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Abstract 

In very high resolution galaxy simulations, the supercomputers of today of­

fer the possibility of enough resolution to capture the bubble of a supernova, 

though not the originating star itself. Modeling the energy released as origi­

nating from a single SPH particle initially arranged amongst a grid of particles 

requires the introduction of an artificial thermal conductivity term that allows 

the SPH method to resolve the thermal energy discontinuity inherently present 

in such a scenario. Such an artificial thermal conductivity is implemented in 

the SPH code GASOLINE. Resolution tests show that the method is insen­

sitive to resolution changes when determining the radius of the Sedov-Taylor 

blast wave, and that the numerical solution agrees with the analytic predic­

tion R = (3E 115p0115t215 • The peak density at the shock is lower than the 

actual value of four times the ambient density, though it is found to scale with 

resolution. The density of the interior of the shock, near the center of the 

supernova remnant is found to be elevated compared to the value expected 

from the Sedov-Taylor solution, but this too is resolution dependent, and with 

increased resolution the central density converges towards the expected value 

of zero. The fluid quantities pressure and velocity are also found to be in good 

agreement with the profiles predicted by the analytic solution. 
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Chapter 1 

Introduction 

1.1 Energy injection in astrophysical processes 

A main aim of many cosmological simulations, as well as a great deal of 

analytic and observational work, is to understand in detail how the structure 

visible today evolved from the initial density fluctuations, whose spectrum has 

become known thanks to the observations of the cosmic microwave background 

radiation. While dark matter shapes the gravitational wells in which visible 

matter evolves, it only weakly interacts with other matter through gravita­

tional attraction; the evolution of visible structure is, in comparison, compli­

cated greatly by feedback mechanisms, which serve to regulate the collapse of 

baryonic matter on all scales. In clusters of galaxies, the cooling intracluster 

medium can be radiatively heated to prevent its cooling onto galaxies by the 

output of active galactic nuclei (AGN; McCarthy et al. 2008). On the galactic 

scale, the winds emitted from an AGN can terminate the accretion onto the 

center black hole and expel the interstellar gas from the center of the galaxy 
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(Springe! et al., 2005). The winds from massive stars can similarly regulate 

the star formation process in their star forming region, and in death can blow 

out as a supernova, the effects of which serve to both reduce the ability of the 

surrounding region to form stars through the reduction in available gas, and 

also to enhance the chance of stars being formed through the triggering of core 

collapse via the shocking of gas. 

1.2 Active galactic nuclei 

Active galactic nuclei inject large amounts of energy, in various forms, into 

their surroundings. The most obvious form of this output from Seyfert nuclei 

and quasars, which are highly luminous AGNs, is radiation. This type of 

feedback alters the environment of the AGN through both radiative pressure 

and radiative heating. In addition to this radiative output, AGN also present 

jets and winds, which are thought to be as important as feedback mechanisms 

as the radiative output of most accreting black holes (Begelman, 2003). The 

energy released by these objects is capable of regulating the dynamics of the 

intracluster medium. 

The force exerted on gas due to radiation pressure is mediated through 

several processes. Electron scattering, scattering and absorption on dust, and 

photoionization all contribute to the pressure exerted by the radiation output 

from an AGN. The effects on dynamics of the gas in the host galaxy depends 

on the amount of radiation flux from the AGN compared to the Eddington 

limit of the black hole which powers it. For a flux that isn't much greater than 

the Eddington limit, the corresponding pressure can have only a small effect 
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on the hydrodynamics of the surrounding gas. Even for this case, however, the 

radiation pressure can exert considerable influence on the dust in the galaxy, 

whose cross section and thus the force it feels from the radiation is higher by 

five orders of magnitude (Dopita et al., 2002). 

In addition to the pressure forces associated with the radiation output from 

AGN, the gas exposed to the radiation field is also subjected to a source of 

heating. The resultant hot gas has an equilibrium temperature set by the 

condition that the Compton cooling matches the inverse Compton heating, 

which for gases with typical AGN spectra can be on the order of 107 Kelvin 

(Begelman, 2003). Studying the interstellar medium of the galaxy as a whole, 

Begelman (1985) found that the X-ray heating resulting from AGN radiation 

output resulted in the elimination of cool ISM phases near the the central 

black hole, and the destruction of small clouds, leaving only giant molecular 

clouds in the interior regions of the galaxy. For some AGN, such as radio 

galaxies, the majority of the power of released is in the form of winds and jets 

(Rees et al., 1982). However, all accreting black holes may produce powerful 

outflows, such that the kinetic energy output of AGN is significant source of 

feedback (Begelman, 2003). 

Since the timescale for the radiative cooling of gas in cluster cores is shorter 

than the Hubble time, an intracluster medium without any source of heating 

must tend towards the center of the cluster so that the ICM is in hydrostatic 

equilibrium (Begelman, 2003). However, the observations made with Chandra 

and X M M - Newton show that the gas isn't free of heating. One attractive 

source of heating are AGNs, as radio galaxies are commonly found in the cen-
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ters of clusters (Burns, 1990). These radio galaxies initially form supersonic 

stellar wind bubbles (Begelman & Cioffi, 1989), whose evolution can be de­

scribed by the analytic Sedov-Taylor blast wave solution (described in §(2.2) ). 

This solution is common to all feedback mechanisms which are characterized 

by the injection of a large amount of energy is a region small compared to the 

region over which the resulting effects are felt. 

1.3 Supernovae and stellar winds 

On a smaller scale, supernova and stellar winds introduce feedback into the 

evolution of the interstellar medium within galaxies. Although substantially 

different on small timescales, the result of both processes is to create a bubble 

in the ISM, whose evolution is given by the same Sedov-Taylor solution as 

for the evolution of the kinetic effects of AGN on their host galaxy. Several 

observations motivate the inclusion of feedback at this level, such as that 90% 

of stellar systems fail to evolve into open clusters (Lada & Lada, 2003). If the 

star forming region is initially gravitiationally bound, this implies that there 

is a process by which the gas in the star cluster is removed before futher star 

formation can be completed. This would also explain why the star formation 

in molecular clouds isn't very efficient (Fukui & Mizuno, 1991). 

A few of the more recent developments in the study of galaxy formation, 

with highlights from work that demonstrates the key role supernova explosions 

play in galaxy development, span scales ranging from the determination of the 

properties of a multiphase interstellar medium (e.g. Wada & Norman (2001)) 

to the evolution of dwarf galaxies as a whole (Mac Low & Ferrara (1999) show 
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that supernova feedback can remove some or all of the gas in dwarf galaxies). 

Feedback has also been shown to interact dynamically with the dark matter 

in early galaxies to flatten central density cusps, which are not observed in 

nearby galaxies (Mashchenko et al., 2006). 

1.4 Assessing the quality of feedback 

One the many struggles of numerical methods is always against the avail­

able computing power. When Hernquist & Katz (1989) first started their 

galaxy simulations, they had a particle count in the thousands. The change 

in the number of particles one can feasibly use in a simulation is of course 

a rapidly moving barrier thanks to Moore's Law, but the number currently 

stands around the order of 10, 0003 particles for a pure N-body simulation. 

For simulations with physical processes that have short dynamical timescales, 

that number can drop considerably; in the work done by Mashchenko et al. 

(2006), a simulation of 107 particles could take 600,000 CPU hours, with a 

stellar mass resolution of 100M0 and a gas mass resolution of 300M0 . 

The technological barrier that limits the practical resolutions possible in 

simulations motivates two behaviors in numerical methods - heuristics and 

investigations into minimal resolution requirements. Here, heuristic methods 

are defined as methods which replicate the effects of unresolvable physical 

processes on those that are resolved - i.e. heuristic methods are used to bring 

the effects of a sub-grid process up to a level where they can be resolved by 

the numerical method. Of course, when implementing a heuristic method for 

a large scale simulation, it can also be useful to run smaller scale simulations 
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to test if the heuristic method equates to the result of more basic physics. For 

the foreseeable future, the range of physical phenomenon that can be explicitly 

modeled within a global galaxy model will be a limited subset of all the physics 

that could be important to the evolution of the system, and it is knowing this 

that makes the ability to simulate physical processes with as little resolution 

as possible so valuable. Hence the ability to look at a situation where a 

large amount of energy is being released into a small volume, and watch as 

a numerical method evolved that most unresolved initial configuration into a 

physical solution is a rather desirable one. 

In coming up with a scheme to bring these sub-grid processes up to a level 

where they can be resolved by the numerical method, there are additional 

numerical constraints that must be met in addition to the physical goals. The 

numerical goals not only include the necessity of being correct, but also a need 

to have an independence from resolution, or, failing that, at least the ability 

to converge to a single answer with increasing resolution. The sub-grid model 

should also be analogous to the physical process, so that where one might be 

used, if it were possible to have the resolution required, the other can replace 

it without changing the result. 

The specific feedback mechanism that is the focus of this thesis is that 

of supernova explosions, but the general case of feedback arising from sub­

grid processes all involve the release of a large amount of energy in a single 

smoothed particle hydrodynamics (SPH) particle. The solution to the problem 

of a detonation in which the energy is released in a negligibly small volume 

in a uniform density medium is known analytically: the Sedov-Taylor blast 
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wave model (Sedov, 1946). Against this solution the results of injecting a 

single SPH particle with a large amount of energy can be compared, though 

the solution is not what is expected from a supernova explosion in the galactic 

plane: there, the background density has an exponential profile. For this case 

too, however, there is an analytic solution (Kompaneets, 1960), allowing for a 

more realistic test of the effects of the death of a star. 

