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Abstract 

When a polymer system is strained below its glass transition temperature, T9 , deformed re­

gions called crazes may be formed that have a characteristic extension ratio, A. Examining 

the regions of deformed material, which are almost visible to the naked eye, and measuring 

A with the use of atomic force microscopy gives information about the space between entan­

glements along a polymer chain, which is a truly molecular quantity. In this work we present 

the results of experiments in which entanglements in high molecular weight polystyrene (PS) 

samples have effectively been swelled by diluting the network with low molecular weight PS. 

We find that these experiments not only tell us how the molecular weight of a polymer 

can affect its contribution to the polymer network, but also give an entirely new method of 

determining the entanglement molecular weight, Me, of a polymer system. 
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Chapter 1 

Preliminaries 

When a polymer system is strained below its glass transition temperature, T9 , microscopic 

crack-like defects called crazes may be formed. Like cracks, craze formation is the result of 

energy dissipation in the creation of newly exposed surface atoms. However, where cracks 

are void of the strained material, crazes are composed of an interconnected fibrillar structure 

bridging a gap between undeformed material. Much attention has been paid to the structure 

of crazes and the dynamics their formation through the last few decades as their properties 

are responsible for what is macroscopically seen as the failure of a polymer glass. Many 

of the previous studies have been focused on understanding the microscopic processes that 

govern the nucleation [1], growth [2, 3] and breakdown (3] of these defects as the strain 

increases. Drawing on the results of these studies, it has been seen that one may compare 

the strained and unstrained material in a crazed specimen to learn about how polymers are 

arranged in confined geometries [4]. 

In this work we continue the use of crazing experiments. Here however, we do not use 

crazing for the purposes of studying what happens to a polymer glass when it is subjected 

to strain, as has been done so well in the past. On the contrary, we use crazing as a tool to 

learn more about how polymer molecules are arranged in systems that are undeformed. At 

the outset, the question we wished to answer was the following: what happens to a polymer 

network when one systematically 'removes' a given number of entanglements? To effectively 

remove entanglements from one system to the next, we swell the polymer network which 

results in fewer entanglements per unit volume. The method by which entanglements are 

removed or swelled led to a new question: how does the length of a polymer chain affect 

its ability to participate in phenomena which occur as a result of the polymer chains being 

entangled? While answering this question, we found that the analysis of the experimental 

results presented herein led to an entirely new method of determining the entanglement 

molecular weight, Me, of a polymer species. 
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In this chapter, the concept of entanglement molecular weight will be discussed and a 

fairly lengthy description of the standard method of its measurement will be presented. 

This topic naturally leads to an explanation of the entropy of a Gaussian polymer chain and 

a section concerning the viscoelastic behaviour of polymers. The process of crazing from 

nucleation to failure is also discussed, with emphasis on the process by which a craze grows. 

Less attention will be given to craze nucleation and craze breakdown as these topics do not 

directly concern the results which will be presented later. 

Requisite concepts 

Entanglements 

In a polymer melt, a given chain samples a large number of possible configurations which 

may lead it to become tangled with many of the other chains in the space around it. The 

interactions between two chains which restrict motion perpendicular to the chain backbone 

are known as entanglements. A schematic of the basic idea behind entanglement is shown in 

Figure 1.1. The figure depicts what should be considered as segments from three different 

polymer molecules that are representative of the rest of the network. Since the two polymer 

molecules that are arranged vertically are uncrossable, the mobility of the lateral molecule 

is significantly reduced. One can take the knots in Figure 1.1 to be fixed so that the lateral 

polymer passing through them is only allowed to move like a worm through the knots that 

encompass it. The worm-like motion of a polymer chain has been called 'reptation' (5]. This 

type of motion is to be contrasted to that of an ideal gas molecule which is uninhibited by 

all of the other molecules in the system and is constrained only by the walls of its container. 

On an elementary level, entanglements can be thought of as one polymer chain knotted 

around another. The precise chain-chain configurations defining an entanglement are not 

known, but the notion of one polymer chain completely wrapping around another is a rather 

extreme condition for two chains to be entangled. There are statistical ideas that have proven 

to be useful [6, 7], one of which is summarized in the next section. The basic idea [6], which 

has been experimentally verified, states that a system of chains wherein each chain shares 

its pervaded volume, VP, with at least a few other chains can be considered to be entangled. 

Vp is defined as the volume swept out by a sphere whose diameter is proportional to the 

distance spanned by the ends of a polymer chain (the end-to-end distance, R). 

2 
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Figure 1.1: Schematic of two entanglements on a polymer chain. The 'entanglement molec­
ular weight', Me is the mass of material between the two loops. The loops represent the 
interactions that produce entanglement effects. 

II A description of Me 

In this thesis the concept of entanglement molecular weight Me and its pseudonyms are dis­

cussed at length. The terms entanglement molecular weight, entanglement length, entangle­

ment strand, and entanglement density are referred to often and somewhat interchangeably, 

but they all refer to essentially the same concept. In a system of polymers there are what 

might be considered knots, or entanglements between the chains that greatly restrict the 

motion of the molecules because one polymer chain cannot cross another one. For a given 

polymer system, one can define an average spacing between the knots and it turns out that 

a natural variable that is used to describe this distance is the molecular weight of a segment 

between the knots, this is what we refer to as Me, the entanglement molecular weight. 

It can be shown that in a melt of polymer chains any given chain undergoes a random 

walk between its ends [8]. As a result of this, the mean-square end-to-end distance (R2 ) of 

a polymer segment 1 with molecular weight M is given by 

(1.1) 

f3 is a constant for a given type of polymer, for example if the polymer is polystyrene (PS) 

then f3 = 0.08 A2 mol/g [9]. It will come up later in this thesis, but its numerical value will 

never need to be considered 2 • The distance spanned by a segment of chain whose molecular 

1The term 'segment' is used deliberately in place of the term 'chain' here. This is because the random 
walk concept applies not only to entire chains, but also more generally to any part of a chain, down to some 
minimum segment size. 

2 {3 can be measured by labeling small concentrations of chains in a polymer glass with neutrons and 
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weight is that of the average between entanglements, Me, is then (R;) = f3Me and this is 

what is referred to as the entanglement length. An entanglement strand is just any segment 

of chain whose molecular weight is Me. The usefulness of the concept of Me will come when 

we try to explain the results of our experiments in terms of molecular quantities. 

The fourth important quantity is the entanglement density, Ve. As its name suggests, it 

measures the number of knots per unit volume and will be a useful quantity in modeling the 

systems we study here. The relation between Me and Ve is rather simple, Me rv 1/ve. This 

can be understood by considering Figure 1.1: if there are a lot of monomers between entan­

glements, then Me is large. Given that there many monomers between the entanglements, 

they must be far apart and thus Ve is comparatively small. 

Why Me has a well defined average 

To understand what factors control Me consider the following analogy. Holding a length of 

shoelace about a metre in length, if one tries to tie a knot in said string (say, a bowline) 

it is found that the knot is easily tied. It is also possible to start with a length of string 

which is half as long and demand that the same knot be tied, probably the task can still be 

accomplished at this stage. Cutting the string in half and attempting to tie the knot can 

only be iterated so many times though; at a certain point it will be found that the string 

simply isn't long or flexible enough to tie the desired knot. Given this analogy, it is easy 

to see that the chains which make up a monodisperse system of polymers must have some 

minimum length to entangle. In terms of polymer chains, we can say that there is an energy 

cost associated with trying to bend a polymer chain too tightly around itself or another 

chain, giving further reason to require a minimum entanglement length. 

Now consider a system 3 of 1 trillion lengths of string. If entropy dominates this system, 

then the ropes will not be an ordered pile of cylinders, as might be found on the bed of a 

logging truck. This is because there are relatively few string configurations that look like 

ordered, stacked cylinders. On the other extreme, there are also relatively few configurations 

which lead the chains to become so entangled that there are only a couple of string widths 

between knots, or, that would cause the strings to bunch up into individual balls of yarn. 

Hence, entropy chooses a string configuration in which the chains have knots that are spaced 

not too far apart and a combination of entropy, geometry or topology, and energy forces the 

performing neutron scattering experiments. The scattering profile is related to the size of a chain, so 
scattering experiments with a range of M gives (3/6 as the slope of a plot of (R2 ) vs. M. The factor of 6 
comes from the fact that scattering experiments don't measure the end-to-end distance of a polymer chain, 
they measure the so-called radius of gyration, which is the average distance of a given monomer from the 
center of mass of the chain. 

3 To make the analogy commensurate with our experiments, recognize that the systems we study are 
approximately 1.5 mm X 5 mm X 130 nm in size and that the density and molecular weight of PS used here 
are 1050 kgjm3 and 785 kg/mol respectively. Given these numbers, one can calculate that the systems we 
study contain roughly 1012 polymer chains 
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system to separate the knots by some minimum distance. 

The concept that chains must have some minimum length to entangle has been exper­

imentally observed as a change in scaling behaviour of viscosity as a function of molecular 

weight. Below the minimum molecular weight, the viscosity of a melt of polymer chains 

scales like 'I] M while after the onset of entanglement it scales like 'I] M 3.4 [10]. Thisf'.J f'.J 

is a way in which one can find Me for a given polymer species: measure the viscosity for a 

series of systems in which the constituent chains' M is varied. A kink in the graph of 'IJ vs. 

M is a molecular weight which can be related [7] to Me. 

The entanglement onset of Fetters 

The argument for the onset of entanglement due to Fetters et al.[6], which makes no reference 

to the actual shape or trajectory of any specific polymer chain, will now be summarized. 

The idea behind the model is that a longer chain will sweep out a larger volume. If the 

volume a chain sweeps out is large, then it will have a higher probability of interacting 

with other chains around it, hence entanglement occurs more often for longer chains. The 

pervaded volume of a given test chain is 

(1.2) 

where A is a constant of order unity and (R2 ) is the mean square end-to-end distance of the 

chain. Vp is shown as the grey circle of Figure 1.2 and the test chain is the white one in the 

same figure. The volume that the chain actually occupies though, is smaller than Vp and is 

just given by Vc = M / pNA where p is the material density and N A is Avogadro's number. 

If N is the number of chains that would occupy Vp, that is N = Vp/Vc, then from Equations 

1.1 and 1.2 we have 
3 

N = A(j3Mp·. (1.3)
MjpNA 

Now consider Vp for a single test chain, P. In this volume there will be some number of chain 

segments. If m1 is the molecular weight of a single monomer, then M/m1 of the monomers 

in Vp belong to P. The rest of Vp is filled by chain segments (or monomers) that belong to 

other chains randomly walking into Vp, as shown in Figure 1.2(a); the molecular weight of 

all the segments in Vp that don't belong to P should be the same as a chain with molecular 

weight (N- 1) M. A schematic of this idea is shown in Figure 1.2(b). 

Fetters suggests that entanglement occurs when some prescribed value of N is reached: 

N = Ne. Here Ne > 1 but of order unity. Fetters prescribes Ne = 2 and states that for this 

5 
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(b) 

Figure 1.2: (a) The pervaded volume of the test chain (white) and all of the other (grey) 
chains that enter Vp. (b) shows all of the chain segments of the chains that have entered Vp. 
These are the segments that contribute to the (white) test chain's entanglement. 

specific value of N, M =Me. Given this conjecture we get from Equation 1.3 

(1.4) 

With the exception of N e, all of the quantities on the right hand side of Equation 1.4 are 

known parameters, so this gives a theoretically predicted value of M e. If one calls M e the 

molecular weight at which there is a change in viscosity scaling (as was briefly described at 

the end of the previous section) , then Equation 1.4 can be compared to the experimental 

value to see what value of N e defines M e in this case. This molecular weight is given a 

different special name, M e, and M e is defined as the molecular weight determined from 

the plateau modulus (to be discussed below, see Equation 1.13). There seems to be some 

consensus [11] that M e = 2Me but the universality of this claim is doubted [7]. Typically M e 

is defined in a considerably different manner which will be described following a diversion 

into the viscoelasticity of polymers. 

III 	 Stretching and straining liquid and rubbery poly­

mer systems 

A rubber band is a material composed of polymer molecules whose relative positions are 

fixed in space; they are not allowed to reptate past one another. While entanglements 
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are the result of nonpermanent interactions between two different chains who share the 

same pervaded volume, it is possible to induce a permanent connection between chains 

by chemically bonding them together, this is known as cross-linking. A rubber band is 

a material in which many of the entanglements in the system can be thought to have 

been converted into permanently connected cross-links. The system is essentially one giant 

molecule by virtue of the fact that any one chain segment can be accessed by following a 

path along other segments in the system. If the temperature is high enough the system 

may be deformed uniformly by the application of tension to both of its ends. If tension is 

applied to a rubber band, it stretches by some amount. In a system for which there are no 

cross-links, the entanglements would relax and the individual molecules would reptate past 

one another, this is not possible for a rubber band (as long as the tension is not to large) 

because the cross-links are permanent connections. 

