GLaDOS

GLaDOS: INTEGRATING EMOTION-BASED BEHAVIOURS
INTO NON-PLAYER CHARACTERS IN COMPUTER
ROLE-PLAYING GAMES

BY
GENEVA SMITH, B.Eng.

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTING & SOFTWARE
AND THE SCHOOL OF GRADUATE STUDIES
OF MCMASTER UNIVERSITY
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

(© Copyright by Geneva Smith, April 2017
All Rights Reserved

Master of Applied Science (2017) McMaster University
(Computing & Software) Hamilton, Ontario, Canada

TITLE: GLaDOS: Integrating Emotion-Based Behaviours
into Non-Player Characters in Computer Role-
Playing Games

AUTHOR: Geneva Smith
B.Eng. (Software Engineering & Game Design),

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xiv, 182

11

Lay Abstract

Realistic video game characters are a desirable game component to increase a
game’s value. Even if the game’s ending does not change, realistic character
behaviours encourage players to replay a game multiple times to see what hap-
pens along the way. This is closer to tabletop games where players know the
game’s outcome, but still play because no two sessions are alike. Despite its
advantages, few developments have been made towards realistic game charac-
ters. An easily recognizable factor of human decision-making and behaviour is
emotion and integrating emotion into character design is one way to improve
their realism. The GLaDOS system is a proof-of-concept product that incor-
porates psychological models of emotion into its design. To test its impact
on player engagement, the system was implemented as an extension for the
popular computer game The Elder Scrolls V: Skyrim. Preliminary test results
are promising and show that further development could prove fruitful.

111

Abstract

Non-Player Character (NPC) believability is a game aspect that can be ex-
ploited to increase a game’s replayability, but little research has been con-
ducted on the topic. One method for enhancing a NPC’s believability is to
integrate human-like behaviours into their design, so that they react to play-
ers in a realistic and interesting way. A large part of human behaviour can
be explained by their emotions; therefore it was selected as the inspiration for
the GLaDOS system.

Two psychological theories of emotion, Lazarus’s cognitive appraisal and
Plutchik’s psycho-evolutionary synthesis, guided the design of the GLaDOS
system, although several components are not unique to these theories. An im-
plementation of the design was created as a “mod” for the popular CRPG The
Elder Scrolls V: Skyrim to test its feasibility within the context of a commer-
cial game. This task required an additional psychological model, PAD space,
to map appraisal values to emotion codes and intensities. Feasibility testing
was done via a user study to determine if the GLaDOS system increases player
engagement when compared to the original game. While the objective analy-
sis found that there were no significant differences between the two versions,
subjective participant responses expressed a strong affinity for the GLaDOS
system. Since player engagement is inherently subjective, it is encouraging
to see positive responses from participants. This indicates that the GLaDOS
system, and NPC believability in general, is one aspect of video games that
has the potential to increase a game’s replayability and should be investigated
further.

v

For Opa
Thanks for everything

Acknowledgements

This thesis would not be possible without a very dedicated group of people.
I would like to thank Dr. Carette for forcing me to re-evaluate many of my
choices throughout the development process and keeping lab meetings enter-
taining. Although he could not stay the whole time, I would also like to thank
Dr. Teather for teaching me how to run proper user studies and showing me
how interesting the human-computer interfaces field is (with the exception of
bezels — no more bezels for me, thanks).

It is always good form to acknowledge your sponsors. Thanks Mom for
kicking me into gear when I needed it and always making sure I am well
fuelled, and thanks Dad for always being happy with my progress and forcing
me to take movie breaks. Thank you Arnie for coming to pick me up when it
is raining out and the rest of my family for always being interested in what I
am doing — the Hamilton Lewandowskis, the Nova Scotian Lewandowskis, the
Texan Lewandowskis, and the honorary Lewandowskis. A big thank you to
Oma and Opa for always motivating me to do well in school and keeping an
ample supply of keilbasa handy.

Finally, any well-oiled machine needs a pit crew. Thank you Omar for
pretending to be clueless to make me feel like I know what I am doing. Thank
you George for keeping Omar in line and making sure I am always up to speed
with all the new games that keep being released when I am actually working.
Thank you Warren for being a Super Genius and blinking lights really fast.
Thank you Krystein for getting us to explore an uncharted city. Thank you
Adam and Sasha for being my supervisor support network. Thanks to all the
members of the McMaster IEEE Student Branch for giving me a place to hide
out in. And a special thank you to Devin for all his support and patience
throughout this journey. It took a while, but we made it (Side note: your
impression of a tea kettle still brings joy to this day).

vi

Contents

Lay Abstract

Abstract

Acknowledgements

Definitions and Abbreviations

1

2

Introduction

Computer Role-Playing Games

2.1
2.2
2.3

Types of Computer Role-Playing Games
Replayability
Conclusion

Non-Player Characters

3.1
3.2
3.3
3.4
3.5
3.6

Companion
Opponent
Ambient
The Role of Agency in Non-Player Character Behaviours . . .
Reacting to the Player
Conclusion

Artificial Intelligence for Non-Player Characters

4.1
4.2
4.3
4.4

Artificial Intelligence for Game Design
Academic Systems of Digital Emotions
Systems for Generating Non-Player Character Emotions

Conclusion

The Psychology of Emotions

5.1
5.2
5.3

Choosing an Approach
A Combination of Theories for Video Games
Conclusion,

vil

iii

iv

vi

xi

\]

14

16
17
17
19
20
21
24

25
25
27
32
35

6 Designing the GLaDOS System 48

6.1 UseCases 49
6.2 Requirements Lo 51
6.3 System Architecture L. 54
6.4 Conclusion 64
7 Implementing the GLaDOS System 67
7.1 Connecting the GLaDOS System to The FElder Scrolls V: Skyrim 68
7.2 Controlling the GLaDOS System (GLorthiem) 69
7.3 ProcessUnit 72
7.4 Emotion State 90
7.5 Behaviour Expression L. 93
7.6 Handling Non-Permanent NPCs 98
7.7 Conclusion 98
8 User Testing the GLaDOS System 102
8.1 Participants 103
8.2 Apparatus 103
83 Procedure 105
84 Design 106
85 Analysis 106
86 Discussion 108
87 Conclusion 112
9 Conclusion 114
9.1 Applications of the GLaDOS System 117
9.2 Future Work 118
A List of Games 120

B Software Requirements Document for the GLaDOS System 124

B.1 Project Drivers 124
B.2 Project Constraints 126
B.3 Functional Requirements 135
B.4 Non-Functional Requirements 144
B.5 Project Issues oo 164
C Documentation for User Study Participants 169
C.1 Participant Questionnaires 169
C.2 Consent Form 171

Viil

List of Figures

2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
3.5
5.1
6.1
6.2
6.3
6.4
6.5
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
8.4
B.1
B.2

Dialogue skills and options in Mass Effect
BioWare’s Mass Effect 2 Player Choice Consequences
Major skills and level progression in The Elder Scroll series . .
Avatar progression in Grinding Gear’s Path of Fxile
Comparing Dungeon Crawler CRPGs
Examples of companion NPCs
Examples of opponent NPCs
Examples of ambient NPCs
No reaction to “famous” player in Mass Effect
NPC Responses to the Player in The Elder Scrolls V: Skyrim

Plutchik’s Emotion Solid
Main Architecture Units in the GLaDOS Design
Process Unit Components
Emotion State Components
Behaviour Expression Components
Complete GLaDOS Architecture
Internal Control Class
Process Unit Classes
Detection System Classes
Player Classes in the Process Unit
Emotion State Classes
Behaviour Expression Classes
Classes for NPCs Created After System Initialization
Pre-experiment participant responses
User Study Hardware Setup
Normal Plots for Dependant Variables
Participant Preference for Test Condition
External system events
Use cases across the product boundary

1X

List of Tables

6.1 Plutchik’s Opponent-Pairs of Emotion

7.1 Emotion codes and dimension sign assignments

Definitions and Abbreviations

Definitions

Agency The capacity to act independently and make choices

Agent An autonomous computer system that observes and reacts to
its environment; an NPC is a type of agent

Boss An opponent NPC with capabilities that exceed those of other
opponent NPCs previously encountered by the player; defeat-
ing them yields rewards, such as items or game narrative ad-
vancement

Build In a dungeon crawler game, a build describes the collection of
attributes and abilities that comprise a particular character

Cell In video game design, levels are built on a grid layout; one
unit of this grid is a cell

Challenge With respect to video games, a challenge is a set of goals
presented to the player that they are tasks with completing;
challenges can test a variety of player skills, including accu-
racy, logical reasoning, and creative problem solving

Cognition The mental action or process of acquiring knowledge and un-

Dialogue Tree

derstanding though thought, experience, and senses

A game mechanic that allows players to select conversation
points that can result in different responses from, or affect
future interactions with, and NPC

Dungeon Master

A player that is responsible for arbitrating and moderating a
role-playing game

x1

Emergent Narrative

Escapism

Stories that are not authored by people, but are generated
from player interactions and the underlying systems that gov-
ern gameplay

Seeking distraction and relief from reality by indulging in en-
tertainment or fantasy

Experience Points

A measure of an avatar’s growth; accumulating a specific
number of points resulting in an avatar’s level advancement

Game Designer

Game Lore

Game World

Genre

Level Design

A general term referring to anyone whom participates in the
creation of a game

The foundation of a game’s narrative, including world mythol-
ogy and legend, history, and social structures

The fictional universe associated with a game, including the
environment, peoples, lore, and history

A family of games that have common game challenges and
scenarios

A stage in the game development cycle that generates the
game environment and associated challenges

Multi-Player Game

A game designed for two or more human players; computer
controlled characters might be present

Player Experience

Quest

Replayability

An experience, designed into a game, that is presented to the
player; each player experience is unique due to the players
and how they interpret the design

An in-game task assigned to the player that might be manda-
tory to proceed

Describes a game’s potential for continued play after its main
game challenges are completed the first time

Single-Player Game

A game designed for a single human player; computer con-
trolled characters might be present

xii

Social Learning

Learning that occurs through observation or direct instruction
in a social context

Suspension of Disbelief

A willingness to suspend one’s rational thinking and logic in
favour of enjoyment

Thalamus A brain structure responsible for sensory processing and mo-
tor signals

Turing Test A test for computer intelligence with the goal of tricking the
human evaluator such that they are unable to distinguish the
computer’s responses from those of a human

Upgrade In games, upgrades refer to the improvement of equipment
and items either by enhancement or replacement

Visceral Relating to the internal organs, especially those found in the
trunk of the body

Video Game An electronic game requiring human interaction to generate
visual feedback that is displayed on a video device such as a
TV or computer monitor

Abbreviations

Al Artificial intelligence

CRPG Computer Role-Playing Game

DM Dungeon Master

GUI Graphical User Interface

HP Hit Points, normally referring to a game character’s health

LOS Line Of Sight

MMORPG Massively Multiplayer Online Role-Playing Game

Mod Modification, specifically referring to player generated content

NPC Non-Player Character

PC Personal Computer

Xlil

PLG Procedural Level Generation
RPG Role-Playing Game

Ul User Interface

X1v

Chapter 1

Introduction

Many video games lack the appeal or replayability of traditional board games
because of limited variation between consecutive playthroughs. This can be
caused by a number of factors, including linear story-telling (Riedl, 2005),
the reuse of game challenges, and predictable Non-Player Character (NPC)
behaviours (Jacobs et al., 2005; de Jong et al., 2005; Spronck, 2005). Tradi-
tional board games have a high replayability value due to interactions between
human opponents, which can react and evolve over the duration of a game,
an aspect absent in many video games. The absence of other human players
could be partially alleviated in other aspects of a video game through the use
of artificial intelligence (AI). In the game industry, Al typically refers to the
systems used to create computerized opponents, but also includes methods
for strategy formulation, pathfinding, natural language parsing and genera-
tion, pattern recognition, and the simulation of people and creatures (Adams,
2010). There are tools that could be used to build more sophisticated game
Al such as neural networks and cognitive systems, but many developers do
not take advantage of them. This can be attributed to risk management, as
well as time, knowledge, and resource constraints.

Despite low adoption rates of new Al techniques in the game industry,
substantial research has been done towards game Al in academia that can
learn combat strategies based on past games and stored models (Bakkes et al.,
2005; Marthi et al., 2005; Maclin et al., 2005; Molineaux et al., 2005; Sanchez-
Pelegrin and Diaz-Agudo, 2005; Ponsen et al., 2006; Schadd et al., 2007; Ponsen
et al., 2007; Ponsen, 2004; Spronck et al., 2004b; Bakkes et al., 2009) and Al
that scales the difficulty of game challenges to match the player’s displayed
skill (Spronck et al., 2004a; Bostan and Ogiit, 2009; Andrade et al., 2005;
Aponte et al., 2009; Hunicke and Chapman, 2004; Spronck et al., 2003). Com-
paratively little research has been conducted on other factors that can influence
a human player for use in video games such as the inclusion of self-interest and
attention in decision-making strategies (Gal et al., 2005; Kondeti et al., 2005).

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

This might be due to a difference in game focus. For example, Computer
Role-Playing Games (CRPGs) often use Al systems to improve their combat
and exploration components, while ignoring the socialization aspect found in
traditional Role-Playing Games (RPGs). However, part of the appeal of RPGs
is to take on a persona and experience the reactions of other players to the
chosen role.

The successful integration of an Al technique into a game heavily depends
on the type of game under development. Games can be grouped into families,
called genres, which share common game challenges, mechanics, and scenarios.
It might not be possible to design a universal emotion processing Al that works
well for all game genres. Therefore, CRPGs were chosen to narrow the design
focus.

The RPG genre began with the popular tabletop game Dungeons é Drag-
ons where a Dungeon Master (DM), another player, lead a group of players
through a fictional scenario. Unlike their tabletop versions, CRPGs are usu-
ally single-player games where the role of other human players is assigned to
computerized agents. Even though CRPGs are easier to manage and are more
convenient for single players, the socialization aspect is hindered due to the
absence of other human players. Unlike human players, story management and
NPC behaviours are limited by the game script and are unable to adapt well
to the current situation or to the player’s actions. Computers are now able
to handle more simultaneous tasks of a higher complexity, and this will only
continue to improve with further technological improvements. This presents a
chance to improve the player’s experience by creating more sophisticated Al.

Similar to their tabletop counterparts, CRPGs are appealing to players that
enjoy taking on a role in the game world which guides their decisions within it.
Despite being a common element for players to interact with, NPCs often do
not have a mechanism for tailoring encounters to the player’s chosen role that
is comparable to humans. The decision to ignore advances in computing that
could be used to create socially adaptive NPCs does not match the adoption
rate of other technological advances for video games, such as graphic and audio
improvements.

When designing NPC behaviours, game designers typically define a discrete
number of situations that involve NPC reactions to the player, and design ap-
propriate behaviours based on those situations. This approach is impractical
for many CRPG designs due to the overwhelming number of game scenarios
that a player might encounter as a result of their in-game choices. Due to
the growing scope of CRPGs resulting from commercial technology develop-
ments, it is becoming more unreasonable to identify every game scenario that
includes the player and NPCs. This low-agency NPC design is detrimental to
CRPGs in particular because they are designed to allow the player to act out
a role. If an NPC is unable to react to the player in a manner that matches

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

the player’s chosen role, they could cause a loss of game engagement and lower
the game’s overall replayability value. High-agency NPC designs, where the
burden of deciding how to react to the player is redistributed to computerized
decision-making, is one method for managing the increasing scale of game de-
velopment while also reinforcing the role-playing aspect of CRPGs by creating
more believable behaviours in development times comparable to low-agency
designs.

There are many ways to create high-agency designs to improve an NPC’s
believability, but it is unlikely that a general solution can be created due to
the variety of potential influences. This makes it necessary to select one aspect
of NPC agency to constrain the design space. NPC socialization behaviour
is a form of computerized decision-making, so it should be possible to model
and build a system that controls NPC behaviours based on their personalities,
social status, and current emotion state. These behavioural aspects can collec-
tively influence the believability of an NPC. Human emotion is a good starting
point to explore more believable NPC creation due to their influence over other
aspects of human behaviour and thought process. It is also a good basis for
believable NPC behaviours because emotional displays are easily noticed and
interpreted without additional in-game training.

While methods for improving NPC believability have the potential for in-
creasing the replayability value of video games, very little research has been
done to find reliable techniques and processing structures to improve NPC
agency outside of explicit game challenges such as combat and planning. This
could be partially attributed to a lack of known guidelines for specifying sub-
jective, non-deterministic decision-making processes. It is unlikely that a single
method can be created to encompass every aspect of NPC believability, so the
problem scope was restricted to enabling the creation of more realistic NPCs
responses to their surroundings.

This thesis presents the GLaDOS system, named after one of the main
characters in Valve’s Portal games, an Al system for games to improve an
NPC’s believability via the assignment of emotion simulation mechanisms to
influence the NPC’s behaviours. System specifications were defined by com-
bining elements from psychological models of emotion, software engineering
techniques, and game design principles. Even though it was based on psycho-
logical models, it was designed to be easily understood by non-experts so that
it appears to be more reliable and easy to use. Another goal of the GLaDOS
system was a modular design such that it can be easily extended to suit the
needs of different game designs while also being integrable into exiting games.
Performance was also a concern during the GLaDOS system’s development
so that it would be more acceptable to include in the computationally de-
manding game environment. The GLaDOS system does not currently contain
any unpredictable computations, so it can be systematically tested for errors to

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

confirm its stability after the game’s release. The development of the GLaDOS
system resulted in several contributions including:

e A brief analysis of replayability and methods for increasing its value with
respect to different CRPG types

e A loose taxonomy of NPC types based on their assigned game roles, the
role of agency in an NPC’s design, and the examples of typical NPCs
reactions to players in each of the CRPG types

e An overview of current game Al design approaches used in industry and
an analysis of emotion simulation systems created in academia

e An examination of psychological models using a software engineering
approach to determine if they could be used in a software design speci-
fication

e The design and documentation of a computerized architecture based on
psychological models; selection criteria included ease of digitization and
the ability to extend architecture components

e An implementation of the proposed design demonstrating its feasibility
as a game design tool for the specified host game, The Elder Scrolls V:
Skyrim

e The design and execution of a user study to determine if the result-
ing system improved player engagement and enjoyment; following the
study, participants expressed an interest in further play sessions with

the GLaDOS system

Since this is a multi-disciplinary task, several key concepts must be ex-
plored before a specification for the GLaDOS system can be created. Game
design background knowledge discussed includes the types of CRPGs and how
replayability is approached in each, and NPC types and agency as it relates to
reacting to the player. The current state of NPC believability implementations
and approaches as it pertains to emotions is explored by examining both in-
dustry methods for Al creation, and academic approaches towards emotional
systems. Analysed academic system included design for research as well as
games. After the foundation has been set, the GLaDOS system design be-
gan by examining well-known psychological models of emotion to determine
which, if any, could be used to create a computerized model for video games.
The selected theories became the basis for the GLaDOS design itself, which
is presented as a game-agnostic software architecture to improve its portabil-
ity between applications. To test the proposed design for feasibility and to

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

ensure that it produced the desired results, a proof-of-concept system was im-
plemented for Bethesda’s The FElder Scrolls V: Skyrim on PC. A short user
study was conducted to collect preliminary reactions from people who have
previously played The Elder Scrolls V: Skyrim to determine its viability as a
game element.

Although the GLaDOS system was designed to improve a game’s replaya-
bility, there is no direct way to measure this quantity because it is heavily influ-
enced by the player’s subjective perception. Instead, indirect measurements,
or indicators, of player engagement were used to determine if the GLaDOS
system has the potential to increase a game’s replayability value. One factor
that affects replayability, player engagement is a measure of how engrossed a
player is in a game which can be used to predict how long they will play in
a single session. This can be used to partially describe a player’s enjoyment
which is one of the biggest factors affecting game replayability. The collected
data proved to be promising, demonstrating that further exploration into this
type of Al development could be beneficial in future game projects.

Chapter 2

Computer Role-Playing (Games

Video games have the potential to provide a means of wish fulfilment or es-
capism (Kremers, 2009), so it is important to seriously consider the user expe-
rience in a game’s design. The type of wish fulfilment desired is not universal
— not everyone will find the same experiences enjoyable. This means that
designers must be aware of their target audience to ensure that they include
expected elements and challenges. However, if a game wants to appeal to as
many different players as possible, it must include a variety of game challenges
without making them mandatory. Role-playing games (RPGs) are unique
because they provide the player with a loose framework, giving them more
freedom regarding how they choose to play. However, a successful RPG must
have a core focus, which means that it will favour at least one type of player
preference over the others.

