
DESIGN AND IMPLEMENTATION OF A VIBRATION ANALYSIS TOOL

DESIGN AND IMPLEMENTATION OF A

VIBRATION ANALYSIS TOOL

By

SAHAR ABUGHANNAM, B.ENG

A Thesis

Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.A.Sc

Department of Computing and Software

McMaster University

© Copyright by Sahar Abughannam, September 20, 2008

ii

MASTER OF APPLIED SCIENCE(2003) McMaster University
Hamilton, Ontario

TITLE: Design and Implementation of a Vibration Analysis Tool

AUTHOR: Sahar Abughannam, B.Eng(McMaster University)

SUPERVISOR: Dr. Martin von Mohrenschildt

NUMBER OF PAGES: xii, 123

Abstract

This thesis work presents the software development stages for a vibration analysis

tool developed for a company that produces mining machinery and is interested in

monitoring their machines' behaviour. The developed application contributes directly

to the field of vibration analysis which is widely applied in many areas nowadays. Such

areas include in addition to the mining industry, the automotive industry, and other

industries producing rotating machinery.

The application developed interfaces with a device designed to acquire vibration

data through a three axis acceleration sensor. The device then sends the data wire­

lessly via Bluetooth technology to a computer on which the application is running.

The application then processes the data by applying signal conditioning functions on

it. These functions include filtering, Fast and Fourier Transforms. Plots are then

generated in order to monitor the machine's behaviour. Additionally, the unfiltered

data is logged into a file which allows for playing it back for a more in depth analysis

in the future. The application also provides a reporting system that generates reports

providing a summary of the machine's behaviour and recommendations for adjusting

the machine in order to obtain a better performance.

This application provides the company with a reliable and practical way of mon­

itoring their -machines, and acts as a solid base for future research that could involve

diagnostics and control.

111

Acknowledgements

I would like to thank my supervisor Dr. von Mohrenschildt for his guidance and

support over my graduate studies period. Also, the co-operation of the engineers

at the company the software was developed for, as well as the company's financial

support as part of an Industrial NSERC scholarship is greatly appreciated. Jay Parlar,

who is a fellow graduate student working on a Ph.D. thesis related to this work,

provided a large amount of suggestions and support throughout the implementation

phase of the project, and I would like to acknowledge him for that. Finally, I would

like to gratefully thank my husband Majd for his love and tremendous support, as

well as my family members for their continuous encouragement.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Objective 3

1.3 Thesis Contributions 3

1.4 Thesis Overview . 4

2 Vibration Analysis 5

2.1 Overview 5

2.2 Terminology and Units 8

2.3 Filtering 11

2.3.1 Overview 11

2.3.2 The Butterworth Bandpass Filter 14

2.4 Fundamental Frequency Estimation . . . 17

2.5 G Force, RPM, and Stroke Calculations. 20

2.5.1 G Force 20

2.5.2 RPM. 21

2.5.3 Stroke 21

2.6 Frequency Analysis 21

2.6.1 Fast Fourier Transform . 22

v

vi CONTENTS

2.6.2 Fast Wavelet Transform

2.7 Orbit Analysis . . .

2.8 Waveform Analysis

2.9 Ellipse Fitting . . .

2.9.1 Ellipse Fitting Method

2.9.2 Phase Angle .

2.9.3 Eccentricity

3 Data Acquisition

3.1 Overview ...

3.2 Hardware Overview .

3.3 PIC

3.4 Accelerometer

3.5 Bluetooth Device

3.6 Calibration ...

4 Requirements Specification

4.1 Overview

4.1.1 User Classes and Characteristics .

4.1.2 User Documentation

4.1.3 Assumptions . . .

4.2 Functional Requirements

4.2.1 Communication Requirements

4.2.2 Mode Requirements

4.2.3 Signal Processing Requirements

4.2.4 Logging Requirements

4.2.5 Display Requirements

4.2.6 Graphical User Interface Requirements

4.2.7 Reporting Requirements

4.3 Nonfunctional Requirements . .

4.3.1 Performance Requirements .

23

24

26

28

29

29

29

31

31

32

33

34

34

35

39

39

40

41

41

42

42

42

43

44

44

45

46

48

48

vii CONTENTS

4.3.2 Platform Requirements . 49

4.3.3 Safety Requirements .. 49

4.3.4 Maintainability Requirements 49

4.3.5 Reliability Requirements 50

4.3.6 Usability Requirements . 50

5 Software Design 52

5.1 Overview ... 52

5.2 Design Method 52

5.3 Main Modules . 55

5.3.1 Reader . 55

5.3.2 Sensor Manager . 57

5.3.3 Viewer 57

5.3.4 Logger 57

5.3.5 Calibrator 58

5.3.6 Filter ... 58

5.3.7 FFT Computer 58

5.3.8 Numerical Values Computer 59

5.3.9 Ellipse Fitter ... 59

5.3.10 Report Generator . 59

5.4 Main Module Interaction . 59

6 Software Implementation 61

6.1 Overview 61

6.2 Implementation Considerations 61

6.3 Software Libraries Used 64

6.4 Modules 65

6.4.1 Reader . 65

6.4.2 Sensor Manager . 70

6.4.3 Viewer 72

6.4.4 Logger 76

viii CONTENTS

6.4.5 Calibrator 76

6.4.6 Filter ... 77

6.4.7 FFT Computer 78

6.4.8 Numerical Values Computer 80

6.4.9 Ellipse Fitter . . . 81

6.4.10 Report Generator . 82

6.4.11 Device Discovery 83

6.4.12 Unpacker ... 83

6.4.13 Screen Scaling . 84

6.4.14 Circular Queue 85

7 Software Testing 87

7.1 Overview ... 87

7.2 Unit Testing . 87

7. 3 System Testing 88

8 Error Analysis 91

8.1 Overview . . 91

8.2 Types of Errors 91

9 Conclusion 94

9.1 Discussion 94

9.2 Future Work . 95

A User Manual 99

A.1 Start Up . 99

A. 2 File Simulation Mode . 99

A.3 Data Acquisition Mode . 103

A.4 Settings 107

A. 5 Generating Reports . 112

A.5.1 Other Commands . 113

ix CONTENTS

B Internationalization 116

B.1 Editing the translation files 116

B.2 Adding a language 117

B.3 Adding new strings to the source code 117

C Reports 119

C.1 Single Point Report . 119

C.2 Orbit Summary Report . 121

C.3 Tuning Report 123

List of Tables

3.1 Calibration measurements using gravity . 36

8.1 G ranges and their resolutions 92

X

List of Figures

1.1 Types of machines produced and their motions. 2

2.1 Part of the interface of the developed Vibration Analysis Tool. 7

2. 2 Measurement points on a two-bearing (horizontal) screen. . 10

2.3 Measurement points on a four-bearing (inclined) screen. . 10

2.4 Representation of a bandpass filter 13

2.5 Frequency response of Butterworth filters of varying order. 15

2.6 Poles of a 4th order Butterworth filter. 16

2.7 DFT example with an integer frequency value. 19

2.8 DFT example with a non integer frequency value. 19

2.9 FFT example 23

2.10 Filtered vs. Unfiltered Orbit Example . 25

2.11 Filtered Orbits and their FFTs. 26

2.12 Waveforms generated by a vibrating machine in the X,Y and Z axes 27

2.13 Waveforms generated by a vibrating machine with noise. 28

2.14 Ellipse example showing major and minor axes. 30

2.15 Examples of orbital trajectories with various eccentricities 30

3.1 Portable machinery vibration analyser and data logger. 32

3.2 Data Acquisition Hardware Prototype. 33

3.3 Best fit line for x axis measurements under 2.5 g mode. 37

4.1 A waterfall process with feedback .. 40

xi

xii LIST OF FIGURES

5.1 Data Flow in the System. 53

5.2 The model-view-controller architecture. 54

5.3 Alternate model-view-controller architecture. 55

5.4 Depiction of the main system loops. 56

5.5 Module interaction diagram 60

6.1 An illustration of the circular queue data structure. 86

A.1 Language Selection Menu. 100

A.2 Mode Selection Menu. . . 101

A.3 Main view of File Simulation Mode .. 102

A.4 Main view of File Simulation Mode while running. . 104

A.5 Acquisition Information Gathering Menu .. 105

A.6 Device Selection Menu 106

A.7 Main view of Data Acquisition Mode. 108

A.8 Centre frequency tolerance setting. 109

A.9 RPM tolerance setting. . . 109

A.10 Update frequency setting. 109

A.11 Update history setting. 110

A.12 FFT size setting. . . . 111

A.13 Acceptance levels setting. 111

A.14 Bearings settings. . . 112

A.15 Tuning Report Menu 114

C.1 Example of a single point report. 120

C.2 Example of an orbit summary report. 122

C.3 Example of a tuning report. 124

Chapter 1

Introduction

1.1 Thesis Motivation

The field of modern vibration analysis (also referred to as condition monitoring) for

rotating machinery is now over 40 years into its development and thus is a matured

technical subject. However, it continues to evolve and advance in response to new re­

quirements to further reduce machinery downtime and drastically reduce maintenance

costs [1]. This thesis work is part of this advancement.

We were approached by a company that produces vibrating screen machinery

which is used mainly in the field of mining. Figure 1.1 illustrates a portion of the

types of machines produced, along with their resulting motions. Two main motions

are produced; circular and horiztonal based on the application the machine is used

in. As the cut size of the vibrating screen increases, its amplitude increases as well.

Low cut size - low amplitude machines are typically used for dry screening of fine

materials such as lime, chemicals, fertilizers, sand, and have very high frequencies.

Whereas, high cut size- high amplitude machines are used for course materials such

as coal and phosphate rock and can rotate at speeds as high as 1050 RPM.

The company had an existing vibration analysis tool which they wished to im­

prove. The existing setup was such that only one part of the vibrating machine could

be monitored at once. The three axis accelerometer which would acquire the vibra­

1

2 1. Introduction

Amplitude

/
/\'/

Figure 1.1: Types of machines produced and their motions.

tion data from one point on the vibrating screen was connected through a wired serial

connection to a laptop which had the vibration analysis tool on it. The company's

desire to replace this setup was for two reasons. First and foremost, for the safety of

its technicians who would have to carry a laptop attached via a wire to the vibrat­

ing screen. Secondly, acquiring data from different points on the vibrating screen at

different times did not prove to be useful. The purpose of vibration monitoring is to

gain as much information about the screen at once, and that was not the case. Other

reasons existed for the company's desire to replace their current solution, one of which

is in the method of computing the centre frequency used in the bandpass filter that

was utilized in filtering the acquired data. The current method was based on finding

the maxima points on a signal and calculating the period of time between them. The

period was then inverted to calculate the frequency of the signal, which was used as

the centre frequency of the bandpass filter. This method did not give reliable results

for noisy signals, and a better method was required. Additionally, the current hard­

ware was very expensive to produce, and they wished to replace it with a hardware

that is as efficient, yet with a less expensive price. Finally, the company was open to

3 1. 	lntroduction

any new ideas that could be added to the current vibration analysis tool which could

improve its efficiency and possibly allow for additional features. This thesis work is

mainly a development of a vibration analysis tool that fits this company's needs.

1.2 Thesis Objective

The goal of this thesis work is the development of a complete vibration analysis

application that performs at least the following:

• 	 Obtain readings from the acquisition device introduced in Chapter 3.

• 	 Perform signal conditioning on the obtained readings. This includes, but is

not limited to, applying filters on the data, performing calculations to obtain

numerical values such as RPM, stroke and acceleration, and running an FFT

(Fast Fourier Transform) on the data.

• 	 Produce plots for each of the monitored locations representing the 2-dimensional

motion acquired from a specific location, the waveforms representing the signals

coming from each of the individual axes, and the frequency spectrum produced

from applying an FFT on the data.

• 	 Log the data and allow for playing it back in the future.

• 	 Generate three types of reports: Single point (for each of the locations moni­

tored), Orbit report (a summary of all monitored locations), and Tuning report

(providing recommendations to tune and adjust the machine).

1.3 Thesis Contributions

The main contribution of this thesis work is in developing a vibration analysis tool that

can be used in wirelessly monitoring multiple locations on a vibrating machine at once,

and producing reports that provide recommendations for adjusting the machine. The

4 1. Introduction

developed tool allows researchers and engineers to conduct work in order to diagnose

certain machine faults, and to ultimately control the machine's behaviour.

1.4 Thesis Overview

This thesis is divided into the following chapters reflecting when appropriate the

software design life-cycle:

Chapter 2 introduces the field of vibration analysis, and discusses the various

methods that are practised when applying it.

Chapter 3 discusses the hardware used for acquiring data prior to performing

the analysis on it, as well as an explanation of the method used for calibrating the

sensors used for the acquisition.

Chapter 4 acts as a requirements document for the developed vibration analysis

system, discussing both the functional and the non-functional requirements of the

system.

Chapter 5 serves as a software design document explaining the design decisions

made as well as the design architecture used. It also lists the software modules that

the application consists of, along with a description of how they interact.

Chapter 6 describes the implementation of the vibration analysis tool, including

the classes constructed in the implementation phase and how each one of these classes

is implemented.

Chapter 7 discusses the testing stage of the developed tool.

Chapter 8 is a discussion of errors that affect the data and their tolerances.

Chapter 9 is a summary of the thesis work, along with some suggested future

work.

Appendix A is a user manual explaining how to use the application.

Appendix B explains the method of internationalization and the steps that need

to be taken in order to apply it on a new language.

Appendix C contains the three different types of reports generated by the ap­

plication.

Chapter 2

Vibration Analysis

2.1 Overview

Vibration is the most regularly measured condition parameter in modern rotating

machinery, and is nowadays continuously monitored in numerous important appli­

cations [1]. Such applications appear in various energy and process industries such

as petrochemical, refining, power generation and numerous others [14]. Vibration

monitoring (or analysis) was first used in the mid 1950s [1] when vibration sensors

were first developed. At that time, the main use of vibration monitoring was in

providing warnings when a machine was producing excessively high frequency vibra­

tions that could potentially damage its parts. Numerous experimental results have

been reported showing that high frequency vibrations are associated with bearing

deterioration [8]. This application of vibration monitoring is refered to as preventive

maintenance.

Nowadays, vibration monitoring is being used more extensively. Predictive main­

tenance, which is an extension of the traditional preventive maintenance, is one of

the most common applications. One version of predictive maintenance is where the

machine is provided specific maintenance actions based upon its monitored condi­

tion instead of a fixed-time maintenance cycle [1]. The motivation behind predictive

maintenance is in reducing maintenance costs. This cost reduction is mainly done

5

6 2. 	Vibration Analysis

by making large reductions in the amount of maintenance required, in addition to

reducing technical support personnel.

Many methods are used in performing vibration analysis. As discussed in [1], such

methods include but are not limited to the following:

• 	 Signal Conditioning: This includes filtering (discussed in Section 2.3, integra­

tion to calculate the velocity and displacement from the acceleration (discussed

in Section 2.5), and signal amplitude conversion which is part of the Fourier

analysis (discussed in Section 2.6).

• 	 FFT Spectrum: This is discussed in Section 2.6.

• 	 Rotor Orbit Trajectories : This is discussed in Section 2.7

• 	 Bode, Polar and Spectrum Cascade Plots : Not a part of this thesis work.

• 	 Wavelet Analysis Tools : This is partially discussed in Section 2.8

• 	 Chaos Analysis Tools : This is not a part of this thesis work.

In addition to the above, this thesis work involves not only visual orbit analysis,

but a mathematical analysis including the fitting of the orbit trajectory into an ellipse

and the calculation of the ellipse's phase and eccentricity.

Figure 2.1 provides a layout of a section of the Vibration Analysis Tool developed

as part of this thesis work. Part A displays the Fast Fourier Transforms for the three

axes. Part B displays the waveforms for the three axes. Part C is a depiction of

the orbit in theY vs. X orientation. The orbit in this figure is based on the filtered

data, however there is an option to view the orbit based on the unfiltered data in the

options panel (to the right of Part C). Part Dis a smaller representation of the orbit

for a specific sensor assigned to a specific location. Part E is the values panel where

the acceleration, stroke, RPM, phase and eccentricity values are displayed.

It is important to understand that the values read from the sensors are accel­

erations in the X,Y and Z directions. These values include three different types of

data:

2. Vibration Analysis 7

D E

A,. • ,_•.,,." I<P'V ""'"' '>lrot.o RP\1 Au~ "'rnioo RPM A.:rlli q•,••• PPM
l.1<1r 'J~" MM1 M,lr

X J ~ ·~n »•"'" X U G Pht'>ft X 0 0 Phn~l .< 0 0 ~-''·~"'

v 1~ 'l!l '(0 c " 0 0 l" 0 0
L 1) 4 , ' l I) 1) l u 0 l c 0

I

500

Figure 2.1: Part of the interface of the developed Vibration Analysis Tool.

8 2. 	Vibration Analysis

1. 	 Wanted data representing the normal motion of the machine that it was de­

signed for.

2. 	 Unwanted data representing the abnormal motion of the machine produced from

a mechanical problem.

3. 	 Noise coming from other sources such as the sensor units or the surrounding

environment.

Based on the discussion above, the vibration analysis tool will have to process the

data in such a way that the wanted data is kept, the unwanted data is reduced and

the noise is completely eliminated.

This chapter first introduces some terminology commonly used in the field of

vibration analysis, and then discusses a few methods that are used in this thesis work

to perform the analysis.

2.2 Terminology and Units

The following terms are frequently used in the field of vibration analysis and are

worth defining here:

• 	RPM: The number of revolutions the machine performs in a minute. This is

equivalent to 60 x fo where fo is the fundamental frequency of the machine.

