondition than BalanceRule2, so that Contract­
Bank6 strengthens the postcondition of ContractBankS, as expected. The
two rules have the same precondition, so that ContractBank6 has the same
precondition as ContractBankS.

Table 6.11: ContractBank6 with BalanceRule3

contract ContractBank6
participants

customer : Customer; account : Account;
attributes

double MIN = 10.0;
boolean lock = false;
long number;

coordination
BalanceRule3:
when *- > > account.getBalance()
after {

}

if (account.getBalance() < MIN && lock== false) {
lock= true;

}

number= account.getNumber();
customer = account.getOwners();
System.out. println(customer.getN arne() + " 's account"

+number+ "is locked.");

else if (account.getBalance() >= MIN && lock == true) {
lock = false;

}

number= account.getNumber();
customer = account.getOwners();
System.out. println(customer.getN arne() + " 's account"

+ number + "is unlocked.");

end contract

108

Master's Thesis- Huan Wang McMaster- Computing and Software

6.3.3 Changes to the Precondition and Postcondition of
Coordination Contracts

We integrate the BalanceRulel (Table 6.9) and the WithdrawRulel (Table 6.6)
into Table 6.12 to make a new contract ContractBank7 including both rules.
The BalanceRulel passes on the original method call getBalance() and returns
the balance. The WithdrawRulel checks if the desired withdrawal amount is
greater than the balance, throws an exception if it is not, or it executes the
original method withdraw() alternatively. According to the change histories
we discussed, ContractBank7 extends ContractBankl in Table 6.6 with Bal­
anceRulel, and extends ContractBank4 in Table 6.9 with WithdrawRulel.

Table 6.12: ContractBank7 with BalanceRulel and WithdrawRulel

contract ContractBank7
participants

customer : Customer; account : Account;
coordination

WithdrawRulel:
when*- >> account.withdraw(amount, c) && (customer== c)
with (account.getBalance() >=amount)
failure {
throw new AccountException(account, amount, c,

AccountExceptionTypes.LIMIT _EXCEEDED); }
BalanceRulel:
when *- > > account.getBalance()

end contract

The intention of lock added in BalanceRule2 in Table 6.10 is to supervise
affected operations like withdraw. To reflect such changes on WithdrawRule3
in Table 6.8, we need the WithdrawRule4 in Table 6.13. A before block is
inserted, which checks the status of lock before performing the do block. By
the definition in Section 5.4.4 (page 76), the before block is a part of the
postcondition for rules.

Following the similar analysis above, we conclude that,

• WithdrawRule4 in Table 6.13 has a weaker precondition and stronger
postcondition than WithdrawRulel in Table 6.12.

• BalanceRule2 in Table 6.13 has a stronger postcondition than BalanceRulel
in Table 6.12.

109

Master's Thesis- Huan Wang McMaster- Computing and Software

Table 6.13: ContractBank8 with BalanceRule2 and WithdrawRule4

contract ContractBank8
participants

customer : Customer; account : Account;
attributes

double limit = 100.0;
double MIN = 10.0;
boolean lock = false;

coordination
WithdrawRule4:
when*- >> account.withdraw(amount, c) && (customer== c)
with ((account.getBalance() +limit) >=amount)
before {

if (lock == true) {

}

System.out.println("Balance is Not Enough!
This account is LOCKED!");

System. exit();

failure {
throw new AccountException(account, limit+amount, c,

AccountExceptionTypes.LIMIT _EXCEEDED); }
BalanceRule2:
when *- > > account.getBalance()
after {

if (account.getBalance() +limit < MIN && lock== false) {
lock= true;

}
else if (account.getBalance() +limit >=MIN && lock== true)
{

lock = false;
}

}

end contract

By the definition of pre- and postcondition of coordination contracts in
Section 5.4.5 (page 76), and the concept of Plug-in Match in Section 5.5.3
(page 83), the relationship between ContractBank8 and ContractBank7 satis­
fies the Plug-in Match, that is,

matchplug-in(ContractBank8, ContractBank7) = (ContractBank7 pre :::}
ContractBank8pre) 1\ (ContractBank8post:::} ContractBank7post)·

110

Master's Thesis -- Huan Wang McMaster- Computing and Software

Since the Plug-in Match is the second strongest match in the strength ordering
in Figure 5.11, the relationship between ContractBank8 and ContractBank7
also satisfies the inferior matches.

In Section 4.4.2 (page 53), when introducing the CDE-specific language for
contracts, we have illustrated a proposed idea of "inheritance" of contracts in
Figure 4.6 (page 59) without a formal explanation of the exact meaning. At
this moment, we have acquired an understanding of "inheritance" as this kind
by the Plug-in Match relationship between contracts.

To represent the third case of change histories in Section 6.2 (page 98)
more concretely, we assume that the system with ContractBank8 is SY 8 3

in Figure 6.11. SYS has the initial version of ContractBank in Table 6.5.
SYS1 evolves from SYS by WithdrawRule3 in ContractBanklO (Table 6.15),
and SYS2 evolves from SYS by BalanceRule2 in ContractBank9 (Table 6.14).
SYS3 can be achieved in evolving either from ContractBank9 by WithdrawRule4,
or from ContractBankl 0 by WithdrawRule4 and BalanceRule2. Comparing
Figure 6.11 and Figure 6.9, the difference is in the evolution process from
SYS1 to SYS3 , where changes in WithdrawRule and BalanceRule are required
in the former. The modification of WithdrawRule3 is performed because With­
drawRule3 is supposed to be dependent on the new feature of BalanceRule2
according to the specification.

Given other examples, if the effect of a rule changes but its dependent rules
do not reflect those changes correspondingly, we argue that the evolution is
still well-defined in the sense that the kind of matching can be characterized.
It is the designer's obligation to make sure that contracts are well-designed
and implemented.