In traditional pen and paper RPGs, one player is assigned the role of
dungeon master (DM). They are responsible for running and arbitrating the
game in addition to the creation of the game world itself. This includes level
design, non-player character (NPC) generation, and the formulation of quests
and challenges. This arrangement makes it possible for players to explore
actions and game locations that are not part of the original design because the
DM can easily extend their world to accommodate situations that they had
not considered. In computer role-playing games (CRPGs), the role of the DM
is shared among several groups, including game designers (content creation)
and software (running and arbitrating). This enables players to enter a pre-
designed game world when they want rather than waiting for it to be designed
for them each time. It is also easier for players to visualize the world due to the
addition of graphics and audio. However, CRPGs are most commonly designed
as single-player games!, which results in several social activities being lost in
the transition from pen and paper versions, including player conversations,

!Massively Multi-Player Online Role-Playing Games (MMORPGs) such as Blizzard’s
World of Warcraft, are exceptions to this observation.

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

team-oriented behaviour, and impromptu competition. There is also a lack of
accepted models that are designed to support the DM’s capability to extend
and alter the game to suit the players. For example, one method used to adapt
a game to the player is to make most in-game challenges optional because it
allows players to choose which aspects of the game they want to play. However,
this design decision does not have any reliable rules or models that can be used
to produce the same result in different games.

2.1 Types of Computer Role-Playing Games

All CRPGs strive to allow players to decide how they would like to progress
through the game by developing their own role, a task carried over from tradi-
tional RPGs. The player’s chosen role is expressed in the game world through
their avatar, which they can develop over time by distributing “experience
points” collected by completing game challenges (Adams, 2010). While it was
possible to develop a narrative, free-form, and mechanically strong avatar in
traditional RPGs, this multi-faceted developed is currently too complex to be
fully encompassed within any one CRPG satisfactorily. Therefore, game de-
signers have made calculated decisions to ensure that the aspects that their
target players enjoy are still prominent in their CRPG equivalent. Key de-
sign decisions are made based on what type of experience that designers want
to create for the player through the game mechanics (Thiboust, 2013). This
leads to the distinction of three basic CRPG classes: narrative, sandbox, and
dungeon crawler.

2.1.1 Narrative

The focus of narrative CRPGs is game world and story, making them a good
choice for players that enjoy story-driven games and meeting interesting char-
acters. Players are encouraged to develop their avatar as a character-driven
entity such that in-game choices, often in dialogues with other characters, are
directly linked to their chosen character type. Key points in the story appear
as explicit choices, and often require the player to make a social or moral choice
that affects late-game progression. Choices that a player has made in these
sections often accumulate as morality points, with players skewing towards a
“good” character or an “evil” one. This type of mechanic is not new, and has
appeared in games as far back as 19852. However, narrative CRPGs became
more prevalent in the 2000s. More recent narrative CRPGs commonly use
dialogue trees to integrate player choices, making them easier to merge with
the game narrative.

2Nihon Falcom’s Xanadu: Dragon Slayer IT

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

(a) Dialogue related skills

Sufficient "Charm" 5kill == Dialogue option available

-~ I:alm dn“‘un-
-I‘_.

[Signal Ashley to kill Wrex.| We can work this out.

Insufficient "Intimidate" Skill == Dialogue option unavailable

(b) Resulting dialogue options

Figure 2.1: Dialogue skills and options in Mass Effect

As part of the normal levelling progress that players make in RPGs, addi-
tional skills directly relating to available dialogue options might be present to
improve the player’s chance of success in critical game scenarios. If a morality
system is implemented, the availability of such skills is linked to the avatar’s
moral standing. In BioWare’s Mass Effect, the player has the option of per-
suading or killing a team mate in order to progress the narrative, but two op-
tions only become available if the player has sufficient skill points in “Charm”
or “Intimidate” (Figure 2.1).

Another common element of a narrative CRPG is the inclusion of different
game endings that are also dependent on player choices. BioWare’s Mass
Effect 2 is a good example of this mechanic (Figure 2.2). The success of
the final mission has many factors, including crew loyalty and ship upgrades.
The narrative focus is strengthened here because the ability to influence these
factors only becomes possible by speaking with crew members and undertaking
additional side missions that explore their personalities and background.

2.1.2 Sandbox

Player freedom is the focal point of sandbox CRPGs, which are designed for
players that like to explore and experiment. Players are usually presented
with a number of initial avatar choices, such as visual appearance and initial
statistics, before being given the main quest. However, players do not have to
complete this quest to progress the game. They can opt to ignore it entirely
in favour of different side quests, self-directed exploration, or their own goals.
Allowing the player to go through the game world however they want enables

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Figure 2.2: BioWare’s Mass Effect 2 Player Choice Consequences

them to make their own story and try out different in-game challenges with-
out restriction. To support this, many sandbox CRPGs have a more robust
navigation and movement system.

This freedom also allows players to develop their avatar in potentially sub-
optimal ways, such as learning abilities that their avatar does not benefit from.
This type of avatar development is especially apparent in games with avatar
classes which assign bonuses to particular skills such as The FElder Scrolls
IV: Oblivion, where players can only gain levels by improving their major
skills (Figure 2.3a). In The Elder Scrolls V: Skyrim, the traditional avatar
classes were completely removed in favour of eighteen different skills divided
into three types®, allowing players to gain levels by improving any skill (Fig-
ure 2.3b). Theoretically, this new mechanic makes all skills useful to avatar
development. This enhances player freedom by removing penalties previously
incurred for trying skill combinations that are not traditionally used by their
avatar’s assigned class.

2.1.3 Dungeon Crawler

The dungeon crawler CRPG is typically favoured by competitive-minded play-
ers because it focuses on the avatar’s strength and abilities. Players overcome
challenges by improving their avatar’s statistics, such as strength, ability set,
and equipment, usually via combat where opponents award both experience
points and items. A dungeon crawler might not have a story, but it should
include world lore to provide a purpose or guide for avatar development, hints

3Warrior, Mage, and Thief

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

EVEL 70 <
Select a class or create a custom dlass. —
B ! Perks to increase: 35
et Specialization 2

¢ Assassin Magic
Barbarian Wi & Favoral
tlfl Bard Attributes

Personality

2 Battlemage W Willpower

8 Crusader ¢] Major Skills

@ Healer W Destruction
N 0 S Alteration |
By Knight TES Tiusion
2 Mage] Speechcraft i R :
e b Restoration S x
“ Monk Mercantile SMHTHHNG]5
_Nightblade g % Alchenty T

Pilgrim 2 The art'of creating and improving weapons ané armor from raw materials.

(a) Classes in The Elder Scrolls IV: (b) Skill tree in The Elder Scrolls V:
Oblivion Skyrim

Figure 2.3: Major skills and level progression in The Elder Scroll series

for defeating bosses, and clues for locating special items. Players also often
expected to be able to customize their equipment via upgrades.

In Grinding Gear’s Path of Ewile, the player is simply told that they have
been sent into exile on an island and must now survive on their own. Avatars
are improved by defeating opponents, which drop items that can be sold or
equipped, and award experience points. Heavy customization is encouraged
due to the scale of the skill tree (Figure 2.4a), and the ability to modify
equipment with gems that grant additional benefits (Figure 2.4b).

WEAPON CLASS: WAND
PHYSICAL DAMAGE: 370 6
CRITICAL STRIKE CHANCE: 8%
ATTACKS PER SECOND: 130

(a) Skill Grid (b) Equipment Grid

Figure 2.4: Avatar progression in Grinding Gear’s Path of Fxile

10

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

2.1.4 Why is Action not a CRPG Type?

Recently, many CRPG titles have been labelled “action-RPGs”, including the
games discussed here. While the description is not inaccurate, simply calling
them action-RPGs is not as descriptive as the categories named here, and can
lead to confusion about the game’s focus. Even from this brief analysis, it can
be shown that these games differ greatly from each other.

The classification of action-RPG describes how in-game combat is handled.
In an action-RPG, combat is handled in real-time and players must rely on
instinctive decisions and quick movements in order to succeed. In contrast,
turn-based RPGs use turn-based combat mechanics, allowing players to anal-
yse opponents and plan their tactics. It is slower, but does not rely on the
player’s reflexes to be successful. However, the two mechanics of “action” and
“turn-based” can be used in any genre and generally divides all types of games
into two groups.

Consider Grinding Gears’ action-based game Path of Exile and Square
Enix’s turn-based game Final Fantasy X (Figure 2.5). While they do not
share combat mechanics, their core gameplay focus is character progression
via skill acquisition. Instead of being two different games, as their action
and turn-based labels would imply, their core mechanics put them into the
same category — dungeon crawler. Similarly, although the action-RPG label
puts both BioWare’s Mass Effect (narrative) and Bethesda’s The Elder Scrolls
series (sandbox) in the same category, playing each series for a short time shows
that their focus is very different from the other.

2.2 Replayability

A common concern held by game designers is how to keep the player interested
once they complete the main game challenges, causing them to extend their
time investment in the game. This continuation of play, or replayability, is
a game design concept that the GLaDOS system aims to improve. Unfortu-
nately, there is no direct way to impact a game’s replayability value because
it is heavily influenced by player perception. Instead, identifying areas in each
CRPG type that a player might find interesting can be exploited as potential
elements to improve their engagement with the game. If a player becomes suf-
ficiently engaged with a game, they are more likely to continue to play it after
the main challenges are completed. This continuation of play is encouraged
by CRPGs in particular because they encourage players to define and act out
their own role in the game world. This aspect of CRPGs is only limited by
the scope of each individual game’s mechanics.

Most CRPGs inherently have several hours of play time before the player

11

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

B —
o Attack an enemy with eguipped Weapon., el

{(B=attack Yuna 1P 8867 WP 343
SSk\I! ‘ Wakka PP SBHBIMPIHTD
pecia Auron: HP_4a30 MP 113

(¢) Path of Exile — Skill Grid (d) Final Fantasy X — Skill Grid

Figure 2.5: Comparing the Action Dungeon Crawler (Path of Erile, Grinding
Gear Games) and Turn-based Dungeon Crawler (Final Fantasy X, Square
Enix) CRPGs

considers the game beaten, but might still be considered stagnant if the repeat-
able elements have little variation. Game designers have tried several methods
to increase the replayability of CRPGs, but replayability value can also be
player-directed. One method of improving replayability is through the game
design itself. A common method that game designers use to include additional
content and extend the shelf life of their games is a side quest. Depending on
the desired experience, side quests can include non-essential narrative pieces,
item collection, and more difficult combat challenges. However, side quests
are often designed to be defeated once per play through, or, when they can
be played many times, offer little variation between consecutive undertakings.
For example, radiant quests, introduced in The Elder Scrolls V: Skyrim, are
procedurally generated for each of the factions that the player is able to join.
However, only the target and location of each quest are changed. Since the

12

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

underlying mechanic remains unchanged, the replayability value is reduced
because a player can grow bored of it.

Narrative CRPGs inherently have some replayability value due to player
choice points, and are often replayed to see what type of impact different
choices have on the game’s final outcome. NPC opinions, available challenges,
and even the game’s conclusion are candidates for this type of gameplay ex-
tension. However, these options are typically pre-designed to ensure that any
player selection still makes sense within the game’s narrative. This means
that there is still a point at which the player completes the game. Recently,
there has been proposals for emergent narrative (Martens et al., 2014; Chauvin
et al., 2015; Lucat and Haahr, 2015), but there currently is no indication that
this work has been employed in commercial games.

Another mechanic that can improve the replayability of a game is proce-
dural level generation (PLG), where a game level is randomly generated via a
generation algorithm each time the player encounters it. One notable CRPG
series that uses PLG is Atlus’s Shin Megami Tensei: Persona. Integrating
PLG into this series is successful because the randomized generation of each
level is explained within the scope of the game narrative. This tactic might
not be possible for many designs because of the need to integrate it into the
game lore.

Player-directed replayability can be difficult to accommodate, but is po-
tentially the best way to increase a game’s shelf life by allowing players to
create their own experience. Sandbox games explicitly allow players to cre-
ate their own experience by allowing them to define their own objectives and
goals. In The Elder Scrolls series, players often create their own stories and
personalities for their avatars to clearly define how they will dress and act.
Another means for players to personalize their experience is to define jobs
outside of the scripted game, such as being a hunter (killing animals and sell-
ing their pelts) or an alchemist (growing alchemical plants, brewing and selling
potions). The series does not explicitly define these roles, but provides play-
ers with the means to create the role on their own. NPC behaviour becomes
an important feature in this play style, as the player normally expects some
type of acknowledgement or reward for playing their role. Another facet of
player-directed replayability is trying different actions to see how the game
reacts. This can be done implicitly, such as trying different roles to determine
which one they favour, or explicitly to find unusual behaviour or bugs. This
type of player-directed replayability is especially prevalent in dungeon crawler
CRPGs. A good combat customization system can potentially provide count-
ably infinite combinations of equipment and skills, or builds, which players can
create. If the opponents in the game are interesting enough, then players enjoy
defeating them multiple times with different builds to see how they compare.
Players might also challenge themselves by deliberately creating a substandard

13

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

build or try experimenting to find characters that are unexpectedly strong.

Some games allow players to create their own content via modifications,
or mods. Mods are typically created by more technical-minded players who
enjoy game creation and design as a hobby, and can include maps, textures,
and scripts. Mods can extend the shelf life of a game indefinitely as long as
player communities continue to create new content. However, this practice is
mainly applied to PC games due to the additional publication rules of console
games.

Replayability is a trait favoured by players, and therefore game designers,
which can extend the shelf life of a game. It can be improved through the
game’s design by including side quests, narrative branches, or PLG. It can
also occur after a game’s release via player-generated content. Extending the
life of a game can improve a player’s favour towards a developer, series, or
an entire genre of game. Although it does not appear to make good business
sense to encourage a player to continuously play a single game, delivering high-
quality content that can be enjoyed after the initial play though can improve
the chances of that player consuming additional titles from the same developer.
This, in turn, ensures that a game designer can continue their work. Thus far,
most aspects included in CRPGs to improve their replayability are limited to
those explicitly developed by the game designer. However, this approach is
limited because it relies on a designer’s ability to prepare a variety of situations
during a game’s development and does not typically allow for more scenarios
to be added post-release. A common element found in many of the approaches
that game designers have used previously are NPCs. They are often used to
facilitate quest acquisition, provide conversation, and populate the game world
where a player acts out their role. Since they are already used for a variety of
tasks and are utilized in all CRPG types, NPCs are a good aspect to study
to indirectly improve a game’s replayability value. Therefore, the GLaDOS
system focuses on improving a game’s replayability via NPC interactions.

2.3 Conclusion

It is possible for CRPGs to cater to a variety of player fantasies, but the shelf
life of these games is directly tied to their ability to maintain the illusion. The
framework that CRPGs offer allows players to define their own experiences.
However, this framework must also include incentives for players to continue
to live in their chosen roles after they complete the game’s main challenges. In
traditional tabletop RPGs, the DM could dynamically tailor new experiences
to suit the current players. However, the ability to do this easily is lost when
translating the same game to a computerized format, largely due to a lack of
reliable formalized methods and models.

14

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

To help streamline the player experience and narrow a game’s focus, design-
ers often choose a single feature of traditional RPGs: narrative CRPGs focus
on plot and character development; sandbox CRPGs focus on exploration and
experimentation; and dungeon crawler CRPGs focus on combat and avatar de-
velopment. It can be argued that the narrative subtype has the shortest shelf
life due to its pre-designed and scripted responses to player choices. However,
steps have been taken academically towards emergent narrative experiences
which could potentially result in endless replayability.

Common methods for increasing a CRPG’s replayability value, such as side
quests, no longer appear to be sufficient for extending gaming experiences, al-
though they are still heavily featured in modern CRPG designs. Other meth-
ods, such as PLG, can potentially be used in any game to improve replayability,
but their inclusion is dependent on the game’s context and might not make
sense for some game designs. Well-designed sandbox and dungeon crawler
CRPGs inherently have replayability value because it is player-directed, a
trait carried over from traditional RPGs. Player-directed replayability is often
based in role experimentation, so it is important that a game reacts dynami-
cally to retain player interest. Player-generated content is another good way
to increase the life span of a game because it allows players to create and
share their own modifications for a published game. However, this method
is limited in console games due to stricter publication rules. Overall, there
are many different ways of improving the replayability value of a CRPG. The
method chosen depends on the type of game and the target audience.

NPCs are potentially one of the best ways to provide the feedback that
players require to reinforce their playing habits, especially since NPCs are
often key components in CRPGs. Due to their universality as a CRPG element
and their ability to interact directly with players, NPCs were selected as the
implementation target of the GLaDOS system. Before further decisions can
be made on the GLaDOS design, it is important to understand the different
types of NPCs found in CRPGs and common tasks and roles assigned to each
so that aspects of their design can be identified for augmentation.

15

Chapter 3

Non-Player Characters

A Non-Player Character (NPC) is any game character that the player does not
have complete behavioural control over (Carreker, 2012). NPCs are tradition-
ally used to initialize quests, advance the game’s plot, and facilitate a market
system for players to exchange their unwanted resources for more desirable
ones. This list is not exhaustive — NPCs might also be used for additional
game functions depending on the game’s design. In tabletop RPGs, NPCs
are created and controlled by the DM, which limits the number and variety of
in-game characters used. Due to the nature of tabletop games, the DM often
ends up creating basic personalities for each NPC to keep other the players
engaged.

With the power of computers, video game NPCs are also used to create an
ambient game world population in addition to their traditional roles. However,
due to the size and scope of more extensive game worlds, many non-essential
narrative NPCs, including townsfolk, guards, and common opponents, are
copies of a core set models. This practice can be observed in games with
at least partially open worlds, such as Ubisoft’s Assassin’s Creed series and
THQ’s Saint’s Row series. This approach often results in NPCs that perform
repetitive behaviours and have near-identical physical appearances to other
NPCs which the player might perceive as unnatural and ultimately undermines
their experience.

Some developers try to alleviate this problem by giving each NPC some
unique traits but they are usually cosmetic, such as the NPC’s name and
colour scheme. Bethesda’s The Elder Scrolls series is a good example of this
technique. It is rare to find a densely populated game world where each NPC
behaves in a unique manner. It is more common to find different classes of
NPCs where the behaviour of the class differs from other classes. There are
exceptions to this observation, such as Spike Chunsoft’s Danganronpa series
and Procedural Arts’ Facade, where each NPC is completely unique. This is
facilitated by having a small number of NPCs, where each one is non-trivially

16

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

required in the game narrative.

Before a GLaDOS system design can be proposed to extend NPC capabil-
ities, the purpose for including each type of NPC must be understood. Video
game NPCs can be divided into three broad categories: companion, oppo-
nent, and ambient!. Although it is not possible for an NPC to be assigned
multiple categorizations simultaneously, it is possible for an NPC to be cat-
egorized differently over the course of a game’s narrative. These changes are
usually dictated by the game’s narrative. A famous example is Sephiroth from
Square’s Final Fantasy VII who joins the player’s team as a companion for a
time before becoming an opponent.

3.1 Companion

Companion NPCs are characters that the player can form an alliance with and
might be able to exert some control over. Companion NPCs are usually part
of the game’s story, often added to assist the player with game challenges. One
common way for companion NPCs to be used is for combat challenges. For
example, in The Elder Scrolls V: Skyrim, the player has several opportunities
to recruit a House Carl (Figure 3.1a), who assists with any combat challenges
that the player encounters. House Carls can also be used for non-combat
purposes, such as allowing the player to carry more items in their inventory,
and provide some additional dialogue to help explain their role in the game
world as it relates to the player. Elizabeth from Irrational Games’ Bioshock
Infinite (Figure 3.1b) is an example of a non-combat companion. The narrative
focus of the game is to escort her out of a city, which requires the player to
keep Elizabeth as a companion indefinitely after meeting her. In addition to
her importance to the game’s narrative, she also assists the player with game
challenges by providing extra resources and information.

3.2 Opponent

Opponent NPCs are in direct conflict with the player and are part of some
in-game challenges. Like companion NPCs, opponent NPCs are at least par-
tially defined within the game narrative. This can be as an individual or as
part of a group affiliation that is integrated into the game world. When dis-
cussing video game opponents, many people are referring to NPCs that the
player must defeat in combat challenges. Combat challenges can either be
direct, such that the player takes them head on, or indirect, such as in stealth

IThe terms “companion” and “opponent” are commonly used within the game commu-
nity to describe NPC types. “Ambient” is used to describe NPCs that do not meet these
two commonly used definitions.

