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Abstract 
Effects of electron correlations on a two dimensional quantum spin Hall system are studied. 

We examine possible phases of a generalized Hubbard model on a bilayer honeycomb 

lattice with a spin-orbit coupling and short range electron-electron repulsions at half 

filling, based on the slave rotor mean-field theory. The phase diagram of the model is 

found for a special case where the interlayer Coulomb repulsion is comparable to the 

intralayer Coulomb repulsion. 

Besides the conventional quantum spin Hall phase and a broken-symmetry insulating 

phase, we find a new phase, a fractionalized quantum spin Hall phase, where the quantum 

spin Hall effect arises for fractionalized spinons which carry only spin but not charge. 

Experimental manifestations of the exotic phase and effects of fluctuations beyond the 

saddle point approximation are also discussed. 

We finally study a toy Bose-Hubbard model for the charge sector of the theory to gain 

some insight into the phase diagram away from the special Coulomb repulsion values. 
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Chapter 1 

Introduction 

The quantum spin Hall phase is a new state of matter which arises due to spin-orbit 

coupling in time revenal symmetric systems [1, 2]. It is characterized by a gap in the 

bulk and an odd number of Kramers pairs of gapless edge modes which are protected by 

a Z2 topological order [2-6]. The Z2 topological order here distinguishes time reversal 

symmetric states which have even and odd numbers of Kramers pairs, namely it is an 

integer which counts ;he number of edges states modulo 2. The quantum spin Hall 

effect has a Z2 numbe ~ of 1, say, since there are an odd number of edge states, while a 

conventional band insulator may have an even number of edge states so the Z2 number is 

0. 

At low energies the quantum spin Hall state is described by an effective theory for the 

gapless edge states. Since time reversal symmetry is not broken the edge modes should 

be non-chiral; namely 3pin up propagates in one direction while spin down propagates in 

the opposite direction. Time reversal symmetry forbids back scattering between the left 

and right propagating modes within a single Kramers pair of edge states; such a term 

is odd under time rev•~rsal symmetry. Since these terms are forbidden, back scattering 

may not occur and the single edge modes will remain stable and gapless. However, if 

we have more than one Kramers pair single particle back scattering between different 

Kramers pairs is allowed. This back scattering will open a gap for the edge states. An 

even number of Kramus pairs are not robust and can be completely gapped out. On the 

other hand, an odd number of Kramers pairs has to have at least one gapless Kramers 

pair remaining. Therdore, when time reversal symmetry is present in the system the 

Z2 topological classification is robust. The different Z2 numbers imply that these two 

systems lie in different universality classes. Hence the quantum spin Hall phase is a new 
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type of "topological insulator". 

The quantum spin Hall effect was first proposed to exist due to spin-orbit coupling in 

graphene at zero temperature [1]. However, hopes of observing this effect in graphene were 

quickly shown to be unrealistic due to the small spin-orbit gap. The spin-orbit coupling in 

graphene only creates a charge gap on the order of 10-3 me V [7], hence we would have to 

go to extremely low temperatures in order for thermal fluctuations to become negligible. 

With graphene ruled out, the search was expanded to include other two dimensional 

materials. Bernevig et al. [8] showed that the same effect could be seen in the semi­

conducting HgTe/(Hg,Cd)Te quantum wells. These specific quantum wells are zincblende­

type semi-conductors. In these materials there are four bands which are relevant at the 

Fermi level [8], the electron-like conduction band which is made up of the two spin states 

of the s orbital, and the heavy hole-like valence band which is made up of the IPx + ipy, i) 

and I - (Px - ipy), 1) orbitals. Within these four bands one can write down an effective 

Hamiltonian near the r point in the Brillouin zone that is nothing but two copies, one 

for each Kramers pair, of a massive Dirac Hamiltonian, with mass M. Here the "mass" 

is related to the energy gap between the s-like and p-like orbitals. Spin-orbit coupling is 

naturally included in this effective model through the IPx + ipy, i) and I - (Px - ipy), 1) 

orbitals. 

By adjusting the thickness of the HgTe section of the quantum well, d, one can tune 

the band structure of the well from a model with positive mass to a model with negative 

mass of the Dirac electron. When d < de, where de is a critical thickness, the system is 

a conventional semi-conductor with a positive mass, M > 0. However, when d > de the 

band structure is given by the so-called "inverted" band structure where the s-like orbitals 

are lower than the p-like orbitals and the mass is negative, M < 0. Since the effective 

model has passed through a gapless point in the band structure the system has undergone 

a phase transition. This phase transition is a topological quantum phase transition that 

involves the transfer of a Chern number from one band to the other. This transfer of 

Chern number is identical to the phase transition that happens in massless graphene 

when spin-orbit coupling is added. Since the topology of the momentum space for the 

inverted semi-conductor quantum wells is the same as graphene with spin-orbit coupling 

we should expect the quantum spin Hall effect to appear here. 

Recently experiments have been performed [9] on these quantum wells which clearly 

show evidence of the gapless edge states in the quantum spin Hall state. The quantum 

wells are set up in a six terminal Hall bar with varied thicknesses, a gate voltage is 
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applied in order to tun·~ the Fermi energy. By tuning the Fermi energy one can drive the 

system into its insulatng state by ensuring that the Fermi energy lies within the gap. 

Longitudinal resistance measurements in the inverted band regime revealed a residual 

conductance that is absent for the conventional semi-conducting regime. Upon varying 

the width of the Hall bar the same behavior is observed, indicating that the residual 

conductance arises due to the existence of edge channels. 

The original model for the quantum spin Hall state [1] was proposed for non-interacting 

systems. However, it was later shown [10, 11] that the edge states are stable in the 

presence of weak time-reversal symmetric disorder or weak many-body interactions. This 

robustness of the edge states to interactions suggests that the topological order in the 

bulk is also robust against weak disorder [12] and interactions [13-15]. However, if the 

electron correlations bEcome strong, a broken symmetry insulating phase, such as a dimer 

phase or an antiferrom agnetic phase, may become stabilized. As a side remark we note 

that while the quantum spin Hall effect is known to arise due to spin-orbit coupling there 

has been recent work [:.6, 17] suggesting that a quantum spin Hall effect may arise due to 

many-body interactions. 

Other novel phases of matter that are of great interest are the fractionalized phases 

which arise due to elec ;ron-electron correlations. These phases are dubbed fractionalized 

phases due to the fact that the electron effectively splits up into separate parts which do 

not behave as an electron; the low energy excitations may carry only spin or charge, for 

example. The most well known example of this behavior is in the one dimensional Hub­

bard model where the low energy excitations are separate propagating spin and charge 

density waves. Anothe:~ interesting class of fractionalized phases are "spin liquids" in 2 + 1 

dimensions which are phases where the spins remain disordered due to quantum fluctua­

tions while the charge ·~xcitations are gapped [18-20]. Since the low energy excitations of 

the spin liquids are spinons which do not carry charge, these phases are fractionalized. 

Spin liquids can be classified in terms of a mean-field ansatz associated with valence 

bond order parameten: [21]. Beyond the mean-field approximation, the most important 

fluctuations are the phase fluctuations of the valence bond order parameters. Since this 

phase mode is covaria1tly coupled with spinons the low energy theory in a spin liquid 

phase becomes a gauge theory. While there are a myriad of possible gauge groups for 

spin liquid states, in this paper we will focus on the U(1) spin liquid, where the phase 

fluctuation is described by a U ( 1) gauge field. 

Though there existt: theoretical models which exhibit spin liquid ground states in 2 + 1 
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D, currently there is no clear experimental evidence of their existence in nature. However, 

there is some experimental signatures that a spin liquid may exist in two dimensional 

frustrated magnets [22, 23]. 

Since either spin-orbit couplings or electron correlations can lead to exotic phases, 

it is interesting to ask what happens if both interactions become important. In this 

thesis we will address this question by examining the possibility that a new phase of 

matter may arise due to an interplay between spin-orbit coupling and electron-electron 

interactions. One possibility is a fractional quantum spin Hall state [2]. This fractional 

state corresponds to a time-reversal symmetric version of the fractional quantum Hall 

state. Here, we will consider an alternative possibility where the quantum spin Hall 

effect arises simultaneously with fractionalization in a spin liquid state. In order to study 

these effects, throughout this work we will use the honeycomb lattice since it is known 

to support both the quantum spin Hall state [1] and it may also support a spin liquid 

state [24, 25]. 

The outline of the this thesis is as follows: In the second chapter of this thesis we will 

derive a mean-field theory for an extended Hubbard model on a honeycomb lattice at a 

specific value of Coulomb interactions. After defining an ansatz for the order parameters 

of the mean-field theory we derive a system of self-consistent equations which give the 

ground state configuration of the order parameters. In the third chapter we will discuss 

the results obtained by solving the self-consistent equations and present the mean-field 

phase diagram of the Hubbard model, which contains a new fractionalized quantum spin 

Hall phase. Finally we write down the low energy theory of the novel phase. In chapter 

four we discuss the physical manifestations of the fractionalized phase. In chapter five 

we attempt to gain some insight into the behavior of the fractionalized phase away from 

the mean-field theory. Here we discuss the stability of the fractionalized phase against 

interactions and phase fluctuations of the mean-field order parameters. In chapter six we 

examine a toy model which we argue describes the charge sector of the extended Hubbard 

model when we do not assume any special values of Coulomb interactions. 
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Chapter~~ 

A Simple Hubbard Model for 

Fractionalization of the Quantum 

Spin Hall Effect 

2.1 The Han1.iltonian 

The model that we choose to investigate the existence of a fractionalized quantum spin 

Hall effect has both spi a-orbit coupling and electron-electron interactions on a honeycomb 

lattice. We begin by considering a bilayer honeycomb lattice system on a metallic sub­

strate, Fig. 2.1. The necessity of the substrate and bilayer will be discussed in a moment. 

Each individual layer iB described by a Hubbard Hamiltonian, and the two layers interact 

via short a ranged Cm.:lomb term. The Hamiltonian takes the form 

H = - L L ( tijauClauCJau + h.c) - L f.-la ( nia - 1) 
(i,j) a,u ia 

+ u I: (nia- 1)2 + u' 2:: (nil- 1) (ni2- 1) 
i,a 

LI-la (nia- 1) (2.1) 
ia 

where nia = .L:u claucia,-, Ciau is the electron annihilation operator for site i, spin a, layer 

a= 1, 2, U is the onsit2 intralayer interaction energy, and u' is the interlayer interaction 

energy which is only nonzero for sites directly above/below each other. 
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Figure 2.1: A bilayer honeycomb lattice on a metal substrate. The in-plane bonds between 
lattice sites represent the hopping integrals, t and t', while the interlayer bonds represent 
a short range Coulomb repulsion. In addition to interlayer Coulomb repulsion we also 
include onsite Coulomb repulsion within each layer. We denote the top layer as layer '1' 
and the bottom layer as layer '2'. 

The hopping integral of the Hamiltonian above is defined by 

; if (i,j) are nearest neighbours, 
(2.2) 

; if (i,j) are next nearest neighbours. 

