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Abstract 

A string is a sequence of various simple elements. The most straightforward examples 

of strings are English words- concatenations of the 26 letters of the English alphabet. 

A repetition in a string x is a nonempty substring of the form x[i ..j] = uk, k ;:::: 2. 

The study of repetitions in strings is as old as the study of strings themselves. Fur­

thermore, the identification of repetitions in a given finite string still remains an 

important topic in a variety of contexts: pattern-matching, computational biology, 

data compression, cryptology, and many other areas. 

A run in a string xis a substring in the form x[i ..j] = ukv, k ;:::: 2 where vis a prefix 

of u, u is not a repetition itself, and this substring x[i ..j] is neither left-extendible nor 

right-extendible. The notion of runs thus captures the notion of leftmost maximal 

repetitions and allows for a succinct notation [M89]. The maximal number of runs 

over all strings of length n is denoted as p(n). To determine the properties of the 

function p(n) is an important aspect of the research in periodicities in strings. 

Prior to the asymptotic lower bound presented by Franek and myself in [FY06] 

(presented here in Chapter 2), there had been no known non-trivial lower bound 

for p(n), asymptotic or otherwise. A result suggesting a possible lower bound was 

presented by Franek, Simpson and Smyth in 2003, introducing a construction of a 

sequence of strings {xn}~=0 , so that liiDn-Hxl r~:? = +3V5 ~ 0.927 [FSS03]. Their11
method was extended to provide a true asymptotic lower bound in [FY06]. In the 

first part of Chapter 2, the recursive construction of the sequence of strings from 

[FSS03] is presented with all details not discussed in either [FSS03] or [FY06]. In 

the second part of Chapter 2, a construction of the lower bound is presented with all 

viii 
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details. This part represents my original contribution to the research. 

I designed a new approach to generate strings that are "rich in runs" other then 

the one used in [FSS03] and [FY06]. A similar approach as in Chapter 2 is used 

to construct a lower bound for p(n) using the alternate construction of sequences of 

strings. This new construction method gives, interestingly, sequences with the same 

limit as in [FY06], thus giving some support to the conjecture that liiDn-+oo P~) = }JS
1

stated in [FSS03]. This method is presented in Chapter 3. The whole Chapter 3 thus 

represents another part of my original contribution to the research. 

It had been known since the 1980's that the number of repetitions in a string 

of length n is at most of the order O(nlogn). A remarkable result by Kolpakov 

and Kucherov in 2000 showed that p(n) was in fact bounded by a function linear in 

n [KKOO]. Their approach only. provided the existence of such a function, not the 

concrete values of its constants. Recently, Rytter improved the upper bound of p(n) 

to 5n. [R06). The paper by Rytter was published in a conference proceedings and as 

such lacked many details in some areas and was bit too vague. In Chapter 4 I present 

Rytter's proof with all relevant details filled in. Through a private communication I 

learned at the time of writing of this thesis that the upper bound had been improved 

by Rytter, and independently by Smyth, Simpson, and Puglisi to 3.5n. The latest 

upper bound is supposed to be now as low as 1.5n. However, none of the upper 

bounds better than 5n has been published yet. 

In the last chapter I discuss my conclusions and point out the directions for the 

future research. 
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Chapter 1 

Introduction 

In this chapter we will give rigorous definitions of the terminology and describe the 

notions that we use throughout this thesis. 

1.1 Strings 

A string is a sequence of various simple elements. The most straightforward exam­

ples of strings are English words, which are concatenations of letters of the English 

alphabet. In the same way, any English sentence can be seen as a composition of 

English words and various symbols. Another example is quite usual in computer sci­

ence. It is well known that in any electronic computer, there exists only two states 

designated by symbols: '1' (usually represented by an electrical high voltage) and '0' 

(usually represented by a low voltage). So all the information stored and processed 

by a computer is a combination of these two symbols. For instance, in a computer 

system, all the files, memory contents, I/0 signals, all can be viewed as strings drawn 

1 
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from the set {0, 1 }, i.e. so-called binary strings. 

Here are some other everyday examples of strings [S03]: 

• 	 a text file, whose elements are ASCII characters. 

• 	 a stream of bits beamed from a space vehicle. 

• 	 a DNA sequence, composed by four letters C, G, A and T, standing for adenine, 

cytosine, guanine, and thiamin respectively. 

• 	 a computer program, expressed as words and separators (semicolon, colon and 

etc.) .. 

Any of the above strings can be described as a sequence of elements drawn from 

a particular set. This set is called an alphabet, and its members are referred to as 

letters. It is obvious that the alphabet of English words consists of the 26 English 

letters, and the alphabet of the DNA sequences is {C, G, A, T}. The size of alphabet 

is referred to as its cardinality. In the common cases when the size equals 2, 3 or 4, 

we say that the alphabet is binary, ternary, or quaternary. 

Strings are usually expressed as one-dimensional (character, letter, symbol) arrays: 

x : array[l..n] 

In this case the length of string x is defined as n and denoted by lxl (i.e. lxl = n). 

For any integer i E [l..n], x[i] denotes the letter (character, symbol) at the position i 
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in x. We can write: 

x = x[l]x[2] ...x[n] 

There is a special kind of string whose length equals 0. This is the so-called empty 

string and is denoted by E. 

If x = x[l..n] andy= y[l..m] are strings, then their concatenation 

xy = x[l]x[2] ..x[n]y[l]y[2] ..y[m] 

Considering any pair of integers i and j(l ~ i ~ j ~ n), we define a substring x[i ..j] 

of x as follows: 

x[i..j] = x[i]x[i + l] ..x[j] 

A x[i ..j] is a proper substring of x if either i > 1 or j < lxl. 

A prefix of x is any substring of x that starts at position 1, while a suffim of x is 

any substring that ends at position lxl. 

For example: 

x =abed 

has prefixes 

E,a,ab,abc,abcd 

and suffixes 

abcd,bcd,cd,d,E 
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A proper prefim of x is a prefix that is not equal to x, and a proper suffiz of x is 

a suffix that is not equal to x. 

1.2 Repetitions 

Repetitions (tandem repeats) in strings play a very important role both in theory and 

practice- for example, in data compression, computational biology, pattern-matching, 

and many other fields. 

The simplest form of a repetition is a square. If there exist some integers m and 

p, such that: 

x[p..p+m-1] = x[p+m..p+2m-1] 

then, we say that x[p..p+2m-1] is a square of period m. 

0For a string u, we define u = c, u1 = u, and un+l = unu by induction. 

For example, in a string x=abcbca, be be is a square with p = 2 and m = 2. Nate 

that the two parameters, p and m completely determine the square for a given x. 

Instead of square, a more general description of repetition takes a form of a triple 

(p, m, r) of positive integers so that x[p..p+rm-1] = x[p..p+m-1r. p, m and rare 

called the position, the period and the ezponent of the repetition. The substring 

x[p..p+m-1] is called the generator. 

For example string x=abcbcbcbd, the repetitions are shown below: 
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• 	 exponent= 2 (squares): (2,2,2), (3,2,2), (4,2,2), and (5,2,2) 

abcbcbcbd, abcbcbcbd, abcbcbcbd and abcbcbcbd 

• 	 exponent = 3: (2,2,3), and (3,2,3) 

abcbcbcbd and abcbcbcbd 

1.3 Ru.ns 

1.3.1 Definition of run 

A run R is notion designed to capture the maximal leftmost repetition that is ex­

tended to the right as much as possible. A run in a string x can be represented as 

4-tuple (p, m, r, t) where (p, m, r) is a repetition as defined above, and moreover 

• 	 the generator xfp..p+m-1] is not a repetition (the maximality condition); 

• 	 The initial square part of the run xfp..p+m-1] = x[p+m..p+2m-1] is left­

maximal i.e. x[p-l..p+m-2] =I= x[p+m-l..p+2m-2] (the non left-extensibility 

condition); 

• 	r is a maximal exponent, i.e. a maximal r such that x[p..p+m-1] = 


x[p+m..p+2m-1] = ... = x[p+(r-1)m..p+rm-1]; 


• 	t < m is the tail of run, i.e. a maximal t such that xfp+rm..p+rm+t] is a 

proper prefix of the generator (the non right-extensibility condition). 
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It can also be written as 

x[p..p+lulr+lu'l-1] = uru' 

where pis the starting position, u is the generator, lui is the period, lu'l is the 

tail. (and hence a prefix of u), r is the exponent (often referred to as the power). 

For instance, runs in string bbabaabaabc are: 

• period= 1 

bbabaabaabc: (1,1,2,0),(5,1,2,0),(8,1,2,0) 

• period= 2 

bbabaabaabc : ( 2, 2, 2, 0) 

• period= 3 

bbabaabaabc : ( 3, 3, 2, 2) 

1.3.2 The maximal-number-of-runs function 

Let R(x) denote the number of runs in a string x, then we define the maximal­

number-of-runs function p(n) by 

p(n) = max{R(x): lxl = n} 
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We shall call the function p(n), the mazrun function for short. There is not much 

known about its properties: 

P1: For any n, p(n+1) ~ p(n). 

P2: For any n, p(n + 2) ~ p(n) + 1 

Proof. ·: 3x, lxl =nand R(x) = p(n) 
·.· take a letter 'Y which never occurs in x, build a new string X'Y'Y 
:. lx'Y'YI = n + 2 and R(x'Y'Y) = p(n) + 1 
:. p(n + 2) ~ R(x'Y'Y) = p(n) + 1 0 

P3: For any n, p(n + 1) ~ p(n) + L~J 
Proof. ·: 3x, lxl = n + 1 and R(x) = p(n + 1) 
·.· there are at most L~J squares starting at position 1 
.·. the removal of the first letter of x will decrease the number of runs by at most 
L~J runs 
:. p(n) ~ R(x[2..n+1]) ~ R(x)-L~J = p(n+1)-L~J 
:. p(n+1) ~ p(n)+L~J 0 

P4: For some n, p(n+1) = p(n) 

This fact was established by direct computation (independently by Kolpakov 

and Kucherov, and by Franek and Smyth, for instance, p(33) = 27 and p(34) = 

27). However, it is not known whether this is an asymptotic property (i.e. 

whether the set of all n such that p(n) = p(n+1) is infinite). 

P5: For some n, p(n+1) ~ p(n)+2 

This fact was established· by direct computation (independently by Kolpakov 

and Kucherov, and by Franek and Smyth, for instance, p(13) = 8 and p(14) = 

10). However, it is not known whether this is an asymptotic property. 
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[KKOO] includes a table which gives p(n) for n = 5, 6, ...31, and the paper also shows 

the corresponding run-maximal strings. Franek and Smyth independently computed 

the same for n = 5, ... , 35 giving all run-maximal strings. 

The following conjectures about the properties of p(n) were proposed by Smyth 

and colleagues (see for instance [FSS03] among many other publications): for any n, 

C1: p(n) < n 

C2: p(n- 1) ~ p(n) ~ p(n- 1) + 2 

C3: p(n) is attained by a cube-free binary string. 

Up to now, none of the conjectures has been proven or refuted. 

The function p(n) is non-decreasing and does not exhibit very wild increments 

(property P3 above). Both conjectures, C1 and C2, limit the increments even more. 