ContractBank10

The initial Contract Bank
(Table 6.5)

ContractBank9

Figure 6.11: A More Specific Example for Case 3

111

Master's Thesis- Huan Wang McMaster- Computing and Software

Table 6.14: ContractBank9 with BalanceRule2 and WithdrawRulel

contract ContractBank9
participants

customer : Customer; account : Account;
attributes

double limit = 100.0;
double MIN = 10.0;
boolean lock= false;

coordination
WithdrawRulel:
when*- >> account.withdraw(amount, c) && (customer== c)
with (account .get Balance() > = amount)
failure {
throw new AccountException(account, amount, c,

AccountExceptionTypes.LIMIT _EXCEED ED); }
BalanceRule2:
when *- > > account.getBalance()
after {

if (account.getBalance() +limit < MIN && lock== false) {
lock= true;

}
else if (account.getBalance() +limit >=MIN && lock== true)
{

lock = false;
}

}

end contract

6.4 Summary

In this Chapter, we performed some case studies on a banking example to
instantiate the corresponding concepts and approaches in the previous Chap­
ter. In particular, we demonstrated Exact Pre/Post Match and Plug-in Match
with this example.

112

Master's Thesis-- Huan Wang McMaster- Computing and Software

Table 6.15: ContractBankl 0 with BalanceRulel and WithdrawRule3

contract ContractBanklO
participants

customer : Customer; account : Account;
coordination

WithdrawRule3:
when *- > > account. withdraw(amount, c) && (customer == c)
with (account.getBalance() +limit>= amount)
failure {
throw new AccountException(account, amount +limit, c,

AccountExceptionTypes.LIMIT _EXCEEDED); }
BalanceRulel:
when *- > > account.getBalance()

end contract

113

Master's Thesis - Huan Wang McMaster- Computing and Software

114

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The research in this thesis was motivated by an apparent lack of techniques
to support predictable Software Evolution based on architectures, especially
on architectural connectors. We present an incremental, lightweight approach
which addresses the problem by means of coordination contracts. Several
contributions toward the resolution of this problem have been made.

This thesis has been concerned with the research position of Software Evo­
lution and Software Architecture. Software Evolution is usually defined by
referring to Software Maintenance. Software Maintenance and Software Evolu­
tion are the longest and the most expensive phase in the software development
life cycle, and usually performed after delivery. To enhance the system's ability
to change and save cost, we arrive to the assertion that Software Evolution is
unavoidable, and review a software system as an entity under development as
well as evolution. As the output of the design process, software architectures
describe the structure of a system or a program and its global properties. By
elevating the abstraction level to an earlier phase, we define Software Evolu­
tion by means of architecture re-configuration in terms of evolving operations
on architectural elements, that is, adding, removing, replacing components
and/or connectors, according to the required changes.

Some previous work for modeling Software Evolution have been reviewed
using two main criteria: the representation of changes in architectures and the
mechanism to evolve connectors. The representative work includes Lucena and
Alencar's logical framework, Medvidovic et al. 's architectural type theory and
transformation techniques, including a UML-based Algebraic Graph Rewrit­
ing, and Fiadeiro et al.'s approach. Except for Fiadeiro et al.'s approach,
these approaches either have not an explicit representation of connectors or

115

Master's Thesis - Huan Wang McMaster - Computing and Software

they have not established an effective mechanism for connectors.

We have also conducted another literature survey with the goal of repre­
senting architectural connectors. Connectors deserve to be first-class entities
primarily because they are exactly the corresponding elements which reflect
the increasingly complex business rules and their interactions in the setting
of software architecture. Taxonomies of connector types, notations and tech­
niques for modeling connectors have been discussed extensively. To bridge
the gap between architectural level and implementation level of connectors,
coordination contracts were introduced by Fiadeiro et al. as a realization of
connectors in program architectures. A coordination contract is a modeling
and implementation primitive superposing behaviors on participant compo­
nents that allows "transparent interception" of method calls. The approach
transcends the phases of software design and implementation according to the
definition. We call our approach multiple dimensional since a three-layer archi­
tecture applied on coordination contracts is proposed to separate concerns of
components, connectors and configuration during evolution. For the evolution
of the component dimension, we assume Medvidovic et al. 's work on C2 com­
ponents is constructive, which evolve using subtyping theory as a framework
for reasoning about evolution.

This thesis's major contribution is to provide a foundation for applying
specification matching based methods to contracts to predict software evolu­
tion. We borrow specification matching techniques for components and com­
pose them in an original way that is tailored to our specific needs for coordi­
nation contracts. Change histories which may relate several evolving systems
are characterized to increase the efficiency of the approach. To capture observ­
able behaviors of contracts, we describe pre- and postcondition specification
for coordination contracts using a combination of abstract and CDE language
for contracts. Behavioral relationships between coordination contracts have
been established by a range of matches with various degrees of similarity, such
as Exact Pre/Post Match, Plug-in Match, Relaxed Plug-in Match, Guarded
Generalized Match and Generalized Match. These matches provide support
for preserving the system behaviors in a preferred level and help to control the
evolution in a predictable direction.

7.2 Future Work

We have demonstrated an approach for modeling predicable software evolu­
tion on connectors using coordination contracts. However, the problem of
architecture-based software evolution is by no means completely solved, much
remains to be done.

116

Master's Thesis- Huan Wang McMaster- Computing and Software

• Complements to the Approach
This approach will be extended in various ways in the future. A number
of features that were assumed above, but are not included in this work
could be studied and implemented.

For the component dimension, although Medvidovic et al. 's subtyp­
ing theory to evolve C2 components is proposed to be applied on
participant components being coordinated in contracts, details are
left to explore.

Before we present specification matching, signature matching of
contracts is assumed. To match parameters and their types for
each rule in contracts is still an open issue.

- It will be interesting and worthwhile to find out relevant situations
that our approach does not fully cover. For instance, even though
their specifications mismatch when considering preconditions and
postconditions separately or together, two contracts may be related
in some sense.

- Due to the lack of a logic for contracts corresponding to Hoare logic
and the weakest precondition calculus, the specification matching
approach is short of a precise representation. With such a formal
mapping, we can better answer the question and demonstrate more
case studies.

• Correctness of Coordination Contracts
In this thesis, we characterize a contract in terms of pre- and postcondi­
tion specification because the execution of contracts is basically a set of
sequential activities. However, we have not talked about the correctness
of coordination contracts yet, so that this thesis does not present a sound
way to reason about contracts. Proof obligations might be developed to
show the consistency of contracts. The presentation of mathematical se­
mantics for coordination contracts is based on COMMUNITY, [49, 50, 51]
are some references where this topic is discussed. For knowledge of COM­

MUNITY and Category Theory, referring to [48] and [52] and the like is
advisable.