• 	 Stroke: The radius of the circle that the machine's main movement creates.

This quantity is measured in mm or inches.

• 	 g Force: The acceleration of the machine in a certain direction. This quantity

is measured in g which is equivalent to 9.8m/s2 .

• 	 Numerical Values: The g force, RPM, stroke, phase and eccentricity (refer

to Section 2.9) values based on the data coming from a sensor mounted to a

specific location.

9 2. 	Vibration Analysis

• 	 Running Frequency: The main frequency of the machine (also referred to as

the Fundamental Frequency (fo) which represents the main movement that the

machine was designed to have. This quantity is measured in Hz.

• 	 Bandwidth: The range of frequencies in the bandpass filter, where all the

frequencies in this range are passed through the filter, and frequencies outside

this range are removed. This quantity is measured in Hz.

• 	 Sampling Rate: The rate at which the data read by the sensor is sampled.

The sampling rate is measured in Hz.

• 	 Material Flow: This is the direction that the material moves. It starts from

the feed end of the machine and ends at the discharge end.

• 	 Sensor Mounting: When mounting a sensor on the vibrating screen, the

orientation should be in a such a way that the x-axis of the sensor is aligned

with the screen's inclination and the positive side of the x-axis points toward

the screen's feed end. If a magnet is used to mount the sensor, then the magnet

should sit tight on the surface of the machine.

• 	 Sensor Locations: The predefined locations that the sensors are mounted to

on the vibrating screen and named as follows:

• 	 LFB (RFB): Left (Right) Feed-end bracket.

• 	 LDB (RDB): Left (Right) Discharge-end bracket.

• 	 LSF (RSF): Left (Right) Sidearm Feed-end.

• 	 LSD (RSD): Left (Right) Sidearm Discharge-end. On the two-bearing screen

machines, the positions are marked as in Figure 2.2, whereas on the four-bearing

screen machines, the positions are marked as in Figure 2.3.

10 2. Vibration Analysis

Figure 2.2: Measurement points on a two-bearing (horizontal) screen.

Figure 2.3: Measurement points on a four-bearing (inclined) screen.

11 2. 	Vibration Analysis

2.3 Filtering

2.3.1 Overview

Raw vibration signals coming directly from the acquiring sensor, always contain com­

ponents which are contamination (noise), and frequently some actual components

which may partially obscure other components that are the important part of the

measurements taken [1]. This makes filtering the most common signal conditioning

operation in such applications.

Prior to filtering the digital data once acquired and before passing it through the

Analog to Digital (AD) convertor, low-pass analog filtering is inserted ahead of the

AD converter to avoid aliasing. Aliasing causes the "reflection" into the lower end

of the spectrum of high-frequency content that is above the sampling-rate capability

of the AD convertor [1]. Therefore, the low-pass analog filter should have a cutoff

frequency sufficiently below the Nyquist frequency, which is~ the sampling frequency.

The reason that the cutoff frequency of the analog filter has to be substantially below

the Nyquist frequency, is because no analog filter has a perfect frequency cutoff, i.e.

it has its roll off above the cutoff frequency [1].

On the digital side, filters that are used commonly with vibration signals are

low-pass, high-pass, band-pass, notch and tracking filters. The following is a brief

description of each of these types.

• 	 Low-pass filters are the most signal conditioning tool used in handling vibrat­

ing machinery signals [1]. A low-pass filter works by attenuating signal content

above a specified frequency (the cut-off frequency) and passing the signal con­

tent below it. Since for routine rotating machinery vibration analysis, frequency

components above ten times the spin speed are usually not of interest [1], the

low-pass filter meets the requirement.

• 	 High-pass filters work in a way opposite of the low-pass filters. Signal content

below the cutoff frequency is attenuated, and that above the cut-off frequency

is passed. As mentioned above, since routine rotating machinery vibration

12 2. 	Vibration Analysis

analysis is usually not concerned with frequency components above 10 times

the spin speed, high-pass filters are not a common tool in rotating machinery

signal conditioning.

• 	 Band-pass filters operate based on a range of frequencies called the frequency

band of the filter. A band-pass filter's operation is similar to applying a low­

pass filter and a high-pass filter in series, with the condition that the low-pass

filter's cut-off frequency is higher than the high-pass filter's cut-off frequency.

The frequency band of the band-pass filter is centred at a point called the centre

frequency of the filter. This frequency is determined first, and then a range

is defined around it allowing signal content within that range to be passed,

and that outside it to be removed. The standard method of determining the

centre frequency of the band-pass filter in rotating machinery applications is by

using the machine's speed, also referred to as its RPM. For purposes of rotor

balancing, only the synchronous vibration components are used [1]. The reason

for this is that the application of balancing is based on the assumption that the

vibrating system overall is linear. This means that only the forcing frequency

(which occurs once per revolution) vibration amplitude and phase angle are

accommodated in the balancing procedures [1]. In general, synchronous band­

pass filtering increases the accuracy of rotor balancing which is an important

procedure in the field of rotating machinery.

Figure 2.4 is an amplitude-vs-frequency representation of a bandpass filter. The

frequencies f 1 and f 2 are the cut-off frequencies of the filter, and fo is the centre

frequency. The cutoff frequencies are those at which the output signal power

falls to half of its level at f 0 . The difference between f 1 and f 2 is referred to as

the bandwidth of the filter. Finally, the range of frequencies between f 1 and f 2

is referred to as the filter passband.

• 	 Notch filters operate in a such a way opposite to band-pass filters. Instead of

passing the signal content within a specified range, the content outside that

range is passed and that within it is removed. One interesting application

13 2. 	Vibration Analysis

100%

50% -----L-----­ ----­
1
I

0

Output

signal

power
 f.

Frequency

Figure 2.4: Representation of a bandpass filter.

of notch filters in rotating machinery is with magnetic bearings. Since the

operation of magnetic bearings is based on displacement feedback control, a

notch filter us used to filter out the bearing force components occurring once

per revolution, so that they are not transmitted to the non-rotating structure of

the machine, while the bearings continue to provide static load support capacity

and damping [1].

• 	 Tracking filters are any of the above filters with the added feature that the

cutoff frequency (or frequencies in the case of the band-pass and notch filters),

is made to track a specified signal component. In rotor vibration analysis, the

main application of tracking filters is when using a band-pass filter and tracking

its centre frequency. As the machine is slowly brought up to its operating speed

or brought down to shutoff, its RPM is changing and is therefore tracked and

used as the filter's centre frequency.

Based on the previous discussion, it is clear that the most effective filter in terms

of rotating machinery signal processing is the band-pass filter. The next section

14 2. Vibration Analysis

discusses a specific type of band-pass filter, namely the Butterworth filter, which is

used as part of this thesis work.

2.3.2 The Butterworth Bandpass Filter

The most commonly used method for the design of IIR1 digital filters is the bilinear

transformation of the classical analog filters [10], such as Chebyshev Type I and Type

II, the Bessel filter and the Butterworth filter. This section will discuss the design of

a digital IIR Butterworth filter.

Introduced by Butterworth (1930), the Butterworth filter is one of the earliest

systematic analog filter design methods. It is also one of the most widely used due

to its maximally fiat property. The main feature of the Butterworth filter is that its

frequency response is maximally fiat in the passband, and rolls off towards zero in the

stopband. This allows frequencies to be passed without distortion, or causes them to

be removed completely. Figure 2.5 (taken from [12]) displays the frequency response

of a number of Butterworth filters with orders from 0 to 10. It can be seen that as

the order N increases, the filter approaches an ideal low pass filter.

When designing a Butterworth bandpass filter, two quantities have to be deter­

mined. First, the filter's order, and second its cutoff frequencies (based on its centre

frequency and bandwidth).

First, since the current vibration analysis tool, that this thesis work is an extension

for, uses a 4th order Butterworth filter, it was decided to use the same order. Higher

order filters would provide a "cleaner" filtering, however, they require additional

computations in order to calculate their coefficients. Since such an application is

performed real-time, and speed is a major factor, there is a tradeoff when selecting

the order of the filter. However, there exists a mathematical method for determining

the minimum required order. Let the filter's passband be between Wp (frequencies

greater than this are passed) and W 8 (frequencies less than this are stopped). Also,

1A filter with the property of Infinite Impulse Response. This means that the filter has an impulse
response function which is non-zero over an infinite length of time, as opposed to the Finite Impulse
Response filters whose impulse response is on a fixed duration.

15

0.8

0.2

0

2. Vibration Analysis

Frequency response

GJ
~0.6
c
5r
-

::E0.4

0 0.2 0.4 0.6 0.8 1

Figure 2.5: Frequency response of Butterworth filters of varying order.

let AP be the permitted magnitude deviation within the passband, and As be the

minimum attenuation relative to the passband peak response in the stopband. Both

AP and As are measured in dB. Then, the minimum Butterworth filter order to meet

those specifications is given by (2.1).

log[(1oAs/10 _ 1)/(1oAp/10 _ 1)]1/2
(2.1)

N = L log(Ws/wp) J
Second, the centre frequency of the filter is to be determined. Section 2.4 explains

exactly how this is done.

Once the order (N) and centre frequency (we) of the Butterworth bandpass filter

are determined, the filter can be designed.

The general magnitude-squared frequency response for a transfer function with

finite poles and all zeros at infinity is given as follows:

IH. 12 K2 (2.2)JW = "'\'N 2k
L...Jk=O akw

The coefficients K, ak are to be determined. (2.2) can be expressed as follows:

H. 12 K2 1 ()
I JW = - X "'\'N (3 2k,

ao L...Jk=O kw
2.3

16 2. Vibration Analysis

where f3k = ak/a 0. Performing long division and expansion as described in Chap­

ter 3 of [3], the following equation is derived:

H. 12 K2 1
I (2.4)

JW = ao x 1 + {3Nw2k '

Finally, letting K 2 ja0 be unity and f3N be 1/w~N, the Butterworth response is

defined as follows:
. 12 1 (2.5)IHJW = 1 + (w/wc)2N

From 2.5 the Laplace Transform can be calculated as follows:

1
Y(s) = H(s)H(-s) = (/.)2N (2.6)

1 + S JWc

Next, the poles of 2.6 are found by setting (sk/jwc) 2N = -1 and solving for the

values of sk. For a 4th order Butterworth filter normalized for We= 1, the 4 poles of

H(s) are: e±i57r/B , e±i77r/8 . Figure 2.6 shows a plot of the poles of H(s)H(-s). Note

that the poles are equally spaced on the unit circle, and those corresponding to H (s)

appear on the left half of the s-plane.

s plano

' I

' I

~ ~
\ ,I

' , ,'~-- --~'

Figure 2.6: Poles of a 4th order Butterworth filter.

Finally, the transfer function H (s) can be written as:

1
H(s)- ------------- (2.7)

- (s2 + 0.7653669s + 1)(s2 + 1.847759s + 1)

17 2. Vibration Analysis

Or equivalently,

1

H(s)- ------------- ­ (2.8)

- s4 + 2.613126s3 + 3.414213s2 + 2.613126s + 1

The denominator of 2.8 is the fourth-order Butterworth polynomial. Comparing

it to H (s) = 'L~~ aisi the a coefficients of the denominator can be determined. The

numerator coefficients are all zeros except for b0 = 1.

Using the a and b coefficients determined above, a recursive IIR filter can be

implemented as follows:

L-l M-1

y(n) = L x(n- m)b(m) + L y(n- m)a(m) (2.9)
m=O m=l

Finally, the Butterworth filter is updated whenever the centre frequency or band­

width change. Every time such an update is requested, the coefficients of the filter

are recalculated.

2.4 Fundamental Frequency Estimation

Fundamental Frequency estimation is a popular topic in many fields of research. The

need for detecting the fundamental frequency in vibration signal monitoring, is in

the calculation of the rotating machine's RPM, as well as in determining the centre

frequency for the utilized bandpass filter. Many techniques exist for estimating the

fundamental frequency of a signal, but not all perform well when there exists noise in

the signal. In [6], various methods are suggested for pitch detection (which is the same

as fundamental frequency detection), both in the Time-Domain and the Frequency­

Domain. Since in this thesis work, the FFT is calculated in order to perform the FFT

analysis as described in 2.6, in the interest of speed, the calculated FFT can be used

to estimate the fundamental frequency.

The FFT is an implementation of the DFT (Discrete Fourier Transform) which

is one of the two most common and powerful procedures encountered in the field of

digital signal processing (Digital filtering is the other) [9]. Let fs be the sampling

18 2. 	Vibration Analysis

frequency that the data is sampled at, and N be the number of samples that go

through the DFT. Then, the DFT equation is given by:

N-1

X(m) = L x(n)e-j27rnm/N 	 (2.10)
n=O

Or in rectangular form:

N-1

X(m) = L x(n)[cos(21rnmjN)- jsin(21rnmjN)] (2.11)

This shows that each DFT output term is the sum of the term-by-term products

of an input time-domain sequence with sequences representing a sine and a cosine

wave. The magnitude of the DFT results is directly proportional to N, and the

DFT's frequency resolution is fs/N. Note that as N increases, the DFT resolution

becomes smaller, but the DFT evaluation becomes more expensive. Figure 2.7 which

is taken from [9] is an example of a DFT of a signal whose frequency is an integer

value equal to 3Hz.

The fundamental frequency that is being detected in the case of rotating machin­

ery, is the frequency with the highest magnitude component in X(m). However, due

to what is referred to as the DFT leakage problem, this is not the most accurate value.

The DFT leakage problem arises when the input signal's frequency is not exactly at a

DFT bin centre. This causes this frequency to leak into all of the other DFT output

bins (see Figure 2.8 which is taken from [9]).

One solution to this problem is by performing a parabolic interpolation around

the frequency with the highest magnitude. The following outlines the procedure for

doing this:

1. 	 The DFT is computed on theN samples.

2. 	 The frequency with the highest magnitude in the DFT is determined. Let this

frequency be the ith sample.

3. 	 A parabolic interpolation on three points (i- 1, i, i + 1) is performed to obtain

an equation of a parabola y(x) = ax2+ bx +c. The fundamental frequency has

19 2. Vibration Analysis

(a)

m =4 analysis frequency

/

OFT output magnitude35

30

25

(b) ~_.l.._.......­
0 2 4 6 8 10 12 14 16 18 2() 22 24 26 28 30 ~

Figure 2. 7: DFT on 64 samples: (a) the input signal with frequency equal to 3Hz.
(b) DFT output magnitude.

(a)

30 OFT output magnitude

25 •
20

15 : ~

(b) 10 1 !
51··-~~~ i ~ I i ! • •
0 I 1[:1,I I ••••••I I I I ' ,_,_.,_,_,_,_,_.,_.,..,_.,_.,_.,_.,_.,_.,_,_.,I I I

o 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30 m
(Froq)

Figure 2.8: DFT on 64 samples: (a) the input signal with frequency equal to 3.4Hz.
(b) DFT output magnitude.

20 2. 	Vibration Analysis

the highest magnitude, meaning it appears at the peak of the parabola where

the slope is zero. Therefore, a better estimation of the fundamental frequency

is computed by solving for the point where 2ax + b = 0, where a and b are

defined in the parabola's equation.

4. 	 The result obtained from step (3) is multipled by the DFT frequency resolution

to obtain the final estimate of the fundamental frequency.

2.5 G Force, RPM, and Stroke Calculations

Other than filtering, signal conditioning approaches include integration to calculate

the velocity and displacement from the measured acceleration. The following sub­

sections will explain how each of the g force (acceleration), RPM (velocity) and the

stroke (displacement) are calculated. Please refer to Section 2.2 for the definition of

each of these quantities.

2.5.1 (j ~orce

The goal here is to calculate the average acceleration for each axis based on a number

of sensor readings for that axis. The procedure for doing this is by:

1. 	 Finding the minimum (Min) and maximum (Max) acceleration values for each

set of readings.

2. 	 Computing the average g for that axis, which is equal to (Max+ Min)/2

The Main g force is computed as well, giving the machine's main acceleration based

on the two axis determining its main motion. For example, if the main motion is

determined by the X andY axis, then the Main g Force is computed as follows:

Main g Force= max(Jx2 + y2Vx EX, y E Y) (2.12)

21 2. Vibration Analysis

2.5.2 RPM

The machine's RPM can be calculated from the FFT results. As described in section

2.4, performing an interpolation on the FFT is done to determine the fundamen­

tal frequency of the machine. The RPM is then calculated from the fundamental

frequency fo as follows:

RPM(revolutions/minute) = f 0 (revolutionsjsec) x 60(secfminute) (2.13)

2.5.3 Stroke

The stroke is the displacement of the machine. Since the machine can move in three

axes, the stroke can be computed for each of these axis as follows:

X y Z)S k () = (X, Y, Z)Average G Force x 1000 ((2.14)' ' tro e mm 2 x (RPM/60)2

Similarly, the machine's main stroke can be computed from the Main g Force (see

section 2.5.1) as follows:

. S k () _ Main G Force x 1000
Mazn tro e mm - 2 x (RPM/60) 2

(2.15)

2.6 Frequency Analysis

Frequency analysis is done through two methods; FFT (Fast Fourier Transform) and

FWT (Fast Wavelet Transform) which are both discussed in this section. Founded

by the mathematician Joseph Fourier in the early 1800s, the Fourier Transform's idea

is that a function (e.g a time domain based signal in the case of vibration analy­

sis) can be constructed from a summation of sinusoidal functions with a continuous

distribution of frequencies from zero to a suitable cutoff frequency. Based on that,

transforming a signal into the frequency domain will identify all the components that

contribute in creating that signal. This in turn helps identify sources of noise and/or

frequencies that are caused by any damage in the vibrating object. In additon to the

Fourier transform, there is a simple, but more restrictive version called the Fourier

22 2. Vibration Analysis

series. The Fourier series method is mostly used for periodic repeating signals, and

works by summing sinusiodal ~~ only at a discrete set of frequencies,

which are integer multiples of a specified base frequency (27r/t, where t is the du­

ration of the signal's period). The problem with the Fourier series in the case of

machinery vibration, is that the frequencies are often not all integer multiples of a

single frequency, this is why the Fourier transform proves to be more effective.

