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Abstract 

Stellar structure is investigated within the framework of scalar-tensor gravity. Novel 

perturbative analytical results are obtained for constant-density stars and for New­

tonian polytropes in the quadratic model with coupling function A(¢) = exp( a¢ + 
~{3¢2 ). They are compared to full numerical calculations, and possible applications 

to main-sequence stars, white dwarfs, and the Chandrasekhar mass are indicated. 

It is found that Buchdahl's theorem is violated in Brans-Dicke theory for stars 

with exponentially-decaying density profiles. However, the mass-to-radius ratio M/ R 

tends to the constant-density value in a certain limit. It is observed that for f3 < 0, 

there exists a maximum value of 'TJ = P0 / Po for constant-density stars, where P0 and 

p0 are the central pressure and density, respectively. It is conjectured that if such a 

maximum value also exists for other equations of state, and is less than the constant­

density maximum value, then knowledge of P / p in the centre of a star can be used 

to constrain f3. 
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1 Overview 

Scalar-tensor gravity is a natural generalization of general relativity. In this the­

sis, stellar stucture in the scalar-tensor theory of gravity with coupling function 

A(¢) = exp(a¢ + !fJ¢2) is investigated. In chapter 2, a history of the theory of 

gravity is presented, starting with Newtonian gravity and ending with scalar-tensor 

gravity. Stars and stellar structure are described in chapter 3. The discussion is 

limited to static spherically-symmetric stars. First, the equations of stellar struc­

ture in Newtonian gravity are derived. They are subsequently generalized to general 

relativity and scalar-tensor gravity. 

In chapter 4, the Newtonian limit of scalar-tensor gravity is investigated. The 

general field equations and the geodesic equation are analyzed. This is needed for 

the correct identification of a star's mass. The equations of stellar structure are also 

analyzed, in order to describe Newtonian polytropes. 

In chapter 5, analytical perturbative results are obtained for constant-density 

stars and Newtonian polytropes in the scalar-tensor theory with coupling function 

A(¢) = exp(a¢ + !fJ¢2). The validity of the perturbative expansion as well as as­

trophysical applications are discussed, and the analytical results are compared to full 

numerical calculations. 

In the entire paper relativistic units are used, i.e. c = 1, and four-dimensional 

Lorentz metrics are taken to have the signature ( -, +, +, + ). 
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2 Theories of Gravity 

2.1 Newtonian Gravity 

The first quantitative theory of gravity was formulated by Newton in 1687. In New­

tonian gravity, any two massive particles exert an attractive force on each other. If 

particles A and B have gravitational masses m~), m~), and positions X( A), X( B), then 

the gravitational force exerted by particle A on particle B is given by 

.... - .... - (A) (B) X(A) - X(B) 
FAB = F- Gme me · jx(A) _ x(B)j 3 , (2.1) 

where G = 6.67 · w-11m3kg-1s-2 is Newton's gravitational constant. Equation (2.1) 

is called the inverse-square force law. The gravitational acceleration iif..B) of particle 

B is given by Newton's second law of motion 

F.... (B) -'A) .... (B) 
r:(B) _ _ me (A) X' - X 
a - ~-~ · Gme ·, .... (A) .... (B)j3' ml mi x -x 

(2.2) 

where m}8
) is the inertial mass of particle B. It has been verified experimentally to 

a very high degree of accuracy that the gravitational mass is equal to the inertial 

mass, i.e. me= m1 [48). Consequently, the gravitational acceleration experienced by 

a particle is independent of its mass. This phenomenon, called the weak equivalence 

principle, is a surprising coincidence in Newtonian gravity. 

Newtonian gravity can be formulated as a theory of a scalar field W, called the 

Newtonian potential. The source of the scalar field is the mass density (}, and the 

gravitational field equation, called Poisson's equation is 

(2.3) 

The gravitational acceleration at any point in space is given by 

a= -vw. (2.4) 

Setting(}= m~)J(3l(x- X(A)) for a point mass and solving Poisson's equation yields 

G (A) 

W = -lx __:n~A) I + const . (2.5) 

Upon taking the gradient of (2.5), evaluating at x = X(B), and using {2.4), equation 

(2.2) is recovered. 

2 
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2.2 General Relativity 

In Newtonian gravity, the gravitational force acts instantaneously. This is in conflict 

with special relativity, which states that information can not travel faster than the 

speed of light. In 1907-1915, Einstein reformulated gravity as a relativistic theory of 

the geometry of space-time in order to resolve this inconsistency [46]. In Einstein's 

theory, called general relativity, gravitational information propagates at the speed of 

light, and the weak equivalence principle is a postulate rather than an experimental 

observation. Space-time is modelled by a four-dimensional manifold M, and the 

gravitational field is described by a Lorentz metric 9p,v on M. The source of the 

gravitational field is relativistic energy-momentum, described by a rank-2 symmetric 

tensor Tp,v on M. The gravitational field equations, called Einstein's equations are 

1 
Rp,v- 2Rgp,v = 81rGTp,v , (2.6) 

where Rp,v and Rare the Ricci tensor and scalar of 9p,v, respectively. The Ricci tensor 

measures the average curvature in a 2-dimensional subspace of the tangent space, 

while the Ricci scalar measures the average curvature in all directions. In the special 

case M = 1R4 and 9p,v = T/p,v = diag(-1, 1, 1, 1) in global rectilinear coordinates, 

all curvature tensors vanish, gravitation is absent, and general relativity reduces to 

special relativity. 

Einstein's equations can be derived from the variational principle 8(Sg+Sm) = 

0, where the gravitational action Sg is given by 

(2.7) 

In the above equation, g = det 9p,v· The energy-momentum tensor can be written in 

terms of the matter action Sm as 

T. = __ 2_8Sm or T~'v = _2_8Sm 
p,v Jf918gi-'V Jf918gp,v 

(2.8) 

The derivatives of the Ricci tensor and scalar are related by 

(2.9) 

This relation follows from the symmetries of curvature, and is called the contracted 

form of the second Bianchi identity. The operator V '-' is the covariant derivative of 

3 
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the Levi-Civita connection of 9p,v· It reduces to the partial derivative 8~-' when acting 

on functions. Applying \/~-' to Einstein's equations (2.6), and using equation (2.9) 

yields the statement of energy conservation 

(2.10) 

The trajectories of massive and massless free particles are timelike and null 

geodesics of the metric 9p,v, respectively. They are found by solving the geodesic 

equation 

·w-r' ·v-o X v p,X - , (2.11) 

where the world line of the particle is x~-' ( T), and dots denote differentiation with 

respect to the proper time (or affine parameter, in the case of massless particles) T. 

The geodesic equation can be derived from the variational principle 6Sp = 0, where 

the action of a free particle is given by 

Sp = j J -ds2 = j y' -gp,vx~-'±vdr . (2.12) 

The fact that free particles travel on geodesics guarantees that the weak equivalence 

principle holds. In fact, more is true. All extended objects experience the same accel­

eration in a gravitational field, independent of their mass, composition, and internal 

gravitational energy. This phenomenon, called the strong equivalence principle, has 

been experimentally verified by laser ranging to the moon (33, 34, 32]. Its importance 

has been appreciated only after the formulation of alternate theories of gravity (such 

as scalar-tensor gravity) in which it does not hold. 

General relativity predicts corrections to the Newtonian theory, which become 

important when gravitational fields are strong or time-dependent, or when particle 

velocities become relativistic. The most famous of these corrections, which led to the 

acceptance of general relativity upon their experimental confirmation, include the 

precession of the perihelion of Mercury's orbit, and the bending of starlight in the 

sun's gravitational field. 

When applied to the entire universe, Einstein's field equations imply that it 

must be either contracting or expanding, and cannot be static. Troubled by this 

prediction, Einstein modified his field equations, adding a cosmological constant A, 

to allow a static (although unstable) universe (9]. The modified field equations are 

1 
Rp,v- 2R9p,v + Agp,v = 81rGTp,v . (2.13) 

4 
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However, observations of redshifts of nearby galaxies by Hubble in 1929 revealed 

that the universe is expanding. Upon hearing this, Einstein called the cosmological 

constant his "greatest blunder". In 1998, observations of type Ia supernovae showed 

that the expansion rate of the universe is accelerating [37, 38]. Einstein's original field 

equations can describe an expanding universe, but a A-term is needed to describe the 

accelerated expansion. So the cosmological constant turned out to be useful after all. 

It can be interpreted as a vacuum energy, with density PA = Aj81rG. Cosmological 

observations yield the constraint 

(2.14) 

On the other hand, if it is assumed that the standard model of particle physics can 

be trusted up to the Planck scale mp1 f',J 1019GeV, then the contribution to PA from 

a standard-model field is estimated to be 

(2.15) 

where the index i labels the field. Since the contributions from fermion and boson 

fields have different signs, it is possible that they add up to a number small enough 

to satisfy the constraint (2.14). However, this situation is very unnatural, and there 

is no known mechanism to generate such large cancellations. This discrepancy, called 

the "cosmological constant problem", remains unsolved. 

2.3 Scalar-Tensor Gravity 

2.3.1 Motivation 

To date, Einstein's equations with a cosmological constant are consistent with all 

gravitational experiments and observations [48]. However, there are many theoretical 

reasons for considering alternate theories of gravity, in particular, those in which the 

gravitational force is mediated by new massless scalar fields, in addition to the usual 

metric tensor. 

In view of the cosmological constant problem, it is useful to consider theories 

of gravity in which the cosmological constant is a dynamical degree of freedom rather 

than a constant, and where a mechanism exists which drives it to the presently 

5 
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observed small value. The simplest choice for this dynamical degree of freedom is a 

scalar field. 

It is hoped that eventually gravity will be unified with the other fundamental 

interactions ( electroweak and strong). Superstring theory is a candidate framework 

for such a unification, in which space-time is ten-dimensional, and the fundamental 

objects are quantized one-dimensional strings [50]. Two different kinds of boundary 

conditions can be imposed on strings. Strings are called open or closed, depending 

on which boundary conditions are imposed. Different string states correspond to 

particles. 

The massless states in the closed string spectrum can be decomposed into a 

scalar, a symmetric rank-2 tensor, and an antisymmetric rank-2 tensor. Since the 

metric tensor in general relativity is a symmetric rank-2 tensor, the symmetric rank-2 

tensor string states can be interpreted as gravitational excitations, called gravitons. 

Graviton states should be massless, because gravity is an infinite-range force. 

The scalar state is called the dilaton, and the antisymmetric rank-2 tensor 

states are called Kalb-Ramond states. String theory was developed in 1968 to explain 

strong interactions. However, when graviton states were found in the closed string 

spectrum, it was realized that string theory could be used to unify gravity with 

the electroweak and strong interactions. Since the massless closed string spectrum 

contains dilaton and Kalb-Ramond states in addition to graviton states, it can be 

conjectured that general relativity is only an approximation to a more complicated 

classical theory of gravitation, which contains classical dilaton and Kalb-Ramond 

fields, in addition to the usual metric tensor. 

Space-time must be ten-dimensional for quantized superstring theory to be 

consistent. However, the world we live in appears to be only four-dimensional. This 

apparent discrepancy can be remedied by taking the six extra dimensions to be com­

pact, and very small in size. The idea of compactification has a history much older 

than string theory. It was first proposed by Kaluza and Klein in 1921 [29, 31]. They 

tried to unify classical gravity and electrodynamics into a five-dimensional theory, 

with one compactified dimension. Starting with a higher-dimensional classical the­

ory, the extra-dimensional coordinates in the action can be integrated out, to obtain 

an effective four-dimensional theory. The dynamics in the extra dimensions becomes 

6 
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encoded in a massless scalar field in the effective four-dimensional theory. 

