
REVERSE ENGINEERING SCIENTIFIC COMPUTATION FORTRAN CODE

REVERSE ENGINEERING OF

SCIENTIFIC COMPUTATION

FORTRAN CoDE

By

OLIVIER ETIENNE DRAGON, B.ENG.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Applied Science
Department of Computing and Software

McMaster University

© Copyright by Olivier Etienne Dragon, July 25, 2006

ii

MASTER OF APPLIED SCIENCE(2006)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: Reverse Engineering of Scientific Computation FORTRAN Code

AUTHOR: Olivier Etienne Dragon, B.Eng.(McMaster University)

SUPERVISOR: Dr. Jacques Carette and Dr. Alan Wassyng

NUMBER OF PAGES: ix, 72

Abstract

In this day and age, many companies struggle with the maintenance of legacy scien­
tific software systems written in outdated programming languages. These languages
use low-level control structures, algorithmic operations and cumbersome syntax that
make the true meaning of an algorithm difficult to understand. To make matters
worse, the process of reverse engineering the algorithm to specification often involves
a considerable amount of manual work which is error-prone and time-consuming.

This thesis explores a completely automated method of reverse engineering. We
apply this method to FORTRAN77 linear algebra software. This software is trans­
formed to an extension of FORTRAN77, which we call Fortran-M. This language
allows for high-level mathematical constructs such as sums, products and vector and
matrix operations. To serve as a proof-of-concept for this method, we have developed
a tool which uses a combination of pattern matching on the source code's abstract syn­
tax tree to recognise low-level control structures, and symbolic analysis to determine
the meaning of loops. Once a pattern has been recognised, or a loop's invariant found,
we apply transformations to the syntax tree, thus creating a Fortran-M equivalent.

iii

Acknowledgements

I would like to take a few lines of paper to thank some of the many people that have
made this work possible, a humble recognition for the tremendous help they were to
me. Thank you to Jacques Carette and Alan Wassyng, my supervisors, who believed
in me, gave me this opportunity and helped me complete it successfully. Thanks to
Spencer Smith and Wolfram Kahl for teaching me well in undergrad and for being so
kind as to be examiners for my defense. Thanks to Dieter Stolle and to John Luxat for
providing me with scientific computation software to test my proof-of-concept tool.
A special thank you to Stephen Forrest for his incredible help with Maple, without
which my prototype would not have achieved half of what it does now.

Merci a mon pere Normand, pour tout, vraiment. Tes encouragements, ton oreille
attentive et ton support monetaire n'est qu'un tres bref apen;u de ce qui m'a permis
de completer mon travail. J'espere bien pouvoir te rendre la pareille un jour. Tu est
un pere extraordinaire! Merci a tous mes amis et a rna famille qui, malgre la grande
distance geographique, sont restes pres demon coeur. Votre amour et amitie me sont
infiniment precieux.

At last I come to you, my dear wife, Erika. Despite the long hours spent working,
despite the extra two years it took me to further my studies, you endured, persevered,
and somehow found the strength to support me in unimaginable ways, still hanging
on to the dream of soon heading back home with your husband and start a "real life."
You have been my pillar of strength for the past six years; my sunshine during the
day, my moonlight at dusk. Thank you, Erika, for your love and support. I truly
look forward to spending the rest of my life with you.

lV

Contents

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

1 Introduction
1.1 Field Survey and Related Work
1.2 Structure Of The Thesis

2 Reverse Engineering Method Overview and Design
2.1 Tree Pattern Matching

2.1.1 About Transformations . . .
2.1.2 Notes On Precision
2.1.3 Choice of Symbolic Analysis

2.2 An Intermediate Language
2.2.1 Notation

2.3 Assumptions About The Input Source Code

3 Harnessing Fortran
3.1 The Gathering Of Information

3.1.1 Unsupported Fortran Statements
3.1.2 Merging The Subprogram Types .
3.1.3 Analysing Specification Statements
3.1.4 Typing And Classifying Unspecified Symbols .
3.1.5 Finding Input And Output Status .

3.2 Abstracting Fortran

v

iii

iv

v

viii

ix

1
2
4

5
6
7
8
9

10
11
12

14
14
15
15
17
21
23
24

VI

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Parallel Assignments . . .
Initialisation Of Variables
Three-Way Branch . .
Scoping Of Variables .
Control Flow Analysis

4 Linear Algebra Code Abstraction
4.1 Recognising Loop Structures
4.2 Symbolic Analysis Of Assignments To Scalars

4.2.1 Finding Recurrence Equations
4.2.2 Solving Recurrence Equations

4.3 Symbolic Analysis Of Assignments To Arrays
4.3.1 Finding Recurrence Equations
4.3.2 Solving Recurrence Equations
4.3.3 Arrays With Multiple Indices

4.4 Finding Loop Closed Forms And Eliminating The Loops
4.5 Linear Algebra Patterns

4.5.1 Dot Product
4.5.2
4.5.3
4.5.4
4.5.5

Vector And Matrix Initialisation .
Vector Copy
Saxpy
Matrix Multiplication .

5 The Reverse Engineering Tool
5.1 Environment ..
5.2 Parsing
5.3 Sample Results . . .

5.3.1 Dot Product .
5.3.2 Saxpy
5.3.3 Matrix Multiplication .
5.3.4 Sigprod
5.3.5 FF2 ..
5.3.6 Sigsum .
5.3.7 Sigsum1
5.3.8 Bessel .
5.3.9 Mystery
5.3.10 Finite Element Analysis
5.3.11 LAPACK's BLAS

CONTENTS

24
25
26
27
28

29
29
31
31
33
34
35
35
37
38
39
39
40
41
41
42

44
44
44
46
46
51
55
57
59
61
62
64
66
68
69

CONTENTS

6 Concluding Remarks
6.1 Future Work . .

A Fortran-M Details
A.l Tree Notation in EBNF
A.2 Language Grammar In Tree Notation
A.3 List of Terminal Symbols

Bibliography

vii

70
70

72
72
72
74

77

List of Figures

2.1 Abstract syntax tree of an arithmetic expression 5
2.2 Our reverse engineering process 6
2.3 Rewrite rule . 7
2.4 ssymm multiplication algorithm 9
2.5 Equivalence example between the tree rule and a set of syntax trees 11
2.6 Fortran code for which g77 gives two warnings . 13
2. 7 Warnings emitted by g77 on code in Figure 2.6 13

3.1 Simple subprogram 17
3.2 Example of unspecified symbols 23
3.3 Example of parallel assignments 25
3.4 Resulting transformation of parallel statements 25
3.5 Variable initialisation example 26
3.6 Idiomatic use of arithmetic if statement . 26
3. 7 Arithmetic if statement transformed . . . 27

4.1 Adding pre-header and post-body nodes 30
4.2 Adding post-exit nodes . . . 31
4.3 Fortran vector dot product . 32
4.4 Fortran saxpy 35

viii

List of Tables

3.1 Specification statement examples
3.2 Result of the analysis of specification statements .

4.1 Examples of data dependency graphs

5.10 Statistics of transformations
5.11 Statistics of transformations on BLAS

lX

20
21

34

68
69

X LIST OF TABLES

Chapter 1

Introduction

In this thesis we explore the field of reverse engineering computer programs. By
reverse engineering we mean the abstraction from code into higher level constructs,
such as creating a mathematical sum from a loop. The goals of reverse engineering are
to improve the understandability, readability and maintainability of software. Our
goals are no different. We aim to achieve these goals on a restricted set of software;
specifically, legacy scientific computation code written in FORTRAN 77.

Our principal motivation in delving into this endeavour is the maintenance of the
plethora of scientific computation software that was written 20-30 years ago that is
still used today in many production systems. These software programs work well
and have done so for many years. Nevertheless they are often extremely difficult
to maintain. The reasons why such code is difficult to maintain are many: lack of
documentation, inaccurate or missing design, original programmers having moved
on; these are only some of the obvious ones. Thus our end goal is to improve the
documentation of the software by abstracting away algorithmic details while retaining
the code's original purpose. This would make the code easier to read and understand
for the people who have to maintain these systems. Eventually, such documentation
could also ease migration of these systems to a more modern language if the need
arose.

Reverse engineering of scientific computation software offers numerous advantages.
By choosing Fortran as input to our method, in particular FORTRAN 77, we give
ourselves access to an incredible amount of code in domains such as numerical anal­
ysis, physics and engineering. Having vast amounts of test data further assists in
validating our results and improving our method. Another important advantage is
that scientific computation code tends to contains more linear algebra algorithms and
less behavioural code. Implementations for the latter vary at great lengths and as
such are challenging to represent by abstract mathematics. Using scientific compu­
tation code also restricts the scope of our end results, as we can assume these will

1

2 1. Introduction

mostly involve mathematical formulae involving scalars, vectors and matrices. But
most importantly, the large amount of legacy scientific code requiring maintenance
today creates a need for this work, and a need for a tool that can implement this
method. This further motivates the usefulness of this project.

We aim to achieve translation of legacy Fortran programs to an extension of the
language which we call Fortran-M. This extension of Fortran adds high-level mathe­
matical constructs usually not witnessed in general purpose programming languages,
such as sums and products, as well as operations on vectors and matrices; constructs
more familiar to a mathematician than to a programming language designer. Ide­
ally we want to achieve a complete translation of all linear algebra algorithms into
formulae. In practice we have have achieved a significant degree of success, however
far from complete. In the future, we would also like to be able to bring the code
to a mathematical level high enough that particular scientific equations, specific to
a particular domain of science such as physics, can be easily recognised simply by
looking at the reverse engineered result.

Another major goal of this thesis is to develop an analysing program that imple­
ments the discussed reverse engineering method, in order to validate our ideas and
research. This tool is completely automated. There is no user input needed at any
stage of the method beyond what is required to launch the analysing program and
to specify the input code to be reverse engineered. In addition, our method and tool
make no use of external data or knowledge such as documentation, specifications or
comments. It only uses the information provided by the Fortran code itself. Although
the possibly very useful information contained in comments and external documen­
tation is forgone, we can achieve a greater automation by only looking at the code.
Hence we have created a prototype analysing program which we call F-Fort. F-Fort
produces two different outputs: Fortran code with added type information, equiv­
alent algorithms and additional comments, and the reverse engineered output in a
reader-friendly documentation format.

1.1 Field Survey and Related Work

Reverse engineering is a very broad term that covers a large area of work and research.
In fact, Chikofsky and Cross have identified six fairly distinct fields which have created
confusion in discussions about what reverse engineering really is [8]. The six fields
are

forward engineering, also known as engineering, is the process of producing ab­
stract requirements and design, down to an implementation.

reverse engineering is the opposite of forward engineering, that is to produce a

1. Introduction 3

more abstract, high-level view from an implementation.

redocumentation aims to provide alternative view of a system at a similar level of
abstraction to improve understanding (e.g. control flow and data flow graphs).

design recovery uses external knowledge and deduction to recreate a system's ar­
chitecture, such as redefining modules and their interactions.

restructuring, also known as refactoring, aims at transforming a system at the same
abstraction level while preserving external behaviour.

reengineering often involves some reverse engineering in order to reassess the de­
sign, and is followed by forward engineering to recreate a functional system.

Without going into further details about what each of these fields covers, we can
assert this project's purpose better by putting it in context of these fields. Based
on criteria defined by Chikofsky and Cross, this project would fall into the reverse
engineering category, with some of its goals reaching redocumentation, and with the
possibility of being the basis for a useful automated reengineering tool.

We say this project is mostly reverse engineering because of the type of abstrac­
tion, and what is abstracted. The abstractions we perform, converting programming
language constructs to more mathematical ones, is what differentiates reverse engi­
neering from redocumentation in [22, 31]. While most redocumentation tools focus
on giving alternate views of the code itself but without making any modifications, we
choose to transform the code to a higher level of abstraction; in other words, removing
some operational details while maintaining the same denotation. However we do em­
ploy redocumentation techniques for some aspects such as making the type of every
identifier explicit. Moreover our project shares a common goal with redocumentation:
improve the understandability of code for maintainers.

What we abstract additionally makes it clear that we are not attempting design
recovery [5, 6, 20]. We instead focus on a finer granularity than subroutines, modules
and architectural design. Our attention is on statements inside subroutines, and our
method takes no information from the organisation of modules.

The reason we mentioned that this method may be used in reengineering is that
it may be possible to do some forward engineering program transformations from
Fortran-M back into FORTRAN 77. In fact our proof-of-concept tool attempts to do
this and succeeds in a number of cases. As this is not the main focus of our method
and merely an interesting by-product, we shall not spend more time discussing it.

The goals and ideas of this thesis are similar to those of Ward with the WSL
and FermaT system [37, 38]. FermaT is a formal transformation system based on
the intermediate language WSL, which stands for Wide Spectrum Language. WSL

4 1. Introduction

contains a large variety of programming constructs, ranging from low-level assembly­
like instructions to high-level specification expressions. We borrow from these ideas
and apply them specifically to linear algebra and scientific computation software
written in Fortran.

Another factor that distinguishes our work from that of Ward, and what we think
is one of our most important assets, is that our method is being created with complete
software automation in mind. That is, everything in our method is to be performed
automatically by a software tool without any user help as far as the reverse engi­
neering method itself is concerned. Tools like Ward's maintainer's assistant [35] and
FermaT use heuristics to automate a considerable portion of the method. They also
automatically perform the transformations specified by the user, thus reducing the
errors that can be introduced by incorrect transformations. On the other hand they
still leave some work for the users to perform. In fact Ward argues that an automated
process is not sufficiently powerful to be used as sole method of reverse engineering
[36]. For this project we decided to push the limits of automation and see how far
one could go if user input was unavailable or impractical.

A number of attempts have been made in automating the reverse engineering task
of finding and performing transformations. These generally look for more intelligent
ways to select the order in which transformations are applied which theoretically
should lead to a better result [36]. Taking the path less travelled we chose a symbolic
analysis of loops [16] approach to automatically recognise higher level computations,
thus further automating the process. Other attempts have been recently made to use
symbolic analysis (or interpretation) in the hopes of improving the results of auto­
mated reverse engineering [9, 34, 40]. In fact, their research has motivated many of
our decisions. Also noteworthy are other techniques that have been used for program
comprehension of Fortran code, namely partial evaluation [7].

1.2 Structure Of The Thesis

In Chapter 2 we begin by motivating our method and design decisions. In Chap­
ter 3 we explain how we extract information from the Fortran syntax, and eliminate
assumptions made by language compilers. Information such as variable types, sub­
program inputs and outputs, parallel statements and initial variable value is deter­
mined. We delve even deeper into the reverse engineering process in Chapter 4 as we
attempt to find closed-forms for loops, and from those expose patterns of linear alge­
bra computations. Finally, in Chapter 5 we take a closer look at our proof-of-concept
tool, with which we tested our method.

Chapter 2

Reverse Engineering Method
Overview and Design

We begin our reverse engineering method by parsing the Fortran code to obtain an
abstract syntax tree (AST). This tree still contains several Fortran specific program­
ming constructs. It has however been stripped of superficial syntax elements that
can be expressed by the tree structure. A typical example of this is for arithmetic
operator precedence in arithmetic expressions. The expression 1 x 2 + 3 is generally
accepted in mathematics as being equivalent to (1 x 2) + 3 where the multiplication
takes precedence over the addition. The addition is thus performed on the result
of the multiplication and its second argument: 3. The parsing process accepts ei­
ther expression creating the same tree structure. In the former it disambiguates the
operator precedence, and in the latter case removes the parentheses. The tree struc­
ture is shown in Figure 2.1. This parsing process can be seen as a transformation
of a uniform stream of characters from the source code file to an abstract syntax
tree. Similarly to all other transformations performed in this method, it preserves
the original semantics.