17

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Elizabelh: Cateh.

(a) Lydia, a House Carl (Bethesda’s The (b) Elizabeth (Irrational Games’
Elder Scrolls V: Skyrim) Bioshock Infinite)

Figure 3.1: Examples of companion NPCs

games like Ubisoft’s Tom Clancy’s Splinter Cell: Chaos Theory (Figure 3.2a)
where players are challenged to defeat enemies without fighting them directly.
However, this definition is too narrow and does not account for other types of
conflict that the player might encounter. In Rockstar’s L.A. Noire, a key chal-
lenge that the player faces is interrogation of persons-of-interest (Figure 3.2b).
These NPCs can be considered opponents because they need to be “defeated”
in order to access the information that they hold — the player’s reward. If
the player does not get enough information in a single case, which includes
several persons-of-interest, they might fail the overall challenge set and receive
a reduced final score or suboptimal story ending. This is the same scenario
that a player encounters with combat opponents — they must defeat enough
of them to proceed to the next set of challenges or to get a high score.

nnnnnnnnnnnnn

(a) Soldier (Ubisoft’s Tom Clancy’s (b) Person of Interest (Rockstar Games’
Splinter Cell: Chaos Theory) L.A. Noire)

Figure 3.2: Examples of opponent NPCs

18

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

3.3 Ambient

An ambient NPC is a non-essential character that is neither an aid nor chal-
lenge to the player, and used for a variety of purposes. Common tasks assigned
to ambient NPCs are quest distribution and the facilitation of a bartering sys-
tem for the player to use. Some games even integrate ambient NPCs into a
game mechanic. In Ubisoft’s Assassin’s Creed franchise, ambient NPCs can
be used to disguise the player to help them sneak into heavily guarded areas
(Figure 3.3a). Not all ambient NPCs have a specific task however — they might
be present simply to make the game world seem more realistic. Depending on
the design, these types of NPCs might not be interactive. For example, the
player can interact with ambient NPCs in THQ’s Saint’s Row the Third (Fig-
ure 3.3b) in a number of different ways, while ambient NPCs in Polyphony
Digital’s Gran Turisimo 5 cannot be interacted with (Figure 3.3c). While a
game can be designed with only companion and opponent NPCs, it is usually
the ambient NPCs that breathe life into the game world and make it appear
more alive.

GO TO THE

=, RESTRICTI

(a) Hiding in a crowd (Ubisoft’s (b) Steelport Citizens (THQ’s Saint’s
Assassin’s Creed: Brotherhood) Row the Third)

7 e,
T

(c) Spectators (Polyphony Digital’s Gran
Turisimo 5)

Figure 3.3: Examples of ambient NPCs

19

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

3.4 The Role of Agency in Non-Player Char-
acter Behaviours

An NPC’s ability to make self-directed decisions is known as their agency, and
directly impacts a game’s replayability value. As part of their specification,
game designers assign a set of behaviours, and behaviour-selection mechanisms
to NPCs which are used to alter their behaviours in response to changes in
the game environment.

When an NPC has low agency, game designers author instructions that
explicitly select which behaviour NPCs use in response to specific scenarios
or scenario classifications. This is comparable to a state machine, where NPC
behaviours are the machine’s states and changes in game world scenarios are
the state transitions. Even though this approach ensures that NPCs behave
as intended in each scenario, the specifications required to author pairings of
scenarios and behaviours quickly becomes unmanageable as game complexity
and the number of required NPCs increases. This often leads game designers to
begin grouping scenarios together as a single type such that multiple scenarios
lead to the same NPC behaviours. While the grouping of game scenarios often
makes logical sense from a design standpoint, the interpretation of individual
scenarios is usually perceived differently by players. It is common for players
to notice repetition in games because they become more attuned to similarities
as time progresses. This can lead to odd-looking behaviours from the player’s
perspective.

In comparison, an NPC with high agency is assigned a selection mech-
anism that collects information from the game environment and uses it to
choose which available behaviour set should be used in response. Designing
selection mechanisms causes game designers to think differently about their
game’s scenarios by forcing them to identify abstract patterns rather than
concrete events. Game designers can then associate NPC behaviours with
scenario patterns as opposed to individual scenarios. By enabling NPCs to
pattern-match an encountered game scenario to general ones, the task of asso-
ciating events to behaviours is transferred from the game designer to the NPCs.
While this does not immediately appear to be different from low-agency de-
signs, the ability to pattern-match encountered scenarios with a set of general
ones alleviates the pressure on game designers to identify all possible game
scenarios and manually assign resulting behaviours to each one. It is likely
that a game designer can identify all potential scenario patterns that are rele-
vant to an NPC’s agency because a game has a constrained design space with
strict rules. Despite a game having an unmanageable number of individual
game events, they can each be encapsulated by at least one of a smaller and
more manageable number of abstract event patterns. This approach also has
the benefit of preventing human error during behaviour assignments and can

20

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

be expanded to include more scenarios as needed, rather than as a method of
error prevention.

Increasing the agency of an NPC requires the game designer to create
well-specified selection mechanisms while also forfeiting control over exact be-
haviour selection. This release of control might make some game designers
nervous because they want NPCs to behave in a particular way in specific
contexts. However, as games continue to increase in complexity it will be-
come more difficult for designers to predict every scenario that a player will
encounter. This reality makes it more practical to create NPCs with higher
agency to alleviate the pressure on game designers in exchange for complete
control over NPC behaviours. The design of high-agency NPCs is an effort-
intensive task, which might not fit within a game designer’s time constraints.
The design of the GLaDOS system should help expedite this task by provid-
ing a framework for high-agency NPCs. This will reduce a game designer’s
workload such that they only need to provide game-specific information to
the GLaDOS system to make it functional. Despite being a feasible task, the
scope of a modern game is still too large for most game designers to consider
the identification of all potential scenario patterns a worthwhile endeavour.
Since their main purpose in a game is to interact with the player, scenarios
that included player interactions were considered exclusively in the GLaDOS
system design space.

3.5 Reacting to the Player

The purpose of NPCs is to engage the player either through direct interac-
tions or by enhancing the believability of the game world. At the very least,
NPCs should not degrade the relationship that the player has with the game.
Despite this, NPC behaviour is one cause of broken player engagement due to
their, typically low, agency. A general example of this problem is repetitive be-
haviour that, when coupled with near-identical visual appearances, creates an
unnatural feeling. The issue becomes even more apparent when the player ex-
pects the NPCs to react differently based on what is happening around them.
The degree of disturbance depends on the game, and some games might be
able to consider this a cosmetic requirement. For example, the focus of dun-
geon crawler CRPGs is combat challenges, therefore it is not essential that
any NPC react believably to the player. On the contrary — players usually
expect opponent NPCs of the same type to behave in the same manner in
this type of game, but it would not hurt for key NPCs, such as bosses, to
behave differently outside of combat depending on the player’s performance so
far. Behaviours could include something as simple as different dialogue sets.
This could be used to coax the player to continue to the next set of challenges
if they are doing well, or to try again if they did not defeat the NPC. Even

21

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Figure 3.4: No reaction to “famous” player in Mass Effect

though the application of this type of NPC enhancement is clearer for CRPGs,
other types of games could benefit from augmented NPC reactions and. In
some cases, this type of enhancement can become a mechanic that augments
gameplay.

In narrative CRPGs, where the focus is on character development and
story, NPCs should react to the player based on their role in the game narra-
tive. This specification is usually upheld by essential story NPCs, but unlikely
to be considered for non-essential ones such as ambient NPCs. For example, if
the player character is an average person, players do not expect NPCs to react
to the player’s presence any more than they would for another non-essential
NPC. However, if the player is a well-known figure, such as Commander Shep-
ard in the Mass Effect series, players could expect NPCs to react differently.
Unfortunately, they do not (Figure 3.4). While the additional behaviour can
be omitted from the game with no critical adverse effects, their inclusion could
enhance the player’s connection to the game by reinforcing their importance
in the game world.

The addition of reactionary NPC behaviour is non-essential to dungeon
crawler and narrative CRPGs, but it would enhance the player’s experience
cosmetically. In contrast, the focus of sandbox CRPGs is player freedom, which
makes it more critical to include at least some reactionary NPC behaviour.
NPCs should be happy to see the player or afraid of them depending on how
the player has developed their character, but sandbox CRPGs often have the
most trouble reacting to the player. Implementing this type of behaviour using
traditional development practices can quickly become unmanageable due to
the range of behaviours required. The result is often the addition of a few
basic behaviours that can be comedic if viewed or triggered in the wrong
context. For example, in The Elder Scrolls V: Skyrim, if a nearby NPC is

22

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

MRS = ; N

(a) Child standing on dead guard

(b) Ignoring the player who is in a combat-ready state

Figure 3.5: Indifferent NPC Responses to the Player in The Elder Scrolls V:
Skyrim

killed by being shot with an arrow, at least a few NPCs should be afraid or
suspicious of the player if they are carrying a bow (Figure 3.5a). Similarly,
most NPCs should be afraid of the player if they are wearing armour that
makes them look like a demon while their weapon is drawn (Figure 3.5b).
An NPC’s reactions are one way to acknowledge the player’s role within
the game world in addition to giving the player feedback on how they are
affecting the game. The effect can be cosmetic, such as in a dungeon crawler
CRPG, or it can be used to reinforce the player’s role, such as in narrative
CRPGs. It could even evolve into a mechanic of its own in sandbox CRPGs.
No matter the size of the impact, if an NPC reacts to something related to
the player in a somewhat believable manner, the player experience can be

23

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

enhanced and players might become more engaged in the game. This makes
it essential for the GLaDOS system design to be based on a concept that can
be universally applied to any NPC in any game. There are very few concepts
that are not limited by cultural boundaries, however human emotion is known
to be recognized regardless of which culture it is presented to (Ekman, 1992).
This universality makes it an ideal basis for the GLaDOS system because,
since it is universal across human culture, it can easily be transferred between
different game designs and still be understood. The digitization of human
emotion processing is not a new endeavour, and it is likely that a number of
useful ideas can be gathered from past designs.

3.6 Conclusion

Essential to most video games, NPCs enable the distribution of quests, progress
narrative elements, and generally make the game world feel alive. The player is
aided by companion NPCs and challenged by opponent NPCs, while ambient
NPCs flesh out the game world. Therefore, it is important that NPCs are
designed in an efficient and realistic way such that they do not put unnecessary
strain on the system while convincing the player that they are real. This
requires game designers to assign a higher agency to NPCs so that they are
able to adapt to the player without explicit guidance. Due to time or resource
constraints, this requirement is often left incomplete or an attempt is made
that does not adequately meet the specification. Even though creating high-
agency NPCs appears to be a difficult task, the challenge is in forcing game
designers to think differently about their game and create abstractions for
pattern matching rather than specifying exact rules for NPCs to follow.

The importance of higher NPC agency depends on the game design. For
dungeon crawler and narrative CRPGs, this requirement is usually cosmetic,
but can enhance player engagement by reinforcing their importance to the
game world. In sandbox CRPGs, this requirement becomes more critical be-
cause this game type provides more mechanisms for the player to create their
own character. This goal is usually accompanied with the expectation that
the game world will react at least a little differently depending on what the
player chooses to do, including the player’s physical appearance and moral
alignment. Here, reactionary NPCs become more like a game mechanic which
can improve player engagement if it is implemented well. Overall, the addition
of reactionary NPC behaviour can enhance any type of CRPG by reinforcing
the player’s importance to the advancement of the game. Due to the variety
of potential game designs, the GLaDOS system should be based on a univer-
sally recognized concept, such as human emotion. This type of design task
is not new, and observing the design of similar systems will help guide the
subsequent design decisions required to create the GLaDOS system.

24

Chapter 4

Artificial Intelligence for
Non-Player Characters

There is a noticeable disconnect between the video game industry and academ-
ia when it comes to integrating more complex artificial intelligence (AI) sys-
tems into commercial applications (Yannakakis and Togelius, 2014). Since
creating a good player experience is key to a successful game, many devel-
opers want to mitigate as many technical risks as possible. Despite frequent
adoptions of graphics and audio quality advancements, Al advances are usually
ignored due to their additional design requirements, development time, and
lack of guarantee regarding expected behaviour (Graft, 2015). This results in
the use of Al techniques that players can easily exploit and tire of due to their
subsequently predictable behaviour — a trait that does not match with the
industry’s rapid development and increasing project scale. Even within the
industry, it has been suggested that one of the next major commercial break-
throughs are NPCs that behave realistically, such as more unscripted responses
to player actions and adapting to the changing game environment (Ponsen,
2004; Graft, 2015).

Systems for improving the believability of computer agents have been cre-
ated previously for both academic (Section 4.2) and commercial purposes (Sec-
tion 4.3), but they have not been widely accepted outside of the academic
community. To improve the acceptability of the GLaDOS system, it is useful
to review what approaches are typically used during a game’s development to
create NPCs before looking to academia for further design ideas and guidelines.

4.1 Artificial Intelligence for Game Design

There are three main approaches to designing Al for games: ad hoc, heuristics,
and algorithms (Millington and Funge, 2009). Neither ad hoc nor heuristics
are considered true Al because they utilize programming “tricks” instead of a

25

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

defined Al technique or algorithm. A good game tends to use a combination
of all three approaches to achieve the desired overall effect and to manage
computational speed and memory requirements effectively.

The ad hoc, or “hacking”, approach is comparable to behaviourism (Wat-
son, 1919), where studying behaviour and its construction can lead to an
understanding of the object that displays that behaviour. As a science, be-
haviourism is no longer considered a valid approach but it still has uses in
game programming to make characters “look right” with little effort or com-
putational resources. Triggering an animation to convey emotion and choosing
behaviours at random are examples of simple programs that have the poten-
tial to produce convincing behaviour if applied judicially. For example, the
ghosts’ pursuit logic in Namco’s Pacman appears random, but are actually
scripted so that each ghost follows strict rules. There are drawbacks to these
methods, including the potential requirement for additional experimentation
and testing to ensure that the expected behaviours are being produced, and
these programs are often impossible to transfer between games.

Heuristics are probably the most common method used by game designers.
It incorporates approximate solutions that work in most situations, similar
to the way humans use general principles and folk wisdom to make snap de-
cisions. This approach is used when complex calculations can be simplified,
often down to a single number, to reduce computational speed and memory
requirements. In exchange, the accuracy and robustness of the resulting be-
haviour is sacrificed. Common heuristics used for game Al include doing the
most difficult task first, such as attacking the opponent with the highest total
health, and moving in the current direction of a moving target, which can give
the illusion of intelligent chasing or flocking mechanics.

Behaviours that do not change between projects are turned into algorithms,
allowing programmers to recreate Al that are not easily transferable as ad hoc
or heuristic solutions. This aspect of game programming is typically the target
of academics because algorithms can be analysed and tested with reliably
similar results. The A* path finding algorithm, minimax algorithm for turn-
based games, and decision trees are examples of academically-tested algorithms
that are used in video games. Collections of related algorithms can be collected
into a game engine that targets a specific game aspect such as physics and
animations.

These three design techniques — ad hoc, heuristics, and algorithms — are
used in the design stage of a project. Implementation techniques also tend to
follow simple patterns to reduce overall development time and resource use.
Rule-based approaches, such as conditional scripts and state machines, are
typically used to implement game AI due to their ease of use, understand-
ability, testing, and extensibility. However, these approaches are often deter-
ministic and force designers to anticipate every possible game state (Ponsen,

26

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

2004; de Jong et al., 2005; Yannakakis and Hallam, 2005). This is an almost
impossible task, especially when there are many player selection points. Ad-
ditionally, due to their static nature, scripts and state machines are prone to
weaknesses that can be exploited by the player or cause unreasonable results
for the current in-game scenario (Spronck et al., 2003; Ponsen, 2004; Andrade
et al., 2005). State machines in particular do not scale well, forcing design-
ers to create simpler behaviours that become increasingly predictable (Wray
et al., 2005). The organization of states, transitions, and scripts is an aspect of
game design that the GLaDOS system design can borrow. Although it will not
be as limited as a state machine, the GLaDOS system can be designed such
that game designers can define game scenario patterns as if they were states
and then assign behaviour scripts or other state machines to them. Designers
can then define a single calculation to determine when a behaviour transition
should occur. This will reduce the scalability and prediction requirements
typical in state machine designs. Using calculations with a continuous range
instead of state transitions with a discrete range will also make it more diffi-
cult for players to predict and exploit the resulting outputs of the GLaDOS
system.

Not all game industry approaches to Al are considered as such in academia,
but a true AI design might not be necessary depending on the designer’s
goals. Ad hoc and heuristic methods have been successful in the past, but are
becoming more unreliable as game complexity increases. Even implementation
methods are becoming unreliable as the scale of commercial games continues
to grow. Industry methods do still include algorithms, which are constantly
studied in academia implying that there is potential for academic advances
to aid in game development to help match rising complexity demands from
designers and players alike. Although it does not produce the same outputs
as a state machine, the GLaDOS system might appear structurally similar to
game designers, making it more likely that the system will be adopted. This is
because similar groups of information can be treated like states and transitions
while reducing the scalability and exploitation common to traditional state
machines.

4.2 Academic Systems of Digital Emotions

Industry approaches to game Al can be applied to any kind of problem, from
pathfinding to selecting optimal strategies to NPC behaviours. An algorithmic
approach often has a narrow range of application because each algorithm is
designed to tackle a single problem, and is often studied at length in academia.
Simulating human behaviour, specifically emotional reactions to events, is a
known problem with the goal of testing various psychological models to de-
termine which is more likely to be the “correct” one. While they might be

27

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

unsuitable for video games, academic emotion systems can still be studied to
learn new techniques and approaches that can either be used as-is or modified
to meet a specific requirement that would be unrealistic in real life. Computer
models of emotion are usually created as simulations to enable the testing of
specific psychological models and theories. PARRY and BORIS are some of
the first systems that attempted to simulate human emotions. More complex
simulations include EMA, ACRES, the affective reasoner, and MAMID.

The first well-known computer model of emotions is PARRY, a program
that simulates a patient with schizophrenic paranoid disorder (Colby, 1981).
Built on the creator’s theories of the condition, PARRY has an underlying
structure of rules and tracks an internal emotional state. It is one of the
first computer programs that passed the Turing test, even when its transcripts
were presented to psychiatrists. Critics of PARRY have claimed that “errors”
made by the system could be explained away due to the nature of the dis-
order being simulated. This could also be seen as a clever design selection
knowing the limitations of computers at the time. Another early system is
BORIS, a narrative comprehension program which answers questions about
narratives that it has read to demonstrate its understanding of the narrative
It accomplishes this by organizing causal relationships from the narrative into
an internal representation of memory (Lehnert et al., 1983). While BORIS is
not an emotional agent simulator, it does comprehend the emotional state of
characters in the narratives it analyses. It uses Memory Organization Packets
(MOPs), a type discrete knowledge structure that might include goals, plans,
and intentions, to describe conceptual dependencies, such as a lender-borrower
scenario. MOPs can be linked to other MOPs or meta-MOPs depending on
the current context. Thematic Affect Units (TAUs) and ACES are used to deal
with reactions that are emotional in nature, which, combined with MOPS, al-
lows BORRIS to infer what caused an emotional episode in a narrative. This
organization of units dynamically forms episodes relevant to the current story
that behave like static scripts. Despite being comparatively simple designs,
both PARRY and BORIS demonstrate that the design space encompassing
human behaviours and their accompanying psychological models and theories
is too broad for a single system to handle. Therefore, assumptions must be
made in order to narrow the scope of the design to ensure that the selected
components fit the intended purpose.