In this situation, the energy that has gone into stretching the rubber band is stored in 

the polymer molecules as a result of their being elongated. Unlike the typical f = -kx 

spring encountered in many first year mechanics courses, whose energy storage is due to 

displacement of atoms from their potential energy equilibrium positions, polymer molecules' 

spring forces are entropic in origin. Surprisingly though, the force law for the elongation of 

a polymer chain indeed turns out to be linear in the stretching distance as will be shown 

now. 

We first need to calculate the entropy for a single polymer chain. Using the entropy, 

which will turn out to be quadratic in the end-to-end distance R, we will be able to write 

down the free energy. If the free energy is quadratic in R, then the force on a chain is linear 

in R since the force, f is related to the free energy, F, by f = ~~. While the force required 

to stretch a single chain is linear, we will see that the force required to deform a network 

of polymer chains is not so simple. In that case, the force required to stretch a network of 

polymer chains (a rubber band, for example) will end up with a non linear term, as will be 

shown below. For a more complete description, and for the inspiration to the arguments 

that follow, see the books by Rubenstein and Colby [12] and also by Jones [13]. 

The entropy and free energy of a single polymer chain 

Polymer chains' trajectories are random walks and as a result the probability density func­

tion of an ensemble of chains' end-to-end distances is given by a Gaussian distribution, 

p (R) = Ce-aR
2 

where Cis a normalization constant and a is also a constant. Normalizing 

over 3-space, Jp(R)d3r = 1 we find that C = (~) 2 
3 

• Equation 1.1 gives the mean square 

end-to-end distance of a polymer chain, but we can also calculate it by integrating R 2p(R) 

over all space to find (R2 ) = 3/2a. Using this and Equation 1.1 we can write the probability 

density function for the size of an ideal polymer chain in terms of the molecular weight, M 

7 
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and the material parameter {3 as 

( 3 )~ (-3R2 

(1.5)p(R) = 21r{3M exp 2{3M 
) 

. 

The entropy Sis given by the classic Boltzmann equation 

s = k ln(n(R)), (1.6) 

where k is the Boltzmann constant and O(R) is the number of random walks that give an 

end-to-end distance R. The probability that a chain has R for the end-to-end distance is 

just the number of walks that giveR, O(R), divided by the total number of distinct walks 

available to the chain, JO(R)d3r, or 

n(R) 
(1.7)p(R) = f O(R)d3r. 

Then, to write the entropy of a single polymer chain for a given R, we need only know 

the probability density function and the total number of walks available to the chain since 

O(R) = p(R) f O(R)d3r. From Equations 1.5, 1.6 and 1.7 

-3kR2 

S(R) = {3M +terms that have noR dependence. (1.8)
2

The free energy of a chain is F = U - T S, so now we need to know the potential energy 

U(R). It turns out, however, that the potential is actually a slowly varying function of R 

for most end-to-end distances [12]. Since we will be looking for how the free energy changes 

with end-to-end distance, we cast U into the second set of terms in Equation 1.8 and say 

that the free energy is 
3kTR2 

F = {3M + other terms. (1.9)
2

As mentioned above, the free energy of a single polymer chain is quadratic in elongation. 

This is reminiscent of Usp(R) = !kspR2 however, as pointed out above and in the books [12, 

13] the origin is quite different. Furthermore, the spring constant here is proportional to the 

temperature which means that a 'polymer spring' gets stiffer with increasing temperature. 

This is markedly different from a metallic spring because one of those springs actually gets 

softer as the temperature is increased. 

ii Stretching a rubber 

As stated earlier, a rubber is a system of polymer chains that are not allowed to slide past 

one another. Their entanglements are fixed in place but they are allowed to stretch in one 

8 



J.D. McGraw- M.Sc. Thesis -Department of Physics and Astronomy- McMaster University 

(a) (b) 

Figure 1.3: A 2D affine deformation: each part of the sample is deformed in proportion 
to the whole. The sample is stretched in the horizontal direction, but compressed in the 
vertical direction such that W0 H 0 = W1H1 where W and H refer to the width and height 
respectively. 

direction or the other. Since they cannot slip and slide along, the system can be taken to 

be a collection of independent random walks, each with the same molecular weight as an 

entanglement strand, Me. If the system is stretched, the factor by which the system has 

been stretched from its equilibrium length, A, on average, also applies to each entanglement 

strand in the network [12, 13]. This is known as an affine deformation and a 2D example 

of it is shown in Figure 1.3. 

Now assume that a rubber has been stretched in the x-direction and, to conserve volume, 

compressed in the y- and z-directions. If the initial displacements of a chain segment are 

x, y, z then the new displacements become4 AX, --!J>.., ..}x. If there are n entanglement strands 

in the system, then the change in free energy for the system from the initial state to the 

final state is just n times the change in free energy for a single strand. Given Equation 1.9, 

we get 

!J.Ftot = n 3kT [(A2 - 1)x2+ ( 1 ) (y + z2]) .f3Me ~- 1 2 
2

From Equation 1.1, we know that the length component of a polymer chain is x; = f3Me/3 

(xi E { x, y, z}). Because of this, we can write the change in free energy without reference to 

any specific chain, we just need to know the factor by which the system has been stretched: 

nkT [ 2 2 l!J.Ftot = - - A + ~ - 3 · (1.10)
2 

Now, to finish the argument as it is stated in [12] the force is the derivative of the free energy 

with respect to the length of the system, dFjdX. But X= AX0 so that dX = X 0 dA. This 

gives the x-component of force: 

nkT [ 1 l (1.11)fx = Xo A- A2 . 

4 More generally, the new coordinates are Axx, Ayy, AzZ, but since we require volume conservation it must 
be that AxAyAz = 1. Therefore if we extend in x by a factor .X and we require an isotropic deformation in y 
and z then Ay = Az = Ij../)... 

9 
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The tensile stress is just the force per unit area axx = fx/YoZo and the strain is 'Y = fl.X/ Xo 

so that 'YandA are related by A= 1 + 'Y· Finally, the volume of the system is V = X 0 Y0 Z0 

so that the stress-strain relationship is 

nkT [ 1 (1.12)a XX = v (1 + "() - (1 + "()2l" 

The term before the square brackets in Equation 1.12 is known as the plateau shear modulus 

G~, or for brevity, the plateau modulus. Since n is the number of entanglement strands in 

the system, n/V is just the density of cross-linked strands, Ve· We have thus connected a 

material parameter to the molecular quantity which is the central theme of this thesis. If 

we remember that Ve = pNA/Me we then have 

(1.13) 

and to find a value of Me we just need a method by which the plateau modulus G~ can 

be measured at a known temperature and density. This topic will be discussed next. In 

order to understand how this quantity is measured, we will have to diverge into some theory 

about the viscoelasticity of polymers. Our math hands will get a little dirty, but we will be 

richer for it in the end. 

iii The shear modulus (i): what is G? 

Instead of considering a cross-linked rubber, we will now return our attention to a liquid 

system of polymers whose entangling interactions are not permanent. The present discussion 

will be concerned with a system subject to a definite, time dependent strain ('Y = fl.X/X in 

the previous section) and the resulting stress (a). This discussion has various parts of the 

work by Ferry [14] as well as references of the previous section [12, 13] as its inspiration; no 

attempt is made here to take credit for the ideas presented, though the words may be those 

of the author5 . 

Since entanglements are not permanent interactions between a definite set of monomers, 

the imposition of some definite strain on a system will see the stress required to keep that 

strain decay as the polymer chains relax. The rate at which they relax depends upon the 

form of the shear modulus G(t); a typical form for the function is shown in Figure 1.4. For 

early times, G(t) is peaked and it is during this time regime when the system acts like a 

glassy solid. The molecules making up the system have not yet realized that they are springy 

objects, it is not until the intermediate time regime, r9 ~ t ~ Tr, that the chains feel this 

effect. During intermediate times G(t) is constant and has the value of the plateau modulus, 

5 The same could be said of the references from the previous section 
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Gfjy-. This is because the entanglements that make up the polymer network have not had time 

to relax, and for this period of time they act like the cross-links described in the previous 

section. After some terminal time, Tr, the chains relax and reptate out of the confinements 

which initially held them. At this point, less and less stress is required to hold the system at 

a given strain since the chains have had time to wriggle from their constraining enanglements 

and their end-to-end distances are becoming shorter (see Equation 1.9). Considering the 

chains shown in Figure 1.1, one can imagine that the network is strained such that the 

lateral chain becomes elongated as in Figure 1.5(a). After Tr though, thermal fluctuations 

have allowed the chain to find its entropy-preferred random walk trajectory, as in Figure 

1.5(b ), at the expense of the original entanglement configuration. 

The relationship between stress and strain for a polymeric system can be written 

o-(t) = loo G(t- r)'i'(r) dr. (1.14) 

The integral is over all past times, and given the schematic of Figure 1.4 it can be seen 

that the most recent strain events make the largest contribution to the stress. The form as 

given by Equation 1.14 indicates that all past strain events influence how the polymers will 

deform, or that the system has memory. It is noted that each event is weighted linearly 

in the strain rate 'Y, but is progressively damped by the function G as time elapses. Other 

expressions can be written if the stress is a more complicated function of the strain, for 

example if it follows a different power law, do-(t) = Gm(t- r)'Ym dr, or if it is some other 

more complicated superposition of past and present strains: a(t) = W [!"(t),'Y(t), G-w(t)]. In 

this work, we will confine ourselves to the linear rule of Equation 1.14, since for a given 

system the strain response can always be modeled linearly if the strains are small enough. 

G(t) 


Figure 1.4: The shear modulus of a typical polymer system as a function of time. Note that 
both axes are logarithmic, so that the glass like regime (early times) is actually many orders 
of magnitude shorter lived than either of the proceeding (plateau or terminal) time regimes. 
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Figure 1.5: Immediately after network deformation, the chains are stretched out as in (a), 
but (b) thermal fluctuations allow the chains to find their equilibrium Gaussian configura­
tions anew. 

To make the significance of G (t) somewhat more clear, consider the strain profile shown 

in Figure 1.6. The system is represented by the grey box on the left of Figure 1.6 and at 

t =-~is subjected to a small constant shear rate (dashed line) which continues until t = 0. 

After this time, the box has been sheared by some amount "'(0 , and has the shape as shown 

on the right of Figure 1.6. For all times outside the interval -~ ~ t ~ 0 the shear rate is 

~ = 0. For this experiment, the stress on the system for all subsequent time is given by 

Equation 1.14 as 

"Y j_o
a(t) = ; -~ G(t- r) dr. 

In calculus, the mean value theorem tells us that any definite integral I = J: f(x) dx, 

over a smooth function can be by found taking the interval of integration ( b - a), and 

multiplying that by a value of the function somewhere in that interval f(x) where a ~ x ~ b: 

I= (b- a) x f(x). This theorem can be used to simplify the preceding expression for a(t) 

a(t). - . -. ... Y(t) 
, , , 

~ ~----------- __, .... ___ .. ..--------

Figure 1.6: A simple experiment in which a polymer system (grey box) is sheared by some 
amount "'( then held fixed. ~ and a are respectively, the rate-of-strain and stress and their 
time dependence is shown as the dashed and dotted lines. The vertical scales are arbitrary. 
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because J~~ G(t- r) dr = ec(t + Ee) and we can write 

This expression can be further simplified by remembering that eis actually a short time 

span, that 0 :s; € :::; 1' and by considering times t >> eso that 

a(t) = '"'(0 G(t). (1.15) 

From this expression, the physical meaning of G(t) can now be clearly seen. If a system is 

strained by some amount '"'(0 , then G(t) regulates the amount of stress a(t) required to hold 

that deformation for all subsequent times. Actually, Equation 1.14 can just be seen as the 

sum of many infinitesimal step strains d'"'f, over short time periods dr. 

iv The shear modulus (ii): oscillatory experiments 

Much of the literature that reports values of Me have come by the numbers after performing 

oscillatory shear experiments [ 6, 7] (and most of the references therein). This fact motivates 

all of the previous discussion about the entropy of a chain, the shear modulus et cetera. 

Imagine a liquid polymer sample in which the chains all have M ~ Me confined between 

two plates. In oscillatory shear experiments, one of the plates is driven to harmonically 

oscillate at some specified frequency w and the resulting stress on the opposite plate is 

measured once the steady state is reached. 

