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Abstract 


We prove convergence of the Adomian Decomposition Method (ADM) by using the 

Cauchy-Kovalevskaya theorem for differential equations with analytic vector fields, and 

obtain a new result on the convergence rate of the ADM. Picard's iterative method 

is considered for the same class of equations in comparison with the decomposition 

method. We outline some substantial differences between the two methods and show 

that the decomposition method converges faster than the Picard method. Several non

linear differential equations are considered for illustrative purposes and the numerical 

approximations of their solutions are obtained using MATLAB. The numerical results 

show how the decomposition method is more effective than the standard ODE solvers. 

Moreover, we prove convergence of the ADM for the partial differential equations and 

apply it to the cubic nonlinear Schrodinger equation with a localized potential. 
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Introduction 


In the 1980's, George Adomian (1923-1996) introduced a new powerful method for 

solving nonlinear functional equations. Since then, this method has been known as 

the Adomian decomposition method (ADM) [3,4]. The technique is based on a de

composition of a solution of a nonlinear operator equation in a series of functions. 

Each term of the series is obtained from a polynomial generated from an expansion 

of an analytic function into a power series. The Adomian technique is very simple in 

an abstract formulation but the difficulty arises in calculating the polynomials and in 

proving the convergence of the series of functions. 

Convergence of the Adomian method when applied to some classes of ordinary and 

partial differential equations is discussed by many authors. For example, K. Abbaoui 

andY. Cherruault [1,2] proved the convergence of the Adomian method for differential 

and operator equations. Lesnic [35] investigated convergence of the ADM when applied 

to time-dependent heat, wave and beam equations for both forward and backward time 

evolution. He showed that the convergence was faster for forward problems than for 

backward problems. Al-Khaled and Allan [7] implemented the Adomian method for 

variable-depth shallow water equations with a source term and illustrated the conver

gence numerically. A comparative study between the ADM and the Sinc-Galerkian 

method for solving population growth models was performed by Al-Khaled [6], while 

that between the ADM and the Runge Kutta method for solving systems of ordinary 
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differential equations was performed by Shawagfeh and Kaya [42]. Wazwaz and Khuri 

discussed applications of the ADM to a class of Fredholm integral equations that occurs 

in acoustics [44]. Wazwaz also compared the ADM and the Taylor series method by 

using some particular examples, and showed that the decomposition method produced 

reliable results with fewer iterations, whereas the Taylor series method suffered from 

computational difficulties [45]. In [46] Wazwaz modified the ADM to accelerate the 

convergence of the series solution. The validity of the modified technique was verified 

through illustrative examples. Furthermore, in [47] he developed a numerical algo

rithm to approximate solutions of higher-order boundary-value problems. Application 

of Chebyshev polynomials to numerical implementation of the ADM were discussed 

by Hosseini [29]. 

In [25] Guellal and Cherruault used the Adomian's technique for solving an el

liptic boundary value problem with an auxiliary condition. N dour et al. [38] used 

the decomposition method to solve the system of differential equations governing the 

interaction model of two species. Comparative study between the Adomian method 

and wavelet-Galerkin method for solving integra-differential equations was performed 

by El-Sayed and Abdel-Aziz [19]. El-Sayed and Gaber used the Adomian method for 

solving partial differential equation of fractal order in a finite domains [18]. Adomian 

et al. [5] used the technique to solve mathematical models of the immune response to 

a population of bacteria, viruses, antigens or tumor cells that are expressed by systems 

of nonlinear differential equations or delay-differential equations. Laffez and Abbaoui 

[34] studied a model of thermic exchanges in a drilling well with the decomposition 

method. Guellal et al. [26] used the decomposition method for solving differential 

systems coming from physics and compared it to the Runge-Kutta method. Sanchez 

et al. [41] investigated the weaknesses of the thin-sheet approximation and proposed a 

higher-order development allowing to increase the range of convergence and preserve 

the nonlinear dependence of the variables. Edwards et al. [17] compared the ADM and 
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the Runge-Kutta methods for approximate solutions of predator prey model equations. 

Jafari and Gejji [32] modified the ADM to solve a system of nonlinear equations. 

They obtained a series solution with a faster convergence than the one obtained by the 

standard ADM. Luo et al. [36] revised the ADM for cases involving inhomogeneous 

boundary conditions, using a suitable transformation. Luo [37] proposed an efficient 

modification to the ADM, namely a two-step Adomian Decomposition Method that 

facilitated the calculations. Zhang [49] presented a modified ADM to solve a class of 

nonlinear singular boundary-value problems, which arise as normal model equations 

in nonlinear conservative systems. Zhu et al. [50] presented a new algorithm for cal

culating Adomian polynomials for nonlinear operators. Gejji and Jafari [21] presented 

an iterative method for solving nonlinear functional equations. In addition, the ADM 

was used to solve a wide range of physical problems in various engineering fields such 

as vibration and wave equation [9] and [15], porous media simulation [39], fluid flow 

[8], heat and mass transfer [16]. 

Thus, we see that the Adomian decomposition method has been used to solve many 

functional and differential equations so far. The purpose of this thesis is to study 

convergence and stability of this method in application to the initial-value problems 

for systems of nonlinear differential equations. We prove convergence of the ADM 

by using the Cauchy-Kovalevskaya theorem for differential equations with analytic 

vector fields, and obtain a new result on the convergence rate of the ADM. Picard's 

iterative method is considered for the same class of equations in comparison with 

the decomposition method. We outline some substantial differences between the two 

methods and show that the decomposition method converges faster than the Picard 

method. Several nonlinear differential equations are considered for illustrative purposes 

and the numerical approximations of their solutions are obtained using MATLAB. 

The numerical results show how the decomposition method is more effective than the 

standard ODE solvers. Moreover, we prove convergence of the ADM for the partial 
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differential equations and apply it to the cubic nonlinear Schrodinger equation with 

locaized potential. 

This thesis is structured as follows: Chapter 1 is devoted to convergence of the 

ADM for ordinary differential equations. It consists of five sections. The Adomian 

decomposition method is described in Section 1.1. A comparison between the ADM 

and the Picard method is demonstrated in Section 1.2. Section 1.3 gives a simple proof 

of convergence of the Adomian technique by using the Cauchy-Kovalevskaya theorem. 

The rate of convergence of the ADM is studied in Section 1.4. Section 1.5 presents a 

counter example to prove that the ADM is not a contraction method. 

Chapter 2 is devoted to numerical implementation of the ADM in MATLAB. It 

consists of two sections. Section 2.1 formulates numerical algorithms for the ADM and 

the Picard method in application to initial-value problems for ODE's. Two examples 

of second-order differential equations are presented in Section 2.2 to illustrate the 

accuracy of the ADM. 

Chapter 3 extends the convergence analysis and numerical approximations to par

tial differential equations. It consists of two sections. Section 3.1 gives a proof of 

convergence of the ADM for semilinear PDEs associated to an unbounded differen

tial operator. Section 3.2 presents two numerical examples of solutions of the cubic 

nonlinear Schrodinger equation with a localized potential. 
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Chapter 1 

Convergence of the ADM for ODEs 


In this chapter, we prove convergence of the ADM for initial-value problems as

sociated with systems of ordinary differential equations. 

1.1 Formalism of the ADM 

In reviewing the basic methodology, we consider an abstract system of nonlinear 

differential equations: 

(1.1) 

with initial condition y(O) = y0 E JRd. Assume that f is analytic near y = y0 and t = 0. 

