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Abstract 
We look for time-dependent solutions to a general class of supergravity models in an arbitrary amount 

of dimensions. Previously, many static solutions of these models have been found and studied, of 

which a subclass of these solutions support membrane-like configurations. While many properties 

of these solutions are known, their dynamics - and therefore stability - are not. We follow this 

motivation, and investigate the possibility of time dependent solutions that will also support this 

membrane configuration. Under various conditions, it turns out this is the case, bringing a better 

understanding to the stability of these branes. In addition, the form of the time dependence found 

suggest possible applications of supergravity to cosmological models. 
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Chapter 1 

Introduction 

Supergravity was originally developed as an extension to a supersymmetric theory that incorporated 

gravity. While it is beyond the scope of this thesis to fully motivate supergravity (and supersymme­

try), as well as the field content, reviews of supergravity (as well as motivation) can be found here 

[1, 2, 3], as well as original research developing supergravity here [4, 5]. As a brief summary, the 

original motivation was that if supersymmetry was to exist (a special symmetry of flat space-time in­

volving particles of different spin), then some form of supergravity must exist as well (supersymmetry 

in a curved space-time, a natural generalization to flat space-time). 

Also, since string theory itself requires supersymmetry to be a consistent theory, supergravity 

again is an important theory (in fact, it describes the low energy behavior of string theory). Since 

string theory requires ten dimensions to be a consistent theory [5], the supergravity from string 

theory exists in more dimensions than was originally investigated. Since string theory, at this point 

in time, is a very promising candidate as a theory of nature, the study of supergravity and its 

ramifications is thus well motivated. 

1.1 Branes in Supergravity 

The class of supergravities considered in this thesis are those which are derived from string theory. 

This class can be found here [2]. Since string theory itself has a very constrained field content [2], 

so must the corresponding class of supergravities. One of these fields, 

(1.1) 

is ann-form. An-form is simply an antisymmetric rank-n tensor, with some convenient mathematical 

properties. One of these is that it naturally describes a n-hypersurface in a D dimensional manifold 

(therefore n < D). A good example of this is a parallelogram, which has area described by the 
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antisymmetric product (cross product) of the two vectors corresponding to its two sides. It is thus 

this sort of term which can naturally source the presence of a special hypersurface (henceforth referred 

to as a brane) in our manifold. The brane can naturally couple to the gauge potential n -1-form of 

the field strength n-form itself (which is referred to as the electric case in the literature), or the gauge 

potential of its dual D- n-form (the magnetic case). The dual of a form can simply be thought 

of as the dimensions the n-form doesn't span. It turns out that this general class of supergravity 

theories has been solved with some specific symmetry in a static configuration in both the electric 

and magnetic case. 

Figure 1.1: Spatial mock-up of both electric and magnetic static solutions. The radial distance 
from the "throat" represents radial distance from brane. The angular direction about the "throat" 
represents all angular directions about brane. The directions on the brane are maximally (Poincare) 
symmetric. Image taken from K.S. Stelle review on supergravity p-branes. 

These turn out to have many of the same properties of black holes, and are thus dubbed 

"black branes" 1 . In both cases, there exist a horizon of no return, making a striking connection 

to Schwarzschild-like solutions in canonical gravity. However, the dynamics of these branes are 

unknown, and embedding them in a cosmological scenario is impossible without including time 

dependence (since observations have made it fairly clear that the universe is not static.) This is 

interesting as it may lead to possibilities of our visible universe being confined to one of these "black 

branes". 
1 Aside from Stelle's review, see [6, 7, 8, 9, 10, 11, 12, 13] for an explicit treatment of these branes, and their relation 

to D-branes in string theory. 
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1.2 Time Dependence- Motivation and Methods 

As was mentioned, time dependence opens up interesting possibilities due to investigation of sta­

bility as well as cosmological ramifications of black branes. However, including time dependence 

undoubtedly makes the problem of solving the field equations more difficult. The inclusion of a sec­

ond variable dependence changes the problem from a set of Ordinary Differential Equations (ODE's) 

to a set of Partial Differential Equations (PDE's), as well as a reduction in the overall symmetry 

involved in the problem. These two factors can combine to create quite an intractable problem in 

general. 

However, some work has already been done to include time dependence to already-known static 

solutions in specific cases of supergravity.[14] It is with this ansatz of a power-law time dependence 

that the time dependence remarkably decouples from the field equations, leaving a slightly more 

complicated set of ODE's than in the static case. Remarkably, this type of solution is possible for 

not just the aforementioned supergravity (six dimensional chiral flavour), since it exploits a scaling 

symmetry which is common to all of these supergravities. 

Finally, this same research has led to useful methods in solving these equations. The methods 

employ essentially using the Hamiltonian formalism of general relativity (for a thorough treatment of 

the Lagrangian/Hamiltonian formalism, as well as the ADM decomposition, see appendix E in Wald 

[15]). We have the understanding that the reduced field equations (after applying an ansatz) must 

also be able to be formulated from a Lagrangian standpoint (which can be thought of as substituting 

the ansatz in the full action) with a constraint equation in the form of a Lagrange multiplier (to 

preserve the Bianchi identity). From this reduced action, many properties become apparent about 

the symmetries, as well as methods for simplifying the equations, which could not originally be 

easily seen from the equations of motion themselves. In this, we use both of these methods for 

finding time-dependent brane solutions in a general supergravity. 

1. 3 Conventions 

We use the mostly plus metric, diag(-1,1, ... ,1). To denote all dimensions, we use M, N ... . To denote 

the compact dimensions, we use m, n... . To denote the usual extended dimensions, we use f..L, v ... . 

To denote the extended spatial dimensions, we use i,j ... . Finally, in chapter 2, denoting all spatial 

dimensions (both compact and non-compact) is necessary. For this chapter, and this chapter alone, 

we use o, {3... to denote these conventions. Curvature conventions are those which are used in 

Weinberg [16]. Finally, the conventions for field normalization and coupling constants are different 

from those in [2], with appropriate redefinitions connecting the two conventions given in Appendix 

A. 

3 
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Chapter 2 

Equations of Motion 

Looking for solutions in any gravity theory requires careful exploitation of the symmetries at hand. 

The focus of this chapter is first to find the equations of motion that govern a general supergravity, 

and then look for symmetries in these equations that may be exploited to look for time dependence. 

While the results of this chapter will be more general than necessary when investigating the properties 

of branes, it will give us a better idea of what ansatz to use (in terms of time dependence) in later 

chapters when more symmetries are available to us. 

2.1 Action and the Full Field Equations 

The action for a general D-Dimensional supergravity, parametrized by a scalar field (called the 

dilaton) coupling a, and the rank of the form field n is 

S =-J dDxJ=9 [ 2~2 (R + '\1 M¢V'M¢) + ~ea¢ F[;]J 

= j dDx.z, 

where F 2 means FMN ... FMN .... The Einstein equation is obtained by the condition that 

8S 
8gMN = 0. 