We use a syntax tree for the remainder of our method as it is much easier to

Figure 2.1: Abstract syntax tree of an arithmetic expression

5

6 2. Reverse Engineering Method Overview and Design

Code

FORTRAN 77
Source File

FORTRAN 77

Legend

Parsing

c::::J Intermediate result

~~~.... Process C!Ction 

Code + Math Ex ressions 
Type inference 
Symbolic analysis, 
Tree pattern matching 
and transformations 

Intermediate 
Language 

(Fortran-M) 

Pretty printing 

Code 
Documentation 

Figure 2. 2: Our reverse engineering process 

handle programmatically. Thus we begin the second stage of our process, which is 
to iteratively traverse the tree and apply rewriting rules to it: match patterns in the 
language and symbolically analyse loops, and accordingly transform the input code. 

Figure 2.2 shows the different intermediate results of our method and the transi­
tions between them. 

2.1 Tree Pattern Matching 

The notation found in Section 2.2.1 and Appendix A describes a tree language gram­
mar. Throughout our process we use the concept of a tree grammar to perform 
pattern matching. However it is not used in a conventional pattern description way, 
like for a regular expression. It is rather akin to a programming language parser that 
uses a stream of tree nodes as tokens [28]. In fact we replace the conventional com­
bination of tree-walking and pattern matching with t ree parsing, which has several 
advantages for us: it gives us better context information and more importantly, it is 
thorough [29]. A pattern matching method will simply ignore patterns it does not 
recognise. A tree parser however must match everything in between. We can then 
perform transformations on select matches. We find that this reduces t he number of 
overlapping patterns with the added advantage of using directly Fortran-M's language 



2. Reverse Engineering Method Overview and Design 

definition. 

; ' 
; ' 

Figure 2.3: Rewrite rule 

7 

As an example, Fortran statements must appear in a certain order [3, 11, 12]. 
Using simple regular expressions, matching would be tried over the whole tree, as 
opposed to only where a certain statement containing the pattern is allowed. 

The pattern matched is a subtree within the language, that is the Fortran-M 
syntax tree. Figure 2.3 illustrates the rewriting actions: parsing the tree identifies 
the #(A B C) subtree as a pattern we wish to transform. In this case, the desired 
action is to replace the subtree with another: #(D E). 

2.1.1 About Transformations 

The goal of these transformations is to take low-level Fortran code filled with algo­
rithmic details and transform them into mathematical expressions at a higher level 
of abstraction. At first only low-level Fortran-specific patterns match the branches 
in the tree. As such, the process begins with simple transformations and traverses 
the syntax tree multiple times in order to expose more complex patterns. For this to 
work, it is important that the rewrite rules compose nicely with one another, which 
is a non-trivial task. By keeping the patterns as small as possible we believe that we 
may be able to achieve, at least in practise, confluence. Assuming patterns compose 
nicely allows us to reduce the size of patterns. 

Take for example this simple matrix multiplication algorithm in pseudo-code [19]: 

fori= 1: m 
for j = 1: n 

fork= 1: p 

C(i,j) = A(i, k) B(k,j) + C(i,j) 

We could try to match the larger pattern with all three for-loops. By breaking 
down the patterns we can recognise that the innermost loop is actually a dot product, 
and that we can transform this code into the following: 



8 2. Reverse Engineering Method Overview and Design 

fori= 1: m 
for j = 1: n 

C(i,j) =A(i, )· B(,j) + C(i,j) 

From this we establish that the j-loop is a vector update operation. The dot 
product becomes a vector-matrix multiplication and we obtain: 

fori= 1: m 

C(i,) =A(i,) B+ C(i,) 

We finish by recognising that the i-loop is similar to the j-loop. This leads to the 
final and desired form: 

C=AB+C 

This is an example of patterns that compose nicely. That is, the result of composing 
the patterns and transformations is the same as if we had tried to match the larger 
pattern. In some cases it may even be more successful: where the larger pattern may 
fail, a fraction of the smaller ones could succeed. We explore this example in more 
detail using our method in Section 4.5.5. 

The most important thing to note about these transformations is that during the 
course of our process, no information is lost. Information is only added. In that 
respect, code comments remain as part of the syntax tree. Not doing so can result 
negative consequences as code comments often contain a wealth of information. This 
information can be particularly useful to maintainers. In the case where no patterns 
are recognised, no transformations are performed. This further ensures safekeeping 
of any information that may be contained in the code. 

2.1.2 Notes On Precision 

Our method makes a significant simplification with regards to precision. Since com­
puters have a finite representation of real numbers, often stored as single or double 
precision floating point, arithmetic operations will carry errors. Integers may also 
carry overflow errors. These errors are inherent of the input program. Nevertheless, 
these are missing from our output. 

In order to reduce the scope of our work we perform transformations-and par­
ticularly symbolic analysis-with infinite precision. This deviates from the actual 
behaviour of program, for the reasons outlined above. In the future we would like to 
take precision into account and represent it in some way in the output. 



2. Reverse Engineering Method Overview and Design 9 

2.1.3 Choice of Symbolic Analysis 

To empower the matching of patterns, we use symbolic analysis. In particular, this 
technique is applied to loop structures for which pattern matching is too fragile. 
To do the same work using rewrite rules, if at all possible, would require either an 
impractically large number of patterns, or extremely complex patterns. 

50 

* 

60 
70 

DO 70, J = i, N 
DO 60, I = 1, M 

TEMPi = ALPHA*B( I, J ) 
TEMP2 = ZERO 
DO 50, K = i, I - i 

C( K, J ) C( K, J ) + TEMPi *A( K, I ) 
TEMP2 = TEMP2 + B( K, J )*A( K, I ) 

CONTINUE 
IF( BETA.EQ.ZERO )THEN 

C( I, J ) TEMPi*A( I, I ) + ALPHA*TEMP2 
ELSE 

C( I, J ) BETA *C( I, J ) + 

TEMPi*A( I, I ) + ALPHA*TEMP2 
END IF 

CONTINUE 
CONTINUE 

Figure 2.4: ssymm multiplication algorithm 

Take for example the matrix multiplication algorithm from the BLAS [14] ssymm 
routine for multiplying an m-by-m symmetric matrix A with an m-by-n matrix B 
(C +--- aAB + f3C), shown in Figure 2.4. Besides being obfuscated by temporary 
variables, the algorithm also contains an if-then-else optimisation to avoid an extra 
costly multiplication and addition. These factors make recognising this piece of code 
as a matrix multiplication algorithm rather difficult; unless we have a very complex 
pattern to match this exact form. This example demonstrates the fragility of using 
only pattern matching to recognise higher levels of abstraction. Although our sym­
bolic analysis implementation is not powerful enough to process this complex case, as 
explained in Chapter 4, we believe symbolic analysis could yield the desired results. 

Symbolically analysing loops results in the abstraction of algorithms to the level 
of mathematical recurrences. This improves the generality of patterns we can use 
to recognise a specific algorithm, thus significantly reducing the number of patterns 



10 2. Reverse Engineering Method Overview and Design 

needed. We can also try to obtain the closed-form of the recurrences, further ab­
stracting away from the algorithm. These recurrences and closed-forms become new 
patterns that can then be caught by our rewrite rules. 

2.2 An Intermediate Language 

Most compilers these days use the concept of an intermediate language [1]. An inter­
mediate language is one which is usually different from the input to the compiler but 
also differs from the assembly language used before compiling to binary. The compiler 
can then be separated into two major parts: the front-end and the back-end. The 
front-end translates an input language into the intermediate one, and then the back­
end translates the intermediate language into the target assembly language. This 
allows compilers to take advantage of the same back-end for different front-ends, and 
thus different input languages. Or similarly, to generate different hardware platform 
output for a single input language. It also possesses the advantage of reusing a so 
called middle-end for aspects like generic optimisations, applied in all cases to the 
intermediate language. 

As part of the development of our method, we have been inspired by such an 
approach. However due to the time and labour intensive nature of this project, we 
decided it would be best to restrict the scope of the project and create an intermediate 
language that kept strong ties with its single input language, FORTRAN 77. Since 
choosing FORTRAN 77 provided us with more than enough software to work with, 
we did not see this as a drawback. 

Having an intermediate language, as compilers do, was not the most important 
reason for the creation of Fortran-M. What we mostly needed was a language that 
would support constructs at a higher level of abstraction than Fortran. We needed 
ways to express mathematics and linear algebra operators. Extending Fortran with 
such constructs gave us the abstraction, freedom and power of expression we were 
looking for. 

We made another important decision concerning this intermediate language: since 
our desired output should be abstract, we wanted this language to remain at a high­
level. This avoids having to translate to a low-level bytecode-like language and back 
to high-level formulae again. It also lets us perform transformations in a high-level 
language. 

Finally, we decided that our intermediate language would be a tree language. 
This greatly simplifies our task as we already obtain an abstract syntax tree from 
the parsing process. It was further found that using a tree language eases the task of 
performing transformations on the language, as trees lend themselves well to mathe­
matical reasoning and programming. 



2. Reverse Engineering Method Overview and Design 11 

2.2.1 Notation 

Here we briefly describe the notation used for this tree language. We use Extended 
Backus-Naur Form (EBNF [23]) in Appendix A to describe the syntax of our notation. 
The syntax of this notation was borrowed from ANTLR [30], and resembles some of 
the popular variants of EBNF. Here is an example of the language's notation, 

tree : #(parent label:childl (child2)+ #(child3 grandchild!)) I alt ; 

The # ( ... ) notation identifies a set of acceptable subtrees with the root being the 
first node, and its children following. Thus the parent node has for children child1, 
the possibly multiple child2, and child3. Concatenation, denoted in EBNF by ', ', is 
implicitly defined by adjacent symbols. We define concatenation in our notation's 
context as two nodes being close siblings, that is they have the same parent and are 
next to one another in the node ordering. Figure 2.5 shows the pictorial equivalence 
of the tree rule which also illustrates the concatenation concept. 

f #(parent label:childl (child2)+ #(child3 grandchildl)) 1 alt; 

tree 
child3 0 

grandchildl 

Figure 2.5: Equivalence example between the tree rule and a set of syntax trees 

Nodes can be given labels such as "label" for child1. The subtree labelled with 
this name can later be referenced by its label. As a convention, terminal symbols 
are all in uppercase while non-terminal grammar rules are all in lower case. The 
'?' operator indicates optionality (zero or one). The '*' operator indicates optional 
repetition (zero or more times). The '+' operator indicates mandatory repetition 
(one or more times). A '.' signifies a wild-card terminal symbol that will match any 
subtree. Finally a 'I' portrays alternatives. 



12 2. Reverse Engineering Method Overview and Design 

2.3 Assumptions About The Input Source Code 

In an attempt to restrict the scope of the project, as well as focus specifically on reverse 
engineering, we decided to make some assumptions about the input to our method. 
This allows us to ignore code that uses non-standard compiler specific extensions. 
In our experience, this has not reduced the amount of code available to us that our 
method works with. 

Our hope is that the software to be analysed would be valid ANSI FORTRAN 
77 code. Verifying the exact compliance of the source code is in itself rather difficult 
as there are no known compilers that implement the standard strictly, without any 
extensions or slight modifications. Nevertheless we settled on the GNU Fortran com­
piler g77 to be our benchmark. This compiler is said to work for the GNU Fortran 
language, which is said to support a superset of ANSI FORTRAN 77 [18]. 

Our assumption is that that any source file that prompts the compiler to abort 
compilation due to errors is to be ignored. Cases where the compiler gives warnings 
about the source file should be looked at on a case-by-case basis as some warnings 
are irrelevant to our reverse engineering work. Figure 2.6 is an example of code which 
produces two warnings, shown in Figure 2. 7, which we can ignore. The code does 
compile and run without ill effects. The warning about d(3) seems alarming. However 
we note that the Fortran does not verify or impose restrictions on the specified size 
of one-dimensional arrays. A convention has been to use "1" as a dummy size for 
all parameter arrays . Another convention is to use "*" to avoid confusing 1 for the 
actual size of the array (or perhaps simply to quiet warnings from the compiler). 

Last but not least, we also assume that the input code performs its intended 
behaviour. That is, our method takes the input "as is." If the input code contains 
errors, for example casting reals to integers, or off-by-one errors, the result from our 
process should reflect and still contain those errors; perhaps even make them more 
obvious. 



2. Reverse Engineering Method Overview and Design 

program main 
integer a(10), b 
double prec1s1on c 
common /block/ b, c 

call array(a) 
end 

subroutine array(d) 
integer d (1) , b 
double precision c 
common /block/ b, c 

d(3) = 5 
end 

Figure 2.6: Fortran code for which g77 gives two warnings 

warnings.£: In program 'main': 
warnings.f:4: warning: 

common /block/ b, c 

13 

Initial padding for common block 'block' is 4 bytes at (~) -- consider 
reordering members, largest-type-size first 
warnings.£: In subroutine 'array': 
warnings.f:14: warning: 

d(3) = 5 

Array element value at (~) out of defined range 

Figure 2. 7: Warnings emitted by g77 on code in Figure 2.6 



Chapter 3 

Harnessing Fortran 

FORTRAN 77 contains numerous archaic programming constructs and hidden rules. 
One of our principal goals is to replace those archaic constructs and explicitly acknowl­
edge assumptions made by compilers on aspects such as variable types. In fact most 
of the work described in this chapter is also done by Fortran compilers. The other 
part of the work consists of very small transformations which aim to simplify the syn­
tax tree as well as provide some abstraction. Such transformations include merging 
subprogram types, removing local variable initialisation statements and identifying 
sequential assignments that can be parallellised. 

3.1 The Gathering Of Information 

Our method to gather the necessary information includes several steps. We begin by 
merging the different subprogram types (program, subroutine and function) into a 
single, aptly named subprogram. We then determine the explicit type of all symbols, 
whether they are subprogram inputs, outputs or updates, local variables, external 
subprograms or intrinsic functions. We also identify constants, as well as the Fortran 
artifacts known as statement functions. By subprogram updates we mean a sub­
program parameter that is both used as input and output. By intrinsic functions we 
mean the Fortran built-in functions. 

