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Abstract 


Through HI observations, galactic gas discs can be observed to extend past 

the edge of the star forming disk. Observations of HI in these extended galac­

tic disks consistently show significant velocity dispersion, which suggests a 

non-thermal origin. This suggests that turbulence in the gas is contributing 

significantly to the observed velocity dispersion. To address this, a new parallel 

adaptive mesh three dimensional shearing-box implementation with adaptions 

for evening numerical diffusion effects, self-gravity in the shearing boundary 

conditions and appropriate vertical boundary conditions has been built, based 

on the FLASH code. This code is used to perform local simulations, incor­

porating differential rotation, self-gravity, stratification, hydrodynamics and 

cooling. These simulations explore possible mechanisms for driving turbulent 

motions through thermal and self-gravitational instabilities coupling to differ­

ential rotation. In isothermal simulations a marginally stable disk is found to 

be stable against forming a gravitoturbulent quasi-steady state. In simulations 

including cooling, where the disk conditions do not trigger the formation of 

a two-phase medium, it is found that perturbations to the flow damp with­

out leading to a sustained mechanism for driving turbulence. In cases where 

a two-phase medium develops, gravitational angular momentum transporting 

stresses are much greater, creating a possible mechanism for transferring energy 

from galactic rotation to turbulence, though a gravitoturbulent quasi-steady 

state is not found. The differing angular momentum transport properties of 

the single phase and two phase regimes of the disk suggests a significant dy­

namical division can be drawn between the two, which may occur far outside 

the star formation cutoff in a galactic disk. 
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Chapter 1 


Introduction 


Galaxies, though identifiable to the eye as a collection of stars, are 

complex systems dominated by dark matter and with significant components 

of gas and dust. The significance of these latter two baryonic components is 

that they provide the material from which the stellar component is formed. 

At least in the case of disk galaxies, in the later stages of galactic evolution, 

the baryonic components follow the gravitational influence of the dark matter, 

but the baryonic components only have a small effect on the form of the dark 

matter halo. The evolution of the stellar and gaseous components of the galaxy 

are, however, connected by their influences on each other. When sufficiently 

cool and dense concentrations form in the gas component, stars form and this 

in turn heats the gas and stirs up turbulent motions (see for example Freeman 

and Bland-Hawthorn, 2002). Though intimately connected to star formation, 

the gas component of disk galaxies sometimes continues far outside the extent 

of the stellar disk. This extended part of the gas disk is observed in HI emission 

to have significant small-scale motions. However, this region of such a galaxy 

is largely devoid of stars. This leads to a puzzle: how do the motions originate 

and what, dynamically, is happening to the gas disk? 

To build an understanding of these questions, it is important to under­
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stand the action of some basic processes in galactic gas disks. It is hoped that 

this will provide some understanding of the factors influencing the evolution 

of a galactic gas disk and provide insights into their observed properties. 

1.0.1 Basic Observational Parameters 

Observations of HI velocity dispersion curves show significant consis­

tency between galaxies. Since these velocity dispersions are inferred by HI 

emission line width, they are velocity dispersions in the line of sight. After 

removing orbital motion, only vertical (e.g. face on) velocity dispersions can 

be inferred. Vertical velocity dispersions vary from 12- 15 km s-1 in central 

regions to 6 - 8 km s-1 in outer regions, exceeding in many cases that ex­

pected from thermal broadening in the outer regions (Dib et al., 2006). By 

way of examples, published curves for ESO 215-G?0091 and NGC 1058 in are 

reproduced in figure (1.1) and in figure (1.2) respectively. For ESO 215-G?009, 

Warren et al. (2004) find a disk of approximately constant HI surface density 

7.25M0 pc-2 from 100" -300". Levine et al. (2006a) show surface density maps 

of HI gas in the Milky Way, which are useful to determine the range of surface 

densities to consider -these are on the order of only a few M0 pc-2. From the 

same survey data, Levine et al. (2006b) give a vertical half-height map of HI 

in the outer Milky Way, one can consider values in the range of 500 - 4000 pc 

to be reasonable as an ballpark half-height. Additionally, de Blok and Walter 

(2006) show a detection of two-component warm/cool HI in outer non-star­

forming regions of NGC 6822. These observations set the general range of 

parameters encompassing the physical regime of interest in this thesis. To 

summarize, typical local disk parameters are a surface density in the range of 

1The '?' character genuinely is part of the object name. 

2 




M.Sc. Thesis- Colin McNally McMaster - Physics & Astronomy 

,....-, ,._, 
I 
rn 

s 
~ 

1...-..J 10 

~ 
0 ....... 

rn 
~ 
Q) 

p., 

rn 
....... 

~ 

:>-, 5...j-l 
•.-I 
u 
0 ,....... 

Q) 

> 
1--1 

:I: 

0 ~~~~~~~~~~~~~~~~~~~ 
0 100 200 300 400 

Radius [arcsec] 

Figure 1.1: HI velocity dispersion in ESO 215-G?009. From Warren et al. 
(2004) (figure 9). At a distance of 5.25 Mpc, 200" corresponds to ~ 5 kpc. 
The Holmberg radius, where the surface brightness in the B band drops below 
26.5 mag arcsec-2, is 57."6 ± 0. 11 6. 

1-10 M0 pc-2, a scale height of 500-4000 pc and velocity dispersions on the 

order of 5 - 10 km s-1 . 

1.0.2 The Star Formation Cutoff 

The region of star formation is important as it is thought that where 

star formation happens at a significant rate it is the primary source of energy 

for driving turbulence (Mac Low and Klessen, 2004). This thesis is focused 

on the region in a galactic disk beyond where this happens. Generally, the 
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star formation rate is highest at the center of a galaxy and decreases with 

increasing radius. The same trend holds with surface brightness. The most 

common form of the decrease in surface brightness is a double exponential 

where surface brightness decreases at some rate until a certain radius, then 

decreases at a second faster rate(Pohlen et al., 2007). This turn from one 

rate to another is variously described as a break radius, truncation radius or 

cutoff. The degree to which this cutoff is sharp varies from galaxy to galaxy. 

In the simplest interpretation, the star formation rate should vary in the same 

way as the surface brightness. For producing a sharp cutoff in star formation, 

the threshold theories of Kennnicutt (1989), Elmegreen and Parravano (1994) 

and Schaye (2004) offer an explanation through a criterion for the triggering 

of an instability leading to star formation in terms of large scale parameters. 

These criteria, respectively the average Toomre Q stability parameter and 

surface density, pass come critical value, leading to star formation. It is likely 

the case that, through local compressions and cooling, the conditions for star 

formation can be met in small areas outside the radius where the large scale 

parameters are appropriate, this could naturally produce a stronger decline 

in star formation past the cutoff or break (Elmegreen and Hunter, 2006). 

Additionally, it has recently been proposed that the total star formation has 

only a single rate of decline with radius in the galaxy, and that the surface 

brightness profile with a cutoff is a result of secular evolution of an existing 

stellar disc (Debattista et al., 2006). This thesis focuses on the region of the 

galactic disk where the star formation rate has fallen to a level such that the 

contribution to the gas dynamics from supernovae and other stellar feedback 

is small. That the transition is not necessarily sharp should, however, be kept 

in mind. 

5 
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1.0.3 The Origin of HI Velocity Dispersion 

A number of different mechanisms have been proposed for driving the 

observed HI velocity dispersion past the radius where stars become scarce: 

• thermal instability 

• infalling clouds 

• magnetohydrodynamical instabilities 

• self-gravitational instabilities 

Sellwood and Balbus (1999) provided a first attempt to explain the observed HI 

velocity dispersion in the outer regions of NGC 1058 by invoking magnetoro­

tational instability turbulence driven motions of cool clouds. Their analysis 

does not examine the energy input from self-gravity, instead attempting to 

argue the disk is sufficiently stable against the self-gravitational amplification 

of linear perturbations to impede this. Other work dealing with magnetohy­

drodynamic instabilities and self-gravitational instabilities will be discussed in 

§1.2. 

A number of recent works have addressed the effect of thermal instabil­

ity (see §1.1.2) in driving turbulent motions in the interstellar medium (ISM; 

for example Sanchez-Salcedo et al. 2002 and Kritsuk and Norman 2002). The 

effect of thermal instability on its own has been revisited by Brandenburg et al. 

(2007) who examine the possibility of thermal instability driving turbulence in 

ISM-like conditions without stratification or self-gravity, and with and without 

shear (differential rotation) in a local periodic model. The conclusion of these 

studies of thermal instability has been that thermal instability does not lead to 

6 
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sustained turbulence as the cold clouds coalesce. Even with shear these clouds 

do not break up again in such a way to allow a new phase of coalescence. 

The infall of high velocity clouds (HVCs) or intermediate velocity clouds 

(IVCs) driving gas motions has been examined in Santillan et al. (2007). The 

conclusion is that HI velocity dispersions of 3-8 km s-1 are possible at rates 

of accretion similar to those observed for the Milky Way (1 M0 yr-1). This 

mechanism is significantly different from others in that it does not arise from 

processes inside the disk, but from perturbations in a flow accreting onto the 

disk. 

1.1 Basic Physics 

This thesis focuses on mechanisms that derive the energy needed to 

drive gas motions from the gravitational potential energy of the galactic gas. 

To extract this energy from orbiting gas, it is necessary to move mass inwards, 

which implies an outward transport of angular momentum. This section does 

not contain a complete listing of all possible physics which may be important 

(notably, magnetic fields are omitted) but concentrates on the mechanisms 

which will be examined in this thesis. 

7 
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1.1.1 Gasdynamics 

The Euler equations, describing the motion of a compressible inviscous 

gas with terms added for body forces and radiative cooling, are: 

8p
-+V·pv - 0 (1.1)
at 


8v VP

-+(v·V)v+- - - V<I>ext- V<I>sg (1.2)at P 


8pE

7ft+ V · [(pE + P)v] - -pC(T) + pv · (-V<I>ext- V<I>s9 ) (1.3) 

where pis the gas density, t is time, v is velocity, Pis pressure, C(T) is the 

net heat loss function, <I>ext is an externally imposed gravitational potential, 

and <I>89 is the self gravitational potential. The self gravitational potential is 

related to the gas density by Poisson's equation, 

(1.4) 

where G is Newton's constant. The total energy E is defined by 

(1.5) 

where the internal energy E is related to pressure by the ideal gas equation of 

state 

p = ('y- l)pE. (1.6) 

In this work 'Y = ~, appropriate for galactic gas. Temperatures are obtained 

from the ideal gas law 
'R

P= -pT, (1.7)
p, 

8 




M.Sc. Thesis- Colin MNally McMaster - Physics & Astronomy 

with mean molecular mass f.1 = 0.62, appropriate for fully ionized gas of solar 

2metallicity and ideal gas constant R = 8.3145 x 107 cm s-2 K-1. The equation 

of state implies a sound speed C8 of 

2 1RT 
cs= --, (1.8) 

f.1 

which completes the description of the gasdynamics used. 

