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Lay Abstract

Turbulence exists everywhere and can be observed in most fluid flows occurring in

nature. To reduce the energy consumption, frictional resistance in the turbulence

must be considered in fluid transportation. It has been known since the 1940s that

a small amount of long-chain polymer additives can dramatically reduce such drag.

The mechanism of drag reduction has attracted extensive attention. Two problems

of particular interest are the upper limit of drag reduction (termed maximum drag

reduction) and the polymer effects on the laminar-turbulent transition. In this thesis,

full transient trajectories from marginal turbulent states towards sustained turbulence

in both Newtonian and polymeric flows are monitored by direct numerical simulations.

It is observed that polymer additives do not affect the initial growth of turbulence

but prevent flows from breaking into strong but small-scale fluctuations afterwards.

In a more extended domain, turbulence starts as localized spots which spread across

the channel. Adding polymers changes the dynamics of turbulence propagation as

well. In addition to the aforementioned problems, this study also sheds lights on

the so-called bursting events intermittent surges in turbulent activities observed in

experiments.
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Abstract

Two major problems in viscoelastic turbulence, the effects of polymers on the laminar-

turbulent transition dynamics and the origin of the maximum drag reduction asymp-

tote, can be both better understood in the regime near the margin of turbulence. In

the first part of this thesis, direct numerical simulation trajectories initiated from the

edge state are used to follow its unstable manifold into the turbulent basin. In New-

tonian flow, the growth of turbulence starts with the intensification of velocity streaks

and a sharp rise in the Reynolds shear stress. It is followed by a quick breakdown into

high-intensity small-scale fluctuations before entering the core of turbulence. Adding

drag-reducing polymers does not affect the initial growth of turbulence but stabilizes

the primary streak-vortex structure, which help the flow circumvent the breakdown

stage. Throughout the process, polymers act in reaction to the growing turbulence

and do not drive the instability. This part not only reveals the transition dynamics

into turbulence but also presents a comprehensive view of the bursting stage observed

in the near-wall self-sustaining cycle, which starts as the flow leaves hibernating tur-

bulence and is redirected towards the turbulent basin by the unstable manifold of the

edge state.

On the other hand, this thesis also discusses the effects of polymer addition on the

iv



laminar-turbulent transition in extended domains. Localized turbulent spot can be

clearly observed in the large box, and this turbulent region will spread as well as tend

to “split” but finally fill up the whole domain before it is separated. Polymers don’t

affect the flow dynamics until the burst. Similarly, vortex structures rapidly break

down into small scales after the first bursting of Reynolds shear stress, but polymer

additives depress this process.

The thesis offers a clear and comprehensive overview of the transition into turbulence

in the presence of drag-reducing polymers. Future work remains in two major direc-

tions. The first is to pinpoint the flow states responsible for the quantitative origin

of the universal upper limit of drag reduction observed in experiments. The second is

to determine the role, if any, of elasticity-driven instabilities in the transition.
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Chapter 1

Introduction

The transition from a laminar flow to turbulence is accompanied by an abrupt increase

in the friction drag of the flow. Long-chain flexible polymer additives are known to

cause significant drag reduction (DR) even at very low concentrations [62, 19, 69,

20]. Much progress has been made in the fundamental understanding of the DR

phenomenon since its initial discovery in the 1940s [61], especially during the past 20

years when tools providing direct access to turbulent flow fields, including particle

image velocimetry (PIV) [66, 70] and direct numerical simulations (DNS) [59, 38, 9],

were broadly applied in this field. In particular, although the exact mechanism of DR

remains debatable [69], it is now generally accepted that polymers suppress turbulence

by counteracting the vortical motions therein [6, 10, 37, 34]. However, behaviors of

viscoelastic turbulent flows remain puzzling in two major areas: the maximum drag

reduction (MDR) and laminar-turbulent (L-T) transition.

MDR is widely regarded as the most important unsolved problem in viscoelastic tur-

bulence. As the polymer-induced elasticity increases, the level of DR initially increases
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but eventually saturates to the MDR asymptote, whose magnitude is insensitive to

polymer species, molecular weight, or concentration [62]. MDR mean velocity profiles

from experiments with different polymer solutions and pipe diameters were found to

follow the same Virk [62] log-law relationship:

U+
m = 11.7 ln y+ − 17.0 (1.0)

(the superscript “+” denotes quantities non-dimensionalized in turbulent inner scales[46];

further explained below in chapter 2), once MDR is reached. The Virk log-law is

commonly cited as the quantitative indicator of MDR, which also applies to channel

(Poiseuille) flow [65]. In addition to its quantitative magnitude, any theory attempting

to explain MDR must address simultaneously its existence and universality. The ex-

istence of MDR, that polymers are not able to completely quench turbulence but only

push it towards an asymptotic limit, indicates that there must be a unique mechanism

for sustaining turbulence. This is further supported by the observation of distinct flow

structures at MDR compared with those of Newtonian turbulence [66, 70, 26, 36, 73].

Its universality with respect to changing polymer solution properties, meanwhile, is

highly counter-intuitive, as MDR is typically reached at the limit of strong poly-

mer effects. Earlier theoretical attempts at explaining MDR are phenomenological or

semi-empirical in nature [62, 57, 47] and have met contradictory evidences as new ex-

perimental and numerical data emerged (see discussion in White and Mungal [69], Xi

and Graham [78].) A mechanistic theory that consistently explains all three key

aspects of MDR – its existence, universality, and Virk log law – is still missing.

As to the L-T transition, since polymers can suppress turbulent fluctuations, it is

intuitive to expect that the transition will be delayed to a higher Re compared with

Newtonian flow, which was indeed often observed in experiments [18, 7, 15]. However,
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early transition was also reported for certain experimental conditions [49, 21]. This

complex dependence on polymers suggests the coexistence of more than one transition

pathway. Recent experiments by Samanta et al. [51] showed that as the polymer

concentration increases, the origin of the instability driving the transition changes

from inertia – the same transition mechanism as Newtonian flow which is only delayed

by polymers – to a combination of inertia and elasticity. The latter so-called “elasto-

inertial turbulence (EIT)” can appear at Re much lower than Recrit ≈ 2100 of the

Newtonian pipe flow and shows distinct flow structures from the coherent structures

in inertia-driven turbulence [11].

In Newtonian channel flow, the transition to turbulence bypasses the Tollmien-Schlichting

(T-S) wave, which does not appear until Re ≈ 5600 [29], and is able to occur at a

much lower Recrit ≈ 1000 [40] and higher turbulence growth rate [27, 14]. DNS

has been extensively used in the study of Newtonian bypass transition. The pro-

cess starts with extended streamwise velocity streaks whose instability leads to a

quick “breakdown” process, from which vortical structure and three-dimensional tur-

bulence is generated [23, 79, 52, 71, 72]. Much less is known about the transition

process in viscoelastic fluids. Earlier studies all focused on the linear stability analy-

sis [24, 25, 82, 43]. To our best knowledge, the only full nonlinear DNS study of the

L-T transition process reported so far is that by Agarwal et al. [1], where the devel-

opment of a localized perturbation was tracked and polymers were found to suppress

the turbulence growth rate and prolong the transition process.

From a dynamical system perspective, at the moderate Re where we focus, there

are two basins of attraction in the solution state space of the Navier-Stokes equation

(fig. 1.1). The laminar state is a linearly stable steady state whereas turbulence can be

viewed as a chaotic attractor formed around a number of invariant saddle points [17, 5].
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Figure 1.1: Schematic of the state space of invariant and transient solutions to the
Navier-Stokes equation.

In the context of L-T transition, one saddle point of particular interest is the so-

called edge state (ES) [56, 53], whose stable manifold forms the boundary between

the basins. Dynamical trajectories initiated from different sides of the boundary head

towards opposite directions, following the unstable manifold of the ES. To trigger

turbulence from the laminar state, the disturbance must be large enough to overpass

the L-T boundary. The importance of the ES in governing the L-T transition is

clearly illustrated in a recent study of the asymptotic boundary layer flow, where

the transient development of turbulence triggered by random noises was found to be

mediated by the ES and its stable and unstable manifolds [32].