Additionally, the process outlined in Sections 3.1.2 to 3.1.5 is sequential. Each 
step assumes the information found during the previous steps. This dependency is 
necessary as, for example, finding whether an identifier is an input or an output to 
a subprogram relies on the knowledge of which identifiers are argument parameters. 
We also need to have the subprogram transformed so that it can store information 
about symbols. 

14 



3. Harnessing Fortran 15 

3.1.1 Unsupported Fortran Statements 

Before we begin, allow us to be more specific about which Fortran statements we do 
not handle. We do not attempt any pattern matching on them, and do little other than 
parse them into the syntax tree. The foremost reason for ignoring these statements is 
the difficulty to reverse engineering their real meaning, and the repercussion on our 
result being too unpredictable. 

Future consideration will likely impose treatment of these statements. This should 
not invalidate our approach as information is never lost, and always added. By 
determining some high-level purpose for these statements, we simply further our 
understanding of the code, without contradicting previous findings. The following 
are the statements we ignore: 

• equivalence 

• blockdata 

• entry 

• save 

• pause 

• statements related to I/0 (format, print, read, write, open, close, backspace, 
inquire, rewind) 

3.1.2 Merging The Subprogram Types 

In Fortran there are three different types of subprograms: 

program is what is often referred to as the "main" program, that is it determines the 
beginning of execution when an application is run. Programs can be optionally 
named, but don't have parameters like other subprogram types. There can only 
be one such subprogram in a compiled binary. 

subroutine is a named subprogram that must be accessed via a "call" statement. 
Subroutines can have parameters used for input, output, or both. 

function is a named subprogram much like a subroutine with the exceptions that 
it must have a return value. It can be used as part of an expression (return 
value), and it cannot be accessed via a "call" statement. 



16 3. Harnessing Fortran 

The distinction between subroutines and functions can be misleading. This is due 
to the fact that functions, just like subroutines, may have side effects. This in turn 
is due to Fortran using pass-by-reference for argument parameters. Thus we use a 
metaphore analogous to the C programming language and treat all subprogram types 
the same. We think of programs as functions with inputs from the operating system 
and a return value to the operating system, and think of subroutines as functions 
without a return value that can only be used in a call statement, and thus cannot be 
part of an expression. Another advantage of this merge is the simplification of the 
syntax tree. It allows us to represent all subprogram with the same tree structure. 
The different trees for the subprograms are described by the following grammar: 

program : #("program" (n:NAME)? SUBPROGRAMBODY) ; 

subroutine: #("subroutine" n:NAME (NAME)* SUBPROGRAMBODY) ; 

function: #("function" (type)? n:NAME (NAME)* SUBPROGRAMBODY) ; 

type : "real" I "precision" I "integer" I "complex" I "double" I "logical" I 
#("character" (#(STAR ICON))?) ; 

Of particular note here is that "double" is used for the Fortran "double complex" type 
and that "precision" represents the Fortran "double precision" type. The NAME 
nodes labelled "n" above are the given name of the subprogram. In the case of 
subroutines and functions, the subsequent NAME's are the subprogram argument 
parameters. These are all transformed into trees of the following grammar: 

subprogram: #(SUBPROGRAM (statements)+); 

There are a few things that can be noted from the tree grammar above. Where we 
had three different syntax tree forms before, we now have one. The three subprogram 
types have been merged into one for the reasons outlined above. Subprograms' names, 
subroutines' and functions' parameters, and functions' output have been removed 
from the syntax tree. The main reason for this is that we want to keep in the 
tree only nodes that pertain to executable code. Therefore any subtree pertaining 
to things like subprogram parameters, typing of variables, dimensioning of arrays, 
etc. are removed from the syntax tree. This information however is not discarded. 
We keep track of the subprogram's name, it's original Fortran type, each argument 
parameter's name and their calling order, and, in the case of functions, the type of 
the return value. This information is recorded as satellite data associated with each 
subprogram. Lastly, the statements which were children of SUBPROGRAMBODY 
are now children of the newly created SUBPROGRAM node. The example below 
shows the syntax tree before and after the transformation for the code in Figure 3.1. 



3. Harnessing Fortran 

before : #("function" "integer" f:NAME (a:NAME b:NAME) 
#(SUBPROGRAMBODY #(ASSIGN #(STAR a:NAME b:NAME)))); 

after: #(SUBPROGRAM #(ASSIGN #(STAR a:NAME b:NAME))) ; 

integer function f(a,b) 
f = a * b 
end 

Figure 3.1: Simple subprogram 

3.1.3 Analysing Specification Statements 

17 

In this step of our method we first use explicit Fortran knowledge embedded within 
the syntax tree to determine the types of identifiers. Any identifier left without a type 
is given one based on Fortran's IMPLICIT rules; however in some cases we have to 
resort to some complex logical deductions, as it is not simple to differentiate between 
a variable (array), an external subprogram, a statement function, an intrinsic function 
or a subprogram passed as a parameter to a subprogram. 

So we begin by looking at the explicit specification statements in the syntax tree. 
These specifications are recognised using tree pattern matching. The tree pattern 
matching works in such a way that a terminal symbol within a pattern may not be a 
syntax tree leaf. And so a terminal symbol in a pattern will match a subtree of which 
parent node contains that symbol. Here are the statement specification patterns, 

implicit: #("implicit" (#(type ( '(' (implicitRange)+ ')') )+ )+) ; 

dimension : #("dimension" (NAME)+) ; 

typeSpecification: #(type (NAME)+); 

parameter: #("parameter" (#(EQUALS NAME expr))+) ; 

intrinsic : # ("intrinsic" (NAME)+) ; 

external : # ( "external" (NAME)+) ; 

common: #("common" ((DIV (block:NAME DIV I DIV) (NAME)+)+ I 
(NAME)+)); 

data : # ("data" ( dataEntity) +) ; 

where the following subrules apply: 

implicitRange : letter I #( MINUS letter letter) ; 



18 

dataEntity : dataltems data Values ; 

dataltems : # (D IV ( dataltem) +) ; 
data Values : # (D IV (data Value)+) ; 

dataltem : varRef ; 

data Value : expr ; 

3. Harnessing Fortran 

These statements are dealt with on an individual basis. We gather information for 
each statement and keep track of it as satellite data for each subprogram. 

implicit: The implicit statement in Fortran specifies the type of identifiers which 
do not appear in an explicit type specification statement. These identifiers are 
typed implicitly according to their first letter. Without an implicit statement 
that overrules the default behaviour, identifiers starting with 'A' to 'H' or '0' 
to 'Z' are of type real while those starting with 'I' to 'N' are of type integer. 
We use this rule to determine the type of symbols which do not appear in an 
explicit type specification statement. The implicit types and respective letter 
ranges are recorded as part of the subprogram. 

dimension: The dimension statement is used to specify the number of dimensions 
and their sizes for arrays. It does not specify the type of the array elements. 
We record the name of the array, its dimensions and sizes. The type can be left 
implicit or specified before or after the dimension statement. A symbol inside 
a dimension statement can either be a parameter, previously found inspecting 
the subprogram statement, a global variable if it appears in a common block, or 
otherwise a local variable. The scope is not determined until all the specification 
statements have been analysed. 

type specification: For type specification statements we simply record the name of 
the variable and type information. These statements may also contain array 
dimensioning which we also take care of just like for the dimension statement. 
The same classification applies for parameters, globals or locals. 

parameter (constants): The Fortran parameter statement is used to define sym­
bols as constants. From now on we will refer to them as constants to avoid con­
fusion with subprogram argument parameters. For constants we record their 
values and types. If not of implicit type, constants must be explicitly typed 
prior to the parameter statement [3]. 

intrinsic: The intrinsic statement explicitly identifies symbols to be Fortran built­
in (intrinsic) functions. This is very important since a built-in function identifier 



3. Harnessing Fortran 19 

not explicitly declared intrinsic may be used as a variable or an external sub­
program. We record which symbol names are intrinsic and modify the tree 
nodes of those symbols from type NAME to INTRINSIC to indicate they are 
not variables. 

external: The external statement indicates external subprograms (functions or 
subroutines only) which may be called by the current subprogram. We record 
which symbols are external and change the tree nodes with those symbols from 
type NAME to EXTERNAL to indicate they are not variables. We further keep 
track of external subprograms for all files processed by the tool. This enables 
us to more easily determine the input or output status of variables passed as a 
parameter when an external subprogram is called. 

common: The common statement is used to share named scope across subprograms. 
These so called global variables are only in scope for subprograms with a com­
mon statement declaring the same common block name. Since not all sub­
program share all of the variables in common statements, we must keep track of 
which common blocks are in scope for a given subprogram, as well as record all 
common blocks at the file level. If the type of a global variable was previously 
declared in a specification statement, the variable is simply given a global scope. 
It may be typed explicitly or implicitly later. It is important to note that we do 
not keep track of common blocks like a compiler would do. We only care for the 
names, their type, dimension and size; as we are neither attempting to generate 
working assembly code, nor trying to interpret the code on a large scale, we do 
not worry about block sizes and variable ordering. 

data: The data statement is used to initialise variables and arrays with values. It 
may be noted that the data statement grammar previously shown is not the 
same as the Fortran specification. Due to the complexity of implied-DO initial­
isations it was decided to only transform the data statements which used the 
simple form shown in that grammar. Global variables may not appear in a data 
statement. This is the case since globals in a named common block can only 
appear in a blockdata subprogram, which we do not handle. Hence only local 
variables and parameters can be assigned a value within a data statement. The 
values are recorded for each variable or array appearing in the statement. 

For each statement, after the information is gathered we remove the statement subtree 
from the syntax tree. Table 3.1 shows examples of specification statements in Fortran 
(left) and in syntax tree form (right) before being analysed. 

We can see that the argument parameters a and b are given an implicit type of real 
and an explicit type of integer, respectively. As part of the common block "blockl", 



20 3. Harnessing Fortran 

subroutine 
I [sub1, <NAME>] 
I [a, <NAME>] 
I [b, <NAME>] 
I [[subprogrambody] ,<SUBPROGRAMBLOCK>] 
I I implicit 
I I I integer 
I I I I [e, <NAME>] 
I I precision 
I I I [c, <NAME>] 

subroutine sub1(a, b) 
I I common 
I I [/, <DIV>] 

implicit integer (e) 
I I [block1, <NAME>] 

double precision c 
I I [/, <DIV>] 

common /block1/ c, d 
I [c, <NAME>] 

dimension c(3), b(10) 
I [d, <NAME>] 

integer b 
I dimension 

parameter (echo = 60) 
I [c, <NAME>] 
I I [3, <ICON>] 

end 
I [b, <NAME>] 
I I [10, <ICON>] 
I integer 
I I [b, <NAME>] 
I parameter 
I I [=,<EQUALS>] 
I I I [echo, <NAME>] 
I I I [60, <ICON>] 
I end 

Table 3.1: Specification statement examples 



3. Harnessing Fortran 21 

I Name I Type Usage Scope Dimension I Size I Value I 
a real variable parameter 0 1 
b integer variable parameter 1 10 
c double precision variable global (block1) 1 3 
d real variable global (block1) 0 1 
echo integer constant local 0 1 60 

Table 3.2: Result of the analysis of specification statements 

c and d are global. The vector c has size 3 and is of type double precision, while 
d is implicitly typed as real. Finally, echo is a constant with value 60. Under the 
default implicit rules it should have been of type real, but because of the overriding 
implicit statement, all implicitly typed symbols starting with the letter "e" are of 
type integer. Table 3.2 shows these results. 

3.1.4 Typing And Classifying Unspecified Symbols 

As Fortran makes use of various implicit rules, a goal of our method is to make all 
these explicit. In order to do so we must look through the code's syntax tree and 
search for identifiers which have not yet been typed or classified. For an identifier 
tree node used without children we simply assume it to be a scalar variable, unless it 
is part of a call statement. Since there are no intrinsic functions without arguments, 
and granted that external subprograms and statement functions must be explicitly 
declared in order to be compiled properly, this is almost always a safe assumption. 
There is one exception, however, and that is with argument-less functions passed as 
parameters. For this particular case we had to modify the parser to give a special 
label to identifiers with an empty set of parentheses. Since Fortran uses parenthesis 
for both arrays and function calls, the parser cannot differentiate between them; that 
is unless it is used without arguments, since arrays cannot be used without indices. 
Therefore, for identifier symbols without children we verify if they are subprogram 
parameters, otherwise we classify them as locals. We then give them an implicit type 
based on the current implicit rule; either the default one or a different one if specified 
with an implicit statement. 

With respect to an identifier node with children, we have four possibilities: it 
could be either an array, an intrinsic function, an external subprogram passed as 
parameter, or a statement function. In reality, however, we can rule out arrays based 
on the assumption that an array symbol which has not been dimensioned is not an 
array. In fact, g77 gives an error in such a case so we can safely assume arrays must 
always be dimensioned. 

With regard to defining an unknown symbol's usage, we only need to do so for 



22 3. Harnessing Fortran 

the first encounter. We can then simply change the type of the other tree nodes with 
the same symbol encountered further down the syntax tree, without analysing them. 
This is the method prescribed by Fortran, and is reinforced by the fact that symbols 
with the same name cannot be used in two different ways. 

statement functions: Statement functions are simple one-line expression functions 
that can have argument parameters. Since these must be declared prior to any 
executable statement, we identify a statement function as an assignment with 
the left-hand side being a node with children coupled with the fact that arrays 
must be dimensioned. We record the function's name, its arguments and its 
expression. Since statement functions appear after specification statements the 
symbol may have been typed, in which case we record that type. Otherwise we 
use the current implicit rule to determine the type. The function's definition 
statement subtree is then removed from the abstract syntax tree. 

parameter subprogram: In Fortran it is possible to pass another subprogram sym­
bol as argument to a subprogram. Therefore we must identify this usage of 