The next nearest neighbour hopping terms are analogous to those of Kane and Mele, 

Ref. [1 J, but differ in that we keep both the real and imaginary parts of the matrix 

element. However, keeping this real part only changes the band structure by an overall 

additive constant, not affecting the physics of the model. The spin dependent phase in 

the next nearest neighbour hopping integral is due to spin-orbit coupling. The origin of 

the phase can be understood as follows. From relativistic electromagnetism we know that 

a particle moving in a local electric field sees a magnetic field B = !c x E. If this particle 

is then allowed to have some spin we must add the Zeeman term -1a · B, where 1 is a 

physical constant whose specific form is not important here, to the one body Hamiltonian 

which may be written as 

-1a. B = -1a · (p x E)= -~p ·(Ex a) , (2.3) 

where we have absorbed the numerical factors that appear in the magnetic field into I· 

With this new term the kinetic energy operator now becomes 

(2.4) 
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With this new kinetic mergy operator the hopping integral becomes 

(2.5) 

Although this spin dependent phase may appear in principle on both nearest neigh­

bour and next nearest neighbour hopping integral terms, the nearest neighbour hopping 

terms in the honeycomb lattice do not contribute to the spin-orbit coupling that couples 

to Sz due to the lattice symmetry. The nearest neighbour hopping is taken to be isotropic, 

as in Ref. [24]. 

Now that we have discussed the origin of spin-orbit coupling on the honeycomb lattice 

Figure 2.2: To assign the spin dependent phase we choose a convention that a spin up sees 
a positive phase if it hops around the lattice in a clockwise sense and a negative phase if 
it hops in the counter-clockwise sense. A spin down will see a positive phase if it hops in 
the counter-clockwise :::ense and a negative phase if it hops in a clockwise sense. 

we may discuss the ne:;essity of the double layer and the substrate. One key feature of 

the quantum spin Hall effect is the existence of a gap in the bulk. However, in order for 

a U(1) spin liquid to be stable in 2 + 1 dimensions we need to have gapless modes. This 

is due to the fact that the pure U(1) gauge theory in 2 + 1 D is always in its confining 

phase [26]. Hence in C>rder to stabilize the fractionalized quantum spin Hall state with 

U(1) guage symmetry, we need a second layer which provides these gapless modes. 

The purpose of the substrate is to induce a system of image charges that will negate 

the effect of spin-orbit coupling on the second layer. The image charges will ensure that 

there is no tangential electric field in the plane of the second layer and thus the spin-orbit 

coupling term will no1 contribute to the hopping integral. When Sz is not conserved 

7 
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there will be an additional Rashba spin-orbit coupling term. If this term becomes strong 

enough it may destabilize the quantum spin Hall state [1]. We will proceed under the 

assumption that if such a term exists it is small. 

To describe a possible spin-charge separated phase we use the slave-rotor representa­

tion [27]. The slave-rotor representation is defined by the operator change of variables 

_ -ifhaJ 
Ciaa - e iaa, (2.6) 

where e-ifha is the chargeon annihilation operator which destroys a chargeon particle that 

carries charge but no spin, and fiaa is spinon annihilation operator which destroys a 

spinon particle that carries spin but no charge. Note, however, that we cannot just make 

this change of variables to the operators without any regard to the Hilbert space of the 

system. The representation (2.6) of the electron operators actually enlarges the Hilbert 

space of our original Hamiltonian [27]. This is because the chargeon can take values over 

an infinite set of integers, Z, rather than the physical values, 0 and ±1, where we the 

value '0' is for half filling. To project out these unphysical states we must introduce a 

constraint on the enlarged Hilbert space that will map us back to the physical Hilbert 

space. 

To write down the constraint we notice that the chargeon operator, e-ifha, is a lowering 

operator of the charge quantum number. As such we can define a number operator Lia, 

which is conjugate to eia 

(2.7) 

Since the charge on each site on a particular layer may only take on values 0 and ±1 as 

stated above, we must constrain the charge quantum number per site to be ±1 and 0 as 

well. We may do this by the constraint 

(2.8) 

We implement this constraint by a Lagrange multiplier, which must be added to the 

Hamiltonian as follows 

(2.9) 

8 
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The Hamiltonian in the slave-rotor representation is given by 

H = - L 2= (tijau!i~ufjauei(f);a-Oja) + h.c) + u L L;a + u' L LilLi2 
(i,j) a,u ia · 

Our goal now is to find the mean-field phase diagram of this model. 

2.2 Calculatilon of the Effective Action 

In order to find the phase diagram of Hamiltonian (2.10) in terms of the chargeon and 

spinon degrees of freedom we need to find an effective action which governs both of these. 

To do this we compute the partition function within the functional integral representation 

Z = J Dj*DJDODhe-s (2.11) 

where S is the Euclide'Ln action of the slave-rotor Hamiltonian after integrating out Lia· 

We will treat each sector separately in order to minimize the intermediate formulae. 

2.2.1 The Ferrrdon Sector 

We will first focus on the fermion sector of Hamiltonian (2.10). However, in the interest 

of generality we will consider an arbitrary fermionic Hamiltonian H ( '1/J t, '1/J), which is a 

quadratic function of the fermionic fields '1/J and '1/Jt. Our discussion in this section closely 

parallels that of Fradkm, Ref. [28]. We consider the partition function 

z = Tr [e-!3(H-JLN)J = L(nie-!3(H-JLN)in) (2.12) 
n 

9 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

where the states In) form a complete set of states for the problem in question. 

We can now compute the partition function 

Z = j d(ii, o:)e- I:;a;a; L(nlo:)(o:le-f3(H-JLN)In) 
n 

j d(ii, o:)e- 2::; a;a; L ( -o:le-f3(H-JLN) In) (nlo:) 
n 

where the minus sign in the second line comes from the fermionic statistics when we 

switch the order of the inner products, and the integration measure is defined as d( ii, o:) = 
f1:1 diiido:i, forM the number oflattice sites. We now proceed by descretizing the 'time' 

interval f3 = t/ N which gives 

(2.13) 

where we have added a time-slice index to the Grassman variables. Now, if we take the 

limit N ---t oo and E ---t 0 we arrive at the action for the fermionic sector as 

(2.14) 

where T is the 'imaginary time'. This action is completely general and independent of the 

specific Hamiltonian in question. The fermion sector of our model is given by the terms 

in Eq. (2.10) that contain spinous. 

2.2.2 The Boson Sector 

The above procedure could be carried over into the bosonic sector in an analogous way, the 

only difference being the appearance of the minus sign and the coherent states used, but 

we will carry out a more detailed calculation here since our final intention is to integrate 

out Lia· This will result in an action which contains only spinon and chargeon fiels. From 

hereon theLia sector of the Hamiltonian will be referred to as the 'charge sector'. 

Since the charge sector of the Hamiltonian (2.10) is diagonal in site indices calculating 

10 
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its partition function rray be reduced to calculating one site matrix elements of the form 

(2.15) 

where 1 and 2 refer to the layer index, HL = U(Li + L~) + ul L1L2- i(hl£1 + h2L2), and a 

trace over the I B) state~, which are coherent states of the operator Oia defined in appendix 

D, is understood to appear in the total partition function. Since the operators Lia and 

Oia are conjugate to each other the overlap between the two bases is 

(2.16) 

Using this we can insert a complete set of number eigenstates, IZ), on both layers to obtain 

I I [ I ] zio = L eih(Ol-£h)+ib(02-o2)-< U(lf+l~)+U ld2-i(h1h+h2l2) (2.17) 
hh 

Now our goal is to integrate out all dependence on the variables lia· We do this by 

making a change of variables from the discrete lia to a new set of 'continuous' variables 

Pa = Ela, in which case the sums in Eq. (2.17) become integrals and we have 

(2.18) 

where 

(2.19) 

which becomes the exact imaginary time derivative in the limit that E ---t 0. 

In order to perform these two integrals we change variables from p1 , p2 to new variables 

1 
P± - 2 (Pl ± P2) (2.20) 

which allow us to writt~ the above coupled integrals as two decoupled Guassian integrals 

(2.21) 

where the factor of 2 i~: the Jacobian of the change of variables. It is convenient to define 

new coupling constant;; as U+ = 2U + U1 

and U_ = 2U- U
1

• We can now evaluate the 
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integrals to arrive at 

(2.22) 

Since this is the result for a single lattice point, the full angular partition function 

may be written as a product of the single site result above, which gives us the effective 

action for the chargeons (after going to the small E limit) as 

(2.23) 

The hopping sector of the action is easily obtained in the basis we are working in. 

Since the spinon operator does not affect the chargeon Hilbert space we can view this 

portion on the partition function as a direct product between two operators, one for the 

spinon space and the other for the chargeon space, for example 0 1 0 0 0 . Thus the trace 

over the hopping sector of the Hamiltonian produces the same sum over neighbours only 

now the sum is number valued instead of operator valued. 

Having obtained the effective actions for both spinon and chargeon sectors we now 

have the full action 

S 1fi dT [t,;J.;.,Or/;= + ~+ ~(OA+ + hi+)
2 + ~- ~(OA- + h;-)

2 

.~ (tijacrfi:crhacrei(O;a-Oja) + h.c) + L)ihia- !1a) (2.: Ji:crfiacr- 1)] 
<t,J>,a,(J" z,a a 

(2.24) 

Due to the U(1) phase redundancy this action is invariant under the local U(1) gauge 

transformation 

f iw;J iacr -----+ e iacr 

(2.25) 

12 
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2.3 The Special Case: u' ~ 2U 

The effective action above is formally similar to that obtained in Ref. [24], the major 

difference being the doubled degrees of freedom due to the second layer. The appearance 

of the second boson field makes the problem more difficult. However, we can simplify the 

problem by considering a special case of the action (2.24) if we view it as two copies of a 

gauged anisotropic XY -model on a 3 = 2 + 1 dimensional lattice. 1 The coupling in the 

temporal direction for each boson flavour is given by 1/Uo, a = ±, while the coupling 

in the 2 dimensional spacial lattice is given by the hopping parameters tij (it f). If u' is 

small the temporal phEse stiffness of the (}i_ field becomes very large. 2 This implies that 

the bosons will have a large, but finite, correlation length in the temporal direction, say 

~T· 

Let us, for the moment, ignore the temporal component of the gauge field, hia· Since 

the (} fields are correlated over a distance ~7 we may perform a coarse graining of the (}i­

fields into block phase degrees of freedom in the temporal direction. These block 'spins' 

then couple to each otter with a strength proportional to the correlation length, ~n times 

the spacial coupling tij (it f), since each spin within the block couples to a neighbouring 

spin in another block with strength tij (it f). Thus as we tune u' closer to 2U the block 

(}i- 's couple more and more strongly and thus they begin to become correlated over large 

distances in the spacid lattice as well. Since this effective block model for the bosons 

is 3 dimensional the continuous symmetry of the XY-model may be broken [29] and we 

can have a phase transltion to a long range ordered phase, which in this case corresponds 

to the Bose condensed phase of the (}i_ field. When this is the case we may set (}i- = 0 

which is equivalent to Hetting (}i1 = (}i2 so our model reduces to a one boson model, which 

we may treat as in Ref. [24]. 

When we include the gauge field the condensation of the (}i- boson gives a mass to 

the gauge field due to the Higgs mechanism. In the low energy theory the hi- field may 

be integrated out to obtain an effective action for the remaining degrees of freedom. 

1This viewpoint is justified in a later section where we decouple the spin and charge sectors through 
a Hubbard-Stratonovich transformation. 

2Recall that the definitons above give U_ = 0 for u' = 2U. 
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The low energy action for the special case is 

S l dT [~ /;',.,iU= + ~+ ~(&,0, + h<+)' 

- 2:.: (tijaafi:ahaaei(O;-Oj) + h.c) + L(ihia- !-La) (Lfi:afiaa -1)] 
<'t,J> z,a u 

a,u 

(2.26) 

Following Ref. [24] we introduce a soft boson field Xi - e-iO; subject to the constraint 

IXil = 1.3 Rewriting the action we have 

s fop dT [~ J,:AJ'"" + rL ~f(i&, + hi+)x;][( -iii,+ h,+)x,J 

- L (tijaafi:ahaaXiXj + h.c) + i L -\ (1Xil 2
- 1) 

<i,j> 
a,u 

(2.27) 

where we have added another Lagrange multiplier A.i to enforce the soft boson constraint. 

