
LOWER AND UPPER BOUNDS FOR MAXIMUM

NUl\1BER OF RUNS

LOWER AND UPPER BOUNDS FOR MAXIMUM

NUMBER OF RUNS

BY

QIAN YANG, M.Sc. B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

MCMASTER UNIVERSITY

© Copyright by Qian Yang, 2007

MCMASTER UNIVERSITY

MASTER OF SCIENCE(2007) McMaster University

(Computer Science) Hamilton, Ontario

TITLE: Lower and Upper Bounds for Maximum Number

of Runs

AUTHOR: Qian Yang B.Eng. (Hohai University)

SUPERVISOR: Dr. Frantisek Franek

NUMBER OF PAGES: x, 75

ii

Table of Contents

Table of Contents 	 iii

List of Tables 	 v

List of Figures 	 vi

Abstract 	 viii

Acknowledgements 	 X

1 Introduction 	 1

1.1 Strings .. 	 1

1.2 Repetitions 	 4

1.3 Runs 	 5

1.3.1 Definition of run 	 5

1.3.2 The maximal-number-of-runs function 	 6

1.3.3 Bounds of the maxrun function 	 9

2 Constructing a lower bound, method 1 	 11

2.1 	 A recursive construction of binary strings that increases the number of

runs 12

2.1.1 Defining the mapping function g 	 12

2.1.2 Determining the length of g(x). 	 16

2.1.3 Computing the number of runs in g(x) . . . 	 17

2.1.4 Defining a sequence using g 	 18

2.1.5 Experimental results 	 20

2.2 Constructing lower bound 	 21

2.2.1 Defining modified mapping function g . 	 22

2.2.2 The main theorem 	 24

iii

3 Constructing a lower bound, method 2 	 33

3.1 Loose cube-free strings 	 34

3.1.1 Defining loose cube-free strings 	 34

3.1.2 Building loose cube-free strings 	 35

3.1.3 Analysis on some run-maximal strings 	 36

3.2 	 A recursive construction of binary strings that increases the number of

runs 38

3.2.1 Defining the mapping function g 	 38

3.2.2 Determining the length of g(x). 	 41

3.2.3 Computing the number of runs in g(x). 	 42

3.2.4 Defining a recursive sequence using g 	 43

3.2.5 Experimental results 	 47

3.3 Constructing lower bound 	 47

3.3.1 Defining modified mapping function g . 	 48

3.3.2 The main theorem 	 49

3.4 Some additional methods for generating loose cube-free strings 51

3.4.1 Method 3 	 51

3.4.2 Method 4 	 53

4 Proving Rytter's upper bound 	 55

4.1 Basic definitions 	 55

4.2 The Three-Neighbours Lemma. 	 59

4.3 HP-Runs Lemma 	 67

4.4 Estimating the number of runs . 	 69

5 Conclusions and Future Work 	 73

Bibliography 	 75

iv

List of Tables

2.1 experimental results of method 1 20

3.1 experimental results of method 2 48

3.2 experimental results of method 3 53

3.3 experimental results of method 4 54

v

•••••••••••••••

List of Figures

2.1 Gaps in estimates of value of p(n) . 21

4.1 Q -<-< f3 59

4.2 Q ~ f3 0 59

4.3 a~ f3 and centre(a)- centre(f3) = 0 60

4.4 centre(a)- centre(/3) = 0 and choose point 60

4.5 centre(a) - centre(f3) = 0 and period(p- q) < ~) . 61

4.6 centre(a) - centre(f3) = -~ and f3 is highly-periodic 61

4.7 a~ f3 and centre(a)- centre(f3) = -~ 61

4.8 centre(a) - centre(f3) = -~ and choose point 62

4.9 centre(a)- centre(f3) = -~ and period(p- q) < ~) . 62

4.10 centre(a)- centre(/3) = -~ and f3 is highly-periodic 62

4.11 a~ f3 and centre(a)- centre(f3) = ~ 63

4.12 centre(a) - centre(/3) = ~ and choose point 63

4.13 centre(a)- centre(f3) = ~ and period(p- q) < ~) .. 63

4.14 centre(a)- centre(f3) = ~ and f3 is highly-periodic . 64

4.15 a -<-< f3 and period(a) > period(/3) 64

4.16 period(a) > period(/3) and choose the letter 64

4.17 period(a) > period(f3) and f3 has a square lq- PI .. 65

4.18 period(a) > period(/3) and prefix of f3 has a period lq- PI 65

4.19 a -<-< f3 and period(a) < period(/3) 65

4.20 period(a) < period(/3) and choose the letter 66

vi

4.21 period(a) < period(f3) and {3 has a square jq- PI 66

4.22 period(a) < period(f3) and prefix of {3 has a period IP- qj 66

4.23 a1 -<-< a2 -<-< aa . 67

vii

Abstract

A string is a sequence of various simple elements. The most straightforward examples

of strings are English words- concatenations of the 26 letters of the English alphabet.

A repetition in a string x is a nonempty substring of the form x[i ..j] = uk, k ;:::: 2.

The study of repetitions in strings is as old as the study of strings themselves. Fur

thermore, the identification of repetitions in a given finite string still remains an

important topic in a variety of contexts: pattern-matching, computational biology,

data compression, cryptology, and many other areas.

A run in a string xis a substring in the form x[i ..j] = ukv, k ;:::: 2 where vis a prefix

of u, u is not a repetition itself, and this substring x[i ..j] is neither left-extendible nor

right-extendible. The notion of runs thus captures the notion of leftmost maximal

repetitions and allows for a succinct notation [M89]. The maximal number of runs

over all strings of length n is denoted as p(n). To determine the properties of the

function p(n) is an important aspect of the research in periodicities in strings.

Prior to the asymptotic lower bound presented by Franek and myself in [FY06]

(presented here in Chapter 2), there had been no known non-trivial lower bound

for p(n), asymptotic or otherwise. A result suggesting a possible lower bound was

presented by Franek, Simpson and Smyth in 2003, introducing a construction of a

sequence of strings {xn}~=0 , so that liiDn-Hxl r~:? = +3V5 ~ 0.927 [FSS03]. Their11
method was extended to provide a true asymptotic lower bound in [FY06]. In the

first part of Chapter 2, the recursive construction of the sequence of strings from

[FSS03] is presented with all details not discussed in either [FSS03] or [FY06]. In

the second part of Chapter 2, a construction of the lower bound is presented with all

viii

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software ix

details. This part represents my original contribution to the research.

I designed a new approach to generate strings that are "rich in runs" other then

the one used in [FSS03] and [FY06]. A similar approach as in Chapter 2 is used

to construct a lower bound for p(n) using the alternate construction of sequences of

strings. This new construction method gives, interestingly, sequences with the same

limit as in [FY06], thus giving some support to the conjecture that liiDn-+oo P~) = }JS
1

stated in [FSS03]. This method is presented in Chapter 3. The whole Chapter 3 thus

represents another part of my original contribution to the research.

It had been known since the 1980's that the number of repetitions in a string

of length n is at most of the order O(nlogn). A remarkable result by Kolpakov

and Kucherov in 2000 showed that p(n) was in fact bounded by a function linear in

n [KKOO]. Their approach only. provided the existence of such a function, not the

concrete values of its constants. Recently, Rytter improved the upper bound of p(n)

to 5n. [R06). The paper by Rytter was published in a conference proceedings and as

such lacked many details in some areas and was bit too vague. In Chapter 4 I present

Rytter's proof with all relevant details filled in. Through a private communication I

learned at the time of writing of this thesis that the upper bound had been improved

by Rytter, and independently by Smyth, Simpson, and Puglisi to 3.5n. The latest

upper bound is supposed to be now as low as 1.5n. However, none of the upper

bounds better than 5n has been published yet.

In the last chapter I discuss my conclusions and point out the directions for the

future research.

Acknow-ledgernents

First and foremost, I would like to thank Dr. F. Franek, my supervisor, in more ways
than I can list here. This thesis could not be done without his constant encouragement
and foresighted guidance. He has always been tireless in providing help every time I
needed it. He shared many great and creative ideas with me and carefully corrected

my mistakes and typos. All the valuable things I have learned are not only from
his academic knowledge but also from his personality. Thank you, Dr. Franek

intellectually and emotionally.

I should thank my parents, my uncle and my whole family. They have given me full

support and allowed me to pursue graduate studies. My love goes to all of them.

Thanks to (alphabetically) Fang Cao, Gang Chen, Hao Xia, Huarong Chen, Jiaping
Zhu, Lei Hu,· Liuxing Kan, Munira Yusufu, Shu Wang, Sui Huang, Wei Xu, Wen Yu,

Yu Wang, Yun Zhai, and many others in the Computing and Software department,

for their friendship.

Last but not least, many thanks to Alvin, who always cooks the most delicious food
in the world for me and my roommates.

Hamilton, Ontario, Canada Qian Yang

December, 2006

X

Chapter 1

Introduction

In this chapter we will give rigorous definitions of the terminology and describe the

notions that we use throughout this thesis.

1.1 Strings

A string is a sequence of various simple elements. The most straightforward exam

ples of strings are English words, which are concatenations of letters of the English

alphabet. In the same way, any English sentence can be seen as a composition of

English words and various symbols. Another example is quite usual in computer sci

ence. It is well known that in any electronic computer, there exists only two states

designated by symbols: '1' (usually represented by an electrical high voltage) and '0'

(usually represented by a low voltage). So all the information stored and processed

by a computer is a combination of these two symbols. For instance, in a computer

system, all the files, memory contents, I/0 signals, all can be viewed as strings drawn

1

2 M.Sc. Thesis - Qian Yang McMaster University - Computing & Software

from the set {0, 1 }, i.e. so-called binary strings.

Here are some other everyday examples of strings [S03]:

• 	 a text file, whose elements are ASCII characters.

• 	 a stream of bits beamed from a space vehicle.

• 	 a DNA sequence, composed by four letters C, G, A and T, standing for adenine,

cytosine, guanine, and thiamin respectively.

• 	 a computer program, expressed as words and separators (semicolon, colon and

etc.) ..

Any of the above strings can be described as a sequence of elements drawn from

a particular set. This set is called an alphabet, and its members are referred to as

letters. It is obvious that the alphabet of English words consists of the 26 English

letters, and the alphabet of the DNA sequences is {C, G, A, T}. The size of alphabet

is referred to as its cardinality. In the common cases when the size equals 2, 3 or 4,

we say that the alphabet is binary, ternary, or quaternary.

Strings are usually expressed as one-dimensional (character, letter, symbol) arrays:

x : array[l..n]

In this case the length of string x is defined as n and denoted by lxl (i.e. lxl = n).

For any integer i E [l..n], x[i] denotes the letter (character, symbol) at the position i

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 3

in x. We can write:

x = x[l]x[2] ...x[n]

There is a special kind of string whose length equals 0. This is the so-called empty

string and is denoted by E.

If x = x[l..n] andy= y[l..m] are strings, then their concatenation

xy = x[l]x[2] ..x[n]y[l]y[2] ..y[m]

Considering any pair of integers i and j(l ~ i ~ j ~ n), we define a substring x[i ..j]

of x as follows:

x[i..j] = x[i]x[i + l] ..x[j]

A x[i ..j] is a proper substring of x if either i > 1 or j < lxl.

A prefix of x is any substring of x that starts at position 1, while a suffim of x is

any substring that ends at position lxl.

For example:

x =abed

has prefixes

E,a,ab,abc,abcd

and suffixes

abcd,bcd,cd,d,E

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 4

A proper prefim of x is a prefix that is not equal to x, and a proper suffiz of x is

a suffix that is not equal to x.