Since it is commonly expected that the function p(n) exhibits uniformly mild incre­

ments, the function P~) is expected to exhibit mild oscillations. Thus liiDn-+oo P~) may 

give some insight into the behaviour of p(n). An approximation of such limit in the 

form of an increasing sequence of binary strings {xn}~=O with the limit liiDn-+oo ~~:J) 

was the motivation and the result of [FSS03]. 

However, it is not settled whether p(n) has such mild increments, and, conse­

quently, it is not settled whether P~) is monotonic. It is not even clear whether a 

proper limn-+oo p(n) exists: p(n) may be oscillating with a non-decreasing magnitude or 
n n 

it can tend to oo (for instance, it is conceivable that for any n ~ N, p(n+1) = p(n)+~ 
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and thus limn--+oo p~) = +oo). 

1.3.3 Bounds of the maxrun function 

Prior to [FY06] there has been no known non-trivial lower bound for p(n). By trivial 

lower bound we mean 0.5n one given by the properties Pl, P2, P4, and P5 above. 

Proof. The slowest possible growth for p(n) can be described by the following pattern: 
p(2n + 2) = p(2n+l) and p(2n+l) = p(2n)+l. This has 0.5n as a lower bound. D 

We were able to extend the method and the result of [FSS03] to provide an asymp­

totic lower bound for p(n) arbitrarily close to I+:rsn ~ 0.927n. More precisely, we 

showed that for any c > 0, there exist a positive integer N, such that for any n > N, 

p(n) 2::: (a- c)n, where a= I+:rs' [FY06]. This result and the method are presented 

in Chapter 2. 

In Chapter 3 a similar, yet different, method to construct sequences of binary 

strings "rich in runs" is presented. Interestingly enough, the sequences constructed 

by this method give the same limit as the construction form [FSS03], thus somehow 

substantiating the conjecture stated in [FSS03] that liiDn--+oo p~) = l+:rs. Note that 

this conjecture in fact strengthen (at least asymptotically) the conjecture Cl. 

Prior to a remarkable result by Kolpakov and Kucherov in 2000 ([KKOO]) the only 

known upper bound for the maxrun function was of order O(n logn). Kolpakov and 

Kucherov showed that there exist constants K 1 and K 2 so that for any n, p(n) ~ 

K 1n- K 2 log2 nv"fi. However, their proof was existential and did not allow to specify 
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the constants concretely. Rytter, employing totally different approach, improved the 

upper bound of p(n) to 5n [R06]. We present Rytter's proof with all details in 

Chapter 4. From a private communication at the time of writing of this thesis we 

learned that the upper bound had been improved by Rytter, and independently by 

Smyth, Simpson and Puglisi, to 3.5n. The upper bound is now supposed to be 1.5n, 

however all of these improvements are yet to be published. 



Chapter 2 

Constructing a lo-wer bound, 
method 1 

In this chapter we present and discuss the method used in [FY06] to obtain an asymp­

totic lower bound for p(n). Throughout this chapter by a string we mean a binary 

string over the alphabet {0, 1 }. 

By the definition of p(n), p(n) ~ max{R(x)lx E {0, 1}n}. In other words, if there 

exists a string s of length n whose ratio of the number of runs to the length n equals 

'"Y ('"Y E JR.), then p(n) ~ 1n. The key idea here is to build sequences of strings "rich 

in runs" as in [FSS03], but in a way that allows to estimate p(n) even for the values 

not occurring as a size of a string in any of the sequences. In a sense, we have to ''fill 

in the gaps" left out by the values not occurring in the sequences. 

11 
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2.1 	 A recursive construction of binary strings that 
increases the number of runs 

2.1.1 Defining the mapping function g 

We first define a composition o that "glues" two strings x[l..n] and y[l..m] together 

in a special way: 

x[l..n]y[2..m] if x[n] = y[l],
x l..n o y l..m =[ ] 	 [ ] { x[l..n-l]y[2..m] if x[n] =/= y[l]. 

The above composition guarantees that the resulting string has a length shorter by 

one or two than the lengths of the concatenation of the components. The important 

characteristics of the composition o is that it preserves all runs from x and all runs 

from y (it prevents a run from x to be "glued" with a run from y into a single run), 

yet it may create some additional runs. 

The fundamental idea presented in [FSS03] is to find a pair of two distinct strings 

of the same length so that the composition between these two strings not only keeps 

their runs intact, but also adds some new runs. These two strings are then used to 

replace all O's and l's in a recursive fashion. Thus each replacement creates a larger 

string with a richer number of runs. We will refer to these strings as substitution 

patterns. 

Consider the following substitution patterns 

u=010010,v= 101101 
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What does the composition o do with the runs in the substitution patterns? 

First the runs in u and v are: 

u = 01QQ10 and v = 101101 

Apply the operator o to u and v: 

• 	u 0 u = 010010 0 010010 = 010010+(0)10010 


=:} runs from substitution patterns: 01.QQ10+10010, 010010+ 1.QQ10 


=> new runs: 010010+10010 


• 	v 0 v = 101101 0 101101 = 101101+(1)01101 


=:} runs from substitution patterns: 101101+01101, 101101+01101 


=> new runs: 101101+01101 


• 	u 0 v = 010010 0 101101 = 01001(0)+(1)01101 


=:} runs from substitution patterns: 01.QQ1+01101, 01001 +01101 


=:} new runs: 01001+01101 


• 	v 0 u = 101101 0 010010 = 10110(1)+(0)10010 


=:} runs from substitution patterns: 10110+10010, 10110+1QQ10 


=:} new runs: 10110+10010 


NOTE: The symbol+ is used to graphically separate the two substitution patterns 

and letters presented in parentheses are the ones removed by the composition. 

It 	is obvious that the deleted suffix of the first string equals the prefix of the 

remaining second string. Furthermore, the removed prefix of the second is the same 
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as the remaining suffix of the first string. As a consequence, the composition of u and 

v preserves all existing runs and adds one or two more runs. 

Now let us define a mapping function g as follows: 

010010 if X= 0, 

g(x) = 101101 if x = 1, 
{ 

g(x[l..n]) = g(x[1]) o g(x[2]) o · · · o g(x[n]) if lxl > 1. 

The most valuable aspect of the mapping function is that for a string x, it outputs 

a new string of length shorter than 6lxI while preserving all original runs from x (as 

we will see later). Moreover, the operation o adds one or two extra runs for each 

composition of the substitution patterns. 

The following series of lemmas shows that g will transform any run in x into a 

uniquerun in g(x) preserving its power. 

Lemma 2.1.1. For any binary string u and v, g(uv) = g(u) o g(v). 

Proof From the definition of o: let u = u[l..n] and let v = v[l..m]. Then g(uv) = 
g(u[1] ..u[n]v[1] ..v[m]) = g(u[1]) o g(u[2]) o .. o g(u[n]) o g(v[1]) o g(v[2]) o .. o g(v[m]) = 
(g(u[1]) o g(u[2]) o .. o g(u[n])) o (g(v[1]) o g(v[2]) o .. o g(v[m])) = g(u) o g(v). 0 

Lemma 2.1.2. A repetition uk of power k 2::: 2 in x is transformed to a unique 
repetition of power k in g(x). 

Proof. Let g(u) = y[l..m]. Let x = wukv. 

1. 	 y[m] = y[1], then g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) = 
g(w )oy[l..m]y[2..m]y[2..m]..y[2..m]og(v) and so uk is transformed to a repetition 
y[2..m]y[2 .. m] ..y[2 .. m] of power k in g(x). 

2. 	 y[m] =I= y[1], then g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) = 
g(w) o y[l..m-1]y[2..m-1]y[2..m-1] .. y[2 .. m-1] o g(v) and so uk is transformed 
to a repetition y[2 .. m-1]y[2..m-1] ..y[2..m-1] of power kin g(x). 
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D 

Lemma 2.1.3. A run R = (p, m, r, t) in x is transformed by g to a unique run in 
g(x) with a power r. 

Proof. Consider a run (p, m, r, t) in x. Let x[p..p+m-1] = a1..am. Then 
x = x[l..p-1](a1..am) ... (a1··am)(a1..at)b... , where b =/= at+1 (as tis the tail) and where 
either p = 1 or x[p-1] =I am (as the run is leftmost). 
Let g(a1 ..am) = c1 ..cd· Then 
g(x) = g(x[l..p-1]) o (c1 ..cd) o .. o (c1..cd) o (c1..Ct) o g(b) o .... 

1. 	 Let cd = c1. 
Theng(x) = g(x[l..p-1])o(c1..cd)(c2..cd) .. (c2··cd)(c2.. ct)og(b)o .... Since c1 = cd, 

(c1 ..cd)(c2··cd) .. (c2..cd)(c2..Ct) can be written as 
(CdC2 •.Cd-1Cd) (C2 ·.Cd-1Cd) ••· (C2..Cd-1Cd) ( C2. ·Ct) = 
(cdc2..cd-1)(cdc2..cd-1) .. (cdc2..cd-1)(cdc2..Ct) which almost looks like a run with 
a power rand a period d-1 and a tail t. Is it leftmost? 

(a) Case p = 1, then it is leftmost. 

(b) Case p > 1, then x[p-1] =/=am· 

i. 	 x[p-1] = 0 and am = 1. Then g(x[l..p-1]) ends with 010010 and 
g(a1..am) ends with 101101, hence (cdc2..cd_1) ends with 10110. Thus 
the "run" can be "pushed" 2 positions to the left increasing the tail 
to t+2. After that it is leftmost. 

ii. 	x[p-1] = 1 and am = 0. Then g(x[l..p-1]) ends with 101101 and 
g(a1..am) ends with 010010, hence (cdc2..cd-1) ends with 01001. Thus 
the "run" can be "pushed" 2 positions to the left increasing the tail 
to t+2. After that it is leftmost. 

2. 	 cd =/= c1. 
Then g(x) = g(x[l..p-1]) o (c1··Cd-1)(c2··Cd-1).. (c2..cd-1)(c2..Ct) o g(b) o .... 
c1(c2..Cd-1)(c2..cd-1) .. (c2..cd-1)(c2..Ct) o g(b) o ... almost looks like a run with a 
power r, a period d-2, and a tail t-1. Is it leftmost? 

(a) Case c1 f= cd_1. Then it is leftmost. 

(b) Case c1 = cd-l· Then the whole "run" can be pushed one position to 
the left: (c1c2··cd-2)(cd-lc2..cd-2) .. (cd-1··cd-2)(cd-1c2..Ct) o g(b) o ... which 
almost looks like a run with a power r, a period d-2, and a tail t. 
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i. Case p = 1, then it is leftmost. 

ii. 	 Case p > 1, then x[p-1] =f am. 

A. 	 x[p-1] = 0 and am= 1. Then g(x[l..p-1]) ends with 010010 and 
g(a1•• am) ends with 101101, hence (cd_1c2.. cd_2) ends with 1011. 
Thus it is leftmost. 

B. 	 x[p-1] = 1 and am= 0. Then g(x[l..p-1]) ends with 101101 and 
g(a1•• am) ends with 010010, hence (cd_1c2.•cd-2) ends with 0100. 
Thus it is leftmost. 