(2.1) 

(2.2) 

(2.3) 

We trace-reverse the Einstein equations by employing the following trick. Using the fact that the 

functional derivative is Leibniz, and (2.3), we get 

(2.4) 

5 
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where g = det(gM N) - making (2.4) our Einstein equation. Taking the trace of (2.4), we obtain 

D 2 MN 8 2 
----g ----
2 A- 8gMNFg" 

(2.5) 

We now take the functional derivative of ~ with respect to the metric. We use the fact that the 
y-g 

Ricci tensor transforms as a total derivative, and thus is effectively constant with respect to the 

variation, as is shown in Chapter eleven of [17]. This gives 

(2.6) 

(2.7) 

We now trace-reverse the Einstein equations. The meaning and purpose of trace-reversing is to use 

the relationship of the Ricci scalar in terms of the other scalars (that is, F 2 and ( 8¢ )2) to eliminate 

it from the Einstein equations. This in turn makes the resulting field equations have a different form 

than the canonical Einstein equations. Using the trace condition, (2.5), we obtain 

(2.8) 

Substituting (2.8) into (2.4) gives us 

(2.9) 

which are our Einstein equations. The dilaton equation comes from taking the functional derivative 

with respect to ¢. This is simply 

(2.10) 

(2.11) 

(2.12) 

6 
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where 0 = )=gaMFgaM. Finally, to obtain the equations for the Maxwell field, we take the 

functional derivative with respect to the n - 1 form field AM .... Remembering the antisymmetry of 

the form field, we take 

88 
= 0 (2.13) 

8AMN ... 
8 2' _ 1 at/> PQ... 8 

8A c;:. - 2e F 8A [V' pAQR. .. - '\7 QAPR ... - '\7 RAQP- ... ] 
MN ... y-g MN ... 

_ 1n ( ac/>pPQ ... ) [>Lt:Mt:N ~:Lt:Mt:N t:Lt:M~:N ] --2VL e UpUQUR···-UQUpUR···-uRuQup ... - ... 

= -~'\i'M (ea<l>pMN ... ) 
2 

'\i'M(eac/>pMN ... ) =0, (2.14) 

which gives us our final set of field equations - the Maxwell equation. We're in a position to fully 

state the full field equations relevant to the problem at hand. These are 

1 n at/> [ . . . ( n - 1 ) 2] _ 

2,..2 (RMN + 8M¢8N¢) + 4e FM ... FN - 9MN n(D _ 2) F -0 

2 
0¢ - ,.. a eat/> p2 = 0 

4 

'\7 M (eat/> pM N ... ) = 0. 

These field equations posses a scaling symmetry. To see this we take 

giving us a rescaled action 

Clearly, the condition 

9MN -+A2h9MN 

eat/>-+ ).Peat/>, 

p = (n -1)2h 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

scales the action by an overall constant, which doesn't affect the dynamics of the fields. To exploit 

this symmetry, we will look for an ansatz which makes this scaling symmetry explicit. To find this 

ansatz, we look for a homothetic Killing vector. A homothetic killing vector is a vector which satisfies 

the condition, 

(2.22) 

7 



MSc Thesis- A.!. Bayntun- McMaster University- Department of Physics and Astronomy 

where .Cx is the Lie derivative along the "flow" of the vector XM. This is the statement that the 

metric simply scales as it flows along the the vector X M, hence giving us the motivation associated 

with the action possessing the scaling symmetry. We note that this condition on the metric, along 

with the action of the Lie derivative on the dilaton, 

Cx¢= !!., 
a 

(2.23) 

with the condition (2.21) will give the action when the Lie derivative acts on it, 

CxS = (D- 2)hS, (2.24) 

leading us to the ansatz of the time dependence in the next section. 

2.2 Metric 

Since we are looking for a metric which has time dependence manifest in this scaling symmetry, we 

adopt a power law time dependence ansatz which gives us the required relations of (2.18) and (2.19). 

The fields are of the form 

ds2 = -(Ht)2h- 2 K 2(xa)dt2 + 2(Ht)2h-lVf3(xa)dtdxf3 + (Ht) 2hh(xa)f3-ydxf3dx"'~ 

¢ = J(xa) + !!.ln(t) 
a 

FM ... = Fa ... (xf3) others zero. 

(2.25) 

(2.26) 

(2.27) 

This undergoes (2.18) and (2.19) when t--+ )..t, as required. The homothetic Killing vector associated 

with this symmetry is 

(2.28) 

This scaling symmetry can be modified into translational one by the transformation Ht--+ er, which 

gives the metric and dilaton 

ds2 = e2hr(-K2(xa)dr2 + 2V13(xa)dtdxf3 + hf3-y(xa)dx13 dx"'~) 

= e2hr ds2 

- p 
<jJ = </>+ -T, 

a 

8 
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as well as the associated homothetic Killing vector X M = c5fl. It is convenient to express the field 

equations in terms of the conformally related metric, !JM N, where 

9MN =fl2!JMN 

n = ehT • 

(2.32) 

(2.33) 

Now we can explicitly remove the time dependence by using an identity for conformally related 

metrics. For further reference, this is proved in appendix B. As a reminder, the Ricci tensor is 

(2.34) 

with r being the connections defined through the metric (Christoffel symbols). Using the identity 

for conformally related metrics, we relate the Ricci tensors of the respective metrics. That is, 

- - - OP- -
RMN = RMN + (D- 2)V'MV'Nlnn + 9MN9 'Vo'Vplnf! 

- - OP - -- (D- 2)(V'M lnf!)(V'N lnf!) + (D- 2)!JMN!J ('Vo lnf!)(\i'p lnf!), (2.35) 

where RMN is the metric for !JMN, and covariant derivatives, f;M are with respect to the metric 

!JMN . Plugging in (2.33), the components of the Ricci tensor are 

Raf3 = Ra;3- (D- 2)hf'~f3- h!Jaf39°Pf'0p + (D- 2)h29af39TT 

RaT =RaT - (D- 2)hf'~T - h!JaT9°Pf'op + (D- 2)h29aT9TT 

RrT = RrT- (D- 2)hf'~T- hgTTgOPf'oP- (D- 2)h2 + (D- 2)h2gTTgTT. 

9 
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We are now in a position to express the full field equations in terms of this conformal scaling. Using 

(2.15)-(2.17), the new field equations are 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

All factors of n from the metric in F 2 are canceled with the ea¢ term due to condition (2.21). 

2.3 Covariant form 

While the form of the field equations are apparently non-overconstraining, they were not manifestly 

covariant. That is to say that connections are appearing in our field equations (which are obviously 

not-covariant). The reason that these connections are appearing is from making a co-ordinate sys­

tem choice, i.e. we've chosen our time dependence to be (2.33). However, we still have made no 

assumptions about the spatial dependence of the metric, suggesting that we may be able to write the 

field equations in a covariant form in terms of the spatial components of the metric. This is made 

explicit given that our stationary metric is general and has the form 

(2.44) 

This is similar to the Arnowitt-Desner-Misner (ADM) decomposition. The ADM decomposition 

simply decomposes the metric into a scalar, vector, and smaller tensor (see [18] for a thorough 

treatment on this decomposition.) From here we can find an inverse metric in terms of these functions. 

10 
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We employ the definitions 

ha/3 h137 = 8~ 
ya = hat{3V{3 

y2 = vavOt. 