1.2 Repetitions

Repetitions (tandem repeats) in strings play a very important role both in theory and

practice- for example, in data compression, computational biology, pattern-matching,

and many other fields.

The simplest form of a repetition is a square. If there exist some integers m and

p, such that:

x[p..p+m-1] = x[p+m..p+2m-1]

then, we say that x[p..p+2m-1] is a square of period m.

0For a string u, we define u = c, u1 = u, and un+l = unu by induction.

For example, in a string x=abcbca, be be is a square with p = 2 and m = 2. Nate

that the two parameters, p and m completely determine the square for a given x.

Instead of square, a more general description of repetition takes a form of a triple

(p, m, r) of positive integers so that x[p..p+rm-1] = x[p..p+m-1r. p, m and rare

called the position, the period and the ezponent of the repetition. The substring

x[p..p+m-1] is called the generator.

For example string x=abcbcbcbd, the repetitions are shown below:

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 5

• 	 exponent= 2 (squares): (2,2,2), (3,2,2), (4,2,2), and (5,2,2)

abcbcbcbd, abcbcbcbd, abcbcbcbd and abcbcbcbd

• 	 exponent = 3: (2,2,3), and (3,2,3)

abcbcbcbd and abcbcbcbd

1.3 Ru.ns

1.3.1 Definition of run

A run R is notion designed to capture the maximal leftmost repetition that is ex

tended to the right as much as possible. A run in a string x can be represented as

4-tuple (p, m, r, t) where (p, m, r) is a repetition as defined above, and moreover

• 	 the generator xfp..p+m-1] is not a repetition (the maximality condition);

• 	 The initial square part of the run xfp..p+m-1] = x[p+m..p+2m-1] is left

maximal i.e. x[p-l..p+m-2] =I= x[p+m-l..p+2m-2] (the non left-extensibility

condition);

• 	r is a maximal exponent, i.e. a maximal r such that x[p..p+m-1] =

x[p+m..p+2m-1] = ... = x[p+(r-1)m..p+rm-1];

• 	t < m is the tail of run, i.e. a maximal t such that xfp+rm..p+rm+t] is a

proper prefix of the generator (the non right-extensibility condition).

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 6

It can also be written as

x[p..p+lulr+lu'l-1] = uru'

where pis the starting position, u is the generator, lui is the period, lu'l is the

tail. (and hence a prefix of u), r is the exponent (often referred to as the power).

For instance, runs in string bbabaabaabc are:

• period= 1

bbabaabaabc: (1,1,2,0),(5,1,2,0),(8,1,2,0)

• period= 2

bbabaabaabc : (2, 2, 2, 0)

• period= 3

bbabaabaabc : (3, 3, 2, 2)

1.3.2 The maximal-number-of-runs function

Let R(x) denote the number of runs in a string x, then we define the maximal

number-of-runs function p(n) by

p(n) = max{R(x): lxl = n}

M.Sc. Thesis- Qian Yang McMaster University- Computing & Software 7

We shall call the function p(n), the mazrun function for short. There is not much

known about its properties:

P1: For any n, p(n+1) ~ p(n).

P2: For any n, p(n + 2) ~ p(n) + 1

Proof. ·: 3x, lxl =nand R(x) = p(n)
·.· take a letter 'Y which never occurs in x, build a new string X'Y'Y
:. lx'Y'YI = n + 2 and R(x'Y'Y) = p(n) + 1
:. p(n + 2) ~ R(x'Y'Y) = p(n) + 1 0

P3: For any n, p(n + 1) ~ p(n) + L~J
Proof. ·: 3x, lxl = n + 1 and R(x) = p(n + 1)
·.· there are at most L~J squares starting at position 1
.·. the removal of the first letter of x will decrease the number of runs by at most
L~J runs
:. p(n) ~ R(x[2..n+1]) ~ R(x)-L~J = p(n+1)-L~J
:. p(n+1) ~ p(n)+L~J 0

P4: For some n, p(n+1) = p(n)

This fact was established by direct computation (independently by Kolpakov

and Kucherov, and by Franek and Smyth, for instance, p(33) = 27 and p(34) =

27). However, it is not known whether this is an asymptotic property (i.e.

whether the set of all n such that p(n) = p(n+1) is infinite).

P5: For some n, p(n+1) ~ p(n)+2

This fact was established· by direct computation (independently by Kolpakov

and Kucherov, and by Franek and Smyth, for instance, p(13) = 8 and p(14) =

10). However, it is not known whether this is an asymptotic property.

8 M.Sc. Thesis - Qian Yang McMaster University - Computing & Software

[KKOO] includes a table which gives p(n) for n = 5, 6, ...31, and the paper also shows

the corresponding run-maximal strings. Franek and Smyth independently computed

the same for n = 5, ... , 35 giving all run-maximal strings.

The following conjectures about the properties of p(n) were proposed by Smyth

and colleagues (see for instance [FSS03] among many other publications): for any n,

C1: p(n) < n

C2: p(n- 1) ~ p(n) ~ p(n- 1) + 2

C3: p(n) is attained by a cube-free binary string.

Up to now, none of the conjectures has been proven or refuted.

The function p(n) is non-decreasing and does not exhibit very wild increments

(property P3 above). Both conjectures, C1 and C2, limit the increments even more.

Since it is commonly expected that the function p(n) exhibits uniformly mild incre

ments, the function P~) is expected to exhibit mild oscillations. Thus liiDn-+oo P~) may

give some insight into the behaviour of p(n). An approximation of such limit in the

form of an increasing sequence of binary strings {xn}~=O with the limit liiDn-+oo ~~:J)

was the motivation and the result of [FSS03].

However, it is not settled whether p(n) has such mild increments, and, conse

quently, it is not settled whether P~) is monotonic. It is not even clear whether a

proper limn-+oo p(n) exists: p(n) may be oscillating with a non-decreasing magnitude or
n n

it can tend to oo (for instance, it is conceivable that for any n ~ N, p(n+1) = p(n)+~

9 M.Sc. Thesis - Qian Yang McMaster University - Computing & Software

and thus limn--+oo p~) = +oo).

1.3.3 Bounds of the maxrun function

Prior to [FY06] there has been no known non-trivial lower bound for p(n). By trivial

lower bound we mean 0.5n one given by the properties Pl, P2, P4, and P5 above.

Proof. The slowest possible growth for p(n) can be described by the following pattern:
p(2n + 2) = p(2n+l) and p(2n+l) = p(2n)+l. This has 0.5n as a lower bound. D

We were able to extend the method and the result of [FSS03] to provide an asymp

totic lower bound for p(n) arbitrarily close to I+:rsn ~ 0.927n. More precisely, we

showed that for any c > 0, there exist a positive integer N, such that for any n > N,

p(n) 2::: (a- c)n, where a= I+:rs' [FY06]. This result and the method are presented

in Chapter 2.

In Chapter 3 a similar, yet different, method to construct sequences of binary

strings "rich in runs" is presented. Interestingly enough, the sequences constructed

by this method give the same limit as the construction form [FSS03], thus somehow

substantiating the conjecture stated in [FSS03] that liiDn--+oo p~) = l+:rs. Note that

this conjecture in fact strengthen (at least asymptotically) the conjecture Cl.

Prior to a remarkable result by Kolpakov and Kucherov in 2000 ([KKOO]) the only

known upper bound for the maxrun function was of order O(n logn). Kolpakov and

Kucherov showed that there exist constants K 1 and K 2 so that for any n, p(n) ~

K 1n- K 2 log2 nv"fi. However, their proof was existential and did not allow to specify

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 10

the constants concretely. Rytter, employing totally different approach, improved the

upper bound of p(n) to 5n [R06]. We present Rytter's proof with all details in

Chapter 4. From a private communication at the time of writing of this thesis we

learned that the upper bound had been improved by Rytter, and independently by

Smyth, Simpson and Puglisi, to 3.5n. The upper bound is now supposed to be 1.5n,

however all of these improvements are yet to be published.

Chapter 2

Constructing a lo-wer bound,
method 1

In this chapter we present and discuss the method used in [FY06] to obtain an asymp

totic lower bound for p(n). Throughout this chapter by a string we mean a binary

string over the alphabet {0, 1 }.

By the definition of p(n), p(n) ~ max{R(x)lx E {0, 1}n}. In other words, if there

exists a string s of length n whose ratio of the number of runs to the length n equals

'"Y ('"Y E JR.), then p(n) ~ 1n. The key idea here is to build sequences of strings "rich

in runs" as in [FSS03], but in a way that allows to estimate p(n) even for the values

not occurring as a size of a string in any of the sequences. In a sense, we have to ''fill

in the gaps" left out by the values not occurring in the sequences.

11

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 12

2.1 	 A recursive construction of binary strings that
increases the number of runs

2.1.1 Defining the mapping function g

We first define a composition o that "glues" two strings x[l..n] and y[l..m] together

in a special way:

x[l..n]y[2..m] if x[n] = y[l],
x l..n o y l..m =[] 	 [] { x[l..n-l]y[2..m] if x[n] =/= y[l].

The above composition guarantees that the resulting string has a length shorter by

one or two than the lengths of the concatenation of the components. The important

characteristics of the composition o is that it preserves all runs from x and all runs

from y (it prevents a run from x to be "glued" with a run from y into a single run),

yet it may create some additional runs.

The fundamental idea presented in [FSS03] is to find a pair of two distinct strings

of the same length so that the composition between these two strings not only keeps

their runs intact, but also adds some new runs. These two strings are then used to

replace all O's and l's in a recursive fashion. Thus each replacement creates a larger

string with a richer number of runs. We will refer to these strings as substitution

patterns.

Consider the following substitution patterns

u=010010,v= 101101

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 13

What does the composition o do with the runs in the substitution patterns?

First the runs in u and v are:

u = 01QQ10 and v = 101101

Apply the operator o to u and v:

• 	u 0 u = 010010 0 010010 = 010010+(0)10010

=:} runs from substitution patterns: 01.QQ10+10010, 010010+ 1.QQ10

=> new runs: 010010+10010

• 	v 0 v = 101101 0 101101 = 101101+(1)01101

=:} runs from substitution patterns: 101101+01101, 101101+01101

=> new runs: 101101+01101

• 	u 0 v = 010010 0 101101 = 01001(0)+(1)01101

=:} runs from substitution patterns: 01.QQ1+01101, 01001 +01101

=:} new runs: 01001+01101

• 	v 0 u = 101101 0 010010 = 10110(1)+(0)10010

=:} runs from substitution patterns: 10110+10010, 10110+1QQ10

=:} new runs: 10110+10010

NOTE: The symbol+ is used to graphically separate the two substitution patterns

and letters presented in parentheses are the ones removed by the composition.

It 	is obvious that the deleted suffix of the first string equals the prefix of the

remaining second string. Furthermore, the removed prefix of the second is the same

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 14

as the remaining suffix of the first string. As a consequence, the composition of u and

v preserves all existing runs and adds one or two more runs.

Now let us define a mapping function g as follows:

010010 if X= 0,

g(x) = 101101 if x = 1,
{

g(x[l..n]) = g(x[1]) o g(x[2]) o · · · o g(x[n]) if lxl > 1.

The most valuable aspect of the mapping function is that for a string x, it outputs

a new string of length shorter than 6lxI while preserving all original runs from x (as

we will see later). Moreover, the operation o adds one or two extra runs for each

composition of the substitution patterns.

The following series of lemmas shows that g will transform any run in x into a

uniquerun in g(x) preserving its power.

Lemma 2.1.1. For any binary string u and v, g(uv) = g(u) o g(v).