2.6.1 Fast Fourier Transform

The FFT algorithm was developed in the mid 1960s as an effective means for quickly

mimicking the frequently changed radar signal spectrum of enemy ground-based an­

tiaircraft missile targeting systems, so that multiple decoy signals could not be dis­

tinguished from authentic reflections [1]. Since then, the FFT algorithm has gained

huge interest in the signal analysis field in general, and in vibration signal analysis in

particular. The importance of the FFT algorithm lies in providing a way to transform

time-varying signals from the time domain into the frequency domain on the spot.

This provides a very useful method for analyzing the signal, since when plotted, the

signal's frequency components are displayed. Prior to the development of the FFT

algorithm, the primary method for displaying the vibrating signals was in the time

domain using an oscilloscope. Other methods proved to be impractical especially

since they required experience in tuning and adjusting the bandwidth filters in order

to operate successfully.

Figure 2.9 depicts an example of an FFT spectrum of a rotating machine's vibra­

tion signal. The frequencies appear on the x axis, and their amplitudes on the y axis.

It is worth noting that the plots have been scaled so that all the y values are ratios

of the maximum y value.

In the example depicted by Figure 2.9, the frequency component with the highest

amplitude in the X and Y directions is approximately 15Hz. This normally would be

the machine's running frequency. Other high frequency, low amplitude components

appear as a sign of noise (particularly on the Z axis which is perpendicular to the

machine's main movement). This noise can be caused by the machine itself (e.g a

23 2. Vibration Analysis

XFFT
i
I

i: ~.II .. liiii..J..L~I

l 	 o ro ... 1m Hil _ :m_ 2_5:.1 _ ~ am 4XI 45:1 !ill

. YFFT

10.5

.· 	

!

'
ll,]Jil

' ~ I!.-­~~-"'·!o.o
:;n0 9l 100 tm 2f[l :1.0 am 4ll 4&1 !D)

ZFFT i
~'" i

I

I

I

:o.s II I I

~dJJ.u i L.L 11.1 I.J...r L

o ro 100 100. a.

I 1 I I. 1
,~. f,j, ~;lliiilr liT[if IL -Ill liTH

... 200 3ll 3m 4:11. <1m Ul

i

.I
I

~ -·-----~--~~-~-

Figure 2.9: FFT plots for the X,Y and Z axes of a vibrating machine.

damaged component) or from the surrounding environment. This example demon­

strates the power of the FFT algorithm in such an application in that it provides

information that is very helpful in troubleshooting the rotating device.

Since its development, the FFT algorithm has introduced many new ideas in

vibration analysis. One important aspect the FFT algorithm has introduced is the

ability to diagnose vibration problems. Once FFT spectrums have been produced

for various situations where a problem has occurred (e.g by a physical fault in the

machine), future spectrums can be compared against them aiding in the diagnosis of

the problem.

2.6.2 Fast Wavelet Transform

Wavelet Transforms are a powerful extension of the Fourier Transform [1]. Just

like the FFT is a fast numerical computation of the Fourier Transforms, there ex­

ists a similar method for the Wavelet Transforms; the FWT (Fast Wavelet Trans­

24 2. Vibration Analysis

form). The Wavelet Transform provides capabilites of isolating signal discontinuities

with high resolution and detailed frequency analysis over long time windows yielding

wavelets useful for feature detection, signal noise-removal, and data compression[!].

Currently, marketed machinery monitoring systems do not typically utilize wavelet

transforms, but it is believed that the capabilities of next-generation machinery mon­

itoring systems will be considerably advanced by their use, once wavelets and their

advantages (mainly in vibration based trouble-shooting) are familiar to machinery

vibration engineers[!]. Therefore, wavelet transforms are not a part of this thesis

work, but are left as suggested future work.

2.7 Orbit Analysis

An Orbit is the two-dimensional depiction of the machine's movement. Orbits are

in fact E?Jtctiose- of the phase plots on to the XY, XZ, and YZ planes. Hence, a

machine with three degrees of freedom (in the X,Y, and Z directions) will produce

three different orbits. Once the data is acquired, two types of analysis related to the

orbits can be performed.

First, by plotting the data, visual analysis can be performed on the machine's

movement. When using a filter (as described in Section 5 of this chapter), plotting

the orbits of the filtered data as well as the orbits of the unfiltered data helps analyse

the filter's performance, which in turn aids in adjusting the filter's parameters (e.g

it's bandwidth and centre frequency) in order to reach a point where it is performing

as required.

Figure 2.10 displays an orbit produced by the same rotating machine producing

the FFTs in Figure 2.9. Part a displays the orbit based on unfiltered data, whereas

part b displays the orbit based on the filtered data after passing through a 4th order

Butterworth bandpass filter.

In addition to visually analysing the utilized filter's performance, orbit analysis

can help in diagnosing mechanical problems in the machine. Figure 2.11 illustrates

an example of a rotating machine, where a progressively worsening influence on the

25 2. Vibration Analysis

(a) (b)

Figure 2.10: Filtered and unfiltered orbits of a rotating machine.

machine causes a progressively increasing static radial force on the rotor (and therefore

on the bearings). Part a is the case where there is a normal radial load, the machine's

main frequency is at N and its motion is synchronous and linear between the various

parts of the machine. Part b is the same as part a but with a moderate increase in

the radial load. Part c shows the case where there is a substantial radial load, the

motion becomes nonlinear and a frequency component appears at 2N. Finally, part

d is where there is a very high radial load, the machine's motion is nonlinear, and

there is a high frequency component at 2N.

It is worth mentioning here that these orbits represent what are referred to as

Lissajous plots. Lissajous plots are generated when graphing a system of parametric

equations, which is exactly what is being done here. Each of the axis generates its own

signal which is sinusoidal (please see section 2.8). Therefore, what is being plotted

are two functions versus each-other, where their values are in the form:

x = Asin(at + 8), y = Bsin(bt) (2.16)

The appearance of the curves is highly senstive to the ratio ajb. When a = b, the

resulting plot is an ellipse which is the normal case in vibrating machinery. As the

26 2. Vibration Analysis

NX ro or
'Y

Frequency Frequency

(a) (b)

NX XNc?Jor or
y f2N

(c) (d)

Figure 2.11: Filtered orbits and FFT for a rotating machine with increasing misalign­
ments [1].

ratio increases, curves as in Figure 2.11 are generated, indicating mechanical faults

in the machinery.

Second, mathematical analysis is performed by calculating the phase angle of the

orbit (in rotating machines, the orbits are usually elliptical) as well as the eccentricity

of the orbit. Sections 8 and 9 in this chapter explain more on how this is done.

2.8 Waveform Analysis

Another useful tool in vibration analysis, is plotting and visually analysing the wave­

forms. A waveform is the signal produced by plotting the data in a certain axis against

time. In rotating machinery, the waveforms in general appear to be sinusoidal. Figure

2.12 depicts a waveform generated by a rotating machine.

It is clear from Figure 2.12 that the X and Y sinusoids are symmetric (like a

cosine and a sine wave), in a sense that when plotting the Y values versus the X

values (producing the orbits from the previous section) an elliptical plot is produced,

describing the machine's main movement. Therefore, comparing the X and the Y

27 2. Vibration Analysis

X Waveform

~,~im

0.0 - 0.2 0.5 0.8 1.0

YWaveform­

10.0

!tO

0.0

·5.0

~. 1 I I I I I I I I

0.0 0.2 0.~ 0.8 1.0

Figure 2.12: Waveforms generated by a vibrating machine in the X,Y and Z axes.

waveforms allows for a method of detecting problems in the machine.

Waveforms can help detect faults in the rotating machine. Although the wave­

forms will still appear to be sinusoidal even with noise, faults can be detected when

seeing non-smooth peaks in the sinusoid. After discussing such situations with ex­

perienced engineers in the vibration analysis filed, it was determined that such ir­

regularities appear usually as an "M" or a "W" shape at the peaks, indicating an

additional frequency caused by noise. This noise will usually appear as a sign of a

mechanical failure, such as a loose bolt. Figure 2.13, which is produced from the same

rotating machine that the FFTs in Figure 2.9 and the orbits in Figure 2.10 are based

on, depicts such a situation.

28 2. Vibration Analysis

~ X Wavetorm
,11

i~
0.0 ---­ 0.2 0.5 0.8 1.0

·

:\; Y Waveform

: ~~. ~
00 0.2 0.5 0.8 1.0

; ·
l!l Z Waveform

[Hil~rfEH
I 0.0 0.2 0.5 0.8 1.0

~

Figure 2.13: Waveforms generated by a vibrating machine with noise.

2.9 Ellipse Fitting

The motivation for performing ellipse fitting in our Vibration Analysis Tool is in

providing a method to calculate the phase angles and the eccentricities of the orbits

formed by the vibration of the rotating, especially since the orbits are expected to be

elliptical. When more than one sensor is used to acquire data on different locations

on the machine, it is very helpful to know the phase angles and the eccentricities of

the ellipses created by each sensor's readings. It might be hard to distinguish visually

between the various ellipses when plotting the orbits , so those two numerical values

help in analysing the machine 's vibration. This section will explain the method used

to perform ellipse fitting, and how the phase angle and eccentricity quantities are

determined.

29 2. Vibration Analysis

2.9.1 Ellipse Fitting Method

Ellipse fitting on the acquired data is conducted by using the classical linear least

squares method. An ellipse can be described by the conic equation:

ax2 + bxy + cy2 + dx + ey + f = 0 (2.17)

Then, as explained in [5], the constants a, b, c, d, e and f are solved for using the

least squares method on the given points. The minimum number of points required

to fit an ellipse is five points [11], however, in order to get a more accurate result,

more points are used in the Vibration Analysis Tool produced. Finally, the ellipse

parameters (major and minor axes as well as distance between the ellipse's foci) are

computed using the determined constants, and are thereafter used in computing the

phase angle and the eccentricity.

2.9.2 Phase Angle

The ellipse's phase angle is the angle between the x-axis and the major axis of the

ellipse. Therefore, An ellipse with its major axis lying on the x-axis has an angle

equal to 0. Knowing the length of the semimajor and semiminor axes a,b respectively

and the distance between the foci (2c) (please refer to Figure 2.14, the phase angle

(B), also referred to as the angle of rotation can be computed as follows:

1 c-a
() = -cot-1

(--) (2.18)
2 2b

2.9.3 Eccentricity

The eccentricity (c) of an ellipse is a measure of the shape of the ellipse. Mathemati­

cally, the eccentricity is the ratio of the distance between the centre of the ellipse and

one of the foci (c), to the length of the ellipse's semimajor axis (a), or:

c = cja (2.19)

30 2. Vibration Analysis

14-------~la ~

'IM'fJDF t:LWS

Figure 2.14: Ellipse example showing major and minor axes.

When c = 0, the resulting shape is a circle (since the foci are at the centre, so

c = 0), and when c = 1 the shape becomes a parabola. Therefore, for an ellipse, the

eccentricity value is expected to be 0 ~ c < 1. Please refer to Figure 2.15.

e=0.5

Figure 2.15: Examples of orbital trajectories with various eccentricities.

Chapter 3

Data Acquisition

The first step in vibration data analysis is acquiring the data. This chapter details

the hardware used in performing this task. The software running on the chip was

developed as part of a different thesis work and is therefore not discussed here.

3.1 Overview

There is a considerable variety of methods used to acquire and log vibrations. The

methods and corresponding products available to accomplish data acquisition tasks

constitute an ever changing field that parallels the rapid advancements in PCs and

workstations [1]. This chapter provides a description of one such method used specif­

ically for the vibration analysis tool developed as part of this thesis work.

The most common monitored vibration signals are sound, displacement, velocity,

and acceleration. The vibration signals monitored as part of the developed Vibration

Analysis Tool are accelerations in the X,Y and Z axes. The acquisition of these signals

is done through a sensor called an accelerometer, and from its name, measures the

change in acceleration. The signals are then passed through an Analog to Digital

(A/D) converter located on a PIC micro-controller, and finally the digitized data

is transferred through a Bluetooth device to the computer on which the Vibration

Analysis Tool is running.

31

32 3. Data Acquisition

Figure 3.1 displays the sequence of electronics that the data travels through. It

gets acquired by the sensors mounted on the vibrating machine, then transferred to

the portable vibration analyser which in our case is a PDA, and finally downloaded to

a PC where in depth analysis can be performed and data can be stored permanently.

One major feature that the acquisition method described here adds is in the use of

Bluetooth as the communication method rather than a wired serial connection. This

increases the safety of the users by eliminating the wires attaching the analyser (which

the user holds) to the vibrating machine.

Pickup
A.B.C,D

B c Machine pointll
where vertical.
horizontal and
axial vibration
readiugs are

Figure 3.1: Portable machinery vibration analyser and data logger.

This chapter discusses the hardware used for the data acquisition, as well as

describe the method used to calibrate the sensor readings.

3.2 Hardware Overview

A prototype of the hardware used as part of this thesis work is displayed in

Figure 3.2. The three main parts of the hardware are: the PIC micro-controller shown

in Part A, the Bluetooth device shown in Part B, and the accelerometer shown in

Part C. The following three sections will detail each of these three units.

33 3. Data Acquisition

A

B c

Figure 3.2: Data Acquisition Hardware Prototype.

3.3 PIC

The PIC micro-controller acts as a micro-computer on the acquisition device, receiving

data from the sensor, passing it through an A/D convertor and finally sending it off to

the Bluetooth device. Other vital operations occur on the PIC, but are not discussed

as part of this thesis work. The main advantages of the PIC devices are in that

they offer high computational performance at an economical price, as well as high­

endurance. Additionally, for power sensitive applications, such as the data acquisition

application, the PIC devices work best since they require low power to operate.

The exact PIC used as part of this thesis work is the PIC18F2423 which features

a 12 bit Analog to Digital convertor, which allows for the coversion of data with low

error (please see Chapter 8 for an in depth error analysis). Moreover, it features a

serial communication capability which allows for using it with a Bluetooth device.

Finally, it has a small size which helps in decreasing the total size of the acquiring

device.

34 3. Data Acquisition

3.4 Accelerometer

An accelerometer (or an acceleration sensor), is a sensor used for measuring the

acceleration of the object it is attached to. Accelerometers come in a variety of types,

mostly differing by the number of axes they can obtain measurements in, and by

the range of g values that they can pick up. An accelerometer is composed of an

internal mass compressed in contact with a relatively stiff force-measuring load cell

(this is usually a piezoelectric crystal) by a relatively soft preload spring. In response

to dynamic loading, those piezoelectric load cells produce a self-generated electrical

output at a very high impedance, which gets converted internally through electronics

to a low impedance output suitable for data acquisition systems [1].

The particular accelerometer used as part of this thesis work is the MMA 7261QT

from Freescale Semiconductor. It is a low cost accelerometer that features signal

conditioning, a 1-pole low pass filter, temperature compensation and g-Select which

allows for the selection among four sensitivities (2.5g, 3.3g, 6.7g and lOg) [4]. Addi­

tionally, this sensor operates at a low power of 3.3V and can obtain measurements

in three different axes. This sensor also features a Sleep Mode, making it ideal for

handheld, battery operated devices like those used for the data acquisition. When

the Sleep Mode is active, the device outputs are turned off, providing a significant re­

duction in the operating current. Finally, the sensor can operate under temperatures

ranging between -40 and 105 degrees Celsius making it ideal for use in cold climates

as well as hot ones.

3.5 Bluetooth Device

Bluetooth is a wireless technology that allows for the transferring of data between

devices. Two main devices are involved: the Bluetooth device that sends the data,

and the device that receives the data. Compared to other wireless communication

technologies (such as Wi-Fi (IEEE 802.11)), the Bluetooth technology was found

to work best for the data acquisition part of the Vibration Analysis Tool for many

35 3. Data Acquisition

reasons. First, it can operate over a distance of 10 meters or 100 meters depending

on the class of Bluetooth devices used. Secondly, it is able to penetrate solid objects

and it is omni-directional and does not require line-of-sight positioning of connected

devices[2]. This is fairly important in such an application, since often times the

vibrating machines are at locations that are hard to come close to, or are blocked by

some objects depending on the site they are located at. Finally, Bluetooth technology

is much cheaper compared to other wireless technologies, where the cost of Bluetooth

chips is under 3 USD [2].

The Bluetooth device that was utilized as part of the hardware component in

this thesis work is the Bluetooth WRL-08461. One feature of this device is that its

Bluetooth stack is completely encapsulated. The end user just sees serial characters

being transmitted back and forth. Pressing the 'A' character from a terminal program

on the computer will cause an 'A' to be pushed out the TX pin of the Bluetooth

module [13]. Also, this device operates on a low power or 3.3V, which is important

especially since some of the machines will be monitored over a long period of time.

Finally, these devices have been pre-programmed with a unique MAC address and unit

name of 'SparkFun-BT' allowing for easy detection of the devices by the computer

used for acquisition, as well as a U ART interface of adjustable to a baud rate of

115,200 bps, meeting the data sampling requirement on the system.