Using these definitions, the inverse metric turns out to be 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

This allows us to express the Christoffel connection symbols in terms of our newly defined scalar, 

tensor, and vector. These turn out to be 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

where f'(ha/3) is the connection corresponding to the hypersurface metric ha/3> and Da is the corre­

sponding covariant derivative. Before we go ahead and use these relationships for the connection, 

there is one useful contraction that comes up a lot in the Ricci tensor. This is 

(2.57) 

11 
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Using all these definitions, we calculate the Ricci tensor, and the full field equations for a stationary 

supergravity that is scaled by the conformal factor ehr. These are 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

As a reminder, h is the exponent of time, ha/3 is the spatial hypersurface metric, covariant derivatives 

are with respect to haf3, and all Greek indices correspond to only the spatial directions. The Ricci 

tensor, R, and the d'Alembertian, 0 are also in terms of the hypersurface metric ha/3· :FM ... is in 

place of FM ... to make it clear that the field strength tensor is contracted with the original metric 

9MN· 

While these equations aren't particularly useful in themselves in terms of finding solutions (they're 

horrendous), they do provide an excellent consistency check. This is because these equations should 

transform like tensors, scalars, or vectors under spatial co-ordinate transformations (if they're zero 

12 
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in one set of co-ordinates, they should be in all co-ordinates.) While it wasn't surprising that RM N 

properly decomposed to a scalar, vector, and tensor (since the ADM decomposition does this for 

the Ricci tensor,) it was uncertain whether the terms proportional to hand h2 would be covariant 

under this decomposition (the parameter that controls the time dependence). Since these equations 

are covariant, we have found a form of time dependence which is covariantly consistent, while not 

over-constraining the field equations. This is the message to take away - we have found a form of 

time dependence that is perfectly consistent, and will be using the idea of power law time dependence 

in the remaining chapters as our ansatz. 

13 
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Chapter 3 

Symmetry Specialization Ansatz 

We have now seen how adding a power law time dependence in a very special way allows us to 

have fully consistent field equations. This will facilitate us in finding brane solutions with a similar 

power law dependence. Due to the symmetries associated with a brane, we're not concerned about 

grouping all spatial dimensions together. As mentioned in the introduction, we can now take Greek 

characters a, {3, and 'Y to be constants, as opposed to indices. 

See Stelle's review [2] for the symmetries of the metric in the static case. The symmetries 

associated with a brane are such that translations along the brane leave the metric invariant (ie a 

homogeneous brane). In addition, we wish for the brane to be isotropic. In terms of the bulk, we 

wish for the brane to "source" the bulk curvature, and nothing else to source the bulk curvature. 

It is therefore natural to assume that the only dependence of the metric should be the distance 

from the brane in the transverse directions. That is to say the bulk is isotropic about the location 

of the brane. In the static case, this would mean a Poincare(d) x SO(D- d) symmetry (Poincare 

symmetry along the d dimensional brane and spherical symmetry in D - d dimensions about the 

brane,) however, due to time dependence this is broken down to a E(d- 1) x SO(D- d) group 

since time translations and boosts no longer leave the metric invariant, where E(n) is the Euclidean 

group. The most general metric associated with this symmetry is 

with the dilaton and relation 

- p 
¢ = cp(r) + -ln(t), 

a 

p = 2{3(n -1) 

(3.2) 

(3.3) 

where r = Jymym. Notice how this metric doesn't posses the homothetic symmetry imposed by 

15 
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(2.28). Currently the motivation for the powers of time is the fact that there will be more options for 

solving the equations of motion (in addition to the homothetic symmetric case). The relation (3.3) 

is imposed for the same reason that (2.21) is. This will be seen when we take the magnetic brane 

ansatz ( 4.1), since only the bulk components of the form field will be contracted with the metric, 

allowing us only the need to relate the bulk exponent of time and the dilaton exponent. Under this 

ansatz, the Ricci tensor is 

Ru =- e2(C-t3)(Ht) 2b-!3) ( C" + (C') 2 + (d- 1)C' A'+ dC'B' + J; 1 
C') 

- (::t2)2 ( (d- 1)a:(1 + 'Y- a:)+ (d + 2);3(1 + 'Y- !3)) (3.4) 

Rij =Oije2(A-B)(Ht) 2(a-!3) (A"+ (d- 1)(A')2 + A'C' + dA'B' + J; 1 
A') 

+ Oije2(A-C) (Ht)2(a-'Y- 2) H 2o: ( 1 + 'Y- (d- 1)a:- (d + 2)/3) (3.5) 

Rmn =Omn (B" + d(B') 2 + (d- l)A'B' + C'B' + 
2J + 

1 
B' + d-

1 
A'+ ~C' 

r r r 

+e2(t3-C)(Ht) 2(!3-'Y-l) H 2;3 ( 1 + 'Y- (d- 1)a:- (d + 2);3)) 

+ ymyn (JB" + (d- 1)A" + C"- 2(d- 1)A'B'- 2C'B' 
r2 

+(d- 1)(A')2 + (C') 2 - d(B') 2
- ~B'- d-

1 
A' - ~c') (3.6) 

r r r 

Rtn =~~ ( (d- 1)a: (A'- C')- !3 ( (d + 1)C' + (d- 1)A')) , (3.7) 

where d = D - d - 2. There are two options at this point to keep the equations from being 

overconstrained. We can either ensure that the field equations all scale as the same power of time (in 

essence this is equivalent to adding a "source" term to the field equations), or the time dependence 

is can celled an appropriate choice of exponents (in this case, the "sourcing" is can ceiling itself out, 

while still leaving non-trivial powers of time.) This thesis will be mainly devoted to finding solutions 

to the former case. However, there is an immediate solution available to the latter case, and will be 

treated in section 3.2. 

16 
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3.1 Metric With Homothetic Symmetry 

The first option is to ensure that each component of the Ricci tensor scales as only one power of 

time. This amounts to an imposition of conditions (and redefinitions.) These conditions are 

a= h -l, (3.8) 

where both h and l are arbitrary constants. In this case, the metric is 

The definition of l has been made for several reasons. It seems that the homothetic symmetry seen in 

(2.25) is not here in this case. However, we realize that if we make the transformation xi -t t1xi that 

this is, in fact, a special case of (2.25). The homothetic symmetry is seen by taking t -t >..t, xi -t >..1xi, 

changing the original isometric of (2.22) to 

(3.10) 

This allows us to scan through a larger class of solutions than we'd naively expect. Normally, we 

would expect l = 0 to be the only possibility (as seen from {2.25)), with a flat space in the brane 

directions, and warped in the bulk. However, due to the Euclidean symmetry, the homothetic Killing 

vector can have a spatial component (in the brane directions), making a vector pointing radially away 

from the origin in a d-dimensional space-time, parametrized by its distance from the t axis with l. 

This enlarged parameter space allows for a more general class of solutions to a time-dependent brane. 