symbols. A parameter subprogram will appear as a parameter that has not 
been dimensioned but that is used with arguments. In the case where the 
subprogram takes no arguments it would appear as something other than an 
identifier and we know right away it must be a parameter subprogram as arrays 
must be referenced with indices. When we find a parameter subprogram we 
simply record its name and the number of arguments it has. If the subprogram 
is not a subroutine (inside a call statement) we determine its return type either 
explicitly or implicitly. 

intrinsic function: In the case of intrinsic functions, we simply do a table look-up 
with a list of all known intrinsic functions. If the symbol has not been identified 
with any other purpose, then we must assume it is intrinsic. 

Figure 3.2 shows examples of implicit usage of symbols. In program main, the test 
function must be explicitly declared as external since it is passed as a parameter to 
sub2. On the other hand, sub2 is not explicitly declared; implicitly it is detected 
as an external routine. In sub2, f is properly identified as a parameter subprogram 
of type real, and real as a local variable of implicit type real. Note that there is 
also an intrinsic function named real. In this context however it is used as a local 
scalar variable. This usage forbids the calls to the real intrinsic function within 
the subroutine sub2. The return value of function test is properly identified as 
variable test of type real. The statement function stfunc is a function taking two 
real arguments and returning a real value. These types are all determined using the 
default implicit rule stated in Section 3.1.3. Finally it is found that mod and int are 
used here as intrinsic functions. 



3. Harnessing Fortran 

program main 
external test 
call sub2(test) 
end 

subroutine sub2(f) 
real = f () 
end 

function test() 
stfunc(a,b) = (a* b)**2 
test= mod(int(stfunc(3,4)), 5) 
end 

Figure 3.2: Example of unspecified symbols 

3.1.5 Finding Input And Output Status 

23 

A very important piece of information to know about an arbitrary piece of code is the 
input, output or update status of the subprogram parameters [39]. An input is defined 
as being an argument parameter that is only read but not written to throughout the 
whole subprogram. An output is a parameter that is only written to (in a pass-by­
reference context, such as in Fortran) and an update is one which is both read and 
written to. 

In order to find the input, output or update status of variables, we first determine 
which Fortran statements constitute memory read and which constitute write. We 
found that assignment, READ, DO and CALL statements changed the value of vari­
ables, as well as calls to external functions within expressions. The assignment and 
READ are fairly obvious. In the case of the DO loop it is the loop variable defined 
within the statement which is updated. In FORTRAN 77, the loop variable main­
tains its final value after the loop has finished executing. As for external subprograms, 
since Fortran uses pass-by-reference we must recursively analyse the parameters of 
the called subprogram to determine their input or output status. 

At this point all symbols must have been typed and classified so that we do not 
mix external functions, subprograms, etc., with variables. We then parse the tree, and 
for each node we keep a set of inputs and output variables. The procedure is recursive, 
and parents inherit their children's inputs and outputs sets. In this matter each node, 
and as such each statement, has a set of each inputs and outputs associated with it. 
This is very useful information to know later on in the process found in Section 4.2.2. 



24 3. Harnessing Fortran 

Once we have gone through the whole syntax tree we take the intersection of the 
two sets and classify these variables as update, if they are parameters. Following that 
we subtract each set from the other, thus eliminating updates, to find the pure inputs 
and outputs. We must be careful not to mistake a variable that is written to and 
then read from as an update. In static single-assignment form such a parameter is 
never read, thus it is not an update. As an example, parameter b in Figure 3.3 is an 
update since it is read first and then modified before the end of the subprogram. On 
the other hand, a is written to before being read and so is a pure output. 

3.2 Abstracting Fortran 

In this section we show some of the patterns and transformations used on various 
Fortran structures. These transformations follow our goal of keeping each small. 

3.2.1 Parallel Assignments 

In Fortran, all statements are executed one after the other in the order they appear 
in the source code. That is, statements are composed sequentially to obtain the final 
result of a computation within a subprogram. Nevertheless, it is possible that several 
statements do not depend on one another for data. A simple abstraction can be done 
by finding parallel compositions of statements. 

Detection of parallel execution paths is traditionally done using dataflow analysis 
on a dataflow graph. While this technique is the most thorough, we can still achieve 
a reasonable amount of parallelism by doing far less work. We can accomplish this 
by looking for patterns of sequential assignment statements which do not depend on 
each other for data. This is simply done by observing assignment statements follow­
ing one another within a code block: inside a loop or if-statement body. When an 
assignment's right-hand side variable is not contained in the following assignment's 
left-hand side expression, we know that the two are independent, and can be ex­
pressed by a parallel composition. For additional safety, when an otherwise parallel 
assignment statement has a code label, we ignore it because control flow jumps into 
the middle of a parallel block is ill defined. 

We use the example in Figure 3.3 to illustrate how our method works. Neither 
statement 1 or 2 contains a or c in their right-hand side expression. Thus the two can 
be expressed as a parallel composition. On the other hand, since statement 3 depends 
on the values of a and c before its execution, it cannot be grouped with statements 
1 and 2 in a parallel fashion. Figure 3.4 shows the result. 



3. Harnessing Fortran 

subroutine sub(a, b) 
1 a = b ** 2 
2 c = b + 5 
3 b = a + c 

end 

Figure 3.3: Example of parallel assignments 

1. * subprogram sub (a, b) 
2. 
3. Output parameters: 
4. real a 
5. 
6. Updated parameters: 
7. real b 
8. 
9. Local variables: 

10. real c 
11. 
12. Executable statements: 

13
. II ; : :~5 

14. b- a+ c 
15. end 

Figure 3.4: Resulting transformation of parallel statements 

3.2.2 Initialisation Of Variables 

25 

The Fortran language, and its compilers such as g77, do not guarantee that variables 
will have a default value before they are used within a subprogram. As a result, many 
Fortran subprograms begin their execution with assignment statements giving initial 
values to some of the variables. By removing such statements from the syntax tree, 
we simplify the tree without losing information as we record the initial value as part 
of the variable's type. 

To keep this transformation as safe as possible, we decided that only assignments 
at the very beginning of a subprogram would be used for this, and only those assign­
ments to local variables giving a literal constant value are matched and transformed. 
Figure 3.5 illustrates this concept. In statement 1, a is a parameter thus we do not 



26 

subroutine sub(a,b) 
1 a = 0 
2 c = 0 
3 d = b + 1 

if (b > 0) return 
4 e = 1 

end 

3. Harnessing Fortran 

Figure 3.5: Variable initialisation example 

process its assignment as an initialisation. On the other hand, statement 2 assigns 
a constant value to local variable c; hence we remove the statement from the syntax 
tree and record variable c's initial value. In statement 3, d is also a local variable, 
but the expression found on the right-hand side of the assignment is not constant. 
Therefore this statement is not a candidate for our transformation. Finally, the as­
signment to e in statement 4 is constant but because it is not at the very beginning 
of the subroutine we do not use it. 

3.2.3 Three-Way Branch 

Fortran sports a three-way branch which they call an arithmetic if statement. This 
statement has the following tree pattern: 

arithmetic!/: #("if" ( expr) a:LABELREF, b:LABELREF, c:LABELREF) 

Such a structure is very low-level and reminiscent of assembly language constructs. 
First, the expression, which must be arithmetic, is evaluated and compared to 0. If 
the expression value is less than 0, the control flow is transferred to label a. If the 
value is 0, control jumps to label b, and if the value is greater than 0 the control goes 
to c. 

There are a few idiomatic uses of the arithmetic if statement which we observed 
in code available to us. The main example being when two of the label references 

IF(FOO-MAX) 6,6,5 
5 MAX=FOO 
6 IF(FOO-MIN) 7,8,8 
7 MIN=FOO 
8 CONTINUE 

Figure 3.6: Idiomatic use of arithmetic if statement 



3. Harnessing Fortran 27 

1. if (foo > max) then 
2. go to 5 
3. else 
4. go to 6 
5. end if 
6. 5 max +--- foo 
7. 6 if (foo < min) then 
8. go to 7 
9. else 

10. go to 8 
11. end if 
12. 7 min +--- foo 
13. 8 continue 

Figure 3. 7: Arithmetic if statement transformed 

are the same. Figure 3.6 shows such example. Using the semantics of the arithmetic 
if statement we can clearly see that in the first case, we have foo - max <, =, > 0. 
Since the first two labels are the same (6), and additionally the arithmetic expression 
is a subtraction we can easily create a more meaningful Boolean expression. In this 
particular case foo > max is really what is meant by the underlying code. Whether 
to use > or ::; is difficult to tell by simply looking at the syntax tree. However we feel 
confident that using a boolean test inside an if statement instead of an arithmetic one 
is much more natural and exposes a more abstract meaning. We chose to go with > 
for the first case and similarly < for the second one. Thus this piece of code would 
be transformed to the printed Fortran-M code in Figure 3. 7. 

This form could be further improved using control flow analysis to guide the 
removal of the goto statements. However, as mentioned in Section 3.2.5, we decided 
that graph restructuring was beyond the scope of this work. 

Another simple transformation occurs when label a and c are the same but b is 
different. In this case we transform the statement in a similar fashion to that previ­
ously described. The statement becomes an if-then-else where the Boolean expression 
is expr = 0. 

3.2.4 Scoping Of Variables 

So far, variables have been assumed to have a scope that spans the subprogram 
that contains them, or in the case of global variables, their common scope within 
the compilation unit (source file). Nevertheless, restricting the scope of variables to 
the only code block they are referenced in could be useful. By code block we mean 



28 3. Harnessing Fortran 

a sequence of statements with the same control flow parent. For example all the 
statements guarded by an if-statement are part of the same code block. The body of 
subprograms, if-thens, else-ifs, elses, do-loops, etc. are blocks. Restricting the scope 
of a variable to the particular if-branch it occurs in could for example expose a case of 
over-generalising in a subprogram where an if-then-else should really be two separate 
subprograms with fewer arguments. We have observed this practise to be common in 
such Fortran software as BLAS[14, 15, 24, 26] and LAPACK[2, 27]. 

Nevertheless, diving into this endeavour proved more difficult than we thought. 
The initial work yielded no immediate benefits. Therefore we decided to leave this 
task for future investigation. 

3.2.5 Control Flow Analysis 

Using control flow analysis to transform lower level control structures such as gotos 
into higher level structures like if-then-else and while loops is a desirable feature of 
this process. We set out to research various techniques to eliminate gotos from code. 
After investigating the techniques [4, 25] for implementing such treatment, we felt 
that the benefits did not warrant the effort required. Hence we left goto removing as 
future work. As we were mainly interested in transforming loop structures, we came 
across a method [16] that ignored the loop structures like do-loops and simply used 
the control flow graph directly to determine recurrence equations for looping control. 
This influenced our decision to use this method instead, described in Section 4.1. 



Chapter 4 

Linear Algebra Code Abstraction 

The most ambitious goal of this project is to create a reverse engineering method 
that automatically abstracts algorithmic details from linear algebra software. Linear 
algebra involves vectors and matrices. At the implementation level, this means re­
peating an arithmetic operation inside one or more loops. Loop algorithms often hide 
their purpose at a low abstraction level. This is a consequence of the implementation 
programming language that does not allow for expressing mathematical abstractions, 
frequently due to performance reasons. As such, it is of great importance that our 
method be able to abstract loops into higher level linear algebra operations. 

While attempting to recognise patterns in loops we came to the conclusion that 
simple regular expressions were not powerful enough. The pattern matching method, 
even for simple loops with no branches and a single statement, is too fragile to be 
useful in reverse engineering loops, as shown in example 2.4. For these reasons we 
opted for a more general method that would work for simple, as well as slightly more 
complex loops. This method consists of symbolically obtaining the recurrence relation 
for variables which state is changed inside the loop. If possible, we then attempt to 
solve the recurrence equations, and hopefully obtain the closed-forms. Hence we 
empower our pattern-based heuristic method with symbolic analysis. 

4.1 Recognising Loop Structures 

The method we chose for performing symbolic analysis is that of Fahringer and Scholz 
(F&S) [16]. This method employs the control flow graph instead of relying on the 
abstract syntax tree. This has the advantage that any cycle in the control flow graph, 
whether it be a do-loop or an if-goto loop, can be analysed as a loop. Despite this 
advantage, we decided to treat only do-loops due to difficulties in determining the 
closed-form of other loop forms. We must therefore begin by constructing a control 

29 



30 4. Linear Algebra Code Abstraction 

flow graph from the syntax tree. As F &S do not describe the creation of control flow 
graphs, we use the method outlined in [1] to create basic code blocks (vertices) and 
join them with control flow edges. This creates slightly different control flow graphs 
than F&S' graphs, as code blocks can contain multiple statements; for example, 
sequential assignments that don't have splits or joins in the control flow are part of a 
single block. 

Once we obtained the graph, we label the edges either as forward or back edges. 
This is done using a simple depth-first search [10], where a back edge is one which 
joins the current node to a node already processed. Following the symbolic analysis 
algorithm, we extend the control flow graph by adding nodes that clearly identify the 
boundaries of each loop. These boundaries are the loop entrance, or pre-loop header 
(PH), the loop's end of body, or post-body (PB), and the loop exits, or post-exits 
(PE). 

The algorithms to insert PH and PB are simple, and very similar: after detecting 
nodes with back-edges (loop header nodes), we add the new node to the graph, draw 
an edge from the new node to the loop header node, then replace all edges incoming to 
the loop header by edges incoming to the new node. Figure 4.1 shows the transition. 

-~ Forward edge 

-- -> Back edge 

Figure 4.1: Adding pre-header and post-body nodes 

Prior to detecting where PE nodes need to be added, the previous task of inserting 
PH and PB nodes must be completed. There is the obvious exit from a loop header 