2.3.1 Hubbard-Stratonovich Transformation 

The above action, Eq. (2.27), is quartic in hopping terms so we will perform a Hubbard­

Stratonovich transformation, which will allow us to introduce mean-field order parameters. 

To do this we follow the method set forward in Ref. [24] and use the identity 

ew/3 = .; J dryRd'T]Ie-e[rJR- "'!!3]2 -e[w-i"';-i3t +w/3 

.; J d7]Rd7]Ie-e[l771 2 -a(ryR+iryi)-!3(r7R-i77I)] 

.; J dryRd'T]Ie -e[l7712-ary-/3ry*] 

-~ ~ J drydry*e -e[l7712-ary-/3ry*] 
2z 1r 

(2.28) 

3The utility of this new field will become apparent when we compute the free energy of the boson 
sector. 
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where the factor of -1;2i comes from the change of integration variables 

( dr/R + idm) 1\ ( drJR - idm) 

-idrJR 1\ drJI + idrJI 1\ drJR = -2idrJR 1\ drJI . (2.29) 

We may now use this identity to transform the quartic hopping terms into quadratic form. 

The hopping Hamil toni an can be written as, neglecting the sums over layers and sites, 

L Hij = -t L(aij,Bij + CYji,Bji)- t' L(&ik,Bik + &ki,Bki) (2.30) 
(i,j) (i,j) (i,k) 

where CYij := L.a,afi:a.fjao- 1 aik := L.aeitf>;kaftlafkla, ,Bij- XjXi, and (i,j) are nearest 

neighbour pairs while ( i, k) are next nearest neighbour pairs. Let us for the moment 

concentrate on the nearest neighbour hopping Hamiltonian. If we take only the nearest 

neighbour term for a specific time step, s, we have 

(2.31) 

For each time step we may then use the identity (2.28) twice to write 

e-E:Hn.n. ect[aij ,6;j+Ctji,6j;J 

( - ~ ~) 
2 J drJiJ·drJ~·drJJ·idrJ*· 2l 1f ~J J~ 

X e -e[l% I2 +117Ji 12 -aiJ% -aJirJJi -,6;JrJi1 -,BJ;rJj;] (2.32) 

where we have suppre~:sed the T dependence of the fields, in the second line we have set 

E = st, and introduced two sets of auxiliary fields to account for the Hermitian conjugate 

terms. To make the rJ variable manifestly complex, we let rJ take the form 

I I ic· · 
'r/ij = 'r/ij e '1 I I ic ·· 'r/ji = 'r/ji e ]' . (2.33) 

The new integration measure can be computed by taking the exterior derivatives of (2.33) 

and evaluating their wedge products which gives 

(2.34) 
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The new measure for 'TJji can be obtained in the same fashion. With these changes the 

hopping integral becomes 

ect[a;j,Bij+O<ji,Bji] = ( ;-r j dlrJij ldcijdiTJji ldcji ITJij IITJji I 

e -E[I77ii l2 +177ii 12 -nij l77ii ieic;i -aii lrJii ieicii -,B;j lrJii le -ic;i -,Bji lrJii le -icii] 

We now make another change of variables to new fields4 

which changes the measure to 

Implementing this newest set of changes we have 

eE[a;j,Bij+aji.Bji] = 4 ( E )2 j dl ld da da+lx 13 ;: Xij Wij ij ij ij 

xexp { -E [21Xijl 2cosh(2wij) -IXijleiat (ew;i+ia;iaij 

+ e-w;i-ia;iaji) 

-1Xijle-ia0 (ew;ria;i{Jij + e-w;i+ia;i{Jji) J} . 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Up to this point we have only treated the nearest neighbour hopping terms. However, 

we get the next nearest neighbour terms for free since we know the calculation will proceed 

in exactly the same manner, hence we will forgo an explicit calculation. 

4This change of variables makes the definition of the mean-field order parameters to come more 
intuitive. 
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The full action for 1 he hopping integral becomes 

dr { ~= t [21Xijl2cosh(2wij) -IXiJleiat (ew;J+ia;Jaij + e-w;J-ia;Jaji) 
<'l,J> 

a,a 

-IXiJle-iat (ew;ria;Jf3ij +e-w;J+ia;Jj3ji)] + L t' [21XiJ12cosh(2wij) 
<<i,j>> 

a,a 

-IXiJleat (eWiJ+ia;JaiJ + e-w;J-ia;J&Ji) 

-IXiJ lt=,-iat ( ew;riii;J f3iJ + e-w;J+ia;J f3Ji) J} ' (2.39) 

where the quantities with tildes represent the next nearest neighbour fields. The partition 

function will now invol're an integral over all auxiliary fields, one for each nearest and next 

nearest neighbours, with integration measures given by Eq. (2.37). 

2.3.2 Saddle Point Approximation and Mean-Field Order Pa­

rameters 

Since we will focus on each sector individually we split the action up into three sectors 

sx 1 dr [2: ~+ (i8r +hi+) Xi* ( -i8r +hi+) xi+ i L /\1Xil
2 

t t 

- Y' tlx· ·le-iat (ew;J-ia;J X~ X· + e-w;J+ia;J X* X·) 
L--t tJ J t t J 

<<,j> 

- :Z::: t'lxiJle-iat (eW;j-ia;jx;xi+e-Wij+ia;jx;xJ)l ' 
<<t,J>> 

(2.40) 

s1 1 dr [~t:.. (8, + ih;. -p.) f·= 

- """ tlx· ·leiat (ew;J+ia;Jf.* f· + e-w;J-ia;Jf~ f· ) 
~ '] WO" ]UO" JUO" WO" 
<i,j> 

a,a 

""" t' lx-. ·leiat (ew;1+ia;1 ei</>;1af.* f· + e-w;1-ia;1 e-i</>;1af* f· )] 
~ tJ tla J la J la tla 

<<i,j>>,~ 

(2.41) 
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and 

S
0 

= j dr [2 2.: tlxijl
2
cosh(2wij) + 2 2.: t'lxijl

2
cosh(2wij) + L (J-La- i>..i- ihia)] 

<z,J> <<z,J>> w 

(2.42) 

With the effective actions for each sector written in this form it is clear that there is 

a U(1) gauge symmetry. The actionS= sx +Sf+ S0 is invariant under the U(1) gauge 

transformations 

fiaa ---+ l e-iw; wa hia ---+ hia + aTwi (2.43) 

xi ---+ Xie-iw; aij ---+ aij- (wi- wj) (2.44) 

iiij ---+ iiij- (wi- Wj) (2.45) 

Here hi is the temporal component, and aij and iiij are the spatial components of the 

compact U(1) . Thus the bosons and fermions are coupled to each other through the 

U(1) gauge field. 

The above action has a bit of a problem, since it is not real. In order to make this 

action real we must make the analytical continuations 

Wij iwij a~ ·-+ 
ZJ = zaij 

>..i i~i hi ={iii (2.46) 

where we have used Eq. (2.27) to state the continuations of the two Lagrange multipliers 

in the last line above. We will now ignore the fluctuations of these fields and let them 

take on their saddle point values, denoted above with an overbar on each field. 

Upon carrying out the analytic continuation we have the boson sector written as 

J dr [-
1 

L[(i87 + ihi+)Xt][( -i8T + ihi+)Xi] - L ~i1Xil 2 
u+ i i 

- L t (x&*x;xi + h.c.)- L t' (x&*x;xi + h.c.)] 
<i,j> <<i,j>> 

(2.47) 

where we have now defined the mean-field 'valence bond' order parameters x& = IXij ieat-i(w;ra;j), 

and equivalently for the x quantity. 
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We have the fermio1. sector as 

s1 J dr [~1,:., (a,- h,. -I'.) J,~- ~ t (xJJ,:..h= + h.c.) 

<<i,j>> 
(T 

a,CT 

t' (x~ei</>;ja Ji;alila + h.c.)] 

where X~ -\Xii\e-a;'j+(w;J+liiJ), and equivalently for the X quantity. 

For the Lagrange multiplier sector we have 

(2.48) 

0 _ 1 ["""' ( j * X ) """' 
1 

(-f*- X ) """' ( - - ) l S - dT L:t t Xij Xij + h.c. + L:t t Xij Xij + h.c. + L.....t 1-La + Ai + hia 
<t,J> <<t,J>> ta 

(2.49) 

2.4 The Ansatz 

In this section we will describe the mean-field ansatze. We know that in the small U 

limit the two layers an decoupled with the first layer in the conventional quantum spin 

Hall phase and the second layer in the semi-metallic phase with two Fermi points where 

the quasiparticles have equal probability to move in any direction. This suggests that we 

should invoke a uniform ansatz for the valence bond order parameters, which represent 

hopping probabilities. In the large U limit the valence bonds fields are likely to be in a 

broken symmetry insu ating phase and there is no conductivity. On a honeycomb lattice 

the simplest is the dimer ansatz. In both the uniform and dimer phases the electron 

density is uniform so we set the chemical potential on each layer to be site independant. 

We also take the Lagrange multipliers to be independent of site in both phases. 

In order to justify our choice of a dimer ansatz in the large U limit it is helpful to use 

degenerate perturbatic'n theory in t/U to obtain an effective Hamiltonian. In this section 

we will always assume that U' = 2U. 

In the extremely large U case, where the hopping integrals may be neglected, the 

lowest energy states of the system are given by all states such that L:a nia = 2. 5 For a 

lattice with N sites this implies that there are 6N degenerate low energy states. We may 

then apply perturbation theory to obtain an effective Hamiltonian that acts within this 

5We see this result easily if we rewrite the original Hamiltonian, Eq. (2.1), as a complete square. The 
Coulomb terms will take the form U L:i (l::a nia - 2) 2 
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degenerate manifold of states. 

First we briefly review degenerate perturbation theory. Let {/l)} be a set of degenerate 

states of the Hamiltonian H = H0 + V with energy E, namely 

H/l) = E/l). (2.50) 

Let us assume that the perturbation V lifts all degeneracies so that we may split up 

the states /l) into its projections in and out of the degenerate space, namely we write 

/l) = Po/l) + P1 /l). Here Pis the projector onto the degenerate subspace and P1 = 1- P0 

is the projector out of the degenerate subspace. If we make this substitution into the 

Schrodinger equation (2.50) we may arrive at the effective Schrodinger equation in the 

low energy degenerate subspace 

(2.51) 

where co is given by H0 (P0 /l)) = c0 (P0 /l) ). The perturbation theory then comes in by 

choosing a small dimensionless parameter in which to use the matrix expansion 

(2.52) 

For our particular case we will choose the perturbation operator to be the hopping 

term 7ij = -tijaac!aacjaa and the Coulomb term will be the unperturbed Hamiltonian. We 

then carry out the expansion for small hopping in terms of the dimensionless parameter 

tjU. Thus to first order in perturbation theory, for a two site problem, we arrive at the 

effective Hamiltonian 
1 

Heff( ij) = UiijTji· (2.53) 

The total lattice Hamiltonian is then given by Heff = L(i,j) Heff(ij). With this general 

formula we can now simply write down the large U effective Hamiltonian of Eq. (2.1) 

a,a 

(2.54) 
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The first term in (2.54) may be written in a U(4) symmetric way be introducing 

the generators [Qi]a,a = claci,B• where the indices a and (3 run over the four possible 

combinations of the layer (a) and spin (a-) index. While the second term may be written 

in a U(2) symmetric way be introducing the generators ['lila-a' = cl1acila'· The effective 

Hamiltonian can then be written, up to constant terms, in a more obviously symmetric 

way as 

2 t2 

Heff = ~ L (Tr [QiQj] + h.c) + tU L (Tr [e-i<f>;Ja
3
'Jiei</>;Ja

3
1j J + h.c). 