It is equivalent to solve the initial value problem for (1.1) and the Volterra integral 

equation 

y(t) =Yo+ l f(s, y(s))ds. (1.2) 

To set up the Adomian method, consider yin the series form: 

00 

Y =Yo+ LYn, (1.3) 
n=l 
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and write the nonlinear function f (t, y) as the series of functions, 

f(t, Y) = L
00 

An (t, Yo, Yl, ... , Yn) · (1.4) 
n=O 

The dependence of An on t and y0 may be non-polynomial. Formally, An is obtained 

by 

n = 0, 1, 2, ... (1.5) 

where cis a formal parameter. Functions An are polynomials in (y1 , .... , Yn), which are 

referred to as the Adomian polynomials. 

In what follows, we shall consider a scalar differential equation and set d = 1. A 

generalization for d ~ 2 is possible but is technically longer. 

The first four Adomian polynomials for d = 1 are listed as follows: 

Ao f(t, Yo) 


A1 Y1f' (t, Yo) 


A2 yd'(t, Yo)+ ~y~f"(t, Yo) 


Aa Yaf'(t, Yo)+ Y1Yd"(t, Yo)+ ~YU111 (t, Yo), 

where primes denote the partial derivatives with respect toy. 

It was proven by Abbaoui and Cherruault [1 ,2] that the Adomian polynomials An 

are defined by the explicit formulae: 

or, in an equivalent form, by 

where lkl = k1 + ... + kn, and lnkl = k1 + 2k2 + ... + nkn. 
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Khelifa and Cherruault [33] proved a bound for Adomian polynomials by, 

A I ~ (n + 1)n Mn+l (1.5)l n ~ (n + 1)! ' 

where 

sup l!(k)(t, Yo) I :::;; M, 
tEJ 

for a given time interval J cR. 

Substitution of (1.3) and (1.4) into (1.2) gives a recursive equation for Yn+l in terms 

of (Yo, Yb · · ., Yn) : 

YnH(t) 	= [ A,.(s, Yo(s), Y1(s), ... , Yn(s))ds, n = 0, 1, 2, ... {1.6) 

Convergence of series (1.3) obtained by (1.6) is a subject of our studies in this chapter. 

1.2 	 Comparison between the ADM and the Picard 

method 

The ADM was first compared with the Picard method by Rach [40] and Bellomo 

and Sarafyan [12] on a number of examples. Golberg [22] showed that the Adomian 

method for linear differential equations was equivalent to the classical method of suc

cessive approximations (Picard iterations). However, this equivalence does not hold 

for nonlinear differential equations. In this section we compare the two methods and 

show differences and advantages of the decomposition method. 

Recall that Picard's method introduced by Emile Picard in 1891, is used for the 

proof of existence and uniqueness of solutions of a system of differential equations. 

The Picard method starts with analysis of Volterra's integral equation (1.2). Assume 

that f(t, y) satisfies a local Lipschitz condition in a ball around t = 0 andy= y0 : 

\7' ltl S: to, \7' IY- Yo I, IY- Yo I S: 8o: lf(t, y)- f(t, 17)1 S: K IY- 171, 

7 




where K is Lipshitz constant and IYI is any norm in JR.d, e.g. the Euclidean norm 

IYI = (Yi + .... + y~) 2 
1 

· 

Let y(o) = y0 and define a recurrence relation 

y(n+!l(t) =Yo+ [ f(s, y(n)(s))ds, n = 0, 1, 2, .... (1.7) 

Ift0 is small enough, the new approximation y(n+l)(t) belongs to the same ballly-y0 1 ~ 

do for all ItI ~ t0 and the map (1.7) is a contraction in the sense that 

[f(s, y(s))- f(s, y(s))] dsl ~ Q sup ly(t)- f;(t)l, (1.8)11t 

0 ltl~to 

1 .
where Q = Kt0 < 1, so that t0 < K' By the Banach fixed point theorem, there 

exists a unique solution y(t) in C([-t0 , t0 ], B 00 (y0 )) where B00 (y0 ) is an open ball in 

JR.d centered at y0 with radius d0. Recall here that C([-t0 , t0 ], JR.d) with the norm 

IIYII = sup ly(t) I (1.9) 
ltl~to 

is a complete metric space. Since the integral of a continuous function is a continu

ously differintiable function, y(t) is actually in C 1([-t0 , t0 ], B 00 (y)). By the contraction 

mapping principle, the error of the approximate solution y(n)(t) is estimated by: 

MKntn+l 
En= IIY- Y(n)ll ~ (n + ;)! ' M = sup sup lf(t, y)l. 

It! ~to IY-Yo I~oo 

In [30], Hosseini and Nasabzadeh claimed that the Adomian iteration method (1.2) 

can be formulated as 

Yn+I =Yo+ 1t f(s, Yn(s))ds, (1.10) 

where 
n 

Yn=Yo+ LYk· (1.11) 
k=l 

However, the claim is wrong since 

n 

L Ai(t, Yo, Yl, .... , Yi) =I f(t, Yn(t)), n ~ 1. 
i=O 
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Moreover, the above iteration formula on Yn, n EN is nothing but Picard's iteration 

formula and, therefore, the proof of convergence of the iterative method (1.10) in [30] 

repeates the standard proof of convergence of Picard iterations and gives no proof of 

convergence of the ADM. Computations of Picard's iterative algorithm were reported 

recently in [48]. 

Now, we 	 shall understand the relationship between the ADM and the Picard 

method using an example of a scalar first order ODE: 

{ 

dyp
dt- y 

y(O) = 1 
(1.12) 

where p ~ 1. This differential equation has the exact solution 

y(t) = 
1 

1

(1- (p- 1)t)p-1 
(1.13) 

Following the Adomian method, we write 

y(t) = 1 + l yP(s)ds 

and compute the Adomian polynomials from f = yP in the form: 

p
Yo, 

p-1
PYo Y1, 

p(p- 1) p-2 2 p-1


Yo Y1 + PYo Y22 
p(p- 1)(p- 2) p-3 3 ( 1) p-2 p-1

Yo Y1 +P P - Yo Y1 Y2 + PYo Y36 

Using (1.6), we determine few terms of the Adomian series: 

Yo(t) 	 1, 

Y1 (t) 	 t, 

'E.t2Y2(t) 
2 ' 
p(2p- 1) 3 

Y3(t) 3! t ' 
p(6p2- 7p + 2) t4 

Y4(t) 4! 	 . 
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Expanding (1.13) in a power series oft, we can see that the Adomian decomposion 

recovers the power series solution: 

1 
y(t) = 1(1- (p- 1)t)p-1 

1 + t + Et2 + p(2p- 1) t3 + p(6p2- 7p + 2) t4 + O(t5) 
2 3! 4! 

Yo + Y1 + Y2 + Y3 + Y4 + · · · 

On the other hand, using Picard iterations, 

we obtain succesive approximations in the form: 

y(O) 1, 

y(l) 1 + t, 

y(2) 
p (1 + t) 1+P 

--+
1+p 1+p ' 

y(3) 1 +1t (y(2))P ds. 

Starting with y(2), Picard approximations mix up powers oft which make y(n) being 

different from the n-th partial sum of the power series. For instance, if p = 2, then 

1 =Yo, 

1 + t =Yo+ Y1, 
t3 t321 + t + t + 3 = Yo + Y1 + Y2 + 3 

t 6 t 7 

1 + t + t2 + t
2 1 5 + - + 3 + -t4 + -t
3 3 9 63 

2 4 1 5 t6 t7 
Yo + Y1 + Y2 + Y3 + 3t + 3t + g + 63 . 