From the perspective of the turbulent basin, the ES is the most marginal form of

self-sustaining turbulence since any states with a weaker form of perturbation will de-

cay to the laminar state. Therefore, with the increasing elasticity caused by polymer

additives, it is natural to ask what happens to the ES and what role it plays in keep-

ing turbulence self-sustaining, which is eventually fundamental to our understanding
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of MDR. Numerical solutions of the ES in viscoelastic flow were only computed re-

cently [77, 74]. Flow structures of these flow states are strongly reminiscent of those

of MDR, which feature smooth velocity streaks, weak vortices, and a kinematics dom-

inated by shear [74]. As a result, polymer molecules are not sufficiently stretched and

the polymer stress is limited; consequently, the flow statistics of the ES is confirmed

to be insensitive to polymer effects. Existence of weak but self-sustaining turbulent

states unaltered by drag-reducing polymers not only explains the existence of MDR –

i.e., why polymers are not able to completely quench turbulence to the laminar state,

it also offers a perfect explanation to the universality of MDR: these weak turbulence

states are intrinsically Newtonian whose flow statistics are not affected by polymers.

Meanwhile, the quantitative origin of the Virk asymptote remains unsolved. Although

the ES mean velocity follows the Virk log law in one particular case [77], departure

from the asymptote was observed with changing Re and domain size [74]. Most likely,

the ES is not the single state governing the dynamics at MDR.

Indeed, a group of states with quiescent turbulent dynamics, weak polymer stretching,

and MDR-like flow structures were identified from DNS solutions in minimal flow units

(MFUs), which were collectively termed “hibernating” turbulence in a series of recent

studies [75, 78, 64]. As sketched in fig. 1.1 with a green line, a dynamical trajectory

spends most of its time sampling the region near the upper-branch (UB) traveling wave

solutions, which forms the core of strong “active” turbulence. Hibernating turbulence

occurs when excursions are made towards the low-branch (LB) solutions [44], which

were know to form the ES [63]. Transition to hibernating turbulence is rare in the

Newtonian flow, but polymers are able to suppress active turbulence and increase the

frequency of hibernation, leading to a flow that increasingly resembles MDR. Taking

an ergodic view of turbulent dynamics, this intermittent transition between active and
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hibernating intervals in an MFU is translated to spatial intermittency showing active

and hibernating patches in larger domains, which is confirmed in recent experimental

and simulation studies [68, 35].

It becomes increasingly clear that the key to understanding both the MDR and L-

T transition of viscoelastic flow lies in the region around the ES. In this study, we

explore this region by shooting DNS trajectories initiated from the ES and tracking

their dynamics leading to the turbulent basin (see the blue line in fig. 1.1). Compared

with traditional DNS, this approach allows us to control the direction of the dynam-

ical trajectories and systematically study the polymer effects on the development of

turbulent coherent structures from their most marginal state. This is also what differs

our approach from that of Agarwal et al. [1], which used an arbitrary initial distur-

bance on the laminar base flow. In addition, our focus is not on the growth rate of

an initial disturbance, but on the evolution mechanism of coherent structures.

Firstly, we use a simulation domain close to an MFU, not only because the cost of

computing ES solutions is much higher than DNS and a small-domain ES solution was

available from our earlier study [74], but also because the MFU approach separates the

temporal evolution from spatial intermittency and allows us to focus on the former [30,

76]. Note from fig. 1.1 that in addition to the L-T transition, our shooting trajectory

also closely accompanies the transition pathway from hibernating turbulence back to

the turbulent core: this study will also shed light on the fundamental mechanism

behind the active-hibernating shifting dynamics, which as shown earlier is important

for understanding the convergence towards MDR [75, 78]. Finally, as discussed above,

the ES alone does not provide an explanation to the quantitative origin of the Virk

asymptote [74]: searching its surrounding region is a natural next step.
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Secondly, totally different vortex configuration will be observed in an extended do-

main. A spotlike turbulent region can be highly localized if the box size is large

enough, no matter in Couette flow or in Poiseuille flow[13, 55, 50, 80], and people

were concerned about such localized state at the L-T boundary. Attention was paid

on the L-T transition[13, 55], but further monitor to the comparison of the Newtonian

and viscoelastic extended cases remains blank yet. Here, we will not only detail the

whole transient process initiated from ES towards turbulence but also compare the

Newtonian case with polymer-introduced case.
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Chapter 2

Methodology

2.1 Formulation and simulation details

We focus on flow in the plane Poiseuille geometry (fig. 2.1) driven by a constant mean

pressure gradient. The x, y and z coordinates are the streamwise, wall-normal and

spanwise directions respectively. Lengths are scaled with the half-channel height l,

velocities are scaled with Newtonian laminar center-line velocity UCL, time is scaled

with l/UCL, and pressure is scaled with ρU2
CL. The no-slip boundary condition is

applied at the walls (y = ±l) and periodic boundary conditions are adopted in x and

z directions, in which the periods are denoted as Lx and Lz.

The conservation equations of momentum and mass are:

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2(1− β)

ReWi
(∇ · τ p), (2.1)

∇ · v = 0. (2.1)
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Figure 2.1: The plane Poiseuille geometry.

Here, the Reynolds number is defined as Re ≡ ρUCLl/η, where ρ is the total density

of the fluid; η ≡ ηs + ηp is the total zero-shear-rate viscosity of the fluid and s and p

represent solvent and polymer contributions respectively. The Weissenberg number is

defined as Wi ≡ 2λUCL/l, the product of the polymer relaxation time λ and the mean

wall shear rate. The viscosity ratio β ≡ ηs/(ηs+ηp) is the ratio of the solvent viscosity

to the total zero-shear-rate viscosity, and 1− β is approximately proportional to the

polymer concentration in dilute polymer solutions. We can use ρ, η and the mean

wall shear stress τw to define turbulent inner scales, which are more appropriate in the

near-wall region [46]. Therein, velocity is scaled with friction velocity uτ ≡
√
τw/ρ,

and the viscous length scale δv ≡ η/ρuτ . Then the friction Reynolds number is defined

as Reτ ≡ ρuτ l/η and the eddy turnover time is l/uτ . Quantities nondimensionalized

with these time-averaged inner scales are marked with a superscript “+”. Because

of the constant mean wall shear stress, Reτ =
√

2Re and l/uτ =
√

Re/2 are both

constant. Following earlier studies [75, 78, 77, 74], for flow fields and statistics near

one of the walls in an instantaneous snapshot, it is more relevant to use the wall shear

stress of that wall and at that moment, τ ∗w, to define the inner scales; quantities scaled

in this way are marked with a superscript “*”.

9
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In (2.1), the last term on the right-hand side contains the polymer stress tensor

τ p, which is obtained from the FENE-P constitutive equation (finitely extensible

nonlinear elastic dumbbell model with the Peterlin approximation) [4]:

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ v · ∇α−α · ∇v − (α · ∇v)T

)
=

(
b

b+ 2

)
δ,

(2.1)

τ p =
b+ 5

b

[
α

1− tr(α)
b

−
(

b

b+ 2

)
δ

]
. (2.1)

Here δ is the Kronecker delta tensor. With Q denoting the end-to-end vector of

polymer molecules, the conformation tensor is defined as α ≡ 〈QQ〉 (〈·〉 repre-

sents the ensemble average). The polymer extension is limited by an upper limit

b: max(tr(α)) < b. In total, the system is specified by four parameters Re, Wi, β

and b. All simulations reported in this study are performed at a moderate Re = 3600

(Reτ = 84.85). Although most experiments are performed at much higher Re, the

evidence is abundant that qualitative transitions in viscoelastic turbulence can all

be observed in the regime close to the L-T transition [62, 76, 20]. On the other

hand, because of the high numerical resolution required to capture the initial stage

of turbulence growth (discussed below), the computational cost can quickly become

prohibitive as Re increases. All viscoelastic cases reported have the same β = 0.97

and b = 5000 and cover three different Wi in near MFUs: 28, 40, and 100, one in

extended domain: 64.

The equation system is discretized with a Fourier-Chebyshev-Fourier pseudo-spectral

scheme in space and integrated in time with a third-order semi-implicit backward-

differentiation-Adams-Bashforth scheme [45]. In near MFUs, we focus on domain

10
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Wi δ+x δ+z δt
Growth/overshoot stage Newt. 3.60 1.80 0.004

28 3.60 1.80 0.004
40 4.80 2.74 0.005
100 4.80 2.74 0.005

ES and turbulent core 8.57 5.11 0.008

Table 1: Numerical details for domain L+
x ×L+

z = 720× 230. For all the simulations,
Ny = 145, δ+y,min = 0.025 and δ+y,max = 2.28.

of L+
x × L+

z = 720 × 230, which is a little larger than but still at the same order

of magnitude as an MFU [30, 76]. For dynamics on the ES and in the turbulent

core, the numerical resolution in the xz plane is the same as our previous studies [76,

75, 78, 77, 74]: δ+x = 8.57 and δ+z = 5.11. However, during the initial stage of

rapid turbulence growth and overshoot (see fig. 3.1), higher resolution is required:

δ+x = 3.60 and δ+z = 1.80 are used for the Newtonian and Wi=28 cases; δ+x = 4.80

and δ+z = 2.74 are used for Wi=40 and Wi=100 cases. The number of Chebyshev

modes Ny = 145 is kept the same for all simulations, which is doubled compared

with our previous studies and gives δ+y,min = 0.025 at the walls and δ+y,max = 2.28 at

the channel center. We have tested multiple resolutions and concluded that the ones

reported here (which are much higher than those in regular DNS) are required to fully

resolve the small-scale flow structures observed during the transition (see fig. 3.10).