• Non-Functional Property (NFP)
In Section 4.2 (page 49), we have discussed four levels of contract abstrac­
tion. Coordination contracts are classified into the group of synchroniza­
tion contracts and used primarily to analyze functional properties in this
thesis. The "top" level is the quality-of-service contract, which specifies
all behavioral properties including even NFPs like availability, through­
put, latency and capacity, etc. Since our approach to software evolution

117

Master's Thesis- Huan Wang McMaster- Computing and Software

is based on a three-layer architecture which may have NFPs, further
study in such aspect seems necessary as well.

• Scalability

In Section 3.3.1 (page 40), we state our standpoint in employing coordi­
nation contracts to bridge the gap between specification and implemen­
tation of software architectures, so that our approach is at the detailed
architecture to source code level (Figure 1.2, page 10). However, systems
or applications may further grow in size and complexity because of the
incremental approach of evolution. System scale will pose challenges to a
broad range of software development issues. Thus, scalability is an open
question. Although some case studies have been carried out in Chap­
ter 6, a larger size example to match more complicated contracts is still
needed to make the case more convincing.

• Detecting Invariants
Invariants are one of the indispensable constituents in studies of science of
programming, which is a set of properties that are true over the observed
executions, and prevents changes from violating assumptions for correct
behaviors. We do not address the puzzle in our approach, how to discover
invariants in coordination contracts. Daikon1 is an invariant detector
that discovers them from the code by static analysis and dynamic analysis
in annotated programs. But many popular methods created for programs
may not be applied to contracts directly. In addition, the previously
held invariants may change when introducing more components to the
contract during evolution, which makes the situation more complicated.

• Software Environments
In Section 5.5 (page 78), we suggest FOL or OCL be used to formulate
pre- and postconditions of contracts. Therefore, an matchmaker may
be integrated in CDE 1.1.1 to prove relationships between contracts au­
tomatically. In addition, an evolution manager is proposed to control
system change histories.

1http://pag.csail.mit.edu/daikon/

118

Bibliography

[1] J2EE API specifications. In http:/ /java.sun.com/javaeej.

[2] JAVA API specifications. In http:/ /java.sun.com/javase/.

[3] Software architecture definitions.
architecture/ definitions.html.

In http:/ jwww.sei.cmu.edu/

[4] IEEE Standard 1219: Standard for Software Maintenance. IEEE Com­
puter Society Press, Los Alamitos, CA, 1993.

[5] Personal communication from Dr. Tom Maibaum, 2005-2007.

[6] CDE 1.1.1. http:/ jwww.atxsoftware.com/cde/.

[7] N. Aguirre and T.S.E. Maibaum. A temporal logic approach to
component-based system specification and reasoning. In Proceedings of
the 5th ICSE Workshop on Component-Based Software Engineering, Or­
lando, FL, USA, 2002.

[8] Jonathan Aldrich. Using Types to Enforce Architectural Structure. PhD
thesis, University of Washington, August 2003.

[9] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: Con­
necting software architecture to implementation. In ICSE '02: Proceed­
ings of the 24th International Conference on Software Engineering, pages
187-197, New York, NY, USA, 2002. ACM Press.

[10] PauloS. C. Alencar and Carlos Jose Pereira de Lucena. A logical frame­
work for evolving software systems. In Formal Aspects of Computing,
volume 8, pages 3-46, 1996.

[11] Robert Allen and David Garlan. A formal basis for architectural connec­
tion. In ACM Trans. Softw. Eng. Methodol., volume 6, pages 213-249.
ACM Press, 1997.

119

Master's Thesis - Huan Wang McMaster- Computing and Software

[12] Luis Andrade, Jose Fiadeiro, Joao Gouveia, Georgios Koutsoukos,
Antonia Lopes, and Michel Wermelinger. Coordination patterns for
component-based systems. In Proc. of the 5th Brasilian Symposium on
Programming Languages, 2001.

[13] Luis Andrade, Jose Fiadeiro, Antonia Lopes, and Michel Wermelinger.
Theory and practice of coordination technologies. In A Tutorial at For­
mal Methods Europe 2002, July 2002.

[14] Luis Filipe Andrade and Jose Luiz Fiadeiro. Evolution by contract. In
Proceedings of the ECOOP'OO Workshop on Object-Oriented Architec­
tural Evolution, 2000.

[15] Luis Filipe Andrade and Jose Luiz Fiadeiro. Coordination technologies
for Web-Services. In OOPSLA Workshop on Object-Oriented Web Ser­
vices, 2001.

[16] Luis Filipe Andrade and Jose Luiz Fiadeiro. Agility through coordina­
tion. In Inf. Syst., volume 27, pages 411-424, Oxford, UK, 2002. Elsevier
Science Ltd.

[17] Luis Filipe Andrade and Jose Luiz Fiadeiro. Architecture based evo­
lution of software systems. In Marco Bernardo and Paola Inverardi,
editors, Third International School on Formal Methods for the Design
of Computer, Communication and Software Systems: Software Architec­
tures, SFM 2003, volume 2804 of LNCS, pages 148-182, Bertinoro, Italy,
2003. Springer-Verlag.

[18] Luis Filipe Andrade and Jose Luiz Fiadeiro. Composition contracts
for service interaction. In Journal of Universal Computer Science, vol­
ume 10, pages 375-390, 2004.

[19] Luis Filipe Andrade, Jose Luiz Fiadeiro, Joao Gouveia, and Georgios
Koutsoukos. Separating computation, coordination and configuration.
In Journal of Software Maintenance, volume 14, pages 353-369, New
York, NY, USA, 2002. John Wiley & Sons, Inc.

[20] Luis Filipe Andrade, Jose Luiz Fiadeiro, Joao Gouveia, Antonia Lopes,
and Michel Wermelinger. Patterns for coordination. In G.Catalin-Roman
and A.Porto, editors, COORDINATION'OO, pages 317-322, 2000.

[21] Farhad Arbab. What do you mean, coordination? In March '98 issue of
the Bulletin of the Dutch Association for Theoretical Computer Science
(NVTI), March 1998.

120

Master's Thesis- Huan Wang McMaster- Computing and Software

[22] Ralph-Johan Back, Luigia Petre, and Ivan Porres Paltor. Analysing UML
use cases as contracts. In "UML" '99- The Unified Modeling Language:
Beyond the Standard, Second International Conference, pages 518-533.
Springer Berlin/Heidelberg, 1999.

[23] Ralph-Johan J. Back, Abo Akademi, and J. Von Wright. Refinement
Calculus: A Systematic Introduction. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1998.