The features of the shockwave that we wish to accurately reproduce are 

those that drive further physical evolution of the blast wave and its surround­

ings through their interaction with other physical processes. In particular, 

the density profile of the solution couples with cooling processes, such that it 

is important to generate a solution that is accurate particularly in the shock 

front, where the cooling of the gas is most intense, and where this cooling 

and the interaction with the surrounding medium will lead to instabilities. 

Equally important to cooling processes is the temperature of the gas in the 

blast wave. Lastly, the radius of the solution determines the scale over which 

the effects of the supernova explosion are important, which we wish to obtain 

so that multiple supernova events interact with a realistic timescale and fre­

quence. Additionally, the blast radius determines the amount of material that 

is caught up in the explosion. 

Recent work by Rosswog & Price (2007) and Price (2008) suggests that 

to be able to simulate accurately the Sedov-Taylor blast wave solution, the 

standard SPH equations must be modified. This thesis tests a number of 

initial SPH particle conditions run with both standard SPH and with a version 

of SPH that includes the modification proprosed in Price (2008), with the 
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aim of determining what is required to obtain the profiles of the important 

flow variables identified as density, temperature, and radius for the adiabatic 

explosion of a point-like source. 

1.5 Blast waves as test cases 

Together with the original Sedov-Taylor problem, the Kompaneets solution 

provides an excellent analytic test with which to qualitatively and quantita­

tively test the numerical solutions produced by SPH. The nature of these 

shocks, meaning the point-like dimensions of the initial explosion, in addition 

to the strength of the produced shock wave, makes them a significant chal­

lenge to try to simulate. In SPH, fluid quantities are best defined when they 

can be interpolated from several particles, making the initial condition for the 

Sedov-Taylor blast wave one of the worst possible; the injection of energy into 

a single SPH particle conflicts not only with the method's interpolation ap­

proach to finding fluid properties, but also the differential form of the fluid 

equations used in the formulation of SPH. Section §(3.1) gives an overview of 

smoothed particle hydrodynamics, and §(3.2) details the approach used in this 

thesis for solving the Sedov-Taylor blast wave problem. 

A less specialized form of this test can be constructed in which the ini­

tial energy deposition is smoothed so as to not be singular in the sense of 

numerical resolution, but such a test is not particularly difficult, and most 

current smoothed particle and grid codes recover the analytic solution with 

such an initial condition (Tasker et al., 2008). In this thesis, these tests are 

not used primarily for the strength of shock, but to measure the performance 
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of Gasoline (the code used throughout this work) when strong thermal energy 

discontinuities are present. Two versions of Gasoline are tested, one with an 

artificial thermal conductivity term (Price, 2008) and one without. As such it 

is the injection of all the initial energy of the blast into a single particle that 

is the interesting feature of these tests. 

Considering all of the possible methods by which a Sedov-Taylor blast 

wave problem can be set up for a SPH code, the focus of this thesis is on 

the a most extreme case. Three less specialized variants of the initial condi­

tions were tested with Gasoline, where the initial energy was smoothed over 

the nearest neighbors of the source particle, and where the initial particle dis­

tribution is a glass instead of a grid (with both smoothed and unsmoothed 

energy injection). In all cases where the initial condition does not consist of a 

set of gridded particles with one single particle dominating the total energy of 

the particle ensemble, standard SPH reproduces the Sedov-Taylor blast wave 

solution without difficulty. 
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1.6 Outline 

The purpose of the simulations reported in this thesis is to understand the 

requirements for modeling energy injection on sub-grid scales, including both 

resolution and initial particle configurations. 

They underlying theoretical work that describes the basic physics in this 

thesis is presented in chapter 2. This will cover the form of the hydrodynamic 

equations, §(2.1), and more specific behaviors of the fluids obeying Euler's 

equations of motion are detailed in the subsequent subsections of that chap­

ter. The directly relevant parts of the theory of Euler's equations include the 

equations for changes in the fluid variables as the flow passes through a shock, 

described in §(2.1.1). Once the basics of shock waves have been established, a 

specific case of shocking flows is described, a flow which results in the Sedov­

Taylor blast wave, §(2.2). This case is extended to scenarios in which the 

background density is fitted by an exponential, rather than being constant, 

and is discussed in §(2.3). 

After the basic physics has been covered, chapter 3 goes into depth as to 

how the fundamentals of fluid mechanics are used to actually numerically com­

pute the properties of a flow, using the numerical method of Smoothed Particle 

Hydrodynamics (SPH), for which a brief introduction is given in §(3.1). After 

this section comes an overview of the artificial thermal conductivity addition 

made to the standard SPH equations so as to allow the modeling of point-like 

explosions in SPH simulations, in §(3.2). Following the discussion on artificial 

thermal conductivity is a section detailing how the need for such modifica­

tions to the SPH equations is limited in terms of being able to simulate a 

10 
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Sedov-Taylor blast wave given different choices for the initial conditions of the 

simulation, §(4.1). The last section in chapter 3 shows how SPH reacts to a 

Sod shock tube (a particular flow problem commonly used as a test of numer­

ical codes, described in Sod (1978)) with particles of differing mass in the left 

and right gas states, §(4.2). 

Once the ideas behind artificial thermal conductivity have been reviewed 

in chapter 3, they are put into practice in several Gasoline runs, the results of 

which are reported in chapter 4. The tests performed included resolution tests, 

§( 4.5), parameter evaluation runs, §( 4.4), runs with initial particle distribu­

tions with are not grids, §(4.6), and detonations in an exponential atmosphere, 

§(4.7). 

Lastly, the thesis is summarized in the conclusion, chapter 5 
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Chapter 2 

Basic Physics 

2.1 Hydrodynamics 

The flow of inviscid ideal fluids is governed by the Euler equations, which 

specialize the conservation laws of mass, momentum, and energy for the hy-

drodynamic context. These laws can be formulated, respectively, as: 

&p 
&t + (pua),a = 0, (2.1) 

(2.2) 

&pE ( )} b Bt + { Ua pE + P ,a = puafa + pq; (2.3) 

where p is the fluid density, t is time, u is the velocity field with components 

ua, p is the pressure, fb the body force with components j~, q the heating 

rate per unit mass, and E is the total energy. Repeated indices are taken to 

be indices of summation. 

12 
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For three dimensional problems (o: = 1, 2, 3), equations (2.1) through (2.3) 

detail five conservation laws in six unknowns- p, U 0 " p, and E. In the energy 

equation (2.3), the total energy E is defined as 

(2.4) 

with e the internal energy of the system. Pressure, density, and internal energy 

are not all independent, and for an ideal gas equation of state with "( being 

the ratio of specific heats, they obey the relation 

p = ("'(- 1)pe. (2.5) 

The conservation laws (2.1) - (2.3) together with (2.5) fully describe the 

flow of ideal Eulerian fluids. Knowing the pressure and the density is enough 

to calculate the temperature of the fluid, using the ideal gas law 

pRT 
p=--, (2.6) 

J1 

where the temperature T is measured in Kelvin, R is the ideal gas constant 

R = 8.3145 x 107 cm2 s-2 K- 1 and J1 the mean molecular mass (taken to be 

0.62 throughout the work reported in this thesis). 

2.1.1 Shock waves 

Astrophysical flows are remarkable for the strong shocks that often develop 

in the interstellar medium, causing the flow variables such as velocity, pres-

sure, and density, amongst others, to change discontinuously. In general, the 

discontinuities in a flow can be categorized into two types, one of which is 

13 
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universally unstable and will spread to form a turbulent region, and the other 

corresponds to shocked flows (Landau & Lifshitz, 1987). For the general case, 

the locus of all points where the values of the fluid quantities are discontinuous 

defines a surface whose normal gives the direction of the discontinuities. Ap­

propriately, such a surface is called a surface of discontinuity, and in general 

it can move throughout the fluid, unconstrained by the motion of the flow. A 

result of this is that particles may cross a surface of discontinuity, meaning 

that there must be boundary conditions that are satisfied on the surface. 

One of these conditions is that the mass flux across the shock must be 

continuous. Denoting the two sides of the surface of discontinuity with suffixes 

1 and 2, and adopting the notation [pvx] = P1V1x- P2V2x, we must have 

(2.7) 

where the speeds v1x and v2x are the components of the flow velocities that 

are parallel to the surface normal of the shock, and are measured relative to 

the speed of the shock. 

Both the energy and momentum fluxes are already known from the Euler 

equations for the conservation of energy (2.3) and momentum (2.2): the energy 

flux is v(pE + p), where the velocity variable has changed to v from u in 

(2.3), and the momentum flux along a unit vector n is pni + pvivknk. The 

normal vector of the surface of discontinuity is parallel to the x-axis, so in 

that direction the momentum flux yields 

(2.8) 
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and the y and z components of the momentum flux yield 

(2.9) 

(2.10) 

Before giving the boundary condition for the energy flux, it is convenient 

to rearrange its form slightly: 

v(pE+p) = pv (~v2 +e+pfp). 