2.3.2 History 

Scalar-tensor theories are a class of alternate theories of gravity, in which the gravita­

tional force is mediated by a number of scalar fields, in addition to the usual metric 

tensor [13, 6, 42]. The first scalar-tensor theory of gravity was formulated by Jordan, 

Fierz, Brans, and Dicke in the years 1949-1961 (28, 21, 27, 5, 20]. It was motivated by 

Dirac's speculation that Newton's gravitational constant can change over cosmologi­

cal time scales, and Mach's principle that inertia is caused by the matter distribution 

of the entire universe. In addition to the usual metric tensor, this theory contains one 

scalar field which can be related to an effective gravitational constant. A coupling 

function A(¢) determines the strength of interactions between the scalar field ¢ and 

matter fields. Its logarithmic derivative a(¢)= A-1 (¢)A'(¢) can be thought of as an 

effective scalar-matter coupling constant. Further work on scalar-tensor gravity was 

done by Bergmann, Nordtvedt, and Wagoner in the years 1968-1970 [1, 35, 45]. 

In the simplest scalar-tensor theory of gravity, called Brans-Dicke theory, the 

scalar-matter coupling a(¢) is constant, and A(¢) = exp(a¢). Solar system experi­

ments have established the bound a 2 < w-5 [2]. Consequently, Brans-Dicke theory 

differs very little from general relativity, not only in the solar system, but also in the 

strong-field regime. The weak equivalence principle continues to hold in scalar-tensor 

gravity, but the strong equivalence principle does not. However, in the solar system, 

the violation of the strong equivalence principle is very small [34]. 

To construct a scalar-tensor theory which satisfies solar system constraints but 

differs from general relativity in the strong-field regime, a more complicated coupling 

function is needed. The simplest choice is A(¢) = exp(a¢ + ~{3¢2 ), where a and {3 

are constants. This called the quadratic model. The scalar-matter coupling is linear 

in¢: 

a(¢)= a+{3¢. (2.16) 

The constant multiplying ¢ in the coupling function, as well as the logarithmic deriva­

tive of the coupling function, are both denoted by a. It should be clear from the 

context which is meant. 

In 1993, a non-perturbative strong-field effect called spontaneous scalarization 

7 
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has been discovered in the stellar structure of the quadratic model by Damour and 

Esposito-Farese. It occurs in massive neutron stars when (3 ;S -4 [14, 15, 39]. All 

quantitative descriptions of spontaneous scalarization have been carried out numer­

ically. The focus of this thesis is on analytical perturbative results in the quadratic 

model, and thus spontaneous scalarization will not be discussed. 

A pulsar is a neutron star which has a magnetic field, and emits radio waves 

at regular time intervals. A binary system consisting of at least one pulsar is a good 

testing ground for relativistic dynamics in strong gravitational fields, because the 

pulsar acts as an effective clock, allowing for a precise measurement of the orbital 

parameters. The first such system, called PSR 1913+ 16, was discovered by Hulse 

and Taylor in 1974 [47]. Measurements of its orbital parameters, in particular, the 

decay of the orbit due to emission of gravitational radiation, are in very close agree­

ment with the predictions of general relativity. Thus, they place constraints on the 

coupling function of scalar-tensor gravity [19, 15, 16, 43, 12, 3]. Scalar-tensor gravity 

predicts the emission of both dipole scalar waves and quadrupole tensor waves from 

a binary pulsar, while general relativity only predicts the latter. Scalar and tensor 

waves are disturbances in the scalar field and metric tensor, respectively, that propa­

gate throughout spacetime. Due to the presence of dipole scalar waves, scalar-tensor 

gravity predicts more radiated power than general relativity. This difference will be 

observable in future experiments that will directly measure gravitational waves by 

laser interferometry [40]. 

When a very massive star burns up all of its nuclear fuel, general relativity pre­

dicts that it will collapse to a space-time singularity called a black hole. The 'no-hair' 

theorem states that a black hole is completely described by only three parameters: 

mass, angular momentum (i.e. spin), and electric charge. All other information in 

the star is lost. Moreover, Birkhoff's theorem states that if the star is spherically 

symmetric, then no gravitational radiation will be emitted during the collapse. 

The collapse of a spherically symmetric star can be described analytically. 

This solution was obtained by Oppenheimer and Snyder in 1939 [36]. Gravitational 

collapse in scalar-tensor gravity has a much richer structure. It was shown that the 

'no-hair' theorem still holds in Brans-Dicke theory [25], while Birkhoff's theorem no 

longer holds. This means that when a star with non-zero scalar charge collapses, this 

8 
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charge must be radiated away. This process has been investigated numerically by 

several authors [41, 24, 30]. It would be useful to obtain an analytical description of 

this process. A prerequisite for this, is the analytical description of static constant­

density stars. This is developed in section 5.1. 

The evolution of the entire universe has been studied in scalar-tensor gravity 

by Damour and Nordtvedt [17, 18]. They found a mechanism which drives the theory 

to general relativity at late times. 

2.3.3 Theoretical Framework 

Consider the action of general relativity 

(2.17) 

and that of a massless scalar field ¢ , 

(2.18) 

A potential V(¢) can be added to (2.18). It is usually assumed that such a potential 

changes significantly only over cosmological distances, and can be neglected in the 

study of isolated systems such as stars. G is a bare gravitational constant, which will 

later be related to the physical gravitational constant. 

In order to introduce scalar-matter interactions, the matter fields are coupled 

to the metric 9p,v A2 (¢)gp,v, where A(¢) is a coupling function. The matter action 

is written symbolically as Sm = Sm['I/J, gp,v], where '1/J denotes the collection of all the 

matter fields. For example, the action for the electromagnetic field is 

(2.19) 

where g = det 9~-'v' Fp,v is the field strength tensor, and aps is a bare fine-structure 

constant. Similarly, the action for a fermion field '1/J is 

(2.20) 

where m is a bare mass, and 

(2.21) 

9 
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is the covariant derivative [4]. It is contracted with the flat-space Dirac gamma 

matrices li by means of the tetrad e/". In four space-time dimensions, (2.19) is 

conformally invariant, and so 

(2.22) 

Consequently, photons do not interact with the scalar field at tree level. However, 

this conformal symmetry is broken upon quantization. The action of a free particle 

is 

(2.23) 

where xll(r) is the particle's world line parametrized by proper time (or the affine 

parameter, in the case of a massless particle), and dots denote d / dr. The variational 

principle 8Sp = 0 implies that the worldline is a geodesic of g~J.v· 

The field gllv is called the Einstein-frame metric, and 91-lv is called the Jordan­

frame metric. The indices of matter-field tensors and tensors with a tilde are raised 

and lowered using g~J.v· Other indices are raised and lowered using 9~J.v· The covariant 

derivative operators of gllv and 91-lv are denoted by \71-l and V ll' respectively, and the 

d'Alembertian operators of gllv and 91-lv are denoted by 0 and 0, respectively. 

Let R be the Ricci scalar of g~J.v· It is related to R by the formula 

Q<P2R = <PR- 3gllv{)ll{)vcp- 2(81lgllv)(8v<P) + 2~gllv{)llcp{)vcp 
2-IJ.Vr-a a ;r,. 1_1J.V(-Otf3[) - )8 ;r,. + g !J.[v a]'J:'- 2,g g ~J.9af3 v'J:' ' (2.24) 

where 
1 

<P = GA2(¢) ' (2.25) 

and fallv are the Christoffel symbols of g~J.v· Using equation (2.24), the gravitational 

and scalar actions (2.17) and (2.18) can be re-written as 

(2.26) 

where 

(2.27) 

10 
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The last term in equation (2.26) reduces to an integral over the boundary of space­

time, and is neglected: 

(2.28) 

The above action can be interpreted as a theory of gravity, in which the effective 

gravitational constant 

(2.29) 

varies over space-time. Thus, in the Jordan frame, the gravitational coupling varies 

over space-time, while gauge couplings and fermion masses are constant. On the 

other hand, in the Einstein frame, the gravitational coupling is constant, while gauge 

couplings and fermion masses vary over space-time. To see this, the matter actions 

(2.19) and (2.20) need to be re-written in terms of the Einstein-frame metric. 

The Jordan-frame description (2.28) of scalar-tensor gravity in terms of the 

variables (9J.'v' <P) is useful for understanding the physical content of the theory, since 

·matter fields couple directly to the Jordan-frame metric 9J.'v· The Jordan-frame field 

equations, obtained from 8(Sg + S4> + Sm) = 0 applied to (2.28), are given by 

1- 1-- -
81r<P- TJ.'V + <P- ('\7 J.' '\7 v<P- YJ.'vD<P) 

+w(<P)<P-2(8J.'<P8v<P- 49afJ8a<P8fJ<P9J.'v) , 

(2w(<P) + 3)-1(87rT- w'(<P)g~8J.'<P8v<P) . 

(2.30) 

(2.31) 

They are complicated due to the mixed term <PR in (2.28). It is easier to work with 

the Einstein-frame field equations, obtained from 8(Sg + S4> + Sm) = 0 applied to 

(2.17) and (2.18). They are given by 

RJ.'V - 28J.'¢8v</J + 81rG ( TJ.'V- ~TgJ.'V) 
o¢ - -47rGa( ¢ )T , 

(2.32) 

(2.33) 

where the Einstein-frame and Jordan-frame energy-momentum tensors, denoted by 

TJ.'v and TJ.'v' respectively, are defined by 

(2.34) 

(2.35) 

11 
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They are related by 

(2.36) 

From equation (2.33) we see that the function a(¢) can be interpreted as an effective 

scalar-matter coupling constant. In Brans-Dicke theory, this function is actually 

constant. 

Note that the Einstein-frame energy-momentum tensor T1.w is not covariantly 

conserved. An expression for its covariant derivative can be derived by re-writing the 

field equation (2.32) in the form 

1 _ 1 a/3 -
Rp,v- 2R9p,v- 2(8p,¢8v¢- 29p,v9 Oa¢8!3¢) + 81rGTp,v . 

Applying '\JP. to (2.37) and using the Bianchi identity (2.9) yields 

81rG'\JILTp,v - -2'\JIL(f}p,</JOvc/J- ~9p,v9af3f)a</J0(3</J) 
- -2(o¢)'Vv¢. 

The field equation (2.33) then implies 

(2.37) 

(2.38) 

(2.39) 

Te Jordan-frame energy-momentum tensor is covariantly conserved. To demonstrate 

this, the Jordan-frame Christoffel symbols f'>. p,v need to be related to the Einstein­

frame Christoffel symbols r>. p,v: 

(2.40) 

From the above equation, and the relations (2.36), it follows that 

(2.41) 

12 
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3 Stellar Structure 

3.1 Stars 

A star is a stable configuration of gaseous matter, in which the attractive gravitational 

force is balanced by outward pressure. Most stars spend the majority of their lifetime 

burning hydrogen into helium via nuclear fusion. The energy released in this process 

generates the pressure that balances gravity. 