Since 2:::.:~=0 Yi(t) is a partial sum of the power series for (1.13), we conclude that 

the Adomian method better approximates the exact power series solution compared 
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to the Picard method. In general, since the Adomian method requires analyticity of 

f (t, y), which is more restictive than the Lipschitz condition required for the Picard 

method, we expect that the ADM converges faster than the Picard method. We will 

illustrate this feature in Chapter 2. 

1.3 Convergence Analysis 

It is clear from (1.5) that An are polynomials in y11 .•.. , Yn and thus Yn+l is obtained 

from (1.6) explicitly, if we are able to calculate An. The first proof of convergence of 

the ADM was given by Cherruault (14], who used fixed point theorems for abstract 

functional equations. Furthermore, Babolian and Biazar (10] introduced the order 

of convergence of the ADM, and Boumenir and Gordon [13] discussed the rate of 

convergence of the ADM. 

The proof of the convergence for the ADM was discussed by Cherruault [14] (see 

also Himoun, Abbaoui, and Cherruault [27,28] for recent results in the context of the 

functional equation 

Y ==Yo+ f(y), Y E 1HI, (1.14) 

where 1HI is a Hilbert space and f : 1HI ---+ 1HI. Let Sn - Y1 + Y2 + ..... + Yn, and 

fn(Yo + Sn) = :L~=O Ai· The ADM is equivalent to determining the sequence {Sn}nEN 

defined by 

If there exist limits 

S = lim Sn, f = lim fn 
n-+oo n-+oo 

in a Hilbert space Iffi, then S solves a fixed-point equation S = f (y0 + S) in JHL The 

convergence of the ADM was proved in [14], under the following two conditions: 

IIJII ~ 1, llfn- fll =en --t 0 as n --too (1.15) 
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These two conditions are rather restrictive. The first condition implies a constraint 

on the nonlinear function (1.14) while, the second condition implies the convergence 

of the series L~=o An· It is difficult to satisfy the two conditions for a given nonlinear 

function f(y). In the following, we shall prove convergence of the Adomian method in 

the context of the ODE systems (1.1) by using the Cauchy-Kovalevskaya theorem. We 

only require that the nonlinearity f be analytic in t and y. Let us start by reviewing 

the Cauchy-Kovalevskaya theorem for ordinary differential equations. 

Theorem 1.3.1. Let f : lR x JRd -+ JRd be a real analytic function in the domain 

[-to, to] x Ba0 (Yo) for some to > 0 and c5o > 0. Let y(t; Yo) be a unique solution for 

t E [-t0 , t0] of the initial-value problem 

dy 
dt = f(t, y) 

(1.16)
{ y(O) =Yo 

Then y(t; y0 ) is also a real analytic function oft neart = 0 that is there exists T E (0, t0 ) 

such that y : [ -T, T] -+ JRd is a real analytic function. 

Remark 1.3.2. Existence, uniqueness and continuous dependence on t and y0 of 

y (t; y0 ) follows from Picard's method since if f is real analytic, then it is locally Lips

chitz. 

Remark 1.3.3. We shall consider and prove Theorem 1.3.1 ford= 1. Generalization 

for d ~ 2 can be developed with a more complicated formalism, see [43} for further 

details on Cauchy-K ovalevskaya theorem. 

Proof. By Cauchy estimates for a real analytic function in the domain [to, t 0 ] x B 80 (y0 ) 

[24], there exist a, C > 0 such that 

1 + lf(O, Yo) I < C (1.17) 

L k ~ ! la:'1 a;2 f(O,yo)i < ;, \fk?: l,kr,k2 ?: 0 (1.18)1 2
ki+k2=k 
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By the Cauchy estimates (1.17, 1.18), the Taylor series for f(t, y) at t == 0 andy== y0 

is bounded by 

~ (p)k C Ca
1 + If(t, Y) I ~ c L..J ~ == 1 - e. == a - P == g(p), 

k=O a 

where p = It! + IY- Yo! < a. By the Weierstrass M-test, the Taylor series for f 

converges for all 

It! + IY - Yo I < a. (1.19) 

Therefore, we have 

1 + lf(O, Yo) I < C = g(O) 

L k ~k ! !at'a;' f(O, Yo)l < ~ = ~~g(kl(o), Vk1, k2 ~ o, k ~ 1.1 2kl+k2=k 

Let us consider a majorant problem for p E ll4: 

dp ( ) Ca
dt == g p = a-p 

{ p(O) == 0 

This problem has an explicit solution 

p(t) ==a- va2 - 2aCt, 

which is an analytic function of t in It! < 2~. By comparison principle, if 

~~ = f(t,y) 
{ y(O) =Yo 

and 1 + lf(t, y)l ~ g(!t! + !y(t)- Yo!), for all It!+ !y(t)- Yo! <a then 

1 
!tl + !y(t)- Yo!~ p(t) ==a- Ja2 - 2aCt = L00 

k!p(k)(O)tk. 
k=l 

Therefore, for all t ~ 0, 

fy(t; O)- Yo I :::; t(p'(O) - 1) + L ~!P(kl(o)tk, 
k~2 
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where the Taylor series converges absolutely in ltl < 2~. To prove that y(t; y0 ) is 

analytic function in ltl <min (a, 2~), it remains to prove that IY(k)(O,yo)l ::; p(k)(O) 

for any k 2: 1. If this is the case, then the Taylor series for y(t, y0 ) has a majorant 

convergent series, such that the Taylor series for y(t, y0 ) converges, by the Weierstrass 

M-Test. To prove that IY(k)(O; Yo)! ::; p(k)(O), we compute the first three derivatives 

explicitly from the ODE system: 

aj aj ay - aj faj 
at+ayat-at+ ay 
2 2 	 2 2 a J + 21 a 1 + a1 a1 + 1 (a1) + 12a f 

at2 atay at ay ay ay2 

for example 

1~:;1 	 < 1~1 + ~~~1 111 
< g'(O) (1 +IfI) ::0: g(O)g'(O) = ~~ (0) 

1~:;1 < 1:;1 + 2 1::~1 111 + ~~~~~~~ + 111 1~~1\ 1112 1~~1 
< g"(O) (1 + 1!1)2 + (g'(0))2 (1 + IJI) 

d3p
< g2(0)g" (0) + (g' (0))

2 
g(0) = dt3 (0) 

Generally 

where Pk (f) is a polynomial of f and its partial dervatives up to kth order evaluated 

at t = 0 and y = y0 . Since Pk(f) has positive cofficients and by (1.19) we obtain 

IY(k+I)(O; Yo) I = IPk(f)lt=D,y=yo :::; Pk(lfl)lt=O,y=yo 

::; Pk(l + lfl)lt=O,y=yo::; Pk(Y)Ip=o == p(k+I)(O), k 2: 0 (1.20) 

where the last identity follows from the ODE 7t = g(p). Thus, the statement of the 

theorem is proved. D 
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We can now state the main result of this chapter. 