Taking e + p / p = w, the requirement that the energy flux be continuous across 

the surface of discontinuity means that 

(2.11) 

The two types of surface of discontinuity are delineated by the mass flux 

through the surface. If the mass flux is zero, Landau & Lifshitz (1987) show 

that vy and vz are discontinuous across the surface, and go on to show that 

such a tangential discontinuity is unstable for all velocities. In the case where 

the mass flux is not zero, the continuity conditions are equivalent to 

(2.12) 

[p+ pv;] = 0, (2.13) 

[~v; + w] = 0. (2.14) 

Given the tendency for astrophysical flows to form strong shocks, it would 

be nice to specialize the boundary conditions such that we know the behavior 

15 
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of the fluid quantities on either side of a high Mach number shock (where a high 

Mach number is defined by equations (2.26) and (2.27)). Dropping the bracket 

notation, and letting Vx become simply v as it is now the only component of 

the velocity that changes across the shock, (2.12) - (2.14) become 

(2.15) 

(2.16) 

(2.17) 

From these the following are easily obtained: 

(2.18) 

(2.19) 

An equation that will be useful is 

(2.20) 

which can be simplified using (2.15) to give P1 vi = v2v1 and similarly P2 v2
2 = 

{J2 {Jl 

v1 v2 . Substituting these into (2.20), 

(2.21) 

so that 

2 2 (1 1) v1 - v2 = Pl + p
2 

(P2- Pl) (2.22) 

by way of (2.18). Defining Vi = 1/ Pl and V2 = 1/ P2, 

1 
w1- w2 + 2(V1 + V2)(p2- Pl) = 0 (2.23) 
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follows from the substituting of (2.22) into (2.19). 

For the flows which have a constant 'Y and are adiabatic, w = 'YPV/(T- 1) 

(Landau & Lifshitz, 1987). Substitution into (2.23) gives 

v2 (T + 1)Pl + (T- 1)P2 

\It (T - 1 )Pl + ('Y + 1 )P2 ' 
(2.24) 

which can be used to find the ratio of the temperatures across the shock for 

T2 P2 (T + 1)pl + (T- 1)P2 

T1 P1 (T - 1 )Pl + (T + 1 )P2 . 
(2.25) 

These equations yield the limiting results for extreme shock waves, which are 

characterized by the condition that (T -1 )p2 » (T + 1 )p1 . When this condition 

is satisfied, 

(2.26) 

(2.27) 

2.2 Sedov-Taylor blast wave 

During a supernova explosion in a uniform density interstellar medium, the 

blast radius quickly becomes enormous compared the the dimensions of the 

dying star. In the regime where the wave is not too distant from the source, 

so that the shock strength is still large (though still distant enough so that 

the dimensions of the source are negligible), we can describe the supernova as 

a Sedov-Taylor blast wave. The solution is self-similar, derived in an analytic 

form independently by von Neumann (1941) and Sedov (1946). Earlier work 
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done by Taylor (1950) was completed in 1941, though not published until1950, 

and provides a simple method of deriving the approximate dependence of the 

blast wave radius on time using dimensional analysis. 

As a result of the assumption of a strong shock, the pressure discontinuity 

across the pre- and post-shock boundary is guaranteed to be large. To for-

malize the meaning of a 'strong shock' in this problem, take the ratio of the 

pressure p2 behind the shock to the pressure p1 in front of the shock to be such 

that 

P2/P1 » (t + 1)/(t- 1). (2.28) 

As shown in 2.1.1, this means that the density ratio p2/ p1 reaches its limiting 

value of (t + 1)/(t- 1), and so P2 = 4p1 for a monatomic gas (t = 5/3) or 

P2 = 6p1 for a diatomic gas (t = 7 /5). 

2.2.1 Dimensional analysis 

Since the problem is defined such that p 1 is always negligible compared 

to p 2 , there are only two parameters that can influence the movement of the 

shock wave, those being the initial gas density p1 and the energy released by the 

supernova, E. With these quantities and also considering the time t elapsed 

since the star went supernova, we can perform the dimensional analysis first 

done by Taylor (1950). The only combination of E, p1 and t that has units of 

length is E 115t215 p~ 115 , and so we must have for the radius of the shock wave 

( ) 

1/5 

R = {3 ~ t2/5. (2.29) 
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Due to the spherical symmetry of the problem, the motion is one-dimensional 

along the radial coordinate. 

2.2.2 Analytic solution 

In (2.29), the constant of proportionality, (3 was left undetermined, awaiting 

a full solution to the problem. Both Sedov (1946) and von Neumann (1941) 

independently arrived at an analytic solution to the equations of motion for a 

fluid for which the condition (2.28) is well satisfied. Following their solution, 

as presented in Landau & Lifshitz (1987), (3 is given by 

(35161r t G [~v2 + Z ] ed~ = 1. 
25 ) 0 2 'Yb- 1) 

(2.30) 

The integration is over the variable ~, which is the scaled radial coordinate, 

(2.31) 

and the variables Z, V, and G are defined by 

Z = "fb- 1)(1- v)V2 

2('YV- 1) ' 

G= "1+
1 

['Y+
1

('YV-1)]
113

{'Y+
1

[5-(3'Y-1)V]}
114 

['Y+
1
(1-V)]

115

, 
"(-1 "(-1 7-"( "(-1 
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3 
1/ ----
3- 2'[ + 1' 

Equations (2.32) and (2.30) show that {3 depends only on '/' 

(2.32) 

In addition to determining the value of {3 for a given '/', V, G, and Z 

describe the behavior of the flow inside the shock radius R. The values of the 

fluid velocity, v, density p and sound speed c inside the shock front are given 

by 

v = 2rV/5t, (2.33) 

(2.34) 

(2.35) 

The pressure in the region behind the shock can be recovered from (2.35) as 

Figure 2.1 shows the values of v, p, and p inside the blast wave, where 

the values have been normalized to their immediate post-shock values and are 

plotted against ~. 
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1.0--------~--------~----------------~--------~ 
D 

-v 
0.8 y•l.4 

o.s 

-p 
0.4 

0 .. 2 

0.2 0 .. 4 -r 

Figure 2.1: Normalized flow variables for 'Y = 1.4. The quantities in the figure, 
p, p and v are the normalized values of p, p and v given by (2.33)-(2.35), and 
f corresponds to ~- This figure is from Ryu & Vishniac (1987), in which it 
appears as Fig. 1. 
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2.3 Detonations in an exponential atmosphere 

Despite the successes of the Sedov-Taylor solution, many interesting astro­

physical problems occur in an ambient medium which is not uniform. Perhaps 

the most ubiquitous condition in which galaxy simulations are run is a disk 

structure, either assumed beforehand or evolved from more basic conditions. 

This structure leads to a hydrostatic solution with an atmospheric density 

given by an exponential of the form 

(2.36) 

with z being the coordinate along the gradient of the density and h the scale 

height of the atmosphere. The ability of an exponential atmosphere to model 

the H I gas in the Galaxy has been tested, and found to be lacking (Dickey & 

Lockman, 1990). Fortunately, of the three scale heights that characterize the 

three exponentials which form the basis of the density distribution put forth in 

(Dickey & Lockman, 1990), the smallest corresponds to an exponential atmo­

sphere. In the regime where the gas distribution is roughly exponential, we can 

use the work of Kompaneets (1960) and later investigations from Maciejewski 

& Cox (1999), who derive how a point explosion propagates into an exponen­

tial atmosphere. A sketch of the problem including the relevant quantities is 

given in figure 2.2, which comes from Maciejewski & Cox (1999). 

In order to arrive at the results of Kompaneets (1960), Maciejewski & Cox 

(1999) assume a density of the form given in (2.36), with p0 being taken as the 

density at the initial explosion point. The point on the shock that expands 

into the most rarefied background gas is a distance Z£ from the origin of the 
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t~nuous 

medium 

d~nse 
mediwn 

Figure 2.2: A sketch of the solution to the problem of a point explosion in an 
exponential atmosphere. From Maciejewski & Cox (1999). 
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blast, and complementing ZL is ZH, the distance to the point on the shock 

that is pushing into the most dense medium (figure 2.2 has a schematic of 

the situation with the quantities of interest labeled). The velocities of the 

shock at these points are VL and VH- The semi-major axis of the shock wave 

is then found through 2a = ZL- ZH- The rest of the labeled quantities are b, 

the semi-minor axis, s the distance between the initial explosion point at the 

plane that cuts through the widest part of the shock (which shall be referred 

to as the equator of the shock), and v8 , the speed of the shock at its equator. 