If the strain as a function of time is given by '"Y(t) = 'Yo sin(wt) then the stress as a 

function of time can be found by substitution of 'Y into Equation 1.14 

u(t) = [oo G(t- r) '}'0 Wcos(wr) dr, 

where the 'Y(r) wcos(wr) and 'Yo is again a small and constant strain. An enlightening rv 

change of variables can be made at this point. Having s = t - r gives 

u(t) ='YoW fooo G(s) cos(w(t- s)) ds, 

='YoW fooo G(s) [sin(ws) sin(wt} + cos(ws) cos(wt}] ds, 

and the important result is 

u(t) = 'Yo [w fooo G(s} sin(ws} ds] sin(wt} +'Yo [w fooo G(s} cos(ws} ds] cos(wt); (1.16} 
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Figure 1.7: The storage G', and loss G", moduli for a polyisobutylene sample as seen in [15]. 
G" is the curve that has the minimum at war :::: 10° s- 1 while G' is the curve which has 
a relatively flat region at the same frequency. ar and br are temperature dependent shift 
parameters. Often a given apparatus is only capable of operating in a limited frequency 
window. In order to probe a larger effective range, it is possible to do experiments at 
different temperatures and then to use reduced variables. In this way, an experiment done 
with (w1 , Tl) can be compared to an experiment done with (wb T2) as if it was done at the 
same temperature as the first experiment, but at a different frequency, (w2, T1). 

this can be said in a more pedagogical way, and that is to say 

a-(t) ='Yo x [a function of w] x sin(wt) +'Yo x [another function of w] x cos(wt). 

So we see that the stress oscillates with a magnitude A, at the same frequency as the imposed 

strain but that it is out of phase with the driving by some amount 5. A and 5 both depend 

on the values of the 'functions of w' from Equation 1.16. The part that modulates the 'sin' 

term is known as the storage modulus, G'(w), and the part that modulates the 'cos' term is 

known as the loss modulus, G"(w). To be explicit, the storage and loss moduli are 

00 

G'(w) = w1 G(s)sin(ws) ds, 

00 (1.17) 

G"(w) = w1 G(s) cos(ws) ds, 

and typical forms for them are shown in Figure 1.7 as seen in [15]. As we will see, these 

functions will be central to the determination of G~. 

The origin of the terms 'storage' and 'loss' modulus can be understood in reference to 

the stress felt by purely elastic or purely viscous systems. In the elastic case, the stress 

is given by Hooke's law, a = G~"'f and if "'((t) "' sin(wt) then it follows that the stress is 
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Figure 1.8: A polymer system is sheared at frequency w by the top plate and the resulting 
stress is measured by Pz, the piezoelectric crystal which is mounted on the bottom plate. 

also proportional to sin(wt). In a purely Hookean system all of the energy is in the form of 

kinetic energy, or else it is stored in the 'springs' that make up the system. If the system is 

a Newtonian liquid though, the stress on the system is given by rJ = rry and for the same 

imposed strain as above the stress is instead proportional to cos(wt). For these systems, all 

of the input energy is eventually converted to heat by viscous dissipation; it is essentially 

lost. To sum up, the loss modulus describes the viscous behaviour of the system and the 

storage modulus describes the elastic behaviour. 

In almost all of the literature cited at the beginning of this section, little reference is 

ever made to the storage modulus. Instead, measurement of G"(w) over a wide range of w 

is used to determine Gfjy and ultimately Me or ve; the method by which this is done can 

now finally be discussed. One way to get the loss modulus as a function of w, is to shear 

a polymer melt confined between two plates with 'Y = 'Yo cos(wt) by oscillating one of the 

plates. Measurement of the resulting stress as rJ(t) = A cos(wt + 8) is done by mounting 

a piezoelectric ceramic onto the other, 'fixed' plate. This type of experiment is shown 

schematically in Figure 1.8. The values of A and 8 obtained can be used to calculate both 

the storage and loss moduli G' (w) and G" (w) for the frequency used in the experiment. Thus, 

G" can be measured at any frequency (and temperature) convenient for the apparatus. 

To get Gfjy from the G" spectrum, we need some way of inverting Equation 1.17 since 

oscillatory experiments actually measure G"(w) and not G(t). One way of transforming 

a function of w into a function of t is to multiply the original function ( G" (w)) by some 

function of w and t and integrating with respect tow. Dividing 1.17 by w, multiplying by a 

fortuitous choice of function and integrating gives 

JG'~w) cos(wt) dw = JJ G(s)cos(ws) dscos(wt) dw, 
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changing the order of integration on the right hand side reveals a delta function 

j G'~w) cos(wt) dw = j G(s) ds j cos(ws)cos(wt) dw, 

= j G(s) ~8(s- t) ds, 

2100 

G"(w)- -- cos(wt) dw = G(t). (1.18) 
7r 0 w 

So by integrating the experimentally determined loss modulus, one can obtain the shear 

modulus function, G(t) for any desired value oft. 

To get G~ requires one to know a value oft that is between r9 and Tr in Figure 1.4, lets 

call the value oft which is half way between them t~. Then it is true that 

2100 
G"(w)G~ = G(t~) =- -- cos(wt~) dw, 

7r 0 w 

this, though, requires G" for large w and worse, requires a priori knowledge oft~. 

Referring to Figure 1. 7 one sees that there is a minimum in G" (w) at war ~ 1 Hz with 

a correspondingly large value of the storage modulus at the same frequency; lets say that 

the frequency for which G" is minimized is called Wmin· The frequency at which there is a 

minimum in the ratio, G" j G' is the frequency for which there is a minimum in the proportion 

of energy which is lost due to viscous effects. If there is minimal viscous energy dissipation 

at Wmin, then at that frequency there must be a correspondingly large proportion of energy 

stored in the system. At this frequency the system acts most like a Hookean solid. 

If one substitutes t = 0 in Equation 1.18, integration of G"(w) gives G(O), or the value 

of the shear modulus describing glassy behaviour (see Figure 1.4). The popular procedure 

(1).
mm 

Figure 1.9: Decomposition of the loss modulus (thick solid line) into two peaks. The glassy 
peak (dotted line) and the viscoelastic peak (Glfp, thin solid line) whose integration gives 
the plateau modulus, G~. 
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for finding GCJv is to say that Wmin is approximately the point of overlap between two peaks 

that make up G"(w). The high frequency peak, corresponding to times t < r9 , is the 

peak describing the glassy behaviour of the system. The low frequency peak, corresponding 

to times t > r9 , is the one that describes the viscoelastic behaviour of the system. The 

decomposition of G" into two peaks is shown schematically in Figure 1.9. So, if one only 

considers the contribution due to the low frequency peak and substitutes t = 0 in Equation 

1.18, the resulting integral is taken as the plateau modulus 

(1.19) 

where Gif,p(w) is the portion of the loss modulus which is taken to be the low frequency 

peak. One of the earliest occurrences of this method is found in [16]. This is the work 

cited by Ferry [14], and Ferry is in turn the work cited by a large number of authors when 

Gfjy is determined from the loss modulus [6, 15, 17, 18, 19, 20]. This method has been 

compared [20] to at least two other methods for determining G~ from viscoelastic data 

and the methods appear to be consistent. As well, Roovers [18] has compared the theory 

developed by Doi and Edwards [21, 22] which does not take into account the mechanisms 

that give rise to the second peak seen in Figures 1.7 and 1.9. In that work Roovers showed 

that the agreement between theory and Gzjp was good. 

If one has acquired the frequency dependence of G" through the use of oscillatory shear 

experiments, it is then possible to use G[f,p to get the plateau modulus. Since from Equation 

1.13 the plateau modulus is inversely proportional to the entanglement molecular weight, 

this provides us with a value for Me. 

IV Crazing 

Crazing is an energy dissipation mechanism in glassy polymer systems. If enough tension 

is applied to a polymer glass a large amount of strain, compared to other glassy systems, 

may be imparted to it. The way that polymer glasses distribute strain through a system, 

however, is rather different than the affine deformations that take place in ductile metals or 

rubbery systems such as is shown in Figure 1.3, and the way they deform is also different 

from other glassy systems in which the molecules are not long polymers. 

When a glassy system of small molecules is stressed past the yield point, a crack may form 

and the glass fractures shortly thereafter; windows shatter by this mechanism. For polymers 

with molecular weights M <Me this type of brittle failure may take place. However, when 
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(a) 

Figure 1.10: Side view of two deformation modes. A glass of small molecules (a) often 
shatters soon after the onset of large scale system deformation; however (b) when the glass 
is made up of molecules with large molecular weights M >> M e, the system will exhibit 
crazes, three of which are shown here. A top view of a single craze (boxed region in (b)) is 
shown in Figure 1.11 

the chains mostly have M >> Me they deform by a quite different mechanism and much 

more energy is required to break the system apart [23]. Rather than immediately shattering 

like a window pane, there is an intermediate step which can be seen as a ductile regime, 

and that is the regime of crazing. Crazes are deformed polymer that appear throughout the 

system. A portion of the sample is elongated in the same direction as the applied stress, 

but compressed perpendicularly, and the surrounding material is left undeformed. Since 

the deformation occurs only in specific regions in the sample it is non-affine. The contrast 

between these two deformation modes is shown schematically in Figure 1.10 as a side view. 

The corresponding top view is shown in Figures 1.11 and are optical microscopy and 

atomic force microscopy (AFM) images of crazed PS. The picture shown in Figure 1.10 is 

somewhat of a simplification since craze fibrils are not indicated there. However, even on 

the scale of the optical microscopy image shown in Figure 1.11(a) the craze fibrils cannot 

be resolved. The crazes were grown in samples which were approximately 130 nm thick and 

(a) (b) 

Figure 1.11: (a) optical microscopy and atomic force microscopy images of crazes grown in 
PS samples. The scale bars are approximate. 
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about 5x5 mm2 . The image in (a) is an optical microscopy image and the brightest areas 

are a reflective substrate, the darkest areas are uncrazed polymer and the rest is crazed 

material. In (b), the image is an atomic force microscopy topography relief (darkest areas 

are small heights and the brightest areas are higher). Near the top and bottom of the figure, 

there is undeformed polymer material which is bridged by the craze fibrils shown in the 

centre. In (b) the stress was applied vertically as opposed to the schematic in Figure 1.10 

where it is shown being stressed horizontally and opposed to (a) in which strain was applied 

in many directions. 

The craze regions are clearly anisotropic; the fibrils are preferentially oriented in the 

direction of applied stress. This need not always be the case though, for a different polymer, 

or even with the same polymer in a different environment, it is possible that the 'craze' 

regions will not contain any voids as shown in Figure 1.11(b). In these cases, the deformed 

regions are not called 'crazes' but are called 'deformation zones.' Since all the samples 

studied here deformed by crazing, we will pay no further attention to the alternative method. 

Craze growth 

Crazes are formed from an isotropic solid which means that they must nucleate and grow 

before they take the form seen in Figures 1.10(b) and 1.11. Several authors have studied 

various aspects of craze nucleation (1, 3, 24] but this process is not directly related to the 

results presented in this thesis and therefore will not be discussed. A similar statement can 

be made concerning the failure of crazes (2, 3, 25, 26]. We will concern ourselves here with 

the process of craze growth. Later we will see how comparison of the polymer which has 

been crazed to the polymer which is uncrazed can explain how a polymer chain's length 

affects its ability to participate in global system events. 

If the stress applied to a polymer sample is uniaxial, crazes form in parallel. A wider 

view of Figure 1.11 would almost see that figure as the 'unit cell,' except that there would 

be more uncrazed material between the crazes, and the crazes are not infinitely long in the 

horizontal direction. Actually, this calls to question the title of this section. Let us assume 

that a craze has already been formed, then we want to know how the existing crazes grow. 

There are three methods by which this can happen: (1) the craze tip (not shown in Figure 

1.11; the walls between crazed and uncrazed material eventually converge far to the left and 

right of the bounds in this figure) may advance to make the craze in Figure 1.11 wider in 

the x direction; (2) the walls of the craze may advance upward (or downward), bringing new 

material into the craze and making it wider in they direction; and (3) the existing material 

in the craze can become more deformed (the fibrils of Figure 1.11 would become taller and 

thinner) also making the craze wider in the y direction. 

The crazes we study in this work are grown in films roughly 130 nm thick. Given the 
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Figure 1.12: Craze thickening mechanisms. In both cases, the initial and final products are 
the same, but the intermediate steps are different. In the upper pathway (surface drawing) 
the craze thickens by drawing new material into the craze while in the bottom pathway 
(fibril creep), the craze thickens by further deforming the existing crazed material. 

coordinate system defined in Figure 1.11, they are typically of order 10 p,m wide in the 

y-direction 6 , and can extend a millimetre or two in the x-direction; craze tip advance (1) is 

the process that allows crazes to have such a large extent in this direction. Close to the craze 

tip, the thickness in the y-direction is only about 4 nm [25], which is much less than the 

typical 10 p,m quoted above. Since this is the case, there must be significant contributions 

to craze growth from either of craze thickening methods (2) and (3) from above. The two 

methods by which a craze can thicken in the y-direction are shown schematically in Figure 

1.12. 

At the extreme left, the figure shows a piece of material that goes into making a craze. At 

the extreme right, the final state of the material is shown 7 . In the top thickening pathway, 

the craze grows by drawing new, uncrazed material into the existing deformed material. This 

adds to the volume of crazed material and takes away from that of the uncrazed volume. In 

the bottom, it grows by continually deforming the already crazed material. These two craze 

thickening mechanisms are known as the surface drawing and fibril creep, respectively [25]. 