1.1.2 Thermal Instability 

Diffuse gas is, to a good approximation, optically thin. This allows the 

definition of a net heat-loss function .C(T) which has been added as a sink 

term the the energy equation (1.3). Field (1965) discusses criteria by which 

this term will cause an instability leading the gas to locally condense. The 

instability exists for isobaric perturbations when 

(a.c) _ (a.c) _ Po (a.c) < 0 (1.9)aT - aT p To ap rp 

and exists for isochoric perturbations when 

(1.10)(:;) p < 0. 

Mac Low and Klessen (2004) point out that when writing the net heat-loss 

function 

.C(T) = pA(T) - r (1.11) 

9 
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with r constant, and A(T) as a piecewise function in the form 

(1.12) 


for the series of temperature ranges [Ti, TiH], isobaric instability occurs when 

f3i,i+l < 1 and isochoric instability occurs when f3i,i+l < 0. 

The most unstable scale for thermal instability is referred to as the 

Field length Ap (Field 1965; Begelman and McKee, 1990): 

r;,(T)T 
(1.13)

pmax (pA(T), f) 

where r;,(T) is the conductivity of the gas. Conduction sets the minimum 

scale where thermal instability acts. This will play a large role in determining 

how any simulation involving thermal instability will form structure. The 

instability will amplify fastest at the smallest resolved scale. In the context 

studied in this thesis, at the highest stable pressure and density of the warm 

phase as defined by the cooling function of §2.2 and with an appropriate value 

for the conduction of K = 2.5 x 103T 112 cm-1 K-1 s-1 (Parker, 1953), the Field 

length is Ap = 1.2 x 103 pc. 

When the form of C(T) allows two stable temperatures at a single 

pressure, thermal instability can result in a two-phase medium, where the 

gas separates into a part at the low stable temperature and the high stable 

temperature. The form of C(T) for galactic gas typically has this form in the 

temperature range of 10-105 K. In the context of a galactic gas disk, if starting 

from low density and increasing the surface density, there will be some density 

at which the pressure at the mid-plane of the disk is high enough for thermal 

10 
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instability to occur. This minimum pressure has been examined as a criterion 

to predict the edge of the stellar component of a galactic disk by Elmegreen 

and Parravano (1994) and Schaye (2004), where the latter concludes that the 

surface density necessary for the formation of the cool phase should set the 

position of the star formation cutoff. 

1.1.3 Jeans Instability 

The Jeans instability criterion (see e.g. Binney and Tremaine, 1987) 

gives the minimum scale at which self-gravitating gas is unstable to collapse 

- that is the scale where gravity will overcome the pressure enhancement of a 

small compression. The three dimensional version of the Jeans length >.J for 

gas can be written as 

(1.14) 

For a thin sheet, the two dimensional Jeans length is 

(1.15) 

where ~ is the surface density. The Jeans instability will dominate when 

densities grow large and correspondingly temperatures and sound speeds are 

low. These conditions often coincide with those for the Toomre Instability as 

characterized below. At the highest stable pressure and density of the warm 

phase as defined by the cooling function used in this thesis (see §2.2) the 

Jeans length is >.J = 2.7kpc. At the highest temperature and density in the 

cold stable phase as defined by the same cooling function, the Jeans length is 

>.J = 117pc. 

11 
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1.1.4 Toomre Instability 


Toomre (1964) examined the conditions for a differentially rotating 

disk to be unstable to linear axisymmetric perturbations. When the Toomre 

Q parameter is less than the critical value, the disk is locally unstable to 

axisymmetric perturbations, and when the Toomre Q parameter is greater 

than the critical value, the disk is locally stable to axisymmetric perturbations. 

Gaseous and stellar disks are locally stable to all local linear non-axisymmetric 

perturbations (Binney and Tremaine, 1987). For a gas disk, the Toomre Q 

parameter is 

(1.16) 

where K, is the local epicyclic frequency, K, = (Rd02/ dR + 4fz2) (Binney and 

Tremaine, 1987). For a finite thickness isothermal disk, the region of stabil­

ity to axisymmetric perturbations is Q > 0.676 (Goldreich and Lynden-Bell, 

1965a). The critical (most unstable) wavelength for axisymmetric perturba­

tions in a gas disk is: 

(1.17) 

Although gas disks are locally stable to non-axisymmetric perturbations, they 

do respond to such perturbations. In the original treatment of this topic 

Goldriech and Lynden-Bell (1965b) point out that this may provide a path 

to convert energy from differential rotation by forming spiral waves to local 

motions and ultimately to shocks in the interstellar gas. 

12 
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1.1.5 Angular Momentum Transport 

A quiescent shearing gas flow on the scale of the galaxy will not trans­

port any significant angular momentum as there is effectively no viscosity. The 

transport of angular momentum thus relies on perturbations of some sort in 

the flow. 

The fundamentals of how density perturbations in a disk can transport 

angular momentum through gravitational coupling, and hence bring the system 

to a state with lower potential energy are laid out in Lynden-Bell and Kalnajas 

(1972). Consider an arbitrary galactic disk in cylindrical coordinates (R, ¢, z) 

centered at the center of mass. Dividing the galactic disk with a right cylinder 

at some galactocentric radius, R (position vector R), write down a torque 

couple C across this surface: 

C= /RxT·dS (1.18) 

in terms of the rank 2 stress tensor T across this surface. That part relevant 

to the outward transport of angular momentum is only the z-component of 

C. Hence, due to the form of equation (1.18) it is only necessary to only ana­

lyze the R¢ component of the stress tensor T. The stress tensor T defined in 

Lynden-Bell and Kalnajas (1972) and Sellwood (1999) has terms arising from 

all mechanisms of angular momentum transport. Here a form with a hydro­

dynamic term and a self-gravity term will be considered. The hydrodynamic 

term, or Reynolds stress, is of the form puRucp where pis the fluid density and 

uR, Ucp are the radial and azimuthal component of the fluid velocity vector. 

The self-gravity term, or Newton stress, is of the form puaRUGcp· This cap­

tures the coupling through gravitational attraction of density perturbations 

13 
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inside and outside the dividing surface. The definition 

(1.19) 

is introduced as the gravitational velocity following Sellwood and Balbus (1999). 

The final form of the Rep component of the stress tensor is 

(1.20) 

Substituting back into the definition of the torque couple, and taking the z-

component contribution gives: 

(1.21) 

the gravity component of this is simply 

Caz = :G J(V<I>)¢ (V<I>) R dS. (1.22)
4

So, if it is required that the gravitational torque couple move the disk towards 

lower potential energy, then Caz must be positive, hence the perturbation 

self-gravity forces (V<I>)¢ and (V<I>)R must have on average a leading spiral 

configuration so that the integral Caz is positive. The Poisson equation de­

mands that the direction of the self-gravity forces are perpendicular to the 

isopotential contours and the isodensity contours. Due to the leading spiral 

requirement on the perturbation gravity forces, the self-gravitational isopoten­

tial and isodensity contours must then have a trailing spiral form on average 

(Lynden-Bell and Kalnajs, 1972). 
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The effect of this torque couple is to transfer energy from the rotation 

of the disk to local motions of the gas (Sellwood and Balbus, 1999). The rate 

at which this energy is transferred can be expressed as: 

(1.23) 

which for a flat rotation curve is: 

(1.24) 

A second useful formulation of this basic rate is given by Balbus and 

Papaloizou (1999), where for some quantity X the average is defined as 

1 joo lR+I:::.R/21271"
(X)p = 2 E!lR pX d¢ dR dz (1.25) 

7f -oo R-t::.R/2 0 

and the radial component of T / p is denoted as WRtf>· Then the rate of energy 

dissipation per unit area (which would be the luminosity in an accretion disk) 

is 

(1.26) 

This energy release is associated with the movement of mass deeper into the 

potential well of the galaxy. The result of the redistribution of mass in the 

disk to smaller radii leaves the mass which has moved inward with less angular 

momentum and lower potential energy. 

The rate at which mass moves inwards can be estimated as follows. 

First, consider the magnitude of angular momentum L of a mass m at radius 
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r rotating on a fiat rotation curve n 

(1.27) 

differentiating at radius r0 , assuming a constant orbital velocity (fiat rotation 

curve) and that mass is conserved, 

dL dr 
(1.28)dt = mOro dt. 

The left hand side of this expression is related to the stress tensor, the volume 

average of dL/ dt is the volume average of the RiP component of the stress 

tensor (Trcp)v. To make the replacement in the left hand side, a similar change 

to the right hand side, replacing m with the density-weighted average volume 

density defined 

(1.29) 

is made. This expression can then be slightly rearranged to give 

(1.30) 

To get to a mass accretion rate in dimensions of [ M /T] it is necessary to 

multiply by the lengths over which the azimuthal and vertical directions of 

the integrations which have been preformed in the averaging. The azimuthal 

dimension is the circumference at radius r0 or 21rr0 . To get the vertical dimen­

sion, the fact that a surface density~ can usually be obtained can be used to 

define a vertical scale H, 
~ 

(1.31)H- (p)p. 
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Multiplying through by 2n-r0 H a mass accretion rate is obtained as 

. _ (,.,., ) 2n-r0HM - J.rcp v n . (1.32) 
ro 

Importantly, in simulations all the parameters on the right hand side of this 

expression can be directly evaluated. 

1.1.6 A Basic Estimate 

With the material presented so far, the foundation exists to examine a 

simple estimate of the ability of self-gravity to power turbulent motions. In 

a review aimed at star formation, Mac Low and Klessen (2004) attempt to 

examine the possible role in galactic disks of self-gravity driven turbulence. 