Proof From the definition of o: let u = u[l..n] and let v = v[l..m]. Then g(uv) =
g(u[1] ..u[n]v[1] ..v[m]) = g(u[1]) o g(u[2]) o .. o g(u[n]) o g(v[1]) o g(v[2]) o .. o g(v[m]) =
(g(u[1]) o g(u[2]) o .. o g(u[n])) o (g(v[1]) o g(v[2]) o .. o g(v[m])) = g(u) o g(v). 0

Lemma 2.1.2. A repetition uk of power k 2::: 2 in x is transformed to a unique
repetition of power k in g(x).

Proof. Let g(u) = y[l..m]. Let x = wukv.

1. 	 y[m] = y[1], then g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) =
g(w)oy[l..m]y[2..m]y[2..m]..y[2..m]og(v) and so uk is transformed to a repetition
y[2..m]y[2 .. m] ..y[2 .. m] of power k in g(x).

2. 	 y[m] =I= y[1], then g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) =
g(w) o y[l..m-1]y[2..m-1]y[2..m-1] .. y[2 .. m-1] o g(v) and so uk is transformed
to a repetition y[2 .. m-1]y[2..m-1] ..y[2..m-1] of power kin g(x).

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 15

D

Lemma 2.1.3. A run R = (p, m, r, t) in x is transformed by g to a unique run in
g(x) with a power r.

Proof. Consider a run (p, m, r, t) in x. Let x[p..p+m-1] = a1..am. Then
x = x[l..p-1](a1..am) ... (a1··am)(a1..at)b... , where b =/= at+1 (as tis the tail) and where
either p = 1 or x[p-1] =I am (as the run is leftmost).
Let g(a1 ..am) = c1 ..cd· Then
g(x) = g(x[l..p-1]) o (c1 ..cd) o .. o (c1..cd) o (c1..Ct) o g(b) o

1. 	 Let cd = c1.
Theng(x) = g(x[l..p-1])o(c1..cd)(c2..cd) .. (c2··cd)(c2.. ct)og(b)o Since c1 = cd,

(c1 ..cd)(c2··cd) .. (c2..cd)(c2..Ct) can be written as
(CdC2 •.Cd-1Cd) (C2 ·.Cd-1Cd) ••· (C2..Cd-1Cd) (C2. ·Ct) =
(cdc2..cd-1)(cdc2..cd-1) .. (cdc2..cd-1)(cdc2..Ct) which almost looks like a run with
a power rand a period d-1 and a tail t. Is it leftmost?

(a) Case p = 1, then it is leftmost.

(b) Case p > 1, then x[p-1] =/=am·

i. 	 x[p-1] = 0 and am = 1. Then g(x[l..p-1]) ends with 010010 and
g(a1..am) ends with 101101, hence (cdc2..cd_1) ends with 10110. Thus
the "run" can be "pushed" 2 positions to the left increasing the tail
to t+2. After that it is leftmost.

ii. 	x[p-1] = 1 and am = 0. Then g(x[l..p-1]) ends with 101101 and
g(a1..am) ends with 010010, hence (cdc2..cd-1) ends with 01001. Thus
the "run" can be "pushed" 2 positions to the left increasing the tail
to t+2. After that it is leftmost.

2. 	 cd =/= c1.
Then g(x) = g(x[l..p-1]) o (c1··Cd-1)(c2··Cd-1).. (c2..cd-1)(c2..Ct) o g(b) o
c1(c2..Cd-1)(c2..cd-1) .. (c2..cd-1)(c2..Ct) o g(b) o ... almost looks like a run with a
power r, a period d-2, and a tail t-1. Is it leftmost?

(a) Case c1 f= cd_1. Then it is leftmost.

(b) Case c1 = cd-l· Then the whole "run" can be pushed one position to
the left: (c1c2··cd-2)(cd-lc2..cd-2) .. (cd-1··cd-2)(cd-1c2..Ct) o g(b) o ... which
almost looks like a run with a power r, a period d-2, and a tail t.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 16

i. Case p = 1, then it is leftmost.

ii. 	 Case p > 1, then x[p-1] =f am.

A. 	 x[p-1] = 0 and am= 1. Then g(x[l..p-1]) ends with 010010 and
g(a1•• am) ends with 101101, hence (cd_1c2.. cd_2) ends with 1011.
Thus it is leftmost.

B. 	 x[p-1] = 1 and am= 0. Then g(x[l..p-1]) ends with 101101 and
g(a1•• am) ends with 010010, hence (cd_1c2.•cd-2) ends with 0100.
Thus it is leftmost.

We have shown that the original run (p, m, r, t) in xis transformed by g to a leftmost
"run" with a power r, a period d-1 or d-2 and a tail tor t+2. In order to make it
into a proper run we need to determine the taiL But that can always be done. D

2.1.2 Determining the length of g(x).

From the definition,

lu(OO)I = lu(O) o g(O)I = lu(11)1 = lu(1) o g(1)1 = 11 = 6 *2- 1

lu(01)1 = lu(O) o g(1)1 = lu(10)I = lu(1) o g(O)I = 10 = 6 *2- 2

So, whenever 00 or 11 occur in x, the length of g(x) shortens by 1, for any occurrence

of 01 or 10 the length shortens by 2. Thus, if A(x) denotes the number of occurrences

of 00 and 11 in x and lxl > 1,

lu(x)l = 6lxi-A(x)-2(lxi-1-A(x))

= 4lxi+A(x)+2

Then the formula for computing lu(x)l is

lu(x)l = { 6 if lxl = 1,
4lxi+A(x)+2 if lxl > 1.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 17

2.1.3 Computing the number of runs in g(x).

Let R(x) denote the total of runs in string x. In string g(x), there are two different

kinds of runs:

• 	 the runs in the substitution patterns 010010 and 101101 and the runs created

during the composition of the substitution patterns, we will use Rnew(g(x)) to

denote the number of such runs in g(x);

• 	 the runs that are transformations of runs in x, we will use Rold(g(x)) to denote

the number of such runs. Lemma 2.1.3 shows that Rold(g(x)) = R(x).

The new runs added by composition

1. 	 runs with period 1: (additional number of runs= lxl)

g(OO) = 0+10010+1001+0, g(11) = 1+01101+0110+1

g(01) = 0+1001+0110+1, g(10) = 1+0110+1001+0

2. 	 runs with period 2: (additional number of runs= lxl-1)

g(OO) = 0+10010+1001+0, g(11) = 1+01101+0110+1

g(01) = 0+1001+0110+1, g(10) = 1+0110+1001+0

3. 	 runs with period 3: (additional number of runs= lxl)

g(OO) = 0+10010+1001+0 and 0+10010+1001+0

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 18

g(11) = 1+01101+0110+1 and 1+01101+0110+1

g(01) = 0+1001+0110+1 and 0+1001+0110+1

g(10) = 1+0110+1001+0 and 1+0110+1001+0

Nate: The bold part may come from the previous or the next word respectively.

Consequently,

Rnew(g(x)) = lxl+(lxl-1)+1xl = 3lxi-L

Therefore,

R(g(x)) = Rold(g(x))+Rnew(g(x)) = R(x)+3lxl-1

2.1.4 Defining a sequence using g

We can now use the mapping g for a recursive construction of a sequence of strings.

Let x0 be an arbitrary binary string. By recursion we define Xn+l = g(xn).

From the two previous sections we know that

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 19

where).(xn-l) is the number of 00 and 11 occurring in Xn-1. Since every substitution

pattern contributes a single pair (010010 contributes 00, while 101101 contributes

11), and since the composition o never creates a pair 00 or 11,).(xn-1) = lxn-21·

Therefore

We are now ready to calculate the limit {3 = limi->oo ~::~ •1 1

Since limi->oo ;i = 0, we get
1 1

1
{3 = 4+{3

giving

{3 = -2+V5

We are now ready to calculate the limit o: = limi->oo ~~::~1).

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 20

Since limi-too I:LI = limi-too 1;i1 = 0, then

(4+,8)a = a+3

3
a= 3+,8

Because ,8 = - 2+v'5 then we have

3
a=-

l+v'5

Therefore

. R(xi+l) 3
lzmx-too I I = ~~ 0.927.

Xi+l l+v5

2.1.5 Experimental results

The following table shows the experimental results for the above method of generating

strings with increasing number of runs starting with a simple string x0 = 0. We note

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 21

that the small values in the table do not generate run-maximal strings as computed

by Kolpakov and Kucherov, and Franek and Smyth. But it also shows that the ratio

of the number of runs to the length converges to the limit rather quickly.

R(a:i)i length(xi) R(xi) A(xi) ~
0 1 0 0 0
1 6 2 1 0.3333
2 27 19 6 0.7037
3 116 99 27 0.8534
4 493 463 116 0.9047
5 2090 1924 493 0.9206
6 8855 8193 2090 0.9252
7 35712 34757 8855 0.9266

Table 2.1: experimental results of method 1

2.2 Constructing lower bound

Knowing a sequence {xi}~0 with liiDi-too ~~:e =a does not guarantee that an is an

asymptotic lower bound of p(n). The sequence {lxil} gives estimates of p(n) only for

some n's (only for n = lxil for some i). The following diagram Fig. 2.2 indicates the

problem.

the value p(n) for ann between lxil and lxi+ll may dip significantly below (a-c:)n as

the gaps between lxil and lxi+ll grow in size to infinity as i is approaching oo.

Thus a single sequence does not suffice to estimate the values of p(n) in the "gaps".

However, the construction of any such sequence as described above can start from

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 22

prlxir.)
-.~..............~.....~.,~.;

Figure 2.1: Gaps in estimates of value of p(n)

any given string. Thus we can build many sequences. The smaller the "gap", the

smaller the "dip" by p(n). If we use many sequences, we can make the "gaps" small

enough and hence the "dips" small enough.

2.2.1 Defining modified mapping function g

For a given string x, g(x) = y[l..n-2] where y[l..n] = g(x). In simple terms, g(x)

is g(x) with the last two letters removed. We remove exactly two letters to "adjust"

the size of the resulting string for technical reasons (we want to make it divisible by

certain numbers).

We will compute l9(x)l using our knowledge of lg(x)l. For that we will need to

know A(g(x)).

Lemma 2.2.1. A(g(x)) = A(g(x))

Proof • Let x ends with 1, then g(x) ends with .01101 and hence removing the
two last letters does not destroy any pair 00 and 11, A(g (x)) = A(g (x)).

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 23

• Let x ends with 0, then g(x) ends with .10010 and hence removing the two last
letters does not destroy any pair 00 and 11, ;\(g(x)) = ;\(g(x)).

D

We want to estimate R(g(x)) using our knowledge of R(g(x)). How many runs in

g(x) we can destroy by removing the last two letters? It is not clear, by P3 (Chapter 1)

it can be as many as IY~)l. That would be detrimental to our aim of constructing

strings with as many runs as possible. We thus will limit ourselves to strings where

this cannot happen. We will call such strings good.

Definition 2.2.1. If a strings has a left-maximal square as its suffix, then we say
that string s ends with a square. A string s is good if s ends with at most two
squares.

It is obvious that if g(x) is good, then R(g(x)) ~ R(g(x)) ~ R(g(x))-2 as we

destroy at most 2 runs by removing the last two letters of g(x).

In the following sequence of lemmas we prove some necessary properties concerning

good strings that we will need later.

Lemma 2.2.2. If x ends with 011, then g(x) ends with 101011.

Proof.

X= ...011

g(x) = ...+1001+01101+01101

g(x) = ...+1001+01101+011

D

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 24

Lemma 2.2.3. Let x = u011011 be good. Then g(x) is good.