We have shown that the original run (p, m, r, t) in xis transformed by g to a leftmost 
"run" with a power r, a period d-1 or d-2 and a tail tor t+2. In order to make it 
into a proper run we need to determine the taiL But that can always be done. D 

2.1.2 Determining the length of g(x). 

From the definition, 

lu(OO)I = lu(O) o g(O)I = lu(11)1 = lu(1) o g(1)1 = 11 = 6 *2- 1 

lu(01)1 = lu(O) o g(1)1 = lu(10)I = lu(1) o g(O)I = 10 = 6 *2- 2 

So, whenever 00 or 11 occur in x, the length of g(x) shortens by 1, for any occurrence 

of 01 or 10 the length shortens by 2. Thus, if A(x) denotes the number of occurrences 

of 00 and 11 in x and lxl > 1, 

lu(x)l = 6lxi-A(x)-2(lxi-1-A(x)) 

= 4lxi+A(x)+2 

Then the formula for computing lu(x)l is 

lu(x)l = { 6 if lxl = 1, 
4lxi+A(x)+2 if lxl > 1. 
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2.1.3 Computing the number of runs in g(x). 

Let R(x) denote the total of runs in string x. In string g(x), there are two different 

kinds of runs: 

• 	 the runs in the substitution patterns 010010 and 101101 and the runs created 

during the composition of the substitution patterns, we will use Rnew(g(x)) to 

denote the number of such runs in g(x); 

• 	 the runs that are transformations of runs in x, we will use Rold(g(x)) to denote 

the number of such runs. Lemma 2.1.3 shows that Rold(g(x)) = R(x). 

The new runs added by composition 

1. 	 runs with period 1: (additional number of runs= lxl) 

g(OO) = 0+10010+1001+0, g(11) = 1+01101+0110+1 

g(01) = 0+1001+0110+1, g(10) = 1+0110+1001+0 

2. 	 runs with period 2: (additional number of runs= lxl-1) 

g(OO) = 0+10010+1001+0, g(11) = 1+01101+0110+1 

g(01) = 0+1001+0110+1, g(10) = 1+0110+1001+0 

3. 	 runs with period 3: (additional number of runs= lxl) 

g(OO) = 0+10010+1001+0 and 0+10010+1001+0 
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g(11) = 1+01101+0110+1 and 1+01101+0110+1 

g(01) = 0+1001+0110+1 and 0+1001+0110+1 

g(10) = 1+0110+1001+0 and 1+0110+1001+0 

Nate: The bold part may come from the previous or the next word respectively. 

Consequently, 

Rnew(g(x)) = lxl+(lxl-1)+1xl = 3lxi-L 

Therefore, 

R(g(x)) = Rold(g(x))+Rnew(g(x)) = R(x)+3lxl-1 

2.1.4 Defining a sequence using g 

We can now use the mapping g for a recursive construction of a sequence of strings. 


Let x0 be an arbitrary binary string. By recursion we define Xn+l = g(xn). 


From the two previous sections we know that 
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where ).(xn-l) is the number of 00 and 11 occurring in Xn-1. Since every substitution 

pattern contributes a single pair (010010 contributes 00, while 101101 contributes 

11), and since the composition o never creates a pair 00 or 11, ).(xn-1) = lxn-21· 

Therefore 

We are now ready to calculate the limit {3 = limi->oo ~::~ •1 1 

Since limi->oo ;i = 0, we get
1 1 

1 
{3 = 4+{3 

giving 

{3 = -2+V5 

We are now ready to calculate the limit o: = limi->oo ~~::~1). 
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Since limi-too I:LI = limi-too 1;i1 = 0, then 

(4+,8)a = a+3 

3 
a= 3+,8 

Because ,8 = - 2+v'5 then we have 

3 
a=-­

l+v'5 

Therefore 

. R(xi+l) 3 
lzmx-too I I = ~~ 0.927. 

Xi+l l+v5 

2.1.5 Experimental results 

The following table shows the experimental results for the above method of generating 

strings with increasing number of runs starting with a simple string x0 = 0. We note 
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that the small values in the table do not generate run-maximal strings as computed 

by Kolpakov and Kucherov, and Franek and Smyth. But it also shows that the ratio 

of the number of runs to the length converges to the limit rather quickly. 

R(a:i)i length(xi) R(xi) A(xi) ~ 
0 1 0 0 0 
1 6 2 1 0.3333 
2 27 19 6 0.7037 
3 116 99 27 0.8534 
4 493 463 116 0.9047 
5 2090 1924 493 0.9206 
6 8855 8193 2090 0.9252 
7 35712 34757 8855 0.9266 

Table 2.1: experimental results of method 1 

2.2 Constructing lower bound 

Knowing a sequence {xi}~0 with liiDi-too ~~:e =a does not guarantee that an is an 

asymptotic lower bound of p(n). The sequence {lxil} gives estimates of p(n) only for 

some n's (only for n = lxil for some i). The following diagram Fig. 2.2 indicates the 

problem. 

the value p(n) for ann between lxil and lxi+ll may dip significantly below (a-c:)n as 

the gaps between lxil and lxi+ll grow in size to infinity as i is approaching oo. 

Thus a single sequence does not suffice to estimate the values of p(n) in the "gaps". 

However, the construction of any such sequence as described above can start from 
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prlxir.) 
-.~..............~.....~.,~.; 


Figure 2.1: Gaps in estimates of value of p(n) 

any given string. Thus we can build many sequences. The smaller the "gap", the 

smaller the "dip" by p(n). If we use many sequences, we can make the "gaps" small 

enough and hence the "dips" small enough. 

2.2.1 Defining modified mapping function g 

For a given string x, g(x) = y[l..n-2] where y[l..n] = g(x). In simple terms, g(x) 

is g(x) with the last two letters removed. We remove exactly two letters to "adjust" 

the size of the resulting string for technical reasons (we want to make it divisible by 

certain numbers). 

We will compute l9(x)l using our knowledge of lg(x)l. For that we will need to 

know A(g(x)). 

Lemma 2.2.1. A(g(x)) = A(g(x)) 

Proof • Let x ends with 1, then g(x) ends with .01101 and hence removing the 
two last letters does not destroy any pair 00 and 11, A(g (x)) = A(g (x)). 



M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 23 

• Let x ends with 0, then g(x) ends with .10010 and hence removing the two last 
letters does not destroy any pair 00 and 11, ;\(g(x)) = ;\(g(x)). 

D 

We want to estimate R(g(x)) using our knowledge of R(g(x)). How many runs in 

g(x) we can destroy by removing the last two letters? It is not clear, by P3 (Chapter 1) 

it can be as many as IY~)l. That would be detrimental to our aim of constructing 

strings with as many runs as possible. We thus will limit ourselves to strings where 

this cannot happen. We will call such strings good. 

Definition 2.2.1. If a strings has a left-maximal square as its suffix, then we say 
that string s ends with a square. A string s is good if s ends with at most two 
squares. 

It is obvious that if g(x) is good, then R(g(x)) ~ R(g(x)) ~ R(g(x))-2 as we 

destroy at most 2 runs by removing the last two letters of g(x). 

In the following sequence of lemmas we prove some necessary properties concerning 

good strings that we will need later. 

Lemma 2.2.2. If x ends with 011, then g(x) ends with 101011. 

Proof. 

X= ...011 

g(x) = ...+1001+01101+01101 

g(x) = ...+1001+01101+011 

D 
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Lemma 2.2.3. Let x = u011011 be good. Then g(x) is good. 

Proof. Since x is good, it must end with at most 2 left-maximal squares. It is 11, 
possibly 011011 (it may not be left-maximal), or square that starts in the u part. 
g(x) = g(u) o 010011+01101+0110+10011+01101+01101 
g(x) = g(u) o 010011+01101+0110+10011+01101+01101 
g(x) = g(u) o 010011+01101+0110+10011+01101+01101 
We underlined the two squares that result from the squares that x ends or may end 
with. Since x is good, there cannot be any other square that g(x) ends with that 
would be a result of transformation by g. Thus 
g(x) = g(u) o 010011+01101+0110+10011+01101+011 
is a square g(x) ends with. If the suffix 011011 in x was left-maximal, then g(x) = 
g(u) o 010011+01101+0110+10011+01101+011 
is left-maximal squares g(x). Thus, g(x) ends with at most 2 squares, it is good. D 

Lemma 2.2.4. Let x = u101011 be good. Then g(x) is good. 

Proof. Since x is good, it must end with at most 2 squares, hence they are 11 and 
possibly a square that starts in the u part. 
g(x) = g(u) o 10110+1001+0110+10011+01101+01101 
g(x) = g(u) o 10110+1001+0110+10011+01101+01101 
We underlined the two squares that result from the squares x ends or might end with. 
Since xis good, there cannot be any other square that g(x) ends with that would be 
a result of transformation by g. Thus 
g(x) = g(u) o 10110+1001+0110+10011+01101+011 
is the only left-maximal square g(x) ends with, and so it is good. D 

2.2.2 The main theorem 

We are now ready to construct a family of lower bounds arbitrarily close to an. 

Theorem 2.2.5. For any c > 0 there is a positive integer N so that for any n > N, 
p(n) ~ (a-c)n, where a= +3v'5 ~ 0.927n.1

The rest of this chapter is devoted to the proof of the theorem. Due to the 

technical nature of the proof, we present it in several steps. 
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Sa,b sequences 

We define a recursive sequence Sa,b (determined by the parameters a and b): 

• n0(a, b)= a 

•... 

.... 

By the definition, we have 


. ni (a, b) . ni (a, b)

lliD = 1liD --..,.-~-'-----
i-+oo ni+l(a, b) i-+oo 4ni(a, b)+ni-l(a, b) 

l
. 1 

= liD -----:-~ 
i-+oo 4+ni-l (a,b) 

ni(a,b) 

Since 

ni(a, b) . ni-I(a, b)
lim = 11m --'---..:... 
i-+oo ni+1(a, b) i-+oo ni (a, b) 

_lim ni(a,b) th li ni(a,b) l' ni-l(a,b) u.r hLet 7 - i-+oo . ( b), en ffii-+oo . ( b) = lffii-+oo ·( b) = 7. vve ave
n~+l a, n~+l a, n2 a, 

1 
'Y = 4+7 

'Y = -2+v'5 

Based on the definition of Sa,b sequence, for any integer k;:::: 1 and any i, we have: 
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Parameters 

We choose and fix three parameters k, 'fJ and C (their values depend on the given c). 

Recall from the subsection 2.1.4 that a= 
1
+3\15 

Choose k a positive integer that satisfies 

Choose C to be the smallest integer so that 

Choose a positive real 'fJ so that 

k+l a
'fJ<-(c--)

- k k+l 

From above, then 

k+l a 
'fJ ~ T(c-k+l) 

k+l a,< --c-­.,- k k 

k'f/ ~ (k+l)c-a 

k'f/ ~ (k+l)c+ka-(k+l)a 

(k+l)a-(k+l)c ~ k(a-'fJ) 

(k+l)(a-c) ~ k(a-'fJ) 

k 
(a-c)~ k+l (a-'fJ) 
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Now a, c, k,"' satisfy: 

(2.2.1) 

Definition of xi(j) sequences 

For 0 ~ j < C, set 

a(j) = 3(k+1)ik(G-j) 

then we have 

a(j+l) = 3(k+1)(j+I)k(O-j-I) 

= k+1(3(k+1)(j)k(O-j)) 
k 

k+1 ( ') =-aJ 
k 

Let 

It follows that 

1b(j+l) = k+ b(j)
k 

Now for a given j < C we define a recursive sequence of binary strings {Xi (j) : i < oo}: 

1. x0(j) = (011)b{j) 
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2. x1(j) = g(xo(j)) 


3.... 