As demonstrated with PARRY and BORIS, it is often required to make
a series of assumptions to implement a psychological model in software since
there is no complete, agreed upon model of human emotions. For that rea-
son, each academic system tends to focus on a single aspect of the human
emotion dynamic. The Emotion and Adaptation (EMA) framework was de-
signed to explore emotion dynamics with the goal of explaining their processing
structure (Marsella and Gratch, 2009). EMA specifically models the parallel

28

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

processes of appraisal dynamics, which are fast and automatic, and inference
rules, which are slow and sequential, to simulate an agent’s rapid series of
responses to an event, its perceived consequences in relation to their goals,
and its current understanding of the environment. It includes mechanisms for
determining how much control the perceiving agent has over the outcome of
an event, as well as causality and agency to estimate how other agents in-
fluence the outcome. The resulting configuration of appraisal values, called
an appraisal frame, can then be matched to different, pre-designed emotion
types. Appraisal frames contain propositional statements that are annotated
with its relevance to the agent, desirability, likelihood, expectedness, causal
attribution, controllability, changeability, and the perspective that the frame
is viewed from. Perspective is included so agents can appraise an event from
another agent’s viewpoint. The ability to calculate the desirability and like-
lihood of an event to aid in the detection of future benefits and threats is
enabled by decision-theoretic planning and a blackboard architecture. When
an appraisal frame is created, a coping strategy simulated by a control signal
is chosen. The chosen signal might depend on the controllability or ambiguity
of the agent’s internal world state representation at the time of appraisal. The
control signal enables or suppresses cognitive processes, changing the agent’s
actions and appraisal dynamics. EMA cycles through the appraisal and cop-
ing stages during an unfinished event to update the agent’s understanding of
the world state, potentially passing through a number of appraisal frames be-
fore the event’s conclusion. Mood is simulated by aggregating past appraisal
frames and used to linearly augment the current appraisal frame by changing
its intensity. This can influence the manifestation of the frame. While EMA
presents a way of appraising and matching events to emotions, it also briefly
touches on perspective and reasoning about how other agents are “feeling”,
which can consequently affect their own emotional processing.

The affective reasoner (Elliott, 1992) is a simulation-based system designed
to test psychological models for use in language understanding programs, vir-
tual tutors, and other similar platforms. It uses a combination of domain-
independent rules for interpreting emotion eliciting events, a supervised learn-
ing case library for creating models of other agents’ personalities, a world sim-
ulation based on object-domain theory, and a graphical user interface (GUI)
for interacting with the system. There is one high-level domain rule for each
emotion in the Ortony, Clore, and Collins (OCC) model of emotions (Ortony
et al., 1988), with which the system attempts to match a schema, which in-
cludes the agent’s interpretation of an event, to an emotion template. The
resulting template is used to determine how the agent reacts. Events are
filtered by the agent’s goals, standards, and preferences such that irrelevant
events with respect to the agent are not processed. If an event is happen-
ing to another agent, an observing agent can try to reason about the affected

29

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

agent using the generated case library to determine their concerns and per-
sonality, while potentially eliciting an emotional response in themselves by
proxy. The ability to “feel for” other agents enables rudimentary negotiation
and opportunity recognition via reasoning about other agents’ mental state.
If multiple emotions are present, some are combined and actions present in
both emotions are used to represent the compound emotion. In other cases,
conflicting actions are arbitrarily removed. The determination of emotional
intensity and duration are not mentioned in the affective reasoner design. The
system’s maintainability is limited because the addition of new events requires
new emotion manifestations, personalities, simulation sets, and content theory,
in addition to new interpretations and event handlers. Even with additional
processing for determining how other agents “feel”, each system still follows
set algorithms and rules and some apparently irrational behaviours can still
arise from these systems.

The Artificial Concern Realization System (ACRES) was designed as a test
system for a partial emotion theory based on functionality (Frijda and Swager-
man, 1987). Its goal is to show that the irrationality of emotion can arise from
a functional system and implicit event appraisal is enough to stimulate action
selection and execution. Unlike the other systems, ACRES does not have ex-
plicitly defined agent goals. Instead, it has a set of concerns that should be
maintained from which goals can be derived when given information about
the current operation environment. Emotions, therefore, are part of the con-
cern realization process and are used for automatic detection of opportunities
and threats, and controlling action priorities via interruption and persistent
signalling. Concerns are represented as points against which actual data is
matched. Multiple concern processing, including current environment evalua-
tion, was ideally designed to work in parallel but could not be implemented in
ACRES. The model behind ACRES proposes that an emotional system should
have an action repertoire comprised of pre-programmed responses, including
facial and verbal expressions, for dealing with limited information, time, or re-
sources; general strategies that can be augmented with additional information;
and planning capabilities for generating new action plans to deal with both
planned and unplanned events. Actions are selected by first choosing a desired
post-condition and matching the associated preconditions with the current sit-
uation. For competing actions, top priority is selected based on satisfaction
criteria rather than maximising parameters. The strength of the relevance sig-
nal is determined by the associated goal priority and environment parameters.
Social signals can be included for multi-agent environments by maintaining a
record of past agent interactions for each relevant external agent. So far, the
focus of the studied systems has been on either specific emotion persons or
matching different appraisal results to emotion categories. However, person-
ality is known to have an effect on how an individual appraises and manifests

30

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

emotions in response to events.

The Methodology for Analysis and Modelling of Individual Differences
(MAMID) is a simulation-based, domain independent system that explores
personality traits and their effects on the appraisal process and other cognitive
functions, including attention and memory (Hudlicka, 2002). The system cat-
egorizes cognition, emotion, and personality separately to aid in parametriza-
tion so that individual factors can be applied to different processes and or-
ganizational structures. Multiple factors can be combined into a normalized,
linear combination where each factor is assigned a weight based on its influ-
ence over the system. Emotions are represented both categorically as a state of
appraisal and dimensionally as intensity and valence values. An agent’s mem-
ory contains domain knowledge in addition to agent-specific beliefs, rules, and
problem solving knowledge. Events, expected events, and goals are all mod-
elled in the same manner because their main differences are the times at which
they occur and their desirability. An interesting feature of this architecture
is the offloading of emotional interpretations to the goal manager and action
selection modules. This decision allows users to control how emotions manifest
in the environment, including the appearance of compound emotions.

Since they were built to test emotion models or reason about emotion-
inducing events, academic systems might not be suitable for video games due
to their lack of domain focus, which increases their required resources and
computation times. However, several lessons can be learned from these en-
deavours and applied to the design of the GLaDOS system. Many of these
systems filter inputs based on goals, which can be used to improve overall
performance. Each system also offers unique ideas including processing meth-
ods, reasoning about other agents, personality, and accepting apparently ir-
rational behaviour from comparatively simple systems. PARRY demonstrates
how the application context can be used to trick users into believing that it
is an emotional being without using advanced Al techniques, while BORIS
shows how traits from an event can be combined with conceptual dependen-
cies and folk wisdom to infer a character’s emotional state. The parallelization
of fast and slow reasoning processes in EMA exemplifies how an agent can ex-
perience many different emotions during an event, and the affective reasoner
illustrates how knowledge of other agents’ emotional states can be inferred
by observing their reactions. ACRES and MAMID have especially important
information that can be useful when building an emotion framework for video
games. ACRES proves that irrational emotional behaviour can still arise from
a functional system, while MAMID shows how emotion, mood, and personality
traits can be parametrized and applied to individual processes and data struc-
tures to control behaviour. Taken together, these academic systems illustrate
how an underlying psychological model can be paired with domain knowledge
and basic reasoning processes to create the illusion of emotional behaviour in

31

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

computerized agents. Although not directly applicable to video games, their
successes can still be isolated and used in the GLaDOS system design space.

4.3 Systems for Generating Non-Player Char-
acter Emotions

Creating more interesting NPCs, agents specifically designed for games, is a
task that has been approached from different angles in academia. For example,
there has been a lot of interest in NPCs that learn such that player-tailored
difficulty adjustment can be integrated into video games. Several academic
AT techniques have inspired, or been applied to, these endeavours, including
case-based reasoning (Molineaux et al., 2005; Spronck, 2005; Sanchez-Pelegrin
and Diaz-Agudo, 2005), reinforcement learning (Andrade et al., 2005; Marthi
et al., 2005; Spronck et al., 2004a), and evolutionary algorithms (Ponsen,
2004). Comparatively little attention has been given to making NPCs more
believable, but the literature that has been released on the topic is promising.
ALMA, GAMYGDALA, and the Em tools from the Tok agent architecture
were created specifically to enable the creation of NPCs that react based on
psychological models of emotion. However, all three systems use a combination
of the OCC model of emotions and the Pleasure-Arousal-Dominance (PAD)
space framework (Mehrabian, 1996) to create emotional variations, intensi-
ties, and sometimes moods. These models were consistently chosen because
they are simple to understand compared to other psychological models, was
designed for digitization, and is used by other video game researchers. Despite
this commonality, each system explores a unique way of using the same model
with different effects.

A Layered Model of Affect (ALMA) (Gebhard, 2005), in addition to imple-
menting a version of the OCC model and PAD framework, simulates person-
ality based on the Big Five psychological model (De Raad, 2000). Emotions,
mood, and personality are treated as short, medium, and long-term system
effects, respectively. Emotions are triggered by an external annotated event
or object and decay quickly, but have a lasting effect on the system by alter-
ing the agent’s mood once it is translated into PAD space. Personality is the
“default mood” to which the agent returns in the absence of emotion eliciting
events. ALMA has four sets of evaluation rules to account for differences in
the cognitive processing of events, actions, and objects, external agent acts,
and emotional and mood displays. Events, actions, and objects are annotated
with appraisal flags to aid in their evaluation. The current mood is conveyed
through animations, dialogue tones, and colour-coded dialogue text. When
the system was tested, participants found the emotions more plausible than
the moods (Bock, 2009), suggesting that short-term effects might be enough

32

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

to convey information about the agent’s current state. ALMA is a great us-
age example for the implementation of the different aspects of an emotional
episode, but it does not explain its portability and adaptation value between
applications.

In contrast, the GAMYGDALA engine was designed to be modular, ef-
ficient, and psychologically grounded (Popescu et al., 2014), similar to other
game engines with specific purposes such as physics engines. GAMYGDALA
is a black box design that provides game designers a way of introducing emo-
tions into NPC groups such that it can be used in a variety of games and does
not require any previous knowledge of psychology or appraisal theory. The
engine assumes that a game can be represented as a series of events, and all
NPCs have at least one goal. Sixteen OCC emotions were implemented, but
only the desirability and consequences of an event are considered during pro-
cessing. The intensity of an emotion is determined by how probable an event
is to occur, which can be altered by new game events or information. Since
they can be derived from OCC outputs, PAD values are used to supplement
emotional values to create emotion variations. Personality is represented us-
ing default emotion and social states which, in the absence of goal-affecting
events, are reached using decay functions from excited states. To support
portability, the engine outputs values that can be used in any NPC compo-
nent, including animations and Al modules, as opposed to directly controlling
NPCs. This makes GAMYGDALA the only system to indirectly influence
NPC behaviours, allowing it to be added to games more easily at any stage of
development. Thus far, both ALMA and GAMYGDALA have proposed ways
of programming NPCs to have emotions and personality. However, they are
somewhat constrained in their usage because they retain control over some
of the event processing aspects. This could potentially limit some character
designs that do not follow the proposed evaluation structure offered by either
system.

The Tok agent architecture is an Object-Oriented approach to creating
believable agents that use artistic freedom as a core driving requirement be-
hind individual modules, including emotions and social interactions (Reilly,
1996). Character personality is used to ensure that all the typically shallow
capabilities of Tok work together to produce a cohesive set of behaviours, in-
cluding actions, speech, movement, and goal maintenance. This can result in
the illusion of complex, believable characters. A number of tools collectively
named Emotion Architecture (Em) were designed to support the creation of
believable emotional agents based on the belief that artists create believable
agents, which might not be smart or realistic, while Al researchers create au-
tonomous ones, which are built from scientific models. Inputs to Em can come
from any component of the Tok architecture, including output from Em itself,

33

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

which are processed by emotion generators, implemented as IF-THEN struc-
tures dictating how a character reacts, including a type, intensity, cause, and
an optional target. The default emotion generators are based on the OCC
model and can be categorized based on which Tok structure they influence,
such as cognitive-appraisal, body-feedback, and memory. The use of genera-
tors aids in processing precedence so that higher priority emotions are handled
first. The generators produce emotion structures which are organized in hier-
archies according to emotion class, which can be queried for values, targets,
and “memorized” information such as past emotional structures. An overall
class intensity can be calculated logarithmically from the structures in a hi-
erarchy, which is used to determine general agent effects. The system allows
for the exaggeration of some structures and the suppression of others, with
the intensity of individual structures decaying over time. Once structures are
present, a behaviour feature map is used to map structures to behaviours.
This approach enables a fine grained control over how emotions are mani-
fested in actions and allows emotion structures and behaviours to be designed
independently. A text-based game was used to test the system to avoid the
use of animations, a separate type of emotion expression. Of 17 participants,
it was found that a character built with the Em tools was more emotional,
had more personality, was more believable, and had better social interactions
than one built without. Additionally, there was a positive correlation between
emotion and personality. However, there were no conclusive results connecting
suspension of disbelief with the Em characters. In some cases, response times
were deemed too slow to be believable (1 — 2 seconds on average), and repet-
itive responses to player questions were seen as unnatural. There are several
additional drawbacks to the Em tools, including flexibility, ease of use, code
re-usability, and modularity. These results and drawbacks, while undesirable,
are important for the GLaDOS system specification because they show how
other factors can impact a system’s acceptability that are not directly related
to its functionality.

Compared to academic systems and NPCs that can learn, relatively little
research has been conducted into emotional NPCs. ALMA, GAMYGDALA,
and Em all use the same psychological model, but often the reasoning was
more about convenience than design. Despite this, the work has been very
promising. ALMA integrated personality and mood into its design, expressing
emotions through actions and mood through animations and dialogue. Us-
ing personality as a default mood is a good idea to account for times when
no emotion eliciting events occur. Through testing, emotions generated by
ALMA were considered more convincing than moods, suggesting that emo-
tions by themselves might be enough to create the illusion of believable NPCs.
GAMYGDALA exemplifies how a complete implementation of a psychological
model is not always necessary to create more believable NPCs. The engine

34

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

also demonstrates the plausibility of condensing an emotion architecture into
an engine that can be applied to any game by treating the manifestation of
behaviour as an external component. The Tok architecture is more like a
collection of tools than a system, leaving the entire burden of implementa-
tion on the designer. While this negatively influences usability, modularity,
and re-usability, the Em tools does highlight how personality must affect all
aspects of NPCs, including emotional displays, in order to be believable. It
is also a reminder that interesting characters are not necessarily realistic, so
psychological models should be considered a tool rather than a necessity. This
knowledge is used in the GLaDOS design to allow for greater flexibility in what
options are available when the psychological theories do not provide enough
information for a full system specification.

4.4 Conclusion

With the focus shifting to the creation of more engaging video games, it has
been proposed in both academia and industry that the next major innovation
will be realistic NPCs. This implies that new methods and tools need to
be created since no combination of ad hoc methods, heuristics, or common
algorithms has been used with complete success for this purpose. Success
can be defined as a method that, when applied to NPCs, maintains player
engagement by reacting to player actions and observable game world events in
a believable manner.

Reactionary behaviour based on emotions is one possible method for creat-
ing this type of NPC realism. Several systems have been designed for academic
exploration of emotion psychology and its effects on behaviour, but they might
be unsuitable for video games. This is due to their extensive domain knowl-
edge requirement, which can be difficult to specify and maintain. They do
still demonstrate the importance of having an underlying psychological model
to create diverse and interesting behaviours. These systems also consistently
filter inputs to the system based on a set of goals or concerns. This idea can be
transferred to other system specification, like the one for the GLaDOS system,
to improve overall performance.

There are comparatively fewer systems designed specifically for believable
NPCs in video games, but they draw on some of the same concepts as strictly
academic systems. There is more variation in system designs and they usually
focus on one element of emotionally-driven NPC behaviours to narrow their
scope. ALMA focused on the expression of emotion through actions and di-
alogue, GAMYGDALA strove for an engine that could be used in a variety
of games, and Em looked at the role of personality in believable character
creation. A combination of these ideas into a single system would be a good
next step to explore. Another concern to address is the lack of diversity in

35

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

psychological models used for video game applications considering that there
does not appear to be any proof of finding and systematically discarding other
viable psychological models. While proven to be flexible, the GLaDOS sys-
tem will not use the OCC model as part of its underlying design to allow for
a wider exploration of emotion theories and models. While the OCC model
might prove to be superior in the end, it cannot be said for certain that this
is the case now.

36

Chapter 5

The Psychology of Emotions

Psychologists have not yet agreed on a definitive theory of emotions, or even
what an emotion is, but there are some common characteristics that many
researchers agree on. Most researchers agree that there are rapid, automatic,
and unconscious connections between emotion, cognition, and action. How-
ever, there is less agreement on the definition, structures, functions, and an-
tecedents of emotion. Of these, the definition of emotion has the most varia-
tion between researchers, with some hesitating to propose a definition at all.
Organized sets of responses, appraisal processes, action impulse, coping func-
tion are some commonly mentioned elements in otherwise unique definitions
of emotion. Other common elements include physiological, subjective feeling,
cognitive, and behavioural or expressive components. Less frequently included
as part of their definition, researchers state that each emotion is unique in
function, structure, and expression. This means that the GLaDOS and sim-
ilar systems do not necessarily require an exact definition of emotion, but it
does require a list of basic triggers, structures, and functions (Izard, 2010).
Emotions can be activated by innate and conditioned stimuli (Scherer,
2005), memories (Russell, 2003), appraisal processes (Kagan, 2007), social in-
teractions (Hoffman, 2008), goal-related activities (Roseman and Elliot, 2008),
emotion-cognition interaction cycles (Frijda, 1988), and spontaneous changes
in neurobiological systems or processes (Lewis, 2005). In terms of comput-
ing, stimuli, memories, social interactions, and goals can be encoded into a
database while emotion-cognition cycles can be represented with a feedback
loop. While it might be beyond the scope of specific design requirements for
the GLaDOS system, abstract neurobiological systems can be simulated as a
separate module where their output is a neurological signal or chemicals.
Structures attributed to emotions include a neurological (Fox et al., 2007)
and response system (Kagan, 2007), feelings or a feeling state (Russell, 2003)
with an associated cognitive appraisal (Clore and Ortony, 2008), and expres-
sive behaviour (Levenson, 2003). The neurological and response systems are

37

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

like two components of a single architecture: one system gathers and processes
environmental information while the other formulates responses. Cognitive
appraisal is a component of the processing structure, the feeling state is the
intermediary component that connects the processing and response systems,
and expressive behaviour is the final output of the overall system.

Functions associated with emotions include event monitoring (Izard, 2009)
and attention focus (Fredrickson et al., 2008); process interruption (Cole et al.,
2008), cognition (Lewis, 2005) and action motivation (Mayer et al., 2008);
providing information to guide and coordinate engagement in the environ-
ment (LeDoux, 2008), including: the creation of a mental workspace to ex-
plore possible reactions or solutions to environmental events (Fredrickson et al.,
2008); response direction (Scherer, 2005); behaviour regulation (Campos et al.,
2004); and facilitating indirect communication via social signals (Griffiths,
2003; Plutchik, 2001). Monitoring can be compared directly with a sensory
input component that gathers information from a system’s surroundings, while
focus would dictate what information the system filters from the raw input.
Process interruption would refer to the interruption of current computations
and behaviours in a computerized system which would activate cognitive pro-
cesses to handle new data. The resulting state of values could be used to
choose a set of related output behaviours, similar to the mental workspace
that is formed from information provided by emotions. This concept could be
expanded further by saving past emotional states so that they can influence
the current computational process. Behaviour regulation and response direc-
tion are the processes that make the final decision as to which action in the
workspace to take. Even though these functions result in actions that impact
the environment, the selection of animations to play while the action is exe-
cuted is guided by the indirect communication function, which showcases the
“humanity” aspect of emotions that could truly affect player engagement.

Processes that regulate emotion include: spontaneous neurological pro-
cesses, such as hormones (Ellsworth and Scherer, 2003; Goldsmith et al., 2008);
cognitive processes, which include social learning (Shweder et al., 2008); de-
velopmental processes that formulate personality (Rothbart, 2011); and be-
havioural processes, including expression (Clore and Ortony, 2008) and ac-
tion (Izard, 2009). Regulation processes are often considered to function dif-
ferently for each emotion (Ellsworth and Scherer, 2003). With the addition
of a database to store “memories”, these concepts could be implemented on
top of a basic emotional processing architecture to simulate learning how to
control emotion processing and displays, as well as personality development.
Even though these points, activation, structures, functions, and processes are
generally agreed upon by psychologists and can be reasonably represented
computationally, there is little consensus on how each of these factors work,

38

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

individually or together, or in what order they are handled. This makes it dif-
ficult to specify how any computational model would work beyond a general
architecture specification.