[24] Stephanie Balzer, Patrick Th. Eugster, and Bertrand Meyer. Can aspects
implement contracts? In RISE 2005 (Rapid Implementation of Software
Engineering Techniques), Heraklion, Greece, 2005. Springer.

[25] Marco Antonio Barbosa and Luis Soares Barbosa. Specifying software
connectors. In Zhiming Liu and Keijiro Araki, editors, ICTAC, volume
3407 of Lecture Notes in Computer Science, pages 52-67. Springer, 2004.

[26] Leonor Barroca and Jose Luiz Fiadeiro. Coordination contracts as con­
nectors in component-based development. In 6th Bienneal World Con­
ference on Integrated Design & Process Technology, June 2002.

[27] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 2nd edition, 2003.

[28] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and Damien
Watkins. Making components contract aware. In Computer, volume 32,
pages 38-45, Los Alamitos, CA, USA, 1999. IEEE Computer Society
Press.

[29] Grady Booch, James Rumbaugh, and lvar Jacobson. The Unified Mod­
eling Language User Guide. Addison Wesley, 2nd edition, 2005.

[30] Jean-Michel Bruel. Service-oriented implementation of component asso­
ciations. In Proceedings of the 2004 Canadian Conference on Computer
and Software Engineering Education, number 189-198. University of Cal­
gary, March 2004.

[31] T. Bures and F. Plasil. Communication style driven connector configu­
rations extended version of "scalable element-based connectors". volume
3026 of LNCS, 2004.

[32] Yonghao Chen and Betty H. C. Cheng. A semantic foundation for
specification matching. In Gary T. Leavens and Murali Sitaraman, edi­
tors, Foundations of Component-Based Systems, chapter 5, pages 91-109.
Cambridge University Press, NY, 2000.

121

Master's Thesis - Huan Wang McMaster- Computing and Software

[33] Selim Ciraci and Pim van den Broek. Modeling software evolution using
algebraic graph rewriting. In Workshop on Architecture-Centric Evo­
lution (ACE 2006), ACE, Workshop at the 20th European Conference
on Object-Oriented Programming ECOOP 2006 July 3-7, 2006, Nantes,
France, 2006.

[34] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley Professional, first
edition, 2002.

[35] Philippe Collet. Functional and non-functional contracts support for
component-oriented programming (position paper). In David H. Lorenz
and Vugranam C. Sreedhar, editors, Proceedings of the First OOPSLA
Workshop on Language Mechanisms for Programming Software Com­
ponents, pages 19-21, Tampa Bay, Florida, 2001. Technical Report
NU-CCS-01-06, College of Computer Science, Northeastern University,
Boston, MA 02115.

[36] CommUnity Workbench 1.4.
cw14/index.htm.

http:/ jctp.di.fct.unl.pt/"' co/

[37] E. J. Chikofsky Cross and J. H. Reverse engineering and design recovery:
A taxonomy. In IEEE Software, volume 7, pages 13-17, 1990.

[38] Ricardo de Mendonc;a da Silva, Fernando Castor Filho, Paulo Asteria
de C. Guerra, and Cecilia Mary F. Rubira. An architectural approach
for fault-tolerant component composition based on exception handling.
Technical Report IC-04-02, 2004.

[39] Software Evolution Definition. http:/ jwww.program-
transformation.orgjtransform/softwareevolution.

[40] K.K. Dhara and G.T. Leavens. Forcing behavioral subtyping through
specification inheritance. In 18th International Conference on Software
Engineering (ICSE'96), pages 258-267, 1996.

[41] Edsger Wybe Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453-457, 1975.

[42] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1997.

[43] Hong Duan. A comparative study of pre/postcondition and relational
approaches to program development. Master's thesis, McMaster Univer­
sity, 2004.

122

Master's Thesis- Huan Wang McMaster- Computing and Software

[44) Stephane Ducasse and Tudor Girba. Modeling software evolution by
treating history as a first class entity. In Workshop on Software Evo­
lution through Transformation, SETRA 2004, with ICGT2004, volume
Electronic Notes in Theoritical Computer Science, Rome, Italy, 2004.
ENTCS ELSVIER.

[45) Alexander Egyed, Nikunj R. Mehta, and Nenad Medvidovic. Software
connectors and refinement in family architectures. In IW-SAPF-3: Pro­
ceedings of the International Workshop on Software Architectures for
Product Families, pages 96-106, London, UK, 2000. Springer-Verlag.

[46) Huw Evans and Peter Dickman. Zones, contracts and absorbing changes:
An approach to software evolution. In OOPSLA '99: Proceedings of
the 14th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 415-434, New York, NY,
USA, 1999. ACM Press.

[47) Jean-Marie Favre, Reiko Heckel, and Tom Mens. Setra 2006: 3rd work­
shop on software evolution through transformations: Embracing the
change. Natal, Brazil, 2006.

[48) Jose Luiz Fiadeiro. Categories for Software Engineering. Springer­
Verlag, 1998.

[49) Jose Luiz Fiadeiro and Luis Filipe Andrade. Interconnecting objects
via contracts. In Technology of Object-Oriented Languages and Systems,
2001. TOOLS 38., pages 182-183. IEEE Computer Society, 2001.

[50) Jose Luiz Fiadeiro and Antonia Lopes. Semantics of architectural con­
nectors. In TAPSOFT '97: Proceedings of the 7th International Joint
Conference CAAP jFASE on Theory and Practice of Software Develop­
ment, pages 505-519, London, UK, 1997. Springer-Verlag.

[51) Jose Luiz Fiadeiro and Antonia Lopes. Algebraic semantics of coordina­
tion or what is in a signature. In AMAST '98: Proceedings of the 7th
International Conference on Algebraic Methodology and Software Tech­
nology, pages 293-307, London, UK, 1999. Springer-Verlag.

[52) Jose Luiz Fiadeiro and Tom Maibaum. Categorical semantics of parallel
program design. In Sci. Comput. Program., volume 28, pages 111-138,
Amsterdam, The Netherlands, 1997. Elsevier North-Holland, Inc.

[53) Peter Fingar. Component-based frameworks fore-commerce. In Com­
mun. ACM, volume 43, pages 61-67. ACM Press, 2000.