5.... 

Compute the length of xi (j) 

1. 	 lxo(j)l = I(Oll)b(i)j = 3b(j) = a(j) and A(xo(j)) = b(j). 

2. 	 jg(xo(j)l = 4lxo(j)j+A(xo(j))+2 = 4a(j)+b(j)+2. 


Hence lx1(j)l = l9(xo(j))l = lg(xo(j))j-2 = 4a(j)+b(j) and 


A(xi(j)) = A(g(xo(j)) = lxo(j)j. 


3.... 

4. 	 jg(xi+I(j)l = 4lxi+l(j)I+A(xi+I(j))+2 = 4jxi+l(j)l+lxi(j)l+2, thus 

lxi+21 = 4lxi+I(i)l+lxi(j)l and A(xi+2(j)) = A(g(xi+l(j)) = lxi+I(j)j. 


5.... 


The above sequence {Ixi (j) I : i < oo} is thus an Sa(j),b(i) sequence, and so 

limi-+oo ~~:~~~ = -2+-/5. (Note: to make this sequence an Sa(j),b(j) sequence was 

the only reason for using g rather than g, and why the definition of g consists of 

removal of exactly 2 letters.) 
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Compute the runs in Xi(j) 


From Lemmas 2.2.1-2.2.3 we know that each Xi (j) is good. Therefore 


Since 

then 

. R{xi(j))Comput e 1Iffii-+oo !xi (j)
1 

t . R{xi(j)) ThLet A deno e 1Iffii-+oo !xi (j) 
1 

• en 

R(xi+1(j)) > R(xi(j))+3lxi(j)l-3 
lxi+1(j)l - lxi+1(j)l 

R(xi (j) )+3lxi(j) l-3 
-

4lxi(j)l+lxi-1 (j)l 
R(xi(j)) +3--3­

lxi (j) I !xi (j) I 
4+ lxi-1 (j)l 

lxi(j)l 

Thus A> A+3 
- 4+P 

R(xi+1 (j)) < R(xi(j))+3lxi(j) l-1 
lxi+1(j) I - lxi+1 (j) I 

R(xi (j) )+3lxi(j) l-1 
-

4lxi (j) I+lxi-1 (j) I 
R(xi(j)) +3--1­

lxi (j) I !xi(j) I 
4+ IXi-l(j)l 

lxi(i)l 
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Thus A~ 1tJ· It follows that A= 1tJ and so A= a. Thus 

Complete the proof 

Given the value of the limit above, and given the parameter 1J (see above), for any 

0 ~ j :5 C, there is a positive integer Ii, so that for any i ~ Ii. 

Let I= max{lj:O$j$C}, then for any i >I and any 0 ~ j :5 C 

(2.2.2) 

Since {lxi(j)l : i < oo} is a Ba(j),b(j) sequence where ni(a(j), b(j)) = lxi(j)l, we have 

ni+2(a(j), b(j)) = 4ni+l(a(j), b(j))+ni(a(j), b(j)) 

It had been shown that a(j+l) = k!1a(j), b(j+l) = k!1b(j) and ni(ta, tb) = 

tni(a, b), so we get: 

n,(a(j),b(j)) = (k;l)n,(a(j-l),b(j-1)) = ... = (k;l)in;(a(O),b(O)) 

Set N = max{n1(a(j), b(j)): 0 ~ j ~ C}. This is theN we were looking for. 

Now for any n ~ N, there must exist some i satisfying 

ni(a(O), b(O)) < n :5 ni+1(a(O), b(O)) 
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Because N = max{n1 (a(j), b(j)) : 0 ~ j ~ C} and n ~ N, it follows that i ~ I. 

Since (kkl )0 ~ 5, then (kkl )0 ni(a(O), b(O)) ~ ni+l(a(O), b(O)). As a result there exists 

some j, (j E [0, C-1]), such that 

k+1 . k+1 ~1( T )Jni(a(O), b(O)) < n ~ (T )3 ni(a(O), b(O)) 

It follows that 

n,(a(j), b(j)) < n ~ k;ln;(a(j), b(j)) (2.2.3) 

Now we can estimate the value of p(n):
n 

From (2.2.3), n > ni(a(j), b(j)), we have 

p(n) > p(ni(a(j), b(j) )) 
n - n 

Based on (2.2.3) 

p(ni(ai, bi)) > ~p(ni(a(j), b(j))) 
n - k+1 ni(a(j), b(j)) 

and (2.2.2) 

k p(ni(a(j), b(j))) > ~(a-rJ) 
k+1 ni(a(j), b(j)) - k+1 

recall (2.2.1) 

k
-(a-rJ) > a-e:
k+1 ­
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To sum up 

p(n) > p(ni(ai, bi)) 
n 	 - n 

> k p(ni(a(j), b(j))) 
- k+l ni(a(j), b(j)) 

k 
~ k+l (a-TJ) 

~a-c-

So, for any n ~ N, P~) ~ a-c and thus p(n) ~ (a-c-)n. This completes the proof of 

the theorem. 



Chapter 3 

Constructing a lower bound, 
method 2 

From the definition of p(n), p(n) 2:: max{R(x)lx E {0, l}n}. The main method for 

obtaining a lower bound is to create sequences of binary strings with many runs as in 

[FSS03] and "fill in the gaps" left out by the values not occurring in the sequences. 

In the previous chapter, we showed a recursive construction for building sequences 

of strings with many runs. However, it may be that there exist some other methods 

of creating sequences of strings with even larger ratios of the number of runs to the 

length. 

In this chapter, we provide an alternative recursive construction of strings "rich 

in runs"; a method different from the one used in [FSS03] and in Chapter 2 of this 

thesis. Then we adopt a very similar method to the one described in Chapter 2 to 

obtain an asymptotic lower bound for p(n) utilizing these sequences. 

33 
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Interestingly, the sequences constructed by method 2 have the same limit as se­

quences obtained by method 1. This lends some support to the conjecture stated in 

[FSS03] that limn-4oo p~) = a = 
1
}\1"5· 

3.1 Loose cube-free strings 

In this section we provide some motivation for the selection of substitution patterns 

and the mapping function g that are the foundations of method 2. 

Recall the conjecture C3 (Chapter 1): p(n) is attained by a cube-free string on 

{0, 1 }n~ The strings that satisfy the cube-free property to a certain degree can be built 

using some kind of concatenation. Although such strings may not be run-maximal, 

they are likely to provide a comparatively large R~n). 

3.1.1 Defining loose cube-free strings 

Since we believe that p(n) is achieved by a cube-free string, thus considering cube­

free strings as candidates for run-maximality eliminates lots of strings of length n 

from a need to be considered. For instance, if we consider runs with period one, 

then neither 000 nor 111 can occur as substrings. Further more, when we consider 

runs with period two, neither 010101 not 101010 can occur as substrings, and so on. 

Consequently, after a certain number of steps, a very limited number of strings may 

remain for consideration. This leads us to introduce the notion of loose cube-free 

strings, i.e. strings that are cube-free for runs with period one or two. 
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3.1.2 Building loose cube-free strings 

What can loose cube-free strings consist of? What should be the building blocks? 

• 	 period of run= 1, 00 and 11 can both exist in loose cube-free strings 

• 	 period of run = 2, 0101, 01010, 1010, and 10101 can all exist in loose cube-free 

strings. 

The basic idea of creating loose cube-free strings is to combine all the unit strings 

(0101, 01010, 1010, 10101). During their combination, the main requirement is to 

maintain the loose cube-free property. Here are all the possible pairs of what can be 

"glued" together: 

• 	 0101 + 1010 or 10101 

• 	 01010 + 0101 or 01010 

• 	 1010 + 0101 or 01010 

• 	 10101 + 1010 or 10101 

We can "glue" two strings u and v, u, v E {0101, 01010, 1010, 10101 }, whenever 

last letter in u is the same as the first letter in v. Following this way of combining 

the units, the run of period two in u is always broken by v, and the connecting part 

of u and v adds a new run of period one to uv, which is allowed in loose cube-free 

strings. 
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3.1.3 Analysis on some run-maximal strings 

It is interesting to investigate the run-maximal strings as computed by Franek and 

Smyth with respect to loose cube-free property. 

The run-maximal strings of length up to 35 are all compositions of the four unit 

strings (0101, 01010, 1010, 10101) except possibly for some small prefix and suffix. 

We illustrate it on the run-maximal strings of lengths 34 and 35 (the extra prefixes 

and suffixes are shown in bold): 

1. length 34 

(a) 00+01010+0101+ 1010+01010+0101 + 1010+01010+0 

(b) 0010+01010+0101+ 1010+01010+0101 + 1010+0101 

(c) 0010+0101+ 1010+0101 + 10101 + 1010+0101 + 1010+0 

(d) 0+01010+0101 + 1010+01010+0101 + 1010+01010+01 

(e) 0+01010+0101 + 1010+01010+0101 + 1010+0101 + 100 

(f) 0+01010+0101+1010+01010+0101 + 1010+0101 + 101 

(g) 0+0101+ 1010+0101 + 1010+01010+0101 + 1010+0101 

(h) 0+0101+1010+0101 + 10101 + 1010+0101 + 1010+0101 

(i) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 100 

(j) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 101 

(k) 0101 + 1010+0101 + 10101 + 1010+0101 + 10101 + 1010 
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2. length 35 

(a) 0010+01010+0101+1010+01010+0101 + 1010+0101 + 1 

(b) 0010+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 1 

(c) 0+01010+0101+ 1010+01010+0101 + 1010+01010+010 

(d) 0+01010+0101+ 1010+01010+0101 + 1010+01010+011 

(e) 0+01010+0101+ 1010+01010+0101 + 1010+0101 + 1010 

(f) 0+01010+0101+ 1010+0101 + 10101 + 1010+0101 + 1010 

(g) 0+0101+ 1010+0101 + 1010+01010+0101 + 1010+0101 + 1 

(h) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 1010+0101 + 1 

(i) 0+0101+ 1010+0101 + 10101 + 1010+0101 + 10101 + 1010 

(j) 0+0101+ 10101 + 1010+0101 + 10101 + 1010+0101 + 1010 

NOTE: Taking into account the run structure only, there are always four strings with 

identical structure: the string, its complement (change 0 to 1 and vice versa), the 

reverse, and the complement of the reverse. Only one form is listed above. 



M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 38 

3.2 	 A recursive construction of binary strings that 
increases the number of runs 

3.2.1 	 Defining the mapping function g 

We begin by defining an operator o which composes two strings x[l..n] and y[l..m] 

according the following rule: 

xy if x[n] = y[1],
x[l..n] o y[l..m] = { x[l..n]y[1]y[l..m] if x[n]-:/= y[1]. 

The above composition either preserves the length (the former case), or increments 

the length by 1 (the latter case), but then also adds an extra run (..y[1]y[1] .. ). Further 

more, as we will prove later, the composition preserves runs in x andy. 

We define the substitution patterns: u = 0101 and v = 1010. 