<i,j> <<i,j>> 

(2.55) 

The nearest neighbour term has a U(4) = U(1) 0 SU(4) symmetry, where the U(1) 

symmetry represents total conservation of charge and the SU ( 4) symmetry represents the 

conservation of flavour quantum number.6 The next nearest neighbour term breaks this 

U(4) symmetry into SU(2)0U(1)0U(1)0U(1). Here the unbroken SU(2) represents spin 

rotation symmetry in be second layer and the three factors of U(1) represent conservation 

of charge on each layer and Sz in the first layer. 

The form of this eFective Hamiltonian gives us some insight as to the proper ground 

state that we should ,~hoose. If t' = 0 the effective Hamiltonian describes an SU ( 4) 

antiferromagnet, hence the nearest neighbour bonds will tend to form SU(4) singlets 

which suggests that a valence bond solid is a good candidate for the ground state [30]. 

Of possible valence bend states on the honeycomb lattice the dimer phase is the most 

natural. When t' -=/= 0 the dimer phase could potentially change into some other valence 

bond solid, but the dimer phase will remain stable for a finite range oft' < t. 

In the figure below we illustrate the dimer ansatz. The uniform ansatz is obtained by 

letting the two distinct nearest neighbour couplings become equal and the two distinct 

next nearest neighbour couplings become equal. 

Since our goal is to obtain a mean-field phase diagram for our model we must compute 

the free energy. To do this recall that the partition function is defined as 

-1 
Z = e-,BTF ---+ F = f3r ln Z . (2.56) 

Ignoring fluctuations c f the order parameters the partition function is represented as 

(2.57) 

6Here the term 'flavour' refers to the combination of layer and spin indices. 
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Figure 2.3: The dimer ansatz on the honeycomb lattice. The line segments represent the 

following: A : X~BJA --+ x{, B : x{J+a2)BJA --+ xt, C x{J+al+a2)aJa --+ x/, while D 

represents the other next nearest neighbour bonds, x; f. The superscript f here indicates 
that these are the fermion order parameters. The valence bonds will have the same form 
for the bosons but they will contain the superscript 'X'. The line segment E is the unit 
cell of the honeycomb lattice. 

where S = 5°+ Sf+ sx. Thus we may calculate the mean-field free energy of each sector 

by evaluating the path integrals in 

F = ~: ln [/ DfDf*DXDX*e-s] (2.58) 

Since .our effective action is broken up into the three sectors, Eqs. (2.47), (2.48), and 

(2.49), our free energy may also be computed sector by sector. For the Lagrange multiplier 

sector this turns out to be very simple, since it does not have any boson or fermion field 

dependence so we don't have to worry about any integrals. Thus at the saddle point we 

have 

F 0 ;r jf3T dr { ~ t [x~ * x~ +h. c.] + 2:: t' [x~*x~ +h. c.] 
f-'' 0 <t,J> <<t,J>> 

+ L (p,a + ~i + hia) } 
za 

{ ~ t [x~*x~ + h.c.] + ~ t' [x~*x~ + h.c.] + L (p,a + ~i + hia)} 
<t,J> <<t,J>> za 

(2.59) 
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where we ignore fluctuations of the order parameters. 

To calculate the bo3onic free energy we transform to momentum space, in which the 

action becomes diagonal. Since the honeycomb lattice has two sites per unit cell the 

energy spectrum should have two bands (eight for fermions due to the spin and layer 

indices). To account for multiple bands we write the fields as 

X· =X = 1 "'"'e-iwr+ik-1 X (k w) 
z Is v'N1JT ~ s , ' 

k,w 

(2.60) 

where the vector I represents the unit cell position vector, and s is the site within the 

unit cell. Fourier transforming the boson sector we have 

sx { u:N L L:l-w + ihls+]
2
ei(k-k')·l x;(k'' w)Xs(k, w) 

I,s k,k' 
w 

1 ,, "'"'- i(k-k
1

)-I *( I "'"' X 2} -Nf;(:;Aise Xs k,w)Xs(k,w)+ ~e8 (k)IXs(k,w)l .(2.61) 

Here e; (k) = -t'rt + st~ is the energy spectrum of the bosons with 

(2.62) 

and 

(2.63) 

In the following we will focus on the uniform ansatz in which case the two Lagrange 

multipliers do not have any site or unit cell dependence. The we can bring them outside 

of the sums, in which case we would pick up a delta function in momentum which would 

make the momentum npace action diagonal. Once we make this choice we can write the 

above action in a completely diagonal form as 

(2.64) 
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Thus the boson sector free energy is obtained by evaluating 

(2.65) 

The integral is now quadratic and we can perform the bosonic path integral easily; see 

for example pages 157-194 of Ref. [31]. The result is 

X 1 "'"' [ 1 .- 2 - X ] F =-(3 Lln -[-w+~h+] -A+e8 (k) 
T k,w U+ 

(2.66) 

Since we are interested in T = 0 behavior we replace the Matsubara summation with 

an integral, 

1 L Jdw 
f3r ---+ 27r 

w 

which gives 

We can perform this integral by using the integral identity 

J dw {ln(w2 +a) -ln(w2 +b)} = Va- Vb · 
271" 

If we choose a= U+( -5. + e-"; (k)) and b = 1 Eq. (2.68) becomes 

Ex= L Ju+(eJj(k)- 5.), 
k,s 

(2.67) 

(2.68) 

(2.69) 

(2. 70) 

where we have thrown away constant terms since they only change the free energy by an 

additive constant. 

We are now left with the task of computing the fermion free energy. We have a simple 

intuitive result for the free energy in terms of the Fermi surface. At T = 0 the ground 

state of the fermion sector will be a configuration with all momentum states occupied up 

to the chemical potential. As such we may simply write down the ground state energy of 

the fermion sector 

k,<T 
s,a 
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where 

(2. 72) 

with 

xf + X~ [ e -ik-a2 + eik-a1 J 

2xx~ cc,s(k · [a1 + a2]- u¢) + 2xx~[cos(k · a2 + u¢) + cos(k · a 1 + u¢)] 

2xx~ cc,s(k · [a1 + a2] + u¢) + 2xx~[cos(k · a2 - u¢) + cos(k · a 1 - u¢)]. 

(2.73) 

With the above res1lts we can now write the ground state energy density as 

(2.74) 

where n is the numbei of sites per unit cell, 2 for the honeycomb lattice, and N is the 

total number of unit cdls. 

Now that we have the ground state energy we may find the zero temperature phase 

diagram by minimizing the energy with respect to all mean-field order parameters and 

Lagrange multipliers at each value of the microscopic parameters t, t', and U. 

2.5 Self-consistent Equations 

In the above analysis vre have introduced mean-field order parameters that take the form 

of valence bonds on the honeycomb lattice. Our saddle point approximation was then 

achieved by letting thEse fields, along with the various chemical potentials, take on their 

saddle point values. In order to determine these values we solve a set of self-consistent 

equations which are obtained by minimizing the free energy density, Eq. (2.74). 

25 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

The free energy density is given by 

e _1 (Eo+ Ef +Ex) 
2N 

t [x{x? + 2xtx~] + t' [2x(x( + 4x{x{] +[ttl+ tt2 +.X+ li] 

+ 2~ [ F: ( ct,.(k) - !'!) 8 (1';- e{,.(k)) +f.: Ju+( e;" (k) - X)] . (2. 75) 

If we vary this equation with respect to the field h we arrive at the conclusion that 

h = 0. Since we are interested in the zero temperature behavior we will compute the 

chemical potentials for the fermions, tt1 and tt2 so that the fermions are at half filling in 

each layer. The field .X is determined by the equation 

(2. 76) 

By minimizing (2.75) with respect to each order parameter we find the self-consistent 

equations for the valence bond order parameters to be 

(2. 77) 

8e - - f 1 ""8 ( f f (k)) 8e!sa(k) 
8 X - 0 - o:txa + 2N ~ lla - easa 8 X 

Xa k,s Xa 
(2.78) 

a,a 

(2. 79) 

(2.80) 

a,a 

where the index a= 1, 2 indicates the order parameters we have defined in Fig. 2.3. 

26 



Chapter~; 

Results ar1d Low Energy Behavior 
I -

for U == 2lJ 

Now that we have the self-consistent equations (2. 76) through (2.80) we may solve them 

for given values oft, t', and U+. We solve these equations for all parameters using New­

tons method algorithrr. supplied by the Numerical Recipes in C handbook [32]. 

We solve the self-ccnsistent equations for given t, t', and U+ within both ansatze. The 

ground state of the sy1;tem for given coupling constants is then be chosen by identifying 

the ansatz with the lowest free energy. Choosing the ground state configuration this way 

allows us to plot the phase diagram of the system quite easily. 

3.1 Results 

After solving the self- ~onsistent equations we obtain a phase diagram, Fig. 3.2, in the 

space oft' jt and U jt. We see that there are three distinct regions. We will now describe 

each of these regions and identify the low energy excitations. 

In the small U jt n~gion the system approaches a noninteracting model with no cou­

pling between the layErs. In this region the valence bond order parameters for both the 

chargeons and spinom: are in their uniform phase and nonzero as is shown in Fig. 3.1. 

The Bose condensation amplitude, Z, of the chargeons is nonzero implying that the U(l) 

gauge field is screenec so the low energy excitations of this region are electrons. Here 

the first layer forms a conventional quantum spin Hall phase with gapless edge modes 

and a gapped bulk, while the second layer is in a semi-metallic phase with gapless Dirac 
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Figure 3.1: Ground state order parameter configurations fort' jt = 0.5 on a 40x40 lattice. 
The first order phase transition between the dimer and uniform configurations can clearly 
be seen. The inset shows the results of finite size scaling applied to the second order Bose 
condensation line using lattice sizes in the range of L = 6 to L = 50 and t' jt = 0.2. As we 
increase the lattice size we see the second order line getting pushed farther back from the 
first order line. The bold line in the inset is the Bose condensation amplitude in the limit 
that L-+ oo. The first order line is insensitive to the finite size scaling which shows that 
the window gets larger in the thermodynamic limit and suggest that the fractionalized 
phase is stable. 

fermions. 

When U > > t, t' the Coulomb interactions are the dominant term in the Hamiltonian 

and the low energy states are all possible configurations which satisfy L.::a nia = 2. We 

find that the valence bond order parameters for both the chargeons and spinons are in the 

dimer phase with the dimerized order parameters nonzero while all other valence bond 

order parameters are zero and Z = 0, as shown in Fig. 3.1. Hence both the spinons and 

chargeons are gapped out. Both layers of the lattice form a symmetry broken insulating 

phase. Since we have no gapless modes this region has no low energy excitations. 

The intermediate region we can see a window has opened up in Fig. 3.1 between the 

two conventional phases. In this window the valence bond parameters for both chargeons 

and spinons are in their uniform phase but the chargeons are not condensed. Since the 

chargeons are not condensed this phase is an insulating phase. In the first layer the 

spinons are gapped in the bulk due to the spin dependent next nearest neighbour hopping 

term which arises due to spin-orbit coupling. Ignoring fluctuations of the order param­

eters we find that the spinon spectrum is essentially the same as the electron spectrum 
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in the Kane and Mele model [1]. The nontrivial topological structure of this spectrum 

guarantees that there are gapless edge modes in the first layer. Thus the first layer forms 

the fractionalized quantum spin Hall effect where the edge modes are carried by spinons 

alone. In the second layer the spinons form an algebraic spin liquid [21] whose low energy 

excitations are 4 two-component Dirac fermions. It is important to note here that the 

gapless U(1) gauge field survives because the chargeons do not condense and screen it 

out. 