123

Master's Thesis- Huan Wang McMaster - Computing and Software

[54] Bernd Fischer and Gregor Snelting. Reuse by contract. In Proc.
ESEC/FSE- Workshop on Foundations of Component-Based Systems,
pages 91-100, 1997.

[55] Robert W. Floyd. Assigning meanings to programs. In J.T. Schwartz,
editor, Mathematical aspects of computer science, pages 19-32. American
Mathematical Society, 1967.

[56] Robert W. Floyd. The paradigms of programming. Commun. ACM,
22(8):455-460, 1979.

[57] Patrice Gahide, Noury Bouraqadi, and Laurence Duchien. Promoting
component reuse by integrating aspects and contracts in an architecture
model. In Workshop on Aspects, Components, and Patterns for In­
frastructure Software. 1st International Conference on Aspect-Oriented
Software Development (AOSD 2002). University of Twente, Enschede,
The Netherlands, April 2002.

[58] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De­
sign Patterns: Elements of Reusable Object-Oriented Software. Addison­
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[59] David Garlan. What is style? In Proc. First International Workshop
Software Architecture, 1995.

[60] David Garlan. Higher-order connectors. In Proceedings of Workshop on
Compositional Software Architectures, Monterey, California, USA, 1998.

[61] David Garlan. Software architecture: A roadmap. In ICSE- Future of
SE Track, pages 91-101. ACM Press, 2000.

[62] David Garlan. Formal modeling and analysis of software architecture:
Components, connectors, and events. In Marco Bernardo and Paola
Inverardi, editors, Third International School on Formal Methods for the
Design of Computer, Communication and Software Systems: Software
Architectures, SFM 2003, pages 1-24, 2003.

[63] David Garlan and A.J. Kompanek. Reconciling the needs of architectural
description with object-modeling notations. In Proc. of the Third Int.
Conf. on the Unified Modeling Language, 2000.

[64] David Garlan, R. T. Monroe, and D. Wile. Acme: Architectural descrip­
tion of component based systems. In G. T. Leavens Sitaraman and M.,
editors, Foundation of Component-Based Systems. Cambridge University
Press, 2000.

124

Master's Thesis- Huan Wang McMaster- Computing and Software

[65] John C. Georgas, Eric M. Dashofy, and Richard N. Taylor. Architecture­
centric development: a different approach to software engineering. Cross­
roads, 12(4):6-6, 2006.

[66] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2002.

[67] J. Gouveia, G. Koutsoukos, M. Wermelinger, L. Andrade, and J.L. Fi­
adeiro. Coordination contracts for Java applications. In ICSE 2002.
Proceedings of the 24th International Conference on Software Engineer­
ing, 2002, pages 714-714, 2002.

[68] Joao Gouveia, Georgios Koutsoukos, Luis Filipe Andrade, and Jose Luiz
Fiadeiro. Tool support for coordination-based software evolution. In
Proceedings of the Technology of Object-Oriented Languages and Sys­
tems, volume 38, pages 184-196, Los Alamitos, CA, USA, 2001. IEEE
Computer Society.

[69] Joao Gouveia, Georgios Koutsoukos, Michel Wermelinger, Luis Filipe
Andrade, and Jose Luiz Fiadeiro. The coordination development envi­
ronment. In FASE '02: Proceedings of the 5th International Conference
on Fundamental Approaches to Software Engineering, pages 323-326,
London, UK, 2002. Springer-Verlag.

[70] David Gries. The Science of Programming. Springer Verlag, New York.

[71] David Gries and Fred B. Schneider. A logical approach to discrete math.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[72] Reiko Heckel, Tom Mens, and Michel Wermelinger. Workshop on
software evolution through transformations: Towards uniform support
throughout the software life-cycle. In ICGT '02: Proceedings of the First
International Conference on Graph Transformation, pages 450-454, Lon­
don, UK, 2002. Springer-Verlag.

[73] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented systems. In OOP­
SLA/ECOOP '90: Proceedings of the European Conference on Object­
Oriented Programming on Object-Oriented Programming Systems, Lan­
guages, and Applications, pages 169-180, New York, NY, USA, 1990.
ACM Press.

[74] Dan Hirsch, Sebastian Uchitel, and Daniel Yankelevich. Towards ape­
riodic table of connectors. In COORDINATION '99: Proceedings of the

125

Master's Thesis- Huan Wang McMaster- Computing and Software

Third International Conference on Coordination Languages and Models,
page 418, London, UK, 1999. Springer-Verlag.

[75] C. A. R. Hoare. An axiomatic basis for computer programming. In
Commun. ACM, volume 12, pages 576-580, New York, NY, USA, 1969.
ACM Press.

[76] Paola Inverardi and Henry Muccini. Coordination models and software
architectures in a unified software development process. In Coordination
Languages and Models: Fourth International Conference, COORDINA­
TION 2000, pages 323-328. Springer Berlin/Heidelberg, 2000.

[77] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley
Schmerl, and Jaime Rodrigo Oviedo Silva. Documenting component
and connector views with UML 2.0. Technical Report CMU /SEI-2004-
TR-008, Carnegie Mellon University, 2004.

[78] Mehdi Jazayeri. On architectural stability and evolution. In Ada-Europe
'02: Proceedings of the 7th Ada-Europe International Conference on Re­
liable Software Technologies, pages 13-23, London, UK, 2002. Springer­
Verlag.

[79] Lin Gu Kevin Sullivan and Yuanfang Cai. Non-modularity in aspect­
oriented languages: Integration as a crosscutting concern for aspectj. In
AOSD '02: Proceedings of the 1st International Conference on Aspect­
Oriented Software Development, pages 19-26, New York, NY, USA, 2002.
ACM Press.

[80] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220-242. Springer-Verlag, Berlin, Hei­
delberg, and New York, 1997.

[81] Jussi Koskinen. Software maintenance costs, http:/ /www.cs.jyu.fi/
rvkoskinen/smcosts.htm. Updated Sept. 28, 2004.

[82] Georgios Koutsoukos, Joao Gouveia, Luis Filipe Andrade, and Jose Luiz
Fiadeiro. Managing evolution in telecommunication systems. pages 133-
140. Kluwer, B.V., 2001.

[83] Georgios Koutsoukos, T. Kotridis, Luis Filipe Andrade, Jose Luiz Fi­
adeiro, Joao Gouveia, and Michel Wermelinger. Coordination technolo­
gies for business strategy support: A case study in stock trading. In
Proc. of the ECOOP Workshop on Object-Oriented Business Solutions,
pages 41-52, 2001. Invited paper.