Theorem 1.3.4. Let f : JR. x JR.d ~ JRd be a real analytic function in the domain 

[-to, to] x B60 (y0 ) for some to> 0 and b"o > 0. Let Yn(t) be defined by the recurrence 

equation (1.6}. There exist a T E [0, t0] such that the nth partial sum of the Ado

mian series ( 1. 3) converges to the solution y(t; y0 ) of the Volterra equation ( 1. 2) in 

C([-T, r], JRd). 

Remark 1.3.5. Similarly to Theorem 1.3.1 we shall prove Theorem 1.3.4 for the 

simplest case of d = 1. 

Proof. Working with iteration of the Adomian method, we set 

Yk+l(t) = l Ak(s, Yo(s), ..... , Yn(s)), k 2: 0 (1.21) 

where 
00 

1 dk ( )Ak = k! d£k f t, Yo + ~ E:mYm /e=O 

For instance, we obtain at k = 0 

/Yl(t)/ ~ l/f(s, Yo)/ ds ~ g(O)t =p'(O)t 

1
at k = 1 

t t2 t2 
IY2(t)! ~ lf'(s, Yo)IIYl(s)l ds ~ 2g'(O)g(O) =2p"(O) 

0 

Let the following relation be true at k = n 

We shall prove that the same relation is true at k = n + 1: 

ly (t) I < 1 tn+lp(n+l) (0). 
n+l - (n + 1)! 

Let 
n 

Yn(t) == L cmYm(t), 
m=O 
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where c > 0 is a formal parameter. Then, 

Let m - (n + 1) == l then 

Therefore, there exist a coo function Yn(t) on [-T, r] such that 

where Tis defined by Theorem 1.3.1. The first few estimates of Adomian polynomials 

are given by 

< C == g(O) == p' (0) 


< IJ'IIYII ~ c g(O)t == tg(O)g' (0) == tp" (0) 

a 

< lf'IIY21 + -2
1 

lf"IIY;I ::; c 
a 

IY21 + 
a 
~ IYII2 

< ; (g(O)(g'(0))2 + g"(O)(g(0))2
) = ; p'"(O). 

To estimate An (t) in general case, we use formula 

1 dn 
An(t) == - -dJ(t, Yn(t))lc=On.1 en 

and compute 

(1.22) 

where the last inequality is obtained in (1.20). Using the iterative formula (1.21), we 

finally obtain 
1ly (t) I < tn+lp(n+l) (0). 

n+l - (n + 1)! 
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Therefore, the Adomian series is majorant by the same power series as the analytic 

solution in Theorem 1.3.1 is. By the Weierstrass M-test, the Adomian series converges. 

Moreover, as follows from (1.21) the series (1.4) for Adomian polynomials converges 

too, so that the Adomian series solves the same Volterra integral equation (1.2) in 

C ([-r, r], JR). By uniqueness of solutions, the Adomian series is equivalent to the 

solution y(t; y0 ) of the Volterra equation (1.2). D 

1.4 Rate of convergence 

In this section, a simple method to determine the rate of convergence of the ADM 

is introduced. Using this method, we give a bound for the error of the Adomian 

decomposition series. 

Theorem 1.4.1. Under the same condition as in Theorem 1.3.4, the rate of conver

gence is exponential in the sense that there exists C0 > 0 such that 

E < G (2Cr)n+l
n _ 0 , n"2_l 

a 

for all T < 2~, where 
n 

En== Y- LYm ' 
m=O 

and (a, C) are defined in Cauchy estimates {1.17}-{1.18}. 

Proof. By Theorem 1.3.4, we have 

tn+l p(n+l) (0) 
IYn+l(t)j:::; (n+l)! , \itE[O,r], 

so that 
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where the norm 11·11 in C([-T, T], Rd) is defined by (1.9). Since p(t) is explicitly given 

by 

p(t) =a- Va2 - 2Cat, 

then 

(1.23) 


By Theorem 1.3.4, the Adomian series y(t) = I::=o Ym(t) converges and the error is 

defined and estimated by 

00 oo oo j (j)(o) oo (c )j7 
En= L Yi :S L IIYill :S L p ·1 :S L ~! __.:!._ (2j- 3)!! 

j=n+l j=n+l j=n+l J j=n+l J a 

Let k = j - (n + 1), then 

E <a (2CT) n+l ~ (2k + 2n- 1)!! (2CT) k 

n- a ~ 2k+n+l(k + n + 1)! a 
k=O 

Since 

(2k + 2n- 1)!! < 1 < 1 Vn > 1 k > 1 
2k+n+I(k+n+1)!- 2n+2k- ' - ' - ' 

we obtain 
2CT)n+I 

00 (2CT)n+l (2CT)k _a -a 
En ::; a ( -a- :E -a- - 2CT ' 

k=O 1-
a 

for all T 	 < ac. The theorem is proved with Co = 1 ~CT • 02 	 --a 

1.5 	 Is the Adomian iterative method related to a 

contraction operator? 

We recall that the Picard iterative method (1.7) is related to a contraction operator 

provided the time interval [ -t0 , t0 ] is small enough. We shall ask if the Adomian 
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iteration formula (1.6) is related to a contraction operator. The question can be 

formulated as follows. Let Yn(t) == L~=O Ym(t). Is there a constant Q < 1 such that 

(1.24) 


or, equivalently, 11Yn+1 ll ::; Q llYn II?. We will show, however, that the answer is negative 

in general. To be more precise, we will construct a counter-example for d = 1, which 

shows that no Q < 1 exists in a general case. 

In particular, consider the first-order differential equation 

dy- = 2y- y2
dt (1.25)

{ y(O) == 1 

with exact solution y == 1 + tanh(t). By the ADM, we write the above initial-value 

problem in the integral form: 

y(t) = 1+ l (2y(s)- y2 (s))ds 

and compute the Adomian polynomials for f(y) == 2y- y2 in the form 

Ao 2yo- y~, 


A1 2yl - 2YoY1, 


A2 2y2 - 2YoY2 - Yi, 


A3 2y3- 2(YoY3 + Y1Y2), 


A4 2y4 - 2(YoY4 + Y1Y3) - Y~ · 


Using (1.6), we determine few first terms of the Adomian series 

t3 2t5 

Yo== 1; Y1 == t; Y2 == 0; Y3 == -3; Y4 == 0; Ys = 15· 

Therefore, Adomian iterations are not related to a contraction operator since even

numbered corrections of Yn(t) are zero. 
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On the other hand, using Picard iterations, 

we obtain successive approximations in the form: 

1·
' 

1 + t; 
t3 

- 1 + t- 3; 
t 3 2t5 f

1 + t - 3 + 15 - 63' 

and the successive approximations satisfy 

for some Q < 1 provided that [-t0 , t0] is sufficiently small. 

Note again, similarly to Section 1.2 that the Picard method mixes up powers of 

the partial sum for the exact solution y(t) = 1 + tanh(t), while the Adomian series is 

equivalent to the power series in time. Therefore, the ADM is expected to converge 

faster than the Picard method. We shall illustrate this point with more examples in 

Chapter 2. 
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Chapter 2 

Numerical implementation of the 

ADM for ODEs 

In this chapter we describe how to implement the ADM numerically. We also 

compare the ADM with the Picard and Runge-Kutta methods using MATLAB. 