Upon finite size scaling we find that the second order line recedes from the first order 

line until it reaches its thermodynamic limit. In the inset of Fig. 3.1 we show the results 

of finite size scaling of the Bose condensation line for t' jt = 0.5. The finite size scaling is 

done by fitting the Bote condensation to a power series in inverse lattice size 

(3.1) 

For each value of U jt and t' jt we obtain the coefficients {an} through a least squares fit 

and take the limit (L -+ oo). The Bose condensation amplitude in the thermodynamic 

limit is given by the a0 coefficient. As we crank up the system size the kink in the second 

order line becomes more pronounced like a true second order phase transition. The first 

order line is found to be insensitive to finite size scaling. 

3.2 Low Energy Theory of the Fractionalized Phase 

The low energy behavor of the fractionalized phase, intermediate window of Fig. 3.2, is 

determined by the band structure of the spinons and the symmetry of the microscopic 

model. As discussed a Jove this phase is characterized by a gapless 2 + 1 D spin on in the 

second layer and a gapless 1 + 1 D spinon that lives on the edge of the first layer. These 

two spinons are also coupled to the U(1) gauge field which describes the phase fluctuations 

of the hopping order parameters. With these three ingredients the low energy theory of 
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Figure 3.2: Phase diagram in the space oft' jt and Ujt in a 40x40 lattice with U_ = 0. The 
weakly interacting phase (small U) has Z =f. 0 and the first layer forms the conventional 
quantum spin Hall (QSH) phase while the second layer is in the semi-metal (SM) phase 
with gapless Dirac nodes. The intermediate region has the fractionalized quantum spin 
Hall (FQSH) phase with Z = 0 where chargeless spinons form the QSH phase in the 
first layer and the gapless spin liquid (SL) phase in the second layer. In both QSH/SM 
and FQSH/SL phases, the nearest neighbour and next-nearest neighbour hopping order 
parameters are nonzero and site-independent. The large U region is a dimerized phase 
where the hopping order parameters along the bold lines have the maximum amplitude 
and all other bonds have zero amplitude. The solid line represents the second order 
transition and the dotted line, the first order transition. 

the fractionalized phase is 

SFQSH = J d2xdT L ifna(ir~' D/')1/Jna + J dxdT fj(i{a Da)'r! 
n,a 

1 J 2 j J~'v + gZ d XdT J'V , (3.2) 

where 1/Jna is a 2 + 1 D massless Dirac fermion in the second layer, rJ labels the spin, 

n = 1, 2 labels the nodal points of the lattice. D" = 8"- ia" is the covariant derivative, 

a" is the internal gauge field, and f"v is the field strength tensor. 'r/ is the 1 + 1 D massless 

Dirac fermion on the edge of the first layer, and a = 0, 1. We have defined 1" and Ia to 

be the 2 + 1 D and 1 + 1 D Dirac matrices, respectively. The constant g is the coupling 

constant of the U(1) gauge field. We will refer back to this low energy theory when we 
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discuss the stability of the fractionalized phase. 
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Chapter~~ 

Physical 1?roperties of the 

Fractionalized Quantum Spin Hall 

Effect 

Since the fractional quantum spin Hall state we have studied has gapless edge modes that 

do not carry charge the transport properties will be very different from the conventional 

quantum spin Hall sta;e. 

Since the spinons cLrry entropy there will be metallic longitudinal thermal conductivity 

at the edges of the sample. However, since the low energy theory does not contain 

any charge degrees of freedom there will be a notable absence of longitudinal charge 

conductivity along the edges of the sample. The absence of this electromagnetic response 

of the edges is a signature of spin-charge separation in the system and may be used as a 

probe to identify the f~actionalized phase. 

The absence of eledromagnetic response also gives rise to the most stark difference 

between the fractionalized state and the conventional quantum spin Hall state. In the 

conventional state with conservation of Sz there can be an induced spin transport between 

the edges of the system. Due to Laughlin's argument [33], if we put the conventional 

system on a cylinder w that it has two edges and thread a unit magnetic flux quantum 

through the halo of th€~ cylinder a spin down will be transferred from one edge to the other 

while a up spin in trarLsferred in the opposite direction, Fig. 4.1(a). Since these electrons 

are transferred in diffuent directions time-reversal symmetry is preserved. 1 This results 

1This transfer of spin between the edges and the use of Laughlin's argument requires the conservation 
of Sz. When Sz is conserved the edge states are analogous to two copies of quantum Hall edge states 
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in an overall spin transfer of S = 1 between the edges. However , due to spin-charge 

separation in the fractionalized case this effect will be absent since the spinons will not 

couple to the magnetic field , Fig. 4.1 (b) . The absence of induced spin transport between 

the edges could serve as a smoking gun in identifying the fr actionalized phase. Since the 

edge states of the fractionalized quantum spin Hall effect are insensitive to electromagnetic 

fluctuations one may be able to come up with applications where they may be used. 

a) 

· - ··~ <P 

Figure 4.1: Physical properties of the edge states of both the conventional quantum 
spin Hall effect, Fig.(a), and the fractionalized quantum spin Hall effect, Fig.(b) . Upon 
threading of quantized magnetic flux through the conventional system spin S = 1 is 
transferred between the edges, while in the fractionalized case this does not happen due 
to the gapped chargeon. 

which do not mix. Since they do not mix we can apply Laughlin 's argument without any ambiguities. 
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Stability 4Jf the Edge States 

In this chapter we will examine the stability of the fractionalized quantum spin Hall state 

in the presence of many-body interactions. 

The stability of the edge states in the conventional quantum spin Hall states has 

been well studied [10, 11]. Without the inclusion of interactions the edge states of the 

quantum spin Hall state are stable due to the presence of a Z2 topological invariant [3]. 

This invariant separates systems with even and odd numbers of Kramers pairs into two 

distinct classes. Whe:1 the edge states contain an even number of Kramers pairs the 

system is adiabatically connected to a conventional insulator while a system with an odd 

number of Kramers p~:,irs cannot be smoothly deformed into a conventional insulator so 

it belongs to a differert universality class. This nontrivial topological order is protected 

by the time-reversal S) mmetry of the band structure. 

When interactions are added, forward and umklapp scatterings are important in the 

formation of a gap in the edge states. These two terms are given by 

(5.1) 

and 

Hum= 9u .I dxe-4ikJx¢~1 (x)¢~1 (x + a)1/1L!(x + a)¢Lt(x) + h.c., (5.2) 

respectively. Here ¢Ra(¢La) indicates the edge modes moving in the right(left) direction 

with spin a =i, l, while kf is the Fermi wave vector. The forward scattering term does 

not open up a gap by itself since it does not mix left and right movers. Since forward 

scattering only scatters right(left) movers into right(left) movers it can only renormalize 

the velocity with which the left and right movers travel [10]. However, if one considers 
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both forward and umklapp scattering at the same time it can be shown that a gap can 

open up for the edge states if the strength of the forward scattering term is strong enough 

since the scaling dimension of the umklapp term is a function of the strength of forward 

scattering [10], g. However, so long as g remains small the umklapp term will remain 

irrelevant and the gap will vanish in the low energy limit. 

In the fractionalized model the situation is a little less clear due to the presence of a 

gapless spinon in the second layer. Since we allow the first and second layers to interact 

with via a short range Coulomb term long range correlations of the edge modes in the 

first layer may occur which can open up a gap in these modes. 

Consider a semi-finite strip with an edge along the x1 direction. Given the low energy 

theory, Eq. (3.2), and ignoring gauge fluctuations, we ask what will happen if we add 

interactions. Since we ignore tunneling between the two layers, the lowest order interlayer 

interaction that couples the two layers is a two body term of the form 

(5.3) 

Since the edge states in the first layer can only interact locally with the bulk states in 

the second layer the integration measure only has one spatial and one temporal component. 

Under a scale transformation (x, T) ---+ b(x', /) the fields transform as 1/J ---+ b-11/J' and 

'fJ ---+ b-112 rJ'. If we neglect gauge fluctuations and forward scattering of the edge modes the 

interaction term scales as V' = b-1 V. Thus interactions of the form (5.3) are irrelevant 

at low energies and the edge modes should be stable. 

However, if we were to include forward scattering terms for the edge modes of the 

form 

u J dxdT fjflrJ'fJ , (5.4) 

and gauge fluctuations the edge modes in the first layer will be described by a Luttinger 

liquid with a nontrivial Luttinger parameter K -=/= 1 [10], while the spinons in the second 

layer are described by an algebraic spin liquid. As a result the scaling dimension of V will 

be modified due to loop corrections and become on the order of [V] = -1 + 0(1/N) + 
O(K -1); Here N is the number of matter fields. Since N = 4 in our model the interlayer 

coupling may remain irrelevant and the edge modes will be stable so long as the forward 

scattering is sufficiently weak. 

Apart from the interlayer interaction, one has also has to worry about the affect of 
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gauge fluctuations on the stability of the edge modes. In the presence of fluctuating 

massless U(1) gauge flelds the stability of the non-trivial topological order associated 

with the spinon bands is uncertain. If these fluctuations were to destroy this topological 

order the edge modes would acquire a gap. To determine the fate of the edge modes one 

can integrate out the bulk spinons in the low energy theory Eqn. 3.2 to obtain a 1 + 1 

D effective action for the edge states coupled to the U(1) gauge field. If we do this we 

would obtain a 1 + 1 D quantum electrodynamics (QED) with a non-local action for the 

gauge field; the specifi,~ form of the non-local action is not important. In 1 + 1 D QED 

quantum fluctuations c,f the gapless fermions open up a gap for the gauge field [34]. Since 

the gauge field will ha're a gap its fluctuations will be suppressed at the edge; hence the 

edge modes will not bf~ greatly affected by fluctuations of the gauge field. 
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Chapter() 

Away fro1n U 
I 

2U 

Previously we assumed a special value for the interlayer interaction energy, U' = 2U. 

As we have previously stated, when we choose this value our problem is reduced to one 

boson. This reduction to a one boson problem allows us to carry out the above analysis 

that led to the free energy without any technical problems. 

From the discussion in section 2.3 we know, through the Higgs mechanism, that in a 

finite region around U' = 2U the one boson model remains valid. However, we cannot 

say anything concretely when we are far away from U' = 2U. Since the phase diagram 

we have computed, Fig. 3.2, has a fractionalized phase one might expect that away from 

the special value another interesting phase might emerge. Studying this possibility is our 

chief concern in this chapter. 

In addition to being idealized, choosing this value is also somewhat unphysical since 

it assumes that the electrons couple with more strength between the layers than they do 

within the layers. To gain more insight into an actual physical system we need to study 

our model away from the special value of u'. 
Since the full theory which includes both bosons and fermions is difficult to analyze 

we will consider a toy model which has only bosonic degrees of freedom. 

6.1 Z2 Gaug~e Theory of the Boson Sector 

We will simplify this problem by ignoring the fermions and the U(l) gauge field, which 

reduces our previous Hamiltonian to a toy model for the bosons which is two copies of 

the Bose-Hubbard mo:lel, one for each layer, with interactions coupling the two species 
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of bosons. The Hamiltonian is 

H = u L n~a + u' L ni1ni2- L t [ei(Oia-Oja) + h.c.J' (6.1) 
i,a (i,j),a 

where U and U' are the intralayer and interlayer Coulomb terms. We take the hopping 

integral to be uniform on both layers. Note also that we have shifted the number operators 

from (nia - 1)2 to simply nra· For the moment we will forgo any discussion on lattice 

structure. 