3.6 Calibration

Data received from the sensor unit is scaled to the range of values available on the A/D

convertor. The A/D convertor used has a 12 bit range, meaning values are in the range

of 0 - 212 or equivalently 0 - 4096. However, data processed by the vibration analysis

tool needs to be within the range of the selected g force.I}js therefore important to

calibrate each of the sensor units in order to obtain calibration parameters that are

thereafter used to perform a scaling on the raw values so that they appear within

the selected g-range. The following describes the method that the calibration is done

through:

36 3. 	Data Acquisition

1. 	 Three measurements at predefined g values first need to be taken for each of

the three axes. The simplest measurements that can be acquired are at -1g,

Og, and 1g. To ensure the most accurate measurements possible, the sensor

unit must be sitting on a surface completely level. It is important to note that

by merely placing the device on the surface, one cannot guarantee that is it

not experiencing a slight g force in the x and y directions. This is due to the

way the device is packaged or any kinds of shifts from within its structure.

One manual method to perform measurements that will return a reliable and

accurate result is by rotating the device from +1g to -1g for each of the three

axes [15]. The maximum value recorded during this rotation will correspond to

a +1g force and the minimum value will correspond to a -1g force. Afterwards,

assuming that the sensitivity is symmetric from zero to positive and from zero

to negative, the sensitivity of the device can be calculated by dividing by 2. Now

that the sensitivity is known, the Og offset value can be calculated by adding the

sensitivity to the minimum value or subtracting it from the maximum value.

This value should be very close to the Og offset value obtained by placing the

device level. The following table shows the measurements as read from one of

the sensor units for each of the available granges in the 3 different orientations.

Orientation 2.5 g 3.3 g 6.7 g 10.0 g

X (-1 g) 1503 1635 1835 1903
X (0 g) 2114 2090 2063 2055
X (1 g) 2696 2533 2284 2203
y (-1 g) 1414 1569 1802 1877
y (0 g) 2028 2033 2034 2033
y (1 g) 2632 2483 2258 2183
z (-1 g) 1290 1473 1757 1850
z (0 g) 1970 1978 2008 2018
z (1 g) 2665 2506 2272 2195

Table 3.1: Calibration measurements using gravity

37 3. 	Data Acquisition

2. 	 After the calibration data has been acquired, the next step is to create the

scaling functions. The goal here is to compute linear functions for each of

the three axes measured for each one of the g-ranges. This is performed by

applying a linear least squares fitting method on the three points measured

above to obtain the best fit line's equation, which is then used as the scaling

function. For instance, if this to be done for the x axis under 2.5 g mode, then

given the three points (1503, -1),(2114, 0),(2696, 1) from above, the goal is to

obtain the best fit line represented by f(x) =ax+ b. Performing a linear least

square calculation leads to the best fit line represented by:

f(x) = 0.001676x- 3.53,

with a standard deviation of 0.0198, as displayed in Figure 3.3.

1~------------------------1-~

0.5

0

-0.5

-lT-.-~--~--~--~--~--~~
1400 1600 1800 2000 2200 2400 26002800

Figure 3.3: Best fit line for x axis measurements under 2.5 g mode.

Finally, it is important to note that the suggested method for calibration does

contain errors that will be discussed in Chapter 8. A more precise measurement

approach can be employed, such as building a testing rig that can operate on the 4

predefined g sensitivities. The sensors can then be calibrated on the testing rig in

order to obtain the readings required for all three axes. One more point that should

http:0.001676x-3.53

38 3. Data Acquisition

be noted is the effect of the temperature on the readings. Chapter 8 will explain

that more, but it is important that the sensors be calibrated at various temperature

ranges. The temperature ranges can be defined by experiment, and the temperature

sensor built into each unit can be used to obtain the surrounding temperature during

the calibration.

Chapter 4

Requirements Specification

This chapter explains the requirements on the vibration analysis tool that is designed

and implemented as part of this thesis work. The requirements represent a contract

between the developer and the client, and are used throughout the software life cycle.

4.1 Overview

The vibration analysis tool that is designed and implemented as part of this thesis

work has many functions. Its main functions are in connecting with the sensors,

reading the acquired values, performing signal conditioning on the data, plotting the

required graphs, logging the data and generating reports. In addition to reading from

the sensors, it allows for the playback of the data that has been perviously logged

into files. The tool is to have two different interfaces, with the same functionality, to

run on two devices with different display areas. The first is a PDA which has a small

display area, and the other is a PC with a larger display area. Therefore, in terms of

the interface, two designs have to be made.

The requirements document is an essential document acting as a contract between

the developer and the client. Figure 4.1 is an illustration of the Waterfall Model used

frequently in software engineering. The design and implementation of the Vibration

Analysis Tool produced as part of this thesis work is based on this model. As can be

39

40 4. Requirements Specification

seen, the requirements stage is a critical stage in the life cycle of the software, and

is referred to throughout all its successive stages in order to verify the satisfaction of

the requirements. This chapter discusses the application requirements.

Figure 4.1: A waterfall process with feedback.

4.1.1 User Classes and Characteristics

Various users will have access to the developed Vibration Analysis Tool. These users

differ based on their frequency of use of the tool, the subset of functions they access,

and their technical expertise. Mainly, the users will either be technicians acquiring

data on site, or expert engineers who would like to look at the acquired data more in

depth and produce the reports containing recommendations to the client. Based on

that, the tool will have to be designed in such a way that allows the technicians to

acquire data easily, at the same time allowing expert engineers to access more detailed

functions. Such detailed functions include adjusting the filter parameters, changing

the predefined acceptance levels used in the reports, adding additional bearings with

new diameters and producing the final reports after making certain expert decisions.

41 4. 	Requirements Specification

4.1.2 User Documentation

In addition to the Vibration Analysis Tool software, user documentation is provided.

This documentation is in the form of a user manual detailing the various functions

in the tool and how they are used. In addition, the user manual explains how the

various plots are to be read, and how the reports are to be generated and interpreted.

4.1.3 Assumptions

The following is a list of assumptions that the design of the Vibration Analysis Tool

is based on:

1. 	 The tool shall only connect to at most eight sensor units at a time.

2. 	 The sensor units must operate normally at any temperature between -40 and

50 degrees Celsius.

3. 	 The sensor units must operate normally under the circumstances expected at

sites where the analysis is performed.

4. 	 The sensor units must detect g forces anywhere between 0 g and 10 g with a

resolution of 0.01 g.

5. 	 The sensor units must have the capability to read the battery level on the unit

and send it to the computer with the vibration analysis tool.

6. 	 The sensor units must have the capability to read the temperature level sur­

rounding the unit and send it to the computer with the vibration analysis tool.

7. 	 The sensor units must allow for the changing of the g select upon receiving a

command from the computer with the vibration analysis tool.

8. 	 Data on the sensor unit is to be sampled at a rate of 1000Hz.

9. 	 The PDA interface is designed for a specific PDA.

42 4. 	Requirements Specification

4.2 Functional Requirements

An application's functional requirements are those describing its behaviour and are

most likely implemented as functions in the implementation stage. The following are

the functional requirements related to the Vibration Analysis Tool. The requirements

and have been separated into sections based on the feature they deal with.

4.2.1 Communication Requirements

The following are requirements pertaining to the communication with the sensor units.

1. 	 The application shall discover all available sensor units within the range of the

bluetooth device.

2. 	 The application shall connect to the selected devices.

3. 	 The application shall read each device's ID.

4. 	 The application shall read data coming from each of the sensor units.

5. 	 The application shall send the selected g value back to the sensor unit.

6. 	 The application shall read the battery level coming from the sensor unit.

7. 	 The application shall read the temperature level from coming from the sensor

unit.

4.2.2 Mode Requirements

The following are requirements related to the two modes that the application can be

in.

1. 	 The application shall allow the user to choose between two different modes: File

Simulation and Data Acquisition.

43 4. 	Requirements Specification

2. 	 In the File Simulation mode, the application shall allow the user to a list of

files to play back data from.

3. 	 In the Data Acquisition mode, the application shall allow the user to choose

which devices to connect to from the available bluetooth devices.

4.2.3 Signal Processing Requirements

The following are requirements that deal with the signal processing part of the ap­

plication. They describe the type of calculations that need to be performed on the

acquired data before it is displayed.

1. 	 The application shall perform use the sensors' calibration information to cali­

brate the data so that it appears within the selected g range.

2. 	 The application shall pass the raw data through a DC filter prior to plotting it

in order to eliminate the effect of gravity on the sensor unit.

3. 	 The application shall apply a filter on the raw data in order to eliminate noise.

4. 	 The application shall perform an FFT on the data in order to determine the

fundamental frequency.

5. 	 The application shall perform an ellipse fitting on the data in order to determine

the phase and eccentricity of the machine's elliptical motion.

6. 	 The application shall perform a calculation to determine the machine's RPM.

7. 	 The application shall perform a calculation to determine the strokes in all three

axes as well as the main stroke.

8. 	 The application shall perform a calculation to determine the g force in all three

axes as well as the main g force.

44 4. 	Requirements Specification

4.2.4 Logging Requirements

The following are requirements describing how the data is logged on the machine,

and how it is thereafter read. The logging involves storing the raw data, as well as

logging the acquisition information, such as the customer, the machine number, etc.

1. 	 The application shall log the calibrated unfiltered data into a file.

2. 	 The application shall allow the user to determine when the logging should start

and when it should end.

3. 	 The application shall create a separate file each of the used sensor locations for

logging its data.

4. 	 The application shall log information related to the acquisition into a separate

file. This information is to include at least the following: Customer, machine

model, date and number of bearings on the machine.

5. 	 The application shall log information related to the sensor units used. This

information should include at least the following for each used sensor: Sensor

ID, location on machine, orientation (on the top or on the side of the machine),

battery level and temperature level.

6. 	 The application shall log the start and end times of the acquisition.

7. 	 The application shall log the g force level used throughout the acquisition.

4.2.5 Display Requirements

The following requirements apply to how the data is displayed on the screen. The

display of data can be in two forms: graphical and numerical.

1. 	 The application shall display plots of the machine's motion in the XY, XZ, and

YZ planes.

45 4. 	Requirements Specification

2. 	 The application shall allow for displaying the orbits based on both the filtered

and unfiltered data.

3. 	 The application shall display small views of the orbits of all the locations used

to perform the acquisition at the same time.

4. 	 The application shall display values related to all the locations used to perform

the acquisition at the same time.

5. 	 The application shall display plots representing the FFTs in all three axes for

each of the sensors. The frequencies displayed shall be of a minimum of 1OHz

and a maximum of the Nyquist frequency given by half the sampling rate.

6. 	 The application shall display plots of the signals (waveforms) in all three axes

for each of the sensors.

7. 	 The application shall display the machine's RPM computed from each of the

sensors.

8. 	 The application shall display the stroke in all three axes for each of the sensors,

as well as the average stroke.

9. 	 The application shall display the g force in all three axes for each of the sensors,

as well as the avergae g force.

10. 	 The application shall display the phase and eccentricity after performing the

ellipse fitting on each of the sensor locations.

11. 	The application shall display the information related to the acquisition. This

includes the customer, the machine model, the date, the start and end times,

and the number of bearings.

4.2.6 Graphical User Interface Requirements

The following are requirements pertaining to the Graphical User Interface, and de­

scribe the types of menus, controls and messages that are to be used.

46 4. 	Requirements Specification

1. 	 The application shall allow the user to choose the g force the machine is oper­

ating on.

2. 	 The application shall allow the user to pick a sensor to display its enlarged orbit

plot, FFT plots and waveform plots.

3. 	 The application shall allow for the pausing and resuming of the data display.

4. 	 The application shall allow for initiating and stopping the recording of the data.

5. 	 The application shall allow for the adjusting of the filter bandwidth.

6. 	 The application shall allow for the adjusting of the FFT frequency range.

7. 	 The application shall allow the user to change the orientation of the orbit plots

between the XY, XZ and YZ planes.

8. 	 The application shall allow the user to choose whether the enlarged orbit shall

display filtered or unfiltered data.

9. 	 The application shall allow for adjusting the centre frequency used for the filter.

10. 	 The application shall allow the user to choose the unit used to display the stroke

(mm or inches).

11. 	 The application shall allow the user to view generated reports directly from

within the application.

4.2.7 Reporting Requirements

The application must allow for the generation of three types of reports as required

by the client. The following is a description of these reports:

47 4. 	Requirements Specification

Single Point Report

Such a report is generated for each of the mounted sensors, providing in depth analysis

on each of the individual measuring points. An FFT plot, a waveform plot and an

orbit plot (with both filtered and unfiltered data) is generated along with a summary

of the numerical values for that specific location.

Orbit Summary Report

This report must contain orbit plots of all the mounted sensors, as well as their

numerical values. The orbits shall appear in their filtered state, allowing the user

to determine whether or not the machine is performing normally. The machine's

behaviour is deemed normal if the orbits have the same size, the left side of the

machine mirrors the right side, and the overall acceleration levels are within their

expected range.

Tuning Report

This report summarizes the vertical and the horizontal strokes and g forces for the

entire set of sensors mounted to the machine. It is mainly used to determine any

deviations between the measured data and the expected machine behaviour. The

results of the deviations are used to provide tuning recommendations to the client

based on physical principles that apply to any vibrating machine.

The following are requirements that relate to the reporting part of the application.

1. 	 The application shall allow for the creation and storage of a single point report

for each sensor location.

2. 	 The application shall allow for the creation and storage of an orbit summary

report summarizing the behaviour that all of the mounted sensor units acquired.

3. 	 The application shall allow for the creation and storage of a tuning report

detailing the machine's behaviour and providing recommendations for adjusting

48 4. 	Requirements Specification

the machine.

4. 	 The application shall allow for the adjustment of the values used to generate the

turning report before the report is actually generated. Such values include the

bearing diameter, the friction compensation, the inclination angle. and other

important parameters.

5. 	 In the tuning report, the application shall allow the user to manually enter

values for missing sensors based on their location and the readings from the

other sensors.

6. 	 The application shall allow for the viewing of the reports if they have already

been created, and the creation of reports otherwise.

7. 	 The application shall generate reports in the formats predetermined by the

client.

8. 	 The application shall include a header section on each of the reports with the

customer, machine, date and time information as well as the company logo.

4.3 Nonfunctional Requirements

An application's non-functional requirements are those not related directly to its be­

haviour, but are more concerned with its properties or characteristics. The following

are the non-functional requirements that have been found to be related to the Vibra­

tion Analysis Tool.

4.3.1 Performance Requirements

Performance requirements are most important in hard real-time systems, where failing

to meet a time requirement causes the entire system to fail. This is not exactly the

case in vibration analysis, since not meeting a deadline will not cause a system failure,

49 4. 	Requirements Specification

however, it may cause unreliable data. For this reason, the following requirements

are necessary:

1. 	 The application shall generate plots and display data read from the sensor at a

frequency defined by the user and not exceeding 1000Hz.

2. 	 The application shall log all data read from all sensors.

4.3.2 Platform Requirements

The following are requirements related to the operating system and devices that the

application will run on.

1. 	 The application shall operate on Linux (for the PDA application) and Windows

(for the PC application).

2. 	 The application shall run on both a PDA device selected by the client, as well

as a PC (laptop or desktop) with no less than a 12" display.

4.3.3 Safety Requirements

Since the vibration analysis tool is not a safety critical application, not many require­

ments exist in terms of safety. The following is a requirement on the connection with

the sensor units.

1. 	 The application shall connect to the sensor units via bluetooth. This will allow

for a wireless connection that increases the safety of the person acquiring the

data, since they will no longer be holding a device that is connected by a wire

to the vibrating machine.

4.3.4 Maintainability Requirements

The maintainability requirements focus on both the maintenance of the application

as well as the ability of adding features later on.

50 4. 	Requirements Specification

1. 	 The application shall be designed in a manner allowing for easy maintenance,

as well as in an easy way to add features in the future.

4.3.5 Reliability Requirements

Informally, a software is reliable if the user can depend on it [7]. The reliability in

the vibration analysis tool comes from the reliability of the data being read. The

following are requirements concerning the reliability of the application.

1. 	 The application shall read the data coming from the sensor in a reliable manner,

meaning that data shall not be dropped or misread.

2. 	 The application shall produce reliable plots as determined by the engineers at

the company.

3. 	 The application's signal processing calculations shall deliver reliable results as

determined by the engineers at the company.

4. 	 The reports produced by the application shall contain reliable results as deter­

mined by the engineers at the company.

4.3.6 Usability Requirements

A software system is usuable if its human users find it easy to use [7]. As discussed

earlier, more than one type of users may be using the application, and therefore, the

application should be usable for every type. The following are requirements on the

usability of the application.

1. 	 The application shall have a Graphical User Interface (GUI) and shall use con­

trols that allow the user to access its various functions.

2. 	 The application's interface shall be easy to use as determined by its various

types of users.

51 4. 	Requirements Specification

3. 	 The application shall allow for the display of text (on labels, button, etc.) in

any of the predefined languages.

4. 	 The application shall use fonts that are legible to an average user.

5. 	 The application shall use colours that convey meanings to the user while main­

taining the look of the application.

6. 	 The application shall use consistent colours, fonts and designs.

Chapter 5

Software Design

5.1 Overview

The step after the requirements specification of a system, is its design. Software

design is a fundamental step in the software development process as it acts as a

bridge between the requirements and the implementation of the system. The main

goal of software design is to decompose the system into parts, assign responsibilities

to each part, and ensure that the parts fit together to achieve the global goals of the

system [7]. This chapter discusses the software design of the vibration analysis tool.