Our resolution is also higher than that of the recent numerical studies of the transient

transition process [1, 22]. The time step size is chosen with the Courant-Friedrichs-

Lewy (CFL) stability condition and varies with resolutions: for the growth/overshoot

stage δt = 0.004 is used for the Newtonian and Wi = 28 cases and δt = 0.005 is used

for the Wi = 40 and 100 cases; for the ES and turbulent core, δt = 0.008 is used (see

table 1).

In extended domains, we tried L+
x × L+

z = 4000 × 800 and L+
x × L+

z = 8000 × 800,

11
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Wi δ+x δ+z δt δ+y,min δ+y,max

ES 33.3 8.89 0.02 0.0809 3.71
Afterwards Newt. 6.17 6.25 0.005 0.025 2.28

64 6.17 6.25 0.01 0.025 2.28

Table 2: Numerical details for domain L+
x × L+

z = 8000× 800.

finally deciding on the latter one because of the edge tracking result. For dynamics

on the ES, the numerical resolution is δ+x = 33.3, δ+z = 8.89, δ+y,min = 0.0809 and

δ+y,max = 3.71 (the number of Chebyshev modes Ny = 73). And the higher resolution

is required afterwards: δ+x = 6.17, δ+z = 6.25, δ+y,min = 0.025 and δ+y,max = 2.28 (the

number of Chebyshev modes Ny = 145). The time step size is chosen with the

Courant-Friedrichs-Lewy (CFL) stability condition and varies with resolutions: for

the growth/overshoot stage δt = 0.005 is used for the Newtonian and δt = 0.01 is used

for the Wi = 64; for the ES, δt = 0.02 is used (see table 2).

An artificial diffusion term 1/(ScRe)∇2α with Sc = 0.5 is applied to the FENE-

P equation for better numerical stability [58], which is the same as our previous

studies. The numerical code used in this study is based on the open-source project

Channelflow, which is a C++ library for Newtonian DNS; the code was extended by

Xi [73] for viscoelastic simulation.

2.2 Numerical edge tracking

Given a pair of initial states XT = [vT ,αT ] and XL = [vL,αL] known to bound the

turbulent basin and laminar state, respectively, a straight line connecting them in the

state space

Xω ≡ ωXT + (1− ω)XL (2.2)
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Figure 2.2: Time series of the bulk-averaged TKE of the twin trajectories used in
edge tracking (Wi = 28). Solid and dashed lines are for trajectories on the turbulent
and laminar side, respectively; round dots indicate the points of bisection (see text)

.

must intersect with the L-T boundary at least once, say, at ω = ωe. Numerical

approximations to the intersection can be found through repeated bisections and

DNS shooting tests. A pair of such states is denoted by Xω+
e

and Xω−e
: ω+

e (ω−e )

is infinitesimally larger (smaller) than ωe. Dynamical (DNS) trajectories initiated

therefrom, Xω+
e

(t) and Xω−e
(t), will travel along the edge for a while before diverging

to opposite destinations, effectively pinching and numerically approximating an edge

trajectory for a time period. A new round of repeated bisections and shootings are

started at the diverging point to further extend the numerical edge solution.

In this study, bisections are carried out to a numerical precision of ω+
e − ω−e = 10−8.

A new round is initiated when the difference in the turbulent kinetic energy (TKE)

kb between the pinching trajectories grows into the range of 10−6 − 10−5, where

k ≡ 1

2
(v′2x + v′2y + v′2z ), (2.2)

13



M.A.Sc. Thesis - Xue Bai McMaster - Chemical Engineering

(Hereinafter, a prime denotes the fluctuating component, e.g., v′i ≡ vi − 〈vi〉, and

the subscript b indicates quantities averaged over the bulk, i.e., over the x, y and

z directions.) Time series of kb from the edge-tracking process for near MFU case

(Wi = 28) are shown in fig. 2.2. From an arbitrarily chosen pair of initial states, the

kb value becomes statistically converged ultimately, indicating that the asymptotic

ES has been reached. The method has been developed and widely used in the study

of Newtonian turbulence and its transition [60, 56, 54, 12] and numerical details for

computing the viscoelastic ES used in this study can be found in Xi and Bai [74].

The initial state used for all DNS shootings in this study corresponds to t = 3300 in

fig. 2.2. It is chosen from the bursting phase in the converged edge state trajectory. No

additional disturbance is added: we rely on numerical error to trigger the departure

from the ES to the turbulent core. Note that by using the same initial state from the

Wi = 28 ES for shootings at different Wi’s, including the Newtonian case, we cannot

compare the turbulence growth rates between cases, because except the Wi = 28

case, all other shooting trajectories are subject to an initial disturbance caused by the

sudden change in Wi. However, in all cases, the initial state is close enough to the ES

so that the qualitative features of the transition process are preserved. On the other

hand, this is the only way to make sure that we are comparing the dynamics initiated

from the same state.

The same method for tracking edge state in large domains is applied as L+
x × L+

z =

720 × 230 case. The twin trajectories in edge tracking for L+
x × L+

z = 8000 × 800

are shown in fig. 2.3. Comparing with the near MFU case, flow statistics for ES in

the large domain do not vary periodically with time. Instead, kb keeps at a steady

and pretty low stage within converged ES. We test both L+
x × L+

z = 4000× 800 and

L+
x ×L+

z = 8000×800 cases, both of whose time series plots show similar evolution in

14
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Figure 2.3: Time series of the bulk-averaged TKE of the twin trajectories used in
edge tracking (Newtonian, L+

x × L+
z = 8000 × 800). Solid and dashed lines are for

trajectories on the turbulent and laminar side, respectively; round dots indicate the
points of bisection.

edge tracking. However, totally different vortex structures in ES exist for two domain

sizes, shown in fig. 2.4, although the Qrms are both so close to zero. The Q-criterion

for vortex identification is used [8, 28]. Vortex strength is measured with the scalar

field

Q ≡ 1

2

(
‖ Ω ‖2 − ‖ Γ ‖2

)
, (2.3)

where

Ω ≡ 1

2

(
∇v −∇vT

)
(2.3)

is the vorticity tensor and

Γ ≡ 1

2

(
∇v +∇vT

)
(2.3)

is the rate of strain tensor; ‖ · ‖ represents the Frobenius tensor norm.
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Figure 2.4: Vortex configuration for ES: (a) domain size: L+
x × L+

z = 4000× 800; (b)
domain size: L+

x × L+
z = 8000 × 800. The isosurface of Q = Qrms is shown, where

Qrms is the root mean square of the Q field.

In a shorter box, pairs of vortex structures are aligned periodically near the centerline

of channel, suggesting this box might still be the simple accumulation of smaller boxes.

While in L+
x ×L+

z = 8000×800 box, instead of periodic vortex structures, a strongest

localized spot composed of aligned vortex pairs is clearly presented, indicating the

essential difference between two domains. This observation is consistent with what

Zammert and Eckhardt [81] reported for plane Poiseuille flow. And the difference in

flow configuration caused by domain length is also similar with people have observed

in plane Couette flow[13, 55]. Undoubtedly, the L+
x × L+

z = 8000 × 800 box is large

enough to trigger another mechanism in L-T transition. Thus, we choose the initial

state corresponding to t = 8900 in fig. 2.3, a moment within converged ES, for both

Newtonian and viscoelastic L-T transient trajectories in extended domain cases.
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Chapter 3

Results and Discussion

3.1 Studies on the near minimal flow unit

3.1.1 Overview

Time series of the Newtonian and Wi = 100 DNS shooting trajectories are shown

in fig. 3.1. The process of turbulence growth from the ES is qualitatively similar

between the Newtonian and viscoelastic cases. The dynamics stays quiescent for a

few hundred time units (TUs) as the system stays close to the ES. A rapid growth

stage follows, starting with a sharp increase in the Reynolds shear stress (RSS). (In

fig. 3.1, the instantaneous RSS −v′∗x v′∗y is averaged in x and z; the maximum value

of the resulting y-dependent profile, denoted by |〈v′∗x v′∗y 〉|max, is plotted against t.) In

the Newtonian case, the magnitude of |〈v′∗x v′∗y 〉|max at its peak (marked as moment II)

is almost 5 times as large as typical magnitudes of the turbulent core. During the

same period, a strong overshoot is also observed in TKE but with a slight phase lag of
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Figure 3.1: Time series of shooting trajectories initiated from the ES: (a) Newtonian;
(b) Wi = 100. The blue solid line (left axis) shows peak values of instantaneous RSS
profile; the green dash line (1st right axis) shows bulk-average TKE; the red dotted
line (2nd right axis) shows bulk average of αyy + αzz.
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Figure 3.2: Time series of the turbulent core at Wi = 40: the blue solid line (left
axis) shows peak values of instantaneous RSS profiles; the green dash line (right axis)
shows bulk-average TKE kb.