Approaches to studying human emotions fall into three broad categories:
physiological or neurological, experiential or cognitive, and expressive or evo-
lutionary (Carlson and Hatfield, 1992; Keltner et al., 2014). Physiological
approaches, which include psychophysical and neurological approaches, as-
sociate physiological reactions to the onset of emotions as opposed to the
elicitation of physical responses by emotions. Notable physiological theories
include James-Lange (Lange and James, 1922), which states that emotions
are derived from physical reactions, and Cannon-Bard (Cannon, 1929), which
postulates that emotions and physical reactions occur simultaneously when
the thalamus is aroused. Experiential approaches state that cognitive pro-
cesses shape how people view events and their resulting emotional responses.
Freud’s psychoanalysis (Freud, 1965) and Jung’s analytical psychology (Jung,
1966) are early examples of this approach, but it has more recently developed
into a branch of cognitive psychology. Other theories in the experiential ap-
proach include Schachter-Singer theory (Schachter and Singer, 1962), which
states that a physiological response occurs first and emotions occur as a result
of labelling the cause, and cognitive appraisal (Lazarus et al., 1980), which
states that thought occurs when presented with a stimulus and physiologi-
cal and emotional responses follow. The expressive approach focuses on the
observable and measurable aspects of emotional behaviour and includes the
traditional theories of Darwin’s evolutionary theory (Darwin, 1872) and be-
haviourism (Watson, 1919; Skinner, 1965). In this approach, emotions serve a
functional purpose in survival and adaptively evolve over time via genetics and
social learning. More recent theories in this area include Plutchik’s psycho-
evolutionary synthesis (Plutchik, 1980), which states that emotion, evolution,
and behaviour are linked, and Ekman’s theory of basic emotions (Ekman,
1999), which proposes that emotions are used to mobilize organisms to deal
with interpersonal encounters quickly and that basic emotions are the same in
every culture, but are expressed differently due to cultural learning. Since psy-
chological theories of emotion have already been categorized by psychologists,
analysing representatives from each class can help determine which groups are
likely to contain workable theories that can be used in the GLaDOS design.

5.1 Choosing an Approach

Since psychologists cannot agree on processes or their order in the emotion
cycle, choosing a theory to use in the GLaDOS system design requires a com-
parison between the three approaches and identified software requirements.
The minimum creative requirement that is important at this stage is that the

39

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

chosen model of emotion convinces players that NPCs are emotional beings
without harming their engagement with the game. Key functional require-
ments include minimizing the computational resources required to maintain
the system, such as speed and memory, and modularity to aid ease of use.
These become increasingly important with game scale, where there can be
several dozen NPCs in any given level.

It is unlikely that physiological approaches are suited for this task. Con-
sider the conflicting theories of James-Lange and Cannon-Bard. The James-
Lange theory (Lange and James, 1922) states that emotional arousal follows
from a physical reaction and visceral arousal. If this theory is implemented in
a game, physical reactions to events would likely be no different than current
static scripting processes, as these behaviours occur before emotional process-
ing. This would imply that an NPC’s behaviour would occur as a result of an
animation — the closest thing an NPC has to visceral arousal. The Cannon-
Bard theory (Cannon, 1929) states that emotional and physical arousal is a
result of arousing the thalamus, a structure in the brain that processes and
relays sensory information to other brain structures. While this theory is more
feasible to implement because animations and behaviour occur in parallel, the
human brain is a complex structure that is not well understood. Modelling a
brain for use in a video game would likely use more development time and com-
putational resources than can be afforded with no guarantee that the model
is correct.

Experiential approaches, which encompass motivational and cognitive the-
ories of emotion, are a better candidate. The Schachter-Singer theory, which
draws on the physiological theories of James-Lange and Cannon-Bard, pro-
poses that a stimulus causes a physiological reaction, but an emotion does not
occur until the individual has identified a reason for the reaction (Schachter
and Singer, 1962). While this theory has the same implementation concern as
the physiological theories, it does propose some useful elements: emotions arise
from an appraisal of a stimulus, different emotions can be derived from the
same stimulus depending on its interpretation, and physiological arousal is es-
sential to the production of emotion. Cognitive appraisal (Lazarus et al., 1980;
Lazarus and Lazarus, 1996), proposed by Richard Lazarus, is another theory
that relies on the evaluation of a stimulus to produce an emotion class'. This
theory is a better candidate for the GLaDOS design because it proposes that
appraisal leads emotional and physiological responses. This can be compared
directly to treating game events as appraisal inputs and producing behavioural
changes and animations. The theory also proposes an evaluation cycle where
a primary appraisal stage evaluates what the event is, a secondary appraisal

Tdentified emotion classes include: Anger, Anxiety, Fright, Guilt, Shame, Sadness, Envy,
Jealousy, Disgust, Happiness, Pride, Relief, Hope, Love, Gratitude, Compassion, Aesthetic
experiences (Lazarus, 1991)

40

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

stage determines what needs to be done in response, and a reappraisal stage
observes the impact of the executed behaviour to determine what to do about
the altered environment. This type of cycle could proceed indefinitely, so a
cut-off point would need to be defined for persistent stimuli. However, while
this theory proposes a process that could be implemented in computers, some
of the emotions and methods of accessing them are relatively complex. Com-
plex emotions might not be required for all NPCs in a game specification and
forcing their inclusion could increase resource demands on both the human
designer and the host game. This could adversely affect player engagement if
the extra strain creates unexpected response delays or affects the underlying
functionality or causes a game designer to underspecify their game’s design
domain.

The first type of emotion theory proposed in science, expressive approaches,
is based on Darwin’s evolutionary theory which proposes that emotions play
a central role in a species’ survival (Darwin, 1872). Robert Plutchik’s psycho-
evolutionary synthesis (Plutchik, 1980) proposes that emotions help organisms
deal with survival issues present in their environment. It also states that there
are eight prototype patterns, or basic emotions, organised into pairs such that
paired emotions cannot be expressed simultaneously. In this theory, complex
emotions are derived from the basic emotions using traits such as emotion
intensity or by combing multiple categories into a single definition. The con-
cept of a combining a discrete number of patterns and traits into an unknown
number of complex ones supports the ability to specify a subset of emotions
to be implemented on all NPCs which can also be extended to create complex
computational behaviours based on an NPC’s purpose. Grouping emotions
into pairs with variable intensities could also be helpful when deciding how
emotions can be represented numerically in the GLaDOS system. Although
this theory clearly defines basic goals and a finite number of basic emotions
that can arise from those goals, the proposed framework for determining how
emotions are derived from stimuli appears to be a looser description of cog-
nitive appraisal (Plutchik, 2001). This would make it difficult to completely
specify the GLaDOS design using this theory alone. Another expressive ap-
proach, Ekman’s theory of basic emotions, states that basic emotions exist
to deal with fundamental life tasks and that emotional expression developed
as a means to communicate the expresser’s internal state. Basic emotions,
a label for a family of related emotions, can be distinguished by universal
signals and physiological reactions. The universality of signals in different cul-
tures is attributed to convention rather than evolution, but differences in the
amplification of emotional signals and manifestations are a product of the cul-
ture’s social learning (Ekman, 1992). This observation can be used to explain
manipulative behaviour, where an organism will feign an emotional expres-
sion to elicit a response from others (Ekman and O’Sullivan, 1991). Ekman

41

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

also proposes an appraisal mechanism similar to cognitive appraisal, but it
distinguishes itself by stating that the appraisal is quick, non-reflective, and
unconscious, and it can be influenced by social learning, personal history, and
personality (Ekman, 1999). This theory can potentially be used in a non-
essential GLaDOS system component which can be used to change how an
event is interpreted by an NPC based on their in-game culture. However,
the number of basic emotions encompassed by this theory has not yet been
confirmed, making it difficult to specify implementation requirements for the
GLaDOS system.

Choosing a theory to derive GLaDOS system specifications from should be
guided by a comparison of the emotion theory categories based on core system
requirements, such as maintaining player engagement, conserving computa-
tional resources, and modularity. These requirements can be used to imme-
diately disqualify physiological approaches because they state that emotion
follows physical or neurological arousal. This implies that a model of the
human brain would be necessary to coordinate stimuli, behaviours, and ani-
mations. Modelling a brain would likely require more computational resources
than necessary for the intended purpose, with additional development time
and no indication that player engagement might be enhanced. Experiential
approaches, such as cognitive appraisal, propose a process of deriving emo-
tional states from evaluations of environmental events and stimuli which can
be easily compared to computational processes. However, the types of emo-
tions and definitions associated with these theories often contain complex and
difficult to understand members, such as distinguishing between envy and jeal-
ousy, making them more difficult to specify computationally. In some cases,
not all the emotions are necessary, and computing their values wastes computa-
tional resources. In contrast, expressive theories, such as psycho-evolutionary
synthesis, are less specific about how emotions are formed but more succinct in
their definition of what emotions are essential and how they can be computed.
For video games, this implies that a good system would combine two or more
theories to achieve a balance between engagement, resource consumption, and
modularity.

5.2 A Combination of Theories for Video
Games

A basic architecture for simulating emotions is comprised of three parts — pro-
cess, emotion state, and behaviour expression (Campos et al., 2004; Sloman
et al., 2005). The process structure is responsible for monitoring the environ-
ment and filtering incoming information, comparable to attention focusing,
based on a set of goals such as self-preservation. After identifying relevant

42

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

ones, stimuli need to be transformed into a set of emotion values. The trans-
formation process can be affected by past emotion values, personality, and
relevant goals. Once emotion values have been stored, they can be referenced
by the behaviour expression component that selects an action to take, an ac-
companying animation for the social aspect of emotional expression, and a
target that the response is directed towards. Part of the action selection pro-
cess is identifying actions that are not appropriate for the current emotion state
and omitting them, effectively narrowing the selection space. An additional
function, process interruption, can be triggered at any stage, but it is always
used when a new behaviour is chosen to ensure that it is executed. If a more
advanced architecture is required, memories, images, relationships, cultural
quirks, and some neurobiological systems such as hormones, can be included
to augment the filtering and transformation processes. Learning algorithms
could also be used in a more advanced system to change the available actions
and animations in the behaviour expression component. However, the pro-
posed basic architecture does not adequately specify how the transformation
process works, or what emotional values are produced. These two areas require
more specific psychological theories and their specification is what defines the
GLaDOS system.

Cognitive appraisal describes a process of translating external events into
emotion values by determining how those events change the status of a goal
or other internal beliefs (Keltner et al., 2014; Lazarus et al., 1980; Oatley and
Johnson-Laird, 1987). There are two appraisal stages — primary and secondary
— followed by a coping strategy. In primary appraisal, the relevance of an
environmental event in relation to goals and ego? is determined. If the event
has no relevance to any held goal or ego, there is no change of emotion. If
the event is relevant, the congruence or positivity of the affected goal or ego is
calculated. The result of this calculation can be used to immediately discount a
number of possible emotions based on its desirability, where a positive emotion
is more desirable. Secondary appraisal is the process of determining what
responsibility to assign the source of the stimuli, if an action can be taken, and
what the future consequences of the reacting to stimuli could be. After emotion
effects are calculated, a coping strategy is created that includes the selection
of an action and emotional display in response to the stimuli (Lazarus, 2006).
In terms of the GLaDOS architecture, primary appraisal occurs in the process
component where emotion values are calculated, while secondary appraisal
and coping occurs in the behaviour expression component, where an action
and social expression are chosen and executed. While the appraisal process
proposed by Lazarus and others often have a number of accompanying core
relational themes for different emotions, there is variation in the number of

2Some components of ego include social and self-esteem, moral values, ego ideals, mean-
ings and ideas, other people and their well-being, life goals (Lazarus, 1991)

43

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

emotions and whether the emotions are discrete classes (Plutchik, 2001; Ortony
et al., 1988; Oatley and Johnson-Laird, 1987) or the result of a combination
of continuous dimensions such as arousal and pleasantnesses (Ellsworth and
Scherer, 2003; Fontaine et al., 2007; Mehrabian, 1996). This suggests that the
appraisal process itself is agnostic to the emotions implemented, allowing the
freedom to select which emotions to include and how. Unfortunately, this also
makes it impossible to completely specify how the appraisal process works in
the GLaDOS design, leaving the remaining element definitions to individual
implementations.

To enable the creation of a variety of NPC behaviours, it is potentially
beneficial to encode a select number of basic emotions into the GLaDOS de-
sign which can be combined to form more complex emotions if required. This
ensures that all NPCs have the same set of core emotions, but that “spe-
cial” NPCs can be given additional emotion definitions as required. Plutchik’s
psycho-evolutionary synthesis, which refers to a series of processes similar to
cognitive appraisal (Plutchik, 2001), proposes a taxonomy with eight basic
emotions® and a structural model for synthesising complex emotions from ba-
sic emotions and their intensities. For example, Delight is defined as a com-
bination of Joy and Surprise, whereas Contempt is a combination of Anger
and Disgust. The basic emotions are organized into pairs where a positively
aligned emotion is matched with a negatively aligned one (Figure 5.1). This
can be used to balance emotion values in a computerized system, and should
be applied to the emotion state component of the basic GLaDOS architecture
in two parts. The mandatory component contains the eight basic emotions,
their current values, and decay functions that cause the values to return to
an equilibrium state in the absence of relevant environmental events. The op-
tional component is a combinator that is used to encode complex emotions as
they are required.

A complementary theory that can be applied to the emotion decay func-
tions is the Opponent-Process theory proposed by Richard Solomon (Solomon,
1980). This theory predicts that an aroused emotion will peak and decay to a
steady level, and then over-adapt to a smaller peak in another emotion before
returning to an equilibrium state. This can be applied to emotions that exceed
a high arousal threshold to produce effects such as relief after a state of terror.
Which emotions follow from another can be encoded as emotion combinator
rules in the cases where the selected emotions are not pairs in Plutchik’s taxon-
omy. Emotions that are pairs in the taxonomy could be encoded as functions
in the emotion decay specification.

The three units in a basic, computerized emotion architecture — process,
emotion state, and behaviour expression — contain specifiable components,

3Joy, Sadness, Trust, Disgust, Fear, Anger, Surprise, and Anticipation

44

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

" 8]
[
[}
2
O =
‘%_2)(Serenity 5
IS
%3 s
[}
Z 2 o) >~ %
2 Y > £
S &
s &
ticy,
Day;, eal
Agra."on x¥
S5y, A st o™
(2) A\ 155!
g, Ier o™

Apprehension

Fear *g
Uty
Ane "Prise

& LA
e p)
5 So Pensiveness ,%)‘(é‘;
IS5 2%
¥ =7
& o

Figure 5.1: Plutchik’s Emotion Solid with eight basic emotions, three
intensity levels, and eight secondary emotions

such as sensory input module and filtering, which can be drawn from com-
monalities in proposed emotion theories. It is less clear which algorithms are
required to transform events into emotion values and which emotion categories
are required to define an emotion state due to the variety of research perspec-
tives on emotions. The decision to use Richard Lazarus’s cognitive appraisal
and Robert Plutchik’s psycho-evolutionary synthesis to guide the specification
of these unclear areas are what elevate the general emotion architecture to
the GLaDOS system. Cognitive appraisal is a good candidate for the trans-
formation process because it evaluates an event, in relation to goals, in two
distinct evaluation stages which can easily be translated into algorithms. This
theory also extends into the behaviour expression unit of the architecture by
specifying that emotional arousal should result in an expression of the emo-
tion. The number of emotion values produced should ideally be flexible to
allow the addition of more emotions to the GLaDOS design as they are re-
quired to enable the creation of more complex behaviours. This is supported
by psycho-evolutionary synthesis, an emotion taxonomy and structural or-
ganization based on eight basic emotions. The proposed basic emotions are
arranged into opposing pairs, which enables the rebalancing of values caused

45

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

by new emotion values or emotion decay to an equilibrium state in a comput-
erized system. The decay functions implemented in the emotion state can be
complemented by Richard Solomon’s Opponent-Process theory, which causes
another emotion value to spike after experiencing an extreme emotional reac-
tion. Additional decay rules can be implemented in cases where the opposing
emotion proposed by Plutchik does not match the desired NPC behaviour.
With these psychological theories as the foundation, a GLaDOS system de-
sign that is well-founded, resource-friendly, extensible, and modular can be
specified.

5.3 Conclusion

Even though a general architecture can be agreed on by many researchers, the
exact order and method used by emotion processes has yet to be specified. As
a result, three broad classes of emotion theories have emerged. Physiological
theories state that emotions follow from neurological or physical arousal; ex-
periential approaches propose that emotions are a product of environment and
event appraisals; and expressive approaches suggest that emotions developed
evolutionarily as a method for dealing with environmental stimuli to ensure
survival. In order to choose an approach, and subsequently a theory of emotion
to follow, a basic set of GLaDOS system requirements was formulated, which
includes maintaining player engagement, minimizing computational resources,
and component modularity. While physiological theories can be immediately
omitted, there is less certainty about which of the remaining approaches, expe-
riential or expressive, is the ideal candidate. Since experiential theories tend to
have more defined processes, whereas expressive approaches tend to have more
succinct collections of emotions and descriptions, a hybrid of the two might
be the best choice to achieve the goals of engagement, resource management,
and modularity.

A basic emotion architecture can be formulated from general principles of
emotion research which contains three main units. The process unit is respon-
sible for taking environmental events and transforming them into emotion val-
ues; the behaviour expression unit takes emotion values and determines what
behaviour and animations should be executed; and the emotion state, which
stores emotion values and returns them to equilibrium values via decay func-
tions. While these common elements can be used to define many areas of an
emotion architecture, there are still areas that are left undefined. The specific
selection of emotion theories is what differentiates the GLaDOS system from a
general design. Richard Lazarus’s cognitive appraisal, an experiential theory,
can be used to transform environmental events into emotion values based on
their relation to goals and ego, with room to include additional factors such
as social learning and memories. This theory also extends into the behaviour

46

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

expression unit by helping to determine what action to take in response, where
the action should be directed, and what other emotional expressions should
be used. The most important, unclear, specification in the emotion state is
how many and which emotions it should include. Robert Plutchik’s psycho-
evolutionary synthesis, an expressive approach, proposes a taxonomy of eight
basic emotions and a structural organization that allows them to be combined
into additional, complex, emotions. This allows for the ability to add more
emotions if more complex behaviour is required. The basic emotions are also
arranged into opposing pairs, which enables the rebalancing of emotion values
if there is a change, or the emotions are decaying to equilibrium. An additional
theory, Richard Solomon’s Opponent-Process, can be used to complement the
emotion decay functions by simulating follow-up emotion values after extreme
emotional states. This suggests that the emotion state has three subcompo-
nents — an emotion unit where basic emotion values are stored, a combinator
layer where emotional values are combined to determine if a complex emotion
is being experienced, and decay functions. Even though it would be simpler
to select a single theory for the GLaDOS specification, the integration of cog-
nitive appraisal, psycho-evolutionary synthesis, and Opponent-Process theory
could reduce the number of unspecifiable system elements, produce the desired
results, and be more flexible than if one were used alone.

47

Chapter 6

Designing the GLaDOS System

The GLaDOS system is designed for game designers and programmers to en-
able the creation of more realistic NPC reactions to player actions and in-game
events. The end goal of this effort is to enhance player engagement and main-
tain long-term interest in the games that implement this system. Since player
engagement is currently a subjective measurement, the GLaDOS system must
be tested with real players to gauge its effectiveness. One possible test is to
create a small game environment, or an enclosed level in a pre-existing game,
and allow players to interact with the game for a set amount of time. Once
the time is up, the player is asked if they know how much time has passed. If
their guess is smaller than the time slot, it is likely that the game is engaging.
If the guess is close to or greater than the elapsed time, it is unlikely that the
game is engaging.

For the initial GLaDOS design, only CRPGs are considered because one
of their main concepts is to allow the player to create and play out a role,
and their engagement can be negatively affected if the game world does not
help them to maintain their chosen image. A highly visible aspect of a game
is NPC behaviour and an NPC’s ability to react differently to the player can
heavily influence player engagement and interest. Even if certain NPC reac-
tions cause detrimental effects to the player, it might still be enjoyable because
it maintains the player’s image of themselves inside the game (Yannakakis
and Hallam, 2005). The initial GLaDOS design built using the psychological
theories of cognitive appraisal for event evaluation, and psycho-evolutionary
synthesis for defining emotions. This constraint is mandatory due to the vol-
ume of emotion theories which cannot be represented simultaneously due to
conflicts. Since NPC animations are a key factor in conveying emotions, this
system shall be built as a game mod, which allows the use of pre-existing game
assets and environments. This limitation is also used as a partial test of porta-
bility by determining how much of the resulting GLaDOS system needs to be
game-dependent. This constraint also limits the development platform to PCs

48

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

because game consoles do not generally support user-generated content.