Now, let us take a closer look at o and what happens with the substitution patterns 

during their composition: 

• 	u 0 u = 0101 0 0101 = 0101 + 00101 


=> runs within substitution patterns: 0101 + 0 0101 


=> new runs: 01010 + 0101 


• 	v 0 v = 1010 0 1010 = 1010 + 11010 


=> runs within substitution patterns: 1010 + 1 1010 


=> new runs: 10101 + 1010 


• 	u 0 v = 0101 0 1010 = 0101 + 1010 

=> runs within substitution patterns: 0101 +1010 



M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 39 

::::::> new runs: 0101 + 1010 

• 	v 0 u = 1010 0 0101 = 1010 + 0101 


::::::> runs within substitution patterns: 1010+0101 


::::::> new runs: 1010 + 0101 


Note that o applied to substitution patterns u and v guarantees that the connecting 

part of two patterns is always 00 or 11. This adds a new run of period one and prevents 

the runs from patterns to be "glued" together. In other words, this composition 

preserves all existing runs while adding an extra run. 

Now we can define the mapping function g: 


0101 if X = 0, 


g(x) = 1010 if x = 1, 

{ 


g(x[l..n]) = g(x[1]) og(x[2]) o · · · o g(x[n]) if lxl > 1. 

If x is a loose cube-free string, then g(x) is a loose cube-free string as well. 

In the following sequence of lemmas, we discuss the relationship between x and 

g(x) with respect to lengths and number of runs. 

Lemma 3.2.1. For any binary string u and v, g(uv) = g(u) o g(v). 

Proof. From the definition of o: let u = u[l..n] and let v = v[l..m]. Then g(uv) = 
g(u[1] ..u[n]v[1] ..v[m]) = g(u[1]) o g(u[2]) o .. o g(u[n]) og(v[1]) og(v[2]) o .. og(v[m]) = 
(g(u[1]) og(u[2]) o .. o g(u[n])) o (g(v[1]) o g(v[2]) o .. o g(v[m])) = g(u) o g(v). D 

Lemma 3.2.2. A repetition u[l..n]k of power k > 1 in x {x can be written as 
wu[l..n]kv) is transformed to a unique repetition of power k in g(x) if w is not empty 
and the first and u[1] ~ u[n]. 
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Proof Let g(u[l..n]) = y[l..m]. 

1. 	u[1] f u[n], then y[m] = y[1] and g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) = 
g(w )oy[l..m]y[l..m]y[l..m]..y[l..m]og( v) and so uk is transformed to a repetition 
y[l..m]y[l..m] ..y[l..m] of power kin g(x). 

2. 	 u[1] f u[n], then y[m] f y[1] and g(x) = g(w) o g(u) o g(u) o .. o g(u) o g(v) = 
g(w) o y[l..m]y[1]y[l..m]y[1]y[l..m] ..y[1]y[l..m] o g(v) 

• 	 if w is not empty, then the connecting part of g(w) o g(u) equals y[1]y[1]. 
so uk is transformed to a repetition y[1]y[l..m]y[1]y[l..m] .. y[1]y[l..m] of 
power kin g(x). 

• 	if w is empty, then g(u) o g(v) equals y[l..m]y[1]y[l..m] ..y[1]y[l..m]y[m] ... 
So uk is not transformed to a repetition of power kin g(x). 

D 

Lemma 3.2.3. A string X with runs (p, m, r, t) transformed by g loses those existing 
runs, whose p = 1, x[p] = x[p+m-1], r = 2 and t = 0. 

Proof. Consider a run (p, m, r, t) in x. Let x[p..p+m-1] = a1 ..am. Then 
x = x[l..p-1](al··am) ... (al··am)(al··at)b.. , where b f at+l (as tis the tail) and where 
either p = 1 or x [p-1] f am (as the run is leftmost). 
Let g(al··am) = cl··cd. Then 
g(x) = g(x[l..p-1]) o (c1..cd) o .. o (c1..cd) o (c1 ..Ct) o g(b) o .... 

1. 	 Case 1: If x[p] f x[p+m-1 then cd = c1 . 

Then g(x) = g(x[l..p-1]) o (cl··cd)(c1..cd) .. (c1..cd)(cl ..Ct) o g(b) .. looks like a run 
with a power rand a period d and a tail t. Is it leftmost? 

(a) Case 1-1: p = 1, then it is leftmost. 

(b) Case 1-2: p > 1, then x[p-1] f am(as the run is leftmost). 

i. 	Case 1-2-1: x[p-1] = 0 and am= 1. 
Since xfp] f xfp+m-1](Case 1), then g(x) can be written as 
g(x) = g(x[l..p- 2] + O)g(O + a2..am-l + 1)g(O + a2..am-l + 1) ..g(O + 
a2..at)g(b).. 
g(x) = (g(x[l..p- 2]) o 0101) + 0+ (0101 +c5•• cd_4 + 1010) + .. + (0101 + 
cs ..Ct)g(b).. 
Note: u + v here denote simply put v after u. 
"run" can be "pushed" 4 positions to the left increasing the tail to 
t+4. After that it is leftmost. 
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ii. Case 1-2-2 x[p-1] = 1 and am= 0. 
Similar as shown in Case 1-2-1 (0 changes to 1 while 1 changes to 0). 

2. 	 Case 2: If x[p] = x[p+m-1 then cd f c1. 

Then g(x) = g(x[l..p-1]) o (clcl··cd)(clcl ..cd)··(clcl .. Ct) o g(b) o .... 
(ci)(cl··cd)(clcl··cd)··(clcl ..ct) looks like a run with a power r, a period d + 1, 
and a tail t + 1. Is it leftmost? 

(a) Case 2-1: p = 1 

i. 	if there is no tail part of this run then it loses one run. (as seen in 
previous uu) 

ii. if the tail part is not empty, then it is leftmost. 

(b) Case 2-2: p > 1, then x[p-1] f am. 

i. 	Case 2-2-1: x[p-1] = 0 and am= 1. 
Since x[p] = x[p+m-1](Case 2), then g(x) can be written as 
g(x) = g(x[l..p- 2] + O)g(1 + a2 ..am-1 + 1)g(1 + a2 ..am-1 + 1)..g(1 + 
a2..at)g(b) 
g(x) = (g(x[l..p- 2]) o 0101) + (1010 + c5..cd_4 + 1010) + (1 + 1010 + 
Cs •• Cd-4 + 1010) .. + (1 + 1010 + Cs ..Ct)g(b) 
"run" can be "pushed" 3 positions to the left increasing the tail to 
t+3. After that it is leftmost. 

ii. Case 2-2-2: 	x[p-1] = 1 and am= 0. 
Similar to the above Case (2-2-1), with the 0 changes to 1 and 1 
changes to 0. 

D 

2Let Rbad(x) donate the number of runs u in x with p = 1, r = 2, t = 0 and 

u[1] f u[p] 

The above lemma shows a string x with runs (p, m, r, t) transformed by g loses 

Rbad(x) number of strings. 

3.2.2 Determining the length of g(x). 

By definition, 



M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 42 

lg(OO)I = lg(O) o g(O)I = lg(11)1 = lg(1) o g(1)1 = 9 = 4 *2+1 


lg(01)1 = lg(O) o g(1)1 = lg(10)I = lg(1) o g(O)I = 8 = 4 * 2 


Let ,\(x) denote the number of occurrences of 00 and 11 in x, then lg(x)l can be 

computed as follows: 

4 if lxl = 1, 
lg(x)l = { 4lxl+,\(x) if lxl > 1. 

Moreover, ,\(g(x)) = lxl-1. 

3.2.3 Computing the number of runs in g(x)e 

Similarly to the previous chapter, there are two kinds of runs in g(x): 

• 	Rozd(g(x)): the runs that are transformations of runs in x. Lemma 3.2.3 shows 

that Rozd(g(x)) = R(x)-Rbad(x); 

• 	Rnew(g(x)): the runs created during the composition. 

The new runs added by composition 

1. 	 runs with period 1: (additional number of runs= lxl-1) 


g(O) o g(O) = 0101+00101 


g(1) 0 g(1) = 1010+11010 


g(O) o g(1) = 0101+1010 


g(1) o g(O) = 1010+0101 
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2. 	 runs with period 2: (additional number of runs= lxl) 


g(O) o g(O) = 0101 + 0 0101 


g(1) 0 g(1) = 1010 + 1 1010 


g(O) o g(1) = 0101 + 1010 


g(1) o g(O) = 1010 + 0101 


3. 	 runs with period 3: (additional number of runs = lx l-1) 


g(O) o g(O) = 0101 +00101 


g(J) () g(1) = 1010+11010 


g(O) o g(1) = 0101 + 1010 


g(1) o g(O) = 1010+0101 


Consequently, 

Rnew(g(x)) = 3jxj-2. 

Therefore, as R(g(x)) = Rold(g(x))+Rnew(g(x)), 

R(g(x)) = Rold(g(x))+Rnew(g(x)) = R(x)- Rbad(x) + 3jxj-2 

3.2.4 Defining a recursive sequence using g 

In the previous section, a mapping function g was discussed. Now we describe a 

recursive method of constructing a sequence of such strings using the mapping g. 
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Let x 0 be an arbitrary binary string. We recursively define Xi+l = g(xi)· 

We can see that 

We are now ready to calculate the limit {3 = limi-+oo ~;~~ •1 1 

since limi-+oo 1;i1 = 0, then 

1 
{3 = 4+{3 

Finally we have 

{3 = -2+-15 

Lemma 3.2.4. If a sequence of strings defined in the above way and stari with x[O] = 
0, then Rbad(xi) ~ 1 for any member in this sequence. 

Proof. The sequence( underline donates the period of the run): 

1. 	 Xo = 0, there is no run in Xo. So Rbad(xo) = 0. 

2. 	 x1 = 0101, there is one run start at x1 [O]withnotailpart 

• 	(p = 1,m = 2,r = 2, t = 0):011101: 
Since x1 [p] = 0 i= xl[p + m--=-If= x1 [1] = 1, from Lemma3.2.3, this run 
will be transformed to a unique run in x 2 
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3. 	 x2 = 0101 + 1010 + 0101 + 1010, there are two runs start at x2 [0] with no tail 
part. 

• 	 (p = 1, m = 2, r = 2, t = 0):011101 : 
Same as the run in x1 , since x2 [1J] = 0 =/= x2 [p + m- 1] = x2 [1] = 1, from 
Lemma3.2.3, this run will be transformed to a unique run in x3 

• 	 (p = 1, m = 8, r = 2, t = 0):01011010II01011010 
Since x2 [p] = 0 = x2 [p+m-1] = x2 [7] = 0, from Lemma3.2.3, this run will 
lose during the transform. In other words, there is no run corresponding 
to this one in x3 . 

So Rbad(x2) = l.(the bad run is:(p = 1, m = 8, r = 2, t = 0)) 

4. 	 x3 = (0101 o g(101101) o 0101) + (00101 o g(101101) o 0101) , there are two runs 
start at x3 [0] with no tail part. 

• 	 (p == 1,m = 2,r = 2,t = 0):011101: 
Same as in x1 and x 2 , will be transformed to a unique run in x3 

• 	 (p = 1, m = 8, r = 2, t = 0):01011010II01011010 : 

Same as in x2 , will be transformed to a unique run in x4 • 


• 	 For the run (p = 1, m = 8, r = 2, t = 0) in x 2 , it lost during the transform, 
because the added 0 in the front of the second period(marked in bold) 
010110101101011010 
=> (o1o1 o g(1o11o1) o o1o1) + 11 (oo1o1 o g(1o11o1) o o1o1) 

So Rbad(x3) = l.(the bad run is:(p = 0, m = 8, r = 2, t = 0)) 

5. 	 x4: Like x3 , there are two runs start at x4 [0] with no tail part. 