The pressure behind a strong shock p - 2 in a 1 = ~ ideal gas is related to 

the the density of the medium into which the shock is propagating PI and the 

velocity of the shock v by the equation (Spitzer, 1978) 

(2.37) 

If the various post shock pressures that result from the interplay between the 

exponential form of PI and variable shock velocity v are all the same (though 

not constant), then the resultant shock form is that given by Kompaneets 

(1960). In this case the shock speed varies along the shock so that 

(2.38) 

which we can write in terms of the unperturbed density at the source p0 using 

(2.36) 

(4P;.£ 
v=y~ezh. (2.39) 
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From the velocity function the rates of change of the axes of the shock 

follow, with the expansion rate of the semi-major axis a being the average of 

the velocity of the endpoint's of the axis, 

1 1~P2(~ ':1..) a = - ( V H + V L) = - - e 2h + e 2h • 
2 2 3po 

(2.40) 

The equatorial velocity gives the rate of change of the semi-minor axis b 

(2.41) 

and the change in the distance between the source and the equator again 

depends on the expansion along a, except that if both ends of the shock expand 

at the same rate, the s remains unchanged, so that instead of (2.40), the 

equation takes the form 

. VL- VH 1 ~P2 ( ~ ':1..) 
8 = = - - e 2h + e 2h • 

2 2 3po 
(2.42) 

The number of variables in the solution can be reduced by writing ZH = 

s-a and Z£ = s +a. With these substitutions, we can combine (2.40) and 

(2.41) give a solution for either a orb given the other, 

db a 
da = sech2h' 

or, integrating, 

b . a 
tan- =smh-

2h 2h 

Similarly, (2.42) and (2.40) yield 

e812h = cosh~ 
2h" 

25 
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Chapter 3 

Methods 

3.1 Smoothed Particle Hydrodynamics 

Several methods have been devised which focus on finding approximate 

solutions to the equations of fluid dynamics given in §(2.1), and various codes 

have been written to exploit the fairly well established techniques of finite 

difference and finite volume schemes applied towards the goal of capturing the 

behavior of complicated fluid dynamics. A relatively modern reference for such 

methods can be found in Wesseling (2001). Smoothed Particle Hydrodynamics 

(SPH) takes a markedly different approach to the same problem, employing 

an interpolation algorithm to replace the fluid with a discrete set of particles 

over which the flow quantities are distributed. This method of calculating 

the equations of motion for fluids was independently arrived at by Gingold & 

Monaghan (1977) and Lucy (1977), and for which Monaghan (1992) gives a 

thorough review. 
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3.1.1 Interpolation 

In § ( 2.1), the rates of change of the fluid variables can be seen to require 

the spatial derivatives of various quantities, and so regardless of the method 

used to numerically solve the equations of motion, approximate values for these 

derivative will have to be found (Monaghan, 2005). The striking difference be­

tween SPH and finite difference methods is rooted in how the derivatives are 

evaluated. Finite difference methods approximate the derivatives at a finite 

number of points which are the vertices of a grid, an approach that the SPH 

algorithm completely ignores, instead transferring the derivative terms onto 

the kernel function. The kernel function is then used in an interpolation oper­

ation to generate gradients, with the interpolation points being the particles 

that sample the fluid properties. 

3.1.1.1 Integral Interpolation 

The interpolation that SPH approximates is defined by 

A1(r) = J A(r')W(r- r', h) dr' (3.1) 

where A1 is the interpolated value of A at r, A being a generic quantity of 

interest. W is the kernel function, which depends on the displacement between 

the interpolation point and the location of the infinitesimal volume element 

dr', as well as a length scale h, which characterizes the response of W to a given 

displacement. In practice the kernel is taken to be radially symmetric, so that 

W(r-r', h)= W(r, h) with r the distance between rand r'. The code used for 

the work done in this thesis (Gasoline, c.f. Wadsley et al. 2004) implements 
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this symmetry through a kernel-averaging as proposed by Hernquist & Katz 

(1989): 

(3.2) 

The integration is performed over all space, and the generic properties of 

W are that it tends to the delta function for h ---+ 0, and is normalized: 

J W ( r - r', h) dr' = 1. (3.3) 

As such, the equation SPH seeks to approximate, (3.1), is itself an approxi­

mation of the identity 

A(r) = J A(r')8(r- r') dr'. (3.4) 

One of the more common kernels that can be found in SPH codes, and is 

the one used in Gasoline, is the cubic spline (Monaghan, 1992): with q defined 

as q = lxl/h, the cubic spline has the form (in three dimensions) 

4;h3 (2 - q) 3 
- 4(1 - q) 3

, for 0 ::; q ::; 1, 

M 4 (x) = 1 (2 )3 
47rh3 - q ' for 1 ::; q ::; 2, (3.5) 

0, for q 2: 2. 

3.1.1.2 Summation Interpolation and the Discrete Equations of Motion 

In order to discretize the SPH algorithm, the interpolation integrals for any 

quantity need to be modified so that they integrate over infinitesimal masses 

rather than volumes. Accordingly, let (3.1) be re-written as 

A1 (r) = j ;g:j W(r- r', h)p(r') dr' (3.6) 
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for which the summation interpolant is obtained immediately by noting that 

p(r') dr' is simply a mass element: 

(3.7) 

One feature of SPH is that there is a lot freedom of choice when it comes 

to choosing the exact form of the equation of motion of the system, and it can 

be beneficial to examine the various vector identities that transform equations 

from one form to another and allow for the exploitation of symmetric (and 

hence explicitly conservative) energy and momentum equations. With these 

considerations, Gasoline evolves hydrodynamical quantities with the following 

equations (Monaghan, 1992). 

Density is calculated from the sum 

n 

Pi= LmjWij· 
j=l 

(3.8) 

which follows directly from the interpolation sum given by (3.7). The momen­

tum equation takes the form 

(3.9) 

with the usual symbol notation, Pj is pressure, and vi velocity. Ilij is designed 

to mimic viscous forces, though for now the discussion of it is put off until 

section §(3.1.2). 

The energy equation is expressed in a slightly dissimilar manner compared 

to (3.9), instead using a form found in Evrard (1988), which is both explicitly 
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energy conserving, and also independent of non-local pressures (which has the 

nice result that the energy can't be driven negative by large pressure gradients). 

(3.10) 

with Ui the internal energy of the ith particle. 

3.1.2 Artificial viscosity 

Lucy (1977) first introduced an artificial viscosity into SPH to help with 

the stabilization of solutions, which remains one of the two most common uses 

for such a term. The other use is to allow the SPH equations to capture shocks, 

which is the main purpose of the Ilij term in (3.9). In Gasoline, the artificial 

viscosity is formulated as: 

for Vij · rij < 0, 
(3.11) 

otherwise, 

with 

/1ij = r 2 + 0 01(h· + h)2 ' 
ZJ " Z J 

(3.12) 

and rij = ri- rj; Vij =vi- vj; Cj is the sound speed. The term 0.01(hi + hj)2 

serves to prevent singularities. A large number of simulations have shown that 

values of a and j3 of 1 and 2 respectively works for most problems. 

The use of artificial viscosity to capture shocking phenomenon is particu-

larly important to this work, as the proposed thermal conductivity acts in an 

analogous manner for discontinuities in thermal energy, whereas the viscosity 

term smooths discontinuities in the momentum distribution. 
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3.2 Artificial thermal conductivity 

Artificial thermal conductivity has been advocated recently by (Rosswog 

& Price, 2007) and (Price, 2008) as a method to deal with numerical artifacts 

that become important when a flow has large discontinuity in thermal energy, 

or flows that are sensitive to small discontinuities. Price (2008) cites several 

fluid dynamics problems that have proven difficult to treat with SPH methods, 

including the the simulation of Kelvin-Helmholtz instabilities (a problem high­

lighted by Agertz et al. 2007), as well as multi-phase flows (Ritchie & Thomas 

2001; Marri & White 2003), which have been more effectively simulated with 

the inclusion of an extra diffusion term into the SPH equations. 

At the heart of the argument for the inclusion of artificial thermal con-

ductivity made in (Price, 2008) is the idea that SPH can be derived from 

a Lagrangian variational principle. Immediately this implies that the action 

must disappear on the surface of the volume of interest, so that the surface in­

tegral terms in the variational procedure vanish. One example given in (Price, 

2008) is that of the SPH continuity equation: 

.!!__ ""'mJ·w .. = """"m·(v·- v·) · V'W':··- j[p'v'W] · dS dt ~ tJ ~ J t J tJ • 
j j 

(3.13) 

Usually the compact support of the kernel function means that the surface 

integral is identically zero, but in the case of a discontinuity, any SPH formulas 

which assume differentiability will suffer an ignorance of the discontinuity. This 

isn't a new problem with SPH though, and as mentioned above in §(3.1.2), 

the use of numerical diffusion to smear out discontinuities so as they may 

be resolved by a differential system has long been in practice with numerical 
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viscosity. Earlier work by Monaghan (1997) provides dissipative terms in the 

rates of change of momentum and energy 

(
dv·) L av · (v·- v·) · r~--' = m . s•g ' J 'J \7. tv; .. 
dt J -:. ' •J' diss j p,J 

(3.14) 

(3.15) 

with the restriction the here the kernel must be symmetric (which is true for 

Gasoline). Also, e; isn't exactly the internal energy, it is something that has 

the form of internal energy, but only includes quantities that have components 

along the radius vector between particles i and j, e; = ~avsig(vi · rij) 2 + 

auv~igui· The choice of Vsig is made to eliminate the diffusion terms away from 

discontinuities where it is unwanted. From the thermal energy equation, 

du de dv 
-=--v·-
dt dt dt' 

(3.16) 

and the dissipation equations, Price derives a dissipative term for thermal 

energy which will be the focus of the work in this thesis. 