node that is a branch. However to find exit edges from within the loop body we must 
have a better algorithm. Such algorithm requires that we ensure the loop subgraph 
is reducible, which is accomplished using a known test [21, 32]. Knowing that the 
control flow graph is reducible allows us to find where to add PE nodes with greater 
ease. These nodes are inserted by using a backwards breadth-first search starting 
at the PB node, marking the nodes when they are encountered. If a node has an 



4. Linear Algebra Code Abstraction 31 

Figure 4.2: Adding post-exit nodes 

outgoing forward edge to an unmarked node then we know this must be an exit. 
Thus we insert a node to mark an exit of the loop, as shown in Figure 4.2. 

4.2 Symbolic Analysis Of Assignments To Scalars 

The symbolic analysis of assignments to scalar variables differs significantly from that 
of assignments to arrays. The method outlined below in Sections 4.2.1 and 4.2.2 works 
only for assignment statements that redefine the value of a scalar variables. We cover 
the case of array assignments in Sections 4.3.1 and 4.3.2. 

4.2.1 Finding Recurrence Equations 

Once we obtain the extended control flow graph, we can begin the symbolic analysis. 
F &Suse the concept of program contexts to perform their symbolic analysis. A pro­
gram context is a triple ( s, t, p) where s is the current state of all variables in scope, 
t is the state condition and p is the path condition [16]. 

The state condition and path condition are used to perform the symbolic analysis 
of control flow branches. Our method does not use these as we determined that 
finding closed-forms of loops with internal branches or multiple exits was beyond the 



32 4. Linear Algebra Code Abstraction 

intended scope of this work. Therefore, we only apply our method for loops with a 
straight-line code body. 

To find the recurrence relation of the loop, we start by identifying the recurrence 
variables; these are variables that change value inside the loop body. We then include 
those variables into our state s, giving them an arbitrary recurrence value. We also 
search for initialisation assignment statements immediately prior to the loop header; 
those are recorded as the recurrence variables' value at time 0. And, since we only 
deal with do-loops, we initialise the loop variable to its initial value specified in the 
do-statement. For those variables for which we have no initial value we create a 
dummy initial value for the 0 recurrence value. 

As opposed to F&S' algorithm which analyses entire control flow graphs, we only 
analyse loops. Moreover, we only analyse assignment statements since other types of 
statements may introduce complex side effects. Hence, we symbolically interpret the 
loops' body statements one by one to determine the recurrence equations for each loop. 
The flow graph nodes are visited in topological order [10], with the slight restriction 
that branches leading to post-exit nodes are taken first. This restriction is necessary 
to ensure that a loop's body is visited before its exit. The state value expressions of 
the recurrence variables are updated at each statement with new expressions if the 
state changes. Once we reach the PB node we have all the data required to create 
and attempt to solve the loop's recurrence equations. 

To show more clearly how this works, we use as an example a simple dot product 
loop in Fortran, shown in Figure 4.3. We first determine that i and stemp are 
recurrence variables. These variables are replaced by sequences i(k) and stemp(k) 
respectively. Next we find that the initial value of i is 1; however the value of stemp 
at time 0 is unknown, and so we assign it an arbitrary symbolic value stempO. This 
yields two states: 

s0 { stemp(O) = stempO, i(O) = 1} 
s 1 {stemp(k + 1) = stemp(k), i(k + 1) = i(k)} 

The state s0 identifies the state of the variables prior to executing the loop. It is 
used after the symbolic analysis of the PB node to attempt to solve the recurrence 
equations. 

do 10 i = 1 ,n 
stemp = stemp + sx(i)*sy(i) 

10 continue 

Figure 4.3: Fortran vector dot product 



4. Linear Algebra Code Abstraction 33 

The do-loop in Figure 4.3 contains two statements. The first one is the visible 
stemp assignment. The other is the implicit incrementation of the loop variable i, 
performed after all other statements of the loop body [3]. The symbolic interpretation 
of these two statements creates the final state values for the loop body: 

stemp(k + 1) 
i(k + 1) 

stemp(k) + sxi(k) syi(k) 
i(k) + 1 

4.2.2 Solving Recurrence Equations 

Before we can solve the recurrence equations obtained above, we must create a data 
dependency graph. The importance of this graph comes into the process of solving 
recurrence equations. It allows us to solve multiple sets of recurrence equations in 
order of data dependency. This in turn yields solutions that are independent of each 
other, and thus can be executed in parallel. This is of utmost importance to enable 
removing the loop in the transformation we perform following the symbolic analysis. 

For this graph, we define a data dependency (edge) between two variables ( ver­
tices) as a variable which is found in another variable's recurrence equation expres­
sion. The recurrence variable depends on the variables found in its expression. Non­
recurrence variables are not included in the graph. This dependency graph should 
be a directed acyclic graph (DAG), if we exclude self-dependence. In cases where it 
is not we do not process the loop. Table 4.1 shows examples of acyclic and cyclic 
dependency graphs. This cyclic dependency example is somewhat special in the fact 
that it is a "coupled" recurrence system. In other words, this system consists of 
two recurrence systems that depend on each other. Maple is capable of handling 
some coupled system, such as this particular one. Nevertheless we decided against 
supporting any kind of cyclic dependency to restrict the scope of our work. 

The process of solving recurrence equations for scalar variables is simplified by 
using the Maplesoft's Maple computer algebra system as a symbolic engine. We 
entrust this process to Maple's rsolve function and as such, the quality of our result, 
for better or worse, depends on it. We assume Maple's result to be correct, if a result 
can be obtained. If Maple is unable to solve the recurrence we simply stop processing 
the current loop. 

Thus we continue our dot product example from Figure 4.3 by solving the recur­
rence equations. The dependency graph shows that stemp depends on i. Therefore 
we first find the solution to the recurrence equations of i: 

i(k) = k + 1 



34 

II 

Code 

Graph 

4. Linear Algebra Code Abstraction 

Acyclic 

do 10 i=1,n 
stemp=stemp+sx(ix)*sy(iy) 
ix=ix+incx 
iy=iy+incy 

10 continue 

Cyclic 

do 10, i=2, n 
v=u1 
u1=-u0+2*x*u1 
uO=v 

10 continue 

Table 4.1: Examples of data dependency graphs 

We can then substitute this solution into stemp's recurrence equation, 

stemp(k + 1) = stemp(k) + sxk+l syk+1 

and solve it, expressing clearly that this is a dot product (see Section 4.5). 

k 

stemp(k) = stempO + L (sxko syko) 
kO=l 

The next step is to find the closed-forms of these solutions, and is explained in Section 
4.4. 

4.3 Symbolic Analysis Of Assignments To Arrays 

In the case where a new value is assigned to an array element, the method outlined 
previously for creating a recurrence equation as for a scalar is impractical. For this 
reason we use a different technique for dealing with assignments to arrays. 



4. Linear Algebra Code Abstraction 35 

4.3.1 Finding Recurrence Equations 

By using the same technique na'ively on the loop in Figure 4.4 we would obtain the 
following recurrence equations: 

SYi(k)(k + 1) 
sy(O) 
i(k + 1) 
i(O) 

SYi(k)(k) +sa SXi(k) 
syO 
i(k)+1 
1 

However, the usual techniques for solving recurrences do not work on this set of 

do 10 i = 1,n 
sy(i) = sy(i) + sa*sx(i) 

10 continue 

Figure 4.4: Fortran sa:x:py 

equations. This is due to the fact that the recurrence is not only over time but over a 
set of indices. Following the footsteps of F &S we use an array overwriting operator EB 
such that A ( k + 1) = A ( k) EB ( Aj ( k) +-- e) redefines the array element at index j with 
the value of expression e. For example, sy(i) = sy(i) + sa*sx(i) in the context 
of Figure 4.4 has for recurrence relation: 

sy(k + 1) = sy(k) EB (syi(k)(k) +-- SYi(k)(k) + sasxi(k)) 

Additionally, to deal with any kind of loop and array assignment, F&S use a special 
operator p( A ( k), i) that enables reading from recurrence arrays. This operator takes 
into account the current overwritten state of an array, at any point. So in fact, the 
previous equation should be: 

sy(k + 1) = sy(k) EB (syi(k)(k) +-- p(sy(k), i(k)) +sa sxi(k)) 

4.3.2 Solving Recurrence Equations 

As far as solving the recurrences of array assignments, we have found F&S' method 
to be very pessimistic in the sense that it assumes the worst possible form and com­
bination of array assignments. This has the advantage of being very powerful in 
representing any kind of array recurrence. On the other hand it has the disadvantage 
of obfuscating the underlying meaning of a loop. 

Since the latter reason is against a major goal of our project, we decided it would 
be best to use a less powerful, however more understandable representation for the 



36 4. Linear Algebra Code Abstraction 

resulting solutions. Hence we chose partial functions as we thought they were a much 
more intuitive way of interpreting recurrences of array assignments. 

To allow usage of partial functions we had to sacrifice the number of array as­
signment recurrences we could successfully determine. In addition to the cyclic data 
dependency restriction, as for scalar variables, we determined the following constraints 
were necessary: 

1. The array shall appear in no other statements than its own assignment state­
ment. This restriction excludes degenerate cases like this one: 

do 10, i=1, 5 
s = a(2,i) + s 
a(i,3) = a(i,3) + 1 

10 continue 

2. If the array is referenced in its assignment's right-hand side expressiOn, the 
index expression shall be the same as in the left-hand side. This restriction 
excludes degenerate cases like this one: 

do 10, i=1, 5 
a(i) = a(3) + 1 

10 continue 

3. When dealing with assignments to matrices, at most one of the index expressions 
can contain recurrence variables. This enables us to treat matrices as vectors 
(see section 4.3.3). 

We found through testing that these restrictions were sufficient to ensure the success 
of our method and are applicable in a large number cases. However it is quite possible 
that less constraining ones may yield more successful results with the same technique. 

Once we have ensured that a loop containing assignment statements to arrays 
follows these conditions, we can attempt to solve the recurrence relation. One conse­
quence of these conditions is that a symbolic expression will never contain more than 
one overwriting operator. 

Continuing the saxpy example found in Section 4.3.1 we can use the result from 
the symbolic analysis to determine the solution to the recurrence. The first step is to 
replace i(k) with its solution k + 1 into the recurrence of array sy. 

sy(k + 1) = sy(k) EB (syk+1(k) +- p(sy(k), k + 1) + sasxk+1 ) 



4. Linear Algebra Code Abstraction 37 

Further, we solve the recurrence by removing dependence on sequences of k on the 
right-hand side, shifting the recurrence index by minus one, embedding the iteration 
into the EB operator, and rid the equation of the p operator. This solving can be done 
since the recurrence is essentially of degree zero and restrained by our rules. The one 
exception is when the index is constant with respect to the loop; in other words, that 
the index expression contains no recurrence variables. In this case we can be rid of 
the EB and treat the assignment as scalar and use Maple's rsolve (see Section 4.3.3). 

k 

sy(k) = sy E9 (syko ..__ SYko +sa sxko) 
kO=l 

The lower bound on the EB operator index kO is determined to be i(O) = 1, or more 
generally the recurrence of the whole index expression at time 0. Similarly, the upper 
bound is the index expression at time k- 1, in this case i(k- 1) = k. 

This allows us to proceed representing the recurrence by using a partial function 
and a quantifier over all the integers. This quantification combined with the facts 
that in Fortran the size of an array is unknown, and that indices can be negative, 
ensures complete treatment of the loop. 

wk '71 {'syko + sasxko 
v ·O E ~ : SYko = 

'syko 

4.3.3 Arrays With Multiple Indices 

if 1 ::; kO ::; k 

otherwise 

With respect to symbolic analysis, there are three different ways indices can appear 
in recurrence arrays : 

1. All index expressions are constant with respect to the loop; that is no index 
expression contains a recurrence variable (either vector or matrix). This case 
is very simple to handle. Instead of using EB during the symbolic analysis of 
each statement, we treat the array reference as a scalar. Maple can handle the 
constant array element just as well as a scalar. 

2. Only one index expression contains recurrence variables. This case was de­
scribed in the previous section (4.3). We can have a vector with a non-constant 
index, or a matrix with one constant index and the other not. In the later case 
we treat the matrix as a vector. 

3. Two indices contain recurrence variables (only matrices). As per our rules we 
do not handle this case. It involves using a vector of indices and the treatment is 
sizeably more difficult. However, our observations tell us this scenario happens 



38 4. Linear Algebra Code Abstraction 

infrequently; it may occur when performing certain operations on symmetric 
matrices. 

4.4 Finding Loop Closed Forms And Eliminating 
The Loops 

Our ultimate goal in this exercise is to remove all the statements from the loop and 
let them stand by themselves as assignment statements; thus we eliminate the loop. 
In order for this transformation to be performed successfully we need to determine 
the number of times the loop will execute. Combined with the recurrence equation 
solutions in terms of iteration parameter k, we can find a statement that does not 
require a loop to obtain the same final value for the recurrence variables. 

This task is greatly simplified in Fortran due to the semantics of the do-loop. 
Indeed all FORTRAN 77 references available to us [3, 11, 12] agree that the number 
of iterations, follows the semantics outlined below under all circumstances. The do­
statement has the form, 

DO s[,] v=e1, e2 [,e3] 

where s is the label of the loop's terminal statement, el and e2 are respectively 
the initial and final value of the loop variable v, and e3 is an optionally specified 
increment to v after each iteration. When e3 is left unspecified, the increment is 1, 
and can never be 0. Given the above definition, the number of iterations is given by 
this expression: 

max ( l e2 - ;~ + e3 J , 0) 

These semantics cannot be altered by assigning a value to the loop variable within the 
loop body. Not only is this forbidden and enforced at the syntax level (e.g. g77), but 
the semantics also specify that the exit condition of the loop is when an independent 
iteration counter reaches 0. The initial value of this counter is determined prior to the 
loop execution and decremented by one after each iteration. If the iteration counter's 
value is 0 the loop will not execute. 

The number of iterations, for both our previous examples in Figures 4.3 and 4.4, 
are equal to n. By giving this value to k in our recurrence solutions we obtain the 
following results: 

stemp(n) 

i(n) 

n 

stempO + L ( sx kO syko) 

kO=l 

n+1 



4. Linear Algebra Code Abstraction 

and 

\:fkO E Z : BYko 

i(n) 

{
:SYko + sasxko 

BYko 

n+l 

if 1 :::; kO :::; n 

otherwise 

39 

respectively. The next step required to complete the transformation is to get rid 
of artifacts gathered during the recurrence solving, and create a proper assignment 
statement that can be part of the code. Therefore we remove recurrence arguments 
on the left-hand side, change the equalities to assignments, and return dummy initial 