2.1 	 Numerical algorithm for the ADM and Picard 

method 

Consider the following initial-value problem for a system of differential equations: 

dy
dt = f(t, y) 

(2.1)
{ y(O) =Yo 

where y E JRd, and f : lR x JRd --+ JRd. For instance, if x : lR -t lR satisfies the 

initial-value problem for the second-order differential equation 

x" = F(t, x, x'), x(O) =A, x'(O) = B, 	 (2.2) 
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then the vector y E IR2 with components y1 = x, y2 = x' satisfies the system (2.1) with 

(2.3) 

Adomian Decomposition Method (ADM) 

To solve equation (2.1) using the Adomian decomposition method numerically we 

define elements of the Adomian series by recursive equation (1.6) and apply the trape

zoidal rule on [0, T] with grid points at 

tm = mh, m = 0, 1, 2, ...M, 

where h = ~. Then, 

(2.4) 

m-1 

+ 2 L An(tj, Yo(tj), ... ,Yn(tj))) 
j=l 

where Yo(t) =Yo and Yn(O) = 0 for n 2:: 1. 

After Adomian polynomials An are computed recursively in the explicit form for 

n = 0, 1, 2, ... , N, we can use the trapezoidal rule (2.4) on the grid {tm}~=o by in

crementing n from n = 0 to n = N. Thus, we can define the nth_partial sum of the 

Adomian series on the grid { tm};;;,=o by 

n 

Yn(tm) =Yo+ LYi(tm) 
i=l 

for n = 1, 2, .... ,Nand m = 1, 2, ... , M. 

Picard Method (PM) 

To solve equation (2.1) using the Picard method numerically we take the recursive 

equation (1. 7) and apply trapezoidal rule on the same grid in the form: 

Y(n+!) (tm) =Yo+~ (/(0, Y(n)(O)) + f(tm, Y(nl(tm)) +~ J(tj, Y(nl(tj))) (2.5) 
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where y(o) (t) = y0 and y(n) (0) = Yo for all n 2 1. 

Runge-Kutta Method {RKM) 

To solve equation (2.1), using the Runge-Kutta method, we take the standard 

Runge-Kutta method of the fourth-order given by 

tm +h, (2.6) 

where Ym is a numerical approximation of the solution y(t; y0 ) at t = tm and 

kl - J (tm, Ym)' 

k2 J (tm + %,Ym + %k1), 

k3 J (tm + %,Ym + %k2), 
k4 J (tm + h,ym + hk3). (2.7) 

2.2 Two numerical examples 

Two examples of the initial-value problem for second-order differential equations 

are considered here. In the first example, we compare the Adomian decomposition 

method and the Runge-Kutta method. In the second example, we compare the Ado

mian decomposition method and the Picard method. The numerical computations are 

performed using MATLAB. 
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Example 2.1 

Let us consider the nonlinear differential equation: 


d2y ( 3 )
- -d2 + 1 - 2 ( ) y (t) + y3 (t) = 0 (2.8)
t cosh t 

with initial conditions y(O) = 1 and y'(O) = 0. The exact solution for this initial-value 

problem is Yexact(t) = sech(t). 

Equation (2.8) is a stationary Gross-Pitaevskii equation that describes, for example, 

localization of an atomic gas in trapped Bose-Einstein condensates. 

Approximation by the ADM 

We first compute the Adomian polynomials for f (y) = y3 using generating rule 

(1.5). The first four polynomials are 

Ao 

3y~yl, 

3YoYi + 3y~y2, 

3y3y~ + 6Y2Y1Yo + Yf · 

A general formula is also available: 

k k-i 

Ak = L L YiYjYk-i-j 

i=O j=O 

Integrating twice the differential equation, we obtain the recursive formula for the 

ADM in the form: 

Yn+l (t) = l dr [ ( [ 1- cos:2 (s)] Yn(s) + An(Yo(s), ... , Yn(s))) ds, n;::. 0 

starting with y0 = 1. If Yn(t) is a partial sum of the Adomian series, the approximation 

error of the ADM is defined by 

E~DM (T) = llYn- Yexactll = sup IYn(t) - Yexact(t) I· 
tE[D,T] 
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T Error RK Error AD n == 15 Error AD n == 30 

0.5 o.7131 x 10-10 o.8103 x 10-10 o.7128 x 10-14 

1 0.1633 X 10-9 0.6215 X 10-8 o.8754 x 10-13 

1.5 0.3123 X 10-9 0.7588 X 10-6 0.5421 X 10-ll 

2 0.4907 X 10-9 o.8752 x 10-4 0.2112 x 1o-9 

Table 2.1: Comparison of errors between the ADM and the RKM 

The error is evaluated on the discrete set { tm}~=o for a numerical approximation of 

Yn(t). 

Approximation by the RKM 

Let y == x 1 , y' == x 2 , and write equation (2.8) in the form 

x~ x2 3 
x; )(1 - x 1 + x~2cosh t 

Runge-Kutta method computes the approximations by using (2.6) and (2.7) for (x1 , x 2 ). 

The approximation error of the Runge-Kutta method is defined by: 

ERKM (T) = !!YRK- Yexactll, 

where YRK is the numerical approximation obtained on the discrete grid { tm}~=o· 

Table 2.1 shows comparison of the errors between the two methods. We find that 

the approximation obtained from the Adomian method with n = 15 is less accurate 

than the approximation obtained from the Runge-Kutta method forT~ 0.5. On the 

other hand, the Adomian method with n = 30 gives a smaller approximation error 

than the Runge-Kutta method for all T ~ 2. Therefore, the ADM is superior to 

the Runge-Kutta method for smaller time intervals (for which we proved convergence 

of the Adomian series in Chapter 1) but the Runge-Kutta method might be more 

accurate for longer time intervals. 
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Figure 2.1: Comparison of errors between the ADM (solid curve) with n == 30 and the 

RKM (dotted curve) for T == 2 
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Figure 2.2: Graph of the approximation error of the ADM (dotted curve) versus nand 

the approximation error of the RKM (solid curve) forT= 1 (right) and T == 2 (left). 

Figure 2.1 shows that the error of the RKM increases much slower than the error 

of the ADM with a fixed n == 30. If n is fixed, there exists a value ofT== T0 such that 

the error of the RKM is smaller than that of the ADM forT> T0 • 

This tendency is also seen on Figure 2.2 forT== 1 (left) and T == 2 (right), where 

the errors are plotted versus n. For a given T, there exists a value of n == n0 such that 

the error of the ADM is smaller than that of the RKM for n > n0 . 
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Example 2.2 

Let us consider the nonlinear differential equation: 

d2y _ + e-2ty3 = 2et (2.9)
dt2 

subject to the initial conditions, y(O) = y'(O) = 1, which has exact solution y(t) = et. 

This example was previously solved by El-Kalla [20). He introduced a new definition 

of the Adomian polynomials: 

Ao f(t, Yo), 

An J(t, Yn)- J(t, Yn-1), 

so that 
n

L Ai(t, Yo, ... ,Yi) = f(t, Yn(t)). 
i=O 

He used the ODE (2.9) to claim that the Adomian series solution using the new 

definition of An converges faster than the one constructed using the old definition of 

An. However, the new formula is nothing but the Picard iteration formula since 

Yn+l = Yo+ t 1t Ai(s, Yo(s), ...y;(s))ds 

Yo+ [ f(s, Yn(s))ds. 

Therefore, we can use this example to compare the ADM and the PM as well as to 

check the claim of El-Kalla (20]. 

Approximation by the ADM 

Integrating twice the differential equation (2.9), we obtain the integral equation 
7 

y(t) = 2et- t- 1 -1t dr 1e-2V(s)ds. 