The Ricci tensor associated with (3.9) is 

Rt =- e C" + (C')2 + (d- 1)C' A'+ dc'B' + _±__C' 
2(C-B) ( d 1 

t (Ht)2 r 

+e2(B-C) H 2l(h- l)(d- 1)) (3.11) 

~. =8·. e A"+ (d -1)(A')2 + A'C' + dA'B' +_±__A' 
2(A-B) ( d 1 

J •J (Ht)-21 r 

-e2CB-C) H 2 (h -l) (h(D- 2) -l(d- 1))) (3.12) 
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Rmn =bmn (!3" + d(!3') 2 + (d- 1)A'!3' + C'!3' + 
2

(1 + 
1 

!3' + d-
1 
A'+ !c' 

r r r 

-e2(.B-C) H 2h (h(D- 2) -l(d- 1))) 
+ ymyn (rlB" + (d- 1)A" + C"- 2(d- 1)A'!3'- 2C'!3' 

r2 

+(d- 1)(A')2 + (C')2 - d(!3') 2 - ~!3'- d-
1 
A'- !c') 

r r r 

Rtn =- yn (h(D- 2)C' + l(d- 1)(A'- C')), 
tr 

(3.13) 

(3.14) 

which reduces to the static brane case in [2] when C = A and h = l = 0. The field equations under 

this metric will be explored in the next chapter. 

3.2 Cancellation of Powers 

We notice in (3.4)-(3.6) that the derivative terms scale as a different power of t than the terms 

proportional to the metric functions. We can instead make these metric function terms vanish 

entirely (as opposed to scaling with the same power of t). The motivation for this is that the 

exponents cancel and leave entirely different field equations. While the following conditions may 

seem to be pulled out of a hat, it will soon be clear why they were imposed. Using the conditions 

a=- [(d+2) ±V~ (~(d-2)+ (rl+2) (D-2))] (d~ 2) (3.15) 

-y =- [ ( d + 2) ± J(d- 1) ( ~(d- 2) + ( d + 2) (D- 2) )] (d ~ 2) - 1, (3.16) 

as well as the source ansatz (4.1), and the condition C =A, we produce the field equations 

- 2-

A"+ (d)(A') 2 + dA'!3' + d + 
1 
A'= "' d 8 2 

r 2(D - 2) 
(3.17) 

- 2 

!3" d(!3')2 (d)A'!3' 2d + 1 !3' ~A' = - "' d 82 
+ + + r + r 2(D - 2) (3.18) 

- 2 

d!3" + (d)A"- 2dA'!3' + d(A') 2 - d(T3') 2 - ~!3'- ~A'+ (rp') 2 = !!:.._82 

r r 2 
(3.19) 

(D - 2)A' = 
2

(1 rp' 
a 

(3.20) 

- 2 
II dA' I d-f3' I d + 1 I /'i, a82 cp + cp + cp + --cp = - . 

r 4 
(3.21) 

These are identical to the field equations for a magnetic brane ansatz in [2], with the addition of (3.20). 

However, (3.20) is automatically satisfied by the supersymmetric p-brane solution - automatically 
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giving us a solution! The solutions to these equations are 

-4d 4d 
ds2 = H a(D-2) dxJ.I.dx"''f/J.I.V + H a(D-2) dymdyn8mn 

e<P = H-~ 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

with k being an integration constant and interpreted as the mass of the brane. The reason why these 

conditions have generated a solution that is identical to the static one, is that the static solution 

has supersymmetry imposed. This has the property that 0 = a;_ + ~. However, this condition 

is no longer satisfied with time dependence, unless we make y'=ggtt independent of time. This is 

precisely what (3.15) and (3.16) do. 

This is probably not the most general solution that cancel the powers of time (for the same reason 

that a supersymmetric brane is not the most general solution with the ansatz (4.1), see chapter 4,) 

but it is an immediately visible solution. Notice how (3 is still a free parameter, allowing us to have 

a class of scaling solutions. While there is the possibility of generating more general solutions from 

this option of generating consistent equations, the remainder of this thesis will concentrate on the 

homothetic case (3.9). 

The lesson here is that multiple powers can be imposed (instead of the one in section 2.2) when 

greater symmetries are available, and thus allowing two entirely different types of solutions. One of 

these will be explored in greater detail in the following chapters. 
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Chapter 4 

Magnetic Brane Ansatz 

We use the metric (3.1), dilaton(3.2), and relation (3.8) of the previous section with the ansatz 

(4.1) 

to obtain the field equations. Here, A is considered the charge coupled to the form field, and thus 

interpreted as the charge of the brane. This is a magnetic source which naturally couples the n-form 

to the transverse directions, as well as satisfies (2.17) 1. It may strike the reader as odd to choose 

an ansatz for the form field strength, as opposed to the Gage field. Doing this of course requires 

a careful check that in fact Fm1 ... mn is exact (which is the same statement that its closed, since 

our manifold is simply connected.) To check this, we must take the exterior derivative of our field 

strength F. The partial derivative is 

(4.2) 

To find the exterior derivative, we find the completely antisymmetric component of the partial 

derivative. To this end, we contract with then+ 1 dimensional completely anti-symmetric tensor. 

Doing this gives 

fml .. mnqa F', = r-(n+l)fml .. mnq (€ _ (n + 1)€ yPyq) (4.3) 
q m1 .. mn m1 .. mnq m1 .. mnp r2 

=r-(n+l) ((n+l)!-(n+1)n!ozY;;q) (4.4) 

= 0 (4.5) 

1This is because gnm1 'il nf(r)€m1 ... mnqYq ends up contracting two indices in the epsilon tensor with either the 
metric or ymyn, yielding zero 
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using the well known contraction properties of the E tensor. Indeed, this is a consistent ansatz to 

make for the field strength tensor. 

The opposite ansatz to make instead of the magnetic is the electric one. This would have the 

Gage form field be 

A - E ef(r) 
ffiUJ .. ffiUn-1 - ffiUJ .. ffiUn-1 ' (4.6) 

with the field strength being the exterior derivative of this (and n - 1 = d). However, we realize that 

this means that F~J- ... is nonzero, which violates (2.27), forcing us to concentrate on the magnetic 

case. Using (2.15) and (2.16), along with the Ricci tensor from (3.9), the field equations are 

C" + (C') 2 + (d- 1)C' A'+ dC'B' + d + 
1 

C' 
r 

-e2CB-C) H 2 (
4

J2h
2 

-l(h -l)(d- 1)) = "'
2
J 8 2 (tt) (4.7) 

a2 2(D- 2) 

A"+ (d- 1)(A')2 + A'C' + dA'B' + d + 
1 

A' 
r 

-e2(B-C) H 2 (h -l) (h(D- 2) -l(d- 1)) = K

2

d 8 2 (8ij) (4.8) 
2(D - 2) 

B" +d(B')2 + (d -1)A'B' +C'B' + 
2
d+ 

1
B' + d-

1 A' 
r r 

+~C'- e2
CB-C) H 2h(h(D- 2) -l(d- 1)) =- 2(~

2

~ 
2
) 8 2 (8mn) (4.9) 

dB"+ (d- 1)A" + C"- 2(d- 1)A'B'- 2C'B' + (d- 1)(A')2 

+(C') 2 - d(B') 2 - ~B'- d-
1 
A'- ~C' + (<p') 2 = "'

2 

82 (ymyn) (4.10) 
r r r 2 

(h(D- 2) -l(d- 1)) C' + l(d- 1)A' = 2
dh <p1 (tn) (4.11) 
a 

- d+ 1 
<p" + C' <p' + ( d - 1 )A' <p' + dB' <p' + --<p' 

r 

-e2(B-C) H 2 2dh ((D- 2)h -l(d- 1)) = "'
2
a 8 2 • (<p) (4.12) 

a 4 

We have used (2.21) to get (4.7) and (4.12). Both (4.9) and (4.10) are obtained from the mn piece 

of the Einstein equation by switching to the radial variable. Finally, the derivative of ( 4.11) is a 

consequence of (4.7), (4.8), and (4.12) (this is relatively easy to see) thanks to a Bianchi identity. 