≈ 15 TUs. The peak of TKE is marked as moment III and as we will discuss below,

moments II and III have drastically different flow structures. After the overshoots, the

RSS quickly drops as the flow enters the turbulent core, where significant differences

between the Newtonian and viscoelastic cases start to appear. In particular, the Wi =

100 case is marked by strong intermittency between quiescent periods and turbulent

overshoots, corresponding to hibernating and active turbulence. For example, an

extended hibernating period can be identified at 400 . t . 650, which is followed by

a strong overshoot at t ∼ 700. (At Wi as high as 100, the flow will eventually decay to

the laminar state after a few fluctuations in the small simulation domain used here [76,

64]; sustained turbulence is found at Wi = 28 and 40 in this study). Fluctuations

in the Newtonian turbulent core are more chaotic. Hibernating turbulence can still

occur in the Newtonian limit but at much lower frequency [75, 78]; a small hibernating

interval is visible at t ∼ 900 in fig. 3.1(a).
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fig. 3.2 shows the time series of viscoelastic turbulence in the statistically-converged

stage (SCS). A number of hibernating intervals are identified where the RSS takes a

deep dive, e.g., at t ≈ 1200 and 2100, and each time the flow comes out of hibernation,

a strong overshoot is observed. Same as the transient growth in fig. 3.1, the spikes of

TKE appear immediately after those of RSS, a direct consequence of the TKE pro-

duction mechanism (discussed below). Overshoots in RSS, TKE, and wall shear stress

were also observed immediately after hibernating intervals in previous studies on the

topic [75, 78] and even in earlier Newtonian MFU studies before the term hibernating

turbulence was coined. For example, Webber et al. [67] noted the intermittent occur-

rence of the so-called “entropy events” where the TKE drops to very low levels before

quickly rising to sharp peaks. The observation here is also consistent with the scenario

sketched in fig. 1.1: the flow intermittently breaks the entrapment in the turbulent

core (around the UB solutions) and makes visits to the ES; on its return route, it

follows the unstable manifold of the ES and experiences a strong spike in turbulent

activities, before decaying back to the turbulent core. Jiménez et al. [31] argued that

the turbulent dynamics cannot be completely described by invariant solutions (both

UB and LB ones) and strong and the quick “bursting” event, which corresponds to

spikes observed here and is likely transient in nature, is an essential component. In

light of this, the earlier framework of active-hibernating transition [75, 78, 20] should

now be adjust to a three-stage cycle consisting of the turbulent core (UB), hibernation

(ES), and bursting. Since polymer-induced elasticity is known to shorten the time

spent at the turbulent core and increase the turnover frequency of these intermittent

cycles [75, 78], understanding how polymers affect the bursting dynamics will be es-

sential for a full picture of turbulence approaching MDR. The approach of this study

allows us to overcome the difficulty of tracking the intermittent bursting events and

directly compare the bursting dynamics between Newtonian and viscoelastic cases.
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State space trajectories of different solution objects are projected onto the |〈v′∗x v′∗y 〉|max−

A∗25 plane in Figure 3.3, where A∗25 is the value of

A∗ ≡ y∗
∂U∗m
∂y∗

(3.2)

measured at y∗ = 25. Note that (3.2) comes from taking the differentials of both sides

of the log-law relationship of the mean velocity

U∗m = A∗lny∗ +B∗ (3.2)

and A∗ defined in (3.2) is thus interpreted as the local log-law slope. Intermittency

in near-wall coherent structures was found to be instantly reflected in changes in

A∗ [78, 74]. Transient solutions of Newtonian and three viscoelastic cases, initiated

from the same point on the edge state, all move along the ES for a segment before

deviation, which is expected for dynamics near a saddle point. After the departure,

the RSS quickly rises but the decline in A∗25 is slow, while different trajectories remain

close to one another. Separation between the trajectories only occurs as the RSS

reaches its peak, after which the drop of A∗25 accelerates as the trajectories spiral

into the regions corresponding to their respective turbulent cores. Interestingly, for

all four cases tested, the point where the trajectory turns its direction (to the left)

and the mean velocity starts to significantly drop is close to Virk MDR magnitude

A∗25 = AVirk = 11.7, which will be further discussed below. With increasing Wi, the

RSS magnitude at the top of the overshoot decreases (as expected); the turbulent

core also shifts towards the lower right direction, reflecting the lower friction drag.

Intermittent excursion towards the direction of the ES is observed within the turbulent

core, which corresponds to hibernating turbulence and becomes more frequent at
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Figure 3.3: State-space projection of solution trajectories. Moments I∼IV on the
Wi = 100 trajectory are labeled in fig. 3.1(b).

higher Wi. Similarities between hibernating turbulence and the ES were extensively

discussed in previous studies [77, 74]. Overall, the state-space topology observed here

is consistent with the schematic sketch of fig. 1.1.

The initial close alignment between trajectories of different Wi indicates that at least

during the early stage of turbulence development the impact of polymers is limited.

Time series of αyy + αzz, which measures the polymer extension in the y − z plane,

is shown in fig. 3.1(b). Although polymer extension in the three-dimensional space is

measured by

tr(α) ≡ αxx + αyy + αzz, (3.3)

previous studies [77, 78] have shown that, even without turbulent motions, substantial

polymer stretching is caused by the mean shear of the flow, resulting in a large αxx

contribution to tr(α). Turbulence-induced polymer extension is more clearly observed

when only the αyy and αzz components are considered. The magnitude of αyy +

αzz increases sharply during the overshoot but only as a reaction to the surge in
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turbulent intensity: the peak of αyy + αzz comes ≈ 15 TUs later than moment III.

The implication of this observation is twofold. First, polymer dynamics does not

drive the instability, and turbulence is still initiated in a similar manner as Newtonian

flow. Second, as the trajectory leaves the ES in the state space, it travels through

a region with minimal polymer-turbulence interaction before polymer effects become

significant. The latter point is consistent with our earlier speculation that in addition

to the ES, there is a group of states insensitive to polymer additives (see fig. 1.1)

located in its neighborhood. These states, or a part thereof, are likely to dominate

the universal and self-sustaining turbulent activities at MDR.

3.1.2 Mean velocity development and shear stress balance

Mean velocity profiles of turbulence at its SCS are shown in fig. 3.4(a) which gradually

increase from the Prandtl-von Kármán (PvK) log law of Newtonian turbulence [33]

U+
m = 2.5y+ + 5.5 (3.4)

to the Virk log law of MDR ((1.0)); all profiles overlap with the viscous sublayer

asymptote at y+ . 5

U+
m = y+ (3.4)

as they should [46]. At Wi = 100, turbulence does not sustain in the current domain

size; therefore the average is taken between 900 ≤ t ≤ 1100, before relaminarization

starts. Instantaneous mean velocity profiles at this Wi during the transient develop-

ment stage are shown in fig. 3.4(b).

As the departure from the ES starts, the slope of the profile rises above that of the
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Figure 3.4: Mean velocity profiles: (a) time-average profiles for Newtonian and vis-
coelastic cases (at the SCS); (b) instantaneous profiles for initial condition and mo-
ments I–IV (as labeled in fig. 3.1; Wi = 100) during the transient development (dot-
dashed: viscous sublayer; dashed: PvK log law; dotted: Virk log law).
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Virk log law while the reduction of Um starts near the channel center (moment I). As

time moves forward, this deficit extends into the near-wall layer as the profile drops

towards the PvK log law.