( du) =-'""" mj {~av · (v·· · r~·) 2 +a vu. (u·- u·)} r~· · \i'·U!:·· dt L -: . 2 s•g 'J 'J u s•g ' J 'J ' 'J' 
diss j p,J 

(3.17) 

where the term expressed as a difference of energies is the form of artificial 

thermal conductivity that used throughout most of the paper. au is a tunable 

parameter to adjust the strength of the diffusion terrr1. In §4, it is found that 

a value of 1 works well. 
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3.2.1 Signal velocities 

A major disadvantage to all dissipative terms is that they work to smooth 

out all gradients, whether they represent a discontinuous phenomenon or not. 

With artificial viscosity, this problem is alleviated by the fact that shock gra-

dients are continually steepened as the wave propagates. Unfortunately, a 

gradient in the thermal energy has no such property, so that they are perma­

nently reduced if diffused. So as to avoid excess diffusion, the signal velocity 

term in (3.17) is constructed so that it is zero away from discontinuities. Since 

pressure is continuous across a contact discontinuity, a signal velocity of the 

form (Price, 2008) 

u -
vsig- (3.18) 

will prevent spurious diffusion in cases where pressure gradients are not being 

balanced be external forces, for example gravity. In cases where they are, 

alternate forms of the v~ig may be substituted. 

It is interesting to look back at the start of this section, where it was 

stated that the SPH formalism is heavily abstracted away from the idea of 

discretizing space in order to directly evaluate derivatives. While much has 

been said about how SPH ignores discontinuities as a method derived from a 

Lagrangian, SPH does not fail when the a form of an interpolation equation is 

not consistent with one derived from a Lagrangian. In this light it is not obvi-

ous that introducing yet more artificial dissipation into the numerical workings 

of simulation codes is the only solution there is to this problem. In the con­

clusion of Price (2008), several alternative approaches are mentioned which 

are interesting in their own right, though as this thesis doesn't consider them 
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they will only be mentioned briefly. The first of these other trains of thought 

considers that artificial conductivity is a solution to an already known problem 

in SPH, that of an effective surface tension at phase boundaries and discon­

tinuities, and that a resolution to this excess tension could resolve many of 

the same problems that artificial thermal conductivity addresses (see Hu & 

Adams (2006) for more detailed information on the tension forces in SPH). 

Alternatively, one could go for the direct approach and calculate the surface 

integrals (along the lines of Katz (2001)), or else try to merge SPH with 

a Godunov scheme (a numerical approach to solving the Riemann problem 

across a cell boundary so as to evolve the fluid state on both sides of the 

boundary) and solve the Riemann problem for pairs of particles (Inutsuka, 

2002). 
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Chapter 4 

Results 

The aims of these point-explosion simulations are two-fold: the faithful 

reproduction of a Sedov-Taylor blast wave, the analytic form of which is given 

in §(2.2) constitutes the physical goal. The other criterion required of reliable 

simulations is an independence of resolution, or at least a convergence to a 

single solution with increasing resolution. The ability, or lack thereof, of stan­

dard SPH to form a physical solution to the problem of the point injection of 

energy into a single SPH particle in an array of gridded particles is a primary 

motivation for the development of a thermal conductivity term. To test this, 

two sets of simulations were run, the first of which uses a set of particles which 

are initially gridded. A second test of Gasoline using standard SPH shows 

that the initial particle distribution has a marked effect on the numerical so­

lution. After testing the results of Gasoline implementing the standard SPH 

equations using an initially gridded set of particles, the same initial condition 

is tested with Gasoline with a thermal conductivity term added to the SPH 

formalisms. These tests are separated into two sets; the first determines the 

value of au, the thermal conductivity parameter that scales the magnitude of 
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the artificial thermal conductivity term, given by equation (3.17). The second 

tests the effects of resolution on the result of the simulation. 

Lastly, a point explosion is set off in an exponential atmosphere using an 

initial condition in which the particles are gridded. The initial conditions are 

evolved with the artificial thermal conductivity term. This is the only test 

which requires a system of units, and the test is designed to be comparable to 

the work of another group working with a grid code, ZEUS-MP. The results 

of Gasoline with thermal conductivity are compared to both the ZEUS-MP 

results and the analytic Kompaneets solution. 

4.1 Initial conditions 

Four types of initial conditions were tested for the Sedov-Taylor blast wave 

problem. Of these four sets of initial conditions, only one proved difficult to 

simulate; for the case where the initial distribution of particles is on a grid, 

with the blast energy originally concentrated in a single particle on this grid, 

Gasoline implementing the standard SPH equations could not reproduce the 

correct dependence of the shock radius with time nor energy, R ex: E 115 and 

Rex: t2/5. 

The other three types of initial condition varied the particle arrangement 

and how the initial energy was deposited among the particles of the simulation. 

These variations were tested with Gasoline using the initial conditions: 

• gridded particles, blast energy smoothed over the nearest neighbors of 

the source particle ; 
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• glass particle distribution, blast energy smoothed over the nearest neigh­

bors of the source particle ; 

• glass particle distribution, blast energy concentrated in a single source 

particle. 

For theses simulations, the radial profiles of the gas density, pressure, velocity, 

and internal energy agree with the analytic solutions given in §(2.2). Tasker 

et al. (2008) shows that several SPH codes using an initial condition with 

particles relaxed into a glass and the blast energy added to 32 central particles 

perform similarly to Gasoline, and reinforces the fact that, with a suitable 

choice of initial conditions, this problem isn't a difficult one for SPH methods. 

In addition to testing Gasoline, another SPH code, Gadget2, which evolves 

an entropy equation instead of the thermal energy (Springel & Hernquist, 

2002), was run with the gridded particle initial conditions for the Sedov-Taylor 

blast wave test, with the energy deposited into a single SPH particle. The same 

problems were encountered with that code as were found with gasoline: the 

blast wave had severe radial asymmetries. Attempts to increase the artifi­

cial viscosity to prevent the particles from penetrating the shock wave were 

unsuccessful for both codes. 

The type of initial condition that is the focus of this work does not smooth 

out the initial energy deposition, nor does it attempt to relax the SPH particles 

into a glass before the simulation begins. It is for this problem, where the 

particles are initially gridded and where a single particle is injected with the 

blast energy, that a thermal conductivity term must be implemented. 

37 



M.Sc. Thesis-- Matthew low-- McMaster University- Physics and Astronomy-- 2008 

4.2 Variable mass particles 

One method of reducing the number of particles required in a simulation is 

to selectively increase the mass of particles in regions of the simulation where 

the resolution required is less than in more dynamic regions. However, if these 

sets of particles mix, the result is to have low resolution particles interacting 

with high resolution particles. As a simple test to gauge the behavior of SPH 

when particles of differing mass resolution are mixed, a variable mass Sod 

shock tube problem (Sod, 1978) was set up. The Sod shock tube consists of a 

box with a left and a right state. The states are defined by their flow variables, 

which are (with l subscripts denoting left state variable, and r subscripts the 

right state variables) 

u1 = 0, 

Pz = 1, 

Pz = 1, 

Ur = 0, 

Pr = 0.1, 

Pr = 0.125. 

(4.1) 

(4.2) 

(4.3) 

These states were recreated using a constant number of particles in the left 

state, and allowing the number of particles in the right state to vary, under the 

constraint that density Pr = 0.125. In this way simulation with fewer particles 

in the right state have a larger mass per particle in that state. 39 simulations 

were run, and in each case the density profile of the solution was compared to 

a Riemann solver solution. For each run, the quantity 

Xi= 2)P~- Pi) 2 

j 

(4.4) 

was calculated for all particles j, where pj is the density of simulation particle 

j, and Pi is the density at the position of particle j as given by the Riemann 
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solution. The quantity xi was calculated for mass ratio i between the particles 

in the left and right states. 

Figure 4.1 shows how x responds to an increasing mass ratio between the 

particles in the left and right states of the Sod shock tube. In the plot, x has 

been scaled so that x2 = 1. The mass ratios range from 2 to 60, with the 

range from 2 to 20 is sampled at intervals of 1. The range from 20 to 60 is 

sampled in intervals of 2. At a mass ratio of 8, there is a large increase in 

the relative error of the solution, which is not repeated. However, this may 

be due to the coarser sampling of the mass ratios larger than 20, so that such 

localized jumps in x are not resolved. The figure shows that for a mass ratio 

of less than 20, excluding 8-10, the relative error in producing the Sod shock 

doesn't increase with the mass ratio. However, the figure as a whole presents 

an exponential relation between mass ratio and relative error, such that for 

large mass ratios the error in the solution quickly becomes large. 

4.3 The need for an artificial thermal conduc­
tivity term 

The first detail to be addressed is the ability of standard SPH to solve the 

point explosion initial conditions using increased resolution in place of thermal 

conductivity. Particle tests of 323 and 643 were conducted, to measure the 

resolution response of Gasoline without a thermal conductivity term. In both 

runs, the particles are distributed evenly in a cube of dimensions 10 x 10 x 10. 

The center particle in the cube has an initial energy of E = 1 x 105 . The 

background density is PI = 1. 
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Figure 4.2 shows the cross section of a scatter plot of the particles at four 

times, t = 0.025, 0.05, 0.075, and 0.1, where the cross section is through the 

x - y plane, centered at z = 0. The first plot shows the initial evolution of 

a star-like pattern, which develops immediately after the simulation is begun. 