The source (right-hand side, RHS) of these equations is 

8 _ \ If ~a<p-dB -d-1 - AVn!e r . ( 4.13) 
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The constraint equation obtained by taking (4.10)-d(4.9)-(d- 1)(4.8)-(4.7) is 

((d- 1)- (d- 1?)(A')2 - d(d + 1)(8'?- 2(d- 1)(d + 1)A'8'- 2(d- 1)A'C' 

-2(d + 1)8'C'- 2d(d + 1) 8'- 2 (d- 1)(d + 1) A'- 2 (d + 1) C' + (c,o')2 
r r r 

+e2(B-C) H 2 ((h(D- 2)- l(d- 1))2 + 4(i2h
2 

+ l2(d- 1)- h2(D- 2)) = ,..,
2 

8 2 . (4.14) 
a2 2 

Once again a more difficult Bianchi identity is obtained here. It can be seen as 

(4.14)' =28'(4.14) + 2c,o'(4.12)- 2C' ((4.10) + (4.9)- (4.7)) 

- 2(d + 1)8'(4.10)- 2(d- 1)A' ((4.10) + (4.9)- (4.8))- 2 (d + 1) (4.10). (4.15) 
r 

We would like to search for a redefinition of variables that simplifies this system of equations. To aid 

this we look at the above constraint equation since this is the equation that most directly resembles 

the action governing the system. In particular the kinetic term in the constraint should be the same 

as the kinetic term in the action. The first thing to do is to solve the tn constraint for C in terms of 

the other variables. Doing this will easily connect us to the static case since we know in that case 

C = A. The relation from ( 4.11), 

1 (2dh ) C= d ~c,o-l(d-1)A (4.16) 

d = (D- 2)h- (d- 1)l, (4.17) 

leaves us with equations for A, 8 and c,o. We now have a simple connection to the static case which 

can be seen by taking h -+ 0, then l -+ 0 (in that order). The remaining functions satisfy the 

nontrivial constraint 

-(d- 1)(d- 2)(A')2 - d(d + 1)(8')2 - 2(d- 1)(d + 1)A'8' 

-2(d- 1)A'C'- 2(d + 1)8'C'- 2d(d + 1) 8'- 2 (d- 1)(d + 1) A' 
r r 

-2 (d + 1) C' + (c,o')2 + e2(B-C) H2'E2 = ,..,2 82. (4.18) 
r 2 

where 

(4.19) 

with C being defined through (4.16). The trick is to look for a field redenition that is linear in 

three new variables X, Y, Z, and ln(r). The latter is necessary to remove the terms in the constraint 

which are linear in r derivatives since any properly diagonalized action will only have quadratic 
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derivatives. The following redefinition greatly simplifies things 

a ll- l J d(d- 1) 
cp(r) = 2lul Y(r) +a~ lui D- 2 Z(r) 

ll ( (a 2dh) ) A(r) = (d -1)(ll-l) luiY(r)- 2 + all cp(r) 

1 ( ( l) 2dh ) B(r) = d lwiX(r)- (d- 1) 1- ll A(r)- all cp(r) -ln(r) 

which is designed so that 

a 2cp + (d- 1)A + C = luiY 

C + (d- 1)A +dB+ dln(r) = lwiX. 

(4.20) 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

While it may not be obvious in this co-ordinate system why this combination of functions is impor­

tant, it will be clear later that this definition greatly simplifies the field equations. This redefinition 

also implies that both source terms in the constraints happen to scale as 1/r2. The coefficients lui 

and lwl, in terms of the original parameters, is 

This reduces the constraint to 

a 4dd 
lui = 2 1 + a2(D- 2) 

lwl= ~­VJ+i 

(4.25) 

(4.26) 

(4.27) 

Field redefinitions have not been substituted in the "source" (non-derivative) terms yet since it will 

make the equations more opaque, and considerable simplifications will be made when co-ordinate 

transformations are performed. Given this, all the equations of motion and the above constraint can 

be obtained by varying the action, 

S = J drii(r) [ N-1 ( -(X')2 + (Y')2 + (Z')2) 

- r12 N ( e2(B-C) H2~2 + J ( J + 1) - ~2 82)] ' ( 4.28) 

with O(r) = C+(d-1)A+dB+(d+1) ln(r). This is unsurprising, since it is the measure of integration, 

Fggrr. The function N is nothing other than the lapse function in the ADM decomposition in 
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the Hamiltonian formulation of general relativity, and can be set to unity after variation. This is 

because it is a non-dynamical gauge degree of freedom, and thus is unphysical. We notice that our 

action has an overall factor in front of the kinetic term, making it an unusual action. However, we 

can turn this into a canonical action for 3 scalar fields by performing the co-ordinate transformation 

to eliminate the explicit r dependence in the action, 

r = eP 

n = n -ln(r), 

giving us the action 

S = f dpe0 
[ N-1 

( -(X')2 + (Y')2 + (Z')2
) 

-N ( e2{B-C) H2:E2 + d ( d + 1) - K22 82)] ' 

(4.29) 

(4.30) 

(4.31) 

remembering that derivatives are now with respect to p. We now can eliminate the factor multiplying 

the kinetic terms by performing the co-ordinate transformation, 

(4.32) 

Finally we get a canonical action 

S = f dJ.LN- 1 
( -(X')2 + (Y')2 + (Z')2) 

- N ( H2:E2e2v·X + d ( d + 1) e2w·X - K2 ~2n! e2u·X) ' (4.33) 

with it being understood that primes are now with respect to JL. The vectors u, v, and w are 

defined through the target space metric that the kinetic terms in (4.33) induce. That is the metric 

diag(-1, 1, 1). The target space vector X (contravariant) is 

( 

X(JL) ) 
X= Y(JL) , 

Z(JL) 

(4.34) 
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while the 'coeffecient' vectors (covariant) are 

U= (4.35) 

V= (4.36) 

W= (4.37) 

with squared terms the length of these vectors under the target space metric. The length of v is 

~2 2_ 
v -- :E2' 

with the explicit form of v3 (which determines if the vectors are linearly dependant) being 

1 (4d2h )~-1 (v3) =~I I - 2 + (l- h)(D- 2) _ . 
L.... u a d(D- 2) 

The relations between these vectors are quite remarkable, and are 

u·w=O 

u. v = -1 

W·V=-1, 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

which shows that their relative orientation is independent of our choice of parameters. In fact, the 

relative orientation (and magnitude) of these vectors is why we were able to redefine the original 

fields in such a clean way to get a diagonal target space metric. In general, the EOMs are impossible 

to fully solve analytically. In the current form, however, it is made obvious when they are linearly 

independent, and thus we can decouple at least one of the fields (namely Z). This is when v3 = 0, 

which is true for some choice of l. 