Proof. Since x is good, it must end with at most 2 left-maximal squares. It is 11,
possibly 011011 (it may not be left-maximal), or square that starts in the u part.
g(x) = g(u) o 010011+01101+0110+10011+01101+01101
g(x) = g(u) o 010011+01101+0110+10011+01101+01101
g(x) = g(u) o 010011+01101+0110+10011+01101+01101
We underlined the two squares that result from the squares that x ends or may end
with. Since x is good, there cannot be any other square that g(x) ends with that
would be a result of transformation by g. Thus
g(x) = g(u) o 010011+01101+0110+10011+01101+011
is a square g(x) ends with. If the suffix 011011 in x was left-maximal, then g(x) =
g(u) o 010011+01101+0110+10011+01101+011
is left-maximal squares g(x). Thus, g(x) ends with at most 2 squares, it is good. D

Lemma 2.2.4. Let x = u101011 be good. Then g(x) is good.

Proof. Since x is good, it must end with at most 2 squares, hence they are 11 and
possibly a square that starts in the u part.
g(x) = g(u) o 10110+1001+0110+10011+01101+01101
g(x) = g(u) o 10110+1001+0110+10011+01101+01101
We underlined the two squares that result from the squares x ends or might end with.
Since xis good, there cannot be any other square that g(x) ends with that would be
a result of transformation by g. Thus
g(x) = g(u) o 10110+1001+0110+10011+01101+011
is the only left-maximal square g(x) ends with, and so it is good. D

2.2.2 The main theorem

We are now ready to construct a family of lower bounds arbitrarily close to an.

Theorem 2.2.5. For any c > 0 there is a positive integer N so that for any n > N,
p(n) ~ (a-c)n, where a= +3v'5 ~ 0.927n.1

The rest of this chapter is devoted to the proof of the theorem. Due to the

technical nature of the proof, we present it in several steps.

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 25

Sa,b sequences

We define a recursive sequence Sa,b (determined by the parameters a and b):

• n0(a, b)= a

•...

....

By the definition, we have

. ni (a, b) . ni (a, b)

lliD = 1liD --..,.-~-'-----
i-+oo ni+l(a, b) i-+oo 4ni(a, b)+ni-l(a, b)

l
. 1

= liD -----:-~
i-+oo 4+ni-l (a,b)

ni(a,b)

Since

ni(a, b) . ni-I(a, b)
lim = 11m --'---..:...
i-+oo ni+1(a, b) i-+oo ni (a, b)

_lim ni(a,b) th li ni(a,b) l' ni-l(a,b) u.r hLet 7 - i-+oo . (b), en ffii-+oo . (b) = lffii-+oo ·(b) = 7. vve ave
n~+l a, n~+l a, n2 a,

1
'Y = 4+7

'Y = -2+v'5

Based on the definition of Sa,b sequence, for any integer k;:::: 1 and any i, we have:

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 26

Parameters

We choose and fix three parameters k, 'fJ and C (their values depend on the given c).

Recall from the subsection 2.1.4 that a=
1
+3\15

Choose k a positive integer that satisfies

Choose C to be the smallest integer so that

Choose a positive real 'fJ so that

k+l a
'fJ<-(c--)

- k k+l

From above, then

k+l a
'fJ ~ T(c-k+l)

k+l a,< --c-.,- k k

k'f/ ~ (k+l)c-a

k'f/ ~ (k+l)c+ka-(k+l)a

(k+l)a-(k+l)c ~ k(a-'fJ)

(k+l)(a-c) ~ k(a-'fJ)

k
(a-c)~ k+l (a-'fJ)

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 27

Now a, c, k,"' satisfy:

(2.2.1)

Definition of xi(j) sequences

For 0 ~ j < C, set

a(j) = 3(k+1)ik(G-j)

then we have

a(j+l) = 3(k+1)(j+I)k(O-j-I)

= k+1(3(k+1)(j)k(O-j))
k

k+1 (') =-aJ
k

Let

It follows that

1b(j+l) = k+ b(j)
k

Now for a given j < C we define a recursive sequence of binary strings {Xi (j) : i < oo}:

1. x0(j) = (011)b{j)

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 28

2. x1(j) = g(xo(j))

3....

5....

Compute the length of xi (j)

1. 	 lxo(j)l = I(Oll)b(i)j = 3b(j) = a(j) and A(xo(j)) = b(j).

2. 	 jg(xo(j)l = 4lxo(j)j+A(xo(j))+2 = 4a(j)+b(j)+2.

Hence lx1(j)l = l9(xo(j))l = lg(xo(j))j-2 = 4a(j)+b(j) and

A(xi(j)) = A(g(xo(j)) = lxo(j)j.

3....

4. 	 jg(xi+I(j)l = 4lxi+l(j)I+A(xi+I(j))+2 = 4jxi+l(j)l+lxi(j)l+2, thus

lxi+21 = 4lxi+I(i)l+lxi(j)l and A(xi+2(j)) = A(g(xi+l(j)) = lxi+I(j)j.

5....

The above sequence {Ixi (j) I : i < oo} is thus an Sa(j),b(i) sequence, and so

limi-+oo ~~:~~~ = -2+-/5. (Note: to make this sequence an Sa(j),b(j) sequence was

the only reason for using g rather than g, and why the definition of g consists of

removal of exactly 2 letters.)

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 29

Compute the runs in Xi(j)

From Lemmas 2.2.1-2.2.3 we know that each Xi (j) is good. Therefore

Since

then

. R{xi(j))Comput e 1Iffii-+oo !xi (j)
1

t . R{xi(j)) ThLet A deno e 1Iffii-+oo !xi (j)
1

• en

R(xi+1(j)) > R(xi(j))+3lxi(j)l-3
lxi+1(j)l - lxi+1(j)l

R(xi (j))+3lxi(j) l-3
-

4lxi(j)l+lxi-1 (j)l
R(xi(j)) +3--3

lxi (j) I !xi (j) I
4+ lxi-1 (j)l

lxi(j)l

Thus A> A+3
- 4+P

R(xi+1 (j)) < R(xi(j))+3lxi(j) l-1
lxi+1(j) I - lxi+1 (j) I

R(xi (j))+3lxi(j) l-1
-

4lxi (j) I+lxi-1 (j) I
R(xi(j)) +3--1

lxi (j) I !xi(j) I
4+ IXi-l(j)l

lxi(i)l

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 30

Thus A~ 1tJ· It follows that A= 1tJ and so A= a. Thus

Complete the proof

Given the value of the limit above, and given the parameter 1J (see above), for any

0 ~ j :5 C, there is a positive integer Ii, so that for any i ~ Ii.

Let I= max{lj:OjC}, then for any i >I and any 0 ~ j :5 C

(2.2.2)

Since {lxi(j)l : i < oo} is a Ba(j),b(j) sequence where ni(a(j), b(j)) = lxi(j)l, we have

ni+2(a(j), b(j)) = 4ni+l(a(j), b(j))+ni(a(j), b(j))

It had been shown that a(j+l) = k!1a(j), b(j+l) = k!1b(j) and ni(ta, tb) =

tni(a, b), so we get:

n,(a(j),b(j)) = (k;l)n,(a(j-l),b(j-1)) = ... = (k;l)in;(a(O),b(O))

Set N = max{n1(a(j), b(j)): 0 ~ j ~ C}. This is theN we were looking for.

Now for any n ~ N, there must exist some i satisfying

ni(a(O), b(O)) < n :5 ni+1(a(O), b(O))

M.Sc. Thesis- Qian Yang McMaster University- Computing & Software 31

Because N = max{n1 (a(j), b(j)) : 0 ~ j ~ C} and n ~ N, it follows that i ~ I.

Since (kkl)0 ~ 5, then (kkl)0 ni(a(O), b(O)) ~ ni+l(a(O), b(O)). As a result there exists

some j, (j E [0, C-1]), such that

k+1 . k+1 ~1(T)Jni(a(O), b(O)) < n ~ (T)3 ni(a(O), b(O))

It follows that

n,(a(j), b(j)) < n ~ k;ln;(a(j), b(j)) (2.2.3)

Now we can estimate the value of p(n):
n

From (2.2.3), n > ni(a(j), b(j)), we have

p(n) > p(ni(a(j), b(j)))
n - n

Based on (2.2.3)

p(ni(ai, bi)) > ~p(ni(a(j), b(j)))
n - k+1 ni(a(j), b(j))

and (2.2.2)

k p(ni(a(j), b(j))) > ~(a-rJ)
k+1 ni(a(j), b(j)) - k+1

recall (2.2.1)

k
-(a-rJ) > a-e:
k+1

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 32

To sum up

p(n) > p(ni(ai, bi))
n 	 - n

> k p(ni(a(j), b(j)))
- k+l ni(a(j), b(j))

k
~ k+l (a-TJ)

~a-c-

So, for any n ~ N, P~) ~ a-c and thus p(n) ~ (a-c-)n. This completes the proof of

the theorem.

Chapter 3

Constructing a lower bound,
method 2

From the definition of p(n), p(n) 2:: max{R(x)lx E {0, l}n}. The main method for

obtaining a lower bound is to create sequences of binary strings with many runs as in

[FSS03] and "fill in the gaps" left out by the values not occurring in the sequences.

In the previous chapter, we showed a recursive construction for building sequences

of strings with many runs. However, it may be that there exist some other methods

of creating sequences of strings with even larger ratios of the number of runs to the

length.

In this chapter, we provide an alternative recursive construction of strings "rich

in runs"; a method different from the one used in [FSS03] and in Chapter 2 of this

thesis. Then we adopt a very similar method to the one described in Chapter 2 to

obtain an asymptotic lower bound for p(n) utilizing these sequences.

33

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 34

Interestingly, the sequences constructed by method 2 have the same limit as se

quences obtained by method 1. This lends some support to the conjecture stated in

[FSS03] that limn-4oo p~) = a =
1
}\1"5·

3.1 Loose cube-free strings

In this section we provide some motivation for the selection of substitution patterns

and the mapping function g that are the foundations of method 2.

Recall the conjecture C3 (Chapter 1): p(n) is attained by a cube-free string on

{0, 1 }n~ The strings that satisfy the cube-free property to a certain degree can be built

using some kind of concatenation. Although such strings may not be run-maximal,

they are likely to provide a comparatively large R~n).

3.1.1 Defining loose cube-free strings

Since we believe that p(n) is achieved by a cube-free string, thus considering cube

free strings as candidates for run-maximality eliminates lots of strings of length n

from a need to be considered. For instance, if we consider runs with period one,

then neither 000 nor 111 can occur as substrings. Further more, when we consider

runs with period two, neither 010101 not 101010 can occur as substrings, and so on.

Consequently, after a certain number of steps, a very limited number of strings may

remain for consideration. This leads us to introduce the notion of loose cube-free

strings, i.e. strings that are cube-free for runs with period one or two.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 35

3.1.2 Building loose cube-free strings

What can loose cube-free strings consist of? What should be the building blocks?

• 	 period of run= 1, 00 and 11 can both exist in loose cube-free strings

• 	 period of run = 2, 0101, 01010, 1010, and 10101 can all exist in loose cube-free

strings.

The basic idea of creating loose cube-free strings is to combine all the unit strings

(0101, 01010, 1010, 10101). During their combination, the main requirement is to

maintain the loose cube-free property. Here are all the possible pairs of what can be

"glued" together:

• 	 0101 + 1010 or 10101

• 	 01010 + 0101 or 01010

• 	 1010 + 0101 or 01010

• 	 10101 + 1010 or 10101

We can "glue" two strings u and v, u, v E {0101, 01010, 1010, 10101 }, whenever

last letter in u is the same as the first letter in v. Following this way of combining

the units, the run of period two in u is always broken by v, and the connecting part

of u and v adds a new run of period one to uv, which is allowed in loose cube-free

strings.