The six particles which form the nearest neighbors of the central particle into 

which the blast energy is injected move more quickly than any of the other 

particles in the simulation, causing them to create the four main spokes visible 

in the cross section (the other two spokes corresponding to the fifth and sixth 

particles are perpendicular to the plane of the crossection). A lesser amount of 

energy is transferred to the eight particles which form the set of next nearest 

neighbors. The dfccts of this excess energy can be seen starting from the 

second plot (t = 0.05, in which a secondary set of spokes evolves). While the 

explosion starts off as a square rotated with respect to the coordinate system, 

in the last plot (t = 0.1) there develops a spherical shock which lags behind 

the main spokes. 

The next figure, 4.3, plots the radial profiles of four fluid quantities, density, 

pressure, velocity and internal energy. Each profile represents the solution at 

time t = 0.1. The box symbols represent spherical averages over a shell of 

thickness 0.05, which helps to remove the effects of the asymmetries evident 

in the scatter plot. The solid black line in each of these plots shows the 

analytic solution. The first of these plots, the density profile, shows excellent 

agreement with theory for small radii. At larger radii, however, the solution 

deviates significantly from the analytic curve. These deviations are the result 

of inability of the run to predict the correct radius of the shock, with the density 

peaking at a radius of 4.25 (while the analytic value is 4.59, to three significant 
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digits). In addition, both the pressure and velocities inside the shock are lower 

than the analytic solution predicts they should be. The pressure profile can 

be seen to be qualitatively consistent with the velocity profile, with the lower 

pressures driving the gas at lower velocities, which in turn is consistent with 

the shock radius that is smaller than the analytic value. As a tracer of the 

ratio of pressure to density, the internal energy graph reflects the density and 

pressure profiles, and in particular the shock front can be seen to be spread 

across many particle spacings, reflecting the lack of a clear shock boundary in 

the scatter plot. 

Increasing the resolution to a particle count of 64 3 yields the next two plots. 

Figure 4.4 shows the same cross section of the particle scatter plot (showing 

the x - y plane centered at z = 0). The same pattern of spokes emerges 

along the directions defined by the nearest and next nearest neighbors of the 

central particle. The only effect the increased resolution can be seen to have 

had from these plots is the earlier transition from a cubic shock to a spherical 

shock behind the most extended spokes at earlier times as compared to figure 

4.2. The corresponding radial profiles show that the increased resolution has 

had no effect on the radius of the shock. The boxes again signify the same 

spherical shell averaging done in the previous radial profiles, in which each 

box represents the average value of a quantity over a shell of width 0.05. The 

solution follows the analytic curve more closely than in figure 4.3, due to 

the higher peak density value obtained in the higher resolution run. This is 

consistent with the density smoothing operation performed by SPH, in which 

shock fronts are spread out over a few particle spacings. With more particles 

in the shock front, the average particle spacing is decreased, leading to a 
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better resolved shock with a larger density value. The pressure and velocities 

qualitatively resemble those for the lower resolution run. The internal energy 

plot can be seen to follow the analytic curve towards zero much more closely 

than the same plot with only 323 particles, which again shows that the shock 

front is better resolved with the higher resolution. 

Each run had the same blast radius of 4.25 at time t = 0.1. Given the 

complete lack of scaling of the solution radius with resolution, it is clear that 

increasing the particle count cannot move a version of Gasoline which imple­

ments standard SPH towards the analytic solution given in chapter §(3). While 

no energy is lost in these simulations, the shock front lags behind its predicted 

value due to the work required to push out the particles in the asymmetric 

spokes. The time sequence in figures 4.2 and 4.4 shows that the anisotropies 

have been developing since the earliest stages of the blast. 

Table 4.1 gives the run parameters for figures 4.2 - 4.5. Figures 4.3 and 

4.5 show the dependence on radius of four fluid variables (density, pressure, 

velocity, and internal energy). Each box in these plots is a spherical average 

over a bin of size 0.05. This procedure was used to obtain a single value for 

the quantities being plotted, as the star-like structure evident in the scatter 

plots 4.2 and 4.4 would otherwise lead to three radial curves for each variable, 

one for particles whose radius is at the outer spoke, one for the particles at 

the outer edge of the spherical shock, and one for the particles at the inner 

edge (the difference between the last two is most noticeable in the 64 3 run, as 

is evidenced by its scatter plot). 
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Table 4.1: Parameters for resolution tests without thermal conductivity 
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4.4 Determining the best overall value of the 
artificial thermal conductivity parameter, au 

Since the addition of the thermal conductivity into Gasoline has introduced 

a new parameter that can be adjusted, its value must be determined. Price & 

Monaghan (2005) suggested a method for evolving the artificial thermal con-

ductivity parameter au, which evolves the parameter according the evolution 

equation 

dau =-au+ s 
dt T ' 

(4.5) 

where Sis a source term given by 

(4.6) 

Here, his the smoothing length, which is multiplied by 0.1 to keep the amount 

of dissipation small. In addition, there is a maximum value of au max = 1 , 

which is enforced throughout the evolution. A similar expression is given 

for the value of a, one of the coefficients of artificial viscosity, but Gasoline 

implements a constant value for the artificial viscosity coefficient, a = 1 and 

(3 = 2. From experience with artificial viscosity, it is unclear as to whether 

or not the value of au must be decided by such an evolution equation, and 

instead the same approach used for the coefficients of artificial viscosity is used 

for artificial thermal conductivity: the coefficient is kept constant. We know 

from the condition imposed on ( 4.5) that au is of order 1, and so we perform 

several runs of the point explosion problem with varying thermal conductivity 

coefficients with values consistent with this restriction. 

Four runs of the same initial particle conditions were done with au taking 

the values 0.25, 0.50, 1.00, and 2.00. Figure 4.6 shows the evolution of a point 
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explosion with a thermal conductivity coefficient au = 0.25. Although the 

relatively small amount of thermal conductivity has significantly reduced the 

asymmetry in the scatter plot as compared to figures 4.2 and 4.4, there are 

still noticeable deviations from spherical symmetry. Increasing au to 0.5 and 

running the same initial conditions yields the time sequence of scatter plots 

found in figure 4. 7. In this test the artifacts visible in runs without thermal 

conductivity are almost completely gone, although, especially at later times, 

there are still protrusions extending past the shell of the main shock. These 

persist for small increments past a value of au = 0.5, and in fact it isn't until a 

value of au = 1 that these finally disappear. The scatter plot of the particles in 

the run with a th(~rmal conductivity coefficient of 1 is shown in figure 4.8. The 

defects of the runs with smaller thermal conductivity coefficients are drastically 

reduced, but more importantly they do not become more prominent as the 

simulation progresses, unlike the runs with au = 0.25 and 0.5. As a test 

of further progressions of au to higher values, figure 4.9 shows the evolution 

of a point explosion with a thermal conductivity coefficient of 2. As with 

au = 1, the defects do not grow larger with increasing time, but neither does 

the simulation have any remarkable qualitative difference from the one with a 

coefficient of 1. 

From figures 4.6- 4.9, the minimal value of au which adequately recovers 

the spherical solution is 1, which is the value used for all further runs with 

artificial thermal conductivity. 
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Figure 4.7: Results of a gridded particle, point explosion simulation with 
Gasoline with thermal conductivity, with a thermal conductivity coefficient 
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Figure 4.8: Results of a gridded particle, point explosion simulation with Gaso­
line with thermal conductivity, with a thermal conductivity coefficient O:u = 1. 
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Figure 4.9: Results of a gridded particle, point explosion simulation with Gaso­
line with thermal conductivity, with a thermal conductivity coefficient au = 2. 
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Table 4.2: Parameters for resolution tests with thermal conductivity 
Run Label Resolution E P1 au 
TC1 64° 1.0 X 105 1.0 1 
TC2 323 1.0 X 105 1.0 1 
TC3 163 1.0 X 105 1.0 1 

4.5 Resolution sensitivity of the application of 
artificial thermal conductivity 

The scientific validity of any method is dependent upon the repeatability 

of the results. In numerical methods, one necessary condition on the behavior 

of a code or algorithm such that it is reproducible is that it must converge to 

a solution as resolution is increased. If this can be shown to be true, it is also 

nice to test the lower bounds on the resolution such that the solution arrived 

at is still suitably accurate, with the hope that introducing new algorithms 

won't increase the overall need for resolution in a code. 

All runs in this section have a central particle with energy E = 1 x 105 , 

embedded in an ambient density of p1 = 1. The simulation box size is 10 x 

10 x 10. The simulation parameters for each run are given in table 4.2. 

Figure 4.10 presents the scatter plot ofrun TC1, and in figure 4.11 are the 

radial profiles for the last bottom right scatter plot in figure 4.10. The radial 

density plot has a maximum value of 2.25, compared to the analytic maximum 

density contrast of four between the post-shock density and background den-

sity. Despite the low peak density, this result is encouraging when compared 

the peak density of the run TC2 with a resolution of 323 particles: in this run, 

the peak density is 1.9 for the same time, so that increasing the resolution of 

a simulation brings it closer to the analytic value. A similar analysis holds 
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true for the density in the middle of the shock, which is elevated above the 

analytic value, though not so much as in the case of lower resolution. The 

radius of the shock matches extremely well with the analytic solution, and 

immediately after the the shock the density profile falls off parallel to the 

analytic solution, though the simulated and predicted curves do overlay one 

another, as a consequence of the smaller peak density in the simulated curve. 