At this time, Bethesda’s The Elder Scrolls series has a large and active
modding community, making it an ideal candidate for implementation and
testing. It is assumed that the animations available in The Elder Scrolls V:
Skyrim are sufficient for conveying basic emotions in both body language and
facial expressions. It is also assumed that the game environment that the
system is tested in has a limited number of NPCs so that even suboptimal
processes can still produce acceptable execution times. For testing purposes,
the most recent entry in the series, The Elder Scrolls V: Skyrim, supports key-
board and mouse, Xbox 360, and Xbox One input devices, allowing players to
select their preferred input device, which can indirectly affect their engagement
with the game.

6.1 Use Cases

The purpose of the GLaDOS architecture is to augment NPC behaviours such
that they react in believable and interesting ways to in-game events and the
player. This behaviour is important to both the player and the game designer,
since they are both concerned with player engagement and entertainment.
What qualifies as believable and interesting behaviour depends on the designer,
who is knowledgeable about the game world, and the player’s perception of the
choices that the designer has made. Despite this, a good architecture design
should only require game specific information from the designer, such as event
and goal definition, process modifiers, and final behaviour expressions.

A basic system built around Lazarus’ cognitive appraisal and Plutchik’s
psycho-evolutionary synthesis requires input and output interfaces, an event
processing unit, and a persistent emotion state. In addition to defining the
interfaces between the GLaDOS architecture and the game world, a game
designer will most likely want to either modify existing modules or add a
new module of their design. The use cases aimed at game designers focus
on modifying and augmenting the basic emotion architecture that is already
defined.

These design expectations and constraints resulted in a set of nine use
cases (Appendix B.2.5). The first, and most important, use case is concerned
with the GLaDOS system’s ability to cause NPCs to react to events that have
been identified as emotion-inducing. This scenario requires the basic system to
accept and process event identifiers using cognitive appraisal, translate them
into one or more of the psycho-evolutionary synthesis emotions, and select
an appropriate behaviour to express the resulting emotion state. Two use
cases were formed to capture the need to connect the system and the game.
Unless an event or object is identified as emotion-inducing before it is encoun-
tered, the GLaDOS system is unable to recognize and process it leading to

49

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

the usage scenario of defining an emotion-inducing event as part of the de-
sign specification. This usage scenario describes the process of identifying key
characteristics and adding an identifier and categorization, such as (“Enemy”,
““HP”). This process allows game designers to tag events that they think
should be processed by the system and categorize them in a way that suits
their game. At the other end of the GLaDOS system, game designers need to
be able to designate the type of NPC behaviour that they expect from different
emotion states, including actions and animations. This requires designers to
choose which emotion states trigger different reactions.

The next several use cases are concerned with customizing the basic GLaD-
OS design. There are two types of customization — modifying existing system
components and augmenting the system with new components. Goals are the
main cause of emotion states, as they define which events are relevant and how
they are evaluated. While basic goals, such as survival, are already included,
it is expected that designers want to be able to create new goals for their
NPCs, such as having more gold than the player. This leads to the scenario
where the designer must represent the goal in measurable terms and assign it a
priority so that when multiple events occur simultaneously, events that affect
high priority goals are processed first. Another system customization that
designers might expect is the ability to define their own emotion categories
if the system’s basic emotions' do not capture the emotion state that they
require. For example, if a designer wants different types of behaviour for
“Anger” and “Rage”, they would define at what emotional intensity “Anger”
becomes “Rage” and connect their behaviour expressions to each definition.

Part of the human emotion process is the decay of emotions to a resting
state in the absence of personally relevant events, a characteristic that design-
ers might want to simulate or exaggerate. The resulting use case of defining
emotion decay functions and emotional equilibriums emerges from this obser-
vation. Another factor that many people consider when describing people’s
emotional reactions, and that designers might want to capture, is their per-
sonality, leading to the use case that describes the definition of personality
traits as processing modifiers. The choice to target the process modules of the
GLaDOS system instead of the behaviour expression is a result of the defini-
tion of reactionary behaviour and complex emotion use cases, which already
controls how emotions are expressed. The final use case that is concerned with
adding user-defined modules is included to capture all scenarios where a game
designer needs to add functionality that does not quite fit in pre-existing mod-
ules. This can be viewed as a generalized use case for the more specific case
for defining personality traits. For example, if a designer has different cultures
in their game, they might want to add a new unit that defines different social
norms and customs. Depending on how that culture operates, this module

1Joy, Sadness, Disgust, Trust, Anger, Fear, Anticipation, and Surprise

20

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

could alter any number of basic functions, such as attention, appraisal, or be-
haviour expression. Since it is unknown at this time which module would be
best to connect this new unit to, it is best to make it as easy as possible to
add new modules to any connection point in the basic GLaDOS system.

Even if a game designer is able to customize and augment the basic system,
the development process is useless unless they are able to install and test it.
This leads to the final use case, which states that the GLaDOS system must
be installable as a The Elder Scrolls V: Skyrim mod. This directly relates to
the development constraint requiring the use of using this game for testing
purposes.

These nine use cases are designed to capture the foreseeable expectations of
players and game designers. While the player is unconcerned with the internal
system functionality, they still expect the GLaDOS system to produce believ-
able and timely NPC reactions to in-game events. They also expect to be able
to install the system in a familiar way, which would be as a mod for The FElder
Scrolls V: Skyrim in this case. In addition to player expectations, game de-
signers have several expectations regarding the modification and augmentation
of the base system to suit their needs. Essential GLaDOS system modifica-
tions include defining emotion-inducing events, what NPC behaviours arise
from each emotion state, and what goals an NPC should have. More complex
modifications that a designer might want to make include defining additional
emotions such as rage, controlling the rate at which NPCs return to an equi-
librium emotion state, and adding personality traits that alter how events are
processed. In cases where the desired effect cannot be achieved by modifying
existing system modules, a game designer might want to create and integrate
their own system module. As with any design, these usage scenarios lead to
a number of requirements that should be satisfied in the resulting GLaDOS
system design.

6.2 Requirements

Since one goal of the GLaDOS system is to be customizable for any game that
uses it, the product requirements focus on the functionality (Appendix B.3)
required to implement a basic model of the psychological theories of cognitive
appraisal and psycho-evolutionary synthesis. Additionally, there is an em-
phasis on performance-related, non-functional requirements (Appendix B.4)
because a resource heavy system can have detrimental effects on the key task
of player enjoyment.

o1

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

6.2.1 Functional

A basic model for cognitive appraisal requires event monitoring, a prioritized
list of NPC goals, primary and secondary appraisal stages, and mechanisms
for executing emotion-induced behaviours. Event monitoring is necessary to
acquire information from the environment, goals are required for extracting rel-
evant events from incoming information, and events are converted into emotion
values during the primary appraisal process. The goals must be prioritized so
that a related requirement, process interruption, can be used. Process in-
terruption ensures that events that affect critical goals, such as survival, are
processed before others. This can help NPC behaviours appear more believ-
able in an environment where multiple events occur simultaneously. Process
interruption is also used when the secondary appraisal stage finds that the cur-
rent NPC behaviours do not match the current emotion state and selects a new
set of scripts and animations, collectively called a behaviour class. Scripted
behaviours and animations are listed as two separate functional requirements
such that they can be triggered separately, allowing greater control over how
NPCs react to different emotion states. For example, an emotional change
might occur such that a manipulative state is triggered, requiring mismatched
displays of action and body language.

Modelling the taxonomy of emotions in psycho-evolutionary synthesis relies
on the maintenance of a data store containing a value for each of the eight
basic emotions, and methods for updating, rebalancing, and decaying these
values over time to a specified equilibrium. Since the basic emotions in this
theory are arranged in opposing pairs, rebalancing is required to ensure that
each pair of emotions remains in a specified equilibrium. While emotion decay
is not a core feature in psycho-evolutionary synthesis, it is required to ensure
that changes to the emotion state do not persist indefinitely after an event
has passed. Another key aspect of psycho-evolutionary synthesis is the ability
to define complex emotions as combinations of basic emotions and emotion
intensities. This enables game designers to specify more complex behaviours
than the basic emotions can afford. This requires the GLaDOS system to be
able to refer to and recognize any user-defined emotions that might be added.

In addition to modelling psychological theories, there are other functional
requirements necessary for this type of system. For the system to be self-
contained, a list of event identifiers and traits must be maintained. Recogniz-
ing processing modifiers and interfacing with user-defined modules is required
so that designers can alter or elaborate on how events are processed, enabling
the simulation of various personality traits and neurological systems. Most
importantly, the ability to install the resulting GLaDOS system implementa-
tion as a mod for The Elder Scrolls V: Skyrim is necessary so that it can be
tested for player engagement and entertainment.

o2

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

6.2.2 Non-Functional

While several of the functional requirements have focused on internal sys-
tem functionality, which the player is generally unconcerned with, the non-
functional requirements have an impact on both the game designer and the
player. Some types of non-functional requirement types, such as safety critical
and security requirements, are not necessary due to the scope and nature of
the GLaDOS system. There are also some requirements, such as adhering to
anti-plagiarism rules, being aware of copyrights, and addressing other stake-
holder standards, which do not concern the designer or the player. However,
they are still necessary in order to fully define the scope of the design con-
straints. Ideally, the GLaDOS system will eventually be released to the The
Elder Scrolls V: Skyrim modding community for feedback to see if a wider
audience of players enjoy it. The specific target game limits what implemen-
tation language to use as well because The Elder Scrolls V: Skyrim is written
in a scripting language called Papyrus, which cannot be interfaced with other
programming or scripting languages. It is important to note that, although
they might not be directly influenced by them, game designers are still con-
cerned with player-oriented requirements since the player heavily influences
the designer’s work.

Arguably the most important group of non-functional requirements is re-
lated to system performance because it can affect what a game designer can
do with the GLaDOS system and impact a player’s engagement. This resulted
in several quantifiable requirements, including how quickly the system must
respond to in-game events, how often the system polls the game environment
for new events, how many events are held at one time, prioritizing which events
to process in heavy-load environments, and how many other GLaDOS systems
might be running simultaneously. If the system is too slow, NPC reactions will
be out of sync with their trigger, which might look strange depending on the
context. It is also common in CRPGs for there to be more than one NPC in
any given area, emphasising the importance of system efficiency. Other perfor-
mance requirements that are concerned with the player’s perception of NPCs
include reliably returning an NPC’s emotion state to an equilibrium state in
the absence of other events, and running the GLaDOS system as long as the
associated NPC is present in the game environment. Miscellaneous require-
ments that are more of a concern to the player are the adherence of events,
goals, and behaviours to established game world lore and common knowledge
of human behaviour, and the ability to install the system as a mod for The
Elder Scrolls V: Skyrim, a common method for user-created game content.

The game designer also has several additional non-functional requirements,
mainly concerned with how the GLaDOS system is built. It can be as-
sumed that many game developers have at least some knowledge of Object-
Oriented programming. Therefore, the product must adhere to standard

93

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Object-Oriented programming practices so that it can be easily understood
for modifications and extensions, such as accepting user-defined event classi-
fications. This also leads to the requirement of system organization so that
modifications can be easily made. The purpose for ensuring an organized
system is to aid a designer’s ability to comfortably use the GLaDOS system
within a set time period. Another common characteristic of game designers to
consider is that they usually have little or no knowledge of psychology, mak-
ing it important to avoid the use of psychology jargon in system descriptions.
The maintenance of the GLaDOS system will most likely be left to the users,
requiring that essential usage information be integrated into the system’s code
and the creation of a companion usage manual for non-essential information.
Should the GLaDOS system prove successful in improving player engagement
and entertainment, it might be ported to other languages for use in other
games. Therefore, the system also needs to be written in a way that aids in
this process.

While the functional requirements specify different processing stages and
what is expected from the GLaDOS system, the non-functional requirements
are what define a successful design within the context of a game. If the per-
formance requirements are not met, the system will be sluggish and appear to
be broken, while many of the game designer specific requirements specify how
easy it is to use and customize. This implies that there is more work in the
organization and efficiency of the GLaDOS system than there is in adherence
to the psychological theories behind it.

6.3 System Architecture

The basic GLaDOS architecture is comprised of three core units (Figure 6.1).
The Process Unit gathers and processes information from the game environ-
ment; the Emotion State contains the current emotion values of the NPC
and associated balancing and decaying functions; and Behaviour Expression
determines what actions and animations to produce from emotion values.
While many of the components are generalized and widely supported by psy-
chologists, such as sensory input and attention, Richard Lazarus’s cognitive
appraisal is used to specify how game-world events are converted into emo-
tion values and Robert Plutchik’s psycho-evolutionary synthesis specifies what
emotions can be produced and how they are stored. While cognitive appraisal
does propose a set of core emotional themes, psycho-evolutionary synthesis
proposes eight basic emotions, with the ability to specify additional, more
complex, emotions. This gives designers flexibility when creating NPC be-
haviours by providing a framework for defining a more finely grained specifi-
cation of when and how certain behaviours are triggered. Conversely, psycho-
evolutionary synthesis proposes a method of processing stimuli that is similar

o4

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Environment NPC

- - Process Unit
Stimuli (PU)

b

Emation State Augmenting
(ES) Components

Behaviour Expression
(BE)

h

¥

Figure 6.1: Main Architecture Units in the GLaDOS Design

to cognitive appraisal, but with fewer details. This means that it is possi-
ble to use cognitive appraisal instead, with similar results, while enabling the
GLaDOS architecture to have more specific process definitions. Cognitive ap-
praisal has three processing stages: primary appraisal calculates how an event
is relevant to an NPC; secondary appraisal assigns responsibility, determining
if anything can be done about the event, and identifying future consequences;
and coping decides what, if any, behaviour and emotional display, such as fa-
cial expressions and audible cries, to trigger. Since it is possible for the results
of secondary appraisal to change the current emotion values, the results of
this stage could be sent to the Emotion State as an additional input in a more
complex design.

6.3.1 Process Unit

The Process Unit (Figure 6.2) is responsible for gathering and filtering goal-
relevant information from the game environment and determining what emo-
tional impact that information has on the NPC. This unit has four compo-
nents: Goals (PU-1), Sensory Input (PU-2), Attention (PU-3), and Primary
Appraisal (PU-4).

PU-1. Goals (Functional Requirement F-2)
The data store associated with the Process Unit, Goals, is key to ensuring
that only relevant information is processed inside the GLaDOS system.
This module contains all information required to be able to associate
game events with NPC goals and transform those events into emotion
values.

95

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Environment NPC

. __| Sensory Input Attention Primary Appraisal Augmenting
Stimuli -| (PU-2) }—i (PU-3) > (PU-4) Components

Process Unit (PU)

Goals
(PU-1)

¥

¥

. Beha\inl?l'BléTpf\%ﬁion Emotion State
< (ES)

PU-2.

PU-3.

Figure 6.2: Process Unit Components

Sensory Input (Functional Requirement F-1)

The Sensory Input module is a proxy layer between the game environ-
ment and the GLaDOS system, gathering game events and converting
them into system-friendly data structures. It might only need to be de-
fined once per game since all NPCs can use the same module because
it does not affect how data is processed internally. The data structure
created by this module must include an event source for assigning re-
sponsibility, and identifying event characteristics to help match it with
a Goal from the Goals module (PU-1). For example, if a dragon landed
nearby, the event source could be “Dragon” or “Opponent” and one
possible characteristic is “DamageHealth” signifying a potential loss of
health points. Due to the complexity of CRPGs, a significant amount of
information can be queued for processing, requiring this module to be
computationally fast and efficient to prevent delayed responses. This is
due to a lack of guarantee that any information parsed in this module is
relevant to the NPC.

Attention (Functional Requirement F-3, F-5)

The Attention module is responsible for filtering information parsed by
the Sensory Input module (PU-2) based on their relevance to goals found
in the Goals module (PU-1). If an information unit does not relate to
any goal, it is discarded. Otherwise, a reference to the affected goal is
added to the information unit and passed onto the Primary Appraisal
module (PU-4). Goal relevance is handled very generally in this module,
as a more thorough analysis is performed in the Primary Appraisal mod-
ule where the emotion values are derived. If an information unit affects
a high priority goal, this module has the ability to interrupt the Primary

o6

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Appraisal module to ensure that this information unit is handled im-
mediately. This ability is crucial in situations such as “fight-or-flight”,
where an NPC should stop all activities and get to a safe area.

PU-4. Primary Appraisal (Functional Requirement F—4)

After environmental events have been converted into data structures and
filtered by goal relevance, the information is processed in the Primary
Appraisal module, named for the first component of Lazarus’ cognitive
appraisal theory (Lazarus et al., 1980) where an event’s relevance to
goals is determined. In a computational context, this means processing
the event data and the referenced goal to determine how it affects the
NPC. The result of this appraisal is passed to the Emotion Store module
in the Emotion State (Section 6.3.2).

The purpose of the Process Unit is to determine which game events are rel-
evant to the NPC’s goals and create a package of information that can be used
by other GLaDOS system modules to generate a response. Only events that
affect NPC goals, which cause emotional changes, pass through to the Emotion
State, where emotion values are stored and maintained. The importance and
emotional impact of NPC goals is contained in the Goals module (PU-1), a
collection of values that can be easily understood by the computer. Raw envi-
ronmental data is gathered by the Sensory Input module (PU-2), which parses
it into information packets that the system can understand. This supports
portability and flexibility because it does not require the GLaDOS system to
be rewritten for similar games. Completed information packets are passed to
the Attention module (PU-3), where they are checked against goals for rel-
evance. If a packet is not relevant to any goal, it is discarded. If a packet
is relevant, a reference to the goal is appended and the packet is passed to
Primary Appraisal (PU-4) for processing. In the Primary Appraisal module,
event information and goal statements are evaluated to determine how the
event and goal combination affects the NPC. Since it is responsible for han-
dling incoming information, the Process Unit needs to be efficient and fast to
prevent data loss, leading to the decision to discard information as soon as it
is not useful.

6.3.2 Emotion State

The Emotion State is the intermediate unit between event processing and re-
active behaviours. It is also where Plutchik’s psycho-evolutionary synthesis is
implemented. Its main purpose is to store and maintain current NPC emo-
tion values, but it is also the location of the combination rules used to define
complex emotions. It has three components: Emotion Store (ES-1), Emotion
Decay (ES-2), and Emotion Combinator (ES-3).

57

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Environment NPC

S Process Unit
Stimuli (PU)

k4

S
Emotion State (ES) l

Emaotion Combinator Emaotion Store Emotion Decay
(ES-3) (ES-1) (ES-2) Augmenting
Components

hJ

Behaviour Expression
< (BE)

ES-1.

ES-2.

Figure 6.3: Emotion State Components

Emotion Store (Functional Requirement F-6, F-7, F-8)

Emotion values produced by the Process Unit (PU) first enter the Emo-
tion State via the Emotion Store, a database for storing basic emotion
values as defined by Plutchik’s psycho-evolutionary synthesis. Each of
the eight basic emotions have a value between 0% and 100% intensity,
where 0 means that the NPC does not feel that emotion at all and 100
means that the NPC strongly feels that emotion. The basic emotions are
arranged in opposing pairs (Table 6.1), which means that each time an
emotional value changes, its pair must also change by an inversely pro-
portional value. For example, if “Joy” increases by 15%, then Sadness
must decrease by 15%. This allows for the use of a simple mathematical
model that is easy to maintain and adheres to the psychological theory
that this unit is based on.

Joy — Sadness
Trust — Disgust
Fear — Anger

Anticipation — Surprise

Table 6.1: Plutchik’s Opponent-Pairs of Emotion

Emotion Decay (Functional Requirement F-9)

Human emotions tend to return to an equilibrium state in the absence of
additional emotion-inducing stimuli, implying that there is an emotion
decay that occurs over time. To simulate this, a function that changes
the values in the Emotion Store (ES-1) is triggered periodically until a
pre-determined equilibrium state is reached. The form of the function
and length of the decay period can vary between NPC specifications. In

o8

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

addition to this natural decay of emotions, there might be other situa-
tions which cause unusual emotional behaviour. For example, joy imme-
diately follows extreme terror in the Opponent-Process theory (Solomon,
1980). The decay functions and equilibrium state values are separated
from the Emotion Store module because they are not directly related to
Plutchik’s basic emotions. It also keeps user-defined rules separate from
key Emotion State functions that should generally not be altered.

ES-3. Emotion Combinator (Functional Requirement F-10, F-11)

While basic emotions might be enough to specify NPC behaviour in most
cases, there will be times when game designers need a behaviour to occur
when multiple emotions are at a specific level or at different emotion in-
tensities. Psycho-evolutionary synthesis allows for the combination and
intensity of different emotions to result in complex emotions, such as
awe (fear and surprise) and rage (high intensity anger). The Emotion
Combinator module allows for the specification of these complex emo-
tions such that they arrive as a single emotion type in the Behaviour
Expression component as opposed to a collection of otherwise individual
emotions.