Once a star exhausts its nuclear fuel, there is no pressure to balance the 

gravitational attraction, and the star collapses. The ultimate fate depends on the 

mass. Stars such as the sun collapse down to a core of ionized iron and nickel. Further 

collapse is prohibited by the quantum degeneracy pressure of electrons, which arises 

due to the Pauli exclusion principle. The resulting stable configuration is called a 

white dwarf. Typically, white dwarfs have masses of M rv M0, and radii of R rv R(JJ. 

Stars much heavier than the sun explode in a supernova, and then collapse 

to either a neutron star, or a black hole. A neutron star is a stable configuration of 

nuclear matter, consisting mostly of neutrons, whose quantum degeneracy pressure 

balances the gravitational attraction. Typically, neutron stars have masses of M rv 

M0, and radii of R rv lOkm. A black hole is a space-time singularity. 

Stars that burn nuclear fuel, as well as white dwarfs, have relatively weak 

gravitational fields, and can be adequately treated with Newtonian gravity. On the 

other hand, general relativity is necessary for a proper description of the strong grav­

itational fields near neutron stars and black holes. In addition to gravity, thermody­

namics plays an important role in the quantitative description of stars. 

In this thesis, only static spherically symmetric stars are considered. This 

excludes rotating stars. Stars are modelled by a perfect fluid, with mass-energy 

density p, and isotropic pressure P. 

3.2 Newtonian Gravity 

In this section, the treatment of stars in Newtonian gravity is described. In the 

Newtonian limit, the mass-energy density p of the perfect fluid becomes the rest mass 

density, which is denoted by g. Due to spherical symmetry, it is natural to work in 

spherical polar coordinates. Let m( r) be the total mass inside the ball of radius r. 

13 
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Then, conservation of mass implies that 

(3.1) 

where the prime denotes d / dr. The requirement that the star be in hydrostatic 

equilibrium implies that the pressure P( r) must satisfy 

P' = _ Ggm 
2 . r 

Finally, Poisson's equation (2.3) becomes 

w'= Gm 
r2 . 

(3.2) 

(3.3) 

Equations (3.1)-(3.3) are called the equations of stellar structure in Newtonian grav­

ity. These equations by themselves are not a complete system. They must be sup­

plemented with a relationship between g and P. Such a relationship can be derived 

from the thermodynamical properties of the star, and is called an equation of state. 

It is written symbolically as P = P(g). Alternatively, the density profile g(r) can 

be specified instead of an equation of state. Equations (3.1) and (3.2), together with 

an equation of state or density profile, can be integrated to obtain the profiles m( r), 

P(r), and g(r). 

The Newtonian potential can then be calculated from equation (3.3): 

\ll(r) = G Jr ~dr . (3.4) 

Note that W is arbitrary up to a constant. Initial conditions for the other profiles at 

the centre of the star ( r = 0) are 

m(O) = 0 , P(O) =Po , g(O) = f2o , (3.5) 

where g0 and Po are related by the equation of state. 

Since equation (3.2) is singular at r = 0, the numerical integration has to be 

started at some small r0 rather than 0. Then, initial conditions at r0 need to be 

related to those at r = 0. This can be done by means of a power series expansion of 

the pressure and mass functions P and m. From equations (3.1) and (3.2), it follows 

that 

m(r) 

P(r) 

14 
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where p~ = p'(O). The stellar boundary is defined to be the sphere of radius R, at 

which the pressure vanishes, i.e. P( R) = 0. The total mass of the star is then 

M = m(R) = 47r 1R (!f2dr. (3.8) 

The potential W outside the star (i.e. for r > R) can be described analytically. 

Equation (3.1) implies that m(r) = M for r > R. Then equation (3.4) implies that 

W = -GM/r + const for r > R. 

Once an equation of state is specified, the central pressure Po uniquely deter­

mines the mass M and radius R. Thus, 

R = F(Po), M = Q(Po), (3.9) 

where F and g are functions which depend on the equation of state. For a given 

star, M and R can be obtained from astrophysical observations, while Po is not easily 

determined. Thus, in order to compare the theoretical predictions to astrophysical 

data, it is useful to eliminate P0 , and obtain a relationship between M and R: 

(3.10) 

Equation (3.10) defines a one-dimensional curve in the M-R plane, which depends on 

the equation of state. The theory can be tested by plotting the masses and radii of 

stars modelled by this equation of state, and checking whether they lie on the curve 

(3.10). 

3.3 General Relativity 

In this section, the treatment of stars in general relativity is described. The deriva­

tion of the equations of relativistic stellar structure is completely different from the 

Newtonian derivation. However, the relativistic equations can be written in a form 

similar to the Newtonian equations. A static spherically-symmetric metric can be 

put in the form 

(3.11) 

where f and h depend only on r. The energy-momentum tensor of the perfect fluid 

that models the star is given by 

(3.12) 

15 
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where ull is the 4-velocity of the perfect fluid. Since the star is static, ull must point 

in the time-direction. It must also be normalized such that ullull = -1. Thus, 

(3.13) 

The independent components of Einstein's field equations (2.6) are 

1 ( !' )' !' 
2V!fi VJTi + r j h - 47rG(p + 3P) , (3.14) 

1 ( !' ) , h' 
- 2yfJTi VJTi + rh2 - 47rG(p - P) ' (3.15) 

!' h' 1 ( 1) 
-2rfh + 2rh2 + r 2 

1 - h - 41rG(p- P)' (3.16) 

where primes denote d/dr. To re-write these equations in a form similar to the 

Newtonian equations (3.1)-(3.3), carry out the change of variables 

v =log f , m = 2~ ( 1 - ~) (3.17) 

Equations (3.14)-(3.16) can then be re-written as 

m' - 47rr2p , 

P' - -(p + P) 47rGr
3
P + Gm 

r(r- 2Gm) ' 

v' 
81rGr3 P + 2Gm 

-
r(r- 2Gm) 

In the non-relativistic (Newtonian) limit, 

P << p , Gm «: r , Pr3 «: m , p -t f2 • 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

In general relativity, both mass and pressure are sources of the gravitational 

field, while in Newtonian gravity, only mass is a source of the gravitational field. 

Thus, in the Newtonian limit, the contribution from the pressure to the gravitational 

field is negligible compared to the contribution from the mass. This justifies the first 

inequality. In the Newtonian limit, the metric reduces to the flat metric of special 

relativity, in particular, grr -t TJrr = 1. This justifies the second inequality. The 

average energy-mass density in the ball of radius r (denoted by Br(O)) is 

(p)(r) = 

(3.22) 

16 
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In the non-relativistic limit, 

(p)(r) --+ -- · 47r pr2dr 3 1r 
47rr3 o 
3m(r) 

(3.23) 

Thus, the third inequality is equivalent toP« (p). When (3.21) is used to simplify 

equations (3.18)-(3.20), the Newtonian equations (3.1)-(3.3) are recovered, provided 

that the identification v = 2\ll is made. There is, however, one subtlety. The definition 

of m(r) in general-relativistic stellar structure (given by equations (3.17) and (3.11)), 

is different from that in Newtonian stellar structure. Yet, equation (3.23) shows that 

in the non-relativistic limit, these two definitions coincide. 

The relativistic equations of stellar structure (3.18)-(3.20) are solved in the 

same way as the non-relativistic equations (3.1)-(3.3). Initial conditions are given by 

(3.5), with {! replaced by p. In the Newtonian theory, the initial condition m(O) = 

0 immediately followed from the definition of m. On the other hand, in general 

relativity, this condition follows from the requirement that the metric (3.11) be well­

behaved as r--+ 0. The analogues of equations (3.6) and (3.7) are 

m(r) 
4 

- 37rpor3 + O(r4
) , (3.24) 

P(r) - Po- ~7rG(Po + Po)(Po + 3Po)r2 

1 
--g7rGp~(7Po + 15P0)r3 + O(r4

) . (3.25) 

If the variable v is shifted by a constant, then the time variable t can be rescaled 

to remove this shift (see equations ( 3.11) and ( 3.17)). Therefore, v is arbitrary up 

to a constant. It is customary to fix this constant by requiring that the metric be 

asymptotically fiat, i.e. v --+ 0 as r --+ oo. With this choice, v is given by 

( ) _ 100 
81rGr

3 
P + 2Gmd vr -- r. 

r r(r- 2Gm) 
(3.26) 

The radius of the starR is defined the same way as in the Newtonian theory. 

The gravitational field outside the star is found by solving equations (3.18)­

(3.20) with P = p = 0. The solution is 

m(r) = M = const , v(r) = log(1- 2GM/r) . (3.27) 

17 
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Therefore, the exterior line element is 

(3.28) 

This solution is called the Schwarzschild metric. It depends on one parameter M, 

which is the mass of the star. This interpretation of M is justified as follows. The 

non-relativistic limit of the tt component of Einstein's equations (2.6) is given by 

(3.29) 

Comparing this to the Poisson equation (2.3) of Newtonian gravity shows that in the 

non-relativistic limit, 

gtt = -2\ll + const . 

So for the Schwarzschild metric, 

GM 
W = --- +const. 

r 

(3.30) 

(3.31) 

This is the Newtonian potential of a spherically symmetric body of mass M centered 

at the origin (see equation (2.5)). Note that equation (3.30) is consistent with the 

earlier identification v = 2\ll, to first order in v. The value of M is found by requiring 

that the metric be continuous at r = R. The result is 

(3.32) 

It follows from equation (3.22) that the non-gravitational mass-energy inside the star 

(called the baryonic mass of the star) is given by 

1R r2dr 
MB = 47T p . 

o y'1- 2Gm/r 
(3.33) 

Thus, the gravitational binding energy of the star is 

M - MB = 47T {R pr2 (1 - 1 ) dr . 
Jo \11- 2Gm/r 

(3.34) 

For a given equation of state, a curve in the M-R plane can be calculated and used 

to compare the theoretical predictions to astrophysical data, as in Newtonian stellar 

structure. 

18 
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3.4 Scalar-Tensor Gravity 

In the generalization of the equations of stellar structure to scalar-tensor gravity, three 

complications arise. The Einstein-frame field equations are used, but the perfect fluid 

is described in the Jordan frame. Consequently, P and p are multiplied by conversion 

factors of A4 (¢). The exterior solution is more complicated than the Schwarzschild 

metric, and depends on three parameters. It can not be simply described in the co­

ordinates (3.11). Consequently, the matching between interior and exterior solutions 

involves a change of coordinates, resulting in complicated formulas. In particular, the 

calculation of the star's total mass is more complicated. The function m(r) can no 

longer be interpreted as the mass-energy inside the ball of radius r. The total mass is 

found by writing down the equation of motion of a test particle in the star's exterior, 

and taking the Newtonian limit. It turns out that the mass obtained in this manner 

is different from the mass of the Jordan-frame metric by a factor of A(c/>00 ). This 

calculation is presented in section 4.3. 