Using the same Adomian polynomials for f (y) = y3 as in the previous example, we 

define 

Yo(t) == 2et- t-1 
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and compute Yk+I (t) for k ~ 0 by using 

7 

Yk+l(t)=-ltdr l e-2'Ak(s)ds,k~O. 

The relative approximation error of the ADM is defined by: 

RAEADM = llYn - Yexactll 
n IIYexactll . 

Approximation by PM 

By using the Picard iterative formula (1.7), we have 

starting with 

y<0)(t) = 2et- t- 1 =Yo(t). 

The relative approximation error of the PM is defined by: 

RAEPM == IIY(n) - Yexactll 
n IIYexact!! . 

Table 2.2 (left) demonstrates the relative approximation error of the two methods 

for n = 3 where the approximations for Y3 and y(3) have been computed analytically. 

Table 2.2 (right) shows the relative approximation error of the two methods for 

n == 7 where the approximations for Y7 and y<7) have been computed numerically. 

From the two tables we conclude that the ADM is more accurate than the PM for 

all the time intervals. 

Figures 2.3 compares relative errors in the ADM and the PM. We note that solution 

using the Adomian formula converges faster than the solutions using the Picard method 

in contradiction to the claim of [20]. We think that the wrong claim of [20] was made 

due to mis-calculation of Adomian polynomials. 
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T RAEADM
3 RAEfM 

0.5 3.6842 X 10-4 4.1237 x 10-4 

1 1.4792 X 10-2 2.693488 X 10-2 

1.5 1.358 x 10-1 3.450 X 10-1 

2 5.786 x 10-1 2.1437 

T RAEADM
7 RAEfM 

0.5 1.7579 X 10-4 9.021 X 10-2 

1 2.2614 x 10-4 6.989 X 10-1 

1.5 6.521 x 10-3 1.9599 

2 4.455 x 10-1 20.4631 

Table 2.2: Comparison between ADM and PM using analytical computations at n == 3 

(left). Comparison between ADM and PM using numerical computations at n == 7 

(right) 
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Figure 2.3: Graph of RAE:DM (solid curve) and RAE[;M (dotted curve) using ana

lytical computations at n == 3 (left) and numerical computations at n == 7 (right). 
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Chapter 3 

Convergence of the ADM for PDEs 


In this chapter we analyze convergence of the ADM for nonlinear partial differen

tial equations in the form 

Ut = Lu + N(u); (3.1) 

where L is an unbounded differential operator from a Banach space X to a Banach 

spaceY, (X ~ Y), and N(u) is a nonlinear function that maps an element of X to an 

element of X. 

For example, we can consider a nonlinear Schrodinger equation (NLS) in the form 

(3.2) 

where i =..;=I, V(x) is an external potential for x E JR., and u = u(x, t) is a complex 

valued function. The NLS equation plays an important role in the modeling of several 

physical phenomena such as the propagation of optical pulses, waves in fluids and 

plasma, self-focusing effects in lasers, and trapping of atomic gas in Bose-Einstein 

condensates. 

The NLS equation (3.2) is a particular example of the general PDE (3.1) where 

L = ia;, N(u, x) = -i (V(x) + lul2
) u and the Banach spaces are X = H 8 (1R.) and 
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Y = H 8 -
2 (R) for any s > ~ (assuming that V E H 8 

). The initial-value problem for 

the PDE (3.1) can be set from the initial data 

u(x, 0) = f(x), Vx E JR. (3.3) 

where f(x) E H8 (1~) for any s > ~· 

3.1 Convergence Analysis 

Let E(t) be a fundamental solution operator associated with the linear Cauchy 

problem 

(3.4){v(O~t ::X 

so that v(t) == E(t)j. For symbolic notations, we write E(t) == etL. In what follows, 

we shall assume that 

llE(t)fllx ~ C llfllx (3.5) 

For instance if L == i8~, then the initial-value problem the linear Schrodinger equation 

(3.4) is solved in the Fourier transform form as 

v(x, t) = ~Le-i<
2 
t+itx j{t;,)dl;,, V(x, t) E JR.2 , 

where 

- 1 1 "{f(f,) == rn= e-~ x f(x)dx, Vf, E R. 
y27f ~ 

Therefore, E(t) is defined in the Fourier transform form by E(t) == e-iet. By Parseval's 

identity, E(t) preserves the H 8
- norm in the sense that 

IIE(t)JII~s 2~ L(1 + t;2)• IETtl71
2 

dl;, 

2~ L(1 +e)· lif(t)l
2 

1~
2 

dl;, 

2~ L(1 +e)· ~~2 dl;, 

IIJII~s, 
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so that the assumption (3.5) holds with C = 1. 

By Duhamel's principle, the initial-value problem (3.1) can be reformulated as an 

integral equation 

u(t) = E(t)f + [ E(t- s)N(u(s))ds (3.6) 

Remark 3.1.1. If L : X -+ Y, N : X -+ X, and IIE(t)fllx :::; C llfllx for some 

C > 0, then there exists a unique fixed-point of the integral equation (3.6} in space 

C ([0, T], X) for a sufficiently small T > 0, which corresponds to a unique solution of 

the PDE problem (3.1) in space u(t) E C ([0, T], X) n0 1 ([0, T], Y). 

To set up the Adomian method, define 

u(t) = L
00 

Un(t) (3.7) 
n=D 

where u0 (t) = E(t)f and 

Un+J(t) = 1t E(t- s)An(uo(s), ..... un(s))ds, n ~ 0, (3.8) 

where An is the same Adomian polynomial as in Chapter 1 generated from an analytic 

function N (u). 

We would like to prove convergence of the Adomian series (3.7) in space X. 

Theorem 3.1.2. Let N: X-+ X be a real analytic function in the ball Ba(f) C X for 

some radius a> 0. Let L: X-+ Y satisfy llE(t)fllx :::; C llfllx for some C > 0. Let 

u0 (t) = E(t)f and un(t) for n 2: 1 be defined by the recurrence equation (3.8}. There 

exist a T > 0 such that the nth partial sum of the Adomian series (3. 7) converges to 

the solution u of the equation (3.6} in C([O, T], X). 

Proof. Assume that N(u) is analytic in u E X. Then, by Cauchy estimates, there 

exist a > 0, and b > 0 such that 

(3.9) 
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The Taylor series for N (u) at u == f 

N(u) = f, ~! [8~N(f)] (u- f)\ 
k=O 

converges for any llu- Jllx <a, and moreover, we obtain that 

IIN(u)\lx < f_ ~! ~! \lu- !II~ 
k=O 

b 
< 1 _ llu-filx 

a 

ba 
- =g(p)
a-p 

where p == llu- Jllx < a. It is now clear that IIB~N(f) llx :::; g(k) (0) for any k 2: 0. 

Working with equation (3.8), we find that lluo- fllx :::; (C + 1) ll!llx =a, and 

llu1\lx < [ IIE(t- s)Ao\lx ds::::: C [ \IAollx ds 

< Cg(O)t == Ctp'(O), 

lluz\lx < [ \IE(t- s)A1IIx ds::::: C [ IIA1IIx ds 

< CV(O)g(O)t = C2 t; p''(O), 

proving by induction that 

cn+l 

llu (t) II < tn+lp(n+l) (0)
n+1 x _ (n + 1)! · 

Therefore, the Adomian series in X is majorant by the convergent power series for 

p(t) ==a- Ja2 - 2abCt for any t E [0, T] forT< 2: 0 , in full correspondence with the 

proof of Theorem 1.3.4. D 
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3.2 Numerical examples 

Consider the nonlinear Schrodinger equation in the form 

iut = -Uxx- 3(sech(x))2u + lul2 
u 

(3.10)
{ u(x, 0) == f(x) 

We shall consider (3.10) on the interval x E [-L, L] subject to periodic boundary 

conditions. 