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 36

3.1.3 Analysis on some run-maximal strings

It is interesting to investigate the run-maximal strings as computed by Franek and

Smyth with respect to loose cube-free property.

The run-maximal strings of length up to 35 are all compositions of the four unit

strings (0101, 01010, 1010, 10101) except possibly for some small prefix and suffix.

We illustrate it on the run-maximal strings of lengths 34 and 35 (the extra prefixes

and suffixes are shown in bold):

1. length 34

(a) 00+01010+0101+ 1010+01010+0101 + 1010+01010+0

(b) 0010+01010+0101+ 1010+01010+0101 + 1010+0101

(c) 0010+0101+ 1010+0101 + 10101 + 1010+0101 + 1010+0

(d) 0+01010+0101 + 1010+01010+0101 + 1010+01010+01

(e) 0+01010+0101 + 1010+01010+0101 + 1010+0101 + 100

(f) 0+01010+0101+1010+01010+0101 + 1010+0101 + 101

(g) 0+0101+ 1010+0101 + 1010+01010+0101 + 1010+0101

(h) 0+0101+1010+0101 + 10101 + 1010+0101 + 1010+0101

(i) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 100

(j) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 101

(k) 0101 + 1010+0101 + 10101 + 1010+0101 + 10101 + 1010

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 37

2. length 35

(a) 0010+01010+0101+1010+01010+0101 + 1010+0101 + 1

(b) 0010+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 1

(c) 0+01010+0101+ 1010+01010+0101 + 1010+01010+010

(d) 0+01010+0101+ 1010+01010+0101 + 1010+01010+011

(e) 0+01010+0101+ 1010+01010+0101 + 1010+0101 + 1010

(f) 0+01010+0101+ 1010+0101 + 10101 + 1010+0101 + 1010

(g) 0+0101+ 1010+0101 + 1010+01010+0101 + 1010+0101 + 1

(h) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 1010+0101 + 1

(i) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 1010

(j) 0+0101+ 10101 + 1010+0101 + 10101 + 1010+0101 + 1010

NOTE: Taking into account the run structure only, there are always four strings with

identical structure: the string, its complement (change 0 to 1 and vice versa), the

reverse, and the complement of the reverse. Only one form is listed above.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 38

3.2 	 A recursive construction of binary strings that
increases the number of runs

3.2.1 	 Defining the mapping function g

We begin by defining an operator o which composes two strings x[l..n] and y[l..m]

according the following rule:

xy if x[n] = y[1],
x[l..n] o y[l..m] = { x[l..n]y[1]y[l..m] if x[n]-:/= y[1].

The above composition either preserves the length (the former case), or increments

the length by 1 (the latter case), but then also adds an extra run (..y[1]y[1] ..). Further

more, as we will prove later, the composition preserves runs in x andy.

We define the substitution patterns: u = 0101 and v = 1010.

Now, let us take a closer look at o and what happens with the substitution patterns

during their composition:

• 	u 0 u = 0101 0 0101 = 0101 + 00101

=> runs within substitution patterns: 0101 + 0 0101

=> new runs: 01010 + 0101

• 	v 0 v = 1010 0 1010 = 1010 + 11010

=> runs within substitution patterns: 1010 + 1 1010

=> new runs: 10101 + 1010

• 	u 0 v = 0101 0 1010 = 0101 + 1010

=> runs within substitution patterns: 0101 +1010

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 39

::::::> new runs: 0101 + 1010

• 	v 0 u = 1010 0 0101 = 1010 + 0101

::::::> runs within substitution patterns: 1010+0101

::::::> new runs: 1010 + 0101

Note that o applied to substitution patterns u and v guarantees that the connecting

part of two patterns is always 00 or 11. This adds a new run of period one and prevents

the runs from patterns to be "glued" together. In other words, this composition

preserves all existing runs while adding an extra run.

Now we can define the mapping function g:

0101 if X = 0,

g(x) = 1010 if x = 1,

{

g(x[l..n]) = g(x[1]) og(x[2]) o · · · o g(x[n]) if lxl > 1.

If x is a loose cube-free string, then g(x) is a loose cube-free string as well.

In the following sequence of lemmas, we discuss the relationship between x and

g(x) with respect to lengths and number of runs.

Lemma 3.2.1. For any binary string u and v, g(uv) = g(u) o g(v).

Proof. From the definition of o: let u = u[l..n] and let v = v[l..m]. Then g(uv) =
g(u[1] ..u[n]v[1] ..v[m]) = g(u[1]) o g(u[2]) o .. o g(u[n]) og(v[1]) og(v[2]) o .. og(v[m]) =
(g(u[1]) og(u[2]) o .. o g(u[n])) o (g(v[1]) o g(v[2]) o .. o g(v[m])) = g(u) o g(v). D

Lemma 3.2.2. A repetition u[l..n]k of power k > 1 in x {x can be written as
wu[l..n]kv) is transformed to a unique repetition of power k in g(x) if w is not empty
and the first and u[1] ~ u[n].

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 40

Proof Let g(u[l..n]) = y[l..m].

1. 	u[1] f u[n], then y[m] = y[1] and g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) =
g(w)oy[l..m]y[l..m]y[l..m]..y[l..m]og(v) and so uk is transformed to a repetition
y[l..m]y[l..m] ..y[l..m] of power kin g(x).

2. 	 u[1] f u[n], then y[m] f y[1] and g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) =
g(w) o y[l..m]y[1]y[l..m]y[1]y[l..m] ..y[1]y[l..m] o g(v)

• 	 if w is not empty, then the connecting part of g(w) o g(u) equals y[1]y[1].
so uk is transformed to a repetition y[1]y[l..m]y[1]y[l..m] .. y[1]y[l..m] of
power kin g(x).

• 	if w is empty, then g(u) o g(v) equals y[l..m]y[1]y[l..m] ..y[1]y[l..m]y[m] ...
So uk is not transformed to a repetition of power kin g(x).

D

Lemma 3.2.3. A string X with runs (p, m, r, t) transformed by g loses those existing
runs, whose p = 1, x[p] = x[p+m-1], r = 2 and t = 0.

Proof. Consider a run (p, m, r, t) in x. Let x[p..p+m-1] = a1 ..am. Then
x = x[l..p-1](al··am) ... (al··am)(al··at)b.. , where b f at+l (as tis the tail) and where
either p = 1 or x [p-1] f am (as the run is leftmost).
Let g(al··am) = cl··cd. Then
g(x) = g(x[l..p-1]) o (c1..cd) o .. o (c1..cd) o (c1 ..Ct) o g(b) o

1. 	 Case 1: If x[p] f x[p+m-1 then cd = c1 .

Then g(x) = g(x[l..p-1]) o (cl··cd)(c1..cd) .. (c1..cd)(cl ..Ct) o g(b) .. looks like a run
with a power rand a period d and a tail t. Is it leftmost?

(a) Case 1-1: p = 1, then it is leftmost.

(b) Case 1-2: p > 1, then x[p-1] f am(as the run is leftmost).

i. 	Case 1-2-1: x[p-1] = 0 and am= 1.
Since xfp] f xfp+m-1](Case 1), then g(x) can be written as
g(x) = g(x[l..p- 2] + O)g(O + a2..am-l + 1)g(O + a2..am-l + 1) ..g(O +
a2..at)g(b)..
g(x) = (g(x[l..p- 2]) o 0101) + 0+ (0101 +c5•• cd_4 + 1010) + .. + (0101 +
cs ..Ct)g(b)..
Note: u + v here denote simply put v after u.
"run" can be "pushed" 4 positions to the left increasing the tail to
t+4. After that it is leftmost.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 41

ii. Case 1-2-2 x[p-1] = 1 and am= 0.
Similar as shown in Case 1-2-1 (0 changes to 1 while 1 changes to 0).

2. 	 Case 2: If x[p] = x[p+m-1 then cd f c1.

Then g(x) = g(x[l..p-1]) o (clcl··cd)(clcl ..cd)··(clcl .. Ct) o g(b) o
(ci)(cl··cd)(clcl··cd)··(clcl ..ct) looks like a run with a power r, a period d + 1,
and a tail t + 1. Is it leftmost?

(a) Case 2-1: p = 1

i. 	if there is no tail part of this run then it loses one run. (as seen in
previous uu)

ii. if the tail part is not empty, then it is leftmost.

(b) Case 2-2: p > 1, then x[p-1] f am.

i. 	Case 2-2-1: x[p-1] = 0 and am= 1.
Since x[p] = x[p+m-1](Case 2), then g(x) can be written as
g(x) = g(x[l..p- 2] + O)g(1 + a2 ..am-1 + 1)g(1 + a2 ..am-1 + 1)..g(1 +
a2..at)g(b)
g(x) = (g(x[l..p- 2]) o 0101) + (1010 + c5..cd_4 + 1010) + (1 + 1010 +
Cs •• Cd-4 + 1010) .. + (1 + 1010 + Cs ..Ct)g(b)
"run" can be "pushed" 3 positions to the left increasing the tail to
t+3. After that it is leftmost.

ii. Case 2-2-2: 	x[p-1] = 1 and am= 0.
Similar to the above Case (2-2-1), with the 0 changes to 1 and 1
changes to 0.

D

2Let Rbad(x) donate the number of runs u in x with p = 1, r = 2, t = 0 and

u[1] f u[p]

The above lemma shows a string x with runs (p, m, r, t) transformed by g loses

Rbad(x) number of strings.

3.2.2 Determining the length of g(x).

By definition,

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 42

lg(OO)I = lg(O) o g(O)I = lg(11)1 = lg(1) o g(1)1 = 9 = 4 *2+1

lg(01)1 = lg(O) o g(1)1 = lg(10)I = lg(1) o g(O)I = 8 = 4 * 2

Let ,\(x) denote the number of occurrences of 00 and 11 in x, then lg(x)l can be

computed as follows:

4 if lxl = 1,
lg(x)l = { 4lxl+,\(x) if lxl > 1.

Moreover, ,\(g(x)) = lxl-1.

3.2.3 Computing the number of runs in g(x)e

Similarly to the previous chapter, there are two kinds of runs in g(x):

• 	Rozd(g(x)): the runs that are transformations of runs in x. Lemma 3.2.3 shows

that Rozd(g(x)) = R(x)-Rbad(x);

• 	Rnew(g(x)): the runs created during the composition.

The new runs added by composition

1. 	 runs with period 1: (additional number of runs= lxl-1)

g(O) o g(O) = 0101+00101

g(1) 0 g(1) = 1010+11010

g(O) o g(1) = 0101+1010

g(1) o g(O) = 1010+0101

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 43

2. 	 runs with period 2: (additional number of runs= lxl)

g(O) o g(O) = 0101 + 0 0101

g(1) 0 g(1) = 1010 + 1 1010

g(O) o g(1) = 0101 + 1010

g(1) o g(O) = 1010 + 0101

3. 	 runs with period 3: (additional number of runs = lx l-1)

g(O) o g(O) = 0101 +00101

g(J) () g(1) = 1010+11010

g(O) o g(1) = 0101 + 1010

g(1) o g(O) = 1010+0101

Consequently,

Rnew(g(x)) = 3jxj-2.

Therefore, as R(g(x)) = Rold(g(x))+Rnew(g(x)),

R(g(x)) = Rold(g(x))+Rnew(g(x)) = R(x)- Rbad(x) + 3jxj-2

3.2.4 Defining a recursive sequence using g

In the previous section, a mapping function g was discussed. Now we describe a

recursive method of constructing a sequence of such strings using the mapping g.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 44

Let x 0 be an arbitrary binary string. We recursively define Xi+l = g(xi)·

We can see that

We are now ready to calculate the limit {3 = limi-+oo ~;~~ •1 1

since limi-+oo 1;i1 = 0, then

1
{3 = 4+{3

Finally we have

{3 = -2+-15

Lemma 3.2.4. If a sequence of strings defined in the above way and stari with x[O] =
0, then Rbad(xi) ~ 1 for any member in this sequence.