3.4.1 Interior 

Due to spherical symmetry and staticity, the Einstein-frame metric 9~tv can be put 

in the form (3.11), and the scalar field 4> depends only on r. The perfect fluid is 

described in the Jordan frame. Its 4-velocity is 

(3.35) 

and its energy-momentum tensor is 

(3.36) 
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The independent components of the Einstein-frame field equations (2.32) and (2.33) 

are 

_1 (L)' L 
2.J!Ti .JfTi + r f h 

47rGA4 (</>)(p + 3P) , (3.37) 

-2~ (frn)' + r~2 2¢'2 -
(3.38) - h + 47rGA4 (</>)(p- P) , 

!' h' 1 ( 1) 
- 2rfh + 2rh2 + r 2 1 - h - 47rGA4(</>)(p- P) , (3.39) 

1 2 f ' ¢'2 
r2.,fffi r /{;<P + h ( )' = 47rGa(</>)A4 (</>)(p- 3P) , (3.40) 

where primes denote d/dr. Equations (3.37)-(3.39) have the same structure as equa­

tions (3.14)-(3.16). There are, however, two differences: the rr equation has a new 

term involving ¢'2 / h, and all factors of p and P are multiplied by A 4 
( </>). Upon car­

rying out the change of variables ( 3.17) (with G replaced by G), the field equations 

(3.37)-(3.40) can be written as 

Gm' - 47rGr2 A4 (¢)p + ~r(r- 2Gm)¢'2 , (3.41) 

P' - -( P) ( 47rGr
3 
A

4
(</>)P + Gm ! ¢'2 (</>)</>') 

p+ r(r-2Gm) +2r +a (3.42) 

</>" - 47rGrA
4

(</>) (a(<P)(p _ 3P) + r</>'(p _ P)) _ 2(r- Gm) </>', (3.43) 
r- 2Gm r(r- 2Gm) 

v' 
87rGr3A4(</>)P+2Gm ¢'2 (3.44) - ( ) + r . r r- 2Gm 

These equations are solved in the same manner as the equations of stellar 

structure in general relativity. In addition to (3.5) (with g replaced by p), the initial 

conditions ¢(0) and ¢'(0) need to be specified. The value ¢0 = ¢(0) can be arbitrary, 

but ¢'(0) must vanish. To see this, evaluate (3.41) at r = 0 to obtain m'(O) = 0. 

Then multiply (3.43) by r(r- 2Gm), differentiate, and evaluate at r = 0 to obtain 

¢'(0) = 0. The stellar configurations are thus a two-parameter family, which can be 

parametrized by the initial values (Po, ¢0 ). In contrast, the stellar configurations of 

Newtonian gravity and general relativity are a one-parameter family, which can be 

parametrized by P0 . 

The power series expansions of m, P, and ¢, needed for connecting initial 

20 



MSc Thesis- M. Horbatsch McMaster - Physics and Astronomy 

conditions at r = 0 to those at r = r0 « 1, are given by 

m(r) 
47T - 3A~p0r3 + O(r4

), (3.45) 

P(r) - Po+ 
2~(; A~(Po + Po)(a~(3Po- Po)- (3Po + Po))r2 

+ 1T; ~p~(a~(9Po- 7po)- (15Po + 7Po))r3 + O(r4) , (3.46) 

cj;(r) = 27TG 4 ( ) 2 7TG 4 I 3 ( 4) c/Jo--3-~ao 3Po- Po r + 3~aop0r + 0 r , (3.47) 

where A0 = A(¢0 ), a0 = a(¢0 ), and p~ = p'(O). Note that unlike in general relativity, 

m(r) can no longer be interpreted as the total mass in the ball of radius r. In the 

non-relativistic limit, equation (3.41) implies that 

(3.48) 

On the other hand, the total mass in the ball of radius r is 

(3.49) 

where the arrow denotes the non-relativistic limit. 

3.4.2 Exterior 

The coordinates defined by ( 3.11) are not well-suited for the description of the stellar 

exterior. Instead, the coordinates 

(3.50) 

are used, where a and b depend only on~- Due to spherical symmetry and staticity, 

the scalar field ¢ depends only on ~. The independent components of the Ricci tensor 

are then 

1 
- 2e2a-b(a'eb)' ' 

1 - 2(((a'eb)'- (eb)")e-b- (b" + a12 )) , 

- ~(2- (eb)" + (a'eb)') , 

21 
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where primes denote djdf;,, and() denotes the polar angle. The vacuum field equations 

are obtained by setting Tttv = 0 in equations (2.32) and (2.33): 

Ru = 0 , Rf.f. = 2¢P , Roe = 0 , ( v19igf.f-¢')' = 0 . 

Substituting (3.51)-(3.53) into the above equations yields 

(a' eb)' 0 , 

((a'eb)'- (eb)")e-b- (b" + a'2 ) - 4¢'2 , 

2- (eb)" + (a'eb)' 0, 

(eb¢')' - 0. 

The solution is 

a - flog(1- 2GM/ff;,) , 

b - 2logf;,+log(1-2GM/ff;,), 
rQ -

¢ - <Poo-
2

M log(1- 2GM/ff;,) , 

where the constants r, M, and Q must satisfy 

1 Q2 
f2 = M2 + 1. 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

To understand the physical significance of these constants, expand 9tt and <P 

in powers of 1/f;,: 

(3.63) 

(3.64) 

Thus, Q is the scalar charge, and <Poo is the value of the scalar field at infinity. M is 

called the Einstein-frame mass. It is just a formal constant in the monopole term of 

the multipole expansion of gu, and is not equal to the mass of the star. In order to 

find the mass of the star, the Newtonian limit of Einstein's equations and the geodesic 

equation need to be analyzed. This is done in section 4. 

The Jordan-frame mass M is defined by the expansion 

g- __ = _ 1 + 2G_M + 0 ( : ) 
tt f;, f;,2 ' 

(3.65) 
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where x~-' = (t, ~' 0) are rescaled coordinates in which the Jordan-frame metric is 

asymptotically flat. n denotes the angular variables, and asymptotic flatness means 

that 

[Jp,;; ---+ 'f/p,;; (3.66) 

at spatial infinity. The exterior Jordan-frame metric is 

( 1-
2~; A(q\00)) r dt' + ( 1-

2~; A(q\00)) -r dl:' 

+ (1- 2~; A(~J~oo>fr €'dn'] , (3.67) 

where 

i = A(cf>oo)t , e = A(cf>oo)~ . (3.68) 

Therefore, 

M = (M- Qa(cf>oo))A(cf>oo) . (3.69) 

It follows from equation (3.49) that the total baryonic mass of the star is 

1R A3(¢)r2dr 
Ma = 47r p . 

o }1- 2Gm/r 
(3.70) 

3.4.3 Matching at the Boundary 

At the stellar boundary (r = R), the interior solution described in section 3.4.1 

is matched to the exterior solution described in section 3.4.2. In this section, the 

parameters of the external solution M, Q, and ¢00 , are written in terms of the values 

of m, ¢, and ¢' at the stellar boundary. Let 3 be the value of the coordinate ~ that 

corresponds tor= R. Equating the metrics (3.11) and (3.50) at this point yields the 

relations 

1 (dr) 2 

v = a ' 1 - 2Gmjr ~ = e-a ' r2 = eb-a . 

It follows from equations (3.59)-(3.61) that 

GM - ebdal 
2 ~ {=E' 

Q/M - -2d¢/~~ 
da/~ {=E' 

Aql = q\00 - qi(B) = -a· :!!~~~{=E· 
23 
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When written in terms of m, ¢,¢',and v, the above equations become 

GM - R\/1- 2Gm(R)/ Rd~:
2

1r=R, (3.75) 

Q/M -
-2</J'(R) (3.76) 

v'(R) ' 

~¢ 
<P'(R) 

(3.77) - - v'(R) v(R) . 

To calculate the external parameters, v(R) and v'(R) are needed. It turns out that 

these quantities can be written in terms of m(R), <P(R), and <P'(R). This is useful, 

because then the external parameters can be calculated without solving equation 

(3.44). Evaluating equation (3.44) at r = R yields 

'( ) ,2 ( ) 2Gm(R) 
v R = R¢ R + R( R - 2Gm( R)) . (3.78) 

Combinining the last two relations in (3. 71 ), and using equations (3.59)-(3.60) yields 

VI- 2Gm(R)/ R = 1- (1 + 1/f)GM/3 . 
Jl- 2GM/f3 

From equations (3.78), (3.79), (3.71), and (3.59)-(3.61), it follows that 

R -2v'(R) h (Jv'2(R) + 4¢12(R)) 
v( ) = Jv'2(R) + 4¢12(R) arctan v'(R) + 2/ R . 

The final expressions for the external parameters can be written in the form 

GM K(x, y) [ K(x, y) h ( 'H(x, y) ) l - - exp - arctan , 
R 2vl- 2x 'H(x, y) 2(1- x) + y(l- 2x) 

Q 2JY(l- 2x) 
-

M K(x, y) 

~¢ arctanh 
2y'y(l- 2x) ( 'H(x, y) ) 

'H(x, y) 2(1- x) + y(l- 2x) 

where x = Gm(R)/ R, y = R2¢'2(R), and 

'H(x, y) - JK2(x, y) + 4y(l- 2x)2 , 

K(x,y) - 2x(l-y)+y. 

(3. 79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

(3.85) 

For a given equation of state, specification of P0 and ¢0 uniquely determines the 

external parameters R, M, Q, and ¢00 • Thus, the point (R, M, Q, ¢00 ) is constrained 
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to lie in a 2-dimensional hypersurface. This constraint is much stronger than what 

would be naively expected. If the equations of stellar structure admitted an arbitrary 

<P' ( 0), then this hypersurface would be 3-dimensional. 
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4 Newtonian Limit of Scalar-Tensor Gravity 

In the limit of weak and slowly varying gravitational fields, and non-relativistic par­

ticle velocities, general relativity reduces to Newtonian gravity. This limit is applied 

to scalar-tensor gravity in the Einstein frame. 

4.1 Field Equations 

The Einstein-frame metric is taken to be 

(4.1) 

where TJ11v is the fiat Minkowski metric, and "f~-tv is a small perturbation. It is assumed 

that there exists a global rectilinear coordinate system in which Tl~-tv = diag( -1, 1, 1, 1), 

and I'Y~-tvl « 1. In this section, terms quadratic (or higher) in "f~-tv are always dropped, 

and indices are raised and lowered with TJ~-tv· The trace-reverse of "f~-tv is defined by 

1 
1~-tv = "f~-tv - 2,"fTJ~-tv , (4.2) 

where "( = "'/ / = TJ~-'1/ "( IJ,V is the trace of "( IJ,V. The gauge av ;;y IJ,V = 0 is chosen. Then the 

trace-reverse of the Ricci tensor is given by 

(4.3) 

where 0 is the d'Alembertian operator of TJ~-tv· The gravitational fields due to energy 

flux, momentum density, and momentum flux are assumed to be negligible. The 

energy-momentum tensor can then be taken to be 

(4.4) 

where g is the mass density, u11 = (dt) 11 , and t is the global time coordinate. If time 

derivatives of¢ and "f~-tv are neglected, the Einstein-frame field equations (2.32) and 

(2.33) become 

Y'21oo - -16rrGg + 2("foo- 1)IV¢12 , (4.5) 

v2-"foi - 2"foiiV¢1 2 , (4.6) 

v2-"fij - -4oi¢oj¢ + 2("fij + Jij)IV¢12 , (4.7) 

V2¢ - 4rrGa(¢)g. (4.8) 
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Latin indicies run over the spatial coordinates (1 ... 3), and 0 denotes the time coor­

dinate. When written in terms of 1 p,v, the field equations are 

V2'Yoo - -81rGg + (21oo + 'Y)IV¢12 , (4.9) 

v21 -161rGg- 2(1 + 2)IV¢12 , (4.10) 

V2'Yoi 2"/oiiV¢12 , (4.11) 

V2'Yii - -4oi¢oj¢ + 2('Yij + 8ij)IV¢12 (4.12) 

V2¢ - 47rGa(¢)g . (4.13) 

Note that in the Newtonian limit of general relativity, 'Yoo is the only non-vanishing 

component of "/p,v· It can be related to the Newtonian potential. However, in the 

Newtonian limit of scalar-tensor gravity, none of the components of "/p,v vanish. 