Mac Low and Klessen (2004) give, in their equation (42), an approximate rate 

for the energy dissipation rate of isothermal turbulence 

1 3 -1 
edissipation -2,fJVrmsLd (1.33)f"V 

f"V ­ (3 x 10-27 erg cm-3 s-1) 

1 
( n ) ( Vrms )3 ( Ld )- (1.34)x 1 cm-3 10 km s-1 100 pc ' 

where p is the average density, Vrms is the RMS velocity dispersion, and Ld 

is the driving scale of the turbulent cascade. To evaluate the viability of 

self-gravity to drive an analogous estimate is needed for the energy supply 

rate from self gravity. This can be derived by returning to the Lynden-Bell 

and Kalnajas (1972) formulation of the Newton stress TRif! = (puaRUaif!). 

Approximately evaluating this expression, Mac Low and Kelssen (2004) and 

Wada et al. (2002) find as an estimate as the size of the energy input from the 
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Newton stress: 

(1.35) 

(1.36) 

where .E9 is the surface density of the disk, H is the scale height of the disk, A 

is the Jeans length in the disk, and n is the angular velocity. The values chosen 

in equations (1.34) and (1.36) are appropriate for the solar neighborhood in 

the Milky Way. At least in that context, esupply is two orders of magnitude 

smaller than edissipation, as noted by Mac Low and Klessen (2004). 

By combining these estimates of supply and dissipation, it is possible 

to examine how self-gravity can be favored or disfavored in different contexts. 

The argument that follows is original to this thesis. Equating the approximate 

density pin edissipation to the density term .E9 / H in edissipation and then equating 

the length sales Ld and A in the same expressions. The ratio between the rates 

of energy supply and dissipation then can be expressed as: 

esupply ,...., n , 320 -3 
• "' Vrms~GPA · (1.37) 

edissipation 

Now, consider how this quantity (1.37) would vary with galactic radius. One 

would expect Vrms to slowly fall to a near-constant, n to be nearly constant, p 

to fall, and A to rise. Hence, as (1.37) depends on the third power of A, a rise in 

A with galactic radius can easily cause it to exceed unity, making self-gravity 

a viable turbulence driving mechanism. Compared to the value at the solar 
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radius, A would need to increase by factor of 5 to make (1.37) exceed unity, 

given the other quantities are held constant. 

This discussion of estimated energy supply and dissipation rates from 

isothermal turbulence and self gravity has a number of problems. Foremost is 

that a galactic disk is observed to be multiphase, not isothermal. Also, when 

considering length scales there may be two regimes; when the Jeans length A 

is smaller than the scale height H of the disk the system can be considered 

to be fully three dimensional; however, if A significantly exceeds H then the 

system is arguably two dimensional at large scales and three dimensional at 

small scales. The arguments presented above do not take this into account. 

To accurately evaluate the ability of self-gravity to drive turbulence, it 

is necessary then to proceed further than this simple kind of estimate. Nu­

merical models make it possible to capture the interplay of the geometrical 

gas structure, phase structure and forces coupling the gas to the differential 

rotation. 

1.2 Numerical Models 

Two basic types of models have been used in simulations to attempt to 

understand the evolution of a galactic gas disk. The general choice is between 

a computational domain which encloses the entire disk, a global simulation, 

and a computational domain which encloses only a small part of the disk and 

enforces an appropriate set of boundary conditions, a local simulation. 

There is an additional significant choice to be made about what sort 

of numerical technique should be used to solve the Euler equations in the 

model. Here, all the work discussed uses Cartesian coordinates and mesh 
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Figure 1.3: Phase diagram from Wada and Norman (2007) (figure 8) with 
approximate line of heating-cooling equilibrium states, 10 K temperature floor, 
and Jeans Length limiter over-plotted. 

based gasdynamics, none of the work mentioned here uses Lagrangian (e.g. 

particle) methods. 

1.2.1 Global Disk Models 

A series of papers (Wada and Norman, 1999; Wada and Norman, 2001; 

Wada et al., 2002; Wada and Norman, 2007) examine a global disk model of gas 

in a fixed potential with a specified equilibrium cooling function and constant 

heating. All but the last of these models are two dimensional and all use a 

uniform resolution grid with no time step limit from cooling processes. The 

most relevant result claimed from these is that self-gravity driven turbulence is 
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found in all the systems examined. Further, the turbulence found is supersonic, 

and acts to stabilize the disk at Q ~ 1. The phase diagram in Wada and 

Norman (2007) is shown in figure (1.3) with added annotation. Here, the 

artificial limits on the gas state are plotted, and an approximation to the 

line of heating-cooling equilibrium solutions is plotted. The function for the 

equilibrium curve is that from Brandenburg et al. (2007), not that from Wada 

and Norman (2007) as the latter is not numerically specified. Two aspects of 

this plot are notable. First that the gas mass is spread over a large temperature 

range for each density below the equilibrium curve on the heating-unstable side 

and, second, the presence of dense clouds above the highest resolved density 

(seen scattered on the Jeans Limiter line). It is claimed that the disks evolve 

to a quasi-steady gravitoturbuent state. 

Tasker & Bryan (2006) also computed global galaxy models, but on 

a larger physical scale and lower physical resolution than Wada and Norman 

(2007) with an adaptive mesh gasdynamics code. In their runs without su­

pernova feedback, the resulting structures are qualitatively similar to those 

in (Wada and Norman, 2001). However, these models do not claim to find a 

quasi-static turbulent state, and the nature of any turbulence present is not 

explored. 

1.2.2 Local Disk Models 

In 2D (razor thin disk assumption) simulations with a fixed cooling 

time Gammie (2001) and Johnson and Gammie (2003) find a gravitoturbulent 

quasi-steady state. Their isothermal disks fragment for Q ;S 1.4 in 2D. For 

comparison, the critical Q below which the disk is unstable to axisymmetric 
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Figure 1.4: Phase diagram from Pinotek and Ostriker (2007) figure (13). 

perturbations for a razor thin disk is 1, and for a finite thickness isothermal 

disk, 0.676 (Binney and Tremaine, 1987). These models are local, but use 

the local expansion of a Keplerian disk (appropriate for protostellar accretion 

disk), which has different parameter values then the local expansion appropri­

ate for an outer galactic disk. The 2D model also assumes no vertical-direction 

structure other than a hydrostatic atmosphere in the disk, which may not be 

true in the case of a galactic disk. In fixed cooling time simulations, certain 

values of the cooling time result in a disk in a quasi-steady state of gravi­

toturbulence. The uniqueness of this state is not explored by Johnson and 

Gammie. 

Pinotek and Ostriker ( 2007) examine the role of magnetorotational in­

stability (MRI) driven turbulence in a stratified disk with cooling gas. Their 

local (shearing box) simulations develop a quasi-steady state with supersonic 

turbulence. These simulations display higher turbulent velocity amplitudes in 

22 




M.Sc. Thesis- Colin McNally McMaster - Physics & Astronomy 

the warm gas than in the cool gas. Also, the turbulent velocities are lowest at 

the mid-plane of the simulated disk. They suggest that these MRI driven ve­

locities can suppress self-gravitational instability inside these clouds, impeding 

star formation even where cool clouds form. 

The use of a local model (specifically a shearing box, see §2.1) implies 

that is the energy flux will be purely local (Balbus and Papaloizou, 1999). 

This is not natural in self-gravitating systems, especially disks where low order 

modes (global spirals, bars) are dominant. Consequently, shearing boxes can 

not be used in general to study the dynamics of self-gravitating disks. In 

the context of this thesis, this restriction is in fact a benefit - the shearing 

box restricts the gravitational feedback to be of a local form. If the shearing 

box is considered in the context of a galaxy, this allows the examination of 

mechanisms that may act locally in one part of the the disk independent of the 

dynamics in other parts. Hence, the mechanisms active in shearing box models 

must energetically be of a somewhat minimal nature, relying only on local 

transfers of energy. Further, this implies that mechanisms active in shearing 

box simulations should have some independence from the global nature of 

the galaxy. This independence means that shearing box simulations should 

indicate whether a specific proposed mechanism will function universally across 

a range of specific galaxies. Conversely, if such simulations show null results, 

then one of the specific hypothesis that can be tested in the future is that the 

proposed mechanism must function on global scales to be active. 
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Chapter 2 

Methods 

A local model for a stratified differentially rotating disk has been imple­

mented through modifications of FLASH 2.3r11 (Fryxell et al., 2000). FLASH 

is a block-based adaptive mesh refinement (AMR) gasdynamics code with a 

variety of existing modules for added physics relevant to astrophysical prob­

lems. The included physics in the version developed here are gasdynamics, 

local self-gravity, shear (differential rotation) and either an isothermal equa­

tion of state or a ideal gas with a simplified net heat loss term. The result is 

a set of simulations in the style of Pinotek and Ostriker (2007) which capture 

the physics of a local version of Wada and Norman (2007). Primarily, this will 

allow the examination of self-gravitational effects on the system. 

A local model, specifically a shearing box, was used with an adaptive 

mesh for three main reasons. The local model allows higher physical resolution 

to be achieved with a given computational resource and it allows effects above 

the box scale to be cut off so that only local mechanisms may be active. With 

the use of an adaptive mesh, the computational box can be made tall and thin, 

with a coarse mesh high above the mid-plane and a fine mesh in the mid-plane, 

where the disk is most dense. This allows for more physical vertical direction 

1http://www.flash.uchicago.edu/ 
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boundaries. The periodic boundaries of the shearing box do however impose 

a false exact symmetry on the system, excluding the possibility of any net 

mass transfer and forcing angular momentum transport to be of a purely local 

manner, as described in §1.2.2. 

2.1 Shearing Box 

To build a local mode of part of a galactic disk, Hill (1878) shows how 

to expand the equations of motion for a particle about a circular orbit. Here, 

the x direction is the radial direction R, y is the azimuthal direction <I>, and z 

is the vertical direction. 

(2.1) 

(2.2) 

(2.3) 

This formulation is adopted from Wisdom and Tremaine (1988). n is the 

angular velocity of the orbit at the center of the shearing box and q is defined 

as q = -dlnO/dlnR. For a Keplerian disk q =~and for a flat rotation curve 

such as occurs in the outer regions of a galactic disk q = 1. To build a local 

model, periodic boundary conditions are needed in the radial and azimuthal 

directions, however the radial direction case is complicated by the differential 

rotation. To solve this difficulty a shearing-periodic boundary is introduced in 

the x direction. For a variable f and a shearing-box size L this shear-periodic 
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Table 2.1: Parameters of the Shearing Bar Test 
Parameter Value 
Box Size 
Number of cells 
'Y 
Ambient Density 
Initial Bar Width 
Initial Bar Density 
Initial Pressure 
n 
q 
Output Time 

0.5 em 
32 X 32 
5 
3 
5.0 x 10-7 g cm-3 

2 cells 
5.5 X 10-7 

1.8 X 105 

103 

1.5 
454 s 

mapping is (Hawley et al., 1995) 

f(x, y, z) = f(x + L, y- qf!Lt, z). (2.4) 

As this implies that the points where variables are mapped moves in time; y 

velocities mapped across the shearing boundary are altered as (Hawley et al., 

1995) 

vy(x, y, z) = vy(x + L, y- qf!Lt, z) + qf!L. (2.5) 

The y direction boundaries are purely periodic and the z direction boundaries 

will be discussed in conjunction with the treatment of gravity in §2.4. Due 

to the differential rotation, a steady state flow in the shearing box must have 

Vy = qf!x. This will be referred to as the background flow. 