The Emotion State is the main component where Plutchik’s psycho-evolu-
tionary synthesis is implemented. Defining a small set of basic emotions might
be enough for most games, and the arrangement into opposing emotional pairs
makes the rebalancing of stored emotion values simple and efficient. This de-
sign is encapsulated in the Emotion Store (ES-1) component. Another aspect
of psycho-evolutionary synthesis, encoded in the Emotion Combinator (ES-3),
is the definition of complex emotions as combinations of basic emotions and
emotion intensities. These are defined when basic emotions do not produce
the desired behavioural complexity. Unmentioned in the psycho-evolutionary
synthesis, but still observed in real life, is the gradual decay of emotions to
an equilibrium state in the absence of emotion-inducing stimuli. This obser-
vation is captured in the Emotion Decay module (ES-2), which is used by the
Emotion Store during a pre-determined time cycle. This additional module is
also useful in cases where more complex decay functions are required, such as
those observed in the Opponent-Process theory. When the Emotion State has
finished its computations, it produces a set of emotions and intensities that

can be extracted by the Behaviour Expression module to determine how the
NPC should react.

6.3.3 Behaviour Expression

The final unit in the GLaDOS system, Behaviour Expression, addresses the
second and third components of Lazarus’s cognitive appraisal. These sections

29

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Environment NPC

S Process Unit
Stimuli (PU)

Emaotion State
(ES)

Behaviour Expression (BE) g%?gﬂgﬁg

Behaviour Regulation
N (BE-2)

Secondary Appraisal

Expressive
+ Communication
(BE-3)

Figure 6.4: Behaviour Expression Components

of the theory are responsible for assigning responsibility or blame for an event
and deciding how to react. This component has three modules: Secondary Ap-

praisal (BE-1), Behaviour Regulation (BE-2), and Expressive Communication
(BE-3).

BE-1.

BE-2.

Secondary Appraisal (Functional Requirement F-12)

After emotion values have been updated and combined into complex
emotions, all emotions and their intensities are examined by the Sec-
ondary Appraisal module. This module checks each emotion/intensity
set to determine if it could trigger a change in NPC behaviour or ani-
mation according to encoded threshold rules. After examining each set,
the largest intensity and associated emotion is selected and passed onto
the Behaviour Regulation (BE-2) and Expressive Communication (BE-
3) modules. If some emotions defined in the Emotion Combinator (ES-3)
require blame assignment, it is determined in the Secondary Appraisal
module. This is used to identify a specific target that a behaviour or an-
imation is directed. For example, if Awe is defined as [Target — ([Fear
> 75] 4+ [Surprise > 75])], then the Secondary Appraisal module directs
the response towards “Target”.

Behaviour Regulation (Functional Requirement F-13)

The emotion/intensity set selected by the Secondary Appraisal module
(BE-1) is used by the Behaviour Regulation module to select NPC be-
haviours that require scripted rules, such as moving to a destination or
switching to another behaviour state. This is the module where tradi-
tional behaviour scripts can be used, allowing for a library of available

60

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

scripts to enable an NPC to select alternate behaviours for different sit-
uations. This limits the additional overhead traditionally required to
handle multiple possible NPC behaviours where a game designer would
need to manually assign each script to a selection rule.

BE-3. Expressive Communication (Functional Requirement F-14)
Working in parallel with Behaviour Regulation (BE-2), the Expressive
Communication module is responsible for selecting and playing anima-
tions to match the NPC’s current emotional state. Like Behaviour Reg-
ulation, the selection space for this module is passed in from the Sec-
ondary Appraisal module. The decision to separate scripted behaviours
from animations, aside from encapsulating different sets of functionality,
addresses the observation that sometimes an emotional state can affect
your internal thoughts but does cause behavioural changes. This also
allows game designers to specify situations with conflicting behaviours
and animations, such as smiling while being attacked.

Behaviour Expression implements the remaining pieces required to create
a basic model of Lazarus’s cognitive appraisal theory. While the Process Unit
extracts emotion values from environmental events, Behaviour Expression de-
termines what can be done about the new emotion state and selects the best
actions and emotional displays to play in response. The creation of the se-
lection space is handled by the Secondary Appraisal module (BE-1), which
takes in the current emotion state, both emotions and their intensities, and
selects new NPC behaviour or animations. When the selection is made, it is
passed to the Behaviour Regulation (BE-2) and Expressive Communication
(BE-3) modules where the NPC’s final reaction, a combination of behaviours
and animations, is chosen and manifested in the game environment.

6.3.4 Augmenting Components

The three components of the basic GLaDOS system — Process Unit, Emotion
State, and Behaviour Expression — are likely enough for most game designs.
However, there are still several other factors that have been identified by psy-
chologists that influence emotions, both in their creation and expression. These
factors can be considered additional system components when more complex
NPC behaviour is required, or if a more accurate model of emotion is desired.

e Personality
When asked how the same event can cause differing reactions, many
people identify personality as the main contributor. Defining personali-
ties for NPCs could cause immediate and noticeable differences in their

61

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

behaviour, creating the illusion that a game world’s population is di-
verse and unique. Personality can be implicitly defined in the GLaDOS
system via the Behavioural Expression component. In the Secondary Ap-
praisal module (BE-1), a game designer can specify different behaviour
thresholds for each emotion and scripted behaviours and animations can
be included in the Behaviour Regulation (BE-2) and Expressive Com-
munication (BE-3) modules that are unique to an NPC. However, this
methodology requires additional implementation time due to the variety
of scripts required. One method of explicitly introducing personality into
emotion generation is by creating processing modifiers for the Primary
Appraisal module (PU-4) in the Process Unit. If used well, these modi-
fiers can change how events are interpreted, leading to differing emotion
values for different NPCs, which in turn could lead to varying behaviours.

e Mood

Mood is another factor that many people identify when asked what influ-
ences how events are interpreted and responded to. It could be described
as a persistent emotion state that exaggerates some emotions over oth-
ers. A mood could be simulated by maintaining a separate set of emotion
values that stores the cumulative average of past emotion states. This
set of values can then be used to influence new emotion values going
into the Emotion Store (ES-1) by altering their original value. A mood
state could also directly influence the Secondary Appraisal module (BE-
1) by altering what emotion/intensity sets to pass along. The result
could cause a variation in NPC behaviour based on their short term
experiences.

e Beliefs and Values
How people interpret and react to different situations is a culmination
of their knowledge and experiences. Beliefs and values are part of the
knowledge used to formulate emotional responses. This knowledge is
formed over time and can be influenced by social interactions. Stereo-
types, where someone expects certain things from another based on ob-
servable attributes such as nationality, are an example of a commonly
held beliefs. The interesting thing about beliefs and values is that they
do not need to be true, which can lead to any number of irrational
behaviours. As with personality, beliefs and values can be implicitly in-
cluded in the GLaDOS architecture via the Behaviour Expression module
(BE) by specifying what types of behaviours and animations are avail-
able based on the result of a responsibility assignment, and explicitly as
modifiers in the Primary Appraisal module (PU-4) in the Process Unit.
In cases where beliefs and values are implemented as part of Behaviour
Expression, it might be necessary to return the results back to Primary

62

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Appraisal in order to simulate a changing emotional response as more
knowledge is assessed.

e Memories and Images

An observable phenomenon is how memories and images affect emotions
by reminding an individual of an event, which can trigger an equal or
milder emotional change in response. This phenomenon can be inte-
grated into the GLaDOS system by introducing a database for “mem-
ories” — past events that caused drastic changes to the NPC’s Emotion
Store (ES-1). Reasoning mechanisms need to be designed that are able
to recognize similarities between a current event and events stored in
this database so that it alters the values produced by Primary Appraisal
(PU-4).

e Social Interactions

Social interactions are specialized environmental events that require NP-
Cs to comprehend both verbal and non-verbal social signals, formulate a
representation of the other party’s internal emotion state, and respond in
turn. The response does not have to make sense from a social standpoint
— it needs to make sense within the context of the situation and the NPC’s
personality. This extension to the GLaDOS system requires a series of
new modules in the Process Unit, arranged in parallel to pre-existing
modules. The purpose of a parallel processing branch is to extract and
analyse event components that are specific to social interactions, such as
language processing and cultural norms, separately from general event
information.

e Social Learning

If methods for processing Social Interactions are added to the GLaDOS
system, a social learning aspect can also be added. In the absence of
others, people might develop habits and routines that might not be
considered acceptable within the greater social realm. This leads to
a number of changes that include a reduced likelihood of performing un-
desirable behaviour or stopping it altogether. This can be simulated by
implementing a learning algorithm in the Secondary Appraisal module
(BE-1), which changes the selection likelihood of certain behaviours and
animations.

e Personality Development
It is known that personality can change as a result of experiences, society,
and other social factors. In the GLaDOS system, personality can be ex-
pressed implicitly through the selection bias of the Secondary Appraisal

63

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

module (BE-1) and explicitly by modifying the Primary Appraisal mod-
ule (PU-4). This implies that it is possible to simulate a changing per-
sonality by modifying one of these aspects. However, the method chosen
to create changes in personality should be slow, since many personality
changes happen over time as experiences accumulate.

e Neurobiological Systems

There are many emotional and behavioural traits that cannot easily be
controlled because they are heavily influenced by neurobiological sys-
tems. Within the context of a computerized system, neurobiological
systems would result in irregular computations and behavioural selec-
tions that would not otherwise be made. For example, hormones can be
implemented in a module that alter values in the Emotion Store (ES-1)
at random time steps. Other brain chemical imbalances can also be sim-
ulated in various ways, such as preventing a change in behaviour, causing
an exaggerated appraisal of an event, or not accepting new events from
the environment. How they are implemented will depend on the biolog-
ical system itself.

While a basic GLaDOS system might be sufficient for most NPC specifica-
tions, there are a number of extensions that can be made to reduce its static
nature, potentially resulting in a more interesting experience for observant
players. The most likely change that game designers will make is the addition
of explicit personality modifiers, which can complement the implicit expres-
sion of personality in Behaviour Expression. Another likely augmentation is
mood, a culmination of past emotion states that influence how current events
are processed. Extensions that require additional memory and management,
beliefs, values, memories, and images, can be used to create biased NPCs that
make decisions based on past experiences. On a social level, effects from so-
cial interactions and learning can also be implemented as a parallel processing
unit and learning algorithm, respectively. An emergent personality can also be
implemented with a learning algorithm on top of any implementation of per-
sonality. These additions can lead to the development of an NPC community
over a game’s lifetime. The final suggested extension, neurobiological systems,
can be used to express otherwise inexpressible behaviours, such as hormonal
imbalances, exaggerated appraisals, or ignoring environmental events.

6.4 Conclusion
The main purpose of the GLaDOS design is to enable game designers to create

believable and interesting NPC behaviours in CRPGs, with the goal of enhanc-
ing player engagement and entertainment. The CRPG genre was chosen for

64

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

the initial design because NPC behaviours are highly visible and can impact
how the player plays. The psychological theories of cognitive appraisal and
psycho-evolutionary synthesis were chosen to see if a single generalized sys-
tem based on theories is enough, or if a new design is required for each game.
Even though the player is the main stakeholder, many of the identified use
cases and functional requirements focus on the customization of the GLaDOS
system because game designers must be able to customize it to suit their own
specifications. However, the player is the main motivator behind several of the
non-functional requirements, such as system performance.

The requirements lead to an architecture design with three distinct com-
ponents (Figure 6.5). The first component, the Process Unit, is tasked with
gathering event information, then filtering and analysing it with regards to a
set of formalized NPC goals. The second component, Emotion State, tracks
the current collection of event processing results as a set of emotion values.
These values return to a pre-defined equilibrium state over time via decay func-
tions and can be combined to form complex emotions with user-defined rules.
These values are used to influence how behaviours are chosen in the final com-
ponent, Behaviour Expression. This module is responsible for selecting which
subset of behaviours and animations can be used based on emotion categories
and trigger thresholds. Behaviours and animations are selected separately to
support both modularity and the ability to create otherwise incompatible sets,
such as smiling while in pain. Both the Process Unit and Behaviour Expression
components implement Lazarus’s cognitive appraisal theory while the Emotion
State implements the emotion taxonomy presented in psycho-evolutionary syn-
thesis. The selection of two seemingly compatible theories was made because
it allows for the most defined aspect of each to be used, instead of having one
well developed component in exchange for some underdeveloped ones. There
are also several possible psychology-based modifications and extensions that
can be made to make NPCs more believable, but they might provide more
functionality than is required for most designs. In order to determine if the
proposed GLaDOS system design truly meets the goal of increased player en-
gagement and entertainment while being easy for developers to modify and
extend, the system needs to be built and tested.

65

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Environment NPC

Process Unit (PU)

Goals
(PU-1)

Stimuli ..| Sensory Input Attention Primary Appraisal
'| (PU-2) (PU-3) (PU-4)

——

Emotion State (ES) l
Emotion Combinator Emeotion Store Emotion Decay Augmenting
(ES-3) (ES-1) (ES-2) Components
|
i
~
Behaviour Expression (BE)

" Behaviour Regulation
(BE-2)

Secondary Appraisal
(BE-1)

Expressive
- Communication
(BE-3)

Figure 6.5: Complete GLaDOS Architecture

66

Chapter 7

Implementing the GLaDOS
System

Since the GLaDOS system is designed such that it can be appended to a
pre-existing game, this implementation route was chosen because it would
eliminate additional content creation tasks required during the game develop-
ment cycle. The chosen host game, Bethesda’s The Elder Scrolls V: Skyrim,
is known for its support of user-created content! and the community that has
emerged around this task. It is important to note that some of the required
functionality is not included in the core Creation Kit, so a community-created
Skyrim Script Extender (SKSE)? must also be installed in order for this imple-
mentation to function correctly. Although selected for practicality, The Elder
Scrolls V: Skyrim is a sandbox CRPG. Due to its nature, the scope of sandbox
CRPGs is the largest of the three types and allows the GLaDOS system to be
implemented in an environment which would typically require the most work
to define the design space for. Therefore, this implementation of the GLaDOS
system can also be used as a feasibility benchmark for any CRPG.

Translating the components defined in the GLaDOS architecture was rela-
tively simple. Most components could be represented with a single script ob-
ject, with the exception of the Sensory Input component of the Process Unit
(Section 7.3.2) and the Behaviour Regulation component of the Behaviour
Expression module (Section 7.5.2). Since these components interface directly
with the game, it is not surprising that additional mechanisms were needed in
order to connect it with the user-generated system. After the core GLaDOS
system was implemented, additional scripts and objects were created as needed
for tasks such as system initialization and information flow.

!Copies of the development platform, Creation Kit, and associated scripting language,
Papyrus, are included with PC versions of The Elder Scrolls V: Skyrim
2Skyrim Script Extender Homepage

67

http://skse.silverlock.org/

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Even though the GLaDOS architecture was designed around specific psy-
chological theories, unspecified architecture details are not which leaves their
definition up to implementation requirements and constraints. In some cases,
implementation details have been loosely based on additional psychological
theories to produce a functional system. Specific decisions made during the
implementation process cannot be fully supported by formal models or re-
search, and can be subjected to debate. Despite the limitations of the design
specifications, the resulting GLaDOS implementation was created to test if the
proposed design could enhance a player’s experience, improving the chances
that they will replay an otherwise “completed” game. This specific implemen-
tation is one of many potential ways to approach the GLaDOS design, and
future users are encouraged to alter their implementation strategy to suit their
needs.

7.1 Connecting the GLaDOS System to The
FElder Scrolls V: Skyrim

Implementing the GLaDOS system in The Elder Scrolls V: Skyrim required
the use of some unusual practices. A Quest object®, which starts upon game
initialization and cannot be completed by the player, is required to be able to
access the GLaDOS system for initialization and run routine procedures. The
inability to complete this Quest is necessary because associated objects are
removed upon its completion. Unless the player wishes to stop the GLaDOS
system, its associated objects should not be removed during execution. For
simplicity, the Quest object is also named GLaDOS. This Quest object con-
tains a series of ReferenceAlias objects® that are assigned to specific NPCs
when the quest starts®. The ReferenceAlias objects are containers for the
various modules that make up the GLaDOS system, which have been con-
figured for each unique NPC. Configuration parameters include NPC-specific
values required for the GPrimaryAppraisal module (Section 7.3.4) and par-
tially stored in the GAttention and GGoals modules (Section 7.3.3), emo-
tion decay rate and equilibrium data for the GEmot ionDecay module (Sec-
tion 7.4.3), emotion selection thresholds and default selection in the GSec-
ondaryAppraisal module (Section 7.5.1), behaviour packages used by the
GBehaviourExpressionObject module (Section 7.5.2), and animations
used by the GExpressiveCommunication module (Section 7.5.3). Values
were designed to fit within an NPC’s known characteristics and personality

3Creation Kit Wiki — Quest Object (Editor)

4Creation Kit Wiki — ReferenceAlias Object (Quest Object)

5A small test class, GTestFill, is included to be able to test selection conditions in
ReferenceAlias definitions to ensure that the intended NPC is being picked.

68

http://www.creationkit.com/index.php?title=Category:Quests
http://www.creationkit.com/index.php?title=Quest_Alias_Tab

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

as described by the game’s documentation®. This organization provides two

advantages: any change to the underlying system logic is propagated to all
ReferenceAlias objects, and any changes made to individual ReferenceAlias
objects do not affect other ReferenceAlias objects.

A separate ReferenceAlias object for the player is also required for the infor-
mation gathering GLaDOS system components (Section 7.3.2) and detection
system (Section 7.3.1). This inclusion makes it possible for the GLaDOS sys-
tem to recognize and process the player’s current state to produce behavioural
changes and animations.

Despite the odd practices, the implementation of the GLaDOS system
closely follows the intended design. The Process Unit (Section 7.3) gathers
information from the game environment and converts it into emotional values;
the Emotion State (Section 7.4) stores and updates the current system emo-
tion values using new values from the Process Unit and uses decay functions to
return values to an equilibrium state; and Behaviour Expression (Section 7.5)
determines what actions and animations to execute based on the values ex-
tracted from the Emotion State. To ensure that the components work together,
a control class was implemented.

7.2 Controlling the GLaDOS System
(GLorthiem)

The main control class is considered part of the interface between the game
environment and the GLaDOS system (Figure 7.1). Nicknamed “Lorthiem”,
after the NPC used to test the GLaDOS system, it initializes required system
components when the NPC is created, notifies the system of scheduled updates,
and coordinates inter-module communications.

System initialization includes the extraction and assignment of system
module references from the NPC’s ReferenceAlias to script variables, improv-
ing long-term system performance. This start-up logic is stored in the Ini-
tialization function rather than in the Onlnit event”directly, allowing setup
logic to be performed during non-standard NPCs initialization (Section 7.6).
Further initialization tasks are handled in the first OnUpdate event® including
the creation of a GProfile object in the GSensoryInput module (Sec-
tion 7.3.2), the assignment of equilibrium emotion values in GEmotionStore
from values stored in GEmotionDecay (Sections 7.4.1 and 7.4.3), and the
recording of the NPC’s default Energy Level variable for use with Al packages

6The Elder Scrolls Wiki and Unofficial Elder Scrolls Pages were used for this purpose.
"All objects in the Creation Kit have this event as part of their core logic.
8Creation Kit Wiki — OnUpdate() Event (Form, Alias, and ActiveMagicEffect Scripts)

69

http://elderscrolls.wikia.com/wiki/The_Elder_Scrolls_V:_Skyrim
http://en.uesp.net/wiki/Skyrim:Skyrim
http://www.creationkit.com/index.php?title=OnUpdate_-_Form

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Empty State /

GLorthiem

- lorthiem : Actor

- si : GSensorylnput

- a : GAttention

- pa : GPrimaryAppraisal

- es : GEmotionCombinator
- ed : GEmotionDecay Ready State
- sa : GSecondaryAppraisal
- br : GBehaviourRegulation GLorthiem
- ec : GExpressiveCommunication
- lastPlayerProfile : float = 0.0 <<Event>>)
-scale : float = 57.7 + OnUpdate () : void
- previousExpressedEmotion : int = -1
- normalEneryLevel : float

+ Initialization () : void

+ TestLortheim {) : void Unless it is explicitly defined in
- RunGLaDOSForPlayer { GPlayerProfile) : void the Ready State, all variables
- UpdateBehaviours (int) : void and functions from the Empty
- CompileEmotionintensities () : int [] State also exist in the Ready
<<Event=> State

+ Onlnit () : void

+ OnUpdate () : void

ReferenceAlias and Alias AV
classes are part of the existing Ref Alias Extend: {> Alias
Skyrim Creation Kit library

Figure 7.1: Internal Control Class

(Section 7.5.2). This event is added to the processing queue after initial vari-
able assignments are made. These tasks were moved to an OnUpdate event
to avoid a known bug where some game events are not registered while the
Onlnit event is running.