Proof. The sequence(underline donates the period of the run):

1. 	 Xo = 0, there is no run in Xo. So Rbad(xo) = 0.

2. 	 x1 = 0101, there is one run start at x1 [O]withnotailpart

• 	(p = 1,m = 2,r = 2, t = 0):011101:
Since x1 [p] = 0 i= xl[p + m--=-If= x1 [1] = 1, from Lemma3.2.3, this run
will be transformed to a unique run in x 2

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 45

3. 	 x2 = 0101 + 1010 + 0101 + 1010, there are two runs start at x2 [0] with no tail
part.

• 	 (p = 1, m = 2, r = 2, t = 0):011101 :
Same as the run in x1 , since x2 [1J] = 0 =/= x2 [p + m- 1] = x2 [1] = 1, from
Lemma3.2.3, this run will be transformed to a unique run in x3

• 	 (p = 1, m = 8, r = 2, t = 0):01011010II01011010
Since x2 [p] = 0 = x2 [p+m-1] = x2 [7] = 0, from Lemma3.2.3, this run will
lose during the transform. In other words, there is no run corresponding
to this one in x3 .

So Rbad(x2) = l.(the bad run is:(p = 1, m = 8, r = 2, t = 0))

4. 	 x3 = (0101 o g(101101) o 0101) + (00101 o g(101101) o 0101) , there are two runs
start at x3 [0] with no tail part.

• 	 (p == 1,m = 2,r = 2,t = 0):011101:
Same as in x1 and x 2 , will be transformed to a unique run in x3

• 	 (p = 1, m = 8, r = 2, t = 0):01011010II01011010 :

Same as in x2 , will be transformed to a unique run in x4 •

• 	 For the run (p = 1, m = 8, r = 2, t = 0) in x 2 , it lost during the transform,
because the added 0 in the front of the second period(marked in bold)
010110101101011010
=> (o1o1 o g(1o11o1) o o1o1) + 11 (oo1o1 o g(1o11o1) o o1o1)

So Rbad(x3) = l.(the bad run is:(p = 0, m = 8, r = 2, t = 0))

5. 	 x4: Like x3 , there are two runs start at x4 [0] with no tail part.

• 	 (p = 1, m = 2, r = 2, t = 0):011101 :
Same as in x1 , x 2 and x3 , will transformed to a unique run in x 5

• 	 (p = 1, m = 8, r = 2, t = 0):010110101101011010 :
Same as x 2 and x3 , will transformed to a unique run in x 5•

• For the run (p = 1, m = 8, r = 2, t = 0) in x3 , it lost during the transform.

So Rbad(x4) = l.(the bad run is:(p = 1, m = 8, r = 2, t = 0))

6. 	 For any Xi, the same thing happens to Xi· So Rbad(xi) = 1, for all i > l.(the
bad run is:(p = 1,m = 8,r = 2,t = 0))

In conclusion, Rbad(xi) E [0, 1] for any member in this sequence. 	 D

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 46

Therefore,

This result is also shown in the experimental result later in this section. We can

calculate the range for A= limi-+oo ~~::~1).

Since R(xn) ~ R(xn-l)+3lxn-ll-3,

Because limi-+oo 1;i1 = 0 and limi-+oo 1;i1 = 0, then

A>-3
- l+v'5

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 47

Since R(xn):::; R(Xn-1)+3lxn-ll-2, we also have

similarly we have

A<-3
- l+v/5

In conclusion,

3
A= l+v/5 =a~ 0.927.

3.2.5 Experimental results

The table below contains experimental results for the method 2. The starting string

is x 0 = 0. We note that the initial values in the table do not generate run-maximal

strings. But when the length of string grows larger, the ratio becomes closer to the

limit.

3.3 Constructing lower bound

As mentioned in Chapter 2, having a sequence {xi}~0 with liiDi--+oo ~~:j) = a does

not guarantee that an is an asymptotic lower bound of p(n). A single sequence does

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 48

i length(xi) R(xi) .A(xi) R(xi)
length(xi)

0 1 0 0 0
1 4 1 0 0.25
2 16 11 3 0.6875
3 67 56 15 0.8358
4 283 254 66 0.8975
5 1198 1100 282 0.9182
6 5074 4691 1197 0.9245
7 21493 19910 5073 0.9263

Table 3.1: experimental results of method 2

not suffice to estimate the values of p(n) in the "gaps" . Thus we apply the similar

method to build many sequences. When the "gaps" are small enough, the "dips" are

small enough.

3.3.1 Defining modified mapping function g

For a given string x, g(x) = y[l..n}'Y where y[l..n] = g(x) and 7 = 0 if y[n] = 1 and

7 = 1 if y[n] = 0. In simple terms, g(x) is g(x) with an extra letter that is different

from the last letter of g(x). (Similarly as in method 1, modification of g tog is for

technical reasons.)

We will compute IO(x)l using our knowledge of lg(x)l. For that we will need to

know .A(g(x)).

Lemma 3.3.1. .A(g(x)) = .A(g(x))

Proof. By the definition of g(x). D

Lemma 3.3.2. R(g(x))+1 ~ R(g(x)) ~ R(g(x)).

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 49

Proof • Let x ends with 1, theng(x) ends with .1010 andg(x) ends with ..1+10101
If R(g(x)) > R(g(x)), then g(x) must end with a square.

- if the square does not start at the first letter in g(x), then the end of the
first square part and the start of the second square part in g(x) should
be [.. 1010+1][1010..]([,] denote the two square part). By the definition of
mapping function, the letter before the start position is 1. It is obvious
that in such situation, this square can extended one position to the left,
which contradicts the assumption.

-	 if the square starts at the first letter in g(x),then R(g(x)) = R(g(x))+l.

• 	 Let x ends with 0, then g(x) ends with .0101 and g(x) ends with 0+01010
The similar way as above.

D

3.3.2 The main theorem

We are now ready to construct a family of lower bounds arbitrarily close to an.

The formulation of the theorem is exactly the same as that of Theorem 2.2.5 from

Chapter 2, so we are not repeating it here. In a sense, we can view the following as

an alternative proof of Theorem 2.2.5. The proof is quite similar to the proof in the

previous chapter.

1. 	 Ba,b sequences

we use the same Ba,b defined in Chapter 2. Hence lim· ni(a.,b) = -2+· 15~-+oo Tti+l(a,b) V u

and also it is true that ni(ka, kb) = kni(a, b) for any k.

2. 	 Parameters

We choose and fix the same three parameters k, 11 and C (their values depend

on the given e).

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 50

3. 	 Definition of xi(j) sequences

Same as defined in chapter 2, for 0 :::;; j < C, set a(j) = 3(k+l)ik(C-i) and

b(j) = a~) = (k+l)ikC-i. For a given j < C we define a recursive sequence of

binary strings different from chapter 2.{xi(j) : i < oo }:

(a) 	x0 (j) = (OlO)b(j)

(b) 	 ...

(c) 	 Xi+l(j) = g(xi(j))

(d) 	 ...

4. 	 Compute the length of Xi (j)

(a) 	 lxo(j) I = I(OlO)b(j) I= 3b(j) = a(j), .X(xo(i)) = b(j) - 1.

(b) 	 lg(xo(j)l = 4lxo(i)I+.X(xo(j)) = 4a(j)+b(j)-1

=> lx1(j)l = lb(xo(j))l = 4a(j)+b(j), .X(x1(j)) = .X(g(xo(j)) = lxo(j)l-1.

(c) 	 ...

(d) 	 lg(xi+l(i)l = 4lxi+l(j)I+.X(xi+l(j)) = 4lxi+l(J')I+Ixi(j)l-1

=> lxi+21 = 4lxi+l(j)l+lxi(j)l, .X(xi+2(j)) = .X(g(xi+l(J')) = lxi+l(j)l-1.

(e) 	 ...

5. 	 Compute the runs in xi(j)

M.Sc. Thesis- Qian Yang McMaster University- Computing & Software 51

From Lemmas 2.2.1-2.2.3, we have

Similar procedure to the sequence in method 2, Rbad(xi(j)) E [0, 1], so we have:

C 	 t r R(xi(j))6. ompu e 1mi~oo lxi(i)l

7. 	 Complete the proof

We do the same thing as shown in chapter 2. Then we prove that for any n ~ N,

P~) ~ a-c and thus p(n) ~ (a-c)n.

3.4 	 Some additional methods for generating loose
cube-free strings

There are various ways to build loose cube-free strings. Here are some experimental

results according to different compositions function we tried before finding method 2.

3.4.1 	 Method 3

To ensure that the adjacent part in g(x[i]) o g(x[i+l]) breaks the run of period two,

a new method can be adopted to produce a loose cube-free string.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 52

First let us assume that g(x[l..i]) = U/ (I E {0, 1}). When "gluing" g(x[i+1]),

there are exactly four possibilities:

1. x[i+1] = 1,1 = 1 => we define g(x[i]) o g(x[i+1]) = u1+10101

2. x[i+1] = 1, 'Y = 0 =? we define g(x[i]) o g(x[i+1]) = u0+01010

3. x[i+1] = 0,1 = 1 => we define g(x[i]) o g(x[i+1]) = u1+1010

4. x[i+1] = 0,1 = 0 =? we define g(x[i]) o g(x[i+1]) = u0+0101

Here the last letter in g(x[i]) gives the starting letter of g(x[i+1]), at the same time,

x[i+1] determines the length of g(x[i+1]). When x[i+1] equals to 1, we add the

unit string of length 5, otherwise we add the unit string of length 4. The sequence

generated by such mapping function g looks like:

• xo = 0;

• X1 = 0101;

e X2 = 0101+10101+1010+01010;

e X3 = 0101 + 10101 + 1010+01010+01010+0101 + 10101 + 1010+01010+ j

•......

.......

In Table 3.2 are the experimental results for this method. They show that the

number of runs in such string is growing too slowly to be useful for our purposes.

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 53

R(xi)i lxil R(xi) A(xi) lx:r
0 1 0 0 0
1 4 1 0 0.25
2 18 11 3 0.6111
3 81 62 17 0.7654
4 364 299 80 0.8214
5 1636 1364 363 0.8337
6 7353 6155 1635 0.8371
7 33048 27690 7352 0.8379

Table 3.2: experimental results of method 3

3.4.2 Method 4

This method is very similar to method 3, though now we make a small change to the

first string:

1. x[i+1] = 1, 'Y = 1 => we define g(x[i]) o g(x [i+1]) = u1 + 1010

2. x[i+l] = 1, 'Y = 0 => we define g(x[i]) o g(x[i+l]) = u0+0101

3. x[i+1] = 0, 'Y = 1 => we define g(x[i]) o g(x[i+1]) = ul+10101

4. x[i+1] = 0, 'Y = 0 => we define g(x[i]) o g(x[i+1]) = u0+01011

when x[i+1] equals to 1, we add the string of length 4, otherwise we add the string

of length 5. The sequence of strings it leads to is similar:

• Xo = 0

• X1 = 01010

e X2 = 01010+0101 + 10101 + 1010+01010

•......

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 54

•......