2.1.1 Implementation of the Shearing Box 

The ability to split the steady-state background flow in the shearing 

box is split from the Euler equations has been added to FLASH by modifying 
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Figure 2.1: Schematic of shifts made by 2-stage y-advection operator 

Figure 2.2: Left: Thermally unstable density bar without 2-stage y-advection, 
center-edge difference in peak density is 4.1%. Right: Same as left panel but 
with 2-stage y-advection, the center-edge difference in peak density is 1.9%. 
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the y-sweep of the directionally split PPM hydrodynamics scheme. Instead of 

solving the y-direction gasdynamic equations with the full velocity the fluid is 

advected using a PPM interpolation and the Euler equations are solved in the 

frame comoving with the background flow. This is very similar to the methods 

of Masset (2000) and Gammie (2001). The limiting time step constraint is 

usually not the gasdynamic Courant-Friedrichs-Lewy condition, but the limit 

of the cooling time limit. Hence, even for cells near the x extrema of the box, 

many time steps are taken in the time that it takes for a fluid element to 

cross a cell. However, due to the background shearing flow, the fluid gas is 

on average moving faster across the grid at the edges then the center. This 

means that many more time steps are taken for a fluid element to cross a cell 

in the center of the box than for a fluid element to cross a cell at the edge 

of the box. The result is that the numerical diffusion near the edges of the 

grid is much greater than in the center. This is dangerous, as the thermal 

instability evolution of a clump depends strongly on the density of a clump, 

and under these conditions clumps are more smeared out at the edges of the 

gird (see for example the left panel of figure 2.2). If this difference is strong 

enough, the simulation will develop a strong artificial perturbation at the box 

scale, invalidating the local nature of the simulation. To combat this, a new 

scheme for y-advection has been developed. Two regimes of advection are 

introduced; in the center region of the box, gas is advected a small distance 

by advecting forwards a large distance and then reverse large distance and 

near the edges gas is only advected forwards. The effect of this is to introduce 

a similar numerical diffusion into the advection in the center of the box as 

exists near the edges. A diagram of this procedure is shown in figure (2.1). In 

this discussion, a terminology of shifts is used to mean the maximum distance 
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material is advected by at the edge of the region in question. The actual 

distance shifted varies linearly across the box, as indicated for each shift in the 

diagram. Specifically, the advection is done in two stages, in the first stage, 

the center half of the box is shifted forwards with a shift 8 1, in the second 

stage, the outer half of the box is shifted forwards by a shift 8 2 and the center 

half of the box is shifted back 8 2 - 81. Thus the net shift everywhere is 8 2. 

The ratio of 8 2 to 8 1 is a tuned parameter set to 2. 

In addition to the y-advection, it is necessary at each time step to 

change the logical geometry of this grid to follow the shearing motion of the 

x boundary. That is, the shift used to map the cells at the periodic boundary 

is changed, and the internal data structures added to FLASH to facilitate the 

shearing boundary must be updated. This operation is referred to as slide edge 

in the following discussion. The PPM hydrodynamics implemented in FLASH 

uses a series of one-dimensional solutions to build the three-dimensional gas­

dynamics, in a technique known as Strang splitting (Strang, 1968). In effect, 

along with the y direction PPM solve and y advection operator the slide edge 

operation is part of the larger y direction gasdynamic operator that forms one 

of the units to which the Strang splitting is applied. 

In the version Strang splitting used by the FLASH PPM implemen­

tation, there are two sets of one-dimensional gasdynamics calls: first one­

dimensional PPM solutions are preformed in the order x,y,z; and then z,y,x. 

To include the y-advection operator and shearing boundary, this is modified to 

x, y-advection, y, y-advection, slide edge, z and z, y-advection, y, y-advection, 

slide edge, x. Figure (2.2) shows the evening effect of this 2-stage y-advection 

on the evolution of a shearing thermal instability. The initial condition is an 

isobaric bar, as specified in Table (2.1). 
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Due to data locality constraints following from the FLASH framework, 

a 3-point stencil is used to interpolate values on the shearing boundary. This 

procedure uses the same reconstruction polynomial as PPM, but assigns the 

cell-edge values in a way that only uses 3 adjacent cell values (not 5 as in 

PPM) and does not make the reconstruction piecewise continuous in smooth 

regions as in PPM. 

The basic quadratic polynomial used for the reconstruction is the same 

as in PPM: 

a(x)=aL+x(~a+a6(1-x)), xE[0,1]. (2.6) 

The parameters aL, ~a, a6 are determined in a similar manner to that used in 

PPM, but with a smaller stencil. The left and right interface slopes 8+~ and 

8_1 are determined by the centered differences 
2 

(2.7) 

8_~ - (f)o- U)-1· (2.8) 

To guarantee monotonicity of the interpolation, the interpolant must be flat­

tened if this cell contains a local maxima. 

(2.9) 

Further, as in PPM overshoots must be cut off by limiting the larger of the 

two slopes 

if (((!)_, ~ (f)o) and ( {f)o ~ {!h) and ( G::) > ~)) then 

8+1 ~ 48_!, (2.10) 
2 2 
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if ( ((f)-1 :'0 (f)o) and ((f)o :'0 (!)I) and ( G::) < ~)) then 

1 
L1 ~ - 8+1, (2.11)

2 24

if (((f)-1 2: (f)o) and ((f)o 2: (!)I) and ( (~::) > ~)) then 

L1 ~ 48+1, (2.12) 
2 2 

if ( ( (!) -1 2: {!)0) and ( (!)0 2: (f)t) and ( G::) < ~)) then 

1 
0+~ ~ 40-~. (2.13) 

With these limited slopes, the right and left interface values of the interpolating 

parabola are defined as 

(2.14) 

(2.15) 

these are limited to ensure monotonicity, as in PPM (Colella and Woodward 

1984, equation (1.10)) 

if (aR- aL) ( (J)o- ~(aL + aR)) > (aR ~ aL) 
2 

then 

aL ~ 3(f)o- 2aR (2.16) 

.1f (aR- aL) ( 1 )(f)o- 2(aL + aR) < - (aR- aL)
2 

6 
then 

aR ~ 3(!)0 - 2a£. (2.17) 
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Table 2.2: Coefficients for the Cooling Curve 


I i II 7i I ' 
I f3i 

'
i+l I 

1 10 3.70 X 1016 2.12 
2 141 9.46 X 1018 1.00 
3 313 1.185 X 1020 0.56 
4 2 X 1086102 3.67 

105 -0.657.96 X 10295 

Finally, the same definitions of parameters from PPM (Colella and Woodward, 

1984) are used, 

~a - aR-aL (2.18) 

a6 - 6 (U)o- ~(aL +aR)). (2.19) 

Cells are mapped across the shearing periodic boundary by constructing the 

polynomial equation (2.6) and averaging it over the required interval. As with 

the interpolation at grid interfaces in adaptive meshes, this interpolation does 

not conserve the consistency of the physical quantities with the equation of 

state, and so the non-conserved physical quantities are corrected based on the 

conserved subset. 

The validity of this implementation of the shearing box boundary con­

ditions and the two-stagey-advection is demonstrated by the tests in §2.5. 
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Figure 2.3: Phase diagram showing line of equilibrium heating-cooling solu­
tions, Jeans Length limits (see §2.4.4) and 10 K temperature floor. 

2.2 Cooling 

To include the local effects of various optically-thin limit cooling and 

heating mechanisms a net heat loss function is defined: 

.C(T) = pA(T) - r (2.20) 

where r is a constant following Brandenburg et al. (2007) and others. The 

values for the parameters of this function are picked to mimic the action of 

various physical mechanisms. As this is possibly a very large parameter space 

to choose from, the primary concern is consistency with related previous work. 

We use a heating parameter r = 0.015 erg g-1 s-1 as in Brandenburg et al. 

(2007) and Pinotek and Ostriker (2007). The form of A(T) is a piecewise 

power law fit from Brandenburg et al. (2007), which is a continuous version of 

the fit given by Sanchez-Salcedo et al. (2002) which was used by Pinotek and 

Ostriker (2007) 

(2.21) 
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The coefficient values (Ci,i+l) are given in Table (2.2). A temperature floor of 

10 K is used, and resolution of the Jeans length is ensured by an additional 

temperature limiter of the form used by Wada and Norman (2007) to prevent 

artificial fragmentation (see §2.4.4): 

(2.22) 

Figure (2.3) shows the equilibrium solutions where r - pA = 0. 

Numerically, the cooling is split from the other operators, and the cool­

ing equation is integrated for the global time step with an Euler method with a 

sub-cycle time step of .05efe. The global cycle time step is limited proportion­

ally to efe, but the limiting factor is between 25 and 1, and this is not chosen 

to ensure accuracy but to limit the evolution so that the Riemann solver in 

the PPM stage will converge. 

To ensure strict convergence across resolution of the formally thermally 

unstable regions, Koyama and Inutsuka (2004) argue that it is necessary to 

resolve the length scale where this instability grows fastest, the Field length. 

It is suggested that this be accomplished by explicitly including a conduction 

which is constant at all resolutions and which is much greater then the nu­

merical conduction at all resolutions. However, Gazol et al. (2005) argue that 

this is a minimal concern when global properties are investigated, and when 

the numerical conduction is at least enough to stop the smallest resolved scale 

from also being the most unstable. 
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2.3 Approximating Isothermal Gas 

FLASH does not include an isothermal gas Riemann solver for use in 

the PPM gasdynamics. To approximate isothermal gas with the standard 

variable 'Y FLASH Riemann solver, a 'Y value of 1.01 is used in conjunction 

with a cooling operator set to bring the temperature to the specified isothermal 

temperature. The time step is not limited on the cooling time. This approach 

is more robust against spurious temperature increases than simply using an 

approximately isothermal 'Y over long evolution times. The 'Y used with this 

technique is also larger than that which would be required by simply using a 

'Y ::::::: 1. From experience, it is found that using larger 'Y is less likely to result 

in the FLASH PPM Riemann solver to failing to converge. 