We have now nailed down the field equations (or, rather, action) in a fairly elegant and simple 

form without imposing any additional assumptions. This form will also allow us to analyze the 

behavior of the solutions associated with the equations much more transparently (since this is now 

an action for a relativistic particle in a potential in 2+ 1 dimensions.) as well as quickly identify cases 

in which it is easier to solve. 
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Chapter 5 

Special Cases 

This chapter will be looking at the various cases in which we can solve the equations (at least in part) 

analytically. In order to not lose sight of the problem at hand, we remind the reader of the original 

metric we were solving in terms of the r co-ordinate (in spherical co-ordinates for the transverse 

dimensions). For convenience, we initially eliminate all the linear derivative terms in the EOMs that 

go as~ by letting B--+ B -ln(r) so the inverse transformation doesn't involve the radial co-ordinate 

explicitly. 

is the metric in this co-ordinate system. When we switch to the J.L radial co-ordinate (under a gauge 

transformation), the metric becomes 

dsz = -(Ht)2(h-l)e2C(p.)dt2 + (Ht)2(h-l)8iie2A(p.)dxid:JI 

+ (Ht)2h ( e2(C(p.)+(d-l)A(p.)+(d+l)B(p.))dJ.L2 + e28(p.)£ID2) . (5.2) 

With the various metric functions related to the functions in the diagonalized action by (4.20)-(4.22) 

except without the logarithm in the redefinition of B since this redefinition was already performed 

on the metric (5.1). 

5.1 Special case- I:= 0 

The first case is when E = 0. Solving for h, we obtain the condition 

(5.3) 
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which, for non-zero l, is an imaginary number assuming a is real, and d and d are positive. This 

tells us that :E is a strictly non-negative number, meaning that it only vanishes when h = l = 0. 

Therefore, :E can be thought of a paraboloid in l-h space with its minima at the origin for all physical 

values of the other parameters (a, d, d). Since :E only vanishes when h and l do, this leads us to the 

conclusion that this is the static case (taking h to zero first, then l as stated in chapter 4). The 

simplified action then becomes 

The solutions to this action are 

X= -~~~ln ( ;
1 

sin(Xllwi(JL- X 0 ))Vd ( d + 1)) 
Y = -~~~ln ( ~y1 sin(Yllui(JL- Yo)),;,\Vnl) 

Z = Zo + Z111 

0 = (Y1) 2
- (X1) 2

- (Z1)2
, 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

with (5.8) coming from the constraint equation. This implies that (Y1) 2 > (X1)2 and (Y1)2 > (Z1)2 

to ensure the reality of the metric. 

These solutions are more general than those of Stelle [2], since linearity conditions were imposed 

to preserve supersymmetry, as well as to simplify the equations. Here we have solved all three 

independent equations of motion without imposing this linearity. 

Analyzing these solutions, it is suggestive where the brane is located (as well as r = oo.) For the 

X (and similarly Y) field, we find that the brane is located at 11 = X 0 (since the metric functions are 

exponentials of these fields.) Infinity corresponds to the point in which the sine is unity. If we were 

to impose the condition that the brane and spatial infinity is located in the same place for A, B, 'P 

(and thus X, Y, Z), this implies either 

Xo =Yo (5.9) 

Yi =X1 (5.10) 

z1 =O, (5.11) 

or 

Y1 = z1 (5.12) 

x1 =O, (5.13) 
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where we have used the constraint condition (5.8). This in turn leaves us with only one free param­

eter, the mass of the brane (which would go as ~1 ). Finally, the case of Stelle is a special case of 

these solutions. If we let X1, Y1 ,Xo---+ 0 and Yo= l<fJ::r, we obtain the solution (3.24) in "our" J.l­

co-ordinates, 

1 -
X = -j;j ln( -dJ.l-) 

y = -~~~ln ( 1 - 1~1 >.~..;:;JJ.l-) 
Z=O, 

(5.14) 

(5.15) 

(5.16) 

with the coeffecient of J.1- in the Y field identified as the mass of the brane (relating the charge and 

the mass). 

5.2 Special case- d = 0 

In this case, one of the terms in the potential of the action ( 4.33) is removed when we set d = 0 

(which is the statement that there are only 2 transverse directions since d = D- d- 2). This leaves 

us with only two coeffecient vectors on the target space. We can use the 0(2, 1) symmetry on the 

target space to rotate these vectors, decoupling one of the functions. With the knowledge that now 

lui =~,the vectors then become 

with the magnitudes unchanged applying. Under the assumption that d =,the length of vis 

~2 
v2=--

:E2 

~ = (dh- (d- 1)l) 

:E2 = (h- l)2d(d- 1). 
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This gives us the action 

S = J d!-LN- 1 ( -(X')2 + (Y')2 + (Z')2) 

- N ( H2"5:,2e2( J-v2+-jzX-furY) - ,..2 ~2n! e2luiY) . (5.22) 

Here Z has decoupled from the other field equations, and can once again be solved with solution 

Z(!-L) = Z0 + Z1J..L. This leaves us with the reduced action 

S = J d/-LN- 1 
( -(X')2 + (Y')2 + (Z1)2) 

- N ( H2"5:,2e2(J-v2+-jzX-furY)- ,;2~2n!e2luiY). (5.23) 

Once again, the remaining functions cannot be solved analytically in general. However, we notice 

in (5.3) that once d = 0, both h and l can be real and non-zero for "5:, to vanish. This becomes the 

condition that h = l, with the action 

and solution 

Y = -~~~ln ( ~Yi sin(Y11ui(J..L- Yo))x;.h.-'n!) 

X= Xo +X11-L 

Z = Zo + Z11-L 

0 = (Z!)2- (X1)2- (Y!)2. 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

This is a different class of solutions from the static one, since the constraint equation has changed. 

In fact, this case cannot reduce to the static case, since the ratio h/l is set, and thus we cannot take 

them to zero seperately anymore. We do notice that there is in fact a brane still present, since Y still 

diverges. Once again, we can allow Y1 __, 0, and Yo = K;A~, giving us the function and condition 

y = -~~~ln ( 1 - 1~1 >.x;v'ni.IL) 

x1 = z1. 
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These also solve the reduced action with the condition h = l. Since we performed an 0(2, 1) rotation 

on the fields, the original relations (4.20)-(4.22) do not apply. The new field redefinitions are 

2 2v 4 cp = - X+ Y +- -v2 + -Z 
aJ-v2 + ~ a a2 

(5.31) 

a~ 
A= 2(d- 1)(~ -l) (Y- cp) (5.32) 

B= f_v2+i_X-~Y-(d-1)A, V a2 a 
(5.33) 

which finalizes what can be solved analytically in this case. 