• 	 (p = 1, m = 2, r = 2, t = 0):011101 : 
Same as in x1 , x 2 and x3 , will transformed to a unique run in x 5 

• 	 (p = 1, m = 8, r = 2, t = 0):010110101101011010 : 
Same as x 2 and x3 , will transformed to a unique run in x 5• 

• For the run (p = 1, m = 8, r = 2, t = 0) in x3 , it lost during the transform. 

So Rbad(x4) = l.(the bad run is:(p = 1, m = 8, r = 2, t = 0)) 

6. 	 For any Xi, the same thing happens to Xi· So Rbad(xi) = 1, for all i > l.(the 
bad run is:(p = 1,m = 8,r = 2,t = 0)) 

In conclusion, Rbad(xi) E [0, 1] for any member in this sequence. 	 D 
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Therefore, 

This result is also shown in the experimental result later in this section. We can 

calculate the range for A= limi-+oo ~~::~1). 

Since R(xn) ~ R(xn-l)+3lxn-ll-3, 

Because limi-+oo 1;i1 = 0 and limi-+oo 1;i1 = 0, then 

A>-3­
- l+v'5 
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Since R(xn):::; R(Xn-1)+3lxn-ll-2, we also have 

similarly we have 

A<-3­
- l+v/5 

In conclusion, 

3 
A= l+v/5 =a~ 0.927. 

3.2.5 Experimental results 

The table below contains experimental results for the method 2. The starting string 

is x 0 = 0. We note that the initial values in the table do not generate run-maximal 

strings. But when the length of string grows larger, the ratio becomes closer to the 

limit. 

3.3 Constructing lower bound 

As mentioned in Chapter 2, having a sequence {xi}~0 with liiDi--+oo ~~:j) = a does 

not guarantee that an is an asymptotic lower bound of p(n). A single sequence does 
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i length(xi) R(xi) .A(xi) R(xi) 
length(xi) 

0 1 0 0 0 
1 4 1 0 0.25 
2 16 11 3 0.6875 
3 67 56 15 0.8358 
4 283 254 66 0.8975 
5 1198 1100 282 0.9182 
6 5074 4691 1197 0.9245 
7 21493 19910 5073 0.9263 

Table 3.1: experimental results of method 2 

not suffice to estimate the values of p(n) in the "gaps" . Thus we apply the similar 

method to build many sequences. When the "gaps" are small enough, the "dips" are 

small enough. 

3.3.1 Defining modified mapping function g 

For a given string x, g(x) = y[l..n}'Y where y[l..n] = g(x) and 7 = 0 if y[n] = 1 and 

7 = 1 if y[n] = 0. In simple terms, g(x) is g(x) with an extra letter that is different 

from the last letter of g(x). (Similarly as in method 1, modification of g tog is for 

technical reasons.) 

We will compute IO(x)l using our knowledge of lg(x)l. For that we will need to 

know .A(g(x)). 

Lemma 3.3.1. .A(g(x)) = .A(g(x)) 


Proof. By the definition of g(x). D 


Lemma 3.3.2. R(g(x))+1 ~ R(g(x)) ~ R(g(x)). 
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Proof • Let x ends with 1, theng(x) ends with .1010 andg(x) ends with ..1+10101 
If R(g(x)) > R(g(x)), then g(x) must end with a square. 

- if the square does not start at the first letter in g(x), then the end of the 
first square part and the start of the second square part in g(x) should 
be [ .. 1010+1][1010..]([,] denote the two square part). By the definition of 
mapping function, the letter before the start position is 1. It is obvious 
that in such situation, this square can extended one position to the left, 
which contradicts the assumption. 

-	 if the square starts at the first letter in g(x),then R(g(x)) = R(g(x))+l. 

• 	 Let x ends with 0, then g(x) ends with .0101 and g(x) ends with 0+01010 
The similar way as above. 

D 

3.3.2 The main theorem 

We are now ready to construct a family of lower bounds arbitrarily close to an. 

The formulation of the theorem is exactly the same as that of Theorem 2.2.5 from 

Chapter 2, so we are not repeating it here. In a sense, we can view the following as 

an alternative proof of Theorem 2.2.5. The proof is quite similar to the proof in the 

previous chapter. 

1. 	 Ba,b sequences 

we use the same Ba,b defined in Chapter 2. Hence lim· ni(a.,b) = -2+· 15~-+oo Tti+l(a,b) V u 

and also it is true that ni(ka, kb) = kni(a, b) for any k. 

2. 	 Parameters 

We choose and fix the same three parameters k, 11 and C (their values depend 

on the given e). 
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3. 	 Definition of xi(j) sequences 

Same as defined in chapter 2, for 0 :::;; j < C, set a(j) = 3(k+l)ik(C-i) and 

b(j) = a~) = (k+l)ikC-i. For a given j < C we define a recursive sequence of 

binary strings different from chapter 2.{xi(j) : i < oo }: 

(a) 	x0 (j) = (OlO)b(j) 

(b) 	 ... 

(c) 	 Xi+l(j) = g(xi(j)) 

(d) 	 ... 

4. 	 Compute the length of Xi (j) 

(a) 	 lxo(j) I = I(OlO)b(j) I= 3b(j) = a(j), .X(xo(i)) = b(j) - 1. 

(b) 	 lg(xo(j)l = 4lxo(i)I+.X(xo(j)) = 4a(j)+b(j)-1 

=> lx1(j)l = lb(xo(j))l = 4a(j)+b(j), .X(x1(j)) = .X(g(xo(j)) = lxo(j)l-1. 

(c) 	 ... 

(d) 	 lg(xi+l(i)l = 4lxi+l(j)I+.X(xi+l(j)) = 4lxi+l(J')I+Ixi(j)l-1 

=> lxi+21 = 4lxi+l(j)l+lxi(j)l, .X(xi+2(j)) = .X(g(xi+l(J')) = lxi+l(j)l-1. 

(e) 	 ... 

5. 	 Compute the runs in xi(j) 
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From Lemmas 2.2.1-2.2.3, we have 

Similar procedure to the sequence in method 2, Rbad(xi(j)) E [0, 1], so we have: 

C 	 t r R(xi(j))6. ompu e 1mi~oo lxi(i)l 

7. 	 Complete the proof 

We do the same thing as shown in chapter 2. Then we prove that for any n ~ N, 

P~) ~ a-c and thus p(n) ~ (a-c)n. 

3.4 	 Some additional methods for generating loose 
cube-free strings 

There are various ways to build loose cube-free strings. Here are some experimental 

results according to different compositions function we tried before finding method 2. 

3.4.1 	 Method 3 

To ensure that the adjacent part in g(x[i]) o g(x[i+l]) breaks the run of period two, 

a new method can be adopted to produce a loose cube-free string. 
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First let us assume that g(x[l..i]) = U/ (I E {0, 1}). When "gluing" g(x[i+1]), 

there are exactly four possibilities: 

1. x[i+1] = 1,1 = 1 => we define g(x[i]) o g(x[i+1]) = u1+10101 

2. x[i+1] = 1, 'Y = 0 =? we define g(x[i]) o g(x[i+1]) = u0+01010 

3. x[i+1] = 0,1 = 1 => we define g(x[i]) o g(x[i+1]) = u1+1010 

4. x[i+1] = 0,1 = 0 =? we define g(x[i]) o g(x[i+1]) = u0+0101 

Here the last letter in g(x[i]) gives the starting letter of g(x[i+1]), at the same time, 

x[i+1] determines the length of g(x[i+1]). When x[i+1] equals to 1, we add the 

unit string of length 5, otherwise we add the unit string of length 4. The sequence 

generated by such mapping function g looks like: 

• xo = 0; 

• X1 = 0101; 


e X2 = 0101+10101+1010+01010; 


e X3 = 0101 + 10101 + 1010+01010+01010+0101 + 10101 + 1010+01010+ ...... j 


•...... 

....... 

In Table 3.2 are the experimental results for this method. They show that the 

number of runs in such string is growing too slowly to be useful for our purposes. 
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R(xi)i lxil R(xi) A(xi) lx:r 
0 1 0 0 0 
1 4 1 0 0.25 
2 18 11 3 0.6111 
3 81 62 17 0.7654 
4 364 299 80 0.8214 
5 1636 1364 363 0.8337 
6 7353 6155 1635 0.8371 
7 33048 27690 7352 0.8379 

Table 3.2: experimental results of method 3 

3.4.2 Method 4 

This method is very similar to method 3, though now we make a small change to the 

first string: 

1. x[i+1] = 1, 'Y = 1 => we define g(x[i]) o g(x [i+1]) = u1 + 1010 

2. x[i+l] = 1, 'Y = 0 => we define g(x[i]) o g(x[i+l]) = u0+0101 

3. x[i+1] = 0, 'Y = 1 => we define g(x[i]) o g(x[i+1]) = ul+10101 

4. x[i+1] = 0, 'Y = 0 => we define g(x[i]) o g(x[i+1]) = u0+01011 

when x[i+1] equals to 1, we add the string of length 4, otherwise we add the string 

of length 5. The sequence of strings it leads to is similar: 

• Xo = 0 

• X1 = 01010 

e X2 = 01010+0101 + 10101 + 1010+01010 

•...... 
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•...... 

R(xi)
i lxil R(xi) ..\(xi) lxil 
0 1 0 0 0 
1 5 1 0 0.20 
2 23 14 4 0.6087 
3 104 79 22 0.7596 
4 468 381 103 0.8141 
5 2104 1748 467 0.8308 
6 9457 7905 2103 0.8359 
7 42505 35597 9456 0.8374 

Table 3.3: experimental results of method 4 

In Table 3.3 are the experimental results for this method. They show that the 

number of runs in such string is growing too slowly (even slower than in method3) to 

be useful for our purposes. 



Chapter 4 

Proving Rytter's upper bound 

In this chapter, Rytter's proof of a linear upper bound of 5n for p(n) is described in 

details. Some basic motivations: it is clear that there cannot be "too" many runs 

with "large" periods. But it may be the case that even the generator of a run can 

have a large period (recall that a period, a fundamental property of a string xis the 

largest k so that there are u and v so that x = ukv and v is a prefix of u). Rytter 

calls such runs highly periodic. Thus we know that there are not many runs with 

"large" periods and that, for the same reasons, there are not many highly periodic 

runs. Thus the problem of estimating the number of runs really boils down to manage 

to estimate the number of non-highly periodic runs with "small" periods. 

4.1 Basic definitions 

For a possible comparison with Rytter's original paper, [R06], we adopted his termi­

nology and his notation. First, let us introduce some basic definitions and notations 

55 
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used in Rytter's proof. Any run can be written as follows: 

x[p..p +lui* r + lu'l- 1) = uru' 

Let a denotes this run: 

a = x[p..p +lui *r + lu'l - 1] 

Then, let 

1. 	 PerPart(a) denotes the periodic part (generator) of a=? PerPart(a) = u 

2. 	 period(a) denotes the period of a=? period(a)= lui 

3. 	 exp(a) denotes the exponent (or power) of a 


=? exp(a) = ial/period(a) = r + l.u~( ) 

per~o a 

4. 	 first(a) denotes the starting position of a =?first(a) = p 

5. 	 center(a) denotes the starting position of the second occurrence of the gener­

ator =?center(a)= p +lui. 