2.4 Gravity 

The gravitational potential employed consists of two parts, an external 

part and a part resulting from self-gravity. The external part, <I>ext is a fixed 

background resulting from the expansion of the effective potential of a circular 

orbit in Hill's equations (equation (2.3)). The self-gravity part <l>89 is a result 

of solving the Poisson equation with periodic boundary conditions within the 

simulation volume. 

2.4.1 Self-Gravity 

The boundary conditions used for self-gravity in the x and y direc­

tions are the same shearing box boundaries as described in §2.1. The basic 

multigrid solver in FLASH can be used to solve in these boundary conditions 
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0.42 -0.05 0.05 	 0.15 
z [length] 

Figure 2.4: Example of errors caused by interaction of PPM hydrostatic gravity 
modification and monotonicity limiters of PPM interpolation. Cell divisions 
are indicated by vertical lines, analytic pressure function by dotted line, PPM 
interpolated pressure reconstruction by dashed lines, corrected left pressure 
states by thick red lines, and corrected right pressure states by thick blue 
lines. 
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without modification, other then patching a bug affecting the filling of guard 

cells during the pre- and post- V -cycle smoothing phase. 2 The top level solve 

used for the coarse grid does require modification. Originally, FLASH used 

an FFT-based (Fast Fourier Transform) spectral method to solve Poisson's 

equation with periodic boundary conditions on the coarse grid. To modify 

the spectral solution to a skew-periodic boundary, the procedure of Gammie 

(2001) is followed. The original source term is interpolated to a frame of skew­

periodic coordinates, the FFT-based solve is performed in this frame where 

the equation and boundary conditions are again separable, and the solution is 

then linearly interpolated back to the original grid. These two linear interpo­

lations do introduce noise into the solution, and this is effectively damped by 

applying the standard FLASH multigrid smoothing operator on the solution 

before proceeding with the rest of the V-cycle. 

This interpolation error in the FFT solution to the skew-periodic Pois­

son equation can be avoided. · The error arises from the finite order of the 

interpolation used in the azimuthal direction of the grid. We can, however, 

exploit the exact periodic nature of the problem in the azimuthal direction; 

the FFT is first performed on each azimuthal row; the resulting imaginary val­

ues are rotated in the imaginary place by an amount appropriate to the shift 

of that row; and finally the FFT is done in the radial and other directions. 

This procedure exploits the fact that the FFT on a periodic grid is actually a 

perfect interpolation. 3 

2Seehttp://imp.mcmaster.ca/~colinm/gpatch/index.html 
3This procedure, suggested in a posting on the author of this thesis's website, has been 

implemented by the authors of THE PENCIL CODE http: I /www .nordita. org/software/ 
pencil-code/doc/manual.pdf 
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2.4.2 External Potential 

The first order expansion about a circular orbit for the vertical back­

ground gravitational acceleration in Hill's equations is 

(2.23) 

This choice is not appropriate for the Euler equations if periodic z boundary 

conditions (Fromang and Papaloizou, 2006), or outflow z boundary conditions 

are used. To make use of an outflow boundary condition in the z-direction, 

a method based on that used by Fromang and Papaloizou (2006) is used, 

employing a cubic spline to bring the vertical gravity smoothly to zero between 

lzl = Zchange/2 and lzl = Zchange where Zchange is a new parameter introduced 

for this purpose: 

if lzl < Zchange, 

0 if lzl ~ 2Zchange· 

(2.24) 

Using this prescription for the z-gravity component, and keeping Zchange smaller 

than the scale height of the simulation box, but much larger than the scale 

height of the disk allows a standard outflow boundary condition to be addi­

tionally a hydrostatic boundary condition. 

The vertical self-gravity and vertical external gravitational forces are 

treated with the FLASH ppm...modify coupling (Zingale et al., 2002), which as­

sumes that the gravitational accelerations are locally balanced by a hydrostatic 

atmosphere. The x andy shearing frame forces from Hill's equations are cou­
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pled though the FLASH frame geometry coupling, which uses the conventional 

PPM body force coupling. 

2.4.3 Gravity-Hydrodynamics Coupling 


In the case of an atmosphere supported in hydrostatic equilibrium 

against a gravitational force, it is important that the spurious accelerations 

from the inexact cancellation of the supporting pressure gradient and gravity 

force are minimized as these accelerations can build to significant velocities 

over many time steps. FLASH has implemented a technique proposed by Zin­

gale et al. (2002) to partially handle this issue. In this approach, the pressure 

used for the left and right states of the PPM Riemann solver are corrected 

on the assumption that the gas is in equilibrium and the only pressure gra­

dient available to generate waves is that which cannot be locally supporting 

the gas against gravity. Zingale et al. (2002) gives results for this technique 

with a constant gravitational acceleration and a variety of density profiles. In 

this work, it was found that this approach was problematic- spurious z ve­

locities were generated, primarily at the mid-plane. To extend the work of 

Zingale et al. (2002) to systems like those studied in this work, an isothermal 

disk where the gravitational force changes with the z coordinate and has a sign 

change has been examined. The pair of functions which satisfy the hydrostatic 

equilibrium dP(z)jdz = -(pg)(z) are: 

P(z) (2.25) 

(pg)(z) (2.26) 
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Figure (2.4) follows the similar example in (Zingale et al., 2002) and plots 

the modified left and right pressure states used in the Riemann solver for this 

configuration. Ideally the left and right pressure states would be horizontal 

lines so that no wave would be generated at the interface. Where the mono­

tonicity constraints of PPM interpolation are used, the corrected states are 

significantly in error, leading to spurious velocities. This error is inherently 

resolution dependent. 

The method of Zingale et al. (2002) can be seen as an assumption 

that the Lagrangian frame in which the Riemann problem is solved is not 

accelerating with respect to the Eulerian frame. If the Zingale et al. (2002) 

method is used in a free-fall flow the modified pressures will instead introduce 

spurious velocities at each time step. This makes it clear that the root of 

this problem is that the Riemann problem, which depends on the left and 

right density, pressure, velocity and equation of state only, is not invariant 

between frames of different constant acceleration. Though various methods 

can be proposed to work around this limitation, it appears to be a fundamental 

property of all Godunov-type schemes. 

2.4.4 Resolution Requirements from Gravity 

'Thuelove et al. (1997) showed in isothermal self-gravitating gas simu­

lations that in order to avoid spurious fragmentation of collapsing clouds it is 

necessary to have at every spatial location in the volume a grid spacing fine 

enough such that the local Jeans length is several times the local grid spac­

ing. In the isothermal simulations in this thesis this criteria is satisfied by the 

selection of initial parameters. In simulations with cooling, the resolution de­
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pendent temperature limiter ofWada and Norman (2007), as given in equation 

(2.22) is employed to ensure this criteria is satisfied, at the cost of preventing 

cooling past this point. This limiter limits the internal energy of each cell in 

such a way that the Jeans length is at least 1.5 grid cells. In this work, no 

significant fragmentation of cold lumps was seen, either physical or artificial. 

The fragmentation occurring in the simulations presented here occurred in gas 

well away from the temperature limits. 

Similarly at large scales, Kim and Ostriker (2007) point out that in 

local models it is necessary to maintain a simulation box size L larger than a 

Jeans length- when a single Jeans length can be evaluated globally for the 

volume (i.e. when the gas is isothermal) Kim and Ostriker (2007) define a 

(2.27) 

which gives the number of Jeans lengths contained in the box length, where 

:E is the surface density and c8 is the sound speed. This parameter should 

have a value greater than 1. This criteria is enforced by choosing the initial 

conditions appropriately in isothermal simulations. 

As observed in Zingale et al. (2002), spurious velocities generated in 

the hydrostatic atmosphere will be related to the resolution of the grid versus 

the characteristic vertical scale (scale height) of the atmosphere. This limits 

the useful minimum resolution used in the upper regions of the disk. 

42 




M.Sc. Thesis- Colin McNally McMaster - Physics & Astronomy 

0.002 

1e-06 

0.0015 

1: 0.001 1 
...r 

1...o7 

0.0005 

10 
N 

Figure 2.5: Left: Linear incompressible wave test evolution on grids of size 
N 2 = 32, 64, 128 Right: Convergence of L1 norm error of maximum amplifi­
cation, the index of the power law fit is -2.7 
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Figure 2.6: Left: Linear compressive wave test evolution on grids of size N 2 = 
32, 64, 128 Right: Convergence of L1 norm error of maximum amplification, 
the index of the power law fit is -3.4 
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2.5 Linear Wave Tests 

To verify the correctness of the implementation used in this thesis of 

the shearing box boundary conditions, the evolution of linear velocity per­

turbations has been tested. Work by Johnson and Gammie (2005a) gives a 

solution for the evolution of incompressible and compressive plane waves in 

isothermal gas in the shearing box. 

For these tests, shearing box parameter values of q = ~ and n = Cs = 

w-3 were used. Isothermal gas was approximated by using 'Y = 1.00001 in the 

equation of state. 

A plane wave in the shearing box can be represented as 

Vx - 8vx(t) exp[ikx(t)x + ikyy] (2.28) 

Vy + qOx - 8vy(t) exp[ikx(t)x + ikyy]. (2.29) 

In general, for a plane wave with wave vector k = kxx + kyy the wave will 

shear as the background flow, that is kx(t) = kx,o + qOkyt. 

For an incompressible (vortical; V' · v = 0) wave the evolution of the 

velocity amplitude is given by: 

(2.30) 

This evolution has been used as a test case in (Johnson and Gammie, 2005b) 

and (Sherr et al., 2006). The initial wave vector used was: 

kx,O = -8 (~:), (2.31) 
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To satisfy the requirements of being a small perturbation and giving an in­

compressible wave the initial velocity amplitudes were chosen as: 

(2.32) 

Figure (2.5) shows the convergence of the solution in this linear incompressible 

wave test has also been computed by Johnson and Gammie (2005b) and Shen 

et al. (2006). 