126

Master's Thesis - Huan Wang McMaster- Computing and Software

[84] Philippe Kruchten. Architectural blueprints-the "4+ 1" view model of
software architecture. In IEEE Software, volume 12, pages 42-50, 1995.

[85] Kevin Lano and Jose Luis Fiadeiro. Extending UML with coordination
contracts. In Software and Systems Modeling, volume 5, pages 110-120,
2006.

[86] Kevin Lano, Jose Luiz Fiadeiro, and Luis Andrade. Software Design
Using Java 2. Palgrave macmillan, 1st edition, 2002.

[87] M. M. Lehman. Laws of software evolution revisited. In EWSPT '96:
Proceedings of the 5th European Workshop on Software Process Technol­
ogy, pages 108-124, London, UK, 1996. Springer-Verlag.

[88] M. M. Lehman and L. A. Belady. Program Evolution: Processes of
Software Change. Academic Press Professional, Inc., 1985.

[89] M. M. Lehman and J. F. Ramil. An approach to a theory of software
evolution. In IWPSE '01: Proceedings of the 4th International Workshop
on Principles of Software Evolution, pages 70-74, New York, NY, USA,
2001. ACM Press.

[90] M.M. Lehman. Software's future: Managing evolution. In IEEE Soft­
ware, volume 15, pages 40-44, 1998.

[91] Barbara H. Liskov. Keynote address - data abstraction and hierarchy.
In OOPSLA '81: Addendum to the proceedings on Object-Oriented pro­
gramming systems, languages and applications (Addendum), pages 17-
34, New York, NY, USA, 1987. ACM Press.

[92] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. In ACM Trans. Program. Lang. Syst., volume 16, pages 1811-
1841, New York, NY, USA, 1994. ACM Press.

[93] Antonia Lopes, Michel Wermelinger, and Jose Luiz Fiadeiro. Higher­
order architectural connectors. In ACM Trans. Softw. Eng. Methodol.,
volume 12, pages 64-104, New York, NY, USA, 2003. ACM Press.

[94] C. J. P. Lucena and P. S. C. Alencar. A formal description of evolv­
ing software systems architectures. In Sci. Comput. Program., vol­
ume 24, pages 41-61, Amsterdam, The Netherlands, 1995. Elsevier
North-Holland, Inc.

[95] Nenad Medvidovic. Architecture-Based Specification-Time Software Evo­
lution. PhD thesis, University of California, Irvine, 1999.

127

Master's Thesis- Huan Wang McMaster- Computing and Software

[96] Nenad Medvidovic, Eric Dashofy, and Richard N. Taylor. Moving archi­
tectural description from under the technology lamppost. In Information
and Software Technology, volume 49, pages 12-31, 2007.

[97] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Ja­
son E. Robbins. Modeling software architectures in the Unified Model­
ing Language. In ACM Trans. Softw. Eng. Methodol., volume 11, pages
2-57, New York, NY, USA, 2002. ACM Press.

[98] Nenad Medvidovic, DavidS. Rosenblum, and Richard N. Taylor. Alan­
guage and environment for architecture-based software development and
evolution. In ICSE '99: Proceedings Of the 21st International Confer­
ence On Software Engineering, pages 44-53, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

[99] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A
type theory for software architectures. Technical Report UCI-ICS-98-14,
Dept. of Information and Computer Science, University of California,
Irvine, April, 1998.

[100] Nenad Medvidovic and Richard N. Taylor. A classification and compar­
ison framework for software architecture description languages. In IEEE
Trans. Softw. Eng., volume 26, pages 70-93. IEEE Press, 2000.

[101] Nikunj Mehta and Nenad Medvidovic. Understanding software connec­
tor compatibilities using a connector taxonomy. In First Workshop on
Software Design and Architecture 2002, 2002.

[102] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a
taxonomy of software connectors. In ICSE '00: Proceedings of the 22nd
International Conference on Software Engineering, pages 178-187, New
York, NY, USA, 2000. ACM Press.

[103] Tom Mens, Kim Mens, and Roel Wuyts. On the use of declarative
meta programming for managing architectural software evolution. In
Proceedings of the ECOOP'2000 Workshop on Object-Oriented Archi­
tectural Evolution, 2000.

[104] Tom Mens and Michel Wermelinger. Formal foundations of software
evolution: Workshop report. In SIGSOFT Softw. Eng. Notes, volume 26,
New York, NY, USA, 2001. ACM Press.

[105] Bertrand Meyer. Applying "design by contract". In Computer, vol­
ume 25, pages 40-51, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

128

Master's Thesis - Huan Wang McMaster- Computing and Software

[106] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
2nd edition, 1997.

[107] Tommi Mikkonen. The two dimensions of an architecture. In A position
paper in First Working IFIP Conference on Software Architecture, San
Antonio, Texas, USA, February 22-24 1999.

[108] Richard Mitchell and James McKim. Extending a method of devis­
ing software contracts. In TOOLS '99: Proceedings of the 32nd Inter­
national Conference on Technology of Object-Oriented Languages, page
234, Washington, DC, USA, 1999. IEEE Computer Society.

[109] Ana Moreira, Luis Filipe Andrade, and Jose Luiz Fiadeiro. Evolving
requirements through coordination contracts. In J. Eder and M.Missikoff,
editors, CAiSE 2003, volume 2681 of LNCS, pages 633-646. Springer­
Verlag Berlin Heidelberg, 2003.

[110] Jason E. Robbins Nenad Medvidovic, Peyman Oreizy and Richard N.
Taylor. Using Object-Oriented typing to support architectural design in
the C2 style. In SIGSOFT '96: Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 24-32, New
York, NY, USA, 1996. ACM Press.

[111] Oscar Nierstrasz. Software evolution as the key to productivity. In
A. Knapp M. Wirsing Balsamo and S., editors, Radical Innovations of
Software and Systems Engineering in the Future, volume 2941 of LNCS,
pages 274-282. Springer-Verlag, 2004.

[112] OBLOG. http:/ /www.oblog.pt/.

[113] OCL. In http:j jwww. om g. orgjtechnologyj documents/
modeling_spec_catalog. htm.

[114] Cristovao Oliveira and Michel Wermelinger. The CommUnity workbench
user manual for version 1.4. 2005.