It starts by explaining the method used for structuring the design, and thereafter

discusses the main system modules and how they interact.

5.2 Design Method

The first step that was taken in order to design the system was to determine the

system tasks. A flowchart was used in order to illustrate the flow of tasks in the

system and is depicted in Figure 5 .1.

The next step was to divide the system into modules (or components) keeping in

mind the software design principle of information hiding, where each module hides

internally information that can be kept secret from all the other modules. This

52

English
Vocabulary

lntema1ionalizatlon Translated
Vocabulary -.

UJmTWI!J§)er~ ________ ----------------­ ______ ---,

I

Raw Data

Data Aqcuisition

-------~ I I
I I

I 1 : .. fCalbratlon l : ! I
I
I
I!.._ __________ _

Turnng Report

Orbil Report

Sif9ePolnt

--------------------~
I
I
I
t--liii!I•In!t1ii@'l
I
I
I

I
I
I
I
I
I
I

I h¥""~··~"·----~~ I

Numencal
Values Dsplay

~ ----------- -2::;.,
Q ,Q --­ r

'•'"'•el#l•®••~flrmtSUiijjTil!JNJI

~
oq"
~
"'1
(1)

C.ll
1-'

u
Gl'
c+
Gl'
~

~
s·
c+
p-'
(1)

r:n
'-<r:n
c+
(1)

p

Note: Everything not contained In a dotted box Is part Of lhe Viewer
module. Tbe Sensor Manager modUle's responslbilllle ental uaing
other modules and therefore is not shown as a box In the

Ql

r:.n
0
~

~
"1
('t)

tj
('t)
00&q·
~

Ql
~

54 5. Software Design

technique ensures that the system is structured in such a way that allows for future

changes and therefore makes it more maintainable and easy to extend. If a change is

to occur in the method that data is logged for example, only the logger module (refer

to Section 5.3.4) would have to change its log function.

Additionally, since the software to be developed has a significant amount of user

interaction, one well-known software architecture to be used in this case is the model­

view-controller (MVC) architecture. MVC is composed of three components: the

model, which models an object in the "real world", the view, which displays the

model to the user, and the controller, which communicates with the user and controls

the other two components [7]. This type of architecture is beneficial in that it makes

multiple views possible for the same model, and changes can be made to the view

without affecting the model, and vice versa. Figure 5.2 depicts the MVC architecture.

Controller VIew
Onteracts with the user) (dlspiays model to the user)

Model

(stores data related to an object)

Figure 5.2: The model-view-controller architecture.

In the vibration analysis tool designed here, the model represents a location being

monitored on the vibrating machine. This model stores any information relevant to

that location such as its g forces in all three axes, the strokes calculated from the g

forces, the resulting ellipse phase, its filtered and unfiltered data and so on. The view

is basically the main frame of the application which acts as a listener for the model

and updates its components (the waveform plots, the orbit plots, the FFT plots and

the numerical values display) based on the model. As for the controller, often times in

such user interactive applications, it ends up being the same component as the view

55 5. Software Design

(Please refer to Figure 5.3). This is the case in the vibration analysis tool developed,

where the main frame of the application contains an options component which allows

the user to adjust specific settings such as those related to the filter (its bandwidth

and centre frequency) or select whether filtered or unfiltered data is to be displayed.

Other options include the selection of the grange, the orientation (Y vs. X, Y vs. Z,

X vs. Z) to be displayed on the orbit plots, the maximum frequency to be displayed

on the FFT plots, and the unit used to display the stroke values in.

View 1ControllerModel (displays model to the user).. ­(stores data related to an object) (Interacts with the user)

Figure 5.3: Alternate model-view-controller architecture.

The following section lists the main system modules and their responsibilities.

5.3 Main Modules

The following are the main system modules. Each of these modules encapsulates

some of the tasks shown in Figure 5.1. In the implementation phase, each of these

modules contains sub-modules (represented as classes).

5.3.1 Reader

The Reader module is responsible for reading data from the handlers. A handler

can be either a file (in the File Simulation mode) or a serial connection (in the Data

Acquisition mode). The left part of Figure 5.4 illustrates the main loop of the reader

module. As soon as the acquisition or simulation is started (on the event run), the

reader module starts reading data from the handlers and putting it in queues (one

for each handler) for the sensor managers (see Section 5.3.2) to pull data from later.

The Reader module stops reading on the stop event.

56 5. Software Design

Run
Run ~

Figure 5.4: Depiction of the main system loops.

57 5. Software Design

5.3.2 Sensor Manager

For each handler object created, a Sensor Manager module exists. The Sensor Man­

ager represents the view in the MVC architecture described in Section 5.1. Its main

responsibilities are in reading data from the queues, calibrating the data if being read

directly from the sensor, communicating with the Filter module in order to filter

the raw data, communicating with the FFT module in order to perform an FFT

computation on the raw data, and storing both filtered and unfiltered data for the

View module to access. Figure 5.4 displays in the middle the main loop of the Sensor

Manager module. Its run and stop events are synchronized with those of the Reader

and Viewer modules.

5.3.3 "ievver

The Viewer module acts as both the view and the controller in the MVC architecture.

As the view, and based on a timer that issues events, it updates the waveform, orbit

and FFT plots as well as the numerical values display and the options panel (e.g

the maximum value allowed for the bandwidth setting) with the most recent data

stored in the Sensor Manager modules. As the controller, it receives information

from the user when changing settings in the options panel. and updates the Sensor

Manager modules accordingly. Such information includes the bandwidth and the

centre frequency used for the filter. Figure 5.4 illustrates on the right the main loop

of the Viewer module which is synchronized with the Reader and Sensor Manager

modules on the run and stop events. It is also worth noting that this is the only

module that contains G UI related functionality which is abstracted away from all

other modules.

5.3.4 Logger

As its name implies, the Logger module's responsibility is in logging the data. This

module has been kept separate in order to facilitate for changes in the future which

might include changes in the method data is logged. The Logger module exists only

58 5. Software Design

for data that is being read directly from the sensors. One Logger module exists for

each sensor handler object.

5.3.5 Calibrator

The Calibrator module exists only in the data acquisition mode where data is read

directly from the sensor. This module has been kept separate in order to allow for

easy change in the calibration method without affecting other modules. One such

module exists for each sensor handler based on that sensor's calibration parameters

and the g range being used for aquisition. Each Calibration module interfaces with the

Sensor Manager module by receiving non-calibrated data from from it and sending

back calibrated data.

5.3.6 Filter

The Filter module contains sub-modules each representing a different filter type. It

interfaces with the Sensor Manager modules by receiving unfiltered data and sending

back filtered data. This separation of concerns between the modules allows for changes

in the way the filters are implemented without affecting the Sensor Manager modules.

5.3.7 FFT Computer

The FFT Computer module is responsible for applying an FFT computation on

the unfiltered data that is received from the Sensor Manager modules. It is also

responsible for computing the fundamental frequency based on the data set it receives,

as well as the RPM (which is based on the centre frequency), and sending back these

two values along with a list of frequencies and their absolute values for the Viewer

module to access later for generating the FFT plots.

59 5. Software Design

5.3.8 Numerical Values Computer

This module is responsible for computing the g forces and the strokes based on the

filtered data it receives from the Viewer module. The computed values are then sent

back to the Viewer module so that they can be stored in the Sensor Manager modules

and displayed on the numerical values display.

5.3.9 Ellipse Fitter

The Ellipse Fitter module is responsible for performing an ellipse fitting on the filtered

data it receives from the Viewer module. Additionally, it is responsible for computing

the phase and eccentricity of the ellipse and sending these two parameters back to

the Viewer in order to display them on the numerical values display and store the

phase parameter in the Sensor Manager modules for the report generation.

5.3.10 Report Generator

The Report Generator module contains three sub-modules, each responsible for gen­

erating a different type of report. The Single Point Report module which generates a

report for each monitored location on the machine, the Orbit Summary Report which

generates a summary report for all the monitored locations, and the Thning Report

which based on certain parameters entered by the user, generates a report containing

recommendations for tuning the machine in order to achieve better performance.

5.4 Main Module Interaction

Figure 5.5 illustrates how the main modules discussed above interact. It is worth

mentioning here that the Viewer module, which is basically the user interface, also

receives events from the user such as initiating (or stopping) the acquisition or sim­

ulation which correspondingly initiates (or stops) the Reader and Sensor Manager

modules' main loops. Such events have not been included as part of the diagram and

only the data transferred between the modules is shown.

60 5. Software Design

Module A uses se ces
provided by Module B.

Figure 5.5: Module interaction diagram.

Chapter 6

Software Implementation

6.1 Overview

This chapter discusses the implementation phase of the vibration analysis tool's life­

cycle. It starts by a section discussing the considerations taken throughout the im­

plementation phase to ensure the development of a high quality software. Then, it

lists the software libraries that were used as part of the implementation. Afterwards,

the implementation of the main software modules discussed in Chapter 5 along with

some helper modules is discussed.

6.2 Implementation Considerations

The following software qualities were considered throughout the implementation

phase:

• 	Portability: A software is considered portable if it can run on different envi­

ronments. The software was developed using the Python programming language

along with some libraries explained in Section 6.3, which are all guaranteed to

run on both Windows and Linux platforms as requested by the company. More­

over, the software is portable in that it can run on different hardware as well;

on the PDA and on a PC.

61

62 6. Software Implementation

• 	 Performance: A software's performance is linked to its usability and reliability.

The better the software performs, the more usable and reliable it is. In terms

of vibration analysis, performance is a major software quality that needs to be

considered. The values are acquired at a rate of 1000Hz and are to be processed

by the vibration analysis tool at a rate that will guarantee all the data being

processed. Therefore, the software was implemented in such a way that will

allow for that. Most importantly was the use of pyrex in order to convert some

parts of the program into a C implementation. The parts that are converted

are those that are called most often and involve the data processing (unpacking

the data coming from the sensors, storing the data in a circular queue, applying

filters on the data, etc).

• 	 Usability: A software is considered usable if its users find it easy to use. After

discussing user interface aspects with the personnel who would be using the

tool most often at the company, an interface for the software was designed. The

interface was implemented in such a way that allows for easy access to various

commands. Moreover, it provides a clear view of the plots that display different

forms of the acquired data. The reports are also generated in a format approved

by the company, and in the case of the Tuning Report the user is allowed to enter

all the parameters required and preview the results before actually generating

the report. Finally, the addition of internationalization allows for the selection

among various languages as requested by the company in order to make the

software usable in different countries.

• 	 Maintainability: Studies have shown that the majority of time spent on main­

tenance is spent on enhancing the product with features that were not in the

original specifications. Therefore, the software was developed in order to allow

for easy maintenance. This was done primarily in the use of modularization in

the design phase, splitting the software responsibilities among various modules

each with its own responsibility. Moreover, the use of the information hiding

principle allowed for changes to be done on modules without affecting the rest.

63 6. 	Software Implementation

• 	 Correctness, Reliability and Robustness: These qualities are linked to­

gether and are very important in guaranteeing accurate results. Joined together

they characterize a software quality that implies that the application performs

its functions as expected. The software developed is correct in that adheres to

its specifications, implementing all its functions as specified in the requirements

phase. It is reliable in that its results are correct and that it behaves as expected

over a long interval of time. Finally, the software is robust in that it behaves

reasonably even in circumstances that were not anticipated in the requirements

specification. For example, in the case that the connection is lost with one of the

sensors, the software will notify the user and normally keep on running with the

other sensors without causing a crash to occur. In general, the implementation

was conducted in such a way that guarantees robustness. Try-Except state­

ments were used only when needed, and when used exceptions were explicitly

defined. Moreover, in the model-view-controller architecture used, when the

model (the Sensor Manager module) is changing parts of the view (the Viewer

module), events are used in order to guarantee that they occur correctly. Fi­

nally, when using threads, it was kept in mind not to have any shared state

between the threads, and that data structures used with threads are accessed

in a safe manner. This is the case of the Circular Queue module which will be

explained in the following section.

• 	 Reusability: One of the main goals of object oriented programming is to

achieve reusability. Since the developed software was implemented in python,

object oriented programming was used and reusability was ensured through the

creation of classes that can be used in both the PDA and the PC applications. A

great amount of code was reused between the two applications allowing for easy

maintenance without having to change the code twice. The only module that

is not completely common between the two applications is the Viewer module,

and even here inheritance was used in order to keep as many things as possible

common and therefore reusable.

64 6. 	Software Implementation

• 	 Understandability: The developed software is easy to understand primarily

due to its modularity. In addition, the code is well documented and commented

to allow for developers to continue working on it in the future.

6.3 Software Libraries Used

The following is a list of the main software libraries used as part of the developed

application. A brief description accompanies each library.

• 	 Threading: This module provides a high level threading interface providing

accessibility to threads and their methods. It is used in both the Reader module

and the Device Discovery helper module.

• 	 PyBluez: This module creates python wrappers around system Bluetooth re­

sources to allow for easy and quick creation of Bluetooth applications. It works

on GNU /Linux and Windows XP (Microsoft and Widcomm Bluetooth stacks).

It is used in both the Reader module and the Device Discovery helper module.

• 	 PySerial: This module encapsulates the access for the serial port. It is used

by the Reader module in the case of the software being run on Mac OS, since

PyBluez is not available there.

• 	 NumPy: This is the fundamental package needed for scientific computing with

Python. It contains a powerful N-dimensional array object, basic linear algebra

functions, and basic Fourier Transforms. It is used in the Sensor Manager

module, the Viewer module, the Filter module, the FFT module, the Ellipse

Fitter module, and the Report Generator module.

• 	 gettext: This module provides internationalization (I18N) and localization

(LION) services for the python application. It is used in the Viewer module

only for translation purposes of the labels and other controls with text.

65 6. Software Implementation

• 	 wxPython: This module is a blending of the wxWidgets C++ class library with

the Python programming language. It provides G UI abilities and is therefore

used in the Viewer module only.

• 	 The Python Imaging Library (PIL): This library adds image processing capa­

bilities to the Python interpreter. This library supports many file formats, and

provides powerful image processing and graphics capabilities. It is used in the

Viewer module only to generate the plot backgrounds and allow for updating

them directly when the g range that is used and the maximum frequency to be

shown on the FFT plot change.

• pylab: 	 Also called matplotlib is a python 2D plotting library which produces

publication quality figures in a variety of hardcopy formats and interactive en­

vironments across platforms. It is used in the Report Generator module only

to generate the plots used in the reports.

• 	 reportlab: This library is open source and is one of the most full-featured li­

braries for PDF creation available. It is used in the Report Generator module

for generating reports in PDF format.

6.4 Modules

The python code implementing the application is divided into python modules (.py

files) and python packages (folders containing .py files along with an ___init__.py file).

The following is a description of each one of those modules (or packages).

6.4.1 Reader

This module encapsulates classes representing three handler types as well as a thread

which performs the reading and the sending of values to the sensor managers. It is

implemented inC to improve performance.

Uses: Threading, bluetooth, serial

66 6. Software Implementation

Class: BaseHandler

Represents a base class for the handlers to inherit from. The inheritance is on at­

tributes only. These attributes are:

• 	 The x, y and z arrays.

• 	 The raw data array.

• 	 The socket object.

• 	 The g value associated with the sensor the handler represents.

• 	 The handler's sensor manager.

• 	 The length of the values unpacked.

Class: FileSimulation

An object of this class allows for the creation of a simulated socket that can be used

by the file handler. Upon its creation, it is passed a file from which data is read and

placed in three separate lists: one for the x values, one for the y values and one for

the z values. In order to give it the same interface as a bluetooth socket, the following

methods are implemented:

• 	 fileno: just returns the sensor number the file is associated with.

• 	 send: writes the character being sent to an input buffer.

• 	 recv: creates a packet in the format Byte (FF), Byte (FF), x value, y value, z

value, Byte (FO) which is sent back to the calling function. In addition to creat­

ing the packet, and in order to simulate the receiving from a bluetooth socket,

a sleep is added every file_sleep_frequency times for the length of file_sleep_time.

This will make it look closer to a sensor read, where data is not always available

to be read.

67 6. 	Software Implementation

Class: FileHandler

This class is used when wanting to simulate running data from a predetermined file.

It is a handler whose socket is of type FileSimulation described above.

Class: SerialSimulation

Similar to the FileSimulation class, this class allows for the creation of a simulated

socket object that can be used by the serial bluetooth handler. It inherits from the

Serial class provided by the serial library, and is used when acquiring data on the

Mac OS since the bluetooth library is not available for it. Therefore, its send method

simply calls the serial write method, and its recv method simply calls the serial read

method with the required characters passed.

Class: SerialBluetoothHandler

This class is similar to BluetoothHandler described below, except that its socket is of

type SerialSumulaion rather than BluetoothSocket.

Class: BluetoothHandler

This class is used when acquiring data from the bluetooth, its socket is of type Blue­

toothSocket. The following are the most important methods of this class:

• 	 setupBlueTooth: sets up the bluetooth connection so that the data reading can

start. The setup process involves the following:

1. 	 Reading the "CONNECT" message (20 bytes).

2. 	 Sending "+++\r" and reading back 10 bytes.

3. 	 Sending "ATMF\r" and reading back 6 bytes.

• 	 stop_data: stops reading by sending the '}' character, then waits for the stop

message to be sent back to ensure that the reading has stopped. The stop

message consists of 4 "FF" bytes in a row.

68 6. 	Software Implementation

• 	 stop_reader: stops the communication by closing the socket.