5.3 Special case- linearly dependent vectors (v3 = 0) 

This section will deal with the case in which the vectors lie in a plane, (as opposed to spanning the 

full target space). In this case, v3 = 0, which is satisfied by taking (4.39) to be zero. This gives us 

the condition 

( 
4d2 ) 

l = h 1 - (D- 2)a2 . (5.34) 

Again, as in the previous case, we automatically obtain a solution Z = Z0 + Z1J.L with the reduced 

action 

s =I dJ.LN- 1 
( -(X')2 + (Y')2 + (Zt)2

) 

- N ( H2~2e2 ( fwTX-fuTY) + d ( d + 1) e21wiX- K
2

~
2

n! e21uiY). (5.35) 

This system is more complicated than the case of taking d = 0, since there's an added term in the 

potential. This concludes the various special cases in which the action can be simplified. The upshot 

is that various special cases can help show us the behavior of these solutions in the dynamical case, 

as well as provide an exact solution in one case. The next chapter will use these special cases to get 

an idea of how the general case can behave under various conditions. 
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Chapter 6 

Analysis 

We now take the results of the previous chapter to analyze the behavior of the solutions. This 

will allow us to connect the dynamic solutions with the static ones, determining if qualitatively the 

solutions are different. We will also analyze the asymptotics of the full (unspecialized) field equations 

to determine if asymptotically flat solutions are viable in the time dependent case. 

6.1 Static Case 

While we have full solutions for the static case (5.5)-(5.6), analysis is still required in order to connect 

it with the dynamic cases. For instance, we know that branes are located when the functions are 

singular, as well as the asymptotic region is located where the function becomes flat (constant). This 

is the point where the functions X, Y, Z vanish, since the exponentials of this would be unity. For 

the convenience of the reader, we graph the solution for Y. 

X.Y 

Figure 6.1: Configuration of the field Y(J.t) and X(J.t) for X0 = Yo = 0, in the static limit. The 
horizontal scale is different for the different fields. Both are singular at Jl = 0, and at the point 
where the argument of the sine is rr. 

We can see explicitly the location of the brane(s) where the solution diverges, as well as the asymp-
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totic region where Y = 0. The behavior for these fields can be seen from the form of their field 

equations. The form 

(6.1) 

leads to a constant "force" in the positive Y direction. The following plot shows what such a potential 

would look like. We see that any initial position would have the field "roll" down the potential well 

------------~----------------Y 

~~ 
V(Y) ~ 

Figure 6.2: Potential of field Y, and force, Fy, it experiences in such a potential 

into positive infinity. As we can see from the plot of the solution, this happens at a finite point J.L. 

We identify this as the brane, and subsequent analysis will identify the brane as the point where X, 

Y and Z diverge. 

6.2 General Case Analysis 

Now that we have the tools to identify branes, we look at the general equations of motion from the 

action (4.33). These are 

X" = H
2

L-
2 

e2v·X + J (J + 1) e2lwiX 
lwl 

(6.2) 

Y " H
2

L.
2 

2v·X ""
2 
A

2
n! 2luiY =----e + ---e 

lui 2 
(6.3) 

Z" = - H2L.2v3e2v·X (6.4) 

0 = ( -(X') 2 + (Y')2 + (Z') 2
) 

+ ( H2L.2e2v·X + J ( J + 1) e2w·X - ""
2 
~
2

n! e2u·X) ' (6.5) 

immediately showing us that two of these fields are being "accelerated" into the positive direction 

indefininately. Furthermore, one may worry that the constraint may limit the possibility of having 

these fields fall to positive infinity (that is, the fields have enough "escape" energy not to be bound 

by the potential term.) However, the constraint equation isn't affected by the direction (sign) of 

the initial velocity, and the signature of the target space metric allows for the fields to have various 
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initial conditions, as long as they are compensated to preserve the constraint equation. 

The last worry is that the Z field may be growing negatively faster than X, and Y are, and 

thus destroying a brane solution (since a metric function that goes as eaX+bY+cZ may go to zero 

instead of infinity). We do note that the "force" terms in (6.2) and (6.3) are larger than those in 

(6.4), notwithstanding a large v3 . However, the form of V 3 prevents it from being made arbitrarily 

large, so we are justified in our claim that these very general equations permit brane solutions. 

Furthermore, the special cases have Z" = 0, and thus similarly have brane solutions. Unfortunately, 

due to the negative signature of the target space metric, it is impossible to provide a visualization of 

the potential in terms of a particle "rolling down" a potential well. Instead, it is understood that in 

the X direction, the particle "rolls up" the potential well (due to the different sign in kinetic energy) . 

X 

Figure 6.3: Surface plot of "potential" for X and Y in the case(s) where Z decouples. We see that 
it bends upwards in the positive X direction, and downwards in the positive Y direction. This will 
cause any static (vanishing derivative) initial configuration to eventually roll in the positive X and 
Y direction. 

We see in the case where Z decouples , that the fields X and Y "roll" into positive infinity due 

to the curvature of the potential. 

Finally, following the approach of Stelle, we look for solutions that go as a power law in these 
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diagonalized set of co-ordinates. It turns out that 

1 
X(p,) = -~ ln (kxP,) 

1 
Y(p,) =-lui ln (kyp,) 

Z(p,) = aln(kzp,) 

a= :3 ( -1 - 1~1 2 + 1~1 2 ) 
k _ dv3 
X- v1 +v2 

k _ Vnlt£AUV3 

y- v'2v1 + v2 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

also solves the field equations consistently, albeit with a simplified power law radial dependence. 

6.3 Asymptotics 

This section is dedicated to exploring the asymptotic behavior of the dynamic solutions and compare 

them with the static cases. In all of these cases, fiat space corresponded with all of the fields vanishing. 

Thus, we perturb about zero to analyze the behavior of these fields. The linearized field equations 

(and constraint) are 

H2E2 ( ) X"= ~(1 + 2v ·X)+ d d + 1 lwl(1 + 2lwiX) 

H2E2 >.2t£2n1 
Y" = Tul(1 + 2v ·X)+ -

2 
-·lul(1 + 2luiY) 

Z" = - H 2E2v3 (1 + 2v · X) 

-(-) >.2t£2nf 
0 = H 2E2 (1 + 2v ·X)+ d d + 1 (1 + 2lwiX) - -

2
-· (1 + 2luiY), 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

where we only trust the solutions to these equations for small values of the fields and their derivatives. 

Now that the equations are linearlized, we can eliminate Z from the field equations, as well as perform 

the redefinition 

- 1 
X=X- 2lwl 

- 1 
Y=Y--

2Iul 
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to eliminate the inhomogeneous pieces of the field equations (6.13)-(6.16). The resulting field equa­

tions, 

(6.19) 

(6.20) 

are a pair of coupled harmonic oscillators (although we want the exponential behavior, and not the 

oscillation behavior). The normal modes (eigenvalues), are 

1 2 2 ( 2) -k± = 2.A "' n! 1 + u - d ± 

with eigenvectors 

V!=(~) (6.22) 

( >'•'•'1•1 ) v2 = lwlk+ (6.23) 
.\

2
tt

2 n'lul 
lwlk-

The condition that these eigenvalues are real and positive is such that 

( 1 + 2 d- u2 + 2 J ( d + 1) ( d- u2)) d 

(1 + u2/ 
(6.24) 

and u2 < d. After analyzing the static case and its asymptotics, we take our initial conditions for 

asymptotic solutions to be X = 0, Y = 0, X' = 0, Y' = 0. This corresponds to X = 21~ 1 , Y = 

21~ 1 , X' = 0, Y' = 0. We plot a force field diagram with these initial conditions. 