values to the former variable, like this: 

n 

stemp f- stemp + L (sxko BYko) 
kO=l 

For introduced variables like kO we can reliably assume that they are declared with 
a scope local to their sub-expression, and have a type inferred by their mathematical 
context, in this case a scalar integer. 

At least we can remove the loop. Since all the recurrences were solved in order of 
data dependency, the result consists of parallel statement. Further, we must enclose 
this parallel block of assignment statements inside an if-statement. This guard con­
dition is necessary to ensure nothing happens when the loop would not execute. This 
condition tests that the maximum number of iterations is greater than zero. 

When the evaluation of the recurrence solution given the number of iterations 
fails, we assume that the solution is correct and still eliminate the loop. We simply 
leave the solution as is, with an additional evaluation clause specifying the value of 
k, the number of iterations. The example in Section 5.3. 7 shows this transformation. 

4.5 Linear Algebra Patterns 

In this section we present a number of patterns specific to linear algebra that can be 
transformed by our method. 

4.5.1 Dot Product 

As we previously described in Section 4.2, a sum of two multiplied vector terms is 
a dot product. Therefore we would like to recognise this pattern and propose a 
transformation that preserves the semantics. More specifically, we cannot simply 
drop the range of indices of these vectors. Moreover, some dot products use vector 



40 4. Linear Algebra Code Abstraction 

index increments not equal to 1, sometimes not even the same for both vectors. Our 
transformed form must take all these cases into account. The general pattern in 
Fortran-M is the following: 

dotProduct : #(SUM #(MULT #(x:NAME ix:expr) #(y:NAME iy:expr)) 
#(EQ i:NAME #(RANGE a:expr b:expr)) ) ; 

b 

LXixYiy 

i=a 

For the simple case, when a= 1, and ix = iy = i we can use a simplified notation: 

~b ~b 
X . y 

Otherwise, if ix and iy are each a linear expression of i, we use a more general notation 
that defines a projection of each vector. 

Xa~i~b. y~~i~b 
~X ~y 

4.5.2 Vector And Matrix Initialisation 

Vector initialisation manifests itself in the form of a loop with an assignment to an 
array. For matrices, this is usually done in two nested loops. The general pattern for 
a vector is, 

vectorlnit : #(FORALL expr #(ASSIGN #(x:NAME ix:expr) 
#(PIECEWISE c:constant #(AND #(LT a:expr i:expr) 

#(LT i:expr m:expr)) expr)) ) ; 

Vi E Z: Xix f- {c 
Xix 

if a :S:: i :S:: m 

otherwise 

where c is constant value. For the simple case, as for the dot product, we use a less 
cumbersome notation: 

For vectors with more complex index expressions, we display all the necessary infor­
mation similarly to the vectors in a dot product. Matrices must display simple index 



4. Linear Algebra Code Abstraction 41 

expressions for us to consider the transformation since, to restrict the scope, we did 
not wish to wade into matrix projection. 

~a<i<m 
xix- - ~ c 

For a matrix we must proceed in two iterations of symbolic analysis and pattern 
matching. The square brackets below denote a list of vectors, where the index gives 
the vector at the index' position in the list. 

followed by: 

'i'i E Z: Xi,j ~ {C 
X·. 

~,J 

4.5.3 Vector Copy 

otherwise 

if b:::; j:::; n 

otherwise 

~mxn 

~X ~ C 

The simple operation of copying a vector to another vector is an easy one to recognise. 
Its characteristic pattern is an assignment from a vector to a vector with no arithmetic 
operation. Our pattern expects that the index expression of both vectors is the same: 

ifa:Si:Sm 

otherwise 

When a = 1 and ix = iy = i is a simple scalar variable, we obtain, 

otherwise we transform our pattern as such: 

4.5.4 Saxpy 

The saxpy operation, an acronym for "(in single precision floating point arithmetic) 
a constant (a) times a vector (x), plus a vector (y)", was presented in Section 4.3.1. 



42 4. Linear Algebra Code Abstraction 

Its pattern strikes a resemblance to the solution of the recurrence equation: 

w· '77., {Yiy+cxix 
v't E IL.J. Yiy *-

Yiy 

if a :S i :S m 

otherwise 

Similarly to other vector operations, when a= 1 and ix = iy = i is a simple scalar, 
we obtain the first assignment. For the more complicated cases we obtain the second. 

4.5.5 Matrix Multiplication 

We have already shown the transformation a matrix multiplication algorithm should 
undergo in Section 2.1.1. We now give more details on how our method handles 
the patterns, from the result of the symbolic analysis to the final transformation. 
Similarly to the patterns described in the previous section, it is important that no 
information, such as the sizes of the matrices, be lost. Like the matrix initialisation 
pattern, we decided to only recognise simple matrix multiplication to narrow the 
scope. As mentioned previously, in the first step, the innermost loop is analysed, and 
we find a dot product. Thus, our first rewriting is the following: 

p 

z· · *- z· · + ""'(x· k Yk ·) ~ z· · *- z· · + (([x]·\I')P · ([~Y]·)P ~,] ~,] L.....t ~, ,] ~,] t,J ~) J 

k=l 

By transposing vector y we ensure that the j index is for column vectors and not rows. 
This assignment combined with the second inner loop delivers a vector operation after 
symbolic analysis: 

. {zi · + (([x]d')P · ([Y]·)P 
'\/ J E Z : Zi,j *- '

1 1 

z·. 
~,) 

This pattern yields: 

Finally we symbolically analyse the last loop to obtain, 

if 1 :S j :S n 

otherwise 

if 1 :::; i :::; m 

otherwise 



4. Linear Algebra Code Abstraction 

which we transform to a much more appealing matrix multiplication: 

-zmxn f- -zmxn+ J;mxp ypxn 

43 



Chapter 5 

The Reverse Engineering Tool 

5.1 Environment 

The choice of using Java for the tools came about for many reasons. The first be­
ing our familiarity with the language. Some may argue rightfully that a functional 
programming language would have been better suited for the task. While we gen­
erally agree with the proposition, learning a new programming language combined 
with a completely different programming paradigm would have severely hampered 
our progress. Another reason was the ANTLR framework which offered a very pow­
erful set of tools. ANTLR can also generate C++ or C#, but we decided to avoid 
the former for its dangerous low-level features, and the later for its lack of a ma­
ture environment for any operating system other than Microsoft Windows. Finally, 
since the tools from this project may be used by a variety of people inside or outside 
of academia, we decided to use a programming language which is familiar to a large 
majority of people, allowing them to use or maintain the tools. Java fits those criteria. 

5.2 Parsing 

In order to obtain an abstract syntax tree of the Fortran source code, it was decided to 
use a parser generator and Fortran grammar. The tool was chosen so that it would give 
us a flexible framework to both parse the language but also do tree pattern matching 
and transformations. After much deliberation we chose ANTLR[30]. ANTLR is an 
LALL(k) parser generator; that is a parser generator that creates recursive-descent 
parsers from non-left-recursive grammars-unlike the well known yacc LR parser 
generator-with an arbitrary fixed look-ahead (k). ANTLR has an EBNF-like syntax 
to create both parsers and lexical analysers, as well as a tree grammar syntax to parse 
abstract syntax trees. It moreover allows semantic actions to be associated with 

44 



5. The Reverse Engineering Tool 45 

grammar productions. These semantic actions can be specified in either ANTLR's 
own non-platform-specific language, which is very restrictive, or in the target language 
itself, in our case Java. 

The ANTLR grammar used to create our parsing tool was ported from a PCCTS 
grammar (ANTLR's predecessor). That grammar was itself an adaptation of William 
Waite's grammar for Eli[33]. The PCCTS grammar was meant to be used in con­
junction with f2c[17]'s lexer. Since we wanted to use Java for the tools we decided 
to create our own lexer. We also made several modifications to the PCCTS grammar 
which had incorporated Fortran 90 constructs which we do not want to use. 

ANTLR does however have a few drawbacks. The main drawback with respect 
to Fortran is that it has difficulty handling languages with non-reserved keywords. 
In Fortran, identifiers can have the same name as Fortran keywords. An example 
of this is the "real" keyword for typing single-precision floating point numbers, and 
the intrinsic real() function that returns the real part of a complex number. As a 
result, programmers can use keywords of suitable length (less than seven characters) 
as identifiers. Thus "real" could be used as a variable name. This makes parsing 
much more difficult. 

Another important drawback is that the lexer we created has some important 
caveats. The main one is that it does not respect the rule that in Fortran, blank 
characters (spaces) have no significance. For example you can have space inside 
variable names, or no space in statements such as this do loop D050I=1, 5 with loop 
variable i and terminal statement at label 50, or this assignment D050I=1. 5 of the 
real value 1.5 to variable D050I. This is something that is very difficult to perform in 
a standalone lexer as it requires knowledge about the language grammar; a concept 
known as stateful lexing. To simplify our task it was therefore decided to create a 
lexer that assumed all tokens would contain no blank characters, and that spaces will 
be used to delimit tokens like keywords, symbolic names, labels and constant values. 
This decision has not proved an issue in the code available to us. 

Despite its drawbacks, ANTLR is a great tool in practise. A noteworthy feature 
of the lexer is that it does not discard comments. Since our goal is to reverse engineer 
the code for better human comprehension, up to design or even requirements level, it 
should be obvious that discarding code comments could be a harmful loss of informa­
tion. Hence comments are kept as part of the syntax tree since they contain valuable 
information which can complement a piece of code with meaning that no automatic 
tool can reverse engineer. 

Lastly, the most compelling reason for using ANTLR is its automatic generation of 
abstract syntax trees. Since we wanted Fortran-M to be based on a Fortran syntax tree 
this feature has proved very handy. The syntax tree creation from the grammatical 
rules can be customised and is very flexible. 



46 5. The Reverse Engineering Tool 

5.3 Sample Results 

The following sections show several example of input given to our proof-of-concept 
tool and the output obtained. 

The output produced by our tool should be mostly straightforward to understand. 
In any case, we provide simple explanations for it. Each line of code is numbered in the 
left-most column. The second left-most column is for code labels (numbers), and to 
mark the beginning of a subprogram with a "*". Fortran-M keywords , comments 
and variables are all all presented with their own font styles, while subprogram names 
retain a normal upright serif font. Assignments are denoted by a "+-," and expres­
sions should follow usual mathematical notation, such as "/\" indicating logical-and, 
"'if" denoting a universal quatification, "!" indicating a factorial term, and so forth. 
As stated in Section 3.2.1, assignment statements demarked with a double parallel 
bar indicates that these statements can be executed in parallel. The subprogram pa­
rameters are shown in their proper order on the subprogram's declaration statement. 
Following Fortran conventions, the symbols are typed using type statements in the 
subprogram's body. Declaration of input, output and update parameters, local and 
global variable as well as external and intrinsic routines are clearly identified and 
grouped using comments. 

5.3.1 Dot Product 

This example is taken from LAPACK BLAS [24, 26]. It is used to calculate the dot 
product of two vectors, sx and sy. From the result we notice that the dot product is 
performed in three different places. Taking a closer look at the code we see that in the 
first case, the dot product is calculated such that the increment to the vector index 
is not 1. This creates a projection of each vectors represented within the notation. 
In the second case we have a simple dot product without frills. However, it can be 
deduced from the code that the second and third case are complementary. That 
is, the code uses an optimisation technique known as "loop unrolling." The vectors 
are partitioned in section of five elements. The second dot product performs the 
remainder while the third calculates the whole sections in increments of five. Despite 
this optimisation our method is able to determine that the code simply performs a 
sequence of dot products that it then adds to form the final result. 

real function sdot(n,sx,incx,sy,incy) 
c 
c forms the dot product of two vectors. 
c uses unrolled loops for increments equal to one. 



5. The Reverse Engineering Tool 

c jack dongarra, linpack, 3/11/78. 
c modified 12/3/93, array(!) declarations changed to array(*) 
c 

c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

real sx(*),sy(*),stemp 
integer i,incx,incy,ix,iy,m,mp1,n 

stemp = O.OeO 
sdot = O.OeO 
if(n.le.O)return 
if(incx.eq.1.and.incy.eq.1)go to 20 

code for unequal increments or equal increments 
not equal to 1 

ix = 1 
iy 1 
if(incx.lt.O)ix 
if(incy.lt.O)iy = 

do 10 i = 1,n 

(-n+1)*incx + 1 
(-n+1)*incy + 1 

stemp = stemp + sx(ix)*sy(iy) 
ix = ix + incx 
iy = iy + incy 

10 continue 
sdot = stemp 
return 

code for both increments equal to 1 

clean-up loop 

20 m = mod(n,5) 
if( m .eq. 0 ) go to 40 
do 30 i = 1 ,m 

stemp = stemp + sx(i)*sy(i) 
30 continue 

if( n .lt. 5 ) go to 60 
40 mp1 = m + 1 

do 50 i mp1,n,5 
stemp stemp + sx(i)*sy(i) + sx(i + 1)*sy(i + 1) + 

47 



48 5. The Reverse Engineering Tool 

* sx(i + 2)*sy(i + 2) + sx(i + 3)*sy(i + 3) + sx(i + 4)*sy(i + 4) 
50 continue 
60 sdot = stemp 

return 
end 

1. * subprogram sdot(n, sx, incx, sy, incy) 
2. 
3. Function output: 
4. real sdot = O.OeO 
5. 
6. Input parameters: 
7. real sy( *) 
8. integer incy 
9. real sx( *) 

10. integer n 
11. integer incx 
12. 
13. Intrinsic functions: 
14. intrinsic mod 
15. 
16. Local variables: 
17. integer ix 
18. integer i 
19. integer mpl 
20. integer m 
21. real stemp = O.OeO 
22. integer iy 
23. 
24. Executable statements: 
25. 
26. forms the dot product of two vectors. 
27. uses unrolled loops for increments equal to one. 
28. jack dongarra, linpack, 3/11/78. 
29. modified 12/3/93, array(1) declarations changed to array(*) 
30. 
31. if ( n :S: 0) then 
32. return 
33. end if 



5. The Reverse Engineering Tool 

34. if (in ex = 1 1\ incy = 1) then 
35. go to 20 
36. end if 
37. 
38. code for unequal increments or equal increments 
39. not equal to 1 
40. 

41. 

42. 
43. 
44. 
45. 
46. 
47. 
48. 

49. 

50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 

62. 

63. 
64. 
65. 
66. 
67. 

II 
~X f- 1 
zy - 1 

if ( incx < 0) then 
ix t- ( -n + 1) incx + 1 

end if 
if ( incy < 0) then 

iy - (-n + 1) incy + 1 
end if 
if (n > 0) then 

~ 1 < kO < n ~ 1 < kO < n 
stemp t- stemp+ sx ix+inc; (k0-1) · sy iy+incy (k0-1) 

ix - ix + incx n 
iy t- iy + incy n 

z - n+1 
end if 
sdot - stemp 
return 

code for both increments equal to 1 
clean-up loop 

20 m - mod(n, 5) 
if (m = 0) then 

go to 40 
end if 
if (m > 0) then 

II 
~temp t- stemp+ sx m · sy m 

z - m+1 
end if 
if (n < 5) then 

go to 60 
end if 

40 mpl - m + 1 

49 



50 5. The Reverse Engineering Tool 

68. 
. n + 5- mpl 
If (int( 

5 
) > 0) then 

~ 1 < kO < n+5-mp1 ~ 1 < kO < n+5-mp1 

stemp f-- stemp+ sx m;l +5k0_5
5 

• sy m;l +5k0_5
5 

~ 1 < kO < n+5-mp1 ~ 1 < kO < n+5-mp1 

+ SX m;l +5ko-3
5 

• sy m;l +iko-3
5 

~ 1 < kO < n+5-mp1 ~ 1 < kO < n+5-mp1 

+ SX m;l +5k0-2
5 

• sy m;l +5k0-2
5 

~ 1 < kO < n+5-mp1 ~ 1 < kO < n+5-mp1 

+ SX m;1+5ko-1
5 

• 8Y m;1+5ko-1
5 

69. 

~ 1 < kO < n+5-mp1 ~ 1 < kO < n+5-mp1 

+ SX m;l +5k0-4
5 

• sy m;l +iko-4
5 

z f-- n+5 
70. end if 
71. 60 sdot f-- stemp 
72. return 
73. end 



5. The Reverse Engineering Tool 51 