If fibril creep is the dominant mechanism of craze thickening, then the system must 

somehow decide a priori how much material will be crazed. Fibril creep would also give rise 

to a correlation between the craze thickness and the degree of deformation of polymers in 

the craze. On the other hand, if surface drawing is the dominant mechanism, the amount 

of crazed material will depend only on the extent to which the system has been deformed 

as a whole. While it is not necessary that only one of these craze thickening mechanisms 

operate in the crazing process, it is possible that one will dominate the deformation. In the 

6 The craze fibrils in Figure 1.11 would not be well resolved in an AFM scan lOp,m wide. So, this figure 
is not quite 'typical' of a mature craze, but it serves the purpose of illustrating crazed and uncrazed material 
in one place. 

7 Note that crazing is a plastic deformation process, so it is assumed that the volume of material remains 
constant before and after crazing [25]. 
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experimental studies of crazing by Lauterwasser and Kramer (25] and by Brown [27], and 

in the simulations by Rottler and Robbins [2], it has been shown that surface drawing is 

indeed the dominant craze thickening mechanism. In [25] and (27], it was shown that there 

is no correlation between the extent of deformation in a craze and the craze thickness 8 • 

ii The connection between craze and chain dimensions 

Earlier it was said that our aim was to understand what happens to a polymer network 

when the entanglements that hold it together are swelled. To do this, we have studied the 

results of crazing experiments. Because our experiments do not directly measure individual 

chains, it is necessary to connect the results of the experiments to the molecular quantities 

of interest. 

When a glassy polymer system is strained and crazes are formed, it seems clear from 

Figure 1.11 that even the craze regions are not affine deformations. In their simulations of 

craze growth and fracture though, Rottler and Robbins [2] were able to show that crazes 

can be taken to be deformations that are statistically affine. This of course applies only to 

the regions of the sample that were actually deformed, and not to the system as a whole 

(see Figure 1.10). The type of deformation depicted in the boxed portion of Figure 1.10 can 

therefore be considered as affine. 

Now, we need to consider that the individual polymer molecules making up the system 

must also become deformed. The question of what they look like before and after the 

deformation will now be discussed. First though, a comment concerning entanglements in a 

polymer glass is in order. In the melt one must distinguish carefully between entanglements 

and cross-links since the structure of individual molecules greatly influences their mobility 

[28]. Since entanglements are not permanent connections, an applied stress to a melt may 

cause two entangled molecules to disentangle and become spatially separated as shown in 

Figure 1.5. It is much less likely for an applied stress to break chemical bonds (as long as it 

is not too large) hence cross-linked chains remain in contact under the same applied stress. 

Cross-linked chains are harder to push around one another than similarly sized linear chains. 

In the glassy state, the difference between entanglements and cross-links, however, is 

not so clear. In a polymer melt, each chain wriggles and reptates about and interacts with 

many different chains over time. As T9 is approached, though, the chain interacts with fewer 

chains over the same period of time. When the temperature is below T9 , the quasiequilibrium 

interactions between one chain and its neighbours becomes fixed in time. Since this is the 

8 Actually, this is not the whole story. Near the craze tip, the extent of deformation in the craze is 
somewhat higher than that for material far away from the craze tip. This has been explained [25] by arguing 
that the amount of stress required to widen a craze by propagating the tip is actually greater than the 
amount of stress required to thicken it. Thus, one sees is a small region in the middle of a craze, called 
a 'midrib', where the polymers have been deformed to a slightly larger extent compared to the rest of the 
craze. 
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Figure 1.13: At the top, an undeformed polymer glass, of height h has chains with random 
walk trajectories, and the distance between entanglements is d. In the crazed section of the 
glass, whose height is he, the new distance between entanglements isle. One should consider 
the scale of the 'system' which is being strained here to be of order 100 nm tall and of order 
1 mm wide. The polymer chains depicted here, though, should be considered as having sizes 
of about lOs of nanometres. 

case, one might infer that the entangling interactions which slow the rearrangements of 

polymer chains in the melt might become something of a 'cross-link' in a glass. For the 

purposes of crazing experiments it has indeed been shown by Donald and Kramer [11] that 

one may treat entanglements in polymer glasses as permanent connections between the 

chains. If experiments are done near T9 , though, disentanglement [29] may occur due to 

reptation of the polymer on the time scale of an experiment. In these cases entanglements 

may not be treated as permanent interactions between a definite set of monomers, and care 

must be taken with how to interpret results in these types of experiments. 

In a polymer glass that has been frozen from an equilibrated melt, the chain configura­

tions are random walks as depicted in Figure 1.1. After the deformation that takes place in 

Figure l.lO(b) though, the polymer chains that are part of the craze regions are no longer 

random walks at all. They have been given some preferred orientation as a result of the 

straining. A schematic of the state of polymer chains in strained and unstrained glasses is 

shown in Figure 1.13. 

In the model presented by Donald and Kramer [11], the following assumptions are made. 

In an uncrazed polymer glass, the trajectories of a polymer chain are random walks9 . There­

fore, given Equation 1.1, we have d Ml.
! 

After the crazing process has completed, therv 

trajectories are no longer random walks so the distance between entanglements should then 

scale linearly in the amount of material between entanglements, that is, le rv Me. In both of 

these statements it is assumed that the length of chain segments between entanglements re­

mains constant. This implies the above discussion concerning entanglements vs. cross-links 

9 For an alternative model that does not consider the polymer chains as random walks, see Appendix A. 
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in polymer glasses. Comparing the distances between entanglements before and after the 

crazing process, we have 

(1.20) 

where A is called the extension ratio of the molecules. So if one can measure or infer le and 

d, this relationship gives a measure of Me, or at the least, a method by which Me can be 

compared from one system to the next. 

In the next chapter, it will be discussed that the experimentally measured quantities 

that make up the most important parts of this work are the heights he and h. These heights 

are shown in the 'system' of Figure 1.13, his the height of the uncrazed material and he is 

the height of the craze. The purpose of this section is to connect these quantities to the ones 

that make up Equation 1.20. To do this we first assume that, as pointed out in [2], there is 

no net change in the out-of-plane dimension of the system during crazing. Let the width of 

the craze be called We and let the width of material that went into making the craze be W 0 • 

Then if volume is conserved during crazing, it must be true that 

(1.21) 

where the out-of-plane dimension cancels because it is unchanged. Finally, we assert that 

the deformation of the system is a manifestation of the collective deformations of all of the 

polymers that make it up. If this is true, then we can write 

and given Equations 1.20 and 1.21, we can now compare the entanglement molecular weights 

of different systems by crazing them and measuring both the deformed and undeformed 

heights: 
he 
h ,....;M_l 

2 
e ' 

(1.22) 

and given Equations 1.20 and 1.22, we see that 

2 

( hhe) ,.....; Ve. (1.23) 

It may not be an overstatement to say that this relationship is the one that gives meaning 

to almost all of the results that are to be presented later in this thesis. 

iii Measuring A 

Several methods have appeared for measuring the extension ratio, A, in crazed polymer 

glasses and a decent summary of them is listed in [30]. The first method by Kambour [31] 
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was an optical technique that used total internal reflection in crazes to measure their density. 

This density was compared to the bulk density of crazed matter and from this, the volume 

fraction, vf, could be computed as the ratio of the craze density to the bulk density. After 

VJ is computed, it is easy to show that A= 1/vJ. 

Here, the craze density is the average density of material in the craze region. The volume 

used in computing this density can be defined by the craze width, We and the original height 

of the sample, h. The 'craze density' does not reflect a change in the density of polystyrene 

in the craze, it merely reflects the fact that there are voids interspersed between craze fibrils 

and the craze density must therefore be less than the bulk density. 

Methods for measuring v1 by using the scattering vectors of x-rays have also been devised 

[30]. The method by which one can determine A by AFM was discussed above and has 

appeared at least twice [4, 32]. AFM was also responsible [33] for the 'discovery' that craze 

fibrils gather into clusters (at least in thin films) near the middle of the craze region as seen 

in Figure 1.11 and in the schematics of crazing discussed in this section. Previous to these 

observations of 'craze necks,' (as late as 1990, see Figure 3 of [34]) it was supposed that 

craze fibrils were distributed uniformly through craze regions. 

The most widely used method, however, has been that developed almost simultaneously 

by Kramer [25] and Brown [27]. In this method transmission electron microscopy (TEM) 

is used to image, simultaneously, a hole, some crazed material and undeformed regions in a 

polymer glass. The basic idea is that electrons incident on a sample of a given thickness may 

or may not be scattered by some angle. The probability that a sample scatters an electron 

by some angle Bmax or greater is a function of the thickness of the sample. 

For samples that are not too thick, it can be shown [25, 35] the probability of scattering 

at an angle greater than Bmax, which is the angle subtended by an aperture below the sample 

in a TEM, is an exponentially decreasing function of the thickness of the sample. Hence, 

Figure 1.14: Electrons incident on a sample of varying thickness have some probability of 
being scattered out of the viewing area. The thicker the specimen, the more likely is it for 
an electron to be scattered out. This gives rise to a position dependent intensity profile. 
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the intensities of crazed and uncrazed material in the film as measured on a CCD camera 

ought to have the form 

(1.24) 

where ! 0 and R are both constants for a given experiment. 10 is simply the value of the 

intensity as measured in a hole and R is a measure of the mean free path for the electron. 

If Equation 1.24 is true, then one can calculate the ratio of he and h from the measured 

intensities via 
he = 1 __ln_(I---'-e/_h-'--) (1.25)
h ln(Io/h)' 

With the use of Equation 1.23, one can determine A for the crazed material by extracting 

values of ! 0 , Ie and h after having measured an intensity profile like the one shown in Figure 

1.14. 

V Swelling entanglements 

The question of what happens to a polymer system when the entanglements that hold it 

together are swelled is addressed in this work. The method by which we affect this swelling, 

and certain effects one should expect to see, will presently be discussed. Figure 1.15 schemat­

ically shows how one might swell entanglements, and that is to move all entanglements apart 

along the chains. Practically, though, this would be hard to do in an equilibrated system. 

Rather than trying to actually separate entanglements in the system, our approach has 

been to render some of the entanglements in a system incapable of transferring stress across 

the network. Consider a network that is composed of chains with molecular weight that is 

much greater than Me as shown in Figure 1.16(a). In this case, the length scale describing 

entanglements is d1 . Now a similar system is prepared in which some of the long chains are 

Figure 1.15: Initially the entanglements are (a) close together and Me is small, but then 
they are farther apart after (b) the network has been swelled and M e is large. 
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(a) (b) 

Figure 1.16: Before 'cutting' long chains (a) the relevant length scale in the system is d1. 

After cutting some of the polymer chains, the new relevant length scale is d2 . 

cut into many pieces. Assume that each new piece has a molecular weight which is smaller 

or comparable to Me, as shown in Figure 1.16(b). In this case, the entanglements that re­

sulted from interactions with the vertical chain have been made incapable of holding tension 

between the two horizontal ones. Since this is the case, the new length scale describing 

entanglements is d2. 

Practically, it is not possible to controllably 'cut ' polymer chains into monodisperse 

lengths. However, it is possible to create relatively monodisperse collections over a wide 

range of molecular weights both above and below Me for many polymers and, in particluar, 

PS is one of them. In the following, the symbol M_ will be used to denote chains whose 

molecular weights are smaller or comparable to Me: M_ ;S; Me. As well, M+ will be used 

to refer to chains whose molecular weight is much greater that M e: M+ >>Me. 

To reduce the number of entanglements in a system continuously, the idea is to prepare 

systems that are blends of M_ and M+ chains. More precisely, some weight fraction,¢ , of the 

chains have molecular weights M_. The rest of the system, (1-¢), is composed of polymer 

chains with molecular weights M+. In these system, there are three broad categories of 

interactions between chains and they are summarized in Figure 1.17. Interactions between 

two M+ chains are denoted ++, interactions between a big chain and a short chain are 

denoted +- or equivalently by -+, and interactions between two M_ chains are denoted 

The entanglement density, ve, is a material parameter that is not much affected by the 

molecular weight of the chains that make up the system. However, one can imagine that by 

reducing the molecular weight of the chains in the system, some measurable change must take 

place. Here we define an effective entanglement density, Veff, and a corresponding effective 

entanglement molecular weight, M eff I"'V 1/veff, that describe the change that takes place as 

a result of a change in, specifically here, ¢ for the system. When ¢ is small, the interactions 

are dominated by ++ interactions, because these are interactions between chains that have 
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~--

Figure 1.17: There are entanglements between big chains ( ++), between big chains and 
short chains ( +- or -+), and there are entanglements between short chains ( --). 

large molecular weights. Conversely, when ¢ is large, the majority of interactions are -­

because in this situation the system is composed mostly of short chains. 