We immediately see that given certain conditions, the system (at infinity) will simply blow up in 

the positive direction for X and Y, which is the behavior we want to correspond to a brane forming 

at X, Y = oo. While we know from the full field equations that a brane can form regardless of 

the parameters (with appropriate initial conditions), we find that these parameters affect how the 

fields behave asymptotically. That is, if the charge of the brane is too small, we find that oscillating 

behavior can ensue as the fields evolve in parameter p,. While this doesn't ruin the possibility of a 

brane, it does suggest that there will be fluctuations at infinity which doesn't have a clear effect. 

Finally, in the case of decoupling Z from the field equations (see special cases chapter), the "force" 

on X and Y are definite-positive when linearized, allowing for asymtotic behavior regardless of the 

strength of the charge of the brane. 
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X 

Figure 6.4: Force field plot in X-Y phase-space. Eigenvectors are shown as well as initial configura­
tion. 
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Chapter 7 

Conclusion and Discussion 

Many solutions (albeit some partial) have been found in a general class of supergravity theories in 

D dimensions. In fact, we have found static solutions which, although perhaps not supersymmetric, 

are more general than those of [6]. This has allowed us to see another class of solutions, which may 

be transformed into a set of co-ordinates making the structure of the brane more explicit. 

These static solutions have helped immensely in the finding of other solutions. In the easiest case, 

we have time-dependent solutions with the static solution as the radial profile for appropriate choices 

of exponents of time. This is in addition to a free parameter as an exponent, which is good news, as 

we now have twice the amount of parameters describing the brane - the charge, and the exponent 

of time at which it expands (or contracts). However, this is probably not the most general case, as 

enforcing C = A (which was required to find an immediate solution since it reproduced the static 

field equations) reduces our degrees of freedom (without justification from symmetry principles). 

Even if it may not be the most general case, we are encouraged in potentially finding more solutions 

in the case that exponents of time cancel in the field equations. 

As for the other class of solutions (where field equations scale as one power of time), we have 

found the power law solution that has a similar form to that of Stelle's solution in the static case. 

In (6.6)-(6.12) we find that these may support a brane at f..t = 0. Furthermore, we have found 

partial solutions in the cases in which Z decouples from the field equations. In the general case, 

after analyzing the field equations, we see that with sufficient initial conditions on the fields, we 

can always generate a divergence, telling us that the whole class of these power law solutions may 

support a brane given appropriate initial field configurations. 

The asymptotics of these solutions are a little different, since they may require a specific set of 

initial conditions on the field configuration (like starting at infinity and integrating inwards). Requir­

ing asymptotic flatness seems to have the requirement that the charge, A, of the brane be sufficiently 

large to "pull" the fields from infinity without fluctuation. A small charge seems to have a fluctuating 
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effect on the fields at infinity, without it being entirely clear what the field configurations would end 

up at infinity. In all cases, asymtotic flatness means the space-time is flat at some finite time t0 . 

It is clear that branes may be supported in our time-dependence ansatz for this general class of 

supergravities (of which needs to be analyzed further in future work), thus confirming what we set 

out to do. Many more possible interesting properties about these branes have been found, as well as 

how one can generalize them to having cosmological-like time dependence. At this point, the hope 

is that these solutions can be combined with cosmological arguments to help strengthen solutions to 

string theory and their connection to the visible universe. While it is unclear whether these solutions 

may help string cosmology, the techniques used here are of some import in solving similar problems 

in supergravity in the future. 
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Appendix A 

Conversion to Stelle's Conventions 

In Stelle's review of supergravity p-branes, the conventions used were different than the ones here. 

From a differential geometry standpoint, while using the same metric as ours (mostly plus, diag(-1, 

1,1, ... )), the curvature conventions were different. This can be seen in full from Stelle's action versus 

our action. The action, 

J D r-::[ 1 M 1 a</>2] S = d xy -g R- 2'\/M¢'\1 ¢-
2
n!e F[n] , (A.1) 

does in fact look different from our action (as a reminder) 

(A.2) 

Stelle's action has the advantage that the field equations involving the form field as a source has 

no factors of n!, while our action has the advantage that the string tension is explicitly in our field 

equations (which is useful for finding limits). One does note that Stelle's action has a Ricci scalar 

that is the negative of ours. However, this is just due to a different set of curvature conventions 

(MTW[19] vs Weinberg[16]). In order to recover one action from the other, fields and couplings must 

be scaled accordingly. Denoting [ ]s and [ ]o for field and/or coupling corresponding to Stelle's and 

ours, respectively. Doing this rigorously, we find 

2 

[9MN]o = [9MN]s (2K2
) ~ 

[¢] 0 = ~[¢]s+ ~as (nln(2K2)-ln(~')) 
[a]o = J2[a]s 

(A.3) 

(A.4) 

(A.5) 

connects the two actions together appropriately, showing us the proper correspondence between 

conventions. Alternatively to see the correspondence between the solutions, one can simply make 
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the redefinitions in the solutions we found. The value and redefinitions, 

2 1 "'=-n! 
1 

[cP]o = J2 [cP]s 

[a]o = J2[a]s, 

properly connect Stelle's solutions to ours. 
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Appendix B 

Conformal 'Iransformation of 

Ricci Tensor 

Here we prove a result used in chapter 2. That is, how the Ricci tensor transforms when the metric 

undergoes a conformal transformation. Given 

(B.1) 

we start by calculating the effect of the transormation on the Christoffel symbols of the second kind 

(covariant connections). This is 

M 1 MQ 
rNp= 2g (ON9PQ+OP9NQ-OQ9NP) (B.2) 

1 
= 29MQn-2 [oN9PQ + oP9NQ - oQ9NP + 2n (YPQaNn + YNQaPn- YPNaQn)] 

= t~p + 5}VoN Inn+ 8~oplnn- 9PN9MQaQ Inn, (B.3) 

allowing us to now calculate the Ricci Tensor. Plugging this into the definition of the Ricci tensor 

gives, 

RMN =oMr~p- oprfm + r~Pr~Q- r~Nr~Q (B.4) 

=RMN- 2fJMfJN1nn + 9MN9PQf;Pf;Qlnn + DfJMf;Nlnn 

(D + 2)fl M Innf;N Inn- 29MN9PQf;plnnfJQ Inn 

- D ( 2fJ M lnnf;N Inn+ 9MN9PQf;plnnfJQ Inn) 

=RMN + (D- 2)f;Mf;Nlnn + 9MN9PQf;PfJQlnn 

- (D- 2)flM Innf;N Inn+ (D- 2)9MN9PQf;p Innf;Q Inn, (B.5) 
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with tilde's on the Ricci tensor and the covariant derivative belonging to the conformally related 

metric (g M N), thus completing the proof. 
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