• 	 getBatteryLevel: The battery level is read by sending '<' to the socket. The

value read is then converted so that it appears as a percentage value. The

minimum battery level allowed (equivalent to a 0%) is when the power drops

by 2V from the maximum which is 6V. Therefore, the conversion is done as

follows:

1. 	 Computing the A/D convertor's conversion factor which is given by:

conversion= 3.3 x 1000/256 mv/bit since it is an 8 bit A/D conversion

and the input source is 3.3 V.

2. 	 Computing the bit value of the offset (2V) allowed for the voltage to drop

by. This is given by: offset= 2.0/ conversion.

3. 	 The bit value of the maximum voltage is 256 (12 bit A/D convertor).

Therefore, the final battery percentage is: 100 x (value- offset) /256, where

value is the second byte read back from the socket.

• 	 getTemperature: The temperature is read by sending '!' to the socket. The

value read is then converted so that it appears as a °C value. The conversion

steps are as follows:

1. 	 Computing the A/D convertor's conversion factor which is given by:

conversion = 3.3 x 1000/256 mv/bit since it is an 8 bit A/D conversion

and the input source is 3.3 V.

2. 	 Computing the bit value of the offset (the sensor reads 424 m V at 0 Cel­

sius). This is given by: offset= 424/ conversion.

3. 	 Computing the bit value of the slope (this comes from the temperature

sensor's datasheet). This is given by: slope= 6.25/ conversion.

4. 	 The final temperature value is: (value - offset)/ slope, where value is the

second byte read back from the socket.

69 6. 	Software Implementation

• 	 getCalibratiobParameters: This method should read the sensor's calibration

parameters based on the given g value from the PIC attached to the sensor. The

values are currently hardcoded and have been computed manually as described

in 3.6. In the future, these values should come from the acquisition unit and

should be computed for each unit using a test rig for different g values and

different temperature ranges.

• setGValue: sets the g value on the sensor to the requested g value by sending'!'

followed by a byte representing the g value according to the following mapping:

2.5:0xa8, 3.3:0xa9, 6.7:0xaa, lO:Oxab where the value on the left is the g value

and the value on the right is its byte representation on the sensor. Finally, it

reads back the echoed byte.

Class: ReaderThread

This class represents a thread that is spawned when the user presses the "Run"

button. The thread is killed when the user presses the "Stop" button. Upon its

creation, it is passed the handler objects whose sockets it will be reading data from,

and it creates a dictionary (SocketsDict) mapping the socket ID 's to the handlers.

While the thread is alive it performs the following:

1. 	 Opens a connection with each one of the sockets (by sending the '{' character)

and read the byte echoed back to make sure it is '}' (this indicates a successful

connection).

2. 	 Calls the appropriate read method (fileRead, blueToothRead or serialBlue­

toothRead according to the handler type). Each one of these methods will keep

calling in a while loop the method socketRead explained below with the appro­

priate parameters. The while loop terminates when the thread is requested to

be aborted via its abort method.

70 6. 	Software Implementation

Method: socketRead

• 	 Inputs: The socket ID, a boolean value indicating whether it is a file or a

bluetooth socket, and the number of bytes to read from the socket.

• 	 Description: Reads the required number of data bytes from the socket, calls the

appropriate function to unpack the data (see the Unpacker module), sends the

data to the Sensor Manager through its processData method only in multiples

of four packets (the bandpass filter requires that).

Method: safeRead

This method takes a socket and a number of bytes n and reads from the socket exactly

n bytes and finally returns the concatenation of those bytes.

6.4.2 Sensor Manager

Uses: numpy

Class: SensorManager

This module is implemented inC, as it is responsible for cycling through the acquired

data in order to apply filters on it, log it, perform FFT on it, and store it in order

for the viewer to access it. Its methods are:

Method: startUp

This method is called until there is fft_size data (this is determined by the settings

menu FFT size option) in order to perform an initial FFT on the data to obtain the

centre frequencies for the bandpass filters.

Method: processData

• 	 Inputs: Three arrays of data (x,y, and z values) of the same length, and their

length

71 6. 	Software Implementation

• 	 Description: Performs the following:

1. 	 Calls the startUp method until it is not required.

2. 	 Calls the frequencyCheck method.

3. 	 If it is a data acquisition (handler is bluetooth), calibrates and de filters

incoming data one axis at a time.

4. 	 If it is a file simulation, only de filters the incoming data one axis at a

time.

5. 	 If it is a data acquisition, logs the calibrated, de filtered data one axis at

a time.

6. 	 Stores the data retrieved from the above steps in a circularqueue data

structure named raw _storage.

7. 	 Calls the applyFilters method to apply the required filters on the data.

8. 	 Finally, if enough data is received to apply the FFT computation (this is

dependant on the fft_size parameter which can be set through the settings

menu - FFT size), then the performFFT method is called.

Method: frequencyCheck

This method is responsible for checking when the centre frequency used for the band­

pass filter changes requiring the filter to be updated in order to obtain new coefficients.

The check relies on a frequency tolerance value which can be set in the settings menu

using the Frequency Tolerance command.

Method: applyFilters

This method is responsible for applying the filters on the raw data producing the

filtered data which is then stored in a circularqueue data structure named fil­

tered_storage.

72 6. 	Software Implementation

Method: performFFT

This method is responsible for requesting FFT computations on raw data in order to

obtain the and store the following:

1. 	 The RPM values for all three axes.

2. 	 The frequencies and their absolute values which are later used by the Viewer

module for plotting the FFT plots.

3. 	 The fundamental frequency for each axis, used as the centre frequency for the

bandpass filters.

This method also checks whether the system has stabilized or not allowing the user to

start recording the data. The condition for stability is dependant on an RPM toler­

ance value which can be set in the settings menu using the RPM tolerance command.

Method: updateFilter

This method is responsible for requesting an update on the bandpass filter by pass­

ing it the current centre frequency for the appropriate axis, as well as the current

bandwidth value which is set by the user.

Method: timeoutError

This method is responsible for notifying the viewer that the bluetooth handler

associated with this sensorManager object has timed out, causing it to display an

error message to the user.

Other methods exist representing setters and getters for the module's attributes.

6.4.3 ~ievver

Since two applications have been developed (to run on a PDA and on a PC), and

in order to make the code as reusable as possible, all of the modules except for

73 6. Software Implementation

the Viewer module have been kept common between the two applications. The

Viewer module contains implementation related to the graphical user interface which

is the only aspect that differs between the two applications. Therefore, two modules

named PC_viewer and P DA_viewer have been implemented, both inheriting from a

module named base_viewer which includes the classes and methods that are common

between the two applications. The following are the classes that each viewer module

is composed of:

Class: LanguageSelectionPanel

Provides a panel for selecting the language that is to be used.

Class: ModeSelectionPanel

Provides a panel for selecting the mode to start the application with: File Simulation

or Data Acquisition.

Class: InfoGatheringPanel

Provides a panel for the user to enter information pertaining to the data acquisition.

Class: DeviceDiscoveryPanel

Provides a panel that displays the discovered bluetooth devices, allowing the user

to select the ones they would like to connect to, and assign them locations and

orientations.

Class: MainFrame

Two kinds of main frames exist: a Main File Frame (created in File Simulation

mode) which allows for the opening of files, and a Main Sensor Frame (created in

Data Acquisition mode) which allows the connection to sensors and the recording of

data.

74 6. Software Implementation

Class: AcceptanceLevelsPanel

A panel that allows for the setting of the acceptance levels used in the tuning report

generation.

Class: BearingsPanel

A panel that allows for adding new bearings and their diameters which are then used

in the tuning report generation.

Class: InfoPanel

A panel that is part of the main frame, and consists on a common info panel, and a

sensors info panel as described below.

Class: CommonlnfoPanel

A panel that provides the acquisition information (customer, data, etc), as well as

buttons for connection, starting, stopping, starting recording, and stopping recording.

Class: SensorslnfoPanel

A panel that provides information about the sensors (their locations, battery and tem­

perature readings), as well as buttons for generating the reports (in data acquisition

mode) and exiting and restarting the application.

Class: FFTPanel

A panel that encapsulates the FFT plots.

Class: WaveformPanel

A panel the encapsulated the waveform plots.

75 6. 	Software Implementation

Class: LargeOrbitPanel

A panel that encapsulated the large orbit plot.

Class: SmallOrbitPlotsPanel

A panel that encapsulated the small orbit plots.

Class: ValuesPanel

A panel displaying the numerical values associated with each of the active sensors.

Class: OptionsPanel

A panel encapsulating all the options available to the user:

1. 	 Setting on the g value.

2. 	 Choosing the orientation to plot the orbit plot in.

3. 	 Choosing the source of the centre frequency (manual or from the FFT).

4. 	 Choosing the unit to display the stroke in (mm or inches).

5. 	 A slider for setting the centre frequency. The maximum allowed frequency is

100 (this is caused by a 6000 RPM machine).

6. 	 A slider for setting the bandwidth used for the filter. The maximum allowed

bandwidth is 20Hz.

7. 	 A slider for setting the maximum frequency to be displayed on the x axis of the

FFT plots. The maximum value is half the sampling frequency which is 500Hz.

76 6. Software Implementation

Class: ReportingPanel

This class exists only for the PC application. It allows for a window to show up when

the user chooses to generate a tuning report. This window contains various parameters

that the user is allowed to enter or adjust. The user can preview the values generated

based on these parameters before the PDF report is actually generated. When they

are satisfied with the results after tuning the parameters as required, they can choose

to generate the report.

6.4.4 Logger

Class: Logger

An object of type Logger is responsible for logging the data it receives. Such an object

is instantiated for each location being monitored (i.e for each sensor manager). Each

object has its own log and stop_logging methods. The log method can be modified in

order to allow for a different logging scheme.

6.4.5 Calibrator

Class: Calibration

This class is part of the scaling package and is implemented in C to increase perfor­

mance. Upon creating an object of this type, it should be passed the slopes and the

offsets used to create the lines that are used to calibrate the data in all three axes.

When its scale method is called with the x, y, and z values that are to be scaled, the

calibrated data is computed as follows for each axes:

x = x_slope * x + x_of f set (6.1)

Finally, the calibrated x, y, and z values are returned.

77 6. Software Implementation

6.4.6 Filter

The Filter module is implemented as a python package which includes sub-modules

each representing a filter type. Filters created in the future should be added to this

package. Each filter should be implemented as a class with a method named calc

performing the filter's calculation. The calc method accepts a list of samples as

an input and returns a list of those sample, but filtered. Other methods providing

services to the calc method can be implemented as part of each filter class.

Class: AllPass

The Allpass filter is applied to the z-axis values (perpendicular to the machine's main

movement) only. These values do not represent the machine's main movement and

are therefore not that important to filter. This class's calc method simply returns the

values passed to the filter untouched.

Class: Butterworth

The Butterworth filter is the bandpass filter used to produce the filtered data used

throughout the application. This module is implemented in C in order to improve

performance, as the filtering occurs on every data sample read from the sensror. Its

calc method implements an IIR filter used to filter a list of samples. the IIR filter

computation is implemented in such a way that allows for an increase in performance,

namely by eliminating the need to re-compute values through the reuse of data. For

this reason, the filter is to be applied on arrays of samples whose length is a multiple

of four. The following equations explain how this is done on every 4 samples (example

based on a 2nd order filter):

78 6. 	Software Implementation

Once the filter is created and every time its bandwidth or centre frequency change

(when its update method is called) the filter coefficients need to be computed. Other

helper methods exist as part of this class, and are mostly based on the butterworth

filter code provided by http:/ jwww.exstrom.com/journal/sigproc/index.html.

Class: DC

This class is implemented in C to increase performance. Its calc method applies a de

filter to the incoming sample x as follows:

y(n) = x(n)- x(n- 1) + R * y(n- 1) 	 (6.6)

where R is a constant value between 0.9 and 1, and depends on the sampling rate

and the low frequency point.

6.4.7 FFT Computer

Uses: numpy

Method: getFFT

• 	 Inputs: Sequence of data to perform FFT on, sampling rate.

• 	 Description: Peforms the following:

1. 	 Applies an FFT computation on the given data to obtain the frequencies

and their absolute values.

2. 	 Calls polynomiallnterpolation on the three values representing the abso­

lute values of the frequenxy with the highest absolute value and the two

frequencies surrounding it.

79 6. 	Software Implementation

3. 	 Computes the fundamental frequency as follows:

fund_freq = (max_index- 2 +interpolant)* correction (6.7)

where:

max_index is the index of the frequency with the maximum absolute value

interpolant is the result of polynomiallnterpolation

correction = samplerate/dataJength

4. 	 Computes the RPM as follows:

rpm = fund_freq * 60 (6.8)

• 	 Outputs: RPM, frequencies, frequency gains, fundamental frequency.

Method: polynomialinterpolation

• 	 Inputs: 3 points to perform interpolation on

• 	 Description: Peforms the following:

1. 	 Given the three points, performs a polynomial interpolation on the poly­

nomial given by:

ax2 +bx+c=O (6.9)

by solving for the point where the slope is zero (this will give the frequency

with the highest absolute value):

2ax + b = 0 	 (6.10)

or equivalently,

x = -b/2a (6.11)

The point x then is the point at the peak of the polynomial curve where

the slope is zero.

• 	 Outputs: interpolant.

80 6. 	Software Implementation

6.4.8 Numerical Values Computer

Method: getGForces

• 	 Inputs: three lists of data (x_f, y_f, and z_f) representing the filtered values in

the x, y, and z axes.

• 	 Description: Computes the g forces as follows:

1. 	 Finds the minimum value for each axis.

2. 	 Finds the maximum value for each axis.

3. 	 Averages the minimum and maximum values for each axis.

4. 	 Computes the main g force as follows:

Main g force= max{ yf(x2 + y 2), for x E x_f andy E Y-f} (6.12)

• 	 Outputs: Average g forces for x, y, z axes, and main g force.

Method: getStrokes

• 	 Inputs: RPM, Average g forces for x, y, and z axes, and main g force.

• 	 Description: Computes the strokes as follows:

1. 	 For each axis, the stroke (in mm) is calculated as follows:

k axis g force
(6.13)Stro e = 1000 * 2 * (RPM/60) 2

2. 	 Computes the main stroke as follows:

. Main g force

(6.14)Mazn stroke= 1000 * 2 * (RPM/60) 2

• 	 Outputs: Strokes for x, y, z axes, and main stroke.

81 6. 	Software Implementation

6.4.9 Ellipse Fitter

Uses: numpy Note: The implementation of the ellipse fitting method is based on

the Matlab ellipse fitting module. Additionally, at least five points are required to

perform the ellipse fitting on, the more points passed to the function, the better fitted

will the ellipse be.

Method: getEllipseParameters

• 	 Inputs: Lists of filtered data in the x andy axis which determine the machine's

main movement.

• 	 Description: Performs the following:

1. 	 Finds the estimate of the conic equation representing the ellipse which is

given by:

ax 2 + bxy + cy2 + dx + ey + f = 0 (6.15)

2. 	 Using the given points, solves the equation using the linear least squares

method. The lstsq function provided by numpy.linalg is used here.

3. 	 Extracts the parameters (a, b,c,d,e) from the conic equation.

4. 	 Checks that the conic equation represents an ellipse. This is done by

checking if ax c > 0.

5. 	 Calculates the ellipse's major and minor axes lengths. This is done as

follows:

F = 1+ (d2)/(4 *a)+ (e2)/(4 *c) (6.16)

a= J(Fja) 	 (6.17)

b = J(Fjc) 	 (6.18)

major_axis= 2 *max(a, b) 	 (6.19)

minor_axis = 2 *min(a, b) 	 (6.20)

82 6. Software Implementation

6. Computes the ellipse's foci as follows:

foci= J((major_axis/2.0) 2)- ((minor_axis/2.0) 2) (6.21)

7. Computes the ellipse's eccentricity as follows:

eccentricity= (2 x foci)/major _axis (6.22)

8. Computes the ellipse's phase angle as follows:

1
phase angle = 0.5 x arctan--------------­

(foci- (major _axis/2.0))/minor _axis
(6.23)

• Outputs: Eccentricity, Phase angle.

6.4.10 Report Generator

Uses: pylab, reportlab, numpy

Class: SinglePointReport

The methods of this class are responsible for creating a PDF report for a single

monitored location on the machine using the data passed to an object of this type

open its creation. Please refer to Appendix C for an illustration of the resulting single

point report.

Class: OrbitReport

The methods of this class are responsible for creating a PDF report acting as a

summary of the orbits produced by all the monitored locations. The report is created

using the data passed to an object of this type open its creation. Please refer to

Appendix C for an illustration of the resulting orbit summary report.

83 6. 	Software Implementation

Class: TuningReport

The methods of this class are responsible for creating a PDF report providing recom­

mendations for adjusting the machine. The report is created using the data passed

to an object of this type open its creation. The calculations performed here are all

based on the old reports produced by the company. Please refer to Appendix C for

an illustration of the resulting tuning report.

6.4.11 Device Discovery

Uses: threading

Class: DiscoveryThread

This class is implemented as a thread and is responsible for discovering the available

bluetooth devices within range. It returns only those ones whose names start with

SparkFun-BT representing the bluetooth devices in each of the data acquisition units.

6.4.12 Unpacker

This module is a helper module for the Reader, and is implemented in C as its

methods are called frequently. Its responsibility is in unpacking the data read from

the handlers (bluetooth or file) according to a predefined format they are expected

to be in and based on the sensor's orientation (i.e. whether the sensor is mounted to

the top or the side of the machine). If the sensor is mounted to the top, simply the

y and z values read from the sensor are swaped. This module's methods are:

Method: get_values_for _file_simulation

This method is responsible for unpacking data read from a file handler.