The case of a linear amplitude compressible wave (V · v =/= 0) has been 

presented as a test case by Johnson and Gammie (2005b) and Shen et al. (Shen 

et al., 2006) and this test has been repeated with the code described in this 

thesis. The analytic solution is given by Johnson and Gammie (2005a) as 

.. ( 2 2 2)8vyc + C8 k + K 8vyc = 0. (2.33) 

Using a time scaling 

_·ficsky ( kxo) _·ficsky
nT='L -- qHt+- ='L --T (2.34)
qO qOky 

and defining the non-dimensional constant C 

(2.35) 

this evolution equation can be rewritten as 

cf28vyc 2 )
dT2 + (14T - C 8vyc = 0. (2.36) 
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This is a parabolic cylinder equation (Abramowitz and Stegun, 1964, §19). 

The wave vector is defined by k2 =k; + k~ and the epicyclic frequency is 

K,
2 = (2-q)02

• The solution to equation (2.36) can be expressed in terms of the 

associated parabolic cylinder functions. In practice, the solution is expressed 

in terms of linear combinations of the Maple implementation of these functions 

9'-l (CylinderU(-iC, Te1/ 4i7r)) (2.37) 

and 

9'-l (CylinderV(-iC, Te1/ 4i7r)) . (2.38) 

For the case used to test the code described in this thesis, the initial wave 

vector was 
27r 

kx,O = -4 (~:), ky=y-, (2.39) 
y 

and to make the wave irrotational the initial velocity amplitude was chosen as 

(2.40) 

Figure (2.6) shows the linear compressible wave test convergence. 

2.6 Initial Conditions 

As the form of the gravitational potential is complicated (a fixed back­

ground potential plus a periodic solution to Poisson's equation) attempting to 

write an analytic form for the initial isothermal hydrostatic equilibrium config­

uration has been avoided. Instead, to create an isothermal hydrostatic initial 

conditions a simulation was run with the same vertical grid configuration as the 
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full simulation but with minimal horizontal extent, only z-direction hydrody­

namics and fully periodic boundary conditions. To encourage the relaxation of 

the gas, the cooling operator was modified to remove 20% of the cell's momen­

tum at each step. This simulation was started with the desired smooth surface 

density of gas, and evolved until an equilibrium configuration is attained. A 

vertical profile was extracted from this result, and exactly replicated as the 

initial condition for the full simulation. 

Additionally, non-isothermal hydrostatic initial conditions have been 

created with this method. For example an initial condition everywhere satisfy­

ing the heating-cooling equilibrium in the warm, thermally stable 6102-105 K 

regime has been created by running the same simulation with a cooling oper­

ator which extends the slope from this regime to all temperatures. Since this 

is a thermally stable regime, for viable surface densities the gas relaxes to a 

hydrostatic equilibrium satisfying the heating-cooling equilibrium of the full 

cooling operator. 

This technique of relaxing to the initial condition has the added advan­

tage that the result is as close as possible to a numerical representation of the 

hydrostatic equilibrium, not an analytical version. 

2.7 Methods of Perturbing Initial Conditions 

In order to seed instability in the system in a controlled and repeatable 

manner, it is necessary to perturb the otherwise stable initial conditions. This 

perturbation should be larger than any numerical perturbations present. Two 

methods have been used. First, irrotational velocity perturbations have been 

used in some simulations. These have a Kolmogorov-like power spectrum k-~ 
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in modes with kz = 0 and kx, ky one of 2, 4, 8 only. This restriction is used to 

ensure that the perturbed initial condition has zero linear momentum. Second, 

in a manner similar to Wada and Norman (2007) and Pinotek and Ostriker 

(2007) random (uniform distribution) density perturbations with maximum 

amplitude 1% of density have been used in some simulations. In the case 

of simulations with cooling, these density perturbations are a more minimal 

assumption than velocity perturbations, and are consistent with earlier work. 

2.8 Summary of Methods 

As described in this chapter, a parallel shearing box has been imple­

mentation, with specific modifications to improve performance with thermal 

instability has been written and tested for correctness. In the z-direction, an 

appropriate mixed boundary condition for gasdynamics, external gravity and 

self-gravity has been implemented. Finally, a method for solving for a hy­

drostatic atmosphere in the combined external gravity and self-gravity on an 

adapted mesh has been devised. This framework can be used to efficiently run 

simulations of galactic gas disks. For example, on 8 processors of the Sharcnet 

cluster Bala (Opteron 2.20 GHz, Myrinet G2) the simulation of §3.3 labeled 

A1 took 605161 s for 5824 time steps, with 60% of the time spent on gravity 

and 33% on gasdynamics. 
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Chapter 3 

Results 

The core issue in understanding the role that self-gravity and thermal 

instability can have in driving turbulent motions in an extended galactic disk 

is in how these mechanisms can lead to the transfer of angular momentum. 

The importance of this is that it allows the transport of mass inwards and so 

liberates energy from the rotational motion of the galaxy with which turbulent 

motions can be driven. The physical structures which arise, or fail to arise, 

in the disk to allow the coupling between self-gravity and angular momentum 

transport are a primary concern. To probe this three sets of simulations were 

run using the methods described in §2. The first evolved a perturbed isother­

mal disk with Q ~ 1. The second consisted of a fixed surface density disk 

with cooling enabled, in a similar manner to Wada and Norman (2007) and 

Pinotek and Ostriker (2007). Finally, the third set of simulations involved a 

disk continuously accreting mass, so that a phase transition occurs suddenly 

during the evolution. 
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Table 3.1: Parameters of Isothermal Simulations 

IName I Q I nj IMid-plane Resolution I 
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Figure 3.1: Stress in isothermal disk runs I1 and I2. This is sampled every 50 

cycles, averaged over 10 samples for readability. 
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3.1 Isothermal Runs 


To evaluate the action of only self gravity, without thermal instability, 

in driving turbulence in a local patch of a galactic disk, isothermal gas can be 

used. Isothermal runs have a particular importance that Q is only well-defined 

in this case, in that there is no ambiguity in needing to define an average value 

of Q. Table (3.1) lists the runs. The Q value of 1.16 was selected as being a 

value marginally stable against fragmentation by axisymmetric perturbations, 

and hence the most likely to form a gravitoturbulent quasi-steady state. The 

number of runs used in this section was minimal, due to the resources required 

to evolve the calculation at the higher resolution for a sufficiently long time. 

All runs use an 8 x 1021 em by 8 x 1021 em by 16 x 1021 em simulation box. 

The base grid is 2 by 2 by 4 blocks of 8 by 8 by 8 cells, with a minimum 

of 2 levels of refinement everywhere. Run I1 has 4 levels of refinement on 

the mid-plane or 1282 resolution and run 12 has 5 levels of refinement on the 

mid-plane or 2562 resolution. The Zchange parameter is 4 x 10-21 em. Velocity 

perturbations as described in §2.7 were used with a maximum velocity 42% of 

the sound speed. The evolution of the angular momentum transporting stress 

(see §1.1.5) for runs l1 and 12 is shown in figure (3.1). These simulations decay 

towards a steady state that is a smooth hydrostatic flow without significant 

angular momentum transport. The decay of the stresses indicates that no 

gravitoturbulent quasi-steady state was found. 
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X 

Figure 3.2: Grid configuration from run Cl. 
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Table 3.2: Parameters of Cooling Simulations 

Run Label E [M0 pc-2] To [K] Vertical Pattern 
lmtial Maximum 
Density fg cm­ 31 

C6 1.5 100 single-phase 1.401 x 10-24 

C5 1.5 2500 single-phase 2.809 X 10 -:&0 

C4 1.5 10000 single-phase 1.001 x 10-~5 

C1 6 2500 two-phase 1.040 X 10 -~4 

C2 6 2500 two-phase 1.030 X 10 -:.~4 

C7 6 10000 single-phase 4.405 x 10-~ 
C3 15 10000 two-phase 1.342 X 10 "24 
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Figure 3.3: Maximum density of initial conditions and their evolution in re­
lation to the curves from figure (2.3). The symbols corresponding to runs C1 
and C2 lie directly on top of each other. 
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Figure 3.4: Schematic of structure of a two-phase disk. The thin line denotes 
the equilibrium solution and the thick lines denote the spread of each gas 
component. 

3.2 Runs with Cooling 

As runs with an isothermal equation of state have produced no signif­

icant activity, the cooling operator was enabled in another set of simulations. 

The basic parameters of these runs including cooling are a box 1.2 kpc by 1.2 

kpc by 4.8 kpc, with a base grid of 2 by 2 by 4 blocks of 8 by 8 by 8 cells with 

no minimum level of refinement, as illustrated in figure (3.2). All cooling runs 

except C2 use 4 levels of refinement at the mid-plane or a mid-plane resolution 

of 1282 and 9.375 pc. Run C2 uses 5 levels of refinement at the mid-plane, 

or a mid-plane resolution of 2562 and 4.6875 pc. Table (3.2) lists the basic 

parameters of each run. The initial condition was an isothermal disk, with 1% 

evenly distributed random density perturbations added to each cell. 

There are two basic fates which these simulations have, one is where the 

disk remains as one phase and the perturbations die out, the second is for two 
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Figure 3.5: Phase plots of runs ending in a fragmented tw<rphase disk. Left: In 
temperature v.s. density Right: In presssure v.s. density, from top to bottom, 
runs C1, C2 and C3. These taken at time t = 1.19 x 1016 s, t = 5.82 x 1015 s, 
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Figure 3.6: Run C1 density slice at mid-plane. The density scale is logarithmic, 
25 2
ranging from blue 2.838 X 10- gem- 2 to red 1.302 X 10-21 gem- , at times 


x 1016
t = 6,7,8,9,10,11 s. The simulation box is 1.2 kpc wide. 
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Figure 3.7: Run C2 density slices at mid-plane The density scale is logarithmic, 
2
ranging from blue 3.726 X 10- 25 gcm-2 to red 2.676 X 10-21 gcm- , at times 


t = 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 x 1015 s. The simulation box is 1.2 kpc wide. 
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Figure 3.10: Run C2 stress- an unstable case 
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Figure 3.11: Run C3 stress- an unstable case 
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Figure 3.13: Run C2 (Q)p 
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Figure 3.15: Run C2 fractions of warm, cool and unstable gas over time 
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phases to form and the perturbations grow. Figure (3.3) shows a phase plot of 

the initial conditions indicating the maximum density and the ultimate fate. 

Plotted are the equilibrium and temperature limit curves as in figure (2.3), 

an example isobar associated with the pressure at which thermal instability 

becomes active on the equilibrium curve and the maximum density of each 

initial condition in table (3.2), coded by the ultimate fate of the simulation. 