5.3.2 Saxpy 

This routine is taken from LAPACK BLAS [24, 26]. It is used to add two vectors, 
one of which can be multiplied by a constant. As for sdot there are three cases 
where we find the vector operation: the first one uses a projection of the vectors, 
the second deals with the remainder of the unrolled loop vector elements, and the 
third deals with chunks of vectors in an unrolled loop. The results for the first and 
second are those to be expected. For the third case we note however that the loop 
was left untouched, without being transformed. This is due to not complying with 
our restrictions on the form of array assignments. 

subroutine saxpy(n,sa,sx,incx,sy,incy) 
c 
c constant times a vector plus a vector. 
c uses unrolled loop for increments equal to one. 
c jack dongarra, linpack, 3/11/78. 
c modified 12/3/93, array(1) declarations changed to array(*) 
c 

c 

c 
c 
c 
c 

c 
c 

real sx(*),sy(*),sa 
integer i,incx,incy,ix,iy,m,mp1,n 

if(n.le.O)return 
if (sa .eq. 0.0) return 
if(incx.eq.1.and.incy.eq.1)go to 20 

code for unequal increments or equal increments 
not equal to 1 

ix 1 
iy = 1 
if(incx.lt.O)ix 
if(incy.lt.O)iy 
do 10 i = 1,n 

sy(iy) = sy(iy) 
ix = ix + incx 
iy = iy + incy 

10 continue 
return 

(-n+1)*incx + 1 
(-n+1)*incy + 1 

+ sa*sx(ix) 

code for both increments equal to 1 



52 5. The Reverse Engineering Tool 

c 
c 
c clean-up loop 
c 

20 m = mod(n,4) 
if( m .eq. 0 ) go to 40 
do 30 i = 1 ,m 

sy(i) = sy(i) + sa*sx(i) 
30 continue 

if( n .lt. 4 ) return 
40 mp1 = m + 1 

do 50 i = mp1,n,4 
sy(i) = sy(i) + sa*sx(i) 
sy(i + 1) sy(i + 1) + sa*sx(i + 1) 
sy(i + 2) sy(i + 2) + sa*sx(i + 2) 
sy(i + 3) sy(i + 3) + sa*sx(i + 3) 

50 continue 
return 
end 

1. * subprogram saxpy(n, sa, sx, incx, sy, incy) 
2. 
3. Input parameters: 
4. integer incy 
5. real sa 
6. real sx( *) 
7. integer n 
8. integer incx 
9. 

10. Output parameters: 
11. real sy( *) 
12. 
13. Intrinsic functions: 
14. intrinsic mod 
15. 
16. Local variables: 
17. integer ix 
18. integer i 
19. integer rnpl 



5. The Reverse Engineering Tool 53 

20. integer m 
21. integer iy 
22. 
23. Executable statements: 
24. 
25. constant times a vector plus a vector. 
26. uses unrolled loop for increments equal to one. 
27. jack dongarra, linpack, 3/11/78. 
28. modified 12/3/93, array(1) declarations changed to array(*) 
29. 
30. if (n:::; 0) then 
31. return 
32. end if 
33. if (sa= 0.0) then 
34. return 
35. end if 
36. if ( incx = 1 1\ incy = 1) then 
37. go to 20 
38. end if 
39. 
40. code for unequal increments or equal increments 
41. not equal to 1 
42. 

43. 

44. 
45. 
46. 
47. 
48. 
49. 
50. 

51. 

52. 
53. 
54. 

111~ : ~ 
if ( incx < 0) then 

ix +- (-n + 1) in ex + 1 
end if 
if ( incy < 0) then 

iy +- ( -n + 1) incy + 1 
end if 
if (n > 0) then 

syl~kO~n +- sy1~kO~n +Sa SX1~kO~n 
iy+incy (k0-1) iy+incy (k0-1) ix+incx (k0-1) 

ix +- ix + incx n 
iy +- iy + incy n 
z +- n+ 1 

end if 
return 

55. code for both increments equal to 1 



54 5. The Reverse Engineering Tool 

56. clean-up loop 
57. 
58. 
59. 
60. 
61. 
62. 

63. 

64. 
65. 

20 m +----- mod(n,4) 
if (m = 0) then 

go to 40 
end if 
if (m > 0) then 

II 
sy m +----- sy m +sa 

'l +----- m+l 
end if 
if (n < 4) then 

66. return 
67. end if 
68. 40 mpl +----- m + 1 
69. do 50, i = mpl, n 
70. syi +----- syi +sa sxi 
71. syi+1 +----- syi+1 +sa sxi+l 
72. syi+2 +----- syi+2 +sa sxi+2 
73. syi+3 +----- syi+3 +sa sxi+3 
7 4. 50 continue 
75. 
76. return 
77. end 



5. The Reverse Engineering Tool 55 

5.3.3 Matrix Multiplication 

The following example shows the result of applying our process to a simple matrix 
multiplication. In order to completely process the three loops we had to "cheat" our 
way through the symbolic analysis. This is due to the following reasons: our process 
is iterative and we process each loop on different iterations. The innermost loop is 
analysed first, then eliminated and transformed using vector patterns. This creates a 
dot product enclosed in an if-statement. As stated in Section 4.2.1 however, we only 
symbolically analyse loops which contain straight-line code. 

To circumvent this issue, we use the knowledge that a loop with only a single 
if-statement in its body can be analysed if and only if the branch condition is static 
with respect to the loop; that is, it does not depend on any of the recurrence variables. 
Thus, for each iteration, the if-statement either always executes or never executes. 
This allows us to combine the if-statement's condition with the do-loop's entry con­
dition. 

Nevertheless we encounter a slight discrepancy. All the statements are enclosed in 
a single if-statement. There should be three if-statements that separate the execution 
of the assignment statements for each of the loop variables. 

subroutine mmult1(x, y, z, m, n, p) 

integer i, j, k 
integer m, n, p 
integer x(m, p), y(p, n), z(m, n) 

do 10 i=1, m 
do 20 j=1, n 

do 30 k=1, p 
z(i,j) = z(i,j) + x(i,k) * y(k,j) 

30 continue 
20 continue 
10 continue 

end 

1. * subprogram mmultl(x, y, z, m, n, p) 
2. 
3. Input parameters: 
4. integer m 



56 5. The Reverse Engineering Tool 

5. integer y(p, n) 
6. integer p 
7. integer n 
8. integer x(m,p) 
9. 

10. Updated parameters: 
11. integer z(m, n) 
12. 
13. Local variables: 
14. integer i 
15. integer k 
16. integer j 
17. 
18. Executable statements: 
19. if(O<p/\0< n/\0< m) then 

:zmxn +----- :zmxn+ Xmxp ypxn 

20. 

21. 
22. 

end if 
end 

k 
J 
z 

+----- p+1 
+----- n+1 
+----- m+1 



5. The Reverse Engineering Tool 57 

5.3.4 Sigprod 

This example calculates the sum of incrementally smaller factorial fractions. This 
fact is made much clearer by looking at the closed-form of w which is 1/n!. The r 
function with two arguments here is defined by Maple as a hypergeometric function, 
the mathematical representation of which is beyond the scope of our work. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

16. 

integer function sigprod(n) 
integer n, i 
double precision s, w 
s = 1.0 
w = 1.0 
do 10, i=1, n 

w = w I i 
s = s + w 

10 continue 

* 

sigprod = s 
end 

subprogram sigprod(n) 

Function output: 
integer sigprod 

Input parameters: 
integer n 

Local variables: 
integer i 
double precision w = 1.0 
double precision s = 1.0 

Executable statements: 
if (n > 0) then 

1 
w f--

n! 
e1 f(n+1,1) 

s f-

n! 

~ f- n+1 



58 5. The Reverse Engineering Tool 

17. end if 
18. sigprod +- s 
19. end 



5. The Reverse Engineering Tool 59 

5.3.5 FF2 

The following function calculates the same value as sigprod in the previous section 
using a slightly different algorithm. However, the result varies slightly from that of 
sigprod. The reason for this marginal difference stems from the initial value given 
to the accumulators, s and suml respectively. In sigprod the initial value of s is 1, 
while in this case suml = 0. If we take this difference into account, the result is in 
fact the same. 

double precision function ff2(n) 
integer n, i, fact 
double precision sum1 
sum1 = 0.0 
fact = 1. 0 
do 60, i=1, n 

fact = fact * i 
sum1 = sum1 + 1/fact 

60 continue 
ff2 = sum1 
end 

1. * subprogram ff2(n) 
2. 
3. Function output: 
4. double precision ff2 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

16. 

Input parameters: 
integer n 

Local variables: 
integer i 
double precision suml = 0.0 
integer fact = 1.0 

Executable statements: 
if (n > 0) then 

fact ~ n! 
e1 r( n + 1, 1)- n! 

suml ~ 
1 n. 

i ~ n+ 1 



60 5. The Reverse Engineering Tool 

17. end if 
18. .ff2 +- sum1 
19. end 



5. The Reverse Engineering Tool 61 

5.3.6 Sigsum 

This example is very much like sigprod. Instead of summing fractions however, the 
sigsum function sums the factorials. The Ei() function is defined by Maple as the 
exponential integral, the mathematical representation of which is beyond the scope 
of our work. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

double precision function sigsum(n) 
integer n, i 
double precision s, w 
s = 1.0 
w = 1.0 

do 20, i=1, n 

w = w * i 
s = s + w 

20 continue 

* 

sigsum = s 
end 

subprogram sigsum(n) 

Function output: 
double precision sigsurn 

Input parameters: 
integer n 

Local variables: 
integer i 
double precision w = 1.0 
double precision s = 1.0 

Executable statements: 
if (n > 0) then 

w t- n! 
16. s t- 1- (e-1 Ei(2, -1) + (n + 1)! e-1 f( -n + 1, -1) ( -1t) 

i - n+ 1 
17. endif 
18. szgsurn - s 
19. end 



62 5. The Reverse Engineering Tool 

5.3. 7 Sigsuml 

This function should calculate the same value as sigsum. However we note some 
significant differences: Maple is unable to evaluate the recurrence solution with k = 

n- 1, as this results in an undefined value for r(o). In this case, as prescribed in our 
method for finding closed-forms, in Section 4.4, we leave the expression unevaluated 
and display the value k should take. Dr. Jacques Carette (private correspondence) 
confirmed this result is correct however, since it is possible to obtain the result by 
finding the value of the sum and, by using limits, forcing limx---+or(x) = oo. This 
in turns leads to terms becoming 1/ oo and being removed from the expression by 
simplification. The knowledge of Maple required to perform such operations however 
is far beyond the scope of this work. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 

double precision function sigsum1(n) 
integer n, i 
double precision s 
s=n 
do 30, i=n-1, 1, -1 

s = i * (1 + s) 
30 continue 

sigsum s+1 
end 

* subprogram sigsum1(n) 

Function output: 
double precision sigsuml 

Input parameters: 
integer n 

Local variables: 
integer i 
double precision s 

Executable statements: 
s +-- n 
if ( n - 1 > 0) then 



5. The Reverse Engineering Tool 63 

k k-1 (-l)kl 
(-1) f(k + 1- n) (f(1- n) (L:kl=O r(kl+l-n)) + s) 

s +- ' 16. f(1- n) 
where k = max(O, n- 1) 

z +- 0 
17. end if 
18. szgsum +- s + 1 
19. end 



64 5. The Reverse Engineering Tool 

5.3.8 Bessel 

This example shows code that computes a Bessel function of the first kind. Although 
the results look much more complex than they need to be, we trust that the results 
from Maple are indeed correct for the given code. The BesselJ function is defined by 
Maple as a bessel function of the first kind, while the LommelS1 function is defined 
in terms of a hypergeometric function, the mathematical representation is beyond the 
scope of our work. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

double precision function bessel(z, nu, rn) 

integer i, z, nu, rn 

double precision res, u 
res = 0 
u = 1 
do 40, i=O, rn-1 

res = res + u 
u = -u*z**2 I (4*(i+nu+1)*(i+1)) 

40 continue 

* 

bessel = res 
end 

subprogram bessel( z, v, m) 

Function output: 
double precision bessel 

Input parameters: 
integer z 
integer m 
integer v 

Local variables: 
integer i 
double precision u = 1 
double precision res = 0 

Executable statements: 
if (m > 0) then 



5. The Reverse Engineering Tool 

18. 

19. end if 

res +--- ((BesselJ(v, z) 2v z-v z2 (m + v)! m! 
+( -1)m 4-m (z2)m z2-(2m+v) LommelS1(2 m + v + 1, v, z) 

-4-m ( -1)m (z2)m z2) v!) 1 
z2 (m + v)! m! 

( -1)m 4-m (z2)m v! 
u f--

(m + v)! m! 

20. bessel +--- res 
21. end 

65 



66 5. The Reverse Engineering Tool 

5.3.9 Mystery 

This function is not such a mystery, despite its misleading name. The calculations 
done inside the loop body are in fact identical to bessel. The difference is the number 
of iterations (m + 1) as opposed to only m for bessel. Assuming that bessel is 
correct, the results show an off-by-one error that is more difficult to notice by simply 
looking at the code. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

double precision function mystery(z, nu, m) 
integer z, nu, m, i 
double precision res, t 
res = 0 
t = 1 
do 70, i=O, m 

res = res + t 
t = -t*Z**2 I (4*(i+nu+1)*(i+1)) 

70 continue 
mystery = res 
end 

* subprogram mystery(z,v, m) 

Function output: 
double precision mystery 

Input parameters: 
integer z 
integer m 
integer v 

Local variables: 
integer i 
double precision t = 1 
double precision res = 0 

Executable statements: 
if ( m + 1 > 0) then 



5. The Reverse Engineering Tool 67 

18. 

19. end if 

res *- ((BesselJ(v, z) 211 
Z-

11 z 2 (m + 1)! (m + 1 + v)! 

+( _ 1)m T2m+2 (z2)m z4 

+( -1)m+12-2m+2 (z2)m z2-(2 m+11
) LommelS1(2 m + 3 + v, v, z)) v!) 

1 
z2(m+1)!(m+1+v)! 

( _ 1)m+I 2-2m+2 (z2)m z2v! 
tf-

(m + 1 + v)! (m + 1)! 

z *- m+1 

20. mystery *- res 
21. end 



68 5. The Reverse Engineering Tool 

5.3.10 Finite Element Analysis 

We tested our tool against real scientific computation code. The program tested, 
provided by Dr. Dieter Stolle from the McMaster University Civil Engineering de­
partment, consists of four files (or modules) used in civil engineering to perform finite 
element analysis (stress/strain calculations). The modules have a combined 63 sub­
programs for a total of over 2000 lines of code. After four iterations of symbolic 
analysis and pattern matching, we recorded a total of 60 loops that could be and 
were completely analysed symbolically. However 115 loops could not be analysed, 
mostly due to containing call, read, write or if-statements, with a few containing ar­
ray assignments that did not fall under our rules. This gives us a good approximation 
of our success rate, roughly 34.4%. As far as transformations were concerned, Table 
5.10 shows the numbers for each patterns. 

I Type of pattern Successes I 
Variable initialisations 6 
Parallel assignments 80 
Arithmetic if-statements 2 
Dot products 20 
Vector assignments 34 

Table 5.10: Statistics of transformations 

An interesting fact that stems from these figures is that out of 60 analysed loops, 
54 (90%) of them were either dot products or vector assignments. This could be 
due to the fact that we target those transformations specifically. It also shows the 
vast potential of our method with software containing large amounts of scientific 
computation code. Another interesting fact is the relatively large number of parallel 
assignments found, which shows that with very primitive data flow analysis we were 
able to achieve a significant amount of parallelisation. 

Most of the dot products appeared to have been part of a matrix multiplications. 
However, none of the matrix multiplications were completely transformed since all of 
them used temporary variables. The extra assignment statements prevented a match 
to our pattern: only having a single static if-statement inside the do-loop. Some 
subprograms are used only to initialise vectors and matrices with 0 values. As per 
our method in Section 4.5.2, both vector and matrix initalisations were recognised 
and transformed. 

We encountered some issues with the result in certain cases of vector assignments. 
The transformation performed lead to having the wrong vector dimension or projec­
tion. We are positive this is due to our quatified array assignment pattern being too 
generic. A stronger condition would ensure a safer transformation, or more likely 



5. The Reverse Engineering Tool 69 

leave it as is. 

5.3.11 LAPACK's BLAS 

We also tested our tool on LAPACK's basic linear algebra subprograms (BLAS) 
library [24]. However, since it contains duplication of most routines for different 
input data types (real, double precision, complex and double complex), we only ran 
the tool on the set of subprograms for data of type real. That is we only looked at 
files starting with "s", for single-precision. 

BLAS contains 141 files-and an equal number of subprograms-33 of which are 
for data of type real. These 33 routines total over 6700 lines of code. A grep for 
do-loops on the source files showed a total of 367 loops. Out of these, 128 were 
successfully transformed, that is 34.9% success. Table 5.11 gives a summary of the 
transformations performed. Successes and issues similar to those of Section 5.3.10 
were observed. 

I Type of pattern Successes I 
Variable initialisations 22 
Parallel assignments 215 
Arithmetic if-statements 0 
Dot products 33 
Vector assignments 100 

Table 5.11: Statistics of transformations on BLAS 



Chapter 6 

Concluding Remarks 

We have had success with several aspects of this project. We can infer useful informa­
tion, such as type, input or output status, of identifiers. This should not be surprising 