4.2 Stellar Structure 

The Newtonian limit (3.21) of the equations of stellar structure (3.41)-(3.44) is 

Gm' - 47rGr2 A4(¢)g + ~r2¢12 
, (4.14) 

P' - -g ( ~:n + ~r¢12 +a(¢)¢') (4.15) 

¢>" - 47rGA4 (¢)g(a(¢) + r¢')- ~¢>', (4.16) 
r 

v' 2Gm A.12 
-2- +r'+' . 

r 

In the absence of sources ( P = g = 0), the solution to these equations is 

ll - -2GM/r, 

Gm - GM- G2Q2/2r, 

¢> - cPoo +GQjr. 

( 4.17) 

(4.18) 

(4.19) 

( 4.20) 

The parameters M, Q, and c/>00 can be expressed in terms of the fields at the stellar 

boundary: 

GM - Gm(R) + ~R3¢12(R) , ( 4.21) 

GQ - -R2¢'(R) , ( 4.22) 

cPoo - c/>(R) + R¢'(R) . (4.23) 
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4.3 Equations of Motion 

In the Newtonian limit, the equations of motion of a test particle become 

d2xi -· 
dt2 = -rz oo. 

It follows from equation (2.40) that 

The relevant Einstein-frame Christoffel symbols are given by 

r~-t 00 = -~OIL'f'oo . 

Note that the fields '!'oi do not enter into the equations of motion. 

(4.24) 

(4.25) 

(4.26) 

Now specialize to the exterior field of a spherical body. The gravitational and 

scalar fields are given by equations (4.18)-(4.20). Thus, the spherical components of 

')'~-tv are given by 

1 
'f'oo = 1- e-2GM/r' 'l'rr = 1- 2GMjr + Q2Q2jr2- 1 . (4.27) 

The cartesian components of ')'~-tv can be calculated using the formulae 

-y;; = :, ( -y .. (x')' +~(xi)') (no sum on i) , (4.28) 

'l'ij = ( 4.29) 

In vector notation, equation (4.24) becomes 

( 4.30) 

When written in terms of the coordinates 

(4.31) 
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in which the Jordan-frame metric is asymptotically flat, the equations of motion 

become 

_ _ G~i [1 _ 2GM~(¢oo) 
r r 

+ GQ:~cf>oo) (2Ma(¢00)- Qa'(cf>oo))] + O(G3) · (4.32) 

Re-expressed in terms of the effective gravitational constant (defined in equation 

(2.29)), the above equation becomes 

d?i GMi 2 
d£2 =- f3A2(¢oo) + O(G). 

Therefore, the gravitational mass is 

Me - M/A2 (cf>oo) 
M- Qa(cf>oo) 

A(cf>oo) 

29 
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5 The Quadratic Model 

A framework has been developed to systematically add relativistic corrections to the 

Newtonian limit described in the previous section. It is called the parametrized post­

Newtonian formalism (PPN) [48]. For the scalar-tensor theory defined in section 

2.3.3, the first post-Newtonian corrections depend only on a(¢00 ) and a'(¢00 ). The 

Jordan-frame lPN parameters ,:Y, j3 are given by 

2a
2 I (5.1) i' - 1- 2 ' 

1 +a 4>=1/>(oo) 

j3 a2a' I 1 + 2 2 . 
2(1 +a ) 4>=1/>(oo) 

(5.2) 

Thus, if attention is restricted to first post-Newtonian corrections, the most general 

coupling function is A(¢)= exp(a¢ + ~{3¢2 ), called the quadratic model. 

It is difficult to obtain exact analytical solutions for stellar interiors in scalar­

tensor gravity. One such solution has been found by Yazadjiev [49], for the rather 

complicated coupling function 

A(</>) - e-b<P/(2-a) [(3- a)e<f>lb- (2- a)]b2/(2-a)(3-a) 

b(l - e<f>lb) 
a(¢) -

(3- a)e4>/b- (2- a) ' 

(5.3) 

(5.4) 

where a and b are constants satisfying a2 + b2 = 1. The density profile and equation 

of state of Yazadjiev's solution are involved, and it is not clear whether they describe 

realistic stars. 

In this section, stellar structure in the quadratic model is investigated. Pertur­

bation theory is used to find analytic stellar interior solutions to zeroth order in the 

couplings x = a 2 ( ¢0) and {3. The results are compared to full numerical calculations, 

obtained using the Runge-Kutta-Fehlberg algorithm available in Maple. 

5.1 Constant-Density Stars 

It is hard to describe realistic stars analytically, particularily in the strong-field regime. 

However, many properties of stellar structure can be understood from a simplified 

model, where the energy-mass density is taken to be constant. No equation of state 
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is specified, and the pressure profile is found by solving the equation of hydrostatic 

equilibrium. 

In general relativity, the constant-density solution was obtained by Schwarzschild 

in 1916. Moreover, a theorem of Buchdahl establishes an inequality between the mass­

radius ratio of a star with any equation of state, and that of a constant-density star 

[7]. 

5.1.1 Equations 

Consider a star of constant density p0 in the quadratic model. Replace the coupling 

constant a with x = a 2(¢0 ) = (a+ (3¢0 ) 2, and carry out the change of variables 

p, = Gm/r , II= P/ Po , <p = (¢- ¢o)/a(¢o) , u = 8?rGpoA4 (4>o)r 2 
• (5.5) 

The equations of stellar structure (3.41)-(3.44) then become 

it 
jJ, e4xtp(l +.B'P /2) 

+ xu(1- 2p,)rj;2 
, (5.6) - --+ 

2u 4 

II -(1 +II) (2u(1~ 2p,) + 

IIe4X'P(l+.B'P/2) 
+ xrf;(1 + urj; + (3<p)) (5.7) -

4(1- 2p,) 

<p 
( 3 - 4p,) rj; e4x'P( l+.B'P /2) . 

(5.8) - - 2u(1- 2p,) + 8u(1- 2p,) ((1 + (3<p)(1- 3II) + 2(1- II)u<p) ' 

v 
IIe4xtp(l+.B'P/2) 

jJ, 2 ·2 (5.9) -
2(1- 2p,) + u(1 - 2p,) + XU<p ' 

where dots denote dfdu. The initial conditions at u = 0 are 

p,(O) = 0 , II(O) =Po/ Po= 17 , <p(O) = 0 , rj;(O) = (1- 377)/12 . (5.10) 

The condition for p, is required for the metric (3.11) to be regular at r = 0. The 

condition for rj; is found by multiplying equation (5.8) by u(1- 2p,), and evaluating 

at u = 0. Note that rj;(O) vanishes when 11 = !· This happens when the energy­

momentum tensor is traceless at the centre of the star, i.e. T(O) = 3P0 - Po = 0. In 

this case, <p is constant, and the field equations reduce to those of general relativity. 

The variable v can be written in terms of the other variables, by combining 

equations (5.9) and (5.7): 

ii v . 
-1 +II = 2 + x(l + f31P)'P · (5.11) 
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Integration of the above equation yields 

( 
1+77 ) v(u) = v0 + 2log 

1 
+ IT(u) - 2xcp(u)(l + (3cp(u)/2), (5.12) 

where v0 = v(O). Now expand the remaining dependent variables J-t, IT, and cp in a 

series in the couplings x and (3: 

i,j?_O i,j?_O i,j?_O 

5.1.2 Interior Profiles 

In the limit x = (3 = 0, equations (5.6)-(5.8) can be solved analytically: 

J-t(O,O) 1 . 2 v 
(5.14) - 2sm 2' 

rrco,o) (1 + 17)- (1 + 31]) cos~ 
(5.15) -

(1 + 31]) cos~- 3(1 + 17) ' 

<iJ(O,O) ( l + 1J) sec ~ + ~ ( 1 + 1J) ( 1 - v esc v) csc2 ~ 
(5.16) -

(1 + 31]) cos~- 3(1 + 17) 

uco,o) 127](1 + 21]) 
(5.17) -

(1 + 37])2 ' 

where u = 3 sin2 ~' and U is the value of the independent variable corresponding to 

r = R. Integration of equation (5.16) yields 

cp(o,o) = 
32

(
2 
!1

317
)3/ 2 { (17 + !)2 (77 + 1) [ 2dilogS"L- 2dilog0+ + iv log~=] 

+ ~J2 + 31] [(17 + ~)(17 -l) log(6(1 + 1J)eiv/2 

- (1 + 31J)(eiv + 1)) 

- eivi~ 1 ( ~(17 +~)+HI+ 17)(1 + 31J)eiv/2 

+ (1J2 + ~o 17 + ~~)eiv)]} 
(5.18) 

where 

(5.19) 
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C(TJ) is chosen such that rp(o,o)(O) = 0, and the dilogarithm is defined by 

. !z logt dtlog z = --dt. 
1 1- t 

(5.20) 

Note that the definition of rp in equation (5.5) is invalid when x = 0. However, the 

solution (5.14)-(5.18) can be used to approximate stellar configurations with small 

but non-zero X· In order to describe configurations with x = 0, variables different 

from (5.5) need to be used. This case will not be considered. 

In figures 1, 2, and 3, the numerically calculated field profiles J.-t(u), II(u), and 

rp(u) are compared to the zeroth-order analytic solutions given by equations (5.14), 

(5.15) and (5.18) for various values of TJ, x and (J. For fixed TJ, the values of x and 

(J are chosen to illustrate when the exact profiles start deviating from the zeroth­

order ones. When lfJI is increased, rp changes much more than J.-t or II. This happens 

because all factors of (J in equations (5.6) and (5.7) are multiplied by a factor of x, 
while equation (5.8) contains a factor of (J without X· When TJ is small, J.-t and II are 

nearly linear functions of u, and become more complicated as TJ is increased. 

According to the analytic solution, rp is positive and increasing for TJ E (0, !). 
At TJ = ! , rp vanishes, and the other profiles reduce to those of general relativity. For 

TJ E (!, 1.551), rp descreases from 0 to some minimum value, and then increases to its 

maximum value, taken on at the stellar boundary. For TJ E (1.551, oo), rp is negative 

and decreasing. The sign of <P(U) is the opposite of the sign of Q, and the critical 

value TJ rv 1.551 corresponds to Q = 0. 
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(a) rJ = 0.1 
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McMaster - Physics and Astronomy 

0 .34 '-L_L_..__.____L__.._.___.__,__, 
2.2 2.25 2 .3 2.35 2.4 2 .~5 

0 ~~---L--~--L-~--~---L--~--L_~ 

0 0.5 1.5 2.5 

(b) rJ = 1 

(c)ry=lO 

Figure 1: The function J1, = (1 - grr)/2 plotted versus the dimensionless variable 

u = 8nGp0A 4 (¢0 )r2 for a star of constant density p0 and central pressure P0 = ryp0 , 

for various values of the couplings x = a 2(¢0 ) and (3. 
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Figure 2: The rescaled pressure II 

density. 