To find u 0 , we approximate numerically the solution of equation (3.4). Using 

trigonometric approximation [23] on the symmetric interval [-L, L], and periodic con

tinuation to the interval (0, 2L], the function f(x) is interpolated at the discrete grid 

{xk}~:~ E [0, 2L], by the trigonometric sum 

n-1 
1 '"" 27Tjikfk == - L..J Cje_n_, k=O,l, ... ,n-1, 
n.

J=D 

where n is even, the grid points are given by 

2Lk 
Xk == -- k = 0, 1, ... , n- 1, 

n 

and the continuation of f(x) from [-L, 0] to [L, 2L] is defined by 

f(2L- x) == f( -x), Vx E [0, L]. 

The discrete Fourier transform is defined by 

j==O,l, ... ,n-1. 

where c0 and C!! are real, and 
2 

C_j = Cn-j, j = 0, 1, ... , ~-
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The function u(x, t) can be approxmated at any time instances {tm}~=O on the interval 
n-1 

(0, T] by applying the inverse discrete Fourier transform to { e-itm€J Cj } . , where 
J=O 

Trj j _.:..._ 0, 1, ... , ~ - 1L' 
-1r(n-j) . n 1 

L J=2, .....,n-

Example 3.1 

Consider the nonlinear Schrodinger equation (3.10) with f(x) = sech(x). The 

exact solution of the initial-value problem (3.10) is Uexact = eitsech(x). 

First, we compute the Adomian polynomials for N(u) = lul2 u using the explicit 

formula 
k k-i 

Ak = LLuiujuk-i-j· 
i=O j=O 

Integrating equation (3.10), we obtain the recursive formula for the ADM in the form: 

Un+1(x, t) = 3i l E(t- s)(sech(x))2un(x, s)ds- i l E(t- s)An(u0 , .... , un)ds. 

for n 2:: 0 and u0 = E(t)f, where E(t) = eitL and f = sech(x). 

To express integrals on [0, T] numerically, we use a discrete grid { tm} ~=O and the 

trapezoidal rule similarly to the algorithm in Section 2.1. 

Figure 3.1 shows the first two approximations of the ADM. The approximation u0 

decays in time, and the approximation u0 + u1 grows gradually in time. 

Figure 3.2 (left) compares absolute errors En of the ADM for n = 0, 1, ... , 10, where 

En(T) = sup ( sup IUn- Uexactl) , 
tE[O,T) xE[-L,L] 

and Un == uo+u1 + ...+un. We note that the errors En decrease with increasing n for any 

fixed t. Figure 3.2 (right) shows the approximation U10 that remains nearly constant 

in amplitude as timet evolves, similarly to the exact solution Uexact == eitsech(x). 
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t Eo Es E10 

0.2 0.3606 0.001 0.0002 

0.4 0.6306 0.004 0.0007 

0.6 0.8413 0.0148 0.0025 

0.8 1.0113 0.0388 0.0065 

1 1.1501 0.0812 0.0137 

Table 3.1: Comparison of absolute errors between U0 , Us, and U10 

Table 3.1 shows the absolute errors En(T) versus T for n == 0, 5, 10. This table 

illustrates that the errors are smaller for smaller values ofT and larger values of n. 

Example 3.2 

Consider the same nonlinear Schrodinger equation (3.10) but with initial condi

tion f(x) == sech2(x). In this case, we can't find the exact solution but we can still 

approximate solutions numerically using the same MATLAB code as in Example 3.1. 

Figure 3.3 shows the numerical approximations U0 , Us, U10 and U20 on a grid for 

X E [-10, 10] and t E [0, 2]. We can see that Uo is decaying in time, Us and ulO increase 

in time, while U20 is the closest approximation to the actual solution, which describes 

a transition of the initial data to the soliton solutions of the NLS equation (3.10) and 

periodic oscillations of solitary waves. Increase in amplitudes of the approximations Us 

and U10 and visible oscillations in the approximation U20 near the end of computational 

interval at t == 2 can be related to the divergence of the Adomian series for large time 

instances. 
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X -10 0 

Figure 3.1: The approximations luol (left) and luo + u1 1(right), for -10 ~ x ~ 10 and 

O~t~l. 
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Figure 3.2: Comparison of absolute errors En for the ADM with n = 0, 1, ... , 10 (left) 

and the surface IU10 1 (right) for -10 ~ x ~ 10 and 0 ~ t ~ 1. 
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Figure 3.3: The approximations iuoi (top left), IU5 I (top right), IU10 1 (bottom left) and 

IU2ol (bottom right) for -10::; x::; 10,0::; t::; 2. 
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Appendix: Numerical codes 


Appendix 1 Example 2.1 

clear all 


close all 


y(1)=0; x(1)=1; h=0.01; 


t=O:h:2; k=length(t)-1; 


for n=1:k; 


m1=y(n); 

n1=((-3./(cosh(t(n))).~2)+1).*x(n)+(x(n)).~3; 

m2=y(n)+n1.*h./2; 

n2=((-3./(cosh(t(n)+h./2)).~2)+1).*(x(n)+m1.*h./2)+(x(n)+m1.*h./2).~3; 

m3=y(n)+n2.*h./2; 

n3=((-3./(cosh(t(n)+h./2)).~2)+1).*(x(n)+m2.*h./2)+(x(n)+m2.*h./2).~3; 

m4=y(n)+n3.*h; 

n4=((-3./(cosh(t(n)+h)).~2)+1).*(x(n)+m3.*h)+(x(n)+m3.*h).~3; 

x(n+1)=x(n)+h./6.*(m1+2.*m2+2.*m3+m4); 

y(n+1)=y(n)+h./6.*(n1+2.*n2+2.*n3+n4); 

end 

Exact= 1./cosh(t); 

E=abs(Exact-x); 
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plot(t,log10(E),'k.') 


hold on 


clear all 


h=0.01; s=O:h:2; d=30;n=length(s); 


y=zeros(n,d+1); y(:,1)=1;y(1,(2:d))=O;Y=zeros(n,d+1);x=zeros(n,d); 


for i=1:d; 


V=O; 

for 	k=1:i; 


Z=O; 


for j=1:i-k+1 


Z=Z+y(:,k).*y(:,j).*y(:,i-k-j+2); 


end 


V=V+Z; 


end 


x(:,i)=(((-3./(cosh(s')).~2))+1) .*y(:,i)+V; 


for k1=2:n; 


Y(k1,i)=(h/2)*(x(1,i)+2.*sum(x(2:k1-1,i))+x(k1,i)); 

end 

for k2=2:n 

y(k2,i+1)=(h/2)*(Y(1,i)+2.*sum(Y(2:k2-1,i))+Y(k2,i)); 

end 

end 

Appendix 2 Example 2.2 

clear all 

y=0:0.1:2.5; 

x0=2.*exp(y)-y-1; 
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x1 = (1/8.*(569.*exp(2.*y)-157.*Y·*exp(2.*y)-64.*exp(3.*y)+16.*y.~3 