Shortly after the shock, the slope of the simulated density curve can be seen 

to differ from the analytic solution, so that the simulated density curve, which 

is initially underneath the analytic curve, crosses over and then remains above 

the analytic curve as r goes to zero. For the simulations run for this thesis, 

the excess density doesn't pose much of a concern, and as already mentioned, 

the central density can be made as small as desired with increased resolution. 

However, in a more elaborate simulation which includes cooling, the elevated 

density with the high temperatures that remain in the core of the supernova 

remnant could lead to artificially high cooling rates which negatively impact 

the accuracy of the results. Such tests are a good direction for future work. 

The pressure curve in figure 4.11 mirrors the excellent placement of the 

shock radius seen in the density profile, and on average the post shock pressure 

curve follows the analytic curve as r goes to zero. There is however a ringing 

of the pressure after the shock, which is also identified in Rosswog & Price 

(2007), and seems to be the lasting effects of initiating the blast in a gridded 

initial particle distribution. The velocity profile gives good agreement with 

the Sedov-Taylor solution, while the internal energy profile reflects the density 

and pressure plots, from which it can be constructed as a ratio of pressure 

to density. The elevated density as r goes to zero is reflected in the internal 
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energy profile where the simulation curve falls below the analytic value in the 

same region of radius. At the same radius where the simulated density curve 

crosses the analytic one, the simulated internal energy curve crosses its exact 

counterpart, with a slight oscillation reflecting the post shock ringing in the 

pressure profile. The last feature of the simulated internal energy, the final 

increase before falling off to zero, replicates the small peak density at the shock 

radius. 

Next are the results of run TC2, with a resolution of 323 particles. The de­

crease in density has no effect on the radius of the shock, which remains true to 

the analytic value of 4.59. The peak density is decreased somewhat compared 

to run TCl, with a maximum value of 1.9. The same general comments about 

the form of the density curve compared to that of the analytic solution can 

be applied to this run, where the slope immediately behind the shock matches 

well with the analytic solution, but for radii smaller than about four, the slope 

becomes noticeably smaller than predicted. Despite this discrepancy, the pres­

sure curve approximates the exact solution well, with only a slightly higher 

slope post-shock as compared the Sedov-Taylor solution. With the decrease 

in resolution, it becomes hard to tell if the solution has the same post shock 

oscillations as in run TCl, or simply a large pressure spread at the same range 

of radii. The average velocity profile follows the analytic curve closely, though 

the characteristic noise of velocity measurements in SPH causes a lot of scatter 

about either side of the exact solution. Once again the features of the density 

profile can be seen mirrored in a different form in the internal energy profile. 
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profile. All profiles are for t = 0.1. 
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Figure 4.13: Run TC2 radial profile plots. Solid lines are the analytic solution 
curves. Upper left: radial density profile. Upper right: radial pressure pro­
file. Bottom left: radial velocity profile. Bottom right: radial internal energy 
profile. All profiles are fort= 0.1. 
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The last run is labeled TC3, has a resolution of only 163
. Figure 4.14 

demonstrates that some of the spherical symmetry present in the solution with 

resolutions of 323 and 643 is lost with such a low particle count. However, the 

density profile in figure 4.15 shows that despite the lack of symmetry, the radius 

of the shock still matches the analytic value of 4.59. The other radial profiles 

suffer from a large amount of noise compared to the number of particles there 

are, making the pressure profile in particular hard to evaluate. The velocity 

profile is characteristically accurate, if not particularly precise. 

4.5.1 Summary of Resolution Tests 

Table 4.2 gives the resolution values for three runs reported in figures 4.10 

- 4.15. Note that, in contrast to figures 4.2- 4.5, no averaging has been done 

to create these plots. the point plotted represent individual particles. The 

three runs show that the radius of the shock is reproduced for all resolutions, 

so by that measure resolution has a negligible effect on the ability of a thermal 

conductivity term to operate. Fortunately, the peak density does not remain 

constant, nor does the minimum density that is approached as the radius goes 

to zero. For a run with 323 particles, the peak density has attained a value of 

1.9 at t=0.1, whereas the run with 643 particles has a peak density of 2.25 for 

the same time, demonstrating that with larger resolutions the highest density 

jump possible will be obtained. Also, since the number of particles that are 

present in the shock increases with time, the peak density value in the shock 

will tend towards the limit of Pshocked/ Punshocked = 4. 

61 



M.Sc. Thesis-- Matthew low-- McMaster University- Physics and Astronomy-- 2008 

Particle Plot 
,........, 
"-' ..... 4 ...... 
>=:: 
;::::1 

>. ..... 2 ~ 

.b ...... 
-€ 
~ 0 
,--.., 
>. 

'-" -2 >=:: 
0 ...... ..... ...... 
"-' -4 0 

0-. 

-4 -2 0 2 4 
Position (x) [arbitrary units] 

4 

2 

0 ... 

-2 .... 

-4 

4 

2 

0 

-2 

-4 

4 

.. 

-4 -2 

. . . : . . . . . · . 

2 ::.. . . 

0 ..... 
· .... 

-2 ::. . . 

-4 .... 

0 

-4 -2 0 2 4 -4 -2 0 

Figure 4.14: Run TC3 particles plot sliced through z 
0.025, 0.05, 0.075, 0.1. 

62 

... 

.. 

2 4 

·. ·. · ... 

· . 
. . ··. 

.· .· .. 

2 4 

0 at t 



M.Sc. Thesis-- Matthew low-- McMaster University- Physics and Astronomy-- 2008 

4 

3 

0 ...... 
~ 2 
Q) 

0 

1 

10 
0 ...... 
(.) 

0 

~ 
5 

0 2 3 4 5 6 
r 

·'· .. ~·· . 

:?~. 0 ~,. 

0 1 2 3 4 5 6 
r 

250 

200 

~ 150 
::l 
"-' 
"-' 

J: 100 

50 

1000 

100 

0 2 3 4 5 6 
r 

10~~~~~~~~~~ 

2 3 4 5 6 
r 
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profile. All profiles are fort= 0.1. 
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Similar in behavior to the peak density in the shock, the limiting density 

value in the middle of the interior drops with increasing resolution, so that here 

too the solution can be expected to tend to the analytic curve with increasing 

resolution. 

Although it is impressive that the 163 run was able to reproduce the radius 

of the shock, the particle scatter and significant errors in the pressure profile, 

in particular, indicate that such low resolutions are at the floor of what would 

be required to resolve a supernova explosion in a real simulation. 

The internal energy plots should be interpreted as reinterpreting the same 

information that is available in the density and pressure profiles, an in par­

ticular the departures of the internal energy plots from the analytic solution 

only reflect the errors in either the density profile or the pressure profile. Since 

the pressure profiles are quite good for both runs TCl and TC2, the errors 

in the internal energy are attributable to the overdensity in the middle of the 

solution (which tends to incorrectly lower the internal energy near r = 0), and 

the low peak density at the shock (which raises the internal energy at that 

radius). 
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4.6 Stepping away from grid initial configura­

tions 

Looking in detail as to how the anisotropies develop in the runs usmg 

gridded particles as an initial condition, the first time step of any run reveals 

that energy is preferentially being distributed to the six particles that are the 

nearest neighbors of the detonation particle. As a test to see what happens if 

the particles are arranged in a disordered state, so that there are no directions 

defined by the chaining of nearest neighbor vectors, a run was set up to mimic 

the tests performed above, but with the particles arranged as a glass, rather 

than grid, configuration. The particles are settled into their glassy state by 

evolving an initial grid configuration of particles with a energy operator that 

removes 20% of the particle's velocity every time step, so that the particles 

move into their equilibrium position and then their velocities are killed off, 

leaving them in a stable state where the there are no preferred directions for 

finding nearest neightbours. 

The resolution is set to be the same as that of run TC2, that is there 

are 323 particles, and the source particle is given the same amount of initial 

energy, E = 105 . The background density has an average value of p1 = 1, and 

the simulation box size is 10 x 10 x 10. The profiles reported in figure 4.16 

have values which have been spherically averaged as, despite the accuracy of 

the results, there was a lot of noise in the raw particle plots. Each value is 

averaged over a radial bin of size 0.05. The profiles were taken at timet= 0.1. 

No thermal conductivity was used. 
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Figure 4.16: Gasoline run using a glass initial condition, without any thermal 
conductivity. The input energy E = 105 as in previous tests. All profiles are 
fort= 0.1. 
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The density profile matches the Sedov-Taylor analytic curve down to a 

radius of approximately 3, where it starts to become elevated by about 0.1. 

This is reflected in the internal energy plot, where for radii smaller than 3, the 

simulation values start to fall below the analytic curves. At the shock front, for 

which the shock radius is captured well by the simulation, the peak density is 

3.45, slightly less than 14% lower than the maximum value of 4. The pressure 

profile shows that the simulation results and analytic curve agree up until the 

the shock front is met, where the peak pressure is only 182, instead of the 

250 that is predicted. The velocity profile recreates the analytic velocity curve 

well, with increasing variance at small radiance and near the shock. Also, when 

the particle noise is averaged out, the shock is captured with a comparitively 

compact width. 
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4. 7 Detonations in an exponential atmosphere 

The last type of simulation that was performed was a blast going off in 

an exponential atmosphere, the analytics of which were presented in §(2.3). 