• 	 Inputs: The handler's raw data array, its length, the orientation of the sensor

associated with that hander, the handler's x,y, and z arrays and a pointer to a

num_ values integer that represents the number of values that were unpacked.

84 6. 	Software Implementation

• 	 Description: Unpacks the raw data based on the given format. Note that file

simulation uses calibrated float values so the format is : Byte,Byte, float, float,

float, Byte. Also note that the file handler will put data in this format in order

to make the unpack operation similar to that of the bluetooth, allowing for the

reuse of code.

• Outputs: 	Returns a pointer to the last point unpacked in the raw data array

for the next time this function is called.

Method: get_values

This method is responsible for unpacking data read from the bluetooth handler. It

shares the same interface as the geLvalues-for -file_simulation, but calls the my_ unpack

method to perform the unpacking on the values.

Method: my_unpack

This method unpacks data based on the 9 byte packet format used for the bluetooth

handlers. The format is as follows: Byte (FF), Byte (FF), Short - 2 Bytes(x value),

Short- 2 Bytes (y value), Short- 2 Bytes (Z value), Byte(FO).

6.4.13 Screen Scaling

This class is part of the scaling package and is implemented in C to increase per­

formance. Its methods deal with scaling the data so that it appears correctly on

the plots displayed on the screen. It is therefore dependant on the display size. It

contains the following methods:

• 	 4 methods for scaling the data on the orbit plot. Each one is related to a

different g range, and based on the g value passed to orbiLscale the appropriate

method is used.

• 	 4 methods for scaling the data on the waveform plots. Each one is related

to a different grange, and based on the g value passed to waveform_scale the

85 6. Software Implementation

appropriate method is used.

• 	 A method for scaling the data on the x axis of the FFT plots. This data

represents the frequencies.

• 	 A method for scaling the data on the y axis of the FFT plots. This data

represents the gains. Note that all gains plotted are a ratio of that gain to the

maximum gain, meaning that the maximum gain appears as '1' on the y axis.

6.4.14 Circular Queue

This is a helper module for the SensorManager module, providing it with a data

structure to store m unfiltered and filtered data, where m is the size of the queue.

The main feature of this data structure is that it will always return the most recent

n data, where n is the requested data size. Since data is appended as soon as it is

read, then data is being put in the queue as a rate of 1000 samples/ sec. Data is

then pulled out of the queue when the viewer is ready to view it. In order to ensure

that all the data stored is viewed, data should be pulled at a faster rate than that

it is being put in. Figure 6.1 illustrates how the queue works. The Circular Queue

module is implemented in C to improve performance, and consists of the following

class:

Class: CircularQueue

This class represents the circular queue data structure described above. Upon its

creation, it is passed a size parameter defining the maximum data size it can hold at

once. It internally keeps track of a start and end pointer to indicate the oldest and

the newest data. Its methods are:

• 	 append : This method received 3 data points (x, y, and z) and append them

as a tuple at the end of the queue, incrementing the start and the end pointers

accordingly.

86 6. 	Software Implementation

'
.......... -- 'llioal.._,,

\

.... , Append ln this direction

... -------­
""

"' ""
/ "' 	 ' '

/ 	 '
/ 	 ' \

I
I \

I \
I \
I 	 ' II

I' I ,I I
\ I

' I
I

I
I

I
I

I

/
/ "'

/

......... ,.,.,., ,------ ,.,. ... ""
............ ____ .,.~

Figure 6.1: An illustration of the circular queue data structure.

• 	 get : This method receives a length n of data points to send back. It creates

a getting_pos pointer which will point to the last data point to read which is n

points away from the end. It sends back three separate lists of data for each

one of the axes. The data sent back is always the most recent n data points.

Chapter 7

Software Testing

7.1 Overview

Software verification is the final step prior to the delivery of the software. Verification

of a software product involves all the activities that are undertaken to ascertain that

the software meets its objectives [7]. One such activity is testing. Testing involves

developing test cases or scenarios with specific inputs that the program is then run

with in order to gain confidence about the quality of the software. The approaches

taken in order to test the vibration analysis tool developed here are discussed in the

remainder of this chapter.

7.2 Unit Testing

Experimental data from industrial projects have shown that the cost of removing an

error after the software has been developed completely is much higher than if errors

are eliminated earlier [7]. This is where unit testing proves to be very useful.

Unit testing, often referred to as Testing in the small, addresses the testing of

individual modules. When testing each module, two types of testing schemes are

conducted: White-box testing, and Black-box testing.

White-box testing (also referred to as structural testing) uses the internal structure

87

88 7. Software Testing

of the program to derive test data. It tests what each module is actually doing. For

example, white-box tests may include testing loops to make sure they are finite,

testing if statements to make sure that all possible conditions are covered, testing

try-except statements to make sure that appropriate exceptions are caught, and so

on.

Black-box testing (also referred to as functional testing) does not deal with the

internal structure of the module. It tests what the module is supposed to do, meaning

it is based on the program's specification rather than its structure. A method of

applying black-box testing is by categorizing input data that is then passed to the

module and comparing the observed results against the expected ones.

As in many of the vibration analysis tool modules, modules sometimes use other

modules, and therefore testing them requires information from the modules they use.

For example, if a module uses an operation that is part of another module, this

operation needs to be simulated in order to test the original module. In cases like

this, stubs and drivers are used.

Stubs are used to simulate a procedure with the same inputs and outputs as the

missing procedure, but with a simplified behaviour. For example, values can be hard

coded in the stub, or they can be read from a file or asked to be inputted by the user.

Drivers on the other hand simulate the use of the module being tested. The driver

sets the values of the data as it would be set in the real application by the missing

modules.

In general, unit testing allows for verifying the correctness of the system's func­

tions. In order to verify the system's software qualities, system testing is performed.

7.3 System Testing

System testing involves testing the system as a whole and is often referred to as

Testing in the large. When performing system testing, the method of separation of

concerns should be employed in order to design test cases that will test various aspects

of the system reflecting the system's requirements document. It is important to verify

89 7. 	Software Testing

all the software qualities, meaning that not only should testing address compliance

with the functional requirements, but also with non-functional requirements such as

performance, robustness, and usability. The following is a discussion of some software

qualities and how they were tested:

• 	 Performance: In order to test for performance, the system was tested under

peak conditions. The most important tests here are:

1. 	 Testing the system when communicating with eight sensors at once (which

is the maximum number of sensors the system can communicate with).

2. 	 Testing how well the bluetooth receiver performs as its distance from the

transmitter on the acquisition device increases.

3. 	 Testing how well the system performs at the minimum and maximum

temperatures the sensor can operate at. (This test was not conducted, but

is recommended for the future).

4. 	 Testing how well the system performs at the point where the battery level

approaches zero.

• 	 Robustness: In order to test for robustness, the system was tested under unex­

pected conditions such as:

1. 	 Erroneous user commands. This could happen when setting values through

the settings menu, or when assigning sensors to locations on the machine.

The viewer module is responsible for checking the data entered and noti­

fying the user of any errors.

2. 	 Erroneous data coming from the sensor units. The reader module is re­

sponsible for checking this by parsing the data and making sure it complies

with the packet structure it should be in.

3. 	 Loss of connection with the sensor units due to a bluetooth error or discon­

nection. The system is responsible for detecting this and notifying the user

while allowing the rest of the system to continue running uninterrupted.

90 7. 	Software Testing

• 	 Portability: This was tested by running the system on the platforms stated in

the requirements document and ensuring it operates as expected The platforms

that the system was tested on are Mac OS, Windows XP and the version of

Linux running on the PDA.

• 	 Usability: This was tested by having regular users of the software use the sys­

tem and obtain feedback from them regarding the usability of the system. Both

engineers and technicians who would be using the software regularly were in­

terviewed and their input on the usability of the developed software application

was taken into consideration.

Finally, both in-lab and on-the-field tests were conducted in order to test the

software system as a whole. In the lab, a calibration unit vibrating at a known

frequency was utilized in order to test the system on a small scale. This unit helped

in verifying that each of the sensor units was working properly. On the field, multiple

sensors were attached to different types of machines that the company produces and

data was acquired. After that, reports were generated and their results were compared

to results produced using the company's current solution. This is also referred to as

Parallel Testing. Additionally, we were provided with a large amount of data files

containing vibration data that the company had acquired with their previous system.

These files were played back using the "File Simulation" mode in our tool and their

numerical results (such as resulting RPM, stokes, g values, etc.) were compared to

the results generated by our tool which helped increase our confidence level in it.

Chapter 8

Error Analysis

8.1 Overview

This chapter discusses the various sources that can cause an error in the readings

obtained by the data acquisition devices or in the computations performed in the

vibration analysis application.

8.2 Types of Errors

Since the units that are used for data acquisition are composed of more than one

type of electronic device, and each device has its own resolution, the constructed

acquisition device will have a margin of error on the values sent from it through

bluetooth. The following is a list of sources of error caused by the different electronic

parts used in the acquisition device:

1. 	 Error on the source voltage caused by the change in temperature: The source

voltage changes by 50* 10-6 Volts for every degree Celsius change in the tem­

perature.

91

92 8. Error Analysis

2. 	 The 12 bit AID convertor has its own resolution given by:

. _Source Voltage_ 3.3V _ 3.3 * 1000 mV _ lb.
l 	 0 8057AID reso ui'lon - AID - 12 -	 - . mv 'lt

range 2 4096
(8.1)

This value is fixed for a fixed source voltage of 3.3V.

3. 	 Electric error causing around 3 bits of inaccuracy on the AID convertor read­

ings: This is noticed when monitoring a stable readings and noticing that its

values fluctuate around the reading within a 3 bit range.

4. 	 The sensor has a different resolution range for each one of the g levels that it can

operate on. Table 4 displays the 4 ranges and their corresponding resolutions.

GRange Resolution

2.5 g 480 ± 36 mVIg
3.3 g 360 ± 27 mVIg
6.7 g 180±13mVIg
10.0 g 120±9mVIg

Table 8.1: G ranges and their resolutions

5. 	 Temperature noise on the sensor: It is important to note that Table 4 repre­

sents the resolutions when the temperature is 25°C and the source voltage is

3.3V. However, any change in temperature will also add an error on the sensor

readings, and this is given by ±0.03%I°C

6. 	 The temperature sensor itself has an accuracy range between ±2°C and ±3°C

when the temperature is around 25°C. Please refer to the temperature sensor

datasheet that can be found at http:/jcache.national.comjds/LM/LM60.pdf for

more information.

7. 	 RMS noise on the sensor: Equivalent to an error of 4.7 mVrms. Refer to the

sensor data-sheet.

8. 	 Power Spectral Density RMS noise on the sensor: Equivalent to an error of

350 jtgI ffz. Refer to the sensor data-sheet.

93 8. Error Analysis

The following are the sources of error that affect the results produced by the

vibration analysis software:

1. 	 FFT Resolution: This is equivalent to sampling rate.
data length

As the length of the data passed to the FFT function increases, the resolution

decreases giving a more accurate fundamental frequency and therefore RPM

result. This resolution parameter is also refered to as the FFT bucket or bin

size. It is important to keep in mind that the data length should be a power of

two in order to perform the FFT computation.

2. 	 Calibration: As discussed in Section 3.6, the method used to calibrate the values

read from the sensor units will highly affect the accuracy of the results produced

by the vibration analysis application.

3. 	 Ellipse Fitting: The accuracy of the phase angle and the eccentricity values

generated based on fitting the data to an ellipse, depends highly on the number

of values the fitting is performed on. As the size of the data used increases,

the more accurate the ellipse fitting result becomes, but the more expensive the

computation will be.

Chapter 9

Conclusion

9.1 Discussion

The focus of this thesis work has been on the development of a vibration analysis tool

that can be used specifically in the field of mining. We believe that the developed tool

has fulfilled its specified requirements. Firstly, it communicates wirelessly with data

acquisition units which pick up data through acceleration sensors. It can communicate

with a maximum of eight units at once, providing synchronous readings as opposed

to most data acquisition methods which require acquiring data from one point of the

machine at a time. Secondly, signal processing is applied on the acquired data. The

method for computing the centre frequency for the bandpass filters used to filter the

noise from the signals, is determined through a high precision method. The method

is based on performing an FFT computation on the data and thereafter performing

an interpolation around the frequency with the highest amplitude, bringing the result

as close as possible to the actual fundamental frequency of the machine. Of course,

the accuracy of this method depends highly on the size of the data points passed to

the FFT computation. It is also worth mentioning here, that the current version of

the vibration analysis tool computes the fundamental frequencies based on the data

acquired from all the used sensors. This ensures that each location's data is being

filtered with a bandpass filter centred at the fundamental frequency coming from

94

95 9. 	Conclusion

that location. However, if the performance of the tool becomes of importance, and

since an FFT computation along with the interpolation are expensive operations,

the performance can be boosted by obtaining a fundamental frequency estimation

from one sensor only. This estimation can be safely employed since the machine's

fundamental frequency should be the same on all its parts. If a significant noise

occurs on one of the parts causing its fundamental frequency to change, it will affect

the remaining parts changing the overall fundamental frequency. Lastly, the vibration

analysis tool developed provides reports that are used to tune and adjust the machines

in order to increase their performance and lifetime.

We believe that this tool will prove to be very beneficial in the mining industry,

especially due to its wireless communication method which is a fairly new method in

this field. Soon, all vibration analysis tools used in the mining field will need to allow

for wireless communication. The Mine Safety and Health Administration department

at the U.S. Department of Labor has issued a new act stating the following: "The

MINER Act requires that mine operators adopt wireless communications and elec­

tronic tracking systems by June 2009" (http:/ /www.msha.gov). This is an indicator

of the advancement level of the developed tool.

9.2 Future Work

The following is a list of future work that can be based on the developed vibration

analysis tool, or added as an extension to improve its performance:

1. 	 As presented briefly in Section 2.6.2, Fast Wavelet Transform Analysis can

be applied in addition to the Fourier Analysis in order to better analyse the

acquired data and detect unwanted noise.

2. 	 As mentioned in Section 3.6, a more accurate method for calibrating the sensors

can be employed. One such method would involve a test rig with a predefined

set of g ranges that it can operate on, onto which the sensors can be attached in

order to acquire data for calibration in all three axes. Additionally, the effect of

http:www.msha.gov

96 9. 	Conclusion

temperature on the readings should be taken into consideration, and calibration

should be performed on various temperature ranges utilizing the temperature

sensors that are a part of each acquisition device.

3. 	 Researches interested in performing diagnostics on the acquired data are able

to base their work on the developed tool. Diagnostics are then performed by

creating a set of predefined mechanical problems that can occur on the machines,

and comparing acquired data against them. This will prove to be very beneficial

for the company in that it will help detect problems at an early stage which

will help decrease machine down time and maintenance costs.

4. 	 Researches interested in performing feedback control on the machines can base

their work on the developed vibration analysis tool. A method of sending signals

based on the acquired data back to the machine's motors would have to be

developed and would ultimately allow for the control of the machine's behaviour.

Bibliography

[1] 	 M. L. Adams, Rotating Machinery Vibration: From Analysis to Troubleshooting.

CRC Press, 2001.

[2] 	 Bluetooth "http:/jwww.bluetooth.com", last visited June 7, 2008.

[3] 	 L. D. Paarmann, Design and Analysis of Analog Filters. A Signal Processing

Perspective. Springer, 2001.

[4] 	 Freescale Semiconductor, 2.5g- lOg Three Axis Low-g Micromachined Accelerom­

eter, 2007. MMA7261QT.

[5] 	 W. Gander, G. H. Golub, and R. Strebel, "Least-square fitting of circles and

ellipses," BIT, vol. 43, pp. 558-578, 1994.

[6] 	 D. Gerhard, "Pitch extraction and fundamental frequency: History and current

techniques," Tech. Rep. TR-CS 2003-06, Department of Computer Science, Uni­

versity of Regina, 2003.

[7] 	 C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering.

Prentice Hall, 2002.

[8] 	 L. Kim, A Review of Rolling Element Bearing Health Monitoring. Engine Labo­

ratory, Division of Mechanical Engineering, National Research Council Canada,

1982.

[9] R. G. Lyons, Understanding Digital Signal Processing. Prentice Hall, 2004.

97

http:jwww.bluetooth.com

98 BIBLIOGRAPHY

[10] 	 T. W. Parks and C. S. Burrus, Digital Filter Design. New York: Wiley, 1987.

[11] 	 P. L. Rosin, "Further five point fit ellipse fitting," in British Machine Vision

Conference, 1999.

[12] 	 I. W. Selesnick and C. S. Burrus, "Generalized digital butterworth filter design,"

IEEE Transactions on Signal Processing, Vol. 46, No. 6, June 1998.

[13] 	 SparkFun "http://www.sparkfun.com", last visited June 7, 2008.

[14] 	 G. Thomas, M. Simpson, R. D. Winton, and S. D. Robinson, "System analysis

of rotors, supporting structures and their foundations," tech. rep., Structural

Dynamics Research Corporation, 1982.

[15] 	 K. Tuck, "Implementing auto-zero calibration technique for accelerometers,"

Tech. Rep. AN3447, Freescale Semiconductor, 2007.

http:www.sparkfun.com

Appendix A

User Manual

This appendix serves as a guide for the user on how to use the vibration analysis tool.

A.l Start Up

Upon starting the application, you will be asked select their language of preference

as in Figure A.l. Once the you have selected your language from the drop-down list,

press the "Done" button.