however since all Fortran compilers do most of this work. We perform some structural 
transformation such as improving the understanding of arithmetic if-statements, and 
parallelising statements that were previously thought to be sequential. The heav­
iest reverse engineering work is performed with symbolic analysis. This technique 
provides a robust way to determine the high-level meaning underlying deep within 
loops. We were successful with most do-loops containing only assignments of arith­
metic expressions to scalar, as well as with a number of loops with assignments to 
arrays. Symbolic analysis enables us to reduce the number of patterns required to 
determining abstract function of loops. Building on this work we have multiple pat­
terns to recognise linear algebra operations on vectors and matrices, transforming the 
operations to a higher-level of abstraction. 

Our decision to transform the Fortran abstract syntax tree into Fortran-M has 
had a definitely positive outcome. The addition of mathematical operators to extend 
Fortran really was fruitful. This made Fortran-M especially flexible, giving way to a 
plethora of opportunities. Moreover, keeping the language tree-based made it partic­
ularly easy to work with. Using tree parsing to do everything from pattern matching 
to tree walking, made this possible. 

6.1 Future Work 

Symbolic analysis has proved to be a very promising technique for automated reverse 
engineering. It should be taken much further than what we have accomplished with 
it. More specifically, we would like to see the result of symbolic analysis of entire sub­
programs. This would allow, among other features, for small and simple subprograms 

70 



6. Concluding Remarks 71 

to be in-lined within their call, improving the understanding of the calling program. 
We believe this would be particularly true of Fortran since names are restricted to 
six characters. This feature often leads programmers to choose cryptic acronyms for 
naming subprograms. To fully analyse subprograms we would need to support many 
more kinds of statements. The most important one, and likely the most difficult, 
would be logical branches. It should also be possible to further some aspects of sym­
bolic analysis that we currently perform. It should be possible to treat "coupled" 
systems: that is two recurrence variables that depend on each other. Maple's rsol ve 
is able to handle such systems. Furthermore, relaxing some of our restrictions on 
array assignments we expect would lead to a greater number of solved recurrences. 
Finally, ensuring that error information is kept throughout symbolic analysis and 
transformations would be an interesting and quite possibly very rewarding action to 
take. 

Control graph restructuring would bring many major improvements: to enhance 
the logical meaning of branches by creating if-then-else blocks and while loops. Gotos 
are famous for obfuscating the purpose of code [13], and removing them should im­
prove the understanding of the code. We have also encountered several instances of 
over-generalisation of subprograms: a subprogram with many of its input parameters 
not being used in all code paths, for example in a body that is one large if-then-else. 
Combining goto-elimination with more flexible scoping of variable would permit us 
to differentiate code blocks and possibly separate them into more specialised sub­
programs. Not having gotos would, additionally, significantly ease the process of 
producing tabular expressions from the code. As tables are easy to read and under­
stand, outputting them is a very desireable feature. 

We would definitely like to see the outcome of using more powerful and thorough 
data flow analysis. Detecting more parallel compositions would surely follow for such 
work. More importantly, we believe that resulting from symbolic analysis, several 
local variables would be left un-read within a subprogram. Data flow analysis would 
permit us to remove them from the syntax tree. 

It could also be interesting to see how far the output system could be taken. We 
believe our prototype has the potential to be a successful re-engineering tool. Enhanc­
ing the generation of Fortran code would likely be the priority. Nevertheless we would 
like to see output in C that could rival that of f2c, especially in understandability of 
the code. Possibly other high-level imperative languages such newer versions of For­
tran, and Java which is gaining popularity amongst the scientific community. More 
extensive symbolic analysis may even yield surprising results translating to functional 
languages. 



Appendix A 

Fortran-M Details 

A.l Tree Notation in EBNF 

languagedef = rule, { rule } ; 

rule = literal '·' de-hnitionlist '·' · 
' . ' J" ' ' ' 

definitionlist = definition, { '1', definitionlist } I '(', definitionlist, ')', ( I '?' I '*' 
I'+'); 

definition = node I tree ; 

tree = '#(', node, tree, {tree}, ')' ; 

node= [literal,':'], (terminal I "", keyword, "" I '.') 
terminal = (* see list of terminal symbols in Appendix A.3 *) ; 

keyword = (* see list of terminal symbols in Appendix A.3 *) ; 
literal = letter, { character } ; 

character = letter I number ; 

letter = 'a' I 'b' I 'c' I ... I 'z' ; 

number = '0' I '1' I '2' I .. -I '9' ; 

A.2 Language Grammar In Tree Notation 

This grammar is by no means complete. Nevertheless it contains the majority of 
statements recognised and used by our system. 

unit : # (COD EROOT (subprogram)+) ; 

subprogram: #(SUBPROGRAM codeblock) I comment; 

label : (LABEL I ) ; 

72 



A. Fortran-M Details 

code block : (statement)* ; 

statement : comment I parallel I assignment I ifStatement I doStatement I 
gotoStmt I returnStmt I continueStmt I callStmt I equivalenceStmt ; 

parallel: #(PARALLEL (assignment)+) ; 

comment: (COMMENT)+; 

assignment : #(EQUALS label varRef expr) ; 

ifStatement : #("if'' label expr thenBlock ( elselfBlock )* ( elseBlock )?) ; 
thenBlock : #(THENBLOCK codeblock) ; 

elselfBlock : #(ELSEIF expr thenBlock) ; 

elseBlock : #(ELSEBLOCK codeblock) ; 

doStatement: #("do" label LABELREF NAME expr expr (expr)? 
#(DOBLOCK codeblock)) ; 

gotoStmt : #("go" label LABELREF) ; 
returnStmt : #("return" label) ; 

continueStmt : #("continue" label) ; 

callStmt : #("call" label externalFunction) ; 

dataStatement : #("data" ( dataStatementEntity) +) ; 
dataStatementltem : varRef I datalmpliedDo ; 

dataStatementMultiple: (#(STAR (ICON I NAME) (constant I NAME)) I 
(constant I NAME)) ; 

dataStatementEntity : dse1 dse2 ; 

dse1 : #(DIV (dataStatementltem)+); 

dse2 : #(DIV ( dataStatementMultiple )+) ; 
datalmpliedDo : #(LPAREN datalmpliedDoList #(EQUALS NAME 

expr expr (expr)?)) ; 

datalmpliedDoList : ( datalmpliedDoList What)+ ; 

datalmpliedDoList What : ( varRef I datalmpliedDo) ; 

varRef : (NAME I arrayref) ; 

arrayref: #(NAME (expr)+); 

externalFunction: #(EXTERNAL (expr)*) ; 

intrinsicFunction: #(INTRINSIC (expr)*) ; 

statementFunction : #(STFUNC ( expr)*) ; 

function: #(FUNCTION (expr)*) ; 

expr : operator Expression I indirect Value I string Constant I boolean Constant I 
arithmeticConstant ; 

73 



74 

nAryAddition : expr ( nAryAddition I ) ; 
nAryMultiplication : expr ( nAryMultiplication I ) ; 
pieces : expr expr ; 

A. Fortran-M Details 

operatorExpression : #(COLON expr expr) I #(CONCATOP expr expr) I 
#(NEQV expr expr) I #(EQV expr expr) I #(LOR expr expr) I #(LAND 
expr expr) I #(LNOT expr) I #(IMPLIES expr expr) I #(LT expr expr) I 
#(LE expr expr) I #(EQ expr expr) I #(NE expr expr) I #(GT expr expr) 
I #(GE expr expr) I #(PLUS aexpr nAryAddition) I #(MINUS expr expr) 
I #(STAR aexpr nAryMultiplication) I #(DIV expr expr) I #(PLUS expr) I 
#(MINUS expr) I STAR I #(POWER expr expr) I #(SUM expr #(EQ 
expr #(RANGE expr expr))) I #(PIECEWISE (pieces I expr)+) I 
#(GAMMA (expr)+) I #(EXP expr); 

indirect Value : varRef I externalFunction I intrinsicFunction I 
statementFunction I function ; 

constant : booleanConstant I arithmeticConstant I stringConstant ; 

booleanConstant : trueconst I falseconst ; 

integerConstant : ICON I zcon ; 

arithmeticConstant : integerConstant I RCON I ccon ; 

stringConstant : scan I hollerith ; 

hollerith : HOLLERITH ; 

scan: SCON; 

ccon : #(CCON expr expr) ; 

zcon: ZCON; 

trueconst : TRUE ; 

falseconst : FALSE ; 

A.3 List of Terminal Symbols 

LABEL REF 
XCON 
PCON 
FCON 
RCON 
CCON 
HOLLERITH 

CONCATOP 
CTRLDIRECT 
CTRLREC 
TO 
SUBPROGRAMBLOCK 
DO BLOCK 
AIF 

THENBLOCK 
ELSEIF 
ELSEBLOCK 
CODEROOT 
RECVAR 
SUBPROGRAM 
INTRINSIC 



A. Fortran-M Details 75 

EXTERNAL DIY "file" 
PARAMSUBPROGRAM "complex" "status" 
STFUNC ICON "access" 
PIECEWISE "double" "position" 
GAMMA "precision" "form" 
EXP "integer" "reel" 
FACTORIAL "logical" "blank" 
IMPLIES "pointer" "exist" 
SUM "implicit" "opened" 
RANGE "none" "number" 
EQUALITY MINUS "named" 
FUNCTION "character" "name" 
PARALLEL "parameter" "sequential" 
VECTOR ASSIGN "formatted" 
DIMX "external" "unformatted" 
DIMY "intrinsic" "nextrec" 
PROJ "save" "close" 
DOTPROD "data" "inquire" 
EVAL "assign" "backspace" 
OVERWRITE "go to" "endfile" 
FORALL "go" "rewind" 
COMMENT "if'' "format" 
"program" "then" DOLLAR 
NAME "elseif'' PLUS 
EOS "else" "let" 
"entry" "endif'' "call" 
LPAREN "do" "return" 
RPAREN "enddo" NEQV 
"function" "continue" EQV 
"block" "stop" LOR 
"subroutine" "pause" LAND 
COMMA "write" LNOT 
LABEL "read" LT 
"end" "print" LE 
"dimension" SCON EQ 
"real" "open" NE 
COLON "fmt" GT 
STAR "unit" GE 
"equivalence" "err" POWER 
"common" "iostat" TRUE 



76 

FALSE 
XOR 
EOR 
CONTINUATION 
ws 
ZCON 

WHITE 
ALPHA 
NUM 
ALNUM 
HEX 
SIGN 

A. Fortran-M Details 

NOTNL 
INTVAL 
FDESC 
EXPON 



Bibliography 

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and 
Tools. Addison-Wesley, 1986. 

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, 
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, 
LAPACK Users' Guide. Philadelphia, PA: Society for Industrial and Applied 
Mathematics, third ed., 1999. 

[3] A. N. S. I. (ANSI), FORTRAN 77 Full Language (ANSI X3J3j90.4). World Wide 
Web, 1978. http: I /www. fortran. com/fortran/F77 _std/rj cn£0001. html. 

[4] B. S. Baker, "An algorithm for structuring fiowgraphs," J. ACM, vol. 24, no. 1, 
pp. 98-120, 1977. 

[5] T. J. Biggerstaff, "Design recovery for maintenance and reuse," Computer, 
vol. 22, no. 7, pp. 36-49, 1989. 

[6] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The concept assignment 
problem in program understanding," in ICSE '93: Proceedings of the 15th inter­
national conference on Software Engineering, (Los Alamitos, CA, USA), pp. 482-
498, IEEE Computer Society Press, 1993. 

[7] S. Blazy and P. Facon, "Partial evaluation for program comprehension," ACM 
Comput. Surv., vol. 30, no. 3es, p. 17, 1998. 

[8] E. Chikofsky and J. I. Cross, "Reverse engineering and design recovery: a tax­
onomy," Software, IEEE, vol. 7, no. 1, pp. 13-17, January 1990. 

[9] P. Chowdhury, "Symbolic interpretation of legacy assembly language," Master's 
thesis, McMaster University, 2005. 

[10] T. H. Carmen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to 
Algorithms. MIT Press, McGraw Hill, 2nd ed., 2001. 

77 



78 BIBLIOGRAPHY 

[11] D. E. Corporation, VAX-11 FORTRAN Language Reference Manual. Digital 
Equipment Corporation, 1982. 

[12] G. Coschi and J. B. Schueler, WATFOR-77 Language Reference Manual. WAT­
COM Publications Limited, 1985. 

[13] E. W. Dijkstra, "Go to statement considered harmful," Communications of the 
ACM, vol. 11, no. 3, pp. 147-148, March 1968. 

[14] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. S. Duff, "A set of level 3 basic 
linear algebra subprograms," ACM Trans. Math. Sojtw., vol. 16, no. 1, pp. 1-17, 
1990. 

[15] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson, "An extended set 
of fortran basic linear algebra subprograms," ACM Trans. Math. Sojtw., vol. 14, 
no. 1, pp. 1-17, 1988. 

[16] T. Fahringer and B. Scholz, Advanced Symbolic Analysis for Compilers. Springer­
Verlag, 2003. 

[17] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schryer, "A fortran-to-e 
converter," tech. rep., Computing Science Technical Report No. 149, AT&T Bell 
Laboratories, Murray Hill, NJ, 1990. 

[18] F. S. F. GNU Project, Fortran. http://www.gnu.org/software/fortran/: 
World Wide Web, December 1999. Last Viewed June 2006. 

[19] G. H. Golub and C. F. V. Loan, Matrix Computatations. Baltimore, Maryland: 
John Hopkins University Press, 3rd ed., 1996. 

[20] M. T. Harandi and J. Q. Ning, "Knowledge-based program analysis," IEEE 
Sojtw., vol. 7, no. 1, pp. 74-81, 1990. 

[21] M. S. Hecht and J. D. Ullman, "Flow graph reducibility," in STOC '72: Pro­
ceedings of the fourth annual ACM symposium on Theory of computing, (New 
York, NY, USA), pp. 238-250, ACM Press, 1972. 

[22] G. Inc., CodeSurfer. http: I /www. grammatech. com/products/codesurfer/: 
World Wide Web, Published Year N /A. Last Viewed March 2006. 

[23] ISO /IEC, "Information technology - syntactic metalanguage - extended BNF ," 
tech. rep., ISO/IEC, 1996. Reference Number: ISO/IEC 14977:1996. 



BIBLIOGRAPHY 79 

[24] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic linear 
algebra subprograms for fortran usage," ACM Trans. Math. Softw., vol. 5, no. 3, 
pp. 308-323, 1979. 

[25] E. Moretti, G. Chanteperdrix, and A. Osorio, "New algorithms for control-flow 
graph structuring," in CSMR '01: Proceedings of the Fifth European Conference 
on Software Maintenance and Reengineering, (Washington, DC, USA), p. 184, 
IEEE Computer Society, 2001. 

[26] Netlib, BLAS (Basic Linear Algebra Subprograms). http: I lwww. net lib. orgl 
blasl: World Wide Web, Published YearN/ A. Last Viewed January 2006. 

[27] Netlib, LAPACK - Linear Algebra PACKage. http:llwww.netlib.orgl 
lapackl: World Wide Web, Published YearN/ A. Last Viewed January 2006. 

[28] T. J. Parr, "An overview of SORCERER- a simple tree-parser generator." Can 
be found online at http: I lwww. antlr. orglpapersl sorcerer. ps, 1994. 

[29] T. J. Parr, Translators Should Use Tree Grammars. http: I lwww. antlr. orgl 
articlel1100569809276luse. tree. grammars. tml: World Wide Web, Novem­
ber 15 1994. Last Viewed March 2006. 

[30] T. J. Parr, ANTLR, ANother Tool for Language Recognition. http: I lwww. 
antlr. orgl: World Wide Web, Published Year N /A. Last Viewed December 
2005. 

[31 J 0. Signore and M. Loffredo, "Charon: a tool for code redocumentation and 
re-engineering," in Proceedings., IEEE Second Workshop on Program Compre­
hension, 1993., pp. 169- 176, July 1993. 

[32] R. Tarjan, "Testing flow graph reducibility," in STOC '73: Proceedings of the 
fifth annual ACM symposium on Theory of computing, (New York, NY, USA), 
pp. 96-107, ACM Press, 1973. 

[33] W. Waite, FORTRAN Syntactic Analysis Specification. http:lleli-project. 
sourceforge. netlfortran_htmliParse. html: World Wide Web, Published 
Year N /A. Last Viewed December 2005. 

[34] Y. Wang, "Towards automated construction of tabular expressions," Master's 
thesis, McMaster University, 2006. 

[35] M. Ward, F. Calliss, and M. Munro, "The maintainer's assistant," in Conference 
on Software Maintenance, pp. 307-315, October 1989. 



80 BIBLIOGRAPHY 

[36] M. Ward, "Abstracting a Specification from Code," Journal of Software Main­
tenance: Research and Practice, vol. 5, no. 2, pp. 101-122, June 1993. 

[37] M. Ward and H. Zedan, "Meta WSL and meta-transformations in the FermaT 
transformation system," in COMPSAC '05: Proceedings of the 29th Annual 
International Computer Software and Applications Conference (COMPSAC'05) 
Volume 1, (Washington, DC, USA), pp. 233-238, IEEE Computer Society, 2005. 

[38] M. Ward, "Reverse engineering from assembler to formal specifications via pro­
gram transformations," in Seventh Working Conference on Reverse Engineering, 
pp. 11-20, November 2000. 

[39] A. Wassyng and M. Lawford, "Lessons learned from a successful implementation 
of formal methods in an industrial project," in FME 2003: International Sym­
posium of Formal Methods Europe (K. Arakai, S. Gnesi, and D. Mandrioli, eds.), 
vol. LNCS Vol. 2805, (Pisa, Italy), pp. 133-153, Springer-Verlag, September 
2003. 

[40] Y. Zhai, "An analysis of program by symbolic computation," Master's thesis, 
McMaster University, 2006. 

6927 02 