P /Po plotted versus u for a star of constant 
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Figure 3: The normalized and rescaled scalar field <p = (¢- ¢0)/a(¢0 ) plotted versus 

u for a star of constant density. 
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By means of perturbation theory, the first corrections to the zeroth-order pro­

files can be expressed as the following integrals: 

J.l(l,O) - 1 I . 2 yU duvfu[<p(O,O) + u(1 - uj3)<p(O,O) ] , (5.21) 

U(l,O) - 12 cl: 3~ )' fi(l,O) (U(O,O)) ' (5.22) 

II(l,O) 4(1 + rJ)J.l(l,O) (1 + ry)(u- 3/2)J1- u/3 + ~(1 + 3ry) 

J1- u/3 ((1 + 3ry)J1- u/3- 3(1 + ry))2 
2(1 + rJ)<p(O,O) 

+ 
(1 + 3ry)J1- u/3- 3(1 + rJ) 

4(1 + ry)J1- u/3 + X 
((1 + 3ry)J1- u/3- 3(1 + ry))2 

du (1 + 3ry)J1- u/3- !(1 + ry)(u2 - ~u + 9) I { u( ~(o,o))2 [ ] 
J1- u/3 

- (1 + rJ)<p(o,o)(u2- ~u + V} 
3(1 - u/3)312 ' 

(5.23) 

<p(O,l) 1 
-

4u3f2J1- u/3[(1 + 3ry)J1- u/3- 3(1 + ry)] 
X 

J du<p(o,o) J 
1

_uu/
3

[2(1 + 3ry)J1- u/3- 3(1 + ry)], (5.24) 

J.l(O,l) - rr(o,l) = u(o,l) = 0 . (5.25) 

The full expressions for J.l(l,O) and II(l,O) are complicated. They can be approximated 

by an expansion in 1/ry. The power series expansion of J.l(l,O) about u = 0 has the 

form 

J.l(I,o)(u) - (a22rJ2 + a21'fJ + a20)u2 

+(a33'f]3 + a32rJ2 + a31'f} + a3o)u3 

+(a«rJ
4 + a43'f}

3 + a42'f]
2 + a41'f} + a4o)u

4 

+... (5.26) 

(o) g(l)(rJU) g(2)(ryu) g(3)(ryu) (5.27) 
- 9 (ryu) + + 2 + 3 + · · · ' 

'fJ 'fJ 'fJ 
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where 

g(O)(t) - a22t2 + a33t3 + a44t
4 + ... 

g(l)(t) - a21t2 + a32t3 + a43t
4 + ... 

g(2)(t) a2ot2 + a31 t3 + a42t
4 + ... (5.28) 

The coefficients aii can be calculated symbolically using a computer algebra 

program such as Maple, by repeatedly differentiating the equations of stellar structure, 

and evaluating them at u = 0. The results of such a calculation suggest that the 

functions g(k) have the general form 

(5.29) 

where ak are rational numbers, and Pk are polynomials of degree 2 + Lk/2J with 

rational coefficients. If Pk is given, then the infinite sum in (5.29) can be calculated 

analytically. The first few polynomials Pk and functions g(k) are tabulated in Appendix 

A. 

In principle, it should be possible to prove that (5.29) holds for all k, and 

derive an analytic expression for Pk(n), by expanding equations (5.16) and (5.21) in 

power series. However, carrying out this calculation results in very long formulas that 

involve multiple sums and hypergeometric functions. 

The sum in equation (5.29) converges only for ltl < 4, i.e. u < 4/'IJ. However, 

if Pk is given, then g(k) can be evaluated analytically, and the resulting function is 

well-defined for all u. 

A similar expansion can be carried out for II(I,o). Rather than working directly 

with II, it is more convenient to define 

~ = 3(1 + II)J1 - 2J-L- (1 + 3II) 
(1 + 3II) - (1 + II)J1 - 2J-L 

Expand ~ in powers of x and {3: 

~ = L ~(i,j)xif3j . 

i,j~O 
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Then ~(o,o) = 1/TJ, and ~( 1 ,o) has a power series expansion of the form 

where 

~( 1 '0)(u) = (b1,1T/ + b1,o + b1,-1TJ-1 + b1,-2TJ-2)u 

+(~,2"12 + b2,1T/ + b2,o + b2,-1TJ-1 + b2,-2TJ-2)u2 

+(b3,3T/3 + b3,2T/2 + b3,1T/ + b3,o + b3,-1T/-1 + b3,-2TJ-2)u3 

+ ... 

h
(o)( ) M1)(uTJ) h(2)(uTJ) 

UTJ + + 2 + ... , , 
h(O)(t) - b11t + b22t2 + b3 3t3 + ... , , , 

h(1)(t) - b1 ot + b2 1t2 + b3 2t3 + ... , , , 

h(2)(t) - b1,-1t + ~,ot2 + b3,1t3 + .... 

(5.32) 

(5.33) 

(5.34) 

A symbolic calculation of the coefficients bii suggests that the functions h(k) 

have the general form 

) L
oo ( -t/4)n (2n- 2k- 1)11 

h(k (t) = b tk-2 + c tk-1 + d tk + ·· q (n) 
k k k n (2n + 1)!! k ' 

n=k+1 

(5.35) 

where bk, ck, and dk are rational numbers, and Qk are polynomials of degree 2 + 
L 3k/2 J with rational coefficients. If Qk is given, then the infinite sum in (5.35) can be 

calculated analytically. The first few polynomials Qk and functions h{k) are tabulated 

in Appendix A. Analytical formulas for Qk are even more complicated than those for 

Pk· The statements made earlier about the radius of convergence of (5.29) apply also 

to (5.35). 

In figures 4 and 5, the numerically calculated O(x) corrections /l(l,o) and ~( 1 ,o) 

are compared to partial sums of the series (5.27) and (5.33), respectively. The partial 

sums become better approximations as TJ is increased. For 11(1,o), the K = 2 term 

already gives the correct qualitative behaviour, even when TJ = 0.1. For ~( 1 ,o), at least 

K = 3 is needed to describe the qualitative behaviour for TJ = 0.1 correctly. Figures 

1, 2, and 3 show that the zeroth-order solution is a good approximation to the exact 

solution when TJ is small (provided that x and (3 are not too large), and that the O(x) 

corrections become important for large"'· Consequently, these partial sums work well 

in the regime where the corrections are important, and don't work well in the regime 

where they are not important. 
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-2 
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Figure 4: The O(x) correction J-t(I ,o) plotted versus u, and compared to partial sums 

of the series (5.27) truncated at g(K)(ryu)jryK. 

40 



MSc Thesis- M. Horbatsch McMaster - Physics and Astronomy 

--- Numerical 
--- K=O 

--- K=1 
--- K=2 
--- K=3 

-0 2 --- Numerical 
- - K=O 

-- K= 1 
-- K=2 

-- K=3 

-0.4 

-2 ~~--L-~-~-L-~--L-~~ 

0 0 .2 0 .4 0.6 0 .8 0.5 1 5 2.5 

(a) ry = 0.1 (b) 'r/ = 1 

---Numerical 
--- K=O 

-1 -- K=1 

--- K=2 

--- K=3 

-2 

(c)ry=lO 

Figure 5: The O(x) correction ~(l , o) plotted versus u, and compared to partial sums 

of the series (5.33) truncated at h(K)(f!u)/f!K. 
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It was found numerically that if (3 is negative, there is a maximum value 

"7max(X , (3), above which no constant-density stellar solutions exist. As the absolute 

value of (3 increases, "7max decreases. As 7] approaches "7max, the profiles start changing 

significantly, and the radius of the star R becomes arbitrarily large. The onset of this 

behaviour can be seen in the X= 0.01, (3 = -1 profiles for 'T] = 10. In figure 6, 'TJmax 

is plotted versus (3 for various values of X· When x increases, "7max decreases. 

+ 

40 + + + X=0.1 
+ + + X= 0.01 
+ + + x=o .oo1 + 

+ 

30 

+ 

+ 
+ 

20 
+ + 

+ 
+ + + 

+ 
10 + 

+ + 
+ 

0 ~--~----~----~----~----~----~--~~--~----~----~ 

-1 0 -8 -6 -4 -2 0 

Figure 6: The maximum value of 7] for constant-density stars, plotted versus (3, for 

various values of X· 
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5.1.3 Effective Couplings 

In figures 7 and 8, the effective coupling constants G and a(¢), which were defined 

in equations (2.29) and (2.27), are plotted in the vincinity of a constant-density star. 

The vertical lines denote the stellar boundary. In the 'f/ = 0.1 and 'f/ = 1 figures, 

only the stellar boundary of the {J = 0 profile is shown. The boundaries of the other 

profiles are very close to this one. For the case of 'f/ = 10, the boundary of the {J = -1 

profile is shown, because it differs substantially from the {J = 0 boundary. 

In terms of the variables (5.5), G and a are given by 

G 

Go 
a 

ao 

- exp(2Xip(1 + {3ipf2)) , 

- 1 +fliP' 

(5.36) 

(5.37) 

where the subscript 0 denotes evaluation at u = 0. These ratios are independent of 

¢o. 

For 'f/ = 0.1, the effective gravitational constant G increases as one moves radi­

ally outward. For 'f/ = 1, G decreases to a minimum value near the stellar boundary, 

and then increases in the exterior. For 'f/ = 10, G decreases in the stellar interior, and 

continues decreasing at a slower rate in the exterior. A positive value of {J causes G 

to increase faster or decrease slower, while a negative value of {J causes G to increase 

slower or decrease faster. 

For 'f/ = 0.1, a positive value of {J causes the scalar-matter coupling a to 

increase as one moves radially outward, while a negative value of (3 causes a to 

decrease. One observes an approximate symmetry: 

a a 
{J -+ -(3 ' - -+ 2- - . 

ao ao 
(5.38) 

This symmetric behaviour is violated as 'f/ is increased. For 'f/ = 1 and 'f/ = 10, a 

positive value of (3 causes a to decrease, while a negative value of {J causes a to 

increase. 
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Figure 7: The normalized effective gravitational constant GjG0 plotted versus u for 

a star of constant density. The vertical line denotes the stellar boundary. 
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Figure 8: The normalized scalar-matter coupling a/ a0 plotted versus u for a star of 

constant density. The vertical line denotes the stellar boundary. 
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5.1.4 External Parameters 

The external parameters calculated in section 3.4.3 can be expanded perturbatively 

in X and /3: 

GM 
-

R 
uco,o) ( 1 + 1J ) 2 __ + 2x rrc1,o) (uco,o)) + XJ.tc1,o) (uco,o)) + 0(/3) + O(x2) 

6 1 + 31J 

- 2TJ(1 + 2TJ)- 2xTJ2(1 + TJ) ~Cl,o)(uco,o)) + O(f3) + O(x2) 
(1+3TJ)2 (1+3TJ)3 ' 

(5.39) 

Q 
-

Mvx 
41TJ2 + 341J + 9 9(1 + TJ)(1 + 31J)2 . (2JTJ(1 + 2TJ)) ------:----'-:-- - arcsm 

81J(1 + 2TJ) 16(TJ(1 + 2TJ))3/2 1 + 31J 

+O(x) + 0(/3) , (5.40) 

Q ( 21J(1 + 2TJ) ) 
- Marctanh 5172 + 

411 
+ 1 + O(x) + 0(/3) . (5.41) 

The zeroth-order term in equation (5.39) is the expression for GM/ R in general 

relativity. The O(x) term depends only on the function~· 

As described in section 3.4.1, the stellar configurations in scalar-tensor gravity 

are parametrized by P0 and ¢0 . However, equations (5.6)-(5.9) and their initial con­

ditions (5.10) depend only on one parameter, namely 1J = P0/ p0 . It then follows from 

equations (5.39)-(5.41) that the quantities M/ R, Q/ M, and !1¢ are independent of 

¢0 . This is a special property of constant-density stars, and does not hold for stars 

with other equations of state. It is discussed further in section 5.3. 