If it can be assumed that entanglements are the result of interactions between groups 

of monomers on individual chains, then it becomes relatively easy to write down how Veff 

should change with¢. The analysis amounts to asking, "if I pick two groups of monomers 

from two specific chains, what is the probability that they come from a long or a short 

chain?" In a system with a given ¢, the probability that the monomers both come from 

chains with M_ is P(--) = ¢2 • Similarly the probability for choosing monomers from two 

long chains is P (++) = (1 - ¢) 2 . The probability for choosing monomers from a long and 

a short chain is P(+-) = 2¢(1- ¢) and it is true that P(++) + P(+-) + P(--) = 1. 

In the systems that are discussed in this thesis, there are chains with molecular weights 

M+ and M_. Since M+ >> Me it is expected that all the interactions between big chains will 

lead to entanglements. However, since the short chains have M_ ~Me we expect that only 

some of the +- and -- interactions will lead to entanglements. Given these assumptions 

we can write down how the effective entanglement density should scale with ¢: 

(1.26) 

where a and b are the parameters that describe the probability that interactions between 

a short chain and another chain in the system contributes to the effective entanglement 

density. Ve is the entanglement density of the polymer species. In order to connect this to 

the measured values (he and h) in our experiments, we just need to remember that the ratio 

of these two measurements is a function of Me as shown in Equation 1.22. As well, since 

Me rv 1/ve, (hc/h) 2 will have the same dependence on¢ as in Equation 1.26, except instead 

of having the prefactor Ve, we will have 

C:r= "~2 [(1 - ¢)2 + 2a¢(1 - ¢) + b¢2] • (1.27) 
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where ..\.;;- 2 is a constant for a given polymer species and a and bare the same as in Equation 

1.26. 

This method of reducing the network's ability to transfer stress through the system has 

been done at least twice in the literature. The first appearance was in the work by Yang et al. 

[36] wherein crazes were grown in glassy PS blends of varying¢ and;\ was measured using 

transmission electron microscopy (TEM). The second occurrence was by Roovers [18] who 

used polybutadiene blends of varying¢ and measured plateau moduli, G~, from oscillatory 

shear experiments in the melt (recall that G~ is proportional to ve)· 

In both cases, the measured quantities had a quadratic dependence on ¢ of the form 

(1- ¢) 2 • In these works though, theM_ chains were too small to significantly change the 

parameters a or b from zero. As we will see, when M _ is big enough to warrant nonzero a 

orb, these experiments will afford us a measurement of Me which is yet to be published in 

the literature. 

28 


http:McGraw-M.Sc


Chapter 2 

Experiments 

Samples were prepared using PS purchased from Polymer Source Inc. with molecular weights 

M+ = 785 kg/mol and M_ = 5.1 or M_ = 15.5 kg/mol (weight averaged molecular weight 

for all cases, Mw)· For the former two, the polydispersity index (PI) was 1.07 and for the 

latter PI was 1.04. The lot numbers, respectively, were PS-700k, P4246-S and P4247-S. 

Mixtures of high and low molecular weight PS were dissolved in toluene for varying weight 

fractions of the low molecular weight component, ¢. Films t'V130 nm thick were spun from 

solution onto freshly cleaved micah substrates and annealed for 12 h to remove residual 

stress and solvent. Films were then floated onto the surface of a clean water bath (Milli-Q) 

and picked up across a 1.5 mm gap between two fixed aluminum blocks. Together the blocks 

were then fastened to a single-axis translation stage, unfixed, and slowly pulled apart until 

Figure 2.1: AFM image of a crazed sample showing the substrate (bottom left of image on 
left), crazes, he and undeformed polymer, h. The height profile on the right is taken from 
the averaged data of the white box and heavy line on the left. 

29 



J.D. McGraw - M.Sc. Thesis - Department of Physics and Astronomy- McMaster University 

crazes were formed. A constant strain rate of 'Y = 2 x 10-4 s- 1 was used and samples were 

strained to about 'Y = 0.1. The experiments were done at room temperature which is well 

below T9 90 °C. rv 

The samples were then measured with a Veeco-Digital Instruments Multimode AFM in 

tapping mode or with a Phillips CM-12 TEM. For the AFM measurements, the strained PS 

samples were transferred to a Si substrate by placing them onto the substrate and letting 

surface forces pull the specimens into contact with the substrate. After contact was made 

between the previously freestanding films and the substrate, scratches were made along the 

edges of the aluminum blocks, confining the crazed samples to the Si wafers. In order to 

measure he and h simultaneously as shown in Figure 2.1 which shows an AFM image of 

a crazed PS film, scratches were made at angles to the crazes, enabling all of the craze, 

undeformed material and the substrate to be captured in a single scan. The state of a 

typical sample after the second set of scratches have been made is shown in Figure 2.2. 

Since VJ has been measured most often by TEM, samples with M_ = 5.5 kg/mol were 

prepared over (nearly) the same range as for the systems for which AFM measurements 

were made. In this way a direct comparison between the two methods might be made 

for samples prepared using the same polymer, and on the same apparatus. Strained films 

were transferred onto PS coated Cu TEM grids, again by placing the strained films into 

contact with the grids and allowing surface forces to pull the PS into contact. Using a 

Figure 2.2: An optical microscopy image of a crazed PS sample on a Si substrate. The more 
horizontal lines are crazes and the thick vertical line is a scratch. The box a the top left 
shows where a typical AFM image might be taken, capturing all of the uncrazed and crazed 
material, as well as the substrate. The straining direction is indicated by the arrows. The 
scale bar is approximate. 
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Figure 2.3: TEM image of a crazed sample showing the hole, 10 , crazes, Ic and undeformed 
polymer, h. The distance across the craze is approximately 10 J.Lm. 

focused electron beam small holes were vaporized into various portions of craze regions and 

a picture including the hole, craze and undeformed regions, was taken with a CCD detector; 

the intensities of these regions are denoted, as in Figure 1.14, 10 , Ic and Ib respectively as 

shown in Figure 2.3. 

As we will show below, the values of,\ calculated using results from these two methods 

were not the same for any of the ¢ used in this work. Several experiments were devised to 

determine whether this discrepancy was a result of differences intrinsic to the measurement 

techniques, or if the structure of the crazed material was somehow the reason for the discrep­

ancy. As we will see, there is some combination of both of these ideas that is responsible 

for the discrepancy. Extensive calibrations of the AFM have been carried out as well as 

several experiments verifying that the AFM measurements are valid. Because the details of 

these experiments and the comparison to TEM detract from the focus of this thesis, this 

discussion appears in Appendix B. 

Atomic force microscopy 

Atomic force microscopy is a relatively new technique (the first AFM was built in the mid 

1980's [38]) for surface measurement that allows one to measure, in particular, height profiles 

of specimens in which the surface topography has height variations of about 10 J.Lm or less 

over a lateral range of about 150 J.Lm or less. In all cases discussed here, heights range from 

about 10-20 nm to about 100-160 nm in a typical scan area that is something like lOx 10 

J.Lm2. 

The AFM paradigm is a classic vinyl record player: a sharp tip scans along a line and 

interacts with the surface to transmit a signal as a function of surface quality as shown in 
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(a) (b) 

Figure 2.4: (a) the basic atomic force microscope: a piezoelectric crystal (Pz) oscillates 
the AFM tip at some frequency w0 • A laser beam, L, bounces off the top of the tip and 
shines onto a split photodiode array, T and B, which is used to measure how much the tip 
is oscillating. As taken from [38] (b) shows the atoms of the AFM tip interacting with an 
atom on the surface of a sample, as highlighted by the boxed region in (a). 

Figure 2.4. Where the record player responds to height differences, the AFM may measure 

changes in height, electric or magnetic field, density, etc [39]. Determining surface topog­

raphy amounts to measuring the deflection of a needle-like cantilever. Early AFMs used 

the principles of scanning tunneling microscopes [38, 39] to measure this deflection, but in 

recent versions of the instrument it is more common to use a reflected laser beam to measure 

the deflection. 

If the AFM tip can be described as a Hookean spring, then the differential equation 

governing its motion will be 

mz + az + kz = fo sin(wot)- Q(z). (2.1) 

The left hand side of this equation is just a damped simple harmonic oscillator, and the 

right hand side describes the external forcing. The first term on the RHS is the piezoelectric 

driving force and Q(z) describes the interaction between the tip and the sample. When the 

tip is far from the surface of the sample, Q is small, but attractive. As the tip approaches 

the surface though, the interaction will become repulsive as the tip is embedded into the 

sample. 

z

Given the form of Equation 2.1, it is possible to show that the steady state solutions, 

8 (t), will be periodic with frequency W 0 , but that they need not be harmonic. In free air 

with the AFM tip far from the surface the interaction, Q, will be negligible. In this case, 

the root-mean-square (RMS) amplitude of the tip's oscillation, A1, will be relatively large. 
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As the sample is approached though, some of the tip's energy is transferred into the sample 

and the tip's oscillation amplitude will be less than At· 

In tapping mode AFM, the cantilever tip is driven to oscillate by a piezoelectric crystal 

as in Figure 2.4(a) near its resonant frequency. For the experiments reported here, this 

frequency is something like W 0 = 300 kHz. A laser is shone onto the top of the cantilever 

and the reflected light is collected by a 2 x 2 photo diode array. The purpose of the diode array 

is to allow calculation of the difference between the currents resulting from light incident 

on the top, T, and bottom, B, diodes. The horizontal splitting aids in beam alignment. 

The magnitude of the difference, IT- Bl, will oscillate at the same frequency as the driving 

frequency and will have some root-mean-square value, in free air the value is At· 

To measure surface topography, the oscillating tip is lowered toward the surface until 

the measured RMS amplitude is some user defined value Aa = t:At where 0 < E < 1. It 

is the job of a set of feedback electronics to ensure that this oscillation amplitude remains 

as constant as possible for the duration of the data collection. Once this 'contact' with the 

surface has been made, the sample begins to raster in the x- and y-directions (as defined 

in Figure 1.11) by two other piezoelectric crystals (not shown in Figure 2.4). As the tip 

approaches a change in the height of the sample, as shown in Figure 2.4( a), the interaction 

between it and the sample changes, and this results in a change in the RMS A= IT- Bl. 

In addition to the sinusoidal driving applied to Pz of Figure 2.4( a), it is possible to apply 

a bias voltage, B, to regulate the mean height of the AFM tip. Changing this voltage is the 

job of the aforementioned feedback electronics, and their purpose is to keep the operating 

amplitude, Aa as constant as possible. To do this, a PID controller is used (P.I.D. stands 

for Proportional, Integral and Derivative). The principal of operation of a PID control is to 

correct the error signal e(t) (here defined as e(t) = Aa(t)- A(t) ) by considering the current 

value of P = e, how much error has accrued over some previous time period (I= f~r e(t) dt) 

and how much the error is changing ( D = de/ dt). Depending on the weighting of each of 

these terms, the output bias B is changed such that Bnew = (KpP + KI I+ KD)Bald· 

Summarizing, B is the bias voltage applied to the oscillating AFM tip. In tapping 

mode AFM, one wishes to maintain a constant tapping amplitude, but when the height 

of the sample varies, the interaction, Q, between tip and sample changes and the tapping 

amplitude deviates from A 0 • Using PID control allows the B to be changed such that 

Aa - A is minimized. Thus, after a calibration of B with respect to height, one can collect a 

spectrum of the bias voltage as a function of position, B(x, y), and easily convert this data 

to a height spectrum, z(x, y). 
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II Transmission electron microscopy 

This technique makes use of the fact that an electron, when interacting with an atom, may 

scatter away from its original trajectory. A sample is illuminated from above with a beam 

of electrons with parallel trajectories. As the electrons interact with the sample, they will 

be scattered to varying degrees depending on the local sample thickness (areal density) or 

elemental composition. Variation in these qualities can be seen with a resolution of 1 nm or 

less [40]. 

A TEM consists of an electron gun, electron lenses and apertures, the sample and the 

image screen. For details outside of the sketch that follows refer to Reimer [ 40]. The electron 

gun consists of an anode and cathode and a so-called Wehnelt electrode is placed between 

them. Their configuration in a typical TEM is shown in Figure 2.5 and they are rotationally 

symmetric. A negative bias, -U, is applied to the cathode and a slightly more negative bias, 

-(U + Uw), is applied to the Wehnelt electrode, while the anode is maintained at ground 

potential. 

For the instrument used in these experiments, the cathode is made from LaB6 . Electrons 

are generated in a process called thermionic emission whereby the cathode temperature is 

raised until electrons are essentially boiled off. Raising the temperature of a metal causes the 

Fermi distribution function to become broadened. As such, the higher the temperature is 

raised, the more likely it is that an electron in the cathode will have enough energy to escape 

the confines of the cathode's work function. For LaB6 cathodes, the required temperatures 

are roughly 1400-2000 K. 