When U, U' > t, the interaction energy becomes more important than the kinetic 

energy. Here we will make a change of basis to one in which the interaction terms become 

diagonal. We introduce symmetric and anti-symmetric variables, ni± = ni1 ± ni2 and 

et = 1/2 (Oil± Oi2 ). Note that the new operators are canonically conjugate to each other, 

[ni±, etJ = i. With this change of variables the Hamiltonian becomes 

H = (~ + ~') 'L::n~+ + (~- ~') 'L::nL- L:4tcos(et -Oj)cos(e; -Oj), (6.2) 
z z (z,J) 

where the second term may be written as a cosine due to the Hermitian conjugate term 

in the hopping sector. We will henceforth let the index a run over + and -, and write 

Hamiltonian (6.2) as 

H = L Uan~a- L 4tcos(et- ej) cos(e;- Oj), (6.3) 
i,a (i,j) 

where U± = U/2 ± u' /4. 

Here we note that we have enlarged the Hilbert space. Only half of the new space of 

states represents physical states of the system, Fig 6.1. We can see this by noting that 

for, say, n+ = 1 and n_ = 0 we have n 1 = 1/2 which is clearly unphysical. In order to 

project out the unphysical states we impose the constraint that the sum n+ + n_ is an 

even number. 

In order to calculate the partition function with a constraint we need to define a 

constraint operator. Such an operator will be zero when acting on an unphysical state 

and the identity when acting on a physical state. We may write a one site projector for 

our constraint as 

p = ~ (1 + (-1)n++n-). o.s. 2 (6.4) 
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Figure 6.1 : The configuration space in the bonding/anti-bonding basis (dark grey) is 
larger than that of the conventional basis (light gray) by a factor of two. The origin of 
both bases is given by t he coordinate axes in the centre of the squares. 

The projector for the full lattice is given simply by taking the product over all lattice sites 

(6.5) 

The projector , (6.5) , can be simplified through the inclusion of a Z2 gauge field 'f/i = 
0, 1. We may then write 

p =II~ I: ei7r!J;(ni+ +n;-) . (6.6) 
. 1]; =0 ,1 

The partit ion function is t hen calculated as 

(6.7) 

where the trace now involves a sum over the gauge fields { TJ} on each site as well as the 

sums over {n } and {e}. To compute t his we use the standard trick of splitting up the 

exponential in a time-ordered product of operators. We have 

where H{ n} = + L i ,a Uan~a and H{e} =- L (i ,j) 4tcos(et -ej) cos(e; - ej). To compute 

the partition function here we will again use the basis of coherent states for the phase 

operators e:: , appendix D. 
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We are now in shape to compute the effective action. 

Z ~ Tr [ (e-<H{e}e-<H{n}P)M] 

Tr [ e-<H{e}(T!)e-<H{n} (Tl)p( TI)e-<H{e}h)e-<H{n}(T2)P( T2) ... 

X ... e-<H{e}(TM)e-<H{n}(TM)P(TM)] 

Tr [ e -<H{e} h)Jio( T1 )e -<H{n} h )p( T1 )IIn( T1 )e -<H{e}(Tz)IIo( T2)e -<H{n} h)p( T2)IIn( TI) 

... e-<H{e}(TM)JIII(TM)e-<H{n}(TM)p(TM)Jin(TM)]' (6.8) 

where the identities are given by 

and IIo(T") = J IT dO~~") IBf(T"))(Of(T")I. (6.9) 
%,a 

Evaluating all of the inner products we arrive at the effective action 

M M 

s -iLL nia( TJL) [Of( TJL) -en TJL+l) + 1rT]i( TJL)] + L EH( TJL) 

M 

L L { EUanTa( TJL) - inia( TJL) [Of( TJL) -en TJL+l) + 1rT]i( TJL)]} 

M 

-4d L L cos(Bi(T")- Bj(T")) cos(Bi(T")- Bj(T")), 
JL=O (i,j) 

(6.10) 

where we have used periodic boundary conditions Of ( TM) = Of (To) and nia ( TM) = nia (To). 

The partition function is then given by 

(6.11) 

We can perform the sum over the number operator eigenvalues in the same manner 

we have done previously. We define new variables nia = mia· With this change we can 

convert the sum to an integral in the limit the E is small. Since the action is local in the 

variables nia we may then perform the Gaussian integrals to get 

(6.12) 
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where the effective action is 

M 

--4Ei L L cos(Oi(TJL)- et(TJL)) cos(Oi(TJL)- Oj(TJL)), 
JL=O (i,j) 

and we have introduced the lattice time derivative 

This action is invariant under the 1.2 gauge transformations 

where rJi( TIL) = 0, 1 is the time component of the 1.2 gauge field. 

(6.13) 

(6.14) 

(6.15) 

To reveal the full gauge structure of the model we decouple the quartic terms with a 

Hubbard-Stratonovich transformation. There is one caveat however. Since the different 

flavours of boson field3 ( ±) are not treated on equal footing we cannot simply use one 

Hubbard-Stratonovich field for both. We must allow the fields to have different weights. 

Thus we write 

e4ct I::~=O I::(i,j) cos(OJ (ri-')-Oj h,)) cos(Oj (ri-')-Oj (rl-')) 

= 11 e4ct cos(OJ (ri-')-Oj(rl-')) cos(Oj (ri-')-Oj(rl-')). 

JL,(i,j) 

To minimize the equations let Aj = cos(et(TJL)- et(TJL)) and 

Bij = cos(Oi(TJL)- e;•:TJL)), then 

11 e4~tcos(OJ (ri-')-Oj (r~-')) cos(Oj (r~-t)-Oj (r~-t)) 

JL,(i,j) 
= 11 e4€t A;jBii = 11 e2ct(A;j+B;j)2 e-2€tAfie-2€tBf1 

JL,(i,j) JL,(i,j) 

We may now use the Gaussian integral identities 
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and 

for real fields ~ij, to write 

IT e2tt(Aij+Bij) 2 e-2ttA7ie-2ttB[j 

Jl,(i,j) 

We now have the effective action 

s 

-2Et L [(~b + i~?i) cos(et- Bj) + (~b + i~t) cos(Bi- Bj)], 
Jl,(i,j) 

where we have suppressed all time dependence of the fields. 

(6.19) 

(6.20) 

(6.21) 

The above action is not real, however, so we must analytically continue the fields ~2 

and e into the complex plane by ~2 = ie and ~3 = ie. The action takes the form 

s ~ """ 1 [ a 7r ] 
2 

Ei """ 1 2 Ei """ ~ -a 2 E ~ ~ 4u 11€ei + -;_1Ji + 2 ~ (~ij) - 2 ~ ~(~ij) 
Jl=O i,a a Jl,(i,j) Jl,(i,j) a=2 

-2Et L [(~Ji + [fi) cos(et- Bj) + (~Ji + ~ti) cos(Bi- Bj)] . (6.22) 
Jl,(i,j) 

Before we proceed to analyze this action we consider another special case, U' = 0. In 

this limit our toy model (6.1) reduces to two copies of the Bose-Hubbard model. These 

models have been well studied so we know what the physics in this limit should be. The 

Bose-Hubbard model exhibits two phases, one being a conventional insulating phase, the 

other being a conventional superfuild phase in which the bosons are condensed. To write 

down the effective action for this case we simply note that when U' = 0 the ± bosons 

have the same coupling constants and the action should be symmetric in these two fields. 

This implies that we need only introduce one, complex, auxiliary field in the Hubbard-
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Stratonovich transformation. The action is therefor 

-4tc L L [~ij cos(Ot- Oj) + cj cos(Oi- Oj)], 
(i,j) /.1 

(6.23) 

where we have introdu:::ed the modified Coulomb energy U = U /2 for later convenience. 

In order to determine the dynamics of the Z2 gauge fields we must integrate out the 

matter fields. However. this is a difficult task with the two actions above written how they 

are now. To make our job easier we can rewrite the actions to be sums over a space-time 

lattice instead of just a space lattice. To achieve this we note that we may approximate 

the temporal gradient term, so long as the time step is small, as 

2--II - 2-- cos (Of (p,) - Of (p, - 1) + 1rfJi (p,)) 
EU ~:U 

2--II- 2--~i(f.-l) cos (Of(p,)- Of(p,- 1)) 
<:U ~:U 

(6.24) 

where in the last line we have used the Z2 nature of the gauge fields to write a temporal 

component of the gauge field out front of the cosine. The above manipulations allow us 

to write down the actbn on the space time lattice as follows 

(6.25) 

where (I, J) refers to )airs on the space-time lattice, (i,j) refers to pairs on the spacial 

lattice only, p, is the tine slice, and we have let ~ become real valued in order for the action 

to be real. 1 We have a.lso defined new dimensionless hopping parameters, i1 J which take 

on different values for 3pacial and temporal links. For the spacial links iiJ = 4tc while for 

temporal links iiJ = 1/U c. 

Before integrating out the matter fields we would like to treat space and time on an 

equal footing. To do this we require that the hopping parameters on each type of link 

are equal to each othe,·, namely 1/U E = 4tt. This implies that we must work with a time 

step of E = 1/ [ 2JfU], which gives a new, isotropic, hopping parameter as tiso = 2.;;ifJ. 

1This may actually be done in general since the only change in the analytics would be a different 
numerical factor in the JLcobian, which is just a multiplicative constant to the partition function and 
thus it does not affect any physical properties of the system. 
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This allows us to write the action as 

Su'=O = 2tiso L II+ lisa L L~~- lisa L L~IJ cos(Bf- B'J). (6.26) 
i,!-L (i,j) 1-L (I,J) a 

Here ~ = ±1 is the Z2 gauge field. 

Before proceeding with the general case, U' =I 0, we will integrate out the matter fields 

in the special case and obtain the effective gauge coupling. Here we will take tisa < < 1 

which will allow us to expand the exponential in the partition function as a Taylor series. 

When we take this limit we are assuming that the bosons are in their insulating phase 

since tisa = 2Vtf5, and U jt is proportional to the dimensionless parameter upon which 

the phase diagram is based. When U jt is large the Coulomb terms win and the bosons 

want to be as localized as possible suggesting that they are in the insulating phase. 

Up to multiplicative constants the partition function for this action is given by 

z 

In order to integrate out the matter fields we now define a directed graph. For each 

··--· ... -·· j 

Figure 6.2: Directed link associated with the exponential ei(Of:-Oj). The line connected to 
the lattice sites represents the Z2 gauge field; each line comes with a factor of tisa~ij. 

flavour of boson we associate a directed link, Fig. 6.2, with the factor ei(Of:-Oj). Since the 

integration of thee fields is over the range [0, 21f] any graph with open ends will not give 

a contribution to the partition function so we can ignore them all. 

The lowest order closed diagram is one which contains two internal lines of the same 

flavour, Fig. 6.3(a). Now comes time where we must fix a lattice to work with. We 

will choose a 2+ 1 dimensional cubic lattice with nearest neighbour hopping only, thus 
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a) p b) iol 
j k 

p iol 
j k 

Figure 6.3: The lowe~t order closed real space diagrams contributing to the partition 
function. For completmess here we show the Hermitian conjugate of all diagrams. 

the pair (i,j) is now tnderstood as a nearest neighbour pairing in the space-time cubic 

lattice. This choice of lattice now affects the subsequent diagrams that may appear in 

the expansion. If we were to take, say, a triangular lattice we could have diagrams with 

three internal lines, which would correspond to cubic terms in the gauge fields. However, 

no such term is possible on the square lattice with only nearest neighbour coupling. 2 

On a cubic lattice with nearest neighbour coupling the next lowest order closed loop is a 

single plaquette, Fig. 6.3(b). 