If plotted, the gas for each initial condition would extend in a horizontal line 

from the maximum density marker past the left boundary of the plot. This 

figure also shows the initial conditions used by Wada and Norman (2007) for 

comparison these are far to the unstable side of the space. When a two-phase 

disc forms its configuration can be characterized by the cartoon representation 

in figure (3.4). The dense lumps compress, accrete mass, and coalesce after 

they form. The unstable filaments connecting the lumps are gradually accreted 

into clouds and an unstable layer exists as a sheath around the cool clouds. A 

Q-stable disk of thermally stable gas remains extending far above the clouds. 

The phase diagram of this two-phase medium for two different resolutions and 

surface densities is displayed in figure (3.5). It is notable that the distribution 

of points follows the equilibrium solution and Jeans limiter lines closely, except 

for a region where the points progress in a manner closer to an isobaric solution 

between the two thermally stable sections of the equilibrium curve. 

As can be seen by comparing the evolution in the mid-plane density 

slices in figure (3.6) and figure (3.7) the scale at which filaments develop varies 

significantly between the two resolutions. Roughly, the scale on which the 

fragmentation happens is smaller when smaller scales are resolved in the sim­

ulation. This suggests that the mechanism for generating fragmentation is not 

spatially resolved in these simulations. Of the two scales where instabilities 
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act most strongly in these simulations, the numerical Field length is related 

to the grid resolution, whereas the Jeans length is always resolved.1 Addition­

ally, the numerical method used in this thesis does not explicitly determine or 

control the numerical Field length. Hence, it is likely that the Field length is 

important to the scale of the fragmentation. 

The phase structure of the disk in these simulations has distinct con­

sequences for the transport of angular momentum, and hence the possibility 

of extracting energy from differential rotation of the galaxy. For a stable 

case, shown in figure (3.8), the stress decays quickly, mirroring the fate of 

the isothermal disk of the previous section. For cases where a two-phase disk 

forms, figures (3.9), (3.10) and (3.11) show that the fragmentation of the cool 

phase leads to much larger values for the angular momentum transporting 

stress (Txy)· In addition, the fragmentation of the cool phase does not neces­

sarily imply that the global mass weighted average Q ((Q)p) must be< 1. As 

shown in figures (3.12) and (3.13), Q can be still in the range associated with 

stability, even though parts of the disk are violently unstable. 

For the times where they overlap, runs C1 and C2 show similar evolu­

tion of the fraction of total mass in each temperature range, as shown in figures 

(3.14) and (3.15). That the cool gas mass is constantly increasing indicates 

that a quasi-steady state has not been achieved - more gas is cooling than is 

reheated by gas motions. 

Reliable velocity dispersion measurements cannot be inferred from these 

simulations. As the gas initially heats strongly from the isothermal initial con­

dition, the disk scale height initially climbs rapidly before falling as the mid­

1Infact the gas, during initial stages of the fragmentation, lies far in the phase diagram 
from even the Jeans Length limit. 
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Figure 3.16: Run Al stress- showing the transition from stable to unstable 
evolution 

plane region cools and collapses. Through the rest of the simulation the disk 

oscillates slightly and thus dominates the density weighted vertical velocity 

dispersion. Hence, the existence of a stress by which velocity dispersion can 

be driven must be used as the indicator of a viable mechanism here. 

3.3 Accreting Disk 

From the previous section, it is apparent that the transition from a 

single phase disk to a two-phase disk is very important in determining how 

angular momentum can be transported though local self-gravitational stresses. 

To investigate this, a simple model of a accreting disk has been developed. 

Run Al starts with the grid as in run C2, but with an initial condition 

of uniform very low density (10-28 g cm-3) gas. Then, instead of outflow z 

direction boundaries as in run C2, inflow boundaries are specified by setting 
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Figure 3.17: Run A1 absolute value of gravitational stress 
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Figure 3.18: Run A1 mass fraction by phase 
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Figure 3. 19: Run A1 (Q)p 
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Figure 3.20: Phase plots of run A1 Left : At time t = 2.13 x 1016 s Right: At 
t imet = 2.73 x 1016 s 
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Figure 3.21: Mid-plane density slice plots of run Al. Density is plotted on 
logarithmic scale, from blue 4.61 x 10-25 gcm- 2 to red 3.26 x 10-21 gcm- 2 . 

The simulation box is 1.2 kpc wide. Left: At timet= 2.07 x 1016 s Right: At 
timet= 2.72 x 1016 s 
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Figure 3.22: Run A2 stress 
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Figure 3.23: Run A2 mass fraction by phase 

the gas density at 3.4815 X 10-26 gcm-3 and pressure at 4.5 X 10-lS dyncm-2• 

Along the 16 by 16 grid of cells at the z boundary, the density is 1% greater 

on odd-numbered rows. This provides a minimal, but non-angular momentum 

transporting perturbation to the flow, so that the imposed perturbations will 

be larger than those arising from purely numerical effects. The inflow rate 

was 1.146 X w-s M0 pc-2 yr. With these boundary conditions, the disk built 

up and eventually reached the critical temperature/pressure for thermal in­

stability and formed a cool phase with vastly enhanced angular momentum 

transport. 

The evolution of angular momentum transporting stress is shown in 

figure (3.16). The gravitational torque {Tgrav.,) shows a rapid increase after a 

thermally unstable component of the disk develops. That the Rayleigh stress 

(Thydra.,Y) is of significant size before the phase change is due to the motions 

driven in the gas by the accretion, and is a direct result of the boundary 
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conditions. Figure ( 3.17), displaying the absolute value of the gravitational 

stress, shows an increase of approximately 4 orders of magnitude as a result of 

the development of the cool phase. It is important to note however that the 

pre-transition value of the gravitational stress is a result of the pre-transition 

density perturbations, which in turn are purely a function of the boundary 

conditions. However, taking the results of §3.2 into account, it can be stated 

that these pre-transition perturbations will not grow on their own. When 

the cool phase forms, mass is rapidly accreted into the cool clouds, as can be 

seen in figure (3.18). Like in the star formation cutoff theory of Elmegreen 

and Parravano (1994), Q shows a marked decline when the cool phase forms, 

as shown in figure (3.19). The value of this overall average Q is not simple 

to interpret, as the cool component has a much smaller sound speed and is 

highly fragmented. Scatter plots of the gas state just before and after the 

development of the cool phase in figure (3.20) show the transition from a single 

phase to a two-phase medium of a thick disk and cool clouds, as found in the 

simulations of §3.2. There is a notable difference between figures (3.20) and 

(3.5) in the position of the warm component points. In figure (3.20) the gas at 

the upper boundary sits on the equilibrium line, then as it falls in it becomes 

less dense and cools, until it begins running into the disk, compressing and 

rising off the equilibrium line. Most notably, as the gas becomes more dense, 

components cover the equilibrium line right to the maximum, not stopping 

where the bulk of the points progress right to the cool component line like in 

figure (3.5). The development of the cool clouds out of small pre-transition 

density perturbations is shown by the mid-plane density sliced in figure (3.21), 

where the later slice is reassuringly qualitatively similar to those in §3.2. 

As a simple test of the sensitivity of the system to the boundary con­
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ditions, the simulation A2 was run with an inflow rate of half of that used in 

Al. The evolution of the gravitational stress in run A2 shows the same effect 

from the phase transition as in run Al (see figure (3.22)). The hydrodynamic 

and gravitational stresses in run A2 are of opposite sign when the growth due 

to the phase transition happens, unlike in run Al. The sign of the stress at 

this time is a result of the geometric configuration of the regions where the 

cool gas develops. The development of the mass fractions is shown in figure 

(3.23). The cold phase can be seen to develop at slightly higher surface density 

than in run Al as would be expected due to the smaller confining pressure on 

the disk coming from the inflow. The difference in the evolution of stresses 

between Al and A2 serve to illustrate that the particular path followed by 

each is not indicative of a typical evolution, only particular features connected 

to some physical changes are. These features are the change in the stresses 

following the phase change, and the pre-transition hydrodynamic stress due to 

the forcing of the disk by the inflow. 

3.4 Discussion 

The shearing box, due to the low order expansion used in its construc­

tion, does not specify which direction is radially inwards: the equations are 

perfectly symmetrical in the radial direction. Hence, although the large scale 

evolution of the system to lower energies dictates that angular momentum must 

be transported outwards, the local representation in the shearing box can mo­

mentarily transport angular momentum in either direction. This causes the 

stress to momentarily fluctuate in sign in some cases. Additionally, the local 

nature of the simulations means that the stress is created by the interaction 
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of a small number of dense clouds. This small number of interacting bodies 

further causes the calculated stress to fluctuate more than a large number of 

bodies would. 

To review of the most basic property of the three sets of simulations 

presented here: the isothermal disk models tested did not sustain a quasi­

steady gravitoturbulent state, the thermally stable cooling disks of fixed sur­

face density decayed towards an smooth flow state and before the onset of 

thermal instability, the accreting disk models did not have significant gravi­

tational stress. This suggests that a thermally stable galactic disk does not 

have the ability to drive turbulent motions through differential rotation and 

angular momentum transport by gravitational stresses or a gravitoturbulent 

quasi-steady state. 

The results of §3.2 and §3.3 show that thermal instability and the forma­

tion of a two-phase medium can provide a mechanism for producing enhanced 

angular momentum transport by self-gravitational stresses. This will have two 

consequences: to convert the galaxy's rotational energy into local motions giv­

ing rise to velocity dispersion in the gas; and to enhance the rate at which 

mass, primarily in the form of cool gas clouds, is transported inwards enhanc­

ing the surface density of more central regions of the galactic disk. Increased 

surface density may lead to star formation. 

No simulations shown in the thesis provide any examples of a gravito­

turbulent quasi-steady state as found in Gammie (2001) -either they evolve 

towards a smooth steady state, or continue to fragment for all time without 

reheating cool gas. 

The divide between stable and unstable initial conditions in §3.2 can­

not be interpreted too strongly for a number of reasons. Since the thermal 

71 




M.Sc. Thesis- Colin MNally McMaster - Physics & Astronomy 

instability is so important in the initial evolution, the precise form and nor­

malization of the cooling curve may be important. The cooling curve used here 

is a simplification and similarly the heating is approximated from UV heating 

of grains in the local solar neighborhood Gerritsen and Icke (1997) where there 

may be other significant contributions to the radiation field which may heat 

gas in the outer galactic disk, and this may vary spatially. 