Next, you are asked to select the mode you would like to start the application

in as in Figure A.2. Choose "File Simulation" if you would like to play back previ­

ously acquired files, or choose "Data Acquisition" if you would like to connect to the

available sensor units and acquire data.

A.2 File Simulation Mode

Upon choosing "File Simulation", the main file simulation window will appear as in

Figure A.3.

Next, you can open files by accessing the "File" menu, and selecting either "Open

Directory" or "Open Old File". The "Open Directory" option will allow you to

choose a directory containing one or more files corresponding to one or more sensors

99

100 A. User Manual

Figure A.l: Language Selection Menu.

101 A. User Manual

Figure A.2: Mode Selection Menu.

102 A. User Manual

Figure A.3: Main view of File Simulation Mode ..

103 A. User Manual

used to acquire data during that acquisition. These folders are named with the date

and time the data was acquired. On the other hand, the "Open Old File" option

should be used when you would like to playback a file that was acquired using the old

system. Note that in this case the location, battery and temperature values will not

appear as they are not available in the old files, and report generation is disabled.

Upon opening a file or a directory, you will need to press the "Connect" button

which will prepare to start simulating from the files. Upon connection (you will see

"File ready" in the status bar"), press the "Run" button to start playing back the

data as in Figure A.4. You can press the "Stop" button anytime to end the playback.

Additionally, while the playback is stopped, you can add additional directories

to playback. This is particularly useful if data had to be acquired on two separate

acquisitions due to a lack of functional sensor units for example, and the user would

like to play back the data simultaneously since it was coming from the same machine.

This can be done by accessing the "File" menu, and selecting the "Add Directory"

option. You will then need to press the "Connect" button again before running the

simulation.

A.3 Data Acquisition Mode

Upon choosing "Data Acquisition", you will be transferred to a window where you

will enter information relating to that particular acquisition as in Figure A.5. While

you are entering this information, the available bluetooth devices will be detected.

Once the detection is complete the "Done" button will be enabled. Once it is enabled,

press it to proceed to the next step.

The next window will display the detected bluetooth devices that are related to

the vibration analysis tool. You will then need to assign each device a location from

the list, as well as a top/side orientation based on where it is attached on the machine.

You can uncheck the box beside each device if you do not want to connect to it. This

is shown in Figure A.6.

104 A. User Manual

Figure A.4: Main view of File Simulation Mode while running.

105 A. User Manual

Figure A.5: Acquisition Information Gathering Menu.

106 A. User Manual

Figure A.6: Device Selection Menu.

107 A. 	User Manual

Upon pressing the "Done" button, the main view of the data acquisition mode

will appear, with the selected sensors appearing on the right as in Figure A. 7.

Upon pressing the "Connect" button, the system will connect to the chosen

bluetooth devices, and will obtain the battery and temperature readings from each

device. Moreover, the g value chosen in the options panel will be sent to each of the

devices so data can be acquired within that g range.

Next, you can press the "Run" button to start reading the data from the sensors.

As soon as the system has stabilized, the "Start Recording" button will be enabled.

Press it to start recording the data into files, and press the "Stop Recording" button

to end the recording. Pressing the "Stop" button will stop reading the data from the

sensors, and will update the battery and temperature values.

A.4 Settings

The following settings are available under the "Settings" menu in both modes:

1. 	 Centre Frequency Tolerance: This is the tolerance on the centre frequency (mea­

sured in Hz) used to determine whether or not the bandpass filter used should

be updated and new coefficients for it should be computed. Figure A.8 displays

how this tolerance can be changed.

2. 	 RPM Tolerance: This is the tolerance on the RPM (measured in RPM) used to

determine whether or not the system has reached a stable point and recording of

the data can be allowed. Figure A.9 displays how this tolerance can be changed.

3. 	 Update Frequency: This parameter defines how frequently the plots are updated

with the data. It is measured in seconds. As its value increases, the plots are

updated slower. This parameter can be changed as in Figure A.lO.

4. 	 Update History: This parameter defines the size of data the be plotted on

every update. As this size increases, more data is being plotted in the past.

108 A. User Manual

Figure A. 7: Main view of Data Acquisition Mode.

109 A. User Manual

Enter frequency tolerance in Hz

5.Q

Figure A.8: Centre frequency tolerance setting.

Enter RPM ~olerance in RPM

5.0

Figure A.9: RPM tolerance setting.

Figure A.lO: Update frequency setting.

110 A. 	User Manual

This parameter is measured in seconds (think of it as 5 seconds back in time

for example), and can be changed as in Figure A.ll.

Figure A.ll: Update history setting.

5. 	 FFT Size: This parameter defines the size of data to perform the FFT compu­

tation on. The larger the size, the more accurate the results are, but the more

expensive the computation becomes. This parameter has to be a power or two,

and is therefore chosen from a list of predefined values as in Figure A.12.

6. 	 Acceptance Levels: The acceptance levels correspond to the accepted deviations

in the tuning report. These values are stored in a file and can be edited using

this command. A window as in Figure A.13 will appear, and once all the values

have been entered, the "Save" button should be pressed. If the user would like

to go back to the original values prior to saving, the "Reset" button can be

used. The "Exit" button will exit without saving.

7. 	 Bearings: This command will allow you to add new bearing diameters along

with their basic loads into a file where all the bearings are stored. This in­

formation is later used in the tuning report generation. When selecting this

option, a window as in Figure A.14 will appear. You can add a new bearing

by entering its diameter in millimetres in the "Bearing Diameter" box, and its

basic dynamic load in kilo-Newton in the "Basic Dynamic Load" box. Press

the "Add" button to add the requested bearing information. If a bearing with

111 A. User Manual

Choose the size of data used to perform the FFT.

1024
2048
4096
8192
16384

Figure A.l2: FFT size setting.

Figure A.l3: Acceptance levels setting.

112 A. User Manual

the inputted diameter already exists, a message will appear explaining that.

If the input was accepted, the bearing will be added to the "Available Bear­

ing Diameters and their Basicloads" list. Once you are done, press the "Exit"

button.

Figure A.l4: Bearings settings.

A.5 Generating Reports

In order to generate reports in "Data Acquisition" mode, a recording of data must

have taken place. On the other hand, in "File Simulation" mode, reports can be

generated right away after connecting to the files.

Single point reports can be generated by clicking on the "Report" button beside

each appropriate device on the right side of the application. An orbit summary report

can be generated by clicking on the "Generate Orbit Summary" button, and a tuning

113 A. User Manual

report can be generated by clicking on the "Generating Tuning Report" button. The

latter will lead to a window as displayed in Figure A.l5. Here, the user can insert the

parameters that are to be used for generating the tuning report. The user can press

the "Preview Results" button to preview the results that would show up in the report

if they were to generate it. This gives the experienced user the chance to adjust the

parameters in order to come up with the best results. Additionally, the g values are

displayed in this window as computed from the data, and can be adjusted by the

user. For a 2 bearing screen, 4 locations will appear, and for a 4 bearing there will

be 8 locations.

A.5.1 Other Commands

The options panel includes the following controllers which the user can change anytime

while the data is being processed:

• 	 A radio-box for selecting the orientation to be displayed on the large plot.

• 	 A radio-box for selecting whether to display filtered or unfiltered data on the

large plot.

• 	 A radio-box for selecting the source of the centre frequency (from the FFT

computation, or manually using the slider).

• 	 A radio-box for selecting the unit the stroke is to be displayed in (mm or inches).

• 	 A radio-box for selecting the g value the sensors should operate at. This is only

enabled when the data reading is stopped and in data acquisition mode only.

• 	 A slider for setting the centre frequency manually.

• 	 A slider for setting the maximum frequency to be displayed on the x axis of the

FFT plots. This acts as zooming in on the x axis.

• 	 A slider for setting the bandwidth for the bandpass filter.

114 A. User Manual

Figure A.l5: Tuning Report Menu.

115 A. 	User Manual

Additionally, the user can perform the following:

1. 	 Restart the data acquisition by using the "Restart Data Acquisition" button

which will take the user back to the acquisition information gathering window

and will rediscover the available bluetooth devices.

2. 	 Go back to the main menu by using the "Back to Main Menu" button, which

will take the user back to the language selection menu.

3. 	 Exit the application using the "Exit" button.

Appendix B

Internationalization

B .1 Editing the translation files

The following are the steps for editing the translation files:

1. 	 Download and install a program called Poedit, which will make the task of

applying the translation very easy. It is cross-platform and can be download it

at: http://www.poedit.net/download.php

2. 	 The folder 'locale' contains subfolders for each one of the used languages.

de- German

en - English (this does not require translation and should be left untouched)

fr- French

pt- Portuguese

sp- Spanish

3. 	 Inside each one of the language folders, there is a subfolder LC_MESSAGES

which contains two files: guLxx.mo and gui_xx. po where xx stands for the

language abbreviations given above. Open the .po file using Poedit.

4. 	 Once the .po file is opened, a list of the original strings in English used through­

out the program is displayed. Upon clicking on a string, two boxes at the bot­

116

http:guLxx.mo
http://www.poedit.net/download.php

117 B. 	Internationalization

tom will show up. The top one contains the string in its original form, and the

bottom one where appropriate translation should be entered. The translation

should then show in the column entitled "Translation" beside the original string

that was selected.

5. 	 Once all the translations are applied, click "Save". This will overwrite the

gui....xx.mo file with the new translations.

B.2 Adding a language

To add a new language, perform the following steps:

1. 	 Add the language to the drop down list in the language selection frame.

2. 	 Add the following line at the top of the appropriate viewer module:

language = get text. translation(' gui....xx', './locale', languages = ['xx'])

Where language is the language name and xx is the language abbreviation.

3. 	 In the locale folder, create a folder and name it with the language's abbreviation.

4. 	 Inside the new language folder, create an LC_MESSAGES folder.

5. 	 Copy the 'messages.pot' file from the 'gui' folder and paste it in the new

LC_MESSAGES folder.

6. 	 Rename the file 'gui_.xx.po' where xx is the language abbreviation for the new

language being added.

7. 	 Perform the steps required for editing the translation file as in Section B.l.

B.3 Adding new strings to the source code

If new translatable strings are added to the source code, perform the following to

translate them:

http:gui_.xx.po
http:gui....xx

118 B. 	Internationalization

1. 	 Make sure they appear between _(). For example: _("This is a translatable

string").

2. 	 Open the app.fil file under the gui folder and make sure that the python modules

with the new translatable strings are added to the file.

3. 	 On the command line, go to the gui folder and run:

python mki18n. py -p

This will create a new 'messages.pot' file with the new string(s) added to it.

4. 	 For each language, open its .po file using Poedit, and then select 'Update from

pot catalog" and choose 'messages. pot'. This will update the .po file with the

new strings.

5. 	 Perform the steps required for editing the translation files as in Section B.l to

apply the translation to the added string(s).

Appendix C

Reports

C.l Single Point Report

Figure C.1 is an example of a single point report. The report includes the following:

1. 	 An orbit plot with the filtered and unfiltered data orbits plotted on top of

each-other to allow for analysing the data better.

2. 	 Waveform plots for the x,y, and z axes.

3. 	 FFT plots for the x,y, and z axes.

4. 	 A table summarizing the acceleration, stroke, RPM and phase angle as acquired

from that location on the machine.

5. 	 A table summarizing the accelerations and strokes for each of the x,y, and z

axes.

119

. 6 -·.

0 . 4

120 C. Reports

Date: Wed 16-07-08

Customer: test3

Machine:

No. Bearings:2

Serial No.:

Start Time: 15h15m15s

End Time: 15h18m02s

LDB LOB- Side
Accel. Stroke RPM Phase

4.49 0.43 865.51 -36.13

Axis Accei.(G) Stroke(mm)

X 4.10 0.39

y 4.45 0.42

z 0.43 0.04

....

0 . 4 - I · ······· ·······'····· ····· •· ······ •·· ' •············ .. ,... .

0. 00~~-..-..\-n---~..------------*-'>---~-----.ffi

~ o .e

~

;! 0

~

TYCAN Vibration Analysis

Figure C.l: Example of a single point report.

C. Reports 	 121

C.2 Orbit Summary Report

Figure C.2 is an example of an orbit summary report. The report includes the fol­

lowing:

1. 	 For each of the monitored locations, an orbit plot representing the filtered data

coming from the sensor on that location.

2. 	 For each of the monitored locations, a table summarizing the main g force, the

phase angle. and the x, y, and z g forces.

The orbit summary report allows for comparing the orbits visually as well as by the

parameters provided in the tables.

122 C. Reports

Date: Wed 16-07-08

Customer: test3

Machine:

No. Bearings:2

Serial No.:

Start Time: 15h15m15s

End Time: 15h18m02s

LOB

Main G 4.5

Phase -36.1

X 4.5
y 4.1

z 0.4

ROB

Main G 4.5

Phase -36.1

X 4.5
y 4.1

z 0.4

. LSD

1

0 :

1

.
4 0 1

•

.

RSD

LSF RSF

LFB

Main G 4.5

Phase -36.1

X 4.5
y 4.1

z 0.4
Feed

RFB

Main G 4.5

Phase -36.1

X 4.5
y 4.1

z 0.4

•·······

..

TYCAN Vibration Analysis

Figure C.2: Example of an orbit summary report.

C. Reports 	 123

C.3 Tuning Report

Figure C.3 is an example of a tuning report for a 2 bearing screen. The report includes

the following information:

1. 	 A table of deviations. The values appear in red if they exceed the acceptance

levels shown in the "Deviation Acceptance Levels" table, which can be adjusted

by the user through the "Settings" menu in the application.

2. 	 A table summarizing the g forces and stroke values.

3. 	 A table displaying the RPM measured, the inclination (entered by the user), the

motor sheave (entered by the user), the number of shafts (entered by the user),

the drive inclination (entered by the user), and the calculated recommended

machine acceleration.

4. 	 A table displaying the bearing diameter, the friction compensation, the total

pull per machine and the maximum machine pull which are all entered by the

user. Additionally, the resulting vibrating weight is calculated and displayed.

5. 	 A 'Recommendations' table providing recommendations to change the stroke

by changing the pull to a calculated value, with a body balance of a calculated

value, or to change the speed to a calculated recommended RPM by changing

the motor sheave OD to a calculated value.

6. 	 A table providing estimations on the expected lifetime of the machine.

124 C. Reports

Date: Wed 16-07-08

Customer: test3

Machine:

No. Bearings:2

Serial No.:

Start Time: 15h15m15s

End Time: 15h18m02s

Deviation Acceptance Levels

L-R : 8% F-D: 16% Twist : 5% gForce: 120%

H: 4 .10

':'; 4 .50

~ H4.10

(/ ~ "-,_ l d V4.50

l"-,. _ ~
Rffi~ 11

H•~ 10 ~jl//

1/:4.50 FV6~

I
H: 0.00
V: 0.00

Legend

H Horizontal D Discharge-End

v Vertical

F Feed-End

Bearing Diameter 70.0 mm

Friction Compensation 40.0%

Total Pull per Machine (lbs.in.) 90.0

Max. Machine Pull (lbs.in.) 0.0

Resulting Vibrating Weight 589.51bs

Deviations

Left- Right Feed - Discharge X Twist

DH 200.0% LH 0.0% Horizontal

DV 200.0% LV 0.0% 133.3%

FH 0.0% RH 200.0% Vertical

FV 0.0% RV 200.0% 133.3%

Summary Horizontal Vertical Main

Max g-Force 4.10 4.50 4.30

Ave. g-Force 3.07 3.38 3.22

Max Stroke (in .) 0.39 0.43 0.41

Ave. Stroke (in.) 0.29 0.32 0.31

RPM measured 865.5

Inclination 20.0 DEG

Motor Sheave OD (in.) 100.0

No. Shafts (2 per Exciter) 1

Drive Inclination 30.0 DEG

Recommended Machine Acceleration 5.2 g

Recommendations Estimations

Body Balancing Change Stroke to

0.5 in.

Or Change

Speed To

Lengths FB to DB 20.0 in. By Changing Pull to 1095.7 RPM

FB to Weight 30.0 in. 144.2 lbs.in. By Changing Motor

Results FB to CG 0.0 in. With Body Balance Sheave OD to:

Weight 294.8 216.3 lbs.in. 126.6%

L10
Existing
Setup

New
Stroke

New
Speed

Stroke+
Body.

Balance

Expl. Oh Oh Oh Oh

Clarify any adjustments with the

manufacturer of the vibrating screen.

TYCAN Vibration Analysis

Figure C.3: Example of a tuning report. 95i9 02

	Structure Bookmarks
	Contents
	Figure 1.1: Types of machines produced and their motions.
	Figure 2.3: Measurement points on a four-bearing (inclined) screen.
	Figure 2.10: Filtered and unfiltered orbits of a rotating machine.
	Figure 2.13: Waveforms generated by a vibrating machine with noise.
	Figure 2.15: Examples of orbital trajectories with various eccentricities.
	Figure 3.2: Data Acquisition Hardware Prototype.
	Figure 3.3: Best fit line for x axis measurements under 2.5 g mode.
	Figure 4.1: A waterfall process with feedback.
	Figure 5.4: Depiction of the main system loops.
	Figure 5.5: Module interaction diagram.
	Figure A.2: Mode Selection Menu.
	Figure A.3: Main view of File Simulation Mode ..
	Figure A.4: Main view of File Simulation Mode while running.
	Figure A.5: Acquisition Information Gathering Menu.
	Figure A.6: Device Selection Menu.
	Figure A. 7: Main view of Data Acquisition Mode.