As mentioned earlier, the log-law slope of the profile, at least in the near-wall layer,

crosses the magnitude of of AVirk = 11.7 near moment II when the state-space tra-

jectory takes a sharp turn in fig. 3.3. The Reynolds equation, which governs the

development of the mean velocity Um ≡ 〈vx〉, is obtained by taking the x-component

of (2.1), applying the Reynolds decomposition to all dependent variables, and taking

the ensemble average on both sides. The resulting equation (cast in inner scales where

stress and pressure are scaled with τw and time with η/τw)

∂U+
m

∂t+
=
∂〈τ+xy〉
∂y+

− d〈p+〉
dx+

(3.4)

shows that the change of Um is determined by the streamwise mean pressure gradient

and the wall-normal gradient of the mean shear stress

〈τ+xy〉 ≡ β
∂U+

m

∂y+
+ 〈−v′+x v′+y 〉+

1− β
Wi
〈τp,xy〉. (3.4)

Recall the definition in (3.2): the log-law slope is directly determined by the mean

velocity gradient ∂U+
m/∂y

+ (we use the +-units here instead of the ∗-units to avoid

the complexity of changing scaling between different instants; this choice does not

qualitatively affect any following discussion), whose evolution is governed by

∂

∂t+

(
∂U+

m

∂y+

)
=β

∂3U+
m

∂(y+)3
+

∂2

∂(y+)2
〈−v′+x v′+y 〉

+

(
1− β
Wi

)
∂2〈τp,xy〉
∂(y+)2

.

(3.5)
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Figure 3.5: Contributions to the mean velocity gradient development according to
(3.5) (left) and the log-law slope A∗25 (right) for Wi = 100. Horizontal reference lines
are added at the 0 mark of the left axis and the Atext = 11.7 mark of the right axis;
the vertical reference line marks the moment when A∗25 = AVirk. Time axis matches
that of fig. 3.1.

(3.5) is obtained by taking the y+ derivative of both sides of (3.4) and noting that

d〈p+〉/dx+ is constant. The three terms on the right-hand side (RHS) describe the

contributions from viscous, Reynolds, and polymer shear stress, respectively. Time

series of these terms are shown in fig. 3.5 for the transient development period in

fig. 3.1(b). All terms start at zero until the RSS term first deviates and acts to

bend down the Um profile. The decline of A∗25 is initially slow but it speeds up and

crosses the AVirk level at t = 330, which is near moment II (t = 325). Exactly at this

crossover point, the RSS term takes a sharp turn downwards, leading to the rapid

decay of A∗25 and the turn of trajectories in fig. 3.3. We have examined the Newtonian

case and other Wi and the coincidence between A∗25 = AVirk and the turn of the

RSS contribution is observed in all cases. This seems to suggest that AVirk = 11.7

corresponds to a critical magnitude below which the RSS can quickly drag the mean

flow towards the PvK asymptote. Unraveling the connection between A∗25 and the
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RSS profile will thus reveal the quantitative origin of the Virk asymptote. It is also

consistent with the overall framework and earlier hypothesis that MDR corrsponds

to one or more intrinsically Newtonian flow states that polymers only help to expose,

which – although are not located on the ES – are closely associated with the dynamics

in its neighborhood. Much caution, however, needs to be taken before any conclusions

can be drawn. So far we only have data for one Re and one domain size: any theory

for the Virk asymptote must withstand verification at a wide range of Re. Further

research is still needed. Finally, the polymer shear stress (PSS) term stays close to zero

until around moment III (t = 345), after the significant deviations in other terms. This

again supports the conclusion that polymers act in reaction to the growth of instability

and do not have substantial impact until full-fledged turbulence has developed.

Instantaneous profiles of the viscous shear stress (VSS), RSS, and PSS – the three con-

tributions to the total shear stress (TSS) defined in (3.4) – of representative moments

are plotted in figs. 3.6 and 3.7. The steady-state solution to (3.4) is

τ+xy = 1− y+√
2Re

(3.7)

which is shown as a reference line in all panels. The initial state fig. 3.7(a), taken from

the ES, has a moderate RSS and the VSS is sizeable across the channel; the PSS is

negligible at the ES. (Since the ES solution is asymmetric [77, 74] with respect to the

center plane and so is the transient trajectory initiated thereat, only the half channel

with stronger turbulent activity is shown in figs. 3.6 and 3.7.) Evolution of the RSS

and VSS is qualitatively similar between the Newtonian and viscoelastic cases. As

turbulence starts to develop, the RSS quickly increases and reaches its maximum at

moment II, which is much higher than the magnitude of the steady-state TSS. The

profile also takes a sharper form, resulting in a large (negative) second-order derivative
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Figure 3.6: Contributions to the total shear stress in the Newtonian case: (a)∼(e) –
moments I∼V; black dot-dashed line is the steady-state TSS ((3.7)).
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Figure 3.7: Contributions to the total shear stress in the Wi = 100 case: (a) initial
condition; (b)∼(f) – moments I∼V; black dot-dashed line is the steady-state TSS
((3.7)).
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that quickly suppresses in the mean velocity gradient, as discussed in fig. 3.5. The

RSS starts to decay at moment III. At moments IV and V, its shape resembles the

typical form in steady-state turbulence which peaks in the buffer layer. The VSS,

meanwhile, has retreated to the near-wall region only. For the viscoelastic case, the

PSS remains small until moment III, where its magnitude becomes comparable with

that of the RSS.

The role of PSS at MDR is an issue often debated. Warholic et al. [65] has measured

a nearly vanishing magnitude of RSS at MDR. Although the PSS cannot be measured

directly in experiments, it was inferred from the TSS magnitude ((3.7)) that the PSS

has filled in the deficit left by the RSS. It was thus argued that MDR is a state in which

the mechanism of sustaining turbulence in Newtonian flow has been replaced by a

polymer-dominated instability. However, other studies (experimental and numerical)

showed that the RSS does not necessarily vanish and is not always overpassed by the

PSS at MDR [48, 36, 39]. This complexity can be explained now considering the

dynamical cycle of turbulent core – hibernation – bursting depicted in fig. 1.1. Based

on fig. 3.7, large PSS only occurs during the bursting stage and depending on the

relative time spent in different stages, the time-averaged shear stress profiles may or

may not show a PSS larger than the RSS. As discussed below, even at moment III

where the PSS is the highest, polymers still plays a suppressing role on turbulence:

high PSS does not indicates an elastic instability at MDR.

3.1.3 Flow structure development

Streamwise velocity in the x − z plane at y+ = 24.85 is shown in figs. 3.8 and 3.9.

The initial moment at the ES (fig. 3.9(a)) shows one pair of low- and high-speed
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Figure 3.8: Streamwise velocity distribution at y+ = 24.85 for the Newtonian case:
(a)∼(e) – Moments I∼V; the color ranges from black to white for 0 to 1.
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Figure 3.9: Streamwise velocity distribution at y+ = 24.85 for the Wi = 100 case: (a)
initial condition; (b)∼(f) Moments I∼V; the color ranges from black to white for 0 to
1.
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streaks in the domain. The streaks are weak in magnitude, showing a small velocity

variation compared to the range of the color map, and straight in shape. For both

Newtonian and viscoelastic cases, as instability starts to develop (moment I), the low-

speed streak splits into two. The streaks further intensify as the RSS increases up to

its peak magnitude at moment II, where streamwise variation becomes clearly visible.

Observations between the Newtonian and viscoelastic cases start to differ at moment

III. In the former (fig. 3.8(c)), streak instability quickly breaks down the structure,

leading to a domain filled by small-scale structures and strong velocity fluctuations

as it leaves the bursting stage. These fluctuations reorganize into weak streaks as the

flow enters the turbulent core (moment V; fig. 3.8(e)). By contrast, at high Wi, this

breakdown into high-intensity fluctuations is largely avoided and the streaky structure

persists through moments III and IV.

Vortex configuration for the same moments are shown in figs. 3.10 and 3.11. The

initial moment from the ES shows weak (Qrms = 0.000237) vortices, which are mostly

straight along the streamwise direction and localized at one side of the channel. Asym-

metry and structural localization is typical of the ES in Poiseuille flow [74]. The

growth of instability during the rise of the RSS is similar between the Newtonian and

viscoelastic cases, where the streak intensification (figs. 3.8 and 3.9) is accompanied

by the strengthening of the vortices: Qrms increases to 0.0161 at moment I and 0.181

at moment II for the Newtonian case. Meanwhile the vortices spread to most of the

channel and their shape becomes distorted in all three dimensions, which is also re-

flected in the streak waviness observed in figs. 3.8 and 3.9. For the Newtonian case,

the streak breakdown corresponds to an abrupt change in the vortex configuration.