Once an electron is free of the cathode it is subject to the constraints of the electric 

field that is set up by the three electrodes that make up the gun. In the absence of the 

Wehnelt electrode, electrons exiting the cathode off the z-axis have no forces to push them 

back on axis. Possible trajectories are shown as dotted lines in Figure 2.5. However, since 

I 

\ 

) ~111-

Figure 2.5: A TEM electron gun with its (top) cathode, (middle) Wehnelt electrode and 
(bottom) anode. Respectively, they are held at potentials -U, -(U + Uw) and 0. 
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Figure 2.6: A TEM electron lens. The heavy black squares are iron pole pieces and the grey 
circles are coils of wire through which some current flows. The arrows represent resulting 
magnetic field lines. 

the Wehnelt electrode is at a lower potential than the cathode, electrons are driven away 

from it and back on-axis as indicated by the curved, solid trajectories. 

Even if the electrons are pushed back on-axis by the Wehnelt electrode, the electron 

trajectories exiting the gun are not parallel. Since it is desired that the trajectories of 

electrons incident on the sample in the TEM are parallel (and normal to the sample plane) 

some method of selecting these electrons is necessary. Furthermore, once the electrons have 

interacted with the sample (in regions that are of order 1 J.-Lm to smaller than 100 nm), 

the exiting electrons must be projected onto a fluorescent screen or CCD, the former being 

of order 10 em in diameter. Redirecting and projecting electrons is done with the help of 

magnetic lenses, and the construction of one is shown in Figure 2.6. 

In a magnetic lens, the electrons ejected from the gun are passed through a coil of wire. 

The coil is enveloped by a layer of iron except for a slit where there is none; the current in the 

coil magnetizes the iron covering. In this situation, the magnetic field is no longer isotropic 

in the z direction as it would be if there were no iron covering. The resulting magnetic 

field lines, which are a combination of the fields due to the current running through the coil 

and also the field due to the magnetization in the iron layer, are shown in Figure 2.6. The 

strength of the magnetic field in the z-direction as a function of distance, z , from the middle 

of the slit can be well approximated by [40] 

B - Bo (2.2)
z - ( )2 ' 

1 + ~ 

where B 0 and a are both constants. By solving the equations of motion for an electron in 

this field it can be shown [40], for electrons passing near the center of the coils, that the 

behaviour of electrons entering such an apparatus is similar to that of light passing through 
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a typical optical lens. That is, an electron passing through the point ( r0 , Z 0 ) on one side of 

the lens will pass through a point ( r 1 , z1 ) commensurate with the modified optical equations 

(2.3) 

2 2 2Relating to previous convention, r = x + y • In the first of these equations, M is a 

magnification and is a function of Z0 and z1, but not of r 0 or r1. The second equation is a 

form of Newton's lens equation, where fo and !I are focal lengths, and the variables on the 

left hand side are actually functions of Z 0 and z1. The variables Z 0 , Z1, / 0 , /I and Mare also 

functions of the field strength and width, B 0 and a, as well as the electron gun accelerating 

voltage, U, and the electron rest mass energy, mec2. 

In a typical TEM, there are several of these lenses. The first set is designed to ensure that 

all the electrons interact with the sample at right angles. This has the obvious advantage 

that it is much easier to model scattering results if one can assume that all incoming electrons 

are moving in the same direction. The second set of lenses is designed to amplify the image 

of scattered electrons onto a fluorescent image plate or CCD. Obviously, the functions of the 

two sets of lenses are different, but by tuning the strengths of Bo (by adjusting the current 

in the wires, say) and a (by adjusting the size of the slit in the iron coil covers) relative to 

the electron gun energy, U, the desired lens effect can be obtained. Actually, the parameters 

that control the function of the lens are a and the quantity w =~II+ k2 where [40] 

B 2 2 

k2=~ 
8meU' 

(2.4) 
- ( eU )U=U 1+--2 •

2mec 
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Chapter 3 

Results and discussion 

As pointed out in Section V of Chapter 1, a system of polymers that is composed of long 

chains that are diluted with shorter chains should have the effect of reducing the the number 

of entanglements that sustain network stress. It was also discussed that the ratio of the 

heights of the crazed and uncrazed films is a function of the entanglement density (recall 

Equations 1.20, 1.22 and 1.27). 

0.25 

0.20 

0.15 

"';'~ 

0.10 

0.05 • M_ = 5.1 kg/mol 

0.00 ._._______,__.....___.___._____.._..___.____.__.'---_.____.____.__.___._. 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Figure 3.1: .A -l = hc/h as a function of¢ for M_ = 5.1 kg/mol and M_ = 15.5 kg/mol. 
The solid lines are fits to guide the eye. 
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I Varying M_ 

The data presented in Figure 3.1 show the trend in ,\-I for 0 < ¢ < 0.30 for M_ = 5.1 

kg/mol as well as for M_ = 15.5 kg/mol. Figure 3.2 shows the same data (this time 

squared since ,\-2 = (\c) 2 
"' lleJJ) along with the data for M_ = 15.5 kg/mol over a similar 

range. As previously discussed ¢measures the number of short chains in the system, and 

as the number of short chains increases, we expect that some of the entanglements in the 

system will be rendered ineffective in their role of sustaining stress, recall Figure 1.16. The 

way in which lleff is expected to decrease is given by Equation 1.27: if (hc/h)2 is plotted 

over a range of ¢, the height ratio should decrease quadratically with ¢. In terms of the 

entanglement network, we can consider that as the number of short chains is increased, 

the entanglement points become more widely separated, therefore we expect the system 

to stretch farther before being maximally extended. Furthermore, when the length of the 

short chains is varied, we expect that if the length is small compared to Me, the extent to 

which the effective entanglement density1, lleff, is reduced will be greater than when M_ is 

comparable in size to Me. 

Inspection of Figure 3.2 shows that this is indeed the case, since forM_ = 15.5 kg/mol, 

~ 
~ 

l 
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Figure 3.2: As obtained by AFM, the height ratios ,X-2 = (hc/h) 2 "'lleff· The solid lines 
are fits to Equation 1.27. For M_ = 5.1 kg/mol, b = 0 was imposed while for M_ = 15.5 
kg/mol, b = a2 was imposed. 

1 Recall that the effective entanglement density, veff, counts only those entanglements that transmit 
stress across the network. 
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Veff is greater than that in theM_ = 5.1 kg/mol systems for all¢ (except for when¢= 0). 

We can interpret this trend in terms of an effective entanglement molecular weight, Meff, by 

saying that when a system composed of long chains, M+, is diluted with chains that have 

small molecular weights, M_, the observed extension ratio is such as that which would be 

observed in a system that has a larger entanglement molecular weight. 

The parameters a and b 

In Equation 1.26 it was stated that the Veff should have a quadratic dependence on the mass 

fraction of short chains as 

In this expression, we assume that all the interactions between two big chains that would 

generally lead to entanglement still do upon the addition of short chains to the system. The 

parameters a and b describe the interactions between+- or-+ and-- chains respectively. 

They must both be less than 1, and they reflect the fact that not all interactions between 

short chains and some other chain will lead to entanglement. For longer chains, such as the 

M_ = 15.5 kg/mol, a and b will be bigger than for when M_ = 5.1 kg/mol because, as will 

be shown below, longer chains entangle more often than short chains. It is apparent that a 

and b should be functions of both Me and M_. Here, by 'entanglement,' we refer to those 

interactions which, for example, lead to stress transfer between chains. 

As a special case, consider when a= b = 1 as happens when M_ »Me. For this case, 

the term above in square brackets is equal to one upon expansion. This should be expected 

since when all chains have M »Me we expect all the interactions to lead to entanglement. 

Veff does not change with¢ because there is no loss of the network's ability to transfer stress. 

On the other hand when a = b = 0 (which is equivalent to saying that +-, -+, or -­

interactions do not contribute to the integrity of the network), as would be the case when 

M_ <<Me, Veff would depend only on the entanglement density of the material, and on¢ as 

Veff = ve(1- ¢)2 • This was the assumption made by Yang et al. and Roovers[36, 18] when 

they diluted well entangled (PS for the former, poly butadiene in the case of the latter) 

networks with low molecular weight chains, and they observed the expected dependence. 

Unfortunately, when a= b = 0, these types of experiments preclude a measurement of the 

entanglement molecular weight, Me, as we will show below. 

First though, it is prudent to comment on the relationship between the two parameters . 

.In what follows, we will argue that a is the fraction of short chains that are entangled. In 

the second term of Equation 1.26, a¢ is the probability that a short chain is entangled, 

and we multiply this by (1 - ¢) to give the probability that the short chain is entangled 
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with a long chain. Since all of the long chains are entangled, there is no prefactor for the 

(1- ¢) terms. In the third term, we wish to count all the interactions between small chains 

that are entangled. Since, as before, the probability that a small chain is entangled is a, 

the probability that two small chains interact and become entangled is (a¢) (a¢) = a2 (p2. 

Therefore, it must be that 

(3.1) 

Now, we ask how big is a? Since we consider that the entanglements that contribute to 

Veff are the ones that are between two different chains (ie, self entanglements do not count 

[4]), we believe the chains that are interacting with more other chains are the ones most 

likely to entangle. To have a high probability of getting an entanglement, a chain needs to 

be interacting with a sufficient number of other chains. 

When the pervaded volume, Vp, of a chain is large, there are more other chains entering 

into Vp and interacting with it. Thus we conclude that the short chains, with molecular 

weight M_, who have a prescribed minimum Vp will be the ones contributing to Veff· If 

a chain of some polymer species has a given molecular weight, the only way for its Vp to 

increase is for its end-to-end distance to increase, thus we need to consider the chains whose 

end-to-end distance, R, is a minimum, Rmin or greater: 

R 2: Rmin =>chain contributes to Veff· 

But what is the minimum end-to-end distance, Rmin, such that Vp is big enough to allow 

enough other chains in, leading to entanglement? In fact, this question leads us to a new 

definition of Me. We say that Me is the molecular weight for which the pervaded volume 

is big enough to lead to entanglement, just as Fetters et al. did [6). We use this molecular 

weight to define Rmin by invoking Gaussian statistics for the chains: 

Rmin=~ (3.2) 

The portion of chains that are longer than Rmin is, again, determined by invoking the 

Gaussian probability distribution for lengths of the random walking chain. We have already 

( ~) 312 2
discussed that this distribution is given by p(R) = e- a.R and a is related to chain 

variables by a = 3j2{3M (see Equation 1.5). The probability that a chain has R 2: J/3Me 

is given by integrating the probability distribution function over all R that satisfy this 
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condition: 

(3.3) 

dR. 

A geometrical interpretation of this integral can be made here. Figure 3.3 shows the in­
3 

tegrand, II= 47r ( 27r/M_) 2 
R2exp ( :;13

3/J:) as a function of R for several molecular weights. 

Based on the value of Me for PS found in [6], M_ = 0.4Me and M_ = 1.2Me roughly cor­

respond to the values of M_ used in the experiments reported here. The solid vertical line 

represents the end-to-end distance of an entanglement strand. The value of P for a given 

molecular weight is just the area under its curve to the right of the solid vertical line. As 

seen in the graph, when M is increased, its probability distribution function is progressively 

broadened and its peak shifts to the right. Because of this, as the molecular weight is in­

creased there is progressively more and more area under the curve to the right of the solid 

line, and the probability that a chain's end-to-end distance is greater than the entanglement 

strand's gets bigger and bigger. 

M 

i' 0.6 ­

~ 0.4 

0.2 

0.0 

R 

Figure 3.3: II as a function of R for several molecular weights of PS. The light gray vertical 
line is ( R2 ) ~ for an entanglement strand. The inset shows the function E (m) defined in 
Equation 3.5 for 0 < M_ < 7Me; the light gray vertical line shows M_ =Me and the value 
of E(m) there is approximately 0.39. 
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To make Equation 3.3 somewhat more elegant, we make the change of variables u = 

MR. Doing so, we find that dR = Mdu and R = Jf3Me => u =~so that 

the above probability becomes 

4 / 2 2P(R ~ J!iiTe) = V'ff _
00 

u e-u du =E(m), (3.4) 
1 

v:m 

where m = ;~: can be thought of as a reduced molecular weight. In terms of polymer 

chains, when M_ ----+ 0, the lower integration limit in Equation 3.5 goes to infinity and E(m) 

goes to zero2 ; there are no chains with small molecular weights that are longer than an 

entanglement strand. If M_ is large compared to Me then the lower integration limit of 

E(m) goes to zero and, since it is normalized, E(m) ----+ 1; all chains with M_ ~ Me have 

an end-to-end distance which is greater than that of an entanglement strand. We also note 

that E(m) is a function of Me and M_ only, and does not depend on the value of the f3 

that was introduced in Equation 1.1. E(m) is shown in the inset of Figure 3.3 for molecular 

weights M_ ~Me < 7Me and Me is again indicated by the solid vertical line. 