Since this problem must now worry about gravitational effects, the solution 

isn't dimensionless. In figure 4.17, the unit of length is 100 pc, and the solution 

is presented after 1.5 Myr. The initial energy is 1.41 x 1051erg, and the scale 

height of the atmosphere is 100 pc, so that there are three scale heights from 

the bottom of the box to the top. These values allow for a comparison to 

made to the work of Stilet al. (2008), who used ZEUS-MP (Norman, 2000) to 

look at the bubble blown out by a more continuous energy injection. While 

figures 4.17 and 4.18 allow only qualitative comparisons, they appear to agree 

well with each other. A better test of the Gasoline run is the semi-minor to 

semi-major axis ratio of the bubble when a= 1.7h, which is b/a = 0.88, only 

2% off its analytic value of 0.9 at that time (Maciejewski & Cox, 1999). 

For the very late evolution of the supernova in the exponential atmosphere, 

Figure 4.19 shows the scatter plot of the blast wave. The figure is shown at 

a time t = 20M yr. The blast wave extending perpendicular to the density 

gradient expands 30% beyond the value given by the Kompaneets solution, 

however in contrast to the semi-minor axis, the semi-major axis only 3% less 

than the expected analytic value. 
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Figure 4.17: Detonation in an exponential atmosphere. The unit of distance 
on the figure is 100 pc. 

Figure 4.18: An analogous simulation run by Stil et al. (2008) 
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-· 
Figure 4.19: The supernova bubble that evolves from Figure 4.17. The time is 
20 Myr (as opposed to 1.5 Myr in Figure 4.17). The unit of distance is again 
100 pc. 
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4.8 Discussion 

When a large amount of energy is given to single SPH particle in a gridded 

particle distribution, the standard equations of SPH are unable to reproduce 

the Sedov-Taylor blast wave solution that describes just such a detonation. 

The inability to simulate the blast radius is independent of the resolution used 

to simulate the explosion, and so for the special case where the particles are 

arranged in a grid and all of the explosion energy is given to one particle, the 

introduction of a artificial thermal conductivity term is required. 

In introducing the artificial thermal conductivity into the SPH equations, 

an additional free parameter becomes available, and it is assumed, through 

analogy to the coefficients of artificial viscosity, that this parameter can be 

taken as constant. In the Sedov-Taylor blast wave problem, the value for the 

thermal conductivity coefficient au that best simulates the analytic solution 

is 1. In testing with three different resolutions as well as with an exponential 

atmosphere explosion, the assumption that au can be held constant is upheld, 

and no change to this parameter is found to be needed. 

The artificial thermal conductivity term introduced into the SPH equations 

solved by Gasoline allows for the problem of the blast wave resulting from the 

injection of a large amount of energy into a single SPH particle amongst a 

grid of particles to be accurately simulated with respect to the radius of the 

shock wave. Tests at various resolutions show that the radius of the resulting 

shock wave at a certain time is independent of the resolution used in the 

simulation. However, the peak density achieved at the shock front, was well as 

the density in the center of the explosion do depend on the number of particles 

71 



M.Sc. Thesis-- Matthew Low-- McMaster University- Physics and Astronomy-- 2008 

used, with increasing resolution leading to a better value for both the peak 

shock density and the central remnant density. Since the number of particles 

that are caught up in the shock increases as the shock propagates through 

the background medium, the peak density of the shock increases towards its 

limiting value as time increases. 

A more physically interesting test is that of the detonation in an expo­

nential atmosphere, where the inclusion of the thermal conductivity term into 

Gasoline was required for the successful simulation of a blast wave given by 

Kompaneets' solution at early times. In addition to agreeing with the Kom­

paneets' solution after 1.5 Myr, the test agreed with work done by Stil et al. 

(2008), whose simulations were done with the grid code ZEUS-MP. 

Evolving the detonation in the exponential atmosphere further, the semi­

major axis of the blast wave followed Komapaneets' solution to within 3% 

up to 20 Myr, after which the blast wave escapes the atmosphere and its 

evolution could not be followed further. However, the semi-minor axis shows 

considerable deviations away from the analytic value ( 30%), with the largest 

discrepancy occuring at the height of the original detonation. 

The need for an artificial thermal conductivity term is not universal how­

ever: using an initial condition in which the particles are not forced into a 

gridded initial state, but are instead allowed to relax into a glass state, leads 

to a Sedov-Taylor blast wave solution when the initial energy is deposited into 

a single particle, but no thermal conductivity is used. This result is encourag­

ing for cosmological simulations, in which the particles never find themselves 
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back in a gridded structure in high density regions once the simulation has 

started. 

Of the three key features of the blast wave solution (density, tempera­

ture, which is directly related to the energy in these adiabatic explosions, and 

radius), only the radius of the blast consistently matches the Sedov-Taylor 

solution for the runs with gridded particles and no smoothing of the injection 

energy. However, with the artificial thermal conductivity term, the density and 

internal energy can be made increasingly accurate with increasing resolution. 
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Chapter 5 

Conclusion 

A method for resolving discontinuities in the thermal energy of a flow has 

been introduced in the Gasoline code. With this artificial thermal conductivity 

term, an initial condition in which a single particle was given a large amount of 

energy and placed in the middle of a grid of relatively pressureless gas particles 

can be evolved to form a solution with both properties that are independent 

of resolution and properties that converge with increasing resolution. The 

expected solution to this scenario is the Sedov-Taylor blast wave, and this 

solution is recovered with varying degrees of success. In comparison to the 

case where the code is run without artificial thermal conductivity, the evolution 

of the initial conditions described above shows a noticeable difference in all 

aspects, from the visible symmetry of the solution to the radial profile of the 

flow variable pressure, density, velocity, and internal energy. 

For the initial particle setup that has all the particles on a grid, the results 

of Gasoline with thermal conductivity are measurably closer to the Sedov­

Taylor solution than the results without. The evolution of the blast radius 

with time shows excellent agreement with theory, and it is an agreement that 

doesn't depend on the resolution of the simulation. Other measures with which 
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to compare the analytic solution and the simulated one, such as the density at 

the shock or the density behind the shock in the center of the remnant show 

that the numerical solution does not agree completely with the Sedov-Taylor 

solution, but that these discrepancies decrease with increased resolution, so 

that the numerical goal of convergence is achieved. 

The elevated density in the core of the remnant suggests an interesting 

avenue for further work, which is to run the test with a cooling function ac­

tivated in the code. This would allow for the determination of how much the 

excess density would affect the ability of the supernova remnant to expand out 

into the surrounding medium, and if the cooling of the overdense gas would be 

enough of a drain on the energy sustaining the expansion of the supernova's 

bubble to cause it to cease its Sedov-Taylor like evolution before it otherwise 

would. 

When the particles where not initially arranged on a grid, but instead 

allowed to relax into a glass configuration, the need for an artificial thermal 

conductivity term was seen to disappear. This result is a confirmation of the 

long observed behavior of SPH simulations to be able to more easily simulate 

a process when the particles are allowed to reach this glassy state, rather than 

being set up on a grid. The test of a detonation in an exponential atmosphere 

compared favorably to both the analytic solution given by Komapaneets, as 

well as the work of another numerical group (Stilet al., 2008) working with a 

grid based code, ZEUS-MP. 

The need for artificial thermal conductivity should be recognized as being 

limited in terms of the type of problem that requires such a modification to the 

75 



M.Sc. Thesis-- Matthew low-- McMaster University- Physics and Astronomy-- 2008 

SPH equations. In runs where there is sufficient resolution to model the blast 

energy as being distributed over the neighbors of the source particle, Gasoline 

and SPH in general produce simulation results which match the Sedov-Taylor 

solution, regardless of the initial particle distribution. For particles which are 

allowed to relax to form a glass before the energy is injected into the simulation, 

standard SPH is again able to match the analytic solution. However, for a 

simulation run with particles initially on a grid, and with the blast energy 

concentrated in one particle, standard SPH fails to recreate the Sedov-Taylor 

solution. The interest in such a case comes from the desire to have an sub­

grid processes captured accurately in terms of its effects on processes that are 

resolved. With artificial thermal conductivity, point-like energy feedback in a 

set of gridded particles can be accurately modeled. 

In his paper, Price (2008) argues that 'The need for such an artificial 

thermal conductivity contribution in order to resolve discontinuities in thermal 

energy is almost universally ignored in SPH formulations.' However the work 

done in this thesis makes a weaker conclusion as to the necessity of the artificial 

thermal conductivity term: in simulations of a point-like explosion, such a term 

is only necessary when the initial particle configuration is a grid, and where the 

blast energy is initially confined to a single SPH particle. For such an initial 

condition, the blast radius given by the Sedov-Taylor solution is recovered, 

while the density and internal energy profiles are limited in accuracy by the 

resolution of the simulation. 
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Appendix A 

The simulation parameters and analysis tools used for the work done in 

this thesis can be found at www.imp.mcmaster.ca/ ""'lowmd. 
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