R(xi)
i lxil R(xi) ..\(xi) lxil
0 1 0 0 0
1 5 1 0 0.20
2 23 14 4 0.6087
3 104 79 22 0.7596
4 468 381 103 0.8141
5 2104 1748 467 0.8308
6 9457 7905 2103 0.8359
7 42505 35597 9456 0.8374

Table 3.3: experimental results of method 4

In Table 3.3 are the experimental results for this method. They show that the

number of runs in such string is growing too slowly (even slower than in method3) to

be useful for our purposes.

Chapter 4

Proving Rytter's upper bound

In this chapter, Rytter's proof of a linear upper bound of 5n for p(n) is described in

details. Some basic motivations: it is clear that there cannot be "too" many runs

with "large" periods. But it may be the case that even the generator of a run can

have a large period (recall that a period, a fundamental property of a string xis the

largest k so that there are u and v so that x = ukv and v is a prefix of u). Rytter

calls such runs highly periodic. Thus we know that there are not many runs with

"large" periods and that, for the same reasons, there are not many highly periodic

runs. Thus the problem of estimating the number of runs really boils down to manage

to estimate the number of non-highly periodic runs with "small" periods.

4.1 Basic definitions

For a possible comparison with Rytter's original paper, [R06], we adopted his termi

nology and his notation. First, let us introduce some basic definitions and notations

55

M.Sc. Thesis- Qian Yang McMaster University- Computing & Software 56

used in Rytter's proof. Any run can be written as follows:

x[p..p +lui* r + lu'l- 1) = uru'

Let a denotes this run:

a = x[p..p +lui *r + lu'l - 1]

Then, let

1. 	 PerPart(a) denotes the periodic part (generator) of a=? PerPart(a) = u

2. 	 period(a) denotes the period of a=? period(a)= lui

3. 	 exp(a) denotes the exponent (or power) of a

=? exp(a) = ial/period(a) = r + l.u~()

per~o a

4. 	 first(a) denotes the starting position of a =?first(a) = p

5. 	 center(a) denotes the starting position of the second occurrence of the gener

ator =?center(a)= p +lui.

Let us define a relationship~ between two runs a and {3:

a~ {3 #first(a) < first({3)

For example, let string x equals to ababaaba, then

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 57

• 	 rl: a b a b a a b a

PerPart(rl)=a, period(rl)=l, exp(r1)=2, first(r1)=5, centre(r1)=6

• r2: 	a b a b a a b a

PerPart(r2)=ab, period(r2)=2, exp(r2)=5/2, first(r2)=1, centre(r1)=3

• 	 r3: a b a b a a b a

PerPart(r3)=aba, period(r3)=3, exp(r3)=2, first(r3)=3, centre(r1)=6

Note: first(r2) < first(r3) < first(rl) => r2-< r3-< rl.

Let us define:

subperiod(a) = period(PerPart(a))

We give the following definition:

• 	 highly periodic: string x is highly periodic(h-period) # period(x) :::; 1~1

• 	 highly periodic run: run r is a highly periodic run(hp-run) # PerPart(x)

is highly periodic.

• 	 weakly periodic run: run r is not a highly periodic run(wp-run).

To better introduce the definition, let us analyze the runs in string

abaabaabaabaababaabaabaabaabab, the runs are shown below:

• 	 rl = (1, 3, 5, 0)

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 58

• r2 = (1, 14, 2, 2)

abaabaabaabaababaabaabaabaabab

• r3 = (4, 11, 2, 1)

abaabaabaabaababaabaabaab~abab

• r4 = (7, 8, 2, 1)

abaabaabaabaababaabaab~abaabab

In the above runs, we have

period(r1) = 3 < lrfl = ~5 => r1 is highly periodic.

PerPart(r2)=abaabaabaabaab => subperiod(r2) = 3 < IPerP:rt(r2)1 = 1
4
4 => r2 is

highly periodic(hp-run).

PerPart(r3)=abaabaabaab => subperiod(r3) _ 3 > IPerP:rt(r3}1 _ 4
11 => r3 is

weakly periodic(wp-rnn).

PerPart(r4)=abaabaab => subperiod(r4) = 3 > IPerP:rt(r
3)1 = ~ => r4 is weakly

periodic(wp-rnn).

Let 1::::. =~'two runs a and {3 are neighbours, if there exist 'f/, '11 E ~+:

!first(a:)- first(/1)! ~ ~1/ and 7J ~ period(o:),period(/3) ~!::. * 7J

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 59

Informally, two runs are neighbors iff they have similar periods and their starting

positions are close to each other relatively to their sizes, in particular this means that

period(a),period(/3) 2::: 4lfirst(a)- first(/3)1

Intuitively, in any given part of string, the number of such neighbours is limited.

4.2 The Three-Neighbours Lemma

Before we state the lemma and give its proof, let us give some definitions. According

to the different positions and periods of two runs a and /3, we defined their mutual

relation as follows:

• a-(-< {3 <=>a-((3 and first(f3) + 2period(f3) >first(a)+ 2period(a)

Figure 4.1: a -(-({3

• a~ {3 #a-({3 and first({J) + 2period(f3) =::;first(a)+ 2period(a)

Figure 4.2: a~ {3

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 60

We say a and (3 are distinct neighbours if a and (3 are neighbours and

period(a) f period(f3).

Lemma 4.2.1. If a~ (3 are distinct neighbours then (3 is highly periodic.

Proof. For the starting position, since a -< (3, there is no doubt that first(a) ~

first(f3). How about the position of centre(a) and centre(f3)?

centre(a)- centre({3) =(first(a)+ period(a))- (first(f3) + period({3))

=(first(a)- first({3)) +(period(a)- period(f3))

1. 	·:a~ {3::::} first(a) < first(f3)

·:a and {3 are neighbours ::::} lfirst(a)- first(f3)1 ~ ~17

:. (first(a)~ first(f3)) E [-~, 0)

2. 	 ·.· a ~ {3 ::::} period(a) > period({3)

·. · a and {3 are neighbours · ::::} 17 ~ period(a), period({3) ~ 1:!1 x 17

:. (period(a)- period({3)) E (0, ~]

3. centre(a) - centre({3) E (-~, ~)

Let us consider three different situations:

1. 	centre(a)- centre({3) = 0

a~

c5

Figure 4.3: a~ {3 and centre(a)- centre({3) = 0

Choose letter v at position first({3) + (p- q). Let v1 = v + q and v2 = v + p.

Because a is a run, then v1 = v. Since {3 is a run and p- (p- (p- q)) =

2(p- q) ~ ~17 < p, v2 in second PerPart of {3 and v = v2 • Then v = v1 = v2

The strings between v1 and v2 in the second PerPart of {3 implies that there

exists a square with period= (p- q) < ~ < l) in PerPart(f3).

We continue with this procedure. In the end, we know that {3 is a highly peri

odic run.

Note: s1 is the prefix of s.

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 61

aM~~·j
6
Figure 4.4: centre(a)- centre(/3) = 0 and choose point

/~~p.~p;;;s~
acF.. P J
6 · ..·.··.····· ·.··.·················· .··.........·..... ·

Figure 4.5: centre(a)- centre(f3) = 0 and period(p- q) < ~)

Figure 4.6: centre(a) - centre(/3) = -~ and f3 is highly-periodic

t=9-4
J

Figure 4.7: a~ f3 and centre(a)- centre(f3) = -~

2. centre(a)- centre(f3) E (-~, 0)

Choose the letter v at position 6 + (p- q) in the first PerPart of {3, and let
v1 = v + q and v2 = v + p:

·: f3 is a run :. Vt = v
·: 8 + (p- q) + q = 8 + p > p :. v1 in second PerPart of f3
·: p- (q- (p- q)) = 2(p- q) < 2 x i = ~1} < p :. v2 in second PerPart of f3

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 62

Figure 4.8: centre(a)- centre(f3) = -~ and choose point

·:a is a run:. v = v2

:. v = v1 = v2

Figure 4.9: centre(a) - centre(f3) = -~ and period(p- q) < ~)

The strings between v1 and v2 in the second PerPart of (3 implies that there ex
ists a square withperiod(p-q) <~in PerPart(f3). Repeat the same procedure
again and finally, we have that (3 is a highly periodic run.

1'£ .•.•. ·. . . ;p·.···.·.:•. • .. •.·.·•··.•..~ ••••s~······-1••.. .. ···.··:~·· =Dt-'9
B ...·.. ·.·· ········ ····· •P . J

Figure 4.10: centre(a)- centre(f3) = -~ and (3 is highly-periodic

Note: s1 is the prefix of s.

3. centre(a)- centre(f3) E (0, ~)

M.Sc. Thesis- Qian Yang McMaster University- Computing & Software 63

Figure 4.11: o: ~ {3 and centre(a:) - centre(/3) = i

Choose the letter v at 8 + 2q - (p - q) in the second PerPart of {3, and let
v1 = v - q and V2 = v - p:

Figure 4.12: centre(o:)- centre(f3) = ~ and choose point

·: o: is a run :. v1 = v
·: 8+2q-(p-q)-q = 8+2q-p < 8+q :. v1 in first PerPart of {3
·: 8+2q-(p-q)-p < 8+q :. v2 in first PerPart of {3
·: {3 is a run :. v2 = v
:. v = v1 = v2

Figure 4.13: centre(a:)- centre(/3) = i and period(p- q) < !)

The strings between v1 and v2 in the second PerPart of {3 implies that there
exists a square with period = (p- q) < ~) in PerPart(f3). We keep on the
same procedure and in the end, we have that {3 is a highly periodic run.

Note: s1 is the prefix of s.

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 64

Figure 4.14: centre(a)- centre(f3) =! and f3 is highly-periodic

From the above three situations, f3 is highly periodic. D

Lemma 4.2.2. !fa-<-< f3 are distinct neighbours then the prefix of{3 of size period(a)
8 has a period lq-pl, where'T} = first(f3)- first(a) andp = period(a), q = period(f3).

Proof. 1. period(a) > period({3)

a~
6

Figure 4.15: a-<-< {3 and period(a) > period(/3)

Choose the letter v at centre(/3) + (p- q) in the second PerPart of {3, and let
v1 = v - q and v2 = v - p:

·p......,.,..__,_

a~.~t~~q~.
',',•,,,, •,'., ,,•,,,.' ,,,' p ,'' J6·.··· ..·... ·······•.......•... ·.• ·.·•

Figure 4.16: period(a):> period(/3) and choose the letter

·: a is a run and f3 is a run
:. v = v1 = v2

The strings between v1 and v2 in the first PerPart of {3 implies that there exists

a square with period= (p- q) < ~) in PerPart({3). We keep on this process,

and in the end, we have the prefix of {3 of size period(f3) - 'T} has a period Iq -PI·

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 65

Figure 4.17: period(a.) > period({3) and {3 has a square lq- PI

St

a···~~··.··req_j

. .•• . . p . .•• J
'6

Figure 4.18: period(a.) > period({3) and prefix of {3 has a period lq- PI

2. Since a. and {3 are distinct neighbours, p =/= q.

3. period(a.) < period(/3)

Figure 4.19: a.-<-< {3 and period(a.) < period({3)

Choose the letter v at centre(/3) + (q- p) in the second PerPart of {3, and let
VI = V - q and V2 = V - p:

·: o is a run and f3 is a run, :. v = VI = v2
The strings between vi and v2 in the second PerPart of {3 implies that there
exists a square with period= (q- p) < ~ in PerPart({3).

We keep on this process, and in the end, we have the prefix of {3 of size
period({3) - 'lJ has a period lq -PI·

From the above two cases, the prefix of {3 of size period(a.) -8 has a period lq-PI,
where 8 = first({3)- first(a.) and p =period(a.), q = period({3). 0

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 66

Figure 4.20: period(a) < period(f3) and choose the letter

Figure 4.21: period(a) < period({3) and {3 has a square lq- PI

Figure 4.22: period(a)< period({3) and prefix of {3 has a period IP- ql

Lemma 4.2.3. [The Three-Neighbors Lemma] If we have three distinct runs
which are pairwise neighbours with the same number 'TJ then at least one of them is
h-periodic.