One may ask, after considering the results of this §3.1, §3.2 and §3.3, 

why the simulations of Wada and Norman (2007) show so much apparent 

activity in forming structures and driving turbulence? Some insight into this 

can be found by comparing their initial conditions to the ones used here. Their 

2initial disk has density in the mid-plane of 3.4 X 10-22 to 3.4 X 10-21 g cm-

which leads to rapid thermal instability. Figure (3.3) shows the maximum 

density of each isothermal initial condition used in this work, and the initial 

conditions of Wada and Norman (2007). The initial conditions of Wada and 

Norman (2007) can be seen to be far to the dense, unstable regime in figure 

(3.3). This guarantees that initially each local region of the disk will be strongly 

thermally unstable, encouraging its rapid fragmentation, both by thermal and 

gravitational instability. 

Whereas Wada and Norman (2007) found their models drive quickly to 

a gravitoturbulent quasi-steady state, the results in §3.2 approach a state where 

all the gas is cool. The ultimate upper limit on the cool mass apprears to be 

only numerical. This suggests that if the quasi-steady state of self-gravitational 

and thermal instability driven turbulence found in Wada and Norman (2007) 

is indeed real, then it is a necessarily global phenomena. This is at odds with 

the purely local estimates discussed in §1.1. 6 for the viability of this mechanism 

as a driving source for turbulence in galaxies. There are at least two ways this 
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might be resolved. First, a careful analysis of the stresses and mass fraction 

evolution in Wada and Norman (2007) type simulations should reveal if the 

state found is quasi-steady. Importantly, it should be shown that the cool mass 

fraction reaches a maximum, implying that as much gas is being heated by 

the turbulence as is cooling. Secondly, it may be that the multiphase nature 

of the disk invalidates the estimate of §1.1.6. As discussed there, the supply 

and dissipation parts of that estimate are based upon seatings which hold for 

isothermal gas. It was found that the estimate of §1.1.6 depended strongly on 

the length scales involved. Computations of these lengths may not by valid in 

a strongly two-phase medium. 

If the velocity dispersion is to be driven by a local self-gravitational 

mechanism, the simulations suggest that the cool phase must exist everywhere 

in the disk where the velocity dispersion is seen. However, as the surface 

density of the disk drops, it will be increasingly difficult to achieve the critical 

pressure for the existence of the cool phase at the disk mid-plane. Detailed 

observation, extending the cool phase observations of de Blok and Walter 

(2006) might settle this by directly detecting a cool phase in low surface density 

extended galactic disks. 

Similarly to the findings of Pinotek and Ostriker (2007), the simula­

tions in this thesis suggest that the highest turbulent velocity dispersions are 

achieved in a disk with a cool phase. However, Pinotek and Ostriker (2007) 

were discussing magnetohydrodynamic turbulence in a stratified disk. They 

suggest that to achieve values less than ~ 8 km s-1 for the observed combined 

thermal and turbulent velocity dispersion it is necessary for cool clouds to 

exist in the disk. This cool cloud condition is the same as is required for the 

more active regime of self-gravitational stress in the disk. It would therefore be 
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interesting to compute models similar to those seen here, but including magne­

tohydrodynamics so that the magnetic angular momentum transporting stress 

can be compared to the local self gravitational stress. 

The results of this thesis suggest that there is a significant difference 

between the local angular momentum transport properties of a single phase 

galactic disk and of a two-phase galactic disk. Thus, it may be important to 

examine what importance local transfer of angular momentum can have on 

the formation and evolution of a disk galaxy. Currently, many approximations 

used in cosmological simulations of galaxy formation attempt to capture the 

multiphase gas dynamics as a subgrid model and do not fully include this 

two-phase nature. In particular some relevant approximations are: to use an 

isothermal gas, to enforce a minimum temperature on the order of 104 K, or 

to introduce multiple phases in each resolution element assuming a pressure 

equilibrium, without resolving the differing dynamics of each phase (see the 

review by Bryan, 2007 ) . The central problem of all these approximations is 

that they attempt to capture the disk dynamics without resolving sufficiently 

small mass elements to track the dynamics of cool clouds. 

Finally, a picture of the phase structure and dynamic structure of the 

outer regions of a galactic disk can be drawn. Three regimes, as shown in 

figure (3.24), can be identified, with the divisions between them drawn by the 

cutoff in star formation and the gas single-phase to two-phase transition: 

I A region of single phase gas, closely following the heating-cooling equi­

librium curve on the phase diagram, with Q > 1, and with pressure low 

enough to not support a two-phase medium, includes small perturbations 

II A region where pressure is sufficient for cool clouds to form from existing 
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Figure 3.24: Three regimes of a galactic disk 

small perturbations, forming a two-phase medium, enhanced angular 

momentum transporting stresses result 

III 	The stellar disk, where the conditions for star formation are widely sat­

isfied, and feedback (supernovae and outflows) drive turbulence. 

Regions I and II are simple to form - thick warm gas disks are relatively phys­

ically simple, and the stellar disk is well known to exist. There are already a 

number of understood elements pointing to the nature of region II. Pinotek 

and Ostriker (2007) point out that the Schaye (2004) hypothesis, that the 

formation of the cool phase necessarily implies star formation, fails based on 

current observations showing that the phase change can occur outside of the 

limit of star formation. In the same work, they also find that magnetohydro­

dynamic effects in a region with cool clouds, such as in region II, may suppress 

star formation. The presence of star formation sets the division between re­

75 




M.Sc. Thesis- Colin McNally McMaster - Physics & Astronomy 

gions II and III. This cutoff may not be sharp, as discussed in §1.0.2, and it 

could be expected that locally star formation may happen in the cool phase of 

region II. The presence of stars, and their feedback (particularly supernovae, 

see Mac Low and Klessen (2004)) changes the dynamics and phase structure 

of gas from II to III. Between regions I and II the dividing line is drawn on 

the existence of the cool phase. Based on the results shown in this thesis, it 

can be said that in terms of local self-gravity there is an important dynamical 

divide between I and II. 
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Chapter 4 

Conclusions 

A new adaptive mesh shearing box implementation has been based on 

the FLASH code. It includes gasdynarnics, a correction for numerical diffu­

sion effects, self-gravity and cooling. Within this framework, a method for 

simulating local patches of a galactic gas disk, in three dimensions, has been 

developed. No gravitoturbulent quasi-steady state was found in a Q = 1.16 

isothermal disk, indicating that local self-gravity driven turbulence might not 

be sustained in general in isothermal disks. The local approximation means 

this is a different phenomena than large scale spiral patterns in disks with 

similar Q. The lack of activity in this isothermal disks case does provide a 

starting point for investigating more complicated cases, specifically those in­

volving a approximate cooling operator. In simulations with cooling, fixed 

mass and an isothermal initial condition it was found that the combination 

of mass and initial temperature fell either in a region where a single phase 

was formed, or where a two-phase medium was formed. While it was found · 

that a disk with cooling and supporting only a single-phase medium did not 

develop significant angular momentum transporting self-gravitational stresses, 

disks with conditions such that a two-phase medium developed showed a vastly 

greater stress. Further, a disk model continuously accreting mass showed lo­
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cal self-gravitational angular momentum transporting stresses increasing by 

four orders of magnitude upon the onset of thermal and gravitational instabil­

ities and the formation of a two-phase medium. Finally, it has been observed 

that the dynamical change in the transport of angular momentum though 

self-gravity, and hence mass, following from the phase change and onset of a 

two-phase medium may mean that two significantly different regimes exist in 

an extended galactic disk, beyond the limit of star formation. 

There are a number of areas where this work could be improved or built 

upon. As seen in §3.2 the physical scale at which filaments and cool clouds 

have formed in the simulations in this work has been strongly dependent on 

the grid resolution. It would be useful to increase the resolution at which these 

simulations have been run and to take numerical measures to limit the Field 

length to ensure that the process of collapse and fragmentation is properly 

resolved. One of the primary obstacles to achieving these larger, longer runs 

is the short cooling time when higher densities develop and the tendency of 

the FLASH Riemann solver to fail to converge if the short cooling time is 

ignored. Thus, a numerical gasdynamics method which more tightly couples 

cooling into the solution would be useful, as the cooling operator could then 

be integrated fully implicitly. A different gasdynamics method might also be 

able to alleviate the difficulty with gravity-gasdynamics coupling discussed in 

§2.4.3. The cooling operator used in this work, though consistent with related 

earlier work is a gross simplification. Most importantly, the heating compo­

nent is adapted from observations of the galactic environment around the sun 

and may not be properly representative of condition in an extended galac­

tic disk. This issue is most important in the high-density regime, the regime 

where it may impede star formation, as if in models of the type discussed in 
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this work the conditions for star formation are met, the model is then much 

less meaningful as a representation of the galactic disk past the limit of star 

formation or in the region of very low star formation rate. Though this work 

has only dealt with the gravitational and gasdynamic consequences of the for­

mation of a two-phase medium, there should also be magnetohydrodynamic 

consequences in this context. These should be similar to the situation explored 

in the outer galaxy model of Pinotek and Ostriker (2007). A model like run 

Al but including magnetic fields would be able to provide insight into the rel­

ative importance of gravitational and magnetohydrodynamics effects. As the 

criteria for star formation may not produce a clean edge at the limit of star 

formation, a model including an appropriate sub-grid model of star formation 

is still of interest, as this could contribute to the evolution of the phases signifi­

cantly once the cool phase forms. Specifically, star formation should eventually 

transform the medium into a much more complicated multiphase situation and 

drive turbulence though mechanisms not directly tied to angular momentum 

transport. Hence, the transition point or region where the star formation rate 

significantly changes the dynamics of the gas would be particularly interesting 

to determine. 

In the future, there are useful strategies to pursue in understanding 

the issues examined in this thesis, both numerically and observationally. Nu­

merically, fully global simulations, extending at least as far as the accretion 

shock around the galaxy, and including an accurate treatment of the stellar 

component, heating, cooling, thermal conduction and magnetic fields, run with 

sufficient resolution to resolve the Jeans and Field lengths in the extended disk 

could be analyzed locally, allowing a more consistent analysis of the driving 

mechanisms behind turbulence in the extended galactic disc. Observationally, 
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further and definitive detection and mapping of the extent to which cool gas 

clouds exist in the extended disk of other galaxies would make significant con­

tribution to the understanding of the extended galactic disk, as the existence 

of this structure should significantly affect the ability of the disk to sustain 

turbulent motions. 
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