Let us define a relationship~ between two runs a and {3: 

a~ {3 #first(a) < first({3) 

For example, let string x equals to ababaaba, then 



M.Sc. Thesis - Qian Yang McMaster University- Computing & Software 57 

• 	 rl: a b a b a a b a 


PerPart(rl)=a, period(rl)=l, exp(r1)=2, first(r1)=5, centre(r1)=6 


• r2: 	a b a b a a b a 

PerPart(r2)=ab, period(r2)=2, exp(r2)=5/2, first(r2)=1, centre(r1)=3 

• 	 r3: a b a b a a b a 

PerPart(r3)=aba, period(r3)=3, exp(r3)=2, first(r3)=3, centre(r1)=6 

Note: first(r2) < first(r3) < first(rl) => r2-< r3-< rl. 

Let us define: 

subperiod(a) = period(PerPart(a)) 

We give the following definition: 

• 	 highly periodic: string x is highly periodic(h-period) # period(x) :::; 1~1 

• 	 highly periodic run: run r is a highly periodic run(hp-run) # PerPart(x) 

is highly periodic. 

• 	 weakly periodic run: run r is not a highly periodic run(wp-run). 

To better introduce the definition, let us analyze the runs in string 

abaabaabaabaababaabaabaabaabab, the runs are shown below: 

• 	 rl = (1, 3, 5, 0) 
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• r2 = (1, 14, 2, 2) 

abaabaabaabaababaabaabaabaabab 

• r3 = (4, 11, 2, 1) 

abaabaabaabaababaabaabaab~abab 

• r4 = (7, 8, 2, 1) 

abaabaabaabaababaabaab~abaabab 

In the above runs, we have 


period(r1) = 3 < lrfl = ~5 => r1 is highly periodic. 


PerPart(r2)=abaabaabaabaab => subperiod(r2) = 3 < IPerP:rt(r2)1 = 1
4
4 => r2 is 


highly periodic(hp-run). 


PerPart(r3)=abaabaabaab => subperiod(r3) _ 3 > IPerP:rt(r3}1 _ 4 
11 => r3 is 


weakly periodic( wp-rnn). 


PerPart(r4)=abaabaab => subperiod(r4) = 3 > IPerP:rt(r
3)1 = ~ => r4 is weakly 


periodic(wp-rnn). 


Let 1::::. =~'two runs a and {3 are neighbours, if there exist 'f/, '11 E ~+: 

!first(a:)- first(/1)! ~ ~1/ and 7J ~ period(o:),period(/3) ~!::. * 7J 
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Informally, two runs are neighbors iff they have similar periods and their starting 

positions are close to each other relatively to their sizes, in particular this means that 

period(a),period(/3) 2::: 4lfirst(a)- first(/3)1 

Intuitively, in any given part of string, the number of such neighbours is limited. 

4.2 The Three-Neighbours Lemma 

Before we state the lemma and give its proof, let us give some definitions. According 

to the different positions and periods of two runs a and /3, we defined their mutual 

relation as follows: 

• a-(-< {3 <=>a-( (3 and first(f3) + 2period(f3) >first(a)+ 2period(a) 

Figure 4.1: a -(-( {3 

• a~ {3 #a-( {3 and first({J) + 2period(f3) =::;first( a)+ 2period(a) 

Figure 4.2: a~ {3 
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We say a and (3 are distinct neighbours if a and (3 are neighbours and 

period(a) f period(f3). 

Lemma 4.2.1. If a~ (3 are distinct neighbours then (3 is highly periodic. 


Proof. For the starting position, since a -< (3, there is no doubt that first(a) ~ 


first(f3). How about the position of centre(a) and centre(f3)? 

centre(a)- centre({3) =(first(a)+ period(a))- (first(f3) + period({3)) 

=(first(a)- first({3)) +(period(a)- period(f3)) 

1. 	·:a~ {3::::} first(a) < first(f3) 

·:a and {3 are neighbours ::::} lfirst(a)- first(f3)1 ~ ~17 


:. (first(a)~ first(f3)) E [-~, 0) 


2. 	 ·.· a ~ {3 ::::} period(a) > period({3) 

·. · a and {3 are neighbours · ::::} 17 ~ period(a), period({3) ~ 1:!1 x 17 

:. (period(a)- period({3)) E (0, ~] 


3. centre(a) - centre({3) E ( -~, ~) 

Let us consider three different situations: 

1. 	centre(a)- centre({3) = 0 

a~ 

c5 

Figure 4.3: a~ {3 and centre(a)- centre({3) = 0 

Choose letter v at position first({3) + (p- q). Let v1 = v + q and v2 = v + p. 

Because a is a run, then v1 = v. Since {3 is a run and p- (p- (p- q)) = 

2(p- q) ~ ~17 < p, v2 in second PerPart of {3 and v = v2 • Then v = v1 = v2 


The strings between v1 and v2 in the second PerPart of {3 implies that there 

exists a square with period= (p- q) < ~ < l) in PerPart(f3). 

We continue with this procedure. In the end, we know that {3 is a highly peri­

odic run. 


Note: s1 is the prefix of s. 
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aM~~·j
6 ... ... . ... 
Figure 4.4: centre(a)- centre(/3) = 0 and choose point 

/~~p.~p;;;s~
acF.. P J 
6 · ..·.··.····· ·.··.·················· .··.........·..... · 


Figure 4.5: centre(a)- centre(f3) = 0 and period(p- q) < ~) 


Figure 4.6: centre(a) - centre(/3) = -~ and f3 is highly-periodic 

t=9-4 
J 

Figure 4.7: a~ f3 and centre(a)- centre(f3) = -~ 

2. centre(a)- centre(f3) E (-~, 0) 

Choose the letter v at position 6 + (p- q) in the first PerPart of {3, and let 
v1 = v + q and v2 = v + p: 

·: f3 is a run :. Vt = v 
·: 8 + (p- q) + q = 8 + p > p :. v1 in second PerPart of f3 
·: p- (q- (p- q)) = 2(p- q) < 2 x i = ~1} < p :. v2 in second PerPart of f3 
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Figure 4.8: centre(a)- centre(f3) = -~ and choose point 

·:a is a run:. v = v2 

:. v = v1 = v2 


Figure 4.9: centre(a) - centre(f3) = -~ and period(p- q) < ~) 

The strings between v1 and v2 in the second PerPart of (3 implies that there ex­
ists a square withperiod(p-q) <~in PerPart(f3). Repeat the same procedure 
again and finally, we have that (3 is a highly periodic run. 

1'£ .•.•. ·. . . ;p·.···.·.:•. • .. •.·.·•··.•..~ ••••s~······-1••.. .. ···.··:~·· =Dt-'9 
B ...·.. ·.·· ········ ····· •P . J 

Figure 4.10: centre(a)- centre(f3) = -~ and (3 is highly-periodic 

Note: s1 is the prefix of s. 

3. centre(a)- centre(f3) E (0, ~) 
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Figure 4.11: o: ~ {3 and centre(a:) - centre(/3) = i 

Choose the letter v at 8 + 2q - (p - q) in the second PerPart of {3, and let 
v1 = v - q and V2 = v - p: 

Figure 4.12: centre(o:)- centre(f3) = ~ and choose point 

·: o: is a run :. v1 = v 
·: 8+2q-(p-q)-q = 8+2q-p < 8+q :. v1 in first PerPart of {3 
·: 8+2q-(p-q)-p < 8+q :. v2 in first PerPart of {3 
·: {3 is a run :. v2 = v 
:. v = v1 = v2 

Figure 4.13: centre(a:)- centre(/3) = i and period(p- q) < !) 

The strings between v1 and v2 in the second PerPart of {3 implies that there 
exists a square with period = (p- q) < ~) in PerPart(f3). We keep on the 
same procedure and in the end, we have that {3 is a highly periodic run. 

Note: s1 is the prefix of s. 
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Figure 4.14: centre(a)- centre(f3) =! and f3 is highly-periodic 

From the above three situations, f3 is highly periodic. D 

Lemma 4.2.2. !fa-<-< f3 are distinct neighbours then the prefix of{3 of size period(a)­
8 has a period lq-pl, where'T} = first(f3)- first(a) andp = period(a), q = period(f3). 

Proof. 1. period(a) > period({3) 

a~ 
6 

Figure 4.15: a-<-< {3 and period(a) > period(/3) 

Choose the letter v at centre(/3) + (p- q) in the second PerPart of {3, and let 
v1 = v - q and v2 = v - p: 

·p......,.,..__,_ 

a~.~t~~q~.
',',•,,,, •,'., ,,•,,,.' ,,,' p ,'' J6·.··· ..........................................................·... ······· ....•.......•... ·.• ·.·• 


Figure 4.16: period(a):> period(/3) and choose the letter 


·: a is a run and f3 is a run 
:. v = v1 = v2 

The strings between v1 and v2 in the first PerPart of {3 implies that there exists 

a square with period= (p- q) < ~) in PerPart({3). We keep on this process, 

and in the end, we have the prefix of {3 of size period(f3) - 'T} has a period Iq -PI· 
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Figure 4.17: period(a.) > period({3) and {3 has a square lq- PI 

St 

a···~~ .....··.··req_j

. .•• . . p . .•• J
'6 

Figure 4.18: period(a.) > period({3) and prefix of {3 has a period lq- PI 

2. Since a. and {3 are distinct neighbours, p =/= q. 

3. period(a.) < period(/3) 

Figure 4.19: a.-<-< {3 and period(a.) < period({3) 

Choose the letter v at centre(/3) + (q- p) in the second PerPart of {3, and let 
VI = V - q and V2 = V - p: 

·: o is a run and f3 is a run, :. v = VI = v2 
The strings between vi and v2 in the second PerPart of {3 implies that there 
exists a square with period= (q- p) < ~ in PerPart({3). 

We keep on this process, and in the end, we have the prefix of {3 of size 
period({3) - 'lJ has a period lq -PI· 

From the above two cases, the prefix of {3 of size period(a.) -8 has a period lq-PI, 
where 8 = first({3)- first(a.) and p =period( a.), q = period({3). 0 
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Figure 4.20: period(a) < period(f3) and choose the letter 

Figure 4.21: period(a) < period({3) and {3 has a square lq- PI 

Figure 4.22: period(a)< period({3) and prefix of {3 has a period IP- ql 

Lemma 4.2.3. [The Three-Neighbors Lemma] If we have three distinct runs 
which are pairwise neighbours with the same number 'TJ then at least one of them is 
h-periodic. 

Proof. If there are 3 runs, and they are pairwise distinct runs, 

• 	If there exist two runs a 1 and a 2 , such that 


a1 d a2 => a 2 is highly periodic. (Lemma 4.2.1) 


• 	If a1 ~~ a 2 ~~ a 3 , from Lemma 4.2.2, we have a 2 has a suffix "12 of size P2 -82, 
and a prefix "Y1 of size p1 - 81. See the following figure: 

Since a 1 and a3 	are neighbours, then lfirst(a1) - first(aa)l = 81 + 82 ::; i'TJ· 
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Then 

plus 

1'1 U 1'2 = P2 > 1J 


hence: 


IP2- Pal ~ ~17 * period('y2) = IP2- Pal ~ ~17 

According to the periodicity lemma, a 2 is h-periodic. 