The OnUpdate event is also required for different tasks post-initialization.
Therefore, two versions were created via the use of states, which enables the
use of pseudo-polymorphic function definitions. The version used for initializa-
tion defined in the system’s initial state, the “Empty State”. After completing
the first OnUpdate event, the system transitions to the user-defined “Ready
State”, where the second definition of OnUpdate is located. The state change
does not affect anything else in the GLorthiem class because they are not
defined in the “Ready State”. This is the result of the Creation Kit’s state
system design.

The “Ready State” OnUpdate event is called for the first time approxi-
mately one second after the state change and remains in this state for the
remainder of the system’s running time. The OnUpdate event in the “Ready”
state is responsible for periodically running the GEmotionDecay module
according to its specified decay step, and checking for any changes to the
expected expressed emotion state via the GSecondaryAppraisal module

9Creation Kit Wiki — States

70

http://www.creationkit.com/index.php?title=States_(Papyrus)

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

(Section 7.5.1). If a change occurs such that a different emotion needs to be ex-
pressed, a follow-up call to the UpdateBehaviours function is made, which is re-
sponsible for coordinating the GBehaviourRegulation (Section 7.5.2)and
GExpressiveCommunication (Section 7.5.3) modules.

The final task of the main control module is the coordination of communi-
cation between system modules. This has a twofold design purpose. The first
is to remove direct dependencies between classes, allowing future developers
to alter modules without making cascading updates to additional modules.
The second purpose is to aid in performance by allowing certain classes to
run relevance checks before proceeding, such as running the GAttention
module before solving otherwise irrelevant Threat Control equations in the
GSensoryInput module.

When the system is triggered, it compares the creation time stored in
GPlayerProfile (Section 7.3.2)' with the recorded creation time in GLo-
rthiem. If the profile object’s creation time is later than the stored one,
the GLaDOS system proceeds with analysis. Limiting profile analysis to one
time per update avoids scenarios where an NPC acquires identical player pro-
file objects in a short time span. Analysing each one would result in wasted
computational resources and artificially compounded emotion values in GEmo—
tionStore. Once the profile object is marked for processing, the NPC is
forced to look at the player to signal that the process has begun. The system
then extracts and compares the profile stimuli dedication values, a percent-
age value representing how many times a stimuli appears in a profile, with
the NPC-specific threshold values of GAttention. Three stimuli are se-
lected!! and are used to extract three sets of NPC-specific goal information
from GGoals (Section 7.3.3). This is also the stage where game-specific values
are calculated and important player-held item information is gathered. The
collection of information, goals, calculations, and items, are passed as a set
to GPrimaryAppraisal (Section 7.3.4) so that they can be converted into
an emotion and accompanying intensity value. Since the equations in GPri-
maryAppraisal are normalized, the intensity value is translated into the
range [0,100 € Z] after the computations are complete. At this point, the
resource-intensive computations have been complete, but the new values still
need to be stored and translated into game environment output. Adding the
new intensity value to GEmotionStore is handled via a selection structure
to identify the emotion code and send the intensity value in through the asso-
ciated channel. Following the update to GEmotionStore, the new emotion

10For this implementation, NPCs are only able to extract a player profile object. In future
implementations, NPC profile objects might also be candidates for analysis.

HThe player’s race is always included in the three stimuli in this implementation because
its dedication value is always 1.0, the maximum value.

71

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

state is sent to GSecondaryAppraisal to determine which, if any, expres-
sion threshold the new state crosses. The result of this appraisal is sent to the
UpdateBehaviours function so that any associated behavioural or animation
changes can occur. After the system finishes, the NPC is no longer forced to
look at the player to signal its completion.

The inclusion of the GLorthiem control class is essential to the smooth
operation of the GLaDOS system. It ensures that all required elements are
initialized properly and in a manner that is the least intrusive to other game
tasks. It controls the timing of changes and updates to NPC behaviours due
to the GEmotionDecay module. It also moderates the flow of information
between GLaDOS components during an encounter. Separating these tasks
from the core system modules via GLorthiem allows more flexibility in how
and when the system operates.

7.3 Process Unit

The Process Unit (Figure 7.2) is where game environment data enters the
GLaDOS system. Gathered information is filtered according to pre-designed
NPC goals before being synthesized into numerical values that can be encoded
as an emotion and intensity value. The synthesized values are then used by the
system to determine the new NPC emotion state (Section 7.4). Implement-
ing this process in The FElder Scrolls V: Skyrim required the creation of four
distinct information processing tasks: gathering (7.3.1), generation (7.3.2),
conditioning (7.3.3), and analysis (7.3.4).

7.3.1 Information Gathering (The Detection System)

In order to use the GLaDOS system, NPCs need to be able to detect targets
and begin processing their associated stimuli. A detection system already ex-
ists in The Elder Scrolls V: Skyrim that is based on Line Of Sight (LOS) events
which are triggered whenever the observing agent can draw an unobstructed
line to a target. However, these events are known to be computationally ex-
pensive and are throttled by the game engine'?. This causes increasingly large
delays between event registrations, which might result in a delayed start of an
NPC’s system. This could cause delayed reactions, sometimes even after the
stimulus has been removed, or no reaction at all. This approach is not ideal
for resource usage reasons as well. Since the system will only be triggered
when the player is within a set distance of an NPC, it is not resource-efficient
to register all NPCs for LOS events at all times. Even if an NPC is within de-
tection range of the player, the LOS events will constantly check if the player

12Creation Kit Wiki — RegisterForLOS (Form Script Function)

72

http://www.creationkit.com/index.php?title=RegisterForLOS_-_Form

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

GSensorylnput GPrimaryAppraisal
- selfProfile : GProfile - pessimist : Property bool = false
-isProcessing : bool = false - lazy : Property bool = false
-hasStarted : bool = false - emotionControl : Property float = 1.0 The Alias class is part of the
-unequipped: bool = false - energyProfile : Property int = 2{[0, 4] } Skyrim Creation Kit
- switching : bool = false
-equipCounter : int = 0 +MultiAppraise (float [, float [J, float [1, float [], float, float]) : float []

+ Appraise (float, foat, float, float, float, float []) : int[]

+ AssignProfileObject { GProfile) : void - CalculateDimensions (fioat, float, float, fioat, float, float []) : float []
+ GetSelfProfile () : GProfile - MatchEmotion (float[]) : int
+ isProcessingProfile () : bool - Calculatelntensity (fioat[]) : float

+ SelfAnalyse (Actor) : void |
- GetArmorTypesSingle { Armor) : string []

- GetArmorPieces (Actor) : Armor [] Bxdonds GGoals
- GetWeaponTags (Weapon) : string [] V
- isSpeliConjurationSchool (Spell) : bool D Extends——| - §0als : Property string []
- FindTaglnList (string [], string) : int Exends Ales Q - goalUtilities : Property float []{ [0, 1] }
- UpdateProfile (Actor, string [], int, int[], int, int, string 1, int) : void A - goalResponsibility : Property fioat [{ [0, 1] }
+ CalculateNPCThreatControl { GProfile) : float - stimuli : Property string []
+ CalculatePlayerThreatControl { GPlayerProfile) : float { [-1,1] } - affectsGoal : Property string []{ € goals}
- CalculateAttack (Actor, int, int, int, int) : float - eventCongruence : Property float [] { [-1, 1]}
- CalculateDefence (Actor, int, int, int, int } : float - stimuliFamiliarity : Property float [] { [-1, 1]}
- Maximum (int, int) : int -item : Property string []
<<Events> - stressModifier : Property float [J{ [-1, 1] }
+ OnObjectEquipped (Form, ObjectReference) : void
+ OnObjectUnequipped (Form, ObjectReference) : void + GetGoallnformation (string) : float []
+ GetGoalinformationByStimuliindex (int) : float [J
H + Getlteminformation (string 1) : float]
Usle - CompileGoallnformation (int) : float []
- FindGoallndex (string) : int
GProfile - FindStimuliindex (string) : int

- owner : Actor

- ownerName : string Extends

- ownerRace : string Extends |

- stimuli : string [] J

- stimuliDedication : float [] GAttention

- selfWeaponRating : int -

- seliDefenceRating : int - stimuliTolerance : float [{ [0, 1]}

- itemNames : string []

- timestamp : float + IsimportantStimuli { string, float) : int

+ CreateProfile (Actor, string [], int [], int, int, string []) : bool

+ UpdateProfile (string [], int [], int, int, string []) : bool

Figure 7.2: Process Unit Classes

can be seen, even if neither is moving, resulting in further wasted resources.
To be feasible for this type of use, a detection system should be able to do a
quick, general check to see if the player is within range before deciding if a
LOS can be established. A community-generated solution, originally created
to dynamically attach scripts to NPCs'®, has been modified for this purpose
because it uses minimal resources while still using the available LOS capa-
bilities. The detection system is built using objects created from the Spell**,
MagicEffect!®, and ActiveMagicEffect!® classes that are included in the Cre-
ation Kit (Figure 7.3), and is comprised of three main parts: a cloak that
defines the detection radius, a procedure that determines if the GLaDOS sys-
tem should be activated based on LOS, and an interface for connecting to the
player’s avatar.

Defining the Detection Radius (GLaDOS DetectionSpell and GLaD-
OS_DetectionRange)

The first set of detection system components defines a field around the player
to determine which NPCs are close by. This enables control of the maximum

13Creation Kit Wiki — Dynamically Attaching Scripts (Tutorial)
14 Creation Kit Wiki — Spell (Object)

15Creation Kit Wiki — MagicEffect (Object)

16Creation Kit Wiki — ActiveMagicEffect (Papyrus Script)

73

http://www.creationkit.com/index.php?title=Dynamically_Attaching_Scripts
http://www.creationkit.com/index.php?title=Spell
http://www.creationkit.com/index.php?title=Magic_Effect
http://www.creationkit.com/index.php?title=ActiveMagicEffect_Script

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

GPlayerDetection

- detectionSpell : Spell
- PlayerREF : Actor Extends > Ref Allas Extend > Alias
- detectionON : GlobalVariable

<<Event>
+ Onlnit () : void
+ OnUpdate () : void Spell —Emnds—| = Form
—Extend ﬁk Zﬁ Extends—,
Cloak Procedure
GLaDOS_DetectionSpell GLaDOS_DetectionStart
<<Configuration>> <<Configuration=>
- Archetype = Ability - Archetype = Spell
- CastingType = Constant Effect - CastingType = Concentration
- Delivery = Self - Delivery = Aimed
- MagicEffect = GLaDOS_DetectionRange { Magnitude = 192.0 units } - MagicEffect = GLaDOS_DetectionProcedure { Duration =1}
I
Use !
GLaDOS_DetectionRange GLaDOS_DetectionProcedure
<<Configuration>= <<Configuration==
- Archetype = Cloak - Archetype = Script
- CastingType = Constant Effect - CastingType = Concentration
- Delivery = Self - Delivery = Aimed
- NoHitEvent = True - NoDeathDispel = True
- HidelnUl = True - NoHitEvent = True
- HidelnUl = True
<<Run Conditions>>
Target Actor.GetDead() == False

Extends
)) 67 Extends J
ReferenceAlias, Alias, MagicEffect <}

Form, Spell, MagicEffect,
and ActiveMagicEffect |

classes are part of the Extends

existing Skyrim Creation

Kit library v GApplyingDetection
Form ActiveMagicEffect <} - PlayerREF : Actor

- FindNPCEmotions (Actor) : ReferenceAlias
<<Event>>
+ OnEffectStart { Actor, Actor) : void

Figure 7.3: Detection System Classes

distance that an NPC can be from the player and still reasonably “see” them.
This feature is not possible with standard LOS events, which could result in an
NPC detecting and analysing the player from an unrealistically large distance
in environments such as fields. The detection field is defined by four attributes:
activation method, location in the game environment, shape, and size.

The activation mechanism and location of the detection field within the
game environment is defined by attributes in GLaDOS_DetectionSpell,
an object implementation of the built-in Spell class. Ideally, the detection
field should be activated passively and centre on the player. This is handled
by assignments to the Archetype, Casting Type, and Delivery fields. The value
assignments for both Archetype and Casting Type are built-in types, and were

74

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

selected because they cause the GLaDOS_DetectionSpell to run contin-
uously without player intervention. The target of this object, defined with
the Delivery assignment, is the agent that holds this object. Since this object
is assigned to the player, this translates to the detection field being centred
on them. With the detection field activating passively and encompassing the
player, the size and shape of the field can be defined.

The detection field’s size and shape are defined by creating a MagicEffect
object using the built-in class, and associating it with the GLaDOS _Detecti-
onSpell object. The MagicEffect object, GLaDOS_DetectionRange, con-
tains the field’s shape and additional object flags that control how it interacts
with other in-game elements, such as not appearing in the user interface (UI)
and appearing as a non-hostile action. The optimal shape for a detection
field is a sphere since its sides are equidistant from the sphere’s centre in all
directions. This shape can be achieved with the Cloak archetype that can
be assigned to a MagicEffect object. Finally, the size of the detection field
is defined when the GLaDOS _DetectionRange MagicEffect object is as-
sociated with the GLaDOS_DetectionSpell Spell object. As part of the
association process between the MagicEffect and Spell objects, the Magni-
tude of a MagicEffect object can be defined to reflect the maximum detec-
tion distance. For this implementation, a detection radius of 192 units!” was
used, which is approximately the length of a cell in The Elder Scrolls V:
Skyrim. Due to its dependence on the GLaDOS_DetectionSpell object,
the GLaDOS_DetectionRange object was assigned identical Casting Type
and Delivery values.

At this point the location, size, and shape of the detection system have
been defined. The GLaDOS _DetectionSpell Spell object data is used to
centre the detection system on the agent that is holding it. In this imple-
mentation, only the player is given this object so the detection field is centred
on them. The shape of the detection system, a sphere, is determined by the
GLaDOS_DetectionRange MagicEffect object. The association of this Mag-
icEffect object with the GLaDOS_DetectionSpell object allows the size of
the detection field to be determined. This alone is not enough to implement a
functioning detection system because the logic that determines if an NPC has
a LOS to the player must still be defined.

Determining LOS (GLaDOS DetectionStart, GLaDOS DetectionP-
rocedure, and GApplyingDetection)

Once an NPC has made contact with the detection field, the system must
decide if the NPC can “see” the player and initiate the GLaDOS system.
Unlike the detection field, which makes a general check to see if any NPC

17 Approximately 192ft (1 unit ~ 0.5625 inches).

I6)

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

is close to the player, determining if a specific NPC should begin processing
is a targeted process. This means that a targeting system must be included
as part of the LOS check so that appropriate pre-processing checks can be
made. For this section of the detection procedure, three attributes must be
defined: a target selection mechanism, LOS checks, and a method for calling
the GLaDOS system.

Target selection is handled by associating a targeted Spell object, GLaDOS—
_DetectionStart, with the GLaDOS_DetectionRange MagicEffect ob-
ject from the detection field, causing it to activate when an NPC connects with
the detection field. Its Archetype is set to Spell because it does not require the
specialized functionality offered by the other options, and could potentially be
hindered by some of their usage constraints. In addition to being useful for
targeted NPC selection, the Casting Type and Delivery fields must be Concen-
tration and Aimed'® respectively, in order to be eligible for association with
GLaDOS_DetectionRange. Now that the detection system is able to target
NPCs that come into contact with the detection field, the LOS checks must
be established.

The required LOS tests can be performed via script functions, but it is not
possible to directly associate a script with a Spell object. Therefore, an inter-
mediary MagicEffect object, which can be associated with both Spell objects
and scripts, was created. The GLaDOS_DetectionProcedure MagicEffect
object was assigned its Casting Type and Delivery values to meet the Spell
object association requirements, and its Archetype for script association. As
part of the Spell association definition, the GLaDOS_DetectionProcedure
MagicEffect was assigned a Duration of one second to ensure that it will be
registered by the affected NPC. The Script Archetype also ensures that the
functionality defined in the accompanying script object is only invoked when
an NPC is affected by this MagicEffect object, as opposed to effects that are in-
herent to the other Archetype classifications. Similar to the GLaDOS _Detect—
ionRange object, flags were set to ensure that this object does not appear in
the UI, nor registered as a hostile act, which could cause some NPCs to attack
upon contact with the MagicEffect.

One test that can be performed directly from the GLaDOS_DetectionP-
rocedure object is to determine if an NPC is “dead”. It is possible in The
Elder Scrolls V: Skyrim to affect dead NPCs, which makes this test an impor-
tant step in determining if the GLaDOS system should be run. If an NPC is
not flagged as dead, then further script-based tests are performed to determine
if a LOS can be established between the NPC and the player. In the same
vein, an additional flag was set on the GLaDOS DetectionProcedure ob-
ject that allows it to be run on “dead” NPCs. While this is counter-intuitive, it

8There is no projectile object assigned to this Spell object, which generates a warning in
the Creation Kit.

76

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

allows the required logic to be managed manually, preventing known Creation
Kit errors where the “dead” flag is improperly read.

Once a targeted NPC has passed the initial checkpoint, more specific tests
are performed before an NPC runs the GLaDOS system. These additional
checks are performed via the GApplyingDetection script. This script
is designed such that it runs when its parent object, the GLaDOS _Detec—
tionProcedure MagicEffect, connects with an NPC. Unlike other objects
in the detection system, GApplyingDetection should only run after it has
been applied to an NPC. Therefore, it is extended from the ActiveMagicEf-
fect'? class, which is used to define effects that have been applied to an Actor,
as opposed to the previously referenced MagicEffect class, which is used to
define effects before they have been triggered. The first test that this script
performs is the IsDetectedBy function?’, which determines if the player has
been detected by the targeted NPC?'. Running this function first ensures that
the target NPC’s detection system is running correctly before an explicit LOS
check is run via the HasLOS function??. If a LOS is established between the
targeted NPC and the player, the NPC extracts the player’s GLaDOS profile
(Section 7.3.2) from their ReferenceAlias for processing.

This completes the GLaDOS detection process. When an NPC touches the
detection field, they are targeted by the associated GLaDOS_DetectionSta-
rt Spell object. Upon contact with the NPC, the Spell object initiates a
series of tests to determine if it is appropriate to run that NPC’s GLaDOS
procedure. These tests are contained within the GLaDOS_DetectionPro-
cedure MagicEffect object and the GApplyingDetection script. The first
test, performed by GLaDOS _DetectionProcedure, is to determine if the
NPC is alive. If they are not, they should no longer be interacting with the
game environment and no further processing is done. Subsequent checks, one
to determine if the player has been detected at all, and another to determine
if a LOS can be established between the player and the targeted NPC, are
performed by GApplyingDetection. If an NPC passes all three tests,
the player’s GLaDOS profile is extracted and the NPC begins the GLaDOS
process. With a functional detection system in place, it still needs to be
attached to the player so that it can be run.

Y Creation Kit Wiki — ActiveMagicEffect (Script)
20Creation Kit Wiki — IsDetectedBy (Actor Script Function)
21Detection is determined by sound, skill, and LOS.
22(Creation Kit Wiki — HasLOS (Actor Script Function)

7

http://www.creationkit.com/index.php?title=ActiveMagicEffect_Script
http://www.creationkit.com/index.php?title=IsDetectedBy_-_Actor
http://www.creationkit.com/index.php?title=HasLOS_-_Actor

M.A.Sc. Thesis — G. Smith McMaster University — Software Engineering

Interfacing with the Player Avatar (GPlayerDetection)

Even though the detection system has been defined, it cannot run without a
subject. To connect the detection system with the player, the GPlayerDe—-
tection ReferenceAlias was defined and attached to the player’s existing
Quest Alias object. This script is used to periodically toggle the detection
system on and off for resource management purposes and to ensure that NPCs
are checked for LOS to the player on a regular basis. This ensures that an
NPC is not exempt from further detection checks if they have already been
touched by the detection field. If the field was always on, an NPC would only
be checked once — the first time it is touched by the cloak — which is not ideal
for a game where a player can encounter the same NPC multiple times. The
detection system is regulated by two game-dependent