In this work, we make the claim 

a= E(m), (3.5) 

and test this prediction with the results obtained from fitting the data in Figure 3.2 by 

comparing the value of Me determined to the value obtained by Fetters et al. (6] in oscillatory 

shear experiments. When fitting the data for both M_ = 5.1 kg/mol and 15.5 kg/mol, we 

have imposed b = a2 as discussed above. With the fitted value of a, we then solve for Me 

with the equation 
00 

a = -4 / u2e-u2 du. (3.6) 
v:rr~V 2M_ 

The method by which this equation is solved can in principal be used to any desired 

degree of accuracy, even though, admittedly, its spirit lies in the brute force regime of 

analysis. Using a computer algebra system, Maple 9.5 in this case, the function f(m) = 

a- E(m) is plotted over a large enough range to find them-intercept. The plotting range 

is then reduced making sure to leave the intercept in the plotting range until the desired 

numerical accuracy in the range is obtained. For a given value of a, them-intercept, ma, is 

then taken to be 
2M_ 

ma=--, (3.7)
3Me 

which can easily be solved to give a numerical value for Me since M_ is an experimentally 

2If we make the substitution X= 1/rm then E(x) can be related to the complementary error function, 
erfc(x) by 

2x 2 
E(x) = ..Jiie-x + erfc(x). 
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controlled parameter and ma is found as described above. 

In the case of M_ = 5.1 kg/mol, the result of fitting gives a(5·1) = 0.04 ± 0.07. This 

indicates that about 4% of the interactions between short chains and long chains result in 
1entanglements. Although the error in the fit is large (a(5· ) can be said to be equal to zero 

within error), we can still try to gain insight by finding the value of Me which satisfies 

Equations 3.6 and 3.7. Doing so we find that 

M~5· 1 ) = 14.1 kg/mol. (PS) 

Using the upper bound found in the fit, a~~1~ = 0.11, one can place a lower bound on the 

value for Me using the same method, and this results in M~~·~in = 10.3 kg/mol. Similarly, 

we can compute an upper bound for Me as determined from theM_ = 5.1 kg/mol data. 

The lower bound of a(5·1) is a~i~ = 0 (since it cannot be less than 0). Substituting a= 0 in 

Equation 3.6 gives, in a disappointingly unenlightening manner, M~~·:Jax = oo. Fortunately, 

the M_ = 15.5 kg/mol data will provide us with a more meaningful upper bound. 

For M_ = 15.5 kg/mol, the result of fitting is a(15·5) = 0.44 ± 0.05 which gives b = 

a 2 = 0.19. This tells us that about 44% of the interactions between short chains and big 

chains result in entanglement, while only about 19% of the interactions between short chains 

and short chains result in entanglement (at least as far as crazing is concerned). Satisfying 

Equations 3.6 and 3.7 using a(15·5) = 0.44 this time requires that 

M~15· 5) = 14.0 ± 1.5 kg/mol, (PS) 

where again the error was found by taking the extreme values allowed by the fitting. These 

results for Me are comforting in light of the fact that Me for PS reported in [6] is about 13 

kg/mol. 

A useful check of this model is provided by the data presented in [18] which is shown in 

Figure 3.4. There, polybutadiene (PBD) melts were subjected to oscillatory shear experi­

ments of the type described in Section III.iv of Chapter 1. The melts were mixtures of high 

molecular weight chains and were diluted with some low molecular weight chains, M_ = 1.8 

kg/mol. The mixtures were prepared with 0 ~ ¢ ~ 0.838 (a much broader range than for 

the experiments presented here) and for each melt the plateau modulus, G~, was measured. 

As seen in Figure 3.4, the data for G~ as a function of ¢ is fit well by a quadratic of the 

form given by Equation 1.27. Where in that equation, the prefactor is the square extension 

ratio for¢= 0, .-\;;-2 
rv Ve, the prefactor in this case is G~ which we recall is also proportional 

to Ve as given by Equations 1.13 and the reciprocity of Me and Ve. The fact that the fit 

seems to be so good here is, in hindsight, reassuring since while the data presented in Figure 

3.2 is well fit by a quadratic function, may also be fit by a linear function if we did not 
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0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3.4: Roovers's [18] oscillatory shear results for Gfj.y as a function of¢. The solid line 
is a best fit to a modified version of Equation 1.27, where the prefactor is just Gfj.y for an 
undiluted system. 

believe the model captured by Equation 1.27. 

When fit to Equation 1.27, the data in Figure 3.4 yields a = 0.03 ± 0.01. Performing the 

same analysis as above for the PS samples, this leads us to 

MJI.B) = 5.4 ± 0.8 kg/mol. (PBD) 

There are various species of PBD, each of them with a slightly different Me as reported in 

[6]. There, Me was obtained again through the use of oscillatory shear experiments. For our 

purposes, we can say that the value reported there was roughly Me = 1.8 kg/mol, exactly 

the same as M_ used in the Roovers experiments. If this were the true value of Me, our 

analysis predicts that a here should have been about 0.4. If we also believe that b = a2 then 

in this case we should see the graph3 in Figure 3.4 go through 1.07 MPax [0.42] = 0.17 MPa 

when¢= 1. However, when ¢ = 0.838, Gfj.y has already fallen to 0.028 MPa, so based on 

our model, it seems unlikely that Me = 1.8 kg/mol. Me for PBD was obtained [41] by 

measuring nuclear magnetic resonance spectra in deuterated specimens and inferring chain 

relaxation times from the spectra. Their models relate the relaxation time spectra to Me 

3The parameter b in Equation 1.27 essentially describes the behaviour of Veff at ¢ = 1. When ¢ = 1, 
only the last term there survives and we have Veff = 1.07a2 = 0.17. 
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and for this parameter they obtained 5.380 kg/mol which is in agreement with the values 

we have found above. 

It appears that a crossroads has been reached at this point. On one hand, we have 

presented new results that indicate support for the model of Fetters et al. since the values 

of Me predicted by our model, encompassed by Equations 1.27, 3.1 and 3.5, agree with 

their packing model (which seems to have garnered continued support) and oscillatory shear 

experiments. However, in the case of Roovers's shear experiments, we find disagreement 

in the values predicted by our model and theirs. Some insight can possibly be gained by 

considering the results of our experiments when M_ = 5.1 kg/mol, or according to Figure 

3.3, M_ = 0.4 Me. In that case, the agreement between our measured Me and that measured 

in Fetters et al., depending on the value of a one believes from our experiments, may not 

have been so good. From the limited sampling we have made here, it appears that agreement 

between our models might depend on M _ in the sense that it should be chosen such that a 

differs significantly from 0. 

ii Denouement 

If one believes our model, I will leave this thesis with a final remark before concluding. In 

what has been described so far, we have always made the assumption that M+ >> Me but 

this need not be the case. In fact, a robust test of our model could be a measurement of Me, 

as described above, using bimodal molecular weight systems of polymers in which neither 

of M+ or M_ are much greater than Me· For the experiment to work though, one must see 

some change in Veff as a function of¢ (which again measures the number of smaller chains 

in the system), so the two should be sufficiently different from one another. In this system, 

we can define a+ and a_ where 

(3.8) 

The former quantity describes the number of ++ interactions that contribute to the entan­

glement density and the latter describes the -- interactions. In this system the effective 

entanglement density, if it obeyed our model, would vary with¢ as 

(3.9) 
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Actually, this recipe can be generalized to mixtures of any number of molecular weights by 

considering all binary interactions between chains of different molecular weights 

f./ f./ 

lleff = lie L L aiaj¢j¢i, (3.10) 
j 

where N is the number of different molecular weights, Mi, that make up the system and the 

obvious normalization constraint is 

(3.11) 

Since we have arrived at a general expression for discrete systems of polymers, it makes 

sense to generalize this to continuous distributions of polymer molecular weights. In this 

regime, the ¢i in Equation 3.11 take on a continuous distributions ¢c(M) and the sums 

become integrals over all molecular weights, M, 

lleff =lie/! a(Mt)a(M2)¢c(Mt)¢c(M2) dM1dM2, 
(3.12) 

1 = Jc/Jc(M) dM, 

where the limits of integration are 0 and oo for all cases, and within the framework of our 

model, a(Mi) are still given by Equation 3.8. 

II Conclusion 

We have introduced the idea that the addition of some short chains to a system of long 

chains might reduce its effective entanglement density, lleff· A model for the reduction in 

entanglement is proposed that asserts entanglements are the result of binary interactions 

between chains and that binary contacts can be treated independently. We say that all 

the interactions between two long chains contribute to the entanglement density. However, 

when M_ is not much larger than Me some of the interactions between chains that would 

have resulted in entanglement, were both chains long compared to Me, will not contribute 

to Veff· 

In the spirit of the Fetters packing model, we attempt to predict the reduction in lleff 

as short chains are added to the systems. Our model stipulates chains that have an end­

to-end distance which is greater than the same measure for an entanglement strand are the 

ones that contribute to lleff· From this stipulation, we have essentially defined Me. When 

we fit our data obtained from crazing and AFM experimetns with the model, the value of 

Me determined agrees with values that are found in the literature. This represents a new 

method of measuring Me of a given polymer. An attractive feature of this model is that 
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the measurements need not even be done with the use of crazing and AFM or TEM, any 

measurement that gives a quantity which is proportional to veff will do. 
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Appendix A 

An alternative to the random 

walk assumption 

In the work concerning dilution experiments of Yang et al. [36], the possibility of a different 

scaling for the long chains in a binary mixture of chains is mentioned. They argue, on the 

basis of de Gennes' scaling arguments concerning one long chain in a sea of short chains [8] 

that it is possible for the long chains in the network to have a different scaling, in particular 

an entanglement strand would have a swelled undeformed length 

(A.l) 

d

where ~ < k < 1. The idea applies to a long chain in a sea of short chains. If this 

were the case then the scaling in Equation 1.23 would be changed because of the fact that 

8 /le rv M:-1 . As a result of this new scaling, we would need to consider a modified version 

of Equation 1.23, that being 

(A.2) 

so we see that it is important to have the right molecular scaling model if we are to accurately 

predict the entanglement density of our systems. 

According to de Gennes, the effect is important when the length of the short chains is 
1 

such that N < N~ where N and N+ are the number of steps in the trajectory of a chain. To 

clarify this statement, we say that if an isolated long chain is in a system that satisfies the 

above condition, its end-to-end distance will be dominated by an exponent different from ~· 

For a polymer chain, the number of steps in its random walk, N, and its molecular weight, 

M, are related by M = M 0 N where Mo is about 0.83 kg/mol for PS [37]. Using this, we 

can make the condition of de Gennes one which relates the molecular weights instead of the 
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Figure A.1: Molecular weight of our diluted polymer systems as a function of¢ (solid gray 
line) and the molecular weight at which the long chains begin to swell (broken horizontal 
line). 

number of statistical walk segments for the chain 

(A.3) 

Considering the systems we have used, with M_ = 5.1 kg/mol (at the least) and M+ = 
785 kg/mol we can compute the weight averaged molecular weight of the system which is 

the ratio of the first and second moments of the molecular weight distribution 

L:niM'f 
M=-i___ (A.4) 

LniMi' 
i 

where ni are the numbers of chains with molecular weight Mi. In our systems, there are two 

Mi, M_ and M+ and the ni can be replaced by the weight fractions¢ forM_ and (1- ¢) 

forM+. Therefore, the 'mean field' molecular weight that any given chain feels in the melts 

of our system are 
M = ¢M: + (1- ¢)Mi. (A.5)

¢M- + (1- ¢)M+ 

Using Equations A.3 and A.5 we will see a cross over from random walking, k ~' to 
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swelled chains, ~ < k:::; 1 when 

(M M )~ = ¢M~ + (1 - ¢)M~
0 (A.6)+ ¢M_ + (1- ¢)M+. 

The case of PS with M+, M_ and M 0 as quoted above is shown in Figure A.l. From this 

plot, it appears that even with a high degree of dilution the molecular weight for the system 

that a given long chain sees is still large compared to (MoM+)~. Since the largest ¢ ever 

gets in our experiments is no bigger than ¢max c:::: 0.35, it appears as though we need not 

consider this chain swelling behaviour. 
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Appendix B 

AFM and TEM A measurements 

Figure B.1 shows the ratio of the crazed film height to its undeformed height, hc/h = ,\- 1 , 

forM_ = 5.1 kg/mol. For both the AFM and TEM measurements, the ratio is a decreasing 

function of ¢. The inset shows the ratio of the data from the two different experiments. 

Within experimental error, one may say that the ratio is constant and has a value of 

\-1 
- /\TEMA = - - = 1.2 ± 0.1. (B.1)1 

,\AFM 

In this appendix, the discrepancy between AFM and TEM measurements is detailed. 