Proof. If there are 3 runs, and they are pairwise distinct runs,

• 	If there exist two runs a 1 and a 2 , such that

a1 d a2 => a 2 is highly periodic. (Lemma 4.2.1)

• 	If a1 ~~ a 2 ~~ a 3 , from Lemma 4.2.2, we have a 2 has a suffix "12 of size P2 -82,
and a prefix "Y1 of size p1 - 81. See the following figure:

Since a 1 and a3 	are neighbours, then lfirst(a1) - first(aa)l = 81 + 82 ::; i'TJ·

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 67

Then

plus

1'1 U 1'2 = P2 > 1J

hence:

IP2- Pal ~ ~17 * period('y2) = IP2- Pal ~ ~17

According to the periodicity lemma, a 2 is h-periodic.

D

4.3 HP-Runs Lemma

Lemma 4.3.1. Assume we have two distinct hp-runs a,/3 with the same subperiod
p and periodic part of one of them is a prefix of the periodic part of another. Then
lfirst(a)- first(/3)1 ~ p.

Proof. We assume that lfirst(a)- first(/3)1 < p. Since periodic part of one run is a
prefix of the periodic part of another, by periodicity lemma, the periodic part of one
string contains a subperiod, which is smaller than p. In the assumption, p must be
the smallest subperiod. There is a contradiction, then lfirst(a)- first(/3)1 ~ p. D

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 68

We say a is left-periodic if subperiod(a) is left extendable. Recall the previous

example: abaabaabaabaababaabaabaabaabab:

• r1 = (1, 14, 2, 2)

abaabaabaabaababaabaabaabaabab

• r2 = (4, 11, 2, 1)

abaabaabaabaababaabaabaab~abab

first(r1) = 1, centre(r1) = 15, subperiod(r1) = 3

first(r2) = 4, centre(r2) = 15, subperiod(r2) = 3

The position first(r2) -1 does not break subperiod(r2), so r2 is left-periodic. While

centre(r1) - 1 break subperiod(r1)

Lemma 4.3.2. Assume two neighbours a,/3 are left-periodic and h-periodic with the
same subperiod p. Then centre(a) = centre(/3)

Proof. ·:a and f3 are left-periodic
:. first(a)- 1 and first(f3) -1 keep the subperiod.
·.·a and (3 are not left-extendible as a run.
:. centre(a) ~ 1 and centre((3)- 1 break the subperiod.
·.· centre(a) and centre(/3) are in the same periodic segment. There is only one letter
that breaks the subperiod .
.·. centre(a)- 1 = centre((3)- 1
:. centre(a) = centre((3) D

Example: aabaabaabaabaababaabaabaabaabab:

a=aabaabaabaabaababaabaabaabaabab

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 69

~=aabaabaabaabaababaabaabaab~abab

In the above instance, both first(a) -1 = 1 and first(f3) -1 = 4 keep the subperiod

3. Since a and (3 are run, then centre(a) - 1 = 15 and centre(f3)- 1 = 15 break

the subperiod. Since the second part of a and (3 in the same periodic segment(15

30), then only one position 16 can breaks this segment. As a result centre(a)- 1 =

centre(f3) - 1 = 15 and centre(a) = centre(f3) = 16.

Lemma 4.3.3. [HP-Runs Lemma] For a given p > 1, there are at most two oc
currences of hp-runs with subperiod pin any interval of length p.

Proof. Assume we has three distinct hp-runs al, a2 and a3 with the same subperiod
p, and their relations are a1-< a2-< a3. Both a2 and a3 should be left-periodic, since
they with the first PerPart of a1, they can extends to the left to first(al). By Lemma
4.3.2, centre(a2) = centre(a3). Then PerPart(a3) is the prefix of PerPart(a2).
From Lemma 4.4.2, first(a3) - first(a2) ~ p. But in the lemma, these three runs
are in the interval of length p, which means first(a3) - first(a2) < p. There is a
contradiction. There are at most two hp-runs with subperiod p in any interval of
lengthp. D

4.4 Estimating the number of runs

Let

• WP(n, k): the maximal number of wp-runs a in a string of length n with

period(a) ~ k.

• HP(n): the maximal number of all hp-runs in a string of length n.

• p(n, k): the maximal number of all runs a with period(a)::; k

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 70

Estimating the Number of Weakly Periodic Runs

Denote

g(k) ={a: a is a weakly periodic run of w, .6.k ~period(a) < .6,k+l}

Lemma 4.4.1. WP(n, f.6.-rl) ~ 40.6.-r X n.

Proof. All the runs a 1, a2, .. .am in the same interval of size i.6.k must satisfy that
for any pair of ai and aj, lfirst(a1) - first(a2)1 ~ i.6.k. By definition any run
ai in g(k) iff .6,k ~period(a) < .6,k+l. Let 'I] = .6,k, then a1, a2, ...am are pairwise
neighbours with the same 'IJ· Recall 4.2.3, there are at most two elements in g(k) in
any interval of size i .6.k. Then we have:

lg(k)l ~ 2 X l~k = 8 X/:::,. -k X n
4

Consequently, we have

00 00 1
WP(n, r.6.rl) ~ L lg(k)l ~ L 8 X!::,. -k X n = 8/:::,.-r X 1-.6,-1 = 40.6.-r

k=r k=r

0

Estimating the Number of Highly Periodic Runs

Let hp(n,p) be the maximal number of hp-runs a with p ~ subperiod(a) ~ 2p.

Lemma 4.4.2. lfp ~ 2 then hp(n,p) ~ ~n

Proof. We can get the result from the following claim (based on the periodicity
lemma).

Claim 4.4.3. If a.,{3 are two hp-runs with satisfy

!first(a)- first(f3)1 < p and p ~ subperiod(a), subperiod(/3) ~ 2p

, then subperiod(a) = subperiod(/3).

From the claim and Lenuna 4.3.3, in any interval of length p, there are at most
two hp-runs with the subperiods in [p.. 2p]. Because such hp-runs must have the same
p' ~ p, there are at most ~n ~ ~n hp-runs with subperiod in fp..2p]. 0

M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 71

Lemma 4.4.4. HP(n) ~ 1.75n.

Proof. Based on Lemma 4.4.2, we have

HP(n) ~ hp(n, 2)+hp(n, 5)+hp(n, 11)+hp(n, 23)+hp(n, 47)+hp(n, 95)+...
1 1 1 1 1

= 2n x (2+5+11+ 23 +47 +...)
00 1

=2nxL-·

k=l Pk

where Pk = 2k + 2k-l- 1. A rough estimation gives:

00 1
2 XL-< 1.75

k=l Pk

This completes the proof. 	 D

The Runs with Periods Bounded by a Constant

Lemma 4.4.5. For any given k ~ 1 there are at most k!ln runs with period(a) = k
or period(a)= 2k.

Proof. Claim 4.4.6. if u,v are primitive words and lui = 2lvl, then vv is not con
tained in uu as a subword.

Assume that a -< {3 are two different runs with periods k or 2k.

• 	period(a) = period(/3) = k
Since period(a) = period(/3) = k, then the overlap size of a and f3 is at most
k- 1. Then first(a)- first({3) ~ k+1

• 	period(a)= k and period(f3) = 2k
Since period(a) f= period(f3), then first(a) - first(f3) may equal 1. Based on
the claim the distance from first(f3) to the occurrence of the next hp-run 1
with period(!)= k or period('Y) = 2k is at least 2k + 1. Then

(first(a)- first({3))+(first(r)- first(f3)) ~ 2k+2.

"On average", the distance is k+1.

Therefore there are at most k!ln runs with a period k or 2k.

Lemma 4.4.7. p(n,p) ~ H(p) x n

0

M.Sc. Thesis- Qian Yang McMaster University - Computing & Software 72

Proof. Let we define an infinite set q,, which is generated by the following algorithm:
<I> = cjJ;'l/J = {1, 2, 3, ... }
repeat forever
k =min '1/J;

remove k and 2k from 'lj;;

insert k into '1/J;

We also let q,(p) = {k E <I>: k ~ p}.
For p ~ 1, let

1
H(p) = ~kE~(p) k+l'

Then we complete the proof. 0

Estimating the Number of Runs

Theorem 4.4.8. p(n) ~ 5n

Proof. For any i ~ 1,

p(n) ~ HP(n)+WP(n, r~rl)+p(n, L~rj)
~ (1.75+40~-r+H(f~rl) X n.

when r = 20, we have

L~20J = 86,40~-20 ~ 0.4612,H(86) ~ 2.77

Due to Lemma 4.4.4 4.4.5 4.4.7,

p(n) ~ (1.75+8(86)+40~-20) x n ~ (1.75 + 2.77 + 0.4612)n < 5n

Now we complete the proof of the main result. 0

Chapter 5

Conclusions and Future Work

In this thesis, in Chapters 2 and 3 we provided detailed proofs of the best known

upper and lowe~ bounds for the maxrun function p(n). For the lower bound part,

we discussed two possible methods of generating recursive sequences of binary strings

"rich in runs" and showed how to determine a family of asymptotic lower bounds from

these sequences. The fact that we arrived to sequences with identical limits with two

distinct construction methods supports the hypothesis that in fact liiD.n-+oo P~)

3
l+v'5"

In Chapter 4 we provided a detailed proof or Rytter's upper bound published in

2006. Just recently, we learned that Rytter, and independently Smyth, Simpson, and

Puglisi, had improved the upper bound to 3.5n. These results have not ben published

yet, though. There are indications that Smyth at. al. can in fact lower the upper

bound to 1.5n which would narrow the gap between the lower bound and the upper

bound significantly.

73

M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 74

As indicated in Chapter 1, Smyth and his collaborators put forth together 4

different conjectures concerning the behaviour of p(n):

C1: For every n, p(n) < n.

C2: For every n, p(n- 1) ~ p(n) ~ p(n- 1) + 2.

C3: For every n, p(n) is attained by a cube-free binary string.

. p(n) 3C4 1: Imn-+oo n = 1+v's.

The best known lower and upper bounds for p(n) are not sufficient to settle any

of these conjectures, yet. However, the two different constructions of sequences of

strings presented in the thesis give a strong evidence for the conjecture C4, which is,

in an asymptotic way, a strengthening of the conjecture Cl.

In the future research we will focus on improving both bounds· to narrow the gap

between them and to settle one or more of the four conjectures.

Bibliography

[FSS03] F. Franek, J. Simpson, and W.F. Smyth The maximum number of runs in a
string. In Proc. 14th Australasian Workshop on Combinatorial Algorithms,
pages 13-16, 2003.

[FY06] F. Franek and Q. Yang An asymptotic lower bound for the maximal-number
of-runs function. In Proc. The Prague Stringology Conference 2006, pages
3-8, 2006.

[KKOO] R. Kolpakov and G. Kucherov On maximal repetitions in words. Discrete
Algorithms 1, pages 159-186, 2000.

[M89] M.G. Main Detecting leftmost maximal periodicities.
Maths, pages 145-153, 1989.

Discrete Applied

[R06] · W. Rytter The number of runs in a string: Improved analysis of the linear
upper bound. In Proc. 23rd Annual Symposium on Theoretical Aspects of
Computer Science, pages 184-195, 2006.

[S03] B. Smyth Computing Patterns in Strings
0201398397.

Addsison Wesley, 2003, ISBN

75

	Structure Bookmarks
	Table of Contents