We may write the i)artition function for such a plaquette as 

J dOj ~9[ dOj dOj dOj( dOi< dOt dO£ II 
27f ~~7f 27f 27f 27f 27f 27r 27f 

a=± 
X [tiso~JJCOs(Of- Oj)] [tiso~JKCos(Oj- 0~)] 

X [tiso~KLcos(O~- 8£)] [tiso~Llcos(O£- Of)] 

(6.28) 

Here we have written ·;he boson operators in terms of cosines to minimize the notation. 

To obtain the effective action for the gauge field we need to exponentiate this result. 

2If we also included ne:ct nearest neighbour terms these diagrams would appear. 
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However, the details of this calculation may be omitted if we recall the linked cluster 

theorem. This theorem states that the only diagrams to appear in an effective action are 

the irreducible ones. We may then use a cumulant expansion to write our effective action 

as3 

, t4 
S u =0 iso """""' c c c c 

eff = 4 ~ C.,ij<.,jk<.,kl<.,li· 

plaq 

(6.29) 

Here we have ignored the constant terms and squared gauge field terms that appear in 

the partition function since they do not enter into the upcoming discussion. Since the 

above expansion assumes that the effective hopping parameter is small the effective action 

(6.29) is only valid in the insulating phase of the Bose-Hubbard phase diagram. 

Equation (6.29) is just the action of a Z2 lattice gauge theory with a Maxwell term [35], 

represented by the plaquette product. With this effective action we obtain an effective 

gauge coupling, g, defined by 

4 . (6.30) 

The phase diagram of the Z2 gauge theory theory in 2 + 1 D contains two phases [36], a 

confining phase and a deconfining phase. The phase transition between these two phases 

will occur at ~. In the language of lattice gauge theory the conventional insulating phase 
9c 

corresponds to the confined phase. Since we know that the only possible insulating phase 

is the conventional insulating phase (the confinement phase), our effective gauge coupling 

should satisfy l = !k < l. 
g2 4 g'i 

The question now is what will happen once we turn on the interactions between the 

two bosons. Intuitively we should expect that the effective gauge coupling is altered, but 

the question is how it is altered. 

To answer this question we study the general case where U' =/= 0. The two flavours 

have different hopping integrals as 

Su' ofO = - L L tfso~ij cos( Of - Oj), 
(i,j) a 

(6.31) 

where t~o = 2~, with a=±. Here we have ignored the squared terms that appear 

in the u' = 0 case since they do not affect the effective gauge coupling. We could have 

derived this action in the same way we did equation (6.26) but for our purposes we only 

need the final result. 

3The numerical factors in the action come from the cumulant expansion. 
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After performing a small t~o expansion we obtain the effective action for the general 

gauge theory, 

So when u' =f. 0 the effective gauge coupling is 

1 
G2 

(tto)4 + (t~o)4 
8 

We use a capital G here to distinguish between u' = 0 and U' =f. 0. 

(6.32) 

(6.33) 

Now that we know how the effective gauge coupling changes when U' =f. 0 we may 

determine whether or not a deconfined phase of the gauge field is possible. The deconfined 

phase of the Z2 gauge field will occur when the matter content is in its insulating phase 

but at the same time, the gauge coupling becomes smaller than 9c· If this were to happen 

we would see a window for the deconfined phase open up in the Bose-Hubbard phase 

diagram in a similar manner that the fractionalized quantum spin Hall phase appears 

between the insulator 1nd Higgs phases of the Hubbard model above. 

In order for the deconfined phase to be possible we must simultaneously satisfy two 

conditions: 1) The effective coupling when U' =f. 0 must be smaller than the effective 

coupling when u' = 0, G < g: and 2) The bosons must not be allowed to condense 

to prevent screening of the gauge field which will cause a phase transition out of the 

insulating phase into the superfluid phase which implies that the gauge field is in its 

Higgs phase. This requires t~o < tc· 

We know that when U' = 0 the Hamiltonian (6.1) reduces to two copies of the Bose­

Hubbard model which only has two phases. As we have stated above the pure gauge 

theory is valid only in the insulating phase which implies that the internal gauge field is 

in its confining phase. Thus the effective coupling constant g is greater than the critical 

coupling constant 9c where the confinement/deconfinement phase transition occurs, i.e. 

(6.34) 

When U' = 0 we also know that the effective hopping parameters for the ± bosons 

become equal, which means that the two flavours of bosons will condense at the same tc. 

This is the maximum ·value that {l: may reach before the bosons condense and the gauge 

field enters into the Hi:1;gs phase. The inverse gauge coupling takes on its maximum value 
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at this point 

~ ~ 2t4 < ~ 
g2 c g~' 

(6.35) 

This last inequality comes from the fact that we know that g2 is larger than g~ for the 

confinement/deconfinement phase transition since the decoupled Bose-Hubbard model 

does not have a deconfined phase. 

When u' > 0 we can set the maximum value of the hopping parameters for the bosons 

to condense as tc = t- since t- _ 2~ is by definition larger than t+ for a given t 

and U. Since this is the case the inverse effective gauge coupling must satisfy 

1 _4 +4 1 4 1 
- ~ t + t < - ~ 2t < -
02 92 c g~ 

(6.36) 

since t- 4 + t+ 4 can never be as large as 2t~ without the e- boson first condensing. Thus 

a deconfined phase of the gauge field becomes more unlikely with a nonzero u'. 
The conclusion we have arrived at suggests that the phase diagram, Fig. 3.2, should 

not have any additional deconfinement when u' differs from 2U. However, this conclusion 

is simply a qualitative one based on the toy Bose-Hubbard model of this chapter. 
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Chapter~, 

Conclusions 

In this work we have studied a simple model which we have shown may realize a fraction­

alized quantum spin Hall phase. We coin this phase the 'fractionalized' quantum spin Hall 

phase since the edge states that mark the quantum spin Hall phase exhibit spin-charge 

separation in our modd. These spin-charge separated edge states are made up of gapless 

spinous which carry only spin but no charge. 

The absence of cha·ge degrees of freedom in the edge states gives rise to drastic differ­

ences in response properties between the conventional and the fractionalized states. The 

most notable of these differences is the absence of transverse spin transport as shown in 

Fig. 4.1. The second signature is the absence of longitudinal metallic conductivity along 

the edge of the sample even though there is longitudinal thermal conductivity. These two 

properties may be viewed as evidence of spin-charge separation in the sample. 

Within the mean-field approximation we find that the fractionalized state is stable 

in a parameter regime as shown in Fig. 3.2. We have also argued in chapter 5 that the 

fractionalized phase may be stable beyond the mean-field approximation 

The mean-field the)fy we have derived in chapter 2 is based on a slave-rotor decompo­

sition of the electron operators with valence bond order parameters in 2 + 1 D. In general, 

a theory such as this can have an emergent compact U(l) gauge field which describes the 

phase fluctuations of tHe valence bond order parameters due to the U ( 1) gauge invariance 

of the slave-rotor decomposition. Since in 2 + 1 D the pure compact U(l) gauge field 

is always confining [215] we needed to introduce additional gapless modes which would 

screen the gauge field to stabilize the fractionalized phase which has spinons as low en­

ergy excitations. In 3 + 1 D however, the pure compact U(l) gauge theory can have a 

stable deconfined pha:;;e without gapless matter fields. Hence we may ask the question 
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whether or not a fractionalized topological insulator with an emergent U ( 1) gauge boson 

may be stable in 3 + 1 D. 3 + 1 D topological insulators, have been studied for some time 

now [4, 6]. It would be interesting to study the possibility of a fractionalized quantum 

spin Hall phase in 3 + 1 dimensions in the future. 
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Appendix. A 

Energy SJlectra 

In this appendix we d3rive the energy dispersions of the bosons and fermions. For the 

bosons the spectrum if: found by diagonalizing a Hamiltonian of the form 

H = - L (tijX{jxtxj + h.c) 
(i,j) 

- L (tx~XtXj + h.c)- L (t'x~XtXj + h.c) 
<i,j> <<i,j>> 

(A.l) 

It will be easier to evaluate the sums if we break up the site index into a unit cell 

index and a basis indEx; set Xi = X 1a 1 where a1 = A, B is the basis index and I is the 

unit cell index. We can now write out the sums over nearest and next nearest neighbours 

explicitly. We have 

H = -t I: ( xisJAXjsXJA + x{J+a2)BJAX(J+a2)BXJA 
Jl 

Representing the field:> in terms of their Fourier components 
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we have 

H _.!__"' ( i -iJ·(k-k
1

) X* X + i -iJ·(k-k
1

) -ika2 X* X 
N ~ XJBJAe kB k 1 A X(J+a2 )BJAe e kB k1 A 

k,k
1 

J 

+xi e-iJ-(k-k
1

)eika1 X* X + h c) 
(J-al)BJA kB k 1 A · 

_!!__"'(xi e-iJ-(k-k
1

)eik·(a1+a2) X* X 1 N ~ (J+a1 +a2)aJa ka k a 
k,k

1 

J,a 

+xi e-iJ(k-k le-ika2x* X I +xi e-iJ·(k-k leikalx* X I + h c I I ) 

(J+a2)BJA ka k a (J -al)aJa ka k a · 

(A.4) 

In order to use the delta function we need to make an ansatz for the order parameters. 

Within the dimer ansatz the Hamiltonian becomes 

H -t L ( [ x{ + xt ( e-ika2 + eikal)] xkBxkA + h.c) 
k 

-tl L ([x/e-ik(al+a2) + x/ (e-ika2 + eikal)] xkaXka + h.c). 
k,a 

(A.5) 

If we define 

(A.6) 

and 

we can write the above Hamiltonian in matrix form as 

(A.8) 

This gives the spectrum, obtained by diagonalizing the matrix above, as 

e;(k) = -t~r~ + st~, (A.9) 

where s is the band index. 