Within the 15 TUs between moments II and III, Qrms jumps from 0.181 to 1.23 and
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Figure 3.10: Vortex configuration for the Newtonian case: (a)–(e) are moments I–V;
the isosurface of Q = Qrms is shown, where Qrms is the root mean square of the Q
field.
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Figure 3.11: Vortex configuration for the Wi = 100 case: (a) initial conditions and
(b)–(f) are moments I–V; the isosurface of Q = Qrms is shown (in (a) Q = 4.0Qrms),
where Qrms is the root mean square of the Q field.
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a limited number of relatively large vortices at moment II suddenly blows up into nu-

merous small-scale but high-intensity vortices filling the entire domain. Our finding

resonates with the observation by Webber et al. [67] of the temporally intermittent

bursting events in a MFU, which they called “entropy events”: during these events,

TKE is initially distributed over very few flow modes as its magnitude quickly rises;

then within a very short period of time, TKE is suddenly redistributed to a broad

spectrum of scales. This again confirms that the bursting events come from the tra-

jectories that closely follow the unstable manifold of the ES to a strong overshoot in

TKE (fig. 1.1), which happens after close visits to the ES (hibernating turbulence). At

high Wi, this sudden breakdown at moment III (fig. 3.11(d)) is largely avoided and

vortices evolve continuously into their turbulent-core configuration. This, together

with the observations in , points to the same scenario for the role of polymers on the

development of turbulence as well as on bursting events: polymers do not noticeably

change the initial growth of instability, which mainly involves the intensification of

streaks and distortion of vortical structures; however, after the RSS has reached its

peak, polymers stabilize the primary large-scale vortices from breaking down.

3.1.4 Turbulence growth and polymer effects

The growth of turbulence as it departs from the ES and the polymer effects thereon are

now quantitatively analyzed through the budgets of the TKE and Reynolds stress,

which can be derived from the equation of motion (2.1) following the example of

Newtonian flow. The evolution of TKE is

∂k

∂t
+ 〈v〉 ·∇k +∇ · T k = Pk − εkv − εkp, (3.11)
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where

Pk ≡ −∇〈v〉 : 〈v′v′〉 = −〈v′xv′y〉
d〈vx〉
dy

(3.11)

is the production of TKE (the second equality holds because d〈vx〉/dy is the only

non-zero component of ∇〈v〉),

εkv ≡
2β

Re
〈Γ′ : Γ′〉 (3.11)

and

εkp ≡
2(1− β)

ReWi
〈τ ′p : Γ′〉 (3.11)

are the consumption rates of TKE by viscous dissipation and by conversion into elastic

energy, respectively (Γ′ and τ ′p are the fluctuating components of the rate of strain

((2.3)) and polymer stress tensors), and T k groups all terms contributing to the flux

of k transport, which only moves the TKE spatially but does not convert it to other

forms; it therefore will not be further discussed in this study.

The production of the TKE is the product of the RSS −〈v′xv′y〉 and the mean shear

rate d〈vx〉/dy, which explains why the surge in the RSS during the turbulence growth

process is followed by a strong spike in the TKE. Evolution of the RSS is governed by

∂〈−v′xv′y〉
∂t

+ 〈v〉 ·∇〈−v′xv′y〉+∇ · T R =

PR +RR − εRv − εRp
(3.11)
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where

PR ≡ 〈v′yv′y〉
d〈vx〉
dy

(3.11)

RR ≡ −
〈
p′
(
∂v′x
∂y

+
∂v′y
∂x

)〉
(3.11)

εRv ≡ −
2β

Re

∑
w=x,y,z

(〈
Γ′xw

∂v′y
∂w

〉
+

〈
Γ′yw

∂v′x
∂w

〉)
(3.11)

εRp ≡−
2(1− β)

ReWi∑
w=x,y,z

(〈
τ ′p,xw

∂v′y
∂w

〉
+

〈
τ ′p,yw

∂v′x
∂w

〉) (3.11)

are the production, pressure-rate-of-strain, viscous conversion, and elastic conversion

terms, respectively; T R again is the flux of RSS not discussed here. According to

(3.11), at a given mean shear rate, the RSS is generated by wall-normal velocity

fluctuations. In the near wall region they are primarily found between streamwise

vortices where velocity streaks are formed by the upward lifting and downward flushing

fluid motions. Therefore the rise of the RSS from the ES to moment II is accompanied

by the intensification of the streak structures (figs. 3.9 and 3.11).

Figures 3.12 and 3.13 show the TKE and RSS budgets for typical moments of the

Newtonian and Wi = 100 cases. The process is qualitatively similar between the two

cases during the surge of the RSS (up to moment II), where the production terms

dominate both the budgets of quantities. The RSS production PR has a flatter shape

and is larger at around y+ = 40, the location of the primary steaks and vortices

at the ES (see fig. 3.11(a) and [74]), than in the buffer layer; whereas the TKE

production Pk peaks in the buffer layer – at y+ ≈ 25. Between moments II and III,

the profiles suddenly change and polymer effects become significant. In the Newtonian
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Figure 3.12: TKE and RSS budgets for the Newtonian case: (a)–(e) are moments
I–V.
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Figure 3.13: TKE and RSS budgets for the Wi = 100 case: (a) initial condition;
(b)–(f) are are moments I–V.
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case, magnitudes of both Pk and PR sharply increase. In addition, PR now peaks

in the buffer layer as well and its profile conforms to that of Pk, indicating that the

high-intensity small-scale flow structures resulting from the breakdown of primary

vortices reinforce the RSS generation (which thus completes a positive feedback loop

as the RSS further drives the TKE production). The TKE viscous dissipation εkv also

suddenly jumps to a comparable magnitude as that of Pk, which eventually tames

the fluctuations and regulates the eddies into the typical coherent structures of the

turbulent core. For the RSS budget, εRv is small and PR is counteracted instead byRR.

At high Wi, the Pk profile at moment III is still similar in shape as the Newtonian

case but its magnitude is much lower and the peak location is farther away from the

wall. By contrast, because the streak breakdown is now bypassed, PR maintains its

flat profile through moment III. Excessive dissipation εkv near the wall, observed in the

Newtonian case at moment III, is also avoided. The polymer elastic conversion terms

εkp and εRp are trivial until moment III, where their magnitudes suddenly surge and for

the TKE budget, εkp becomes comparable to the viscous term εkv. In the case of the

RSS budget, owing to a combination of lower PR and the additional contribution of

εRp , the RR profile emerges above zero in certain regions. Finally, it is important to

note that both −εkp and −εRp are always negative, indicating that polymers suppress

turbulence throughout the transition or bursting process and there is no evidence for

elasticity-driven instability.

3.1.5 Initial condition dependence

An important distinction between this study and previous research on bypass tran-

sition is that instead of perturbing the laminar base flow in a somewhat arbitrary
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manner, we focus on the trajectory departing from the ES and follow its path towards

the turbulent core. To investigate the dependence of turbulence growth dynamics on

the choice of the initial condition, we conducted comparative simulations using the

following initial disturbance:

Ψ = εf(y)(
x
′

lx
)z
′
exp[−(

x
′

lx
)2 − z

′

lz
)2] (3.13)

(v
′

x, v
′

y, v
′

z) = (−∂Ψ

∂y
sinθ,

∂Ψ

∂z′
,−∂Ψ

∂y
cosθ) (3.13)

(x
′
, z
′
) = ((x− Lx

2
)cosθ − (z − Lz

2
)sinθ, (x− Lx

2
)sinθ + (z − Lz

2
)cosθ) (3.13)

f(y) = (1 + y)p(1− y)q (3.13)

with p = q = 2, θ = 0, ε = 0.20970, lx = 2.1, lz = 0.7 on the laminar state. (3.13) was

adopted from the earlier bypass transition study of Agarwal et al. [1], although for the

difference in the domain size, the trajectories we generate should not be considered a

direct comparison.

Time series of the transition process (fig. 3.14) is qualitatively similar as those of

the ES-initiated trajectories fig. 3.1, where the transition starts with an overshoot

of the RSS followed by that of the TKE before decaying into the turbulent core. In

the state space projection of fig. 3.15, trajectories initiated from the disturbance of

(3.13) do not closely follow the unstable manifold of the ES (as approximated by

the ES-initiated trajectories) at the beginning, but after the overshoot all trajectories

seem to decay to the turbulent core in a similar manner. There are “knots” in both

fig. 3.14 and fig. 3.15, corresponding to moment i and ii. In fig. 3.15, it seems that

the trajectory tends to move towards the edge state, although finally it only lingers

in the near region for a short time then quickly leaves. From fig. 3.16, streaks begin

to form since moment ii.
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Figure 3.14: Time series of the transient growth of turbulence from the initial distur-
bance of (3.13) in Newtonian flow. The green dash line (left axis) shows bulk-average
TKE; the blue solid line (right axis) shows peak values of instantaneous RSS profile.