In figure 9, ratios of the external parameters are plotted versus 1J for various 

values of x and /3, and are compared to the zeroth-order analytic expressions given 

in equations (5.39),(5.40), and (5.41). 

In general relativity, M / R is an increasing function of TJ, with a maximum 

value of 4/9. In scalar-tensor gravity, M/ R is no longer monotonic. According to 

equation (5.40), Q/ M VX is an increasing function of 1J, which starts with a minimum 

value of -1 at 1J = 0, vanishes at 1J "' 1.551, and approaches a maximum value of 

"' 0.359 as 1J -t oo. Thus, to zeroth order in x and /3, 

Q 
-1::; Mvx::; o.359. (5.42) 

According to equation (5.41), !1¢/ VX increases from 0 to"' 0.200 for 1J E (0,"' 0.321), 

and then decreases from "' 0.200 to "' -0.395 for 1J E (0.321, oo ). It goes through 
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zero at "'rv 1.551. Thus, to zeroth order in X and /3, 

~¢ 
-0.395 ::; ..;x ::; 0.200 . (5.43) 

Changing x and f3 causes the numerical results to deviate from the analytical curves 

for large"'· The curves with f3 < 0 end at"'= "'ma.x(X, /3), while the curves with f3 ~ 0 

are defined for all 'f/ > 0. For X = 0.1 and /3 = -0.4, 'f/max rv 27.04. 
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5.1.5 The Limit 'T/ ---too 

The parameter 'T/ measures how relativistic the star is. For non-relativistic stars (such 

as main-sequence stars or white dwarfs), P << p, so 'T/ « 1. For neutron stars, 

, "' w-2 ••. 10. 

Consider the limit 'T/ ---t oo. This limit might be useful when considering an 

idealized model of gravitational collapse. In this limit, the zeroth-order solution given 

by equations (5.14)-(5.18) becomes 

/-l(O,O) -

rr<o,o) -

cp(O,O) -

<.p(O,O) + log 'T/ -

u 
6 
1-3cos!! 2 

3(cos ~- 1) ' 

( 1 + cos ~) G sec ~ + H 1 - v esc v) csc2 ~) 
sin2 !! 

2 

19 . v 3 v 
24 

- log 3 - 2log sm 4 - 8v cot 2 
+ 7- 3cos ~ v(3cos ~-cos~) 

16 sin2 £ 32 sin3 £ 4 4 

U (O,O) = 8 
3" 

Equation (5.4 7) implies that <.p diverges as -log 'T/ as 'T/ ---t oo. Also, 

2 
1-l(I,o) + 3u log 'T/ = J.t~,o) ( u) ' 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

where the right-hand side is a finite function of u. Thus, the O(x) correction to J.t 

also diverges. These divergences indicate that the variables (5.5) are not well-suited 

for describing this limit. They disappear when the variables m,P,¢, and r are used, 

and ¢0 is chosen to be 
¢ _ ¢8+alogry 

0 
- 1 - {3log 'T/ ' 

(5.50) 

where ¢8 is independent of"'· For example, a perturbative expansion of m(r) yields 

1 
m(r) = 6(po(1 + 4a¢8)r3 + arJ.t~'0)((Por2) + O(a2

) + 0({3) . (5.51) 

5.2 Newtonian Polytropes 

Many stars can be modelled by a polytropic equation of state 

p = K {}1+1/n , 
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where e is the rest mass density, n is the polytropic index (a constant that need not 

be an integer), and K is a constant. 

5.2.1 Equations 

Specialize equations ( 4.14)-( 4.17) to the equation of state (5.52), and change variables 

to 

r = aw ' (] = eorr ' (5.53) 

where p0 = p(O), and a is a length scale that will be specified later. Then, equations 

(4.14)-(4.17) become 

-2¢/w + CA4(¢)fr(a(¢) + w¢) , (5.54) 

- -CA
4(¢)w2fr- ~w2¢2 

, (5.55) 

where dots denote djdw, and 

( = K(n + 1)e~/n , C = 47rGa2eo . (5.57) 

The initial conditions are 

0(0) = 1 

¢(0) =<Po 

0(0) = 0' 

¢(o) = o. 

(5.58) 

(5.59) 

Now specialize to the model A(¢) = exp(a¢ + !f3¢2). Define 

X= a 2(¢o) =(a+ f3<Po? , cp = (¢- ¢o)/a(¢o) . (5.60) 

Choose 

a= K( n + 1) (1-n)/2n -2(a4>o+~.64>~) 
47rG eo e ' (5.61) 

so that 

( = Ce4a4>o+2,64>~ . (5.62) 

Then equations (5.54)-(5.56) become 

-(w2o)·- xf3 w2<jJ2 - w2e 4X'P(1+,6cp/2)0n(1 + x(1 + w<jJ + f3cp) 2 ) ' (5.63) 
( 

rp - -2</J/w + (e4X'P(l+,6cp/2)0n(1 + w<jJ + f3cp) , (5.64) 

Gm - -aw2 
( (0 + ~xw</J2 + x(1 + f3cp )<P) (5.65) 
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with the initial conditions for <p: 

<p(O) = 0 , e;?(O) = 0 . (5.66) 

Since the system of differential equations (5.63)-(5.64) is singular at w = 0, power 

series expansions are used to evaluate initial conditions at some small w0 : 

1 
O(w) 1- "6(1 + x)w2 + O(w4

) , (5.67) 

1 
<p(w) - -(w2 + O(w4

) (5.68) 6 . 

Expand 0 and <p in a power series in the couplings x and {3, as well as the parameter 

(: 

i,j i,j,k 

i,j i,j,k 

5.2.2 Interior Profiles 

In the limit X = {3 = 0, equations (5.63)-(5.64) become 

(} - -20/w- rr ' 
<p - -21;?/w + (On(l + wcp) . 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

Equation (5.71) is called the Lane-Emden equation. It plays an important role in 

the theory of stellar structure, and the properties of its solutions are well-known. It 

can be solved analytically when n = 0, 1, 5 [11]. The solutions of the Lane-Emden 

equation with initial conditions (5.58) are called the Lane-Emden functions, and are 

denoted by en ( w). Thus, 

(}(O,O)(w) = en(w) . (5.73) 

Equation (5.72) can be solved to write <pin terms of 0: 

<p(o,o) =-~2 exp(-((wSn +en)) J(w2Sn). exp(((wSn + en))dw. (5.74) 

Expansion of the above equation in powers of ( yields 

(5.75) 

Thus, 

i.p(O,O,O) = 0 ' i.p(O,O,l) = 1 _ en . (5.76) 
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5.2.3 External Parameters 

When written in terms of the variables(), r.p, and w, equations (4.21)-(4.23) become 

R-aW, 

GM 
GQ 

Vi 
/1¢ _ </Joo - </J(W) --.;x- Vi 

- -aW2((0(W) + x(1 + !)r.p(W))<P(W)) , 

- -aW2<,?(W), 

- W<P(W), 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

where W denotes the value of the independent variable corresponding to r = R. The 

polytropes can be parametrized by K, n, P0 , and ¢0 . However, equations (5.63)-(5.64) 

and their initial conditions depend only on n and (. It follows that the quantities 

M/R, Q/M, and /1¢ depend only on nand(, and are independent of ¢0 . Moreover, 

Q, /1¢, and Rare related by 

GRQ = -/1¢. (5.81) 

The external parameters then have the perturbative expansion 

GM 
-(WO(W) + O(x) + 0(/)) + 0((2) , (5.82) 

R 
-

Q 
-1 + O(x) + O(!)) + 0((2) , (5.83) 

MJX 
-

/1¢ 
-(WO(W) + O(x) + 0(!)) + 0((2) . (5.84) - -

.jX 

5.2.4 The Chandrasekhar Limit 

A white dwarf can be modelled by a degenerate fermion gas. In the ultra-relativistic 

limit, this gas satisfies a polytropic equation of state (5.52) with 

31/31r2/3 
K = 

4 
lic(Ye/mB)413 , n = 3 , (5.85) 

where Ye is the number of electrons per nucleon, and mB is the average nucleon mass 

[8]. Although the fermion gas is highly relativistic, the gravitational field generated 

by it is non-relativistic, and the results developed above can be applied. The typical 

central densities of white dwarfs are f2o rv (107 ... 1014)kg m-3 [8). These values cor­

respond to ( rv 10-5 ... 10-2 for Ye = 1/2. Therefore, a perturbative expansion in ( 

is a good approximation for white dwarfs. 
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Since the ultra-relativistic limit of the fermion gas is used, the mass calculated 

using equation (4.34) is greater than the actual mass of the white dwarf. In general 

relativity, this upper bound on the mass of white dwarfs is independent of (, and is 

called the Chandrasekhar limit. For Ye = ~' its value is approximately 1.4M0 [10]. 

In the quadratic model, the maximum white dwarf mass is given by an expres­

sion of the form 

(5.86) 

For small scalar-matter couplings, :F(() is nearly constant over the range of white­

dwarf densities. However, Mmax depends exponentially on ¢0 , and can thus become 

arbitrarily large. 

5.2.5 Main-Sequence Stars 

In the Eddington standard stellar model, a star is modelled by an ideal gas, and 

energy is transported only by radiation. Moreover, it is assumed that 

Pgas f3 = p = const , (5.87) 

where Pgas is the pressure of the ideal gas, Prad is the radiation pressure, and P = 

Pgas + Prad is the total pressure. The Eddington model leads to a polytropic equation 

of state with index n = 3, and 

where R is the universal gas constant, J-L is the molar mass of the ideal gas, 

7T2k4 

a= 15c31i3 

(5.88) 

(5.89) 

is a constant related to blackbody radiation, and k is Boltzmann's constant [23]. 

Main-sequence stars can be described approximately by the Eddington standard 

model. 

For a more accurate single-polytrope model of the sun, n = 3.35 and ( "' 10-5 

(26], so the perturbative expansion in (is a good approximation. 