The calculation for the fermion spectrum is identical to the boson calculation up to 
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the changes tl ----+ t
1 
ei</>ijC , Xi ----+ li, and x{i ----+ x:f§. The fermion Hamiltonian is given by 

H = t "' ( X -iJ·(k-k
1

)j* f + X -iJ·(k-k
1

) -ik·a2j* f - N ~ XJBJAe kBacr k 1 Aacr X(J+a2)BJAe e kBacr k 1 Aacr 

k,k
1 ,J 

u,a 

+ X -iJ·(k-k
1

) ik·alj* J + h ) 
X(J-al)BJAe e kBacr k 1 Aacr .c 

u,a 

(A.lO) 

Here we again choose the dimer ansatz as we did in the boson case. There is one 

subtlety here that did not appear in the bosonic case. The spin dependent phase in the 

next nearest neighbou~· hopping terms must be chosen. We will use the convention of 

Haldane [37]. We assign a positive phase, ei<l>, if a spin hops around the honeycomb in 

the clock-wise directio1 and a negative phase, e-i<l>, if it hops in the counter clock-wise 

direction. With this ccnvention we have the phases for each order parameter as 

cP AJ+a1 +a2 AJ = +c/J, 

cPAJ+a2 AJ = -c/J, 

cPAJ-a1 AJ = +c/J, 

cPBJ+a1+a2 BJ = -c/J 

cPBJ+a2 BJ = +c/J 

cPBJ-a1 BJ = -c/J 

We then proceed in the same manner as above to arrive at the spectrum for the spinons 

f _ tl 8 { [I ]2 esacr(k)- -2ba1 [Aa(k,¢) + Bcr(k,¢)] + 2 t (Aa(k,¢) + Bcr(k,¢)) ba1 

-4 [ (t
1

)
2 
Acr(k, ¢)Bcr(k, ¢)6a1 - t210~ 12] r/2 

(A.ll) 

where the functions, f.~~, Acr(k, ¢), and Bcr(k, ¢) are defined as 

x? + x: [ e -ik-a2 + eik-al] 

I I 

2xx 1 cos(k · [a1 + a2]- a¢)+ 2xx 2[cos(k · a2 +a¢)+ cos(k · a1 +a¢)] 
I I 

2xx 1 cos(k · [a1 + a2] +a¢)+ 2xx 2[cos(k · a2- a¢)+ cos(k · a1- a¢)] 

(A.l2) 
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Appendi:x: B 

Bose Condensation 

In this section we will ~ompute the Bose condensation amplitude for the free boson fields 

Xi. We may accomplish this task by considering the two body boson correlation function 

in real space 

where the index a= Jl, B refers to the sublattice and ri the position vectors of the Bril­

louin zone. The Bose mndensation amplitude is defined through the equal time correlation 

function as 

Z - lim 
~r-+oo 

(X~,r; ( r)Xa,ri ( r)), 

where l~rl = lri- rjl· Transforming to momentum space equation B.1 becomes 

1 I I I 

(X* ( )X ( 1
)) N "\"' e -iwr + iw r e ik·r;- ik ·ri (X;:,k(w)X~,k~(w')). a,r; T a,rj T = ~ ~ ~ 

k k
1 

' I 
w,w 

In momentum space the average ( ... ) is computed with the boson action 

X "\"'{ 1 .- 2 X -} 2 S == ~ 
4

U [-w + ~h+] + e8 (k)- A IXs(k, w)l , 
k,w 

where s = ± is the ba1d index and the new eigenfields may be defined by 
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The function O(k) is defined in appendix A. 

With these fields the momentum space average becomes 

1 1 I I I 
4N z L e-iwr + iw T eikr;- ik •rj 

k k
1 

' I 
w,w 

X J VX+VX_ (X:_1X_1 + X~1X+1 ) e-Lk,w,sx;,k(w) M Xs,k(w), 

(B.6) 

where M is the matrix representation of the operator in equation (BA) and we have 

ignored cross terms between the ( +) and (-) flavours since the integral will evaluate to 

zero for such terms. Upon performing this Gaussian integration over the Bose fields we 

have 

1 I I I _ ~ e -iWT + iW T e ikr;- ik ·rj5 
1
5 

1 

4N~ k~ w~ 
k k

1 

' I 
w,w 

X ([Mt1 
0 I I) + [Mt( 

1 
)·( I I)) (-1,k,w),(-1,k ,w +1,k,w, +1,k ,w 

4~ 2:.:: e -iw(r-r')e ik(r;-rj) 

k,w 

X ( [M](!1,k,w);(-1,k·w) + [M](~1,k,w);(+l,k,w)) 

4~ 2:.:: e -iw(r-r')e ik(r;-rj) 

k,w 

Now that we have an expression for the correlation function we can compute the Bose 

condensation amplitude (B.2) as 

z2 = lim _1_ ~ e ik(r;-rj) 
~r--->oo4N ~ 

k,w 
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In the zero temperature limit this sum becomes an integral over the continuous fre-

quency 

(B.9) 

Integrals of this type are well documented and may easily be performed [38]. Thus we 

arrive at the Bose condensation amplitude 

Z' ~ 8~ ( 4U ) 
( e! 1 ( 0) - A) · 

(B.lO) 

In the thermodynamic limit the chemical potential of the bosons becomes A = e~1 (0). 

Thus when we take N ---+ oo the only term that remains finite is the first term, which 

gives 

2 1 
Z = 8N 
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A ppendi:x: C 

Fermionie Coherent States 

Definition 1. Two numbers, a and (3, are said to be Grassmann numbers if they satisfy 

the property aj3 = - j3n. In other words, they satisfy the algebra 

{a,/3}=0 {a, a}= 0 

where {A, B} = AB + BA. 

We can use these numbers to define a set fermionic coherent states by satisfying the 

relations1 

(C.l) 

where CJ is a electron[c destruction operator. Once equation (C.l) is satisfied we may 

write down the coherent states as 

(C.2) 

where IO) is the vacuum state with no fermions. It is straightforward to show that this is 

indeed a coherent state by expanding the exponential as a power series, which gives the 

result 

With this definitions •)f the coherent states we can derive the completeness and closure 

1 Notice that the number a is NOT the same as the complex conjugate. This is due to the fact that 
the Grassmann algebra is an exterior alegebra, so we must treat this number as independent of a. 
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relations for these states as 

(C.3) 
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Appendi)(: D 

Coherent States of Angular 

Momentu.m 

Consider some operator nia, that has an infinite set of integral eigenvalues, which is 

canonically conjugate to the phase operator Of namely 

(D.l) 

With this algebra we may then expand the eigenstates of the phase operator, \Of), as 

00 

\Of)= L ein;,Ofinia) . (D.2) 

It is then straightforw1rd to check that the inner product between two 0 states obeys 

(D.3) 

Using these relations we may then write down the nia states in the Of representation 

as 

1
2

7r d0° . a 
lnia) = -~ e-m;,O; \Of) . 

0 27r 
(D.4) 

With these properties we can now write down the overlap of the two representations as 

(D.5) 

63 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

64 



BibliograJphy 

[1] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 

95:226801, (2005). 

[2] B. Andrei Bernevig and Shou-Cheng Zhang. Quantum spin hall effect. Phys. Rev. 

Lett., 96:106802, (2006). 

[3] C. L. Kane and I~. J. Mele. Z2 topological order and the quantum spin hall effect. 

Phys. Rev. Lett., 95:146802, (2005). 

[4] Rahul Roy. Three dimensional topological invariants for time reversal in-

variant hamiltonians and the three dimensional quantum spin hall effect. 

arXiv. org:cond-mat/0607531, (2006). 

[5] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band 

structures. Phys. Rev. B, 75:121306, (2007). 

[6] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions. 

Phys. Rev.Lett., ~18:106803, (2007). 

[7] Yugui Yao, Fei Y1~, Xiao-Liang Qi, Shou-Cheng Zhang, and Zhong Fang. Spin-orbit 

gap of graphene: First-principles calculations. Phys. Rev. B, 75:041401, (2007). 

[8] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum Spin Hall 

Effect and Topological Phase Transition in HgTe Quantum Wells. Science, 314:1757-

1761, (2006). 

[9] Markus Konig, Steffen Wiedmann, Christoph Brune, Andreas Roth, Hartmut Buh­

mann, Laurens VJ. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum 

Spin Hall Insulator State in HgTe Quantum Wells. Science, 318:766-770, (2007). 

65 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

[10] Congjun Wu, B. Andrei Bernevig, and Shou-Cheng Zhang. Helical liquid and the 

edge of quantum spin hall systems. Phys. Rev. Lett., 96:106401, (2006). 

[11] Cenke Xu and J. E. Moore. Stability of the quantum spin hall effect: Effects of 

interactions, disorder, and 1::2 topology. Phys. Rev. B, 73:045322, (2006). 

[12] Andrew M. Essin and J. E. Moore. Topological insulators beyond the brillouin zone 

via chern parity. Phys. Rev. B, 76:165307, (2007). 

[13] Sung-Sik Lee and Shinsei Ryu. Many-body generalization of the 1::2 topological in­

variant for the quantum spin hall effect. Phy. Rev. Lett., 100:186807, (2008). 

[14] X.-L. Qi and S.-C. Zhang. Spin charge separation in the quantum spin hall state. 

arXiv:0801. 0252, (2008). 

[15] A. Vishwanath Y. Ran and D.-H. Lee. Spin-charge separated solitons in a topological 

band insulator. arXiv: 0801.0627, (2008). 

[16] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang. Topological mott insulators. 

arXiv:0710. 0030, (2007). 

[17] Tarun Grover and T. Senthil. Topological spin hall states, charged skyrmions, and 

superconductivity in two dimensions. Phys. Rev. Lett., 100:156804, (2008). 

[18] P. W. Anderson. The Resonating Valence Bond State in La2Cu04 and Supercon­

ductivity. Science, 235:1196-1198, (1987). 

[19] P. Fazekas and P. W. Anderson. On the ground state properties of the anisotropic 

triangular antiferromagnet. (application of anisotropic heisenberg model). Philos. 

Mag., 30:423-440, (1974). 

[20] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen. Doping a mott insulator: 

Physics of high-temperature superconductivity. Rev. Mod. Phys., 78:17, (2006). 

[21] Xiao-Gang Wen. Quantum orders and symmetric spin liquids. Phys. Rev. B, 

65:165113, Apr (2002). 

[22] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito. Spin liquid state 

in an organic mott insulator with a triangular lattice. Phys. Rev. Lett., 91:107001, 

Sep (2003). 

66 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

[23] J. S. Helton, K. \1atan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, 

Y. Takano, A. St.slov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee. Spin 

dynamics of the :>pin-1/2 kagome lattice antiferromagnet ZnCu3 (0H)6Cl2 . Phys. 

Rev. Lett., 98:107204, (2007). 

[24] Sung-Sik Lee and Patrick A. Lee. U(1) gauge theory of the hubbard model: Spin 

liquid states and _r:ossible application to t;;-(BEDT-TTF)2Cu2 (CN) 3 • Phys. Rev. Lett., 

95:036403, (2005). 

[25] Michael Hermele. Su(2) gauge theory of the hubbard model and application to the 

honeycomb lattic{~. Phys. Rev. B, 76:035125, (2007). 

[26] A.M. Polyakov. Compact gauge fields and the infrared catastrophe. Phys. Lett. B, 

59:82-84, October (1975). 

[27] Serge Florens and Antoine Georges. Slave-rotor mean-field theories of strongly corre­

lated systems and the mott transitionin finite dimensions. Phys. Rev. B, 70:035114, 

Jul (2004). 

[28] E. Fradkin. Field Theories of Condensed Matter. Perseus Books, (1991). 

[29] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in 

one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133-1136, 

Nov (1966). 

[30] Ian Affleck and J. Brad Marston. Large-n limit of the heisenberg-hubbard model: 

Implications for high-tc superconductors. Phys. Rev. B, 37:3774-3777, Mar (1988). 

[31] B. Simons A. Altland. Condensed Matter Field Theory. Cambridge University Press, 

(2006). 

[32] W.H. Press et al. Numerical Recipes in C. Cambridge University Press, second 

edition, (1992). 

[33] R.B. Laughlin. Quantized hall conductivity in two dimensions. Phys. Rev. B, 

23:5632-5633, May (1981). 

[34] J.Schwinger. Gauge invariance and mass. Phys. Rev., 125:397-398, (1962). 

67 



MSc Thesis- MW Young- McMaster University- Physics and Astronomy 

[35] John B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. 

Phys., 51:659-713, Oct (1979). 

[36] Franz J. Wegner. Duality in generalized ising models and phase transitions without 

local order parameters. J. Math. Phys., 12:2259-2272, (1971). 

[37] F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed­

matter realization of the parity anomaly. Phys. Rev. Lett., 61:2015-2018, Oct (1988). 

[38] M. J. Marsden J. E. Hoffman. Basic Complex Analysis. W. H. Freeman and Company, 

(1987). 

9370 75 

68 