Figure 3.15: State-space projection of transient DNS trajectories imitated from the
ES and from the imposed disturbance of (3.13).
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Figure 3.16: Streamwise velocity distribution at y+ = 24.85 for the transient develop-
ment of Newtonian turbulence initiated from the imposed disturbance of (3.13): (a)
is the initial disturbance; (b)–(f) are moments i–v labeled in fig. 3.14
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3.2 Studies on the large domain

3.2.1 Flow structure development

In the Newtonian flow (shown in fig. 3.17), departing from ES, the weak turbulent

spot is strengthened by initially congregating the vortex pairs (fig. 3.17(a)) Then these

“unit vortex pairs” grow and break down, promoting the growth of an even more

distinct turbulent spot, constituted by even denser and more tiny vortex structures,

and meanwhile Qrms keeps increasing (fig. 3.17(b)(c)). Then this spot expands to

an extent and Qrms stays at quite a steady level (fig. 3.17(d)). The spot region

continues spreading, but at the same time a splitting attempt can be easily observed

(fig. 3.17(e)). Tiny vortex structures of high density accumulate at two ends (in

streamwise direction) of the turbulent spot, whereas sparser vortex structures are

distributed in the middle. As the turbulent spot remains spreading, the proportion of

the “sparse region” is also enlarged, which seems to cause thorough splitting within

the spot region. However, two ends of the spot are joined in advance of the complete

splitting, finally leading to the turbulent spot spreading all over the domain, and

vortex structures are evenly redistributed (fig. 3.17(f)). Moreover, Qrms also depressed

in the sustained Newtonian turbulence.

Initiated from the same ES, a viscoelastic case of Wi = 64 is compared with the

Newtonian case. There is no significant difference between two cases at the beginning

stage of L-T transient process (fig. 3.18(a)(b)). But whereafter it can be observed

that vortex structures in Wi = 64 case are not so dense or tiny as those in Newtonian

case, though a splitting attempt is also distinct (fig. 3.18(c)). Then still similarly with

Newtonian case, the initial localized turbulent spot keeps spreading as well as splitting,
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Figure 3.17: Vortex configuration for the Newtonian case: (a)–(g) are moments I–VII;
the isosurface of Q = Qrms is shown, where Qrms is the root mean square of the Q
field.
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Figure 3.18: Vortex configuration for Wi = 64 case: (a)–(f) are moments I–VI; the
isosurface of Q = Qrms is shown in red, where Qrms is the root mean square of the Q
field; the isosurface of αyy + αzz = 0.2(αyy + αzz)max is shown in blue.

49



M.A.Sc. Thesis - Xue Bai McMaster - Chemical Engineering

thus here forms a region with two ends (in streamwise direction) composed of dense

vortex structures and the middle part where only lower vortex strength is distributed

(fig. 3.18(d)). And likewise, the spot region gradually expands by stretching its both

ends and expanding the middle part. Although only with sparsely distributed vortex

structures in this part, before it splits apart, two ends of the spot region has joined

together (fig. 3.18(e)). Finally, this “self-combined” spot successfully spreads over

the whole domain (fig. 3.18(f)). Additionally, during the transient process, except

for the larger vortex structures in Wi = 64 case, Qrms drops to a much lower level

compared to the Newtonian case. Also, such clear difference in Q between two ends

of turbulent spot and the middle part is blurred in viscoelastic case. It is indicated

that the polymer addition markedly helps smooth the transient process.

Moreover, spatial distribution of turbulence-induced polymer extension is also shown

in fig. 3.18 by the isosurface of αyy +αzz. Strong correlation between active turbulent

region and turbulence-induced polymer extension is observed. That is, polymer ad-

ditives only affect the region with higher vortex strength and influence regions with

lower vorticity very little. It can also be noticed that the magnitude of polymer exten-

sion suddenly shoots up at Moment II, which is consistent with the earlier observation

in MFU that polymer effects are negligible at the initial stage of bursting.

Besides concerned about the 3D isosurfaces of Q, we also calculate y − z averaged

Q for each instant and then obtain a spatiotemporal distribution of Q (fig. 3.19).

Lighter color corresponds to higher magnitude of Q. In the Newtonian case, a spot

with high Q begins to stand out from t ≈ 650, indicated by a bright white point.

This point keeps growing until t ≈ 700, then a branch kicks in. This branch, another

spot with high Q in fact, travels away from the initial spot, though there is always a

fuzzy region with low Q between the two, which means these two spots are not really
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set apart. Concerned about the features of the turbulent spot we observe in fig. 3.17,

obviously the two spots we see here corresponds to two ends of the whole turbulent

spot region, and the lingering fuzzy region in between confirms this turbulent spot

fails splitting. Although the middle part remains weak and expanding, finally two

ends converge and a turbulent spot region covering the whole channel emerges. All

these observation above is consistent with what we see in fig. 3.17. Difference in

viscoelastic case seems more remarkable in fig. 3.19. Between two ends of the spot

region, a weak middle part still exists but only takes up very limited space, leading

to a much more homogeneous turbulent spot region till it spreads over the domain.

Polymer additives smooth the Q distribution within the turbulent spot.

Obviously, the growth of a localized turbulent spot is the essential feature in L-T

transition for large domains in both Newtonian and viscoelastic cases. Streamwise

velocity distribution in the x−z plane at y+ = 24.85 is shown in fig. 3.20 and fig. 3.21.

In the Newtonian case, at Moment I, two low-speed and two high-speed streaks can

be seen, all of which are generally straight but slightly bend at x+ ≈ 6500. Then these

“bends” become more conspicuous (Moment II) and furthermore aggregate together,

forming a region filled with streak “wrinkles” (Moment III). This region is highly

localized and keeps growing until the whole domain is full of “wrinkles”, thus sustained

turbulence is obtained finally (Moment IV∼VII). Similar evolution can be observed

in Wi = 64 case. However, consistent with what we conclude above, polymers smooth

the transient process, causing much smoother “wrinkles” within the turbulent spot.

It’s still easy to distinguish the turbulent spot, but the low-speed and high-speed

streamwise velocity streaks can still be told apart, instead of almost twisting together

as we see in the Newtonian case.

No matter in which case, what we are only concerned about is the turbulent spot
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Figure 3.19: The spatiotemporal distribution of Q: (a)Newtonian; (b)Wi = 64. The
color ranges from black to white for 0 to 1.4 (a) and 0.75 (b), respectively.
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Figure 3.20: Streamwise velocity distribution at y+ = 24.85 for the Newtonian case:
(a)∼(g) – Moments I∼VII; the color ranges from black to white for 0 to 1. Red lines
indicate the boundary of laminar-turbulent regions.
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Figure 3.21: Streamwise velocity distribution at y+ = 24.85 for Wi = 64 case: (a)∼(f)
– Moments I∼VI; the color ranges from black to white for 0 to 1. Red lines indicate
the boundary of laminar-turbulent regions.
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region. According to fig. 3.20 and fig. 3.21, it is almost ordinary laminar state outside

the turbulent spot region, and fig. 3.18 also confirms that it is only within this tur-

bulent spot region that polymers make non-negligible effects. If we directly calculate

the bulk flow statistics as usual, it can be deduced that these statistics would be

massively influenced by these laminar regions, especially during the initial growth of

the turbulent spot since most space of the domain is taken up by the laminar state.