Consider the following problem. A star has gravitational mass Ma and radius 

R, and is modelled by a polytrope of index n. Using the theory of gravity, calculate 

the central pressure and density of the star. 
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In general relativity, this problem has a unique solution [26]. In Brans-Dicke 

theory, the situation is more complicated. In order to solve the equations of stellar 

structure (5.63)-(5.64), a value of (needs to be specified. However, the central pres­

sure and density are needed to calculate (. One way to proceed, is to guess a value of 

(. Using equations (5.82)-(5.84), (5.77), (4.34), and (2.25), the external parameters 

M0 , R, ¢0 , and <Poo can be related to the boundary values of() and r.p: 

CrXJRMo (1 - 2a¢oo) -(WO(W), (5.90) 

<Poo - <Po - a · ( r.p(W) - (WO(W)) , (5.91) 

R ~(l+<>·(r/Joo-2</>o)), (5.92) w -
0 

where Goo = G(r = oo) is the gravitational constant far away from the star. Use 

equation (5.90) to find ¢00 , then use equation (5.91) to find ¢0 . Finally, use equation 

(5.92) to find f2o· Po can then be found from equations (5.57) and (5.52). In summary, 

any (positive) value of ( is permissible, and there is a one-parameter family of poly­

trope profiles with prescribed values of M0 , R, and n. In order to obtain a unique 

profile, either ¢0 or <Poo must be chosen. Then equation (5.90) or (5.91) constrain the 

permissible values of(. Note that prescription of Q does not constrain(, because 

Q= -aMo. (5.93) 
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5.3 Other Equations of State and Buchdahl's Theorem 

Consider a star with initial values p(O) = p0 , P(O) = P0 , ¢(0) = ¢0 , radius R, external 

parameters M, Q, ~¢, a density profile that decreases with r, and an arbitrary 

equation of state. Now compare it to a star with constant density p0 , and initial 

values P(O) = P0 and ¢(0) = ¢0 . Denote the radius and external parameters of 

this constant-density star by R and M, Q, S.¢, respectively. In general relativity, 

Buchdahl's theorem [7] states that 

M M 
-<­R- R. (5.94) 

It turns out that this theorem no longer holds in scalar-tensor gravity. This will be 

demonstrated for a density profile that falls off exponentially: 

p(r) = poexp( -r/~R) , (5.95) 

where~ is a constant. Stars with this density profile can be parametrized by TJ = P0 / p0 

and ¢0 , where TJ E (0, oo) and ¢0 E (¢0, oo). As ¢o approaches the critical value ¢0, 
the radius of the star becomes arbitrarily large. When~---+ oo, ¢0 tends to -oo, and 

equation (5.95) reduces to a constant-density profile. 

In figures 10, 11, and 12, ratios of the external parameters M, Q, R, and~¢ 

are plotted versus ¢0 for various values of TJ. These figures show that Buchdahl's 

theorem is violated in Brans-Dicke theory, even when the scalar-matter coupling is 

very weak (x = 10-4). They also suggest that as ¢0 ---+ oo, the quantities M/ R, Q/ M, 

and~¢ tend to the corresponding 'hatted' quantities. 

Buchdahl's theorem in scalar-tensor gravity has been investigated by Tsuchida, 

et al. [44). They made the additional assumption that 

4 ¢12 -
Peff =A (¢)p + B1rG(1- 2Gm/r) (5.96) 

decreases with r, and derived the inequalities 

a:~~, IG3QI~2~· (5.97) 

The radius of the star R is related to 3 by 

( - )1 r 
R2 = 32 1 -2~: - (5.98) 

55 



MSc Thesis - M. Horbatsch McMaster - Physics and Astronomy 

Therefore, there is no simple way to write the inequalities (5.97) in terms of M/ R or 

Q/ R. The definition of Petr allows equation (3.41) to be written in the simple form 

I 4 2 m = 7rr Peff ' (5.99) 

analogous to equation (3.18). In the variables (5.5), Petr is given by 

(5.100) 

For constant-density stars and couplings x = 10-3 and (3 = 0, Peff exhibits the 

following behaviour: For rJ = 0.1, Petr is an increasing function of r. For rJ = 1, Petr is 

increasing near the surface of the star, and decreasing everywhere else. For rJ = 10, 

Petr is increasing near the centre of the star, and decreasing everywhere else. 
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Figure 10: Ratios of the external parameters of stars with density profile (5.95) plotted 

versus ¢0 , for x = 10-4 , (3 = 0, and TJ = 0.1. 
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Figure 11: Ratios of the external parameters of stars with density profile (5.95) plotted 

versus ¢0 , for x = 10-4 , (3 = 0, and 'Tl = 1. 
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Figure 12: Ratios of the external parameters of stars with density profile (5.95) plotted 

versus ¢0 , for x = w-4 , {3 = 0, and TJ = 10. 
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6 Conclusions 

Static, spherically-symmetric stars were investigated in scalar-tensor gravity. A star's 

interior is described by the density and pressure profiles p(r) and P(r), as well as 

the gravitational and scalar fields m(r) and ¢(r). The exterior is described by the 

Einstein-frame mass M, the scalar charge Q, the radius R, and the change /:1¢ -

¢( oo) - ¢( R). For a given equation of state, the stellar profiles can be parametrized 

by the central pressure and scalar field values, P(O) and ¢(0), while the central scalar 

field gradient must vanish. A consequence of this is that the external parameters 

( R, M, Q, ¢( oo)) are constrained to a two-dimensional hypersurface. 

Novel perturbative analytic results were obtained for constant-density stars 

and Newtonian polytropes in the theory with scalar-matter coupling function A(¢) = 

exp(a¢ + ~(J¢2 ). The functions P, p, m, and¢, as well as the parameters M, Q, R, 

and /:1¢ were calculated. It was found that the dependence on ¢(0) can be eliminated 

by a change of variables. Constant-density stars were parametrized by 1J = P(O)/ p(O), 

and Newtonian polytropes were parametrized by ( = K(n + l)[p(O)pln, where the 

polytropic equation of state is P = K pl+l/n. A perturbative expansion was performed 

in x = (a+ (J¢(0) )2 and /3. For Newtonian polytropes, an expansion was also carried 

out in(. 

Previous work on realistic stars in scalar-tensor gravity was performed nu­

merically [14]. The analytical results derived in this thesis allow one to investigate 

realistic stellar configurations in scalar-tensor gravity, and their dependence on var­

ious parameters, without the use of numerical codes. In particular, the structure of 

main-sequence stars and white dwarfs can be investigated. However, massive neutron 

stars need to be described by relativistic polytropes, which are beyond the scope of 

the analytical results. 

For negative coupling /3 < 0, it was found that there exists a maximum value 

1Jma:x.(X, /3), such that no constant-density stars exist with 1J > 1Jma:x.· On the other 

hand, if /3 2: 0, constant-density solutions could be found for arbitrarily large 1J· 

It was verified that a similar phenomenon occurs for several other equations 

of state. There exists a maximum value of P(O)/ p(O), which depends on the equation 

of state and ¢(0), as well as the couplings x and /3. Numerical calculations suggest 

that this maximum value is less than the constant-density maximum 1Jma:x.(X, (3). If 
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such an inequality holds for all reasonable equations of state, then knowledge of P / p 

in the centre of any star can be used to constrain {3. 

When {3 is negative and P(O)/ p(O) is sufficiently large, the effective gravita­

tional constant G decreases, and the effective scalar-matter coupling a increases, as 

one moves radially outward (see figures 7(c) and 8(c)). Also,¢'< 0 (see figure 3(c)). 

In equation (3.42), all terms in the large brackets are positive, except for a(¢)¢', 

which is negative. If P(O)/ p(O) exceeds the maximum value described above, then at 

some critical radius r = r*, a(¢)¢' cancels the other terms, creating a minimum in 

the pressure profile P(r): 

(6.1) 

For very large r, a(¢)¢' dominates over the other terms, and drives the pressure to 

infinity: 

limP=oo, limG=O, lima=oo. (6.2) 
r--oo r--oo r-+oo 

Such a pressure profile can not describe a star. 

Stars with exponentially-decaying density profiles were investigated numer­

ically. It was found that the dependence on ¢0 could not be eliminated, as was 

possible for constant-density stars and Newtonian polytropes. The parameters M, 

Q, R, and ~¢ were compared to those of a star with constant density p(O), and it 

was found that Buchdahl's theorem is violated, namely, 

M M 
Iii il' (6.3) 

even when {3 = 0 and a is very small. The 'hatted' external parameters are those of 

the constant-density star. 

In general relativity, Buchdahl's theorem is important because it gives informa­

tion about the external parameters that is independent of the equation of state, which 

is not always well-known. Even if Buchdahl's theorem fails in scalar-tensor gravity, 

more subtle relationships may hold between general stars and constant-density stars. 

For example, it was found from the numerical work that 

. M M Q Q 
hm -=-A , lim M =--;:- , lim ~¢ = li.¢, (6.4) 

t/>(0)--+oo R R t/>(0)--+oo M t/>(0)--oo 

for several different equations of state. A prospect for future work would be an 

analytical proof of (6.4) for 'reasonable' equations of state. 
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In order to determine whether the obtained solutions are physically realistic, 

their stability against perturbations needs to be analyzed. This is a possible prospect 

for future work. 

Another prospect for future work, is the calculation of the dependence of 

the Einstein-frame gauge couplings and fermion masses on ¢. Constraints on the 

variations of these constants [22] can then be used to constrain the scalar-matter 

coupling function A(¢). 
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A The functions g(k) and h(k) 

In tables 1 and 2, the coefficients and polynomials needed to calculate g(k) and h(k) 

are tabulated fork= 0 ... 3. The infinite sums in equations (5.29) and (5.35) can be 

evaluated analytically: 

g(O)(t) 

g(l)(t) 

g(2)(t) 

g(3)(t) 

- 2
. 6 + t _ 

6
arctan( Vt/2) 

(A.1) 
4+t Jt ' 
t2 2 

(A.2) -
5(4 + t)- 3tlog(1 + t/4) , 

1311t4 - 8392t3 + 8176t2 + 417200t + 1001280 
-

189000( 4 + t)2 

149arctan(Vt/2) 8 1 (1 / 4) 
- 225 Jt + 45 t og + t ' (A.3) 

346t5 + 16663t4 + 117312t3 + 152544t2 - 781200t - 187 4880 
-

396900( 4 + t)2 

62 arctan( Vt/2) 128 1 (1 / 4) 
+ 105 Jt - 945 t og + t · (A.4) 

_ _
3 

6 + t + 
9 

arctan( Vt/2) 
4+t Jt (A.5) 

- 19t22~(:o~ ~ 720 + 18(1- t/4) arcta}tv't/2) + 6log(1 + t/4) '(A.6) 

24939t4 + 527092t3 + 2377424t2 + 238000t- 10073280 
126000(4 + t)2 

(A.7) 

1499- 75t(18 + 5t/4) arctan( Vt/2) 128 1 (1 / 4) (A.8) 
+ 150 Jt + 15 og + t ' 

269671t5 + 4656214t4 + 35009064t3 

5292000(4 + t)2 
122200176t2 + 146435520t- 46609920 

+ 5292000(4 + t)2 

1225t3 + 10500t2 + 41972t- 9248 arctan( Vt/2) 
8400 Jt 

436 + 
175 

log(1 + t/4) . (A.9) 
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Table 1: Coefficients and polynomials for the calculation of g(k) 

k ak Pk(n) 

0 0 2(n- 1)2 

1 0 (3n- 13)(2n + 1) 

2 13 
15

2
75 (175n3 

- 718n2 + 1087n + 1136) 360 

3 41 
14175 (105n3 - 81ln2 - 2467n- 2587) 7560 

Table 2: Coefficients and polynomials for the calculation for h(k) 

k bk Ck dk qk(n) 

0 0 0 0 -3n(n- 1) 

1 0 0 1 -~(4n3 - 10n2 - n- 5) -:r 
2 0 1 1 

- 5~5 (700n5
- 1472n4

- 1495n3 + 5394n2 + 8737n + 13440) -6 24 

3 1 1 103 
- 4i25 

(840n6 - 6908n5 + 12830n4
- 20605n3 

12 -80 10080 

- 90272n2 - 152079n- 88290) 
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