[115] OMG. OMG Unified Modeling Language specification, 2003.

[116] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.
Architecture-based runtime software evolution. In Software Engineer­
ing, 1998. Proceedings of the 1998 (20th) International Conference, pages
177-186, Kyoto, Japan, 1998. IEEE Computer Society.

[117] Jens Palsberg and Michael I. Schwartzbach. Three discussions on object­
oriented typing. In SIGPLAN OOPS Mess., volume 3, pages 31-38, 1992.

129

Master's Thesis - Huan Wang McMaster- Computing and Software

[118] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. In Commun. ACM, volume 15, pages 1053-1058, New
York, NY, USA, 1972. ACM Press.

[119] David Lorge Parnas. Designing software for ease of extension and con­
traction. In ICSE '78: Proceedings of the 3rd International Conference
on Software Engineering, pages 264-277, Piscataway, NJ, USA, 1978.
IEEE Press.

[120] David Lorge Parnas. Software aging. In ICSE '94: Proceedings of the
16th International Conference on Software Engineering, pages 279-287,
Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[121] John Penix and Perry Alexander. Toward automated component adap­
tation. In The Ninth International Conference on Software Engineering
and Knowledge Engineering, pages 535-542. Knowledge Systems Insti­
tute, June 1997.

[122] John Penix and Perry Alexander. Efficient specification-based compo­
nent retrieval. In Automated Software Engineering, number 6, pages
139-170, 1999.

[123] John Penix, Phillip Baraona, and Perry Alexander. Classification and
retrieval of reusable components using semantic features. In Know ledge­
Based Software Engineering Conference, Proceedings, 10th, pages 131-
138, 1995.

[124] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of
software architecture. In SIGSOFT Softw. Eng. Notes, volume 17, pages
40-52, New York, NY, USA, 1992. ACM Press.

[125] Benjamin C. Pierce. Basic Category Theory for Computer Scientists.
MIT Press, Cambridge, MA, USA, 1991.

[126] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, USA, 2002.

[127] Kenneth H. Rosen. Discrete mathematics and its applications (2nd ed.}.
McGraw-Hill, Inc., New York, NY, USA, 1991.

[128] Roshanak Roshandel, Andre VanDer Hoek, Marija Mikic-Rakic, and Ne­
nad Medvidovic. Mae-a system model and environment for managing
architectural evolution. ACM Trans. Softw. Eng. Methodol., 13(2):240-
276, 2004.

130

Master's Thesis -- Huan Wang McMaster- Computing and Software

[129] Roshanak Roshandel and Nenad Medvidovic. Relating software com­
ponent models. USC Technical Report USC-CSE-2003-504, Center for
Systems and Software Engineering, University of Southern California,
Los Angeles, CA, March 2003.

[130] Medha Shukla Sarkar, Dorothea Blostein, and James R. Cordy. GXL
- a graph transformation language with scoping and graph parameters.
In Proc. TAGT'98- Theory and Applications of Graph Transformation,
November 1998.

[131] Kamran Sartipi. Software Architecture Recovery based on Pattern Match­
ing. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada,
2003.

[132] H. J. Schneider. A review for specification matching of software compo­
nents. Feb 1998.

[133] Johann Schumann and Bernd Fischer. NORA/HAMMR: making
deduction-based software component retrieval practical. In ABE '97:
Proceedings of the 12th international conference on Automated software
engineering (formerly: KBSE), pages 246-257, Washington, DC, USA,
1997. IEEE Computer Society.

[134] Mary Shaw. Procedure calls are the assembly language of software in­
terconnection: Connectors deserve first-class status. Technical report,
Pittsburgh, PA, USA, 1994.

[135] Mary Shaw and Paul Clements. Toward boxology: Preliminary classifi­
cation of architectural styles. pages 50-54. ACM Press, 1996.

[136] Mary Shaw, Robert DeLine, and Gregory Zelesnik. Abstractions and im­
plementations for architectural connections. In ICCDS '96: Proceedings
of the 3rd International Conference on Configurable Distributed Systems,
Washington, DC, USA, 1996. IEEE Computer Society.

[137] Mary Shaw and David Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[138] Katz Shmuel. A superimposition control construct for distributed sys­
tems. In ACM Trans. Program. Lang. Syst., volume 15, pages 337-356.
ACM Press, 1993.

[139] Anthony J.H. Simons. The theory of classification, part 4: Object types
and subtyping. In Journal of Object Technology, volume 1, pages 27-35,
November-December 2002.

131

Master's Thesis - Huan Wang McMaster- Computing and Software

[140] Douglas R. Smith. Top-down synthesis of divide-and-conquer algorithms.
Artificial Intelligence, 27(1):43-96, 1985.

[141] Ian Sommerville. Software Engineering. Addison Wesley, 7th edition,
2004.

[142] Clemens Szyperski. Component Software - Beyond Object-Oriented
Programming. Addison-Wesley and ACM Press, first edition, 1998.

[143] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson,
E. James Whitehead Jr., and Jason E. Robbins. A component- and
message-based architectural style for GUI software. In ICSE '95: Pro­
ceedings of the 17th International Conference on Software Engineering,
New York, NY, USA, 1995. ACM Press.

[144] Herbert Toth. On theory and practice of assertion based software de­
velopment. In Journal of Object Technology, number 2, pages 109-130.
ETH Zurich, Chair of Software Engineering, 2005.

[145] Axel van Lamsweerde. Formal specification: A roadmap. In ICSE '00:
Proceedings of the Conference on The Future of Software Engineering,
pages 147-159, New York, NY, USA, 2000. ACM Press.

[146] Michel Wermelinger and Jose Luiz Fiadeiro. Algebraic software architec­
ture reconfiguration. In Proc. ESEC/SIGSOFT FSE 1999, pages 393-
409. Springer-Verlag, 1999.

[147] Michel Wermelinger and Jose Luiz Fiadeiro. A graph transformation
approach to software architecture reconfiguration. In Sci. Comput. Pro­
gram., volume 44, pages 133-155. Elsevier North-Holland, Inc., 2002.

[148] Michel Wermelinger and Cristovao Oliveira. The CommUnity work­
bench. In ICSE '02: Proceedings of the 24th International Conference on
Software Engineering, pages 713-713, New York, NY, USA, 2002. ACM
Press.