0.3 

0.2 

0.1 

0.0 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

Figure B.1: ,\- 1 = hc/h as a function of¢ forM_ = 5.1 kg/mol, the solid lines are linear 
fits to guide the eye. The inset shows the ratios Ar1M/,\:4}M as a function of ¢. The solid 
line in this inset is the average value of the five data points. 
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Several experiments were done to determine the source of the discrepancy and we find that 

the it is, in large part, a result of some intrinsic differences in height measurements for each 

method. Since the AFM we used here was calibrated extensively, the A's obtained from this 

instrument are the correct ones, as long as one takes into account the packing fraction of the 

craze fibrils making up the deformed regions. The conclusions drawn above are not affected 

by the discrepancy between the two measurements. 

Crazes 

Samples were prepared which composed of two PS films placed on a PS coated Cu TEM 

grid. The whole of the sample area was covered with a thin film, h1 '"" 20 nm, half of which 

was covered with a thicker film with h2 '""100 nm as shown in Figure B.2. Using a focussed 

electron beam, a small hole was burned in the 20 nm film near the edge of the 100 nm 

film. A TEM image was then taken capturing all of 10 , 1(1) and 1(1)+(2). The same film 

system was then transferred to a Si substrate and AFM images were taken of the films to 

measure both h 1 and h 1 +h2. Given this data, it is then possible to measure a sort of pseudo 

extension ratio by applying the recipes as outlined in sections IV.ii and IV.iii of Chapter 1 

to the heights and intensities measured. 

While the rest of experiments outlined in the next section are all illuminating in their own 

right, the most definitive of them is the one in which there were two films with heights h1 

and h2 stacked on top of one another as in Figure B.2. These experiments have shown that 

there is indeed a systematic difference between the heights as measured using atomic force 

microscopy and using the analysis methods of Kramer and Brown [25, 27] for transmission 

electron microscopy data, Equation 1.25. 

From Figure B.3, which shows the observed values for the calculated height ratios, 5.- 1 = 

h1 / ( h1 + h2), plotted on a number line (vertical separations are irrevelant), we can see that 

the spread in measured values measured for the height ratio reflects the observed error signals 

found in Figure B.l. That is, the uncertainty in ,\- 1 is much greater for data calculated from 

TEM measurements than it is for the same type of measurement in the AFM. In addition 

to this fact, and the more relevant result is the fact that the calculated TEM values are 

Figure B.2: The samples prepared by stacking two films with heights approximately equal 
to typical craze and undeformed thicknesses. 
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Figure B.3: 5.- 1 = hl/(h1 + h2 ) for AFM and TEM experiments. For the TEM data, the 
height ratios were calculated using Equation 1.25. The vertical separations between the two 
are irrelevant. 

consistently greater than the ones obtained from AFM data. 

If one takes the average of the data presented in Figure B.3, it is found that the ratio of 

the data from the two types of experiments is given by 

- 1 
-- ATEMA = ---- = 1.7 ± 0.3. (B.2)1\4FM 

Based on the analysis of Kramer and Brown [25, 27] one should expect that the ratio in 

Equation B.2 would have turned out to be equal to 1. Since this is the not the case, we 

should ask which value of 5.- 1 we believe: that from the AFM results or that from the TEM 

results. To answer this question we turn to the calibration data obtained for the AFM. 

As discussed below, calibration grids were used with various step heights. After analyzing 

the results of AFM scans, it was found that the measured heights were consistent with the 

manufacturer's specifications for each of the three grids. Since this is the case, we are lead 

to believe that the values of 5.- 1 measured by AFM are the true values and that the values 

as calculated from TEM measurements must be off by the factor in Equation B.2. 

(a) (b) 


Figure B.4: Packing fractions of two arrangements of circles. 
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Referring to the data presented in Figure B.3 and Equation B.2, and given the results 

of the AFM calibration experiments, it is appropriate to scale the values of Ar1M by A. 
Doing so, one finds that the new ratio of the extension ratios, A- 1 , is 

-1 . ­
ATEM "7A AAr = = -::;- = 0. 7 ± 0.2 (B.3)1 

AAFM A 

We will now try to understand this result in terms of the structure of craze fibrils. For 

this purpose, we will make the simplifying assumption that for any constant x plane in a 

craze region (refer to Figure l.ll(b)), the fibrils can be taken to be some array of packed 

circles1 of more or less constant radius. We also assume that the circles' boundaries are 

uncrossable. Since this is the case all space cannot be filled by the craze fibrils; there must 

be voids between them. 

In an AFM experiment which is measuring the height profile of a sample, the internal 

structure of the sample does not influence the measurement to a large degree. Since this is 

the case, the AFM measurement alone is not capable of measuring the extent to which the 

material below it is filled with voids. On the other hand, the internal structure of a sample 

has a large influence on the results of a TEM measurement. For the case of craze fibrils, 

we say that the voids between the fibrils do not scatter electrons, but the material making 

up the fibrils does scatter electrons. Based on this argument, we expect that the measured 

height ratio -Ar1M < X:4}M, and inspection of equation B.3 indeed shows this to be the 

case. 

To understand whether the numerical value of the ratio in Equation B.3 is reasonable, 

we will consider the packing fractions of some circles in a plane. The densest packing of 

circles in the plane is given by the hexagonal lattice, as shown in Figure B.4(a), and the 

packing fraction is Ah ~ 0.91. Based on Equation B.3 we do not expect that the packing 

of the craze fibrils to be hexagonal. Figure B.4(b) shows the same area as in (a) filled to 

a packing fraction that is Ar = 0.7. Given the fact that craze fibrils contain some number 

of defects, such as size variation and cross tie fibrils (which are bundles of polymer that 

connect two craze fibrils), it is perhaps reasonable to expect that the arrangement of the 

fibrils would give the packing fraction shown in Figure B.4(b). No attempt has been made 

to quantitatively predict or measure what effect size variation or cross ties would have on the 

packing fraction of circles, though introducing cross tie fibrils would be akin to introducing 

size variation in the packing images above. 

1 The argument is also valid if we consider an array of packed ellipses since the packing fraction does not 
depend on the radii of an ellipse. 
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2 Extras 

1 Craze electron diffraction 

One may also ask whether the structure of the observed crazes influences the scattering 

of incident electrons significantly by diffraction. The fibrillar structure of the crazes has 

a preferred length scale as opposed to the uncrazed film which is isotropic. In order to 

check whether the incident electrons were scattered differently by the craze structure, TEM 

diffraction experiments were done on both crazed and uncrazed film regions in the same 

sample. The results of these experiments were indistinguishable from one another. This 

may have been expected since the de Broglie wavelength for a 120 ke V electron is about 

3 x 10-3 nm and the typical length scale of a craze fibril is roughly lO's of nm. 

2 Tip penetration 

In tapping mode AFM, the tip is periodically in contact with the sample. When it comes 

down onto the sample, one may ask to what degree it penetrates into the surface. More im­

portantly, one may ask if there is a difference between the tip-sample penetration magnitude 

in different areas of the sample. In the context of crazes, this could give rise to a systematic 

difference in measured height between the craze and uncrazed regions. This might happen 

because the crazes are fibrillar and, perhaps, more mobile than the surrounding undeformed 

material. 

One method of checking to see if this effect is significant is to vary the tapping amplitude 

of the AFM tip and checking to see if the ratio of heights he/h changes significantly. We 

have performed experiments of this type on a ¢ = 0 sample. The tapping amplitude set 

point was varied over a range of 45% to 95% of the free air tapping amplitude while the tip 

driving amplitude was kept constant. 

To see what effect tip penetration might have on the observed height ratio, consider 

the case where tip penetration has the same magnitude in both the crazed and uncrazed 

material. If the tip sinks into the surface a distance c5, then the measured heights will be 

less than the real heights and the measured extension ratio will be 

(B.4) 

Now we will consider the derivative of A8: 

d.A-1 h-he __8_­ (B.5)deS - (h-8) 2 " 

Now, c5 < he < h, then it must be true that dXi 1/deS < 0 for all c5. Since this is the case, 
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Figure B.5: The effect of the AFM tapping amplitude (in % of the free air oscillation 
amplitude, Af) on the observed height ratio, A- 1 . The solid line is the average value of 
all the data and lies within the uncertainties of all the data points. The uncertainty was 
calculated by assuming that the measured heights had an error of 1 nm. 

the effect of tip penetration has the effect of decreasing the observed A- 1 . This is consistent 

with the observed difference between Xr1M and \4}M, however, as shown in Figure B.5, 

changing the tapping amplitude has no effect on the observed A, therefore we conclude that 

this effect is not responsible for the difference between the TEM and AFM measurements. 

Calibration 

The model used to calculate A from the observed TEM intensities assumes that the observed 

electron intensity is an exponentially decreasing function of film thickness. PS films of 

thickness between 20 nm and 120 nm (typical thicknesses of crazed and uncrazed films) 

were spun from solution onto mica and annealed for 12 hat rv25 oc above Tg. The samples 

were then floated onto PS coated TEM grids and TEM images of the samples were then 

taken. After the intensity measurements were made, the samples were then transferred 

onto silicon substrates and height measurements were taken with the AFM so that plots 

of thickness versus intensity could be built. In order to test that the AFM heights given 

by the analysis software were accurate, calibration grids were purchased from Mikromasch 

with step heights of 19 nm and 84 nm and a third grid with 180 nm steps was also used. In 

all cases manufacturer's quoted uncertainty in these heights was approximately 1 nm. On 

each grid, AFM scans were done over several steps and the average measured height was 

computed. In all cases, the observed height was consistent with the manufacturer's quoted 

value. 

Figure B.6 shows the observed TEM intensity as a function of film thickness for 0 < 
h < 100 nm. These experiments were done to test the validity of the exponential model for 

the heights we used here (refer to Equation 1.24 and [25, 35]). While the observed trend 
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Figure B.6: Observed TEM intensity as a function of PS Film thickness. The solid line is a 
fit to e- h/f. where h is the film thickness and f is a damping coefficient. ! 0 is the intensity 
of an image with no sample in the viewing area. 

in Figure B.6 is not definitively exponential, the exponential model we have used here gives 

a decent fit to the data. Figure 4 of Lauterwasser 's work [25] shows a semilog plot of the 

same type of experiment. In that work, film thicknesses of up to about 1500 nm were used. 

At least until about h = 1000 nm, the plot shows that the exponential model works quite 

well as the data could be accurately described as a straight line in this region on the semilog 

plot. 

As well, f is essentially a measure of the mean free path of an electron in PS. Crewe and 

Groves [35] show a plot of the mean free path as a function of electron beam energy. In 

this plot , they show that the mean free path for an electron with kinetic energy U "' 100 

keV (here we used U = 120 keV) is of order 300 nm. Fitting the exponential model to the 

data presented in Figure B.6, one obtains f = 230 ± 30 nm. Since this is the right order 

of magnitude as stated by Crewe and Groves, we believe that the exponential model is at 

least a good approximation to use in our interpretations of the TEM data we obtained. The 

fact that the data in Figure B.6 appears to be a straight line is a reflection of the fact that 

for the thicknesses used here the electrons have not travelled through a sufficient number of 

mean free paths for the exponential behaviour to be observed. 

However, if the exponential model is not quite right , we can make an approximation at 

how wrong the exponential model has to be in order for the TEM results to be consistent 

with the AFM ones. Supposing that the exponential model is almost right , we can say that 

! 0 in Equation 1.24 is now a function of the height. In what follows, we assume that for 

the crazed material, which is only 20 nm thick, the non exponential behaviour is negligible 

so that !(he) = ! 0 • We also assume that for the undeformed material, the non exponential 

behaviour is not negligible and that I(h) = c/0 • In this case we have for the intensity of 
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electrons measured as hitting the viewing screen 

(B.6) 

Before, we assumed that I (h) = I (he), however, if this is not the case, then the calculated 

value of he/h as given in Equations 1.24 and 1.25, after a little bit of algebra, is 

he [1 ln(Ie/h)l [ f l (B.7)h = - ln(Io/h) 1 + h ln(c-) · 

If c = 1, the form as given by Equation 1.25 is recovered. However, we see that if the 

exponential behaviour is not obeyed, serious difficulties will arise in our interpretation of 

the TEM results. 

The measured quantities in a TEM experiment are in the first set of square brackets 

of Equation B.7. Also, since considerable AFM calibration has been carried out, we take 

the left hand side here to be given by the AFM measurements (not considering the packing 

fraction of the fibrils). So Equation B. 7 is actually an equation which relates A of Equation 

B.1 to the variable c which describes the degree of non exponentiality in the scattering and 

detection of electrons in the TEM used here. Dividing the first square bracket in Equation 

B.7 we find 

(B.8) 

Given that we know f and h for a typical experiment, we ought to be able to solve for c. 

Using f = 230 nm, h = 130 nm and A-l = 1.13 = 0.81 we find that 

h 
c = exp( - 7[1- A - 1

]) = 0.90. (B.9) 

This tells us that the exponential model of scattering and detection need only be 10% 

different between the crazed and uncrazed portions of the film to explain the differences 

observed in .XA_}M and Xr1M· 
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