Allowing for this problem, we introduce a conditional averaged method for the follow-

ing discussion. Firstly weighted average of Q in wall-normal direction is calculated

to obtain a 2D array in x − z plane for Qxz. Then Ostu method[42] can be applied

here to determine the threshold of laminar-turbulent region division[41]. The Ostu

method can automatically select the threshold for picture segmentation, guaranteeing

the picture is separated into two classes so that the intra-class variation is minimal or

equivalent and the inter-class variation is maximal. Here, it’s convenient to choose the

threshold for dividing Qxz into two classes in Ostu method, thus the x− z plane can

be separated into two regions: laminar region and turbulent region. We only analyze

the turbulent region and neglect the laminar region. In particular, the same threshold

is chosen for all moments in each case, which is determined as the average threshold

for ten moments in sustained turbulence. And no L-T division is made in wall-normal

direction. L-T boundaries are marked with red lines in fig. 3.20 and fig. 3.21. These

turbulent regions circled by red lines are well consistent with the distribution of streak

“wrinkles”.
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Figure 3.22: Time series of shooting trajectories initiated from the ES for L+
x ×L+

z =
8000 × 800 domains (conditional average): (a) Newtonian; (b) Wi = 64. The blue
solid line (left axis) shows peak values of instantaneous RSS profile; the green dash
line shows bulk-average TKE.
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Figure 3.23: Mean velocity instantaneous profiles (conditional averaged): (a) Newto-
nian; (b) Wi = 64. The darker red lines indicate earlier moments and lighter yellow
lines indicate later moments. All moments are marked in fig. 3.22. Dot-dashed:
viscous sublayer; dashed: PvK log law; dotted: Virk log law.
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3.2.2 Analysis based on conditional average

Time series of conditional averaged Reynolds shear stress (RSS) and turbulent kinetic

energy (TKE) profiles are shown in fig. 3.22. For the Newtonian case, ES is so close

to laminar state that statistics keep zero at the beginning stage. A sudden shoot-up

follows, bringing both RSS and TKE to their first peaks at the same time (Moment I).

Shortly after that, here comes a conjoint peak in RSS (Moment II). Corresponding to

these moments, a turbulent spot composed of distinguishable vortex structure pairs

emerges and grows. Then a pair of conjoint peaks in kb comes up (Moment III and

IV). At Moment III, those distinguishable vortex structures break into very dense and

tiny vorticities, and Q explodes to a 20 times higher level. Then the turbulent region

remains expanding. While both RSS and kb peak off, corresponding to Moment V and

VI, in the turbulent region there are three visible parts: two ends with dense vortex

structures and a middle part with sparse structures. Finally, both trajectories drop to

a steady level and sustained turbulence is obtained (Moment VII). For the Wi = 64

case, both magnitudes of statistics are reduced to only 2
3

of those in Newtonian case,

and secondary peaks become more conspicuous (such as peaks at t ≈ 1000, 1100 in

RSS profile). But generally trajectories for the Newtonian case and viscoelastic case

share similar features. A turbulent spot with growing vortex pairs is generated at the

first shoot of the transition (Moment I), and this spot keeps growing until the conjoint

RSS peak (Moment II). As for the following conjoint kb peaks (Moment III and IV),

the turbulent spot expands while the vortex pairs break down. Then the turbulent

spot begins spreading as well as splitting attempt during the dropping of statistics

(Moment V). Finally the turbulence is sustained with the turbulent spot spreading

over the channel (Moment VI).
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Figure 3.24: Contributions to the total shear stress (conditional averaged, bottom
wall) in the Newtonian case: (a)∼(g) – moments I∼VII.

Mean velocity profiles are shown in fig. 3.23. In both cases, for the first stage of

transition (Moment I and II), Um almost keep the same magnitude within viscous

wall region (y+ < 50). Then Um gradually drops down when vortex structures begin

to break down. When the turbulent spot expands to a level where splitting attempt

become remarkable, again overlapping Um profiles can be seen, until turbulence sus-

tains itself and then the slope of Um increases a little in buffer layer (5 < y+ < 30).

Obviously, there are two overlapping periods above, which means two comparatively

steady states in the whole L-T transition for large domains: corresponding to Mo-

ment I∼II and Moment V∼VI in the Newtonian case, and Moment I∼II and Moment

IV∼V in Wi = 64 case. In these two states, there is no intrinsic change but growing

of the turbulent spot size.

The instantaneous profiles of contributions of total shear stress (TSS) (viscous shear

stress (VSS), Reynolds shear stress (RSS) and polymer shear stress (PSS)) are shown

in fig. 3.24 and fig. 3.25. Evolution of VSS and RSS seems qualitatively similar

between Newtonian and viscoelastic cases. At moment I, RSS peaks in the outer
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Figure 3.25: Contributions to the total shear stress (conditional averaged, bottom
wall) in Wi = 64 case: (a)∼(f) – moments I∼VI.
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region (y+ = 60 ∼ 70) while VSS is sizeable in the viscous wall region but rather

small in the outer region. Then the peak of RSS gradually moves from the center

region towards wall and the magnitude decreases during the whole process. The

breakdown of vortex structures promotes a sudden shoot-up of VSS at the wall, and

until sustained turbulence the value of VSS at the wall drops back. However, there are

of course some differences with polymer addition except the depression of quantitative

magnitudes. PSS cannot be neglected since prominent turbulent spot is generated and

peaks in the buffer layer at Moment II. Then PSS remains at a comparable level with

VSS at y = 30 ∼ 90 for the following transient process.

Finally, it is noted that the simulation results in this thesis can all be tested in

experiments. Although an MFU does not exist in realistic flow conditions, taking an

ergodic view of turbulence, the ensemble of states sampled in an MFU in the temporal

dimension will be reflected in extended flow domains at different spatial locations. In

particular, spatial intermittency of bursting events can be measured and compared

with our simulation results. Meanwhile simulation results in the extended domain

reported here already resonates with existing experiments of the L-T transition: e.g.,

Avila et al. [2], Barkley et al. [3].
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Chapter 4

Conclusions

The transient problem of turbulence growth from the edge state and the polymer

effects thereon are studied with DNS. In Newtonian flow, the transition starts with

a strong overshoot of the Reynolds shear stress which results from the intensification

of the streamwise velocity streams as well as the three-dimensional distortion of the

primary vortices. As the RSS reaches the maximum, streak instability quickly leads

to a breakdown of the primary vortices into a dense cloud of small but high-intensity

eddies, at which the turbulent kinetic energy rises to its peak. These small-scale

fluctuations also result in a sudden jump in the viscous dissipation rate, which quench

the fluctuations and regulate the flow into the turbulent core. The introduction of

drag-reducing polymers does not affect the initial growth of instability. However,

it stabilizes the primary streak-vortex structures and prevents the breakdown into

small-scale eddies. Significant polymer stress and conversion to elastic energy are

only observed after the peak of TKE, where breakdown would happen in a Newtonian

fluid. Throughout the whole process, polymers suppress turbulence generation and
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there is no indication of elasticity-driven instability.

The lack of polymer effects during the initial growth of turbulence indicates that near

the ES there is a state-space region where polymers do not suppress turbulence, which

is the qualitative feature of MDR. In addition, as turbulence grows, the mean velocity

profile in the near-wall region initially drops slowly, which suddenly speeds up as it

passes the MDR level. The transient region near the ES is thus a promising direction

to search for the origin of MDR.

In addition, a simple dynamical model of describing the statistically-converged is a

three-stage cycle: (1) the flow samples the core of turbulence, which takes up the

majority of turbulence life time in the Newtonian limit and becomes shortened as

elasticity increases [75, 78]; (2) intermittent escape from the core takes the system

near the ES – the so-called hibernating turbulence [75, 78, 74]; (3) as the flow is

bounced back near the ES, it follows its unstable manifold and goes through a similar

overshoot stage – which appears as bursting events – before returning to the turbulence

core. Studying the polymer effects on the transient growth of turbulence also helps us

understand the bursting dynamics in viscoelastic turbulence. In particular, the large

magnitudes of polymer shear stress during this process would explain the conflicting

observations in previous experimental and numerical studies.

It is also found that the choice of the initial disturbance has a non-trivial impact

on the turbulence growth dynamics. Although trajectories totally differentiate from

those initiated from ES in the transition process, they once tend to approach ES while

surpassing the L-T boundary. This reveals non-neglectable significance of ES in L-T

transition studies.
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For the extended domains, a turbulent spot is initially formed, composed of low-

intensity vortex structure pairs, instead of elongated tube-like structures in near

MFUs. This turbulent spot grows, and Reynolds shear stress surpasses its first con-

joint peaks(in the conditional averaged time series plot), then the vortex breakdown

happens. The turbulent spot consisting of dense small-scaled vortex structures keeps

spreading, while the turbulent kinetic energy is shooting up again. As the drop of

kb, the turbulent spot extends with a weak body and two strong ends, finally filling

up the domain. Conditional averaged streamwise velocity profiles indicate that be-

fore the first RSS peak and shortly after the second kb peak, the flow respectively

maintains the same status within the turbulent regions. Comparing Newtonian and

non-Newtonian case, polymers suppress the intensity of bursting in transition, and

they won’t make effect before Reynolds shear stress peak, both of which are consistent

with observations in near MFUs.
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