[149] Amy Moormann Zaremski and Jeannette M. Wing. Specification match­
ing of software components. In ACM Trans. Softw. Eng. Methodol., vol­
ume 6, pages 333-369, New York, NY, USA, 1997. ACM Press.

132

Index

7!"-calculus, 44
.NET, 59

Algebraic Graph Rewriting, 25
Application Programming Interface

API, 38, 57
architectural pattern, 33
Architectural Style, 32, 48
Architectural Type Theory

arbitrary subclass, 18
behavior conformance, 18
interface conformance, 18
monotone subclassing, 18
name compatibility, 18
Strictly monotone subclassing, 18

Architecture Description Language
ADL, 12, 39

ArchJ ava, 40
ArchStudio, 24
Aspect Oriented Programming

AOP, 47, 64
Aspect-Oriented Programming

AOP, 49
assertion, 72

BlueJ, 48

C2
ADL, 18
architecture style, 18, 20
Component, 20
Connector, 22
evolving framework, 22
substrate independence, 20, 24

Category Theory, 28, 44
class loader, 36
co-algebra, 44
Common Object Request Broker Ar­

chitecture
CORBA, 59

Communicating Sequential Processes
CSP, 39,44

CommUnity, 28-29, 44, 52, 117
commute, 26
Component-Based Software Develop­

ment
CBSD, 9, 64

Components, 11
Connector, 11

Bures's Types, 33
connector type

definition, 32
definition, 31
First-Class Citizenship, 31

benefits, 32
Mehta et al.'s Taxonomy, 34
Notations, 38
Taxonomy, 32

constant, 55
constructor, 57
Contract

abstraction levels, 49
basic contract, 50
behavioral contract, 50
quality-of-service contract, 50
synchronization contract, 50

Design by Contract

133

Master's Thesis- Huan Wang

DbC, 49, 59
Design by Contract, DbC, 46

contract predicate, 91
contravariance, 83
Coordination Contract, 29

association contract, 52
Contract

definition, 46
Coordination

definition, 45
dynamic behavior, 68
introduction, 4 7
invariant, 55, 7 4, 75, 118
micro-architecture, 59-63
notations, 52

graphical, 52

McMaster- Computing and Software

double-pushout, 29

Eiffel, 50
equivalence match, 81
Exact Pre/Post Match, 81

feasible output, 86
Finite State Machine

FSM, 68
First Order Logic

FOL, 20, 44, 72, 79, 118
Formal Specification

definition, 72
Forward Engineering, 8
forward engineering, 9
framework, 32

textual, 53 Generalized Match, 91
patterns, 59 Generic Predicate Match, 91
patterns for components, 60 graph formalism
patterns for coordination contracts, category theory, 25

61 model transformation, 25
static behavior, 68 term rewriting, 25
three-layer architecture, 51 Graph Transformation Language

computation layer, 51 GXL, 26
configuration layer, 51 Graphical User Interface
coordination layer, 51 GUI, 20, 35

Coordination Development EnvironmentGuarded Generalized Match, 88
CDE, 53, 63

covariance, 83
cross-cutting, 49
currying, 78

declarative specification, 52, 68
design, 48
Design Pattern, 4 7, 48

Chain-of-responsibility, 61
Proxy, 60

determinism, 86
Distributed Component Object Model

DCOM, 59
Domain N arne System

DNS, 36
domain translator, 23

high-order connector, 38
Hoare logic, 72, 91
Hoare triple, 72

idiom, 33
IEEE Standard

1219, 6
information hiding, 5
Integrated Development Environment

IDE, 48
Interface Definition Language

IDL, 50
Interface Description Language

IDL, 12
invariant, 21, 46, 59, 73

134

Master's Thesis- Huan Wang

J2EE, 31
Java, 25, 36, 40, 48, 53-56, 63, 65, 66,

72, 74, 75, 79
joint effect, 76

Kruchten "4+1" view, 11
development view, 11
logical view, 11
physical view, 12
process view, 12
scenario view, 12

legal input, 86
Liskov Substitution Principle

LSP, 73, 75, 79, 83
Logical Framework, 15
logical operator, 78

equivalence, 78
implication, 78
reverse implication, 78

Mae, 24
middleware, 9
Model-Driven Architecture

MDA, 64
Module Interconnection Language

MIL, 12
morphism, 25

Non-Functional Property, 9, 50
NFP, 117

Object Constraint Language
OCL, 50, 79, 118

OBject LOGic
OBLOG, 53

Object-Oriented Design
OOD, 47, 97

McMaster- Computing and Software

partial order match, 84
Platform-Independent Model

PIM, 64
Platform-Specific Model

PSM, 64
Plug-in Match, 83
PO Set

Partially Ordered Set, 44
postcondition, 18, 21, 44, 46, 50-51,

59, 66, 68, 72-94
precondition, 18, 21, 44, 46, 50-51, 59,

66, 68, 72-94
predicate transformer, 91
process algebra, 39, 44
pushout, 25

Re-engineering, 8
refactor, 8
Relaxed Plug-in Match, 86
Remote Procedure Call

RPC, 34, 38
Reverse Engineering, 8

Separation of Concerns, 56
SoC, 49

sequence diagram, 63
signature matching, 78, 87
Software Architecture

definition, 11
Software Evolution, 5

definition, 7, 13
design time, 10
dynamic, 8
granularity, 8
how, 9
Laws of, 5

Object-Oriented Programming Language
OOPL, 23, 48, 50, 63

modeling, 15
pre-execution time, 10
run time, 10

operational specification, 68

paradigm
programming language, 49, 65

static, 8
what and why, 9

Software Maintenance, 6
cost, 7

135

Master's Thesis- Huan Wang

definition, 6
functionality, 6

specification
partial, 86
total, 86

specification matching, 78
subtyping, 18
superimposition, 45
superposition, 45

temporal logic, 68
theorem prover, 16
total correctness, 72, 79, 87
transformation, 25
transformation formalism, 25

model transformation, 25
program transformation, 25

type coercion, 78

UniCon, 39
Unified Modeling Language

McMaster- Computing and Software

UML, 12, 25, 27,29,41-44,52, 54,
64-66, 75, 79, 97

association class, 4 7, 49
Behavior Diagram, 41
Interaction Diagram, 42
Structure Diagram, 41

UNITY, 28

Venn diagram, 22

Waterfall model, 6
weakest precondition, 91
white box, 48
Wright, 39

2242 65
136