D 

4.3 HP-Runs Lemma 

Lemma 4.3.1. Assume we have two distinct hp-runs a,/3 with the same subperiod 
p and periodic part of one of them is a prefix of the periodic part of another. Then 
lfirst(a)- first(/3)1 ~ p. 

Proof. We assume that lfirst(a)- first(/3)1 < p. Since periodic part of one run is a 
prefix of the periodic part of another, by periodicity lemma, the periodic part of one 
string contains a subperiod, which is smaller than p. In the assumption, p must be 
the smallest subperiod. There is a contradiction, then lfirst(a)- first(/3)1 ~ p. D 



M.Sc. Thesis - Qian Yang McMaster University - Computing & Software 68 

We say a is left-periodic if subperiod(a) is left extendable. Recall the previous 

example: abaabaabaabaababaabaabaabaabab: 

• r1 = (1, 14, 2, 2) 

abaabaabaabaababaabaabaabaabab 

• r2 = ( 4, 11, 2, 1) 

abaabaabaabaababaabaabaab~abab 

first(r1) = 1, centre(r1) = 15, subperiod(r1) = 3 

first(r2) = 4, centre(r2) = 15, subperiod(r2) = 3 

The position first(r2) -1 does not break subperiod(r2), so r2 is left-periodic. While 

centre(r1) - 1 break subperiod(r1) 

Lemma 4.3.2. Assume two neighbours a,/3 are left-periodic and h-periodic with the 
same subperiod p. Then centre( a) = centre(/3) 

Proof. ·:a and f3 are left-periodic 
:. first(a)- 1 and first(f3) -1 keep the subperiod. 
·.·a and (3 are not left-extendible as a run. 
:. centre(a) ~ 1 and centre((3)- 1 break the subperiod. 
·.· centre(a) and centre(/3) are in the same periodic segment. There is only one letter 
that breaks the subperiod . 
.·. centre(a)- 1 = centre((3)- 1 
:. centre(a) = centre((3) D 

Example: aabaabaabaabaababaabaabaabaabab: 

a=aabaabaabaabaababaabaabaabaabab 
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~=aabaabaabaabaababaabaabaab~abab 

In the above instance, both first(a) -1 = 1 and first(f3) -1 = 4 keep the subperiod 

3. Since a and (3 are run, then centre(a) - 1 = 15 and centre(f3)- 1 = 15 break 

the subperiod. Since the second part of a and (3 in the same periodic segment(15­

30), then only one position 16 can breaks this segment. As a result centre(a)- 1 = 

centre(f3) - 1 = 15 and centre(a) = centre(f3) = 16. 

Lemma 4.3.3. [HP-Runs Lemma] For a given p > 1, there are at most two oc­
currences of hp-runs with subperiod pin any interval of length p. 

Proof. Assume we has three distinct hp-runs al, a2 and a3 with the same subperiod 
p, and their relations are a1-< a2-< a3. Both a2 and a3 should be left-periodic, since 
they with the first PerPart of a1, they can extends to the left to first(al). By Lemma 
4.3.2, centre(a2) = centre(a3). Then PerPart(a3) is the prefix of PerPart(a2). 
From Lemma 4.4.2, first(a3) - first(a2) ~ p. But in the lemma, these three runs 
are in the interval of length p, which means first(a3) - first(a2) < p. There is a 
contradiction. There are at most two hp-runs with subperiod p in any interval of 
lengthp. D 

4.4 Estimating the number of runs 

Let 

• WP(n, k): the maximal number of wp-runs a in a string of length n with 

period(a) ~ k. 

• HP(n): the maximal number of all hp-runs in a string of length n. 

• p(n, k): the maximal number of all runs a with period(a)::; k 
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Estimating the Number of Weakly Periodic Runs 

Denote 

g(k) ={a: a is a weakly periodic run of w, .6.k ~period(a) < .6,k+l} 

Lemma 4.4.1. WP(n, f.6.-rl) ~ 40.6.-r X n. 

Proof. All the runs a 1, a2, .. .am in the same interval of size i.6.k must satisfy that 
for any pair of ai and aj, lfirst(a1) - first(a2)1 ~ i.6.k. By definition any run 
ai in g(k) iff .6,k ~period(a) < .6,k+l. Let 'I] = .6,k, then a1, a2, ...am are pairwise 
neighbours with the same 'IJ· Recall 4.2.3, there are at most two elements in g(k) in 
any interval of size i .6.k. Then we have: 

lg(k)l ~ 2 X l~k = 8 X/:::,. -k X n 
4 

Consequently, we have 

00 00 1 
WP(n, r.6.rl) ~ L lg(k)l ~ L 8 X!::,. -k X n = 8/:::,.-r X 1-.6,-1 = 40.6.-r 

k=r k=r 

0 

Estimating the Number of Highly Periodic Runs 

Let hp(n,p) be the maximal number of hp-runs a with p ~ subperiod(a) ~ 2p. 

Lemma 4.4.2. lfp ~ 2 then hp(n,p) ~ ~n 

Proof. We can get the result from the following claim (based on the periodicity 
lemma). 

Claim 4.4.3. If a.,{3 are two hp-runs with satisfy 

!first(a)- first(f3)1 < p and p ~ subperiod(a), subperiod(/3) ~ 2p 

, then subperiod( a) = subperiod(/3). 

From the claim and Lenuna 4.3.3, in any interval of length p, there are at most 
two hp-runs with the subperiods in [p.. 2p]. Because such hp-runs must have the same 
p' ~ p, there are at most ~n ~ ~n hp-runs with subperiod in fp..2p]. 0 
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Lemma 4.4.4. HP(n) ~ 1.75n. 

Proof. Based on Lemma 4.4.2, we have 

HP(n) ~ hp(n, 2)+hp(n, 5)+hp(n, 11)+hp(n, 23)+hp(n, 47)+hp(n, 95)+... 
1 1 1 1 1 

= 2n x (2+5+11+ 23 +47 +...) 
00 1 

=2nxL-· 

k=l Pk 


where Pk = 2k + 2k-l- 1. A rough estimation gives: 

00 1 
2 XL-< 1.75 

k=l Pk 

This completes the proof. 	 D 

The Runs with Periods Bounded by a Constant 

Lemma 4.4.5. For any given k ~ 1 there are at most k!ln runs with period( a) = k 
or period( a)= 2k. 

Proof. Claim 4.4.6. if u,v are primitive words and lui = 2lvl, then vv is not con­
tained in uu as a subword. 

Assume that a -< {3 are two different runs with periods k or 2k. 

• 	period(a) = period(/3) = k 
Since period(a) = period(/3) = k, then the overlap size of a and f3 is at most 
k- 1. Then first(a)- first({3) ~ k+1 

• 	period(a)= k and period(f3) = 2k 
Since period(a) f= period(f3), then first(a) - first(f3) may equal 1. Based on 
the claim the distance from first(f3) to the occurrence of the next hp-run 1 
with period(!)= k or period('Y) = 2k is at least 2k + 1. Then 

(first(a)- first({3))+(first(r)- first(f3)) ~ 2k+2. 

"On average", the distance is k+1. 

Therefore there are at most k!ln runs with a period k or 2k. 

Lemma 4.4.7. p(n,p) ~ H(p) x n 

0 
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Proof. Let we define an infinite set q,, which is generated by the following algorithm: 
<I> = cjJ;'l/J = {1, 2, 3, ... } 
repeat forever 
k =min '1/J; 

remove k and 2k from 'lj;; 

insert k into '1/J; 


We also let q,(p) = {k E <I>: k ~ p}. 
For p ~ 1, let 

1 
H(p) = ~kE~(p) k+l' 

Then we complete the proof. 0 

Estimating the Number of Runs 

Theorem 4.4.8. p(n) ~ 5n 

Proof. For any i ~ 1, 

p(n) ~ HP(n)+WP(n, r~rl)+p(n, L~rj) 
~ (1.75+40~-r+H(f~rl) X n. 

when r = 20, we have 

L~20J = 86,40~-20 ~ 0.4612,H(86) ~ 2.77 

Due to Lemma 4.4.4 4.4.5 4.4.7, 

p(n) ~ (1.75+8(86)+40~-20) x n ~ (1.75 + 2.77 + 0.4612)n < 5n 

Now we complete the proof of the main result. 0 



Chapter 5 

Conclusions and Future Work 

In this thesis, in Chapters 2 and 3 we provided detailed proofs of the best known 

upper and lowe~ bounds for the maxrun function p(n). For the lower bound part, 

we discussed two possible methods of generating recursive sequences of binary strings 

"rich in runs" and showed how to determine a family of asymptotic lower bounds from 

these sequences. The fact that we arrived to sequences with identical limits with two 

distinct construction methods supports the hypothesis that in fact liiD.n-+oo P~) 

3 
l+v'5" 

In Chapter 4 we provided a detailed proof or Rytter's upper bound published in 

2006. Just recently, we learned that Rytter, and independently Smyth, Simpson, and 

Puglisi, had improved the upper bound to 3.5n. These results have not ben published 

yet, though. There are indications that Smyth at. al. can in fact lower the upper 

bound to 1.5n which would narrow the gap between the lower bound and the upper 

bound significantly. 

73 
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As indicated in Chapter 1, Smyth and his collaborators put forth together 4 

different conjectures concerning the behaviour of p(n): 

C1: For every n, p(n) < n. 


C2: For every n, p(n- 1) ~ p(n) ~ p(n- 1) + 2. 


C3: For every n, p(n) is attained by a cube-free binary string. 


. p(n) 3C4 1: Imn-+oo n = 1+v's. 

The best known lower and upper bounds for p(n) are not sufficient to settle any 

of these conjectures, yet. However, the two different constructions of sequences of 

strings presented in the thesis give a strong evidence for the conjecture C4, which is, 

in an asymptotic way, a strengthening of the conjecture Cl. 

In the future research we will focus on improving both bounds· to narrow the gap 

between them and to settle one or more of the four conjectures. 



Bibliography 

[FSS03] F. Franek, J. Simpson, and W.F. Smyth The maximum number of runs in a 
string. In Proc. 14th Australasian Workshop on Combinatorial Algorithms, 
pages 13-16, 2003. 

[FY06] F. Franek and Q. Yang An asymptotic lower bound for the maximal-number­
of-runs function. In Proc. The Prague Stringology Conference 2006, pages 
3-8, 2006. 

[KKOO] R. Kolpakov and G. Kucherov On maximal repetitions in words. Discrete 
Algorithms 1, pages 159-186, 2000. 

[M89] M.G. Main Detecting leftmost maximal periodicities. 
Maths, pages 145-153, 1989. 

Discrete Applied 

[R06] · W. Rytter The number of runs in a string: Improved analysis of the linear 
upper bound. In Proc. 23rd Annual Symposium on Theoretical Aspects of 
Computer Science, pages 184-195, 2006. 

[S03] B. Smyth Computing Patterns in Strings 
0201398397. 

Addsison Wesley, 2003, ISBN 

75 



	Structure Bookmarks
	Table of Contents 