.*exp(2.*y)+48.*y.~2.*exp(2.*y)-48.*y.~2.*exp(y)-288.*y.*exp(y) 

-528.*exp(y)+2.*y.~3+12.*y.~2+27.*y+23)).*exp(-2.*y); 

x2=-(1/1658880.*(4729995+816480.*y.~4+9732150.*y 

+787553280.*y.~2.*exp(4.*y)+77760.*y.~5+12976492085.*exp(4.*y) 

+1725261120.*exp(2.*y)-14340188160.*exp(3.*y) 

+3596400.*y.~3+8242560.*y.~2-207042560.*exp(y)-159252480.*exp(5.*y) 

+1555277760.*y.*exp(2.*y)+111196800.*y.~3.*exp(2.*y) 

+522547200.*y.~2.*exp(2.*y)-166717440.*y.~2.*exp(y)-301854720.*y.*exp(y) 

+2488320.*y.~5.*exp(2.*y)-38568960.*y.~3.*exp(4.*y)+1990656.*y.~5.*exp(4.*y) 

-2276812800.*y.~2.*exp(3.*y)-8062156800.*y.*exp(3.*y)+9953280.*y.~4 

.*exp(4.*y)-39813120.*y.~4.*exp(3.*y) 


-3870720.*y.~4.*exp(y)-4533619530.*y.*exp(4.*y)+24883200.*y.~4.*exp(2.*y) 


-40734720.*y.~3.*exp(y)-477757440.*y.~3.*exp(3.*y))) .*exp(-4.*y); 


x3 = 4.252672720*10~(-15)*(2.333575263*10~15.*y+ 


9.170703360*10~14 .*y.~7.*exp(4.*y)+3.793465961*10~18.*y.A3.*(exp(4.*y)) 


+1.423641875*10~19.*y.~2.*(exp(4.*y)) 


-4.389396480*10~15 .*y.A6.*(exp(3.*y))-1.625330811*10~17.*y.~5 


.*(exp(5.*y))+1.199731405*10~19 

.*y.~2.*(exp(6.*y))+3.684701270*10~19.*y.*(exp(4.*y))+1.055504660*10~18 

.*y.~2.*(exp(2.*y))+1.620304560*10A15.*y.A6.*(exp(2.*y))-1.022886144*10A15 

.*y.~5.*(exp(6.*y))+8.062156800*10~13.*y.~7.*(exp(6.*y)) 

+1.102248000*10~14.*y.~7.*(exp(2.*y)) 

+8.381304324*10~14+1.597683724*10~18.*y.*(exp(2.*y)) 

+9.788233951*10~17.*(exp(2.*y))+3.240405000*10~13.*y.~6+1.957319792*10~15.* 

y.~3+2.836264942*10~15 .*y.~2+2.168519850*10A14 ·*Y-~5+8.301220200*10~14 

·*Y-~4+2.143260000*10~12 .*y.~7-1.336100936*10A18.* 

y.~4.*(exp(5.*y))-1.062010196*10.~19 ·*Y .*(exp(3.*y)) 
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+7.324217510*10-17 .*y.-4 

.*(exp(4.*y))+2.047087915*10-20.*(exp(6.*y))-2.393044347*10-20 

.*(exp(5.*y))-3.611846246*10-17.*(exp(7.*y))-8.315929843*10-18.*(exp(3.*y)) 

-6.928975872*10-16.*y.-5.*(exp(3.*y))+5.643509760*10-14.*y.-6.*(exp(6.*y)) 

-9.684262748*10-18 .*y.-3 .*(exp(5.*y))-9.029615616*10-15 

.*y.-6.*(exp(5.*y))-4.597762176*10-17.* y.-4 .*(exp(3.*y))-1.946971676*10-18 

.*y.-3 .*(exp(3.*y))+8.882355283*10-16 .*y.-5.*(exp(4.*y))+1.283898470*10-16 

.*y.-6.*(exp(4.*y))-5.820252641*10-18 .*y.-2.*(exp(3.*y))-1.306444298*10-18 

.*y.-3 .*(exp(6.*y))+7.963183022*10-16 .*y.-4.*(exp(2.*y))+4.234632786*10-19 

.*(exp(4.*y))-1.330406486*10-20 ·*Y·*(exp(5.*y))+3.715580413*10-17.*y.-3 

.*(exp(2.*y))+1.254036735*10-16 .*y.-5 .*(exp(2.*y))-4.137011597*10-19 

.*y.-2.*(exp(5.*y))+1.229226970*10-17.* 

y.-4.*(exp(6.*y))-5.323172094*10.-16.*(exp(y))-7.021322262*10.-19 

·*Y·*(exp(6.*y))-1.593115776*10.-14.*y.-6.*(exp(y)) 

-5.449132718*10.-16.*y.-3.*(exp(y)) 

-1.557727247*10.-16.*y.-4.*(exp(y))-2.410582084*10.-15.*y.-5.*(exp(y)) 

-1.087212350*10.-17.*y.-2.*(exp(y)) 

-1.172769145*10.-17.*y.*(exp(y))) .*(exp(-6.*y)); 

x=x0+x1+x2; 

xx0=2.*exp(y)-y-1; 

xx1=(1/8.*(569.*exp(2.*y)-157.*y.*exp(2.*y)-64.*exp(3.*y) 

+16.*y.-3.*exp(2.*y)+48.*y.-2.*exp(2.*y)-48.*y.-2.*exp(y) 

-288.*y.*exp(y)-528.*exp(y)+2.*y.-3+12.*y.-2 

+27.*y+23)).*exp(-2.*y); 

xx=xxO+xx1+xx2; 

xExact=exp(y); 

Rel=abs(x-xExact) ./(xExact) 

Re2=abs(xx-xExact)./(xExact) 

42 




plot(y,log10(Rel),'k:') 


hold on 


plot(y,log10(Re2),'r:') 


clear all 


close all 


h=0.01; s=O:h:2.1; d=B;n=length(s); 


y=zeros(n,d+1); y(:,1)=2*exp(s')-s'-1; 


y(1,(2:d+1))=y(1,1); 


Y=zeros(n,d+1); x=zeros(n,d); 


for i=l:d; 


x(:,i)=-(exp(-2*s')).*((y(:,i)).~3); 

for k1=2:n; 

Y(k1,i+1)=(h/2).*(x(1,i)+2*sum(x(2:k1-1,i))+x(k1,i)); 


end 


for k2=2:n 


y(k2,i+1)=y(k2,1)+(h/2)*(Y(1,i+1)+2.*sum(Y(2:k2-1,i))+Y(k2,i+1)); 

end 

end 

yExact=exp(s'); 

S=y(: ,d+l); 

El=abs(S-yExact); 

REAPI=El./yExact; 

clear all 

h=0.01; s=O:h:2.1; d=7;n=length(s); 

y=zeros(n,d+1); y(:,1)=2*exp(s')-s'-1; 

y(1,(2:d+1))=0; Y=zeros(n,d+1); 

Y(1,2:8)=0; Y(:,1)=2*exp(s')-1; 
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x=zeros(n,d); 

for 	i=1:d; 

V=O; 

for k=1:i; 

Z=O; 


for j=1:i-k+1 


Z=Z+y(:,k).*y(: ,j).*y(: ,i-k-j+2); 


end 


V=V+Z; 


end 


x(:,i)=-(exp(-2*s')).*V; 


for k1=2:n; 


Y(k1,i+1)=(h/2)*(x(1,i)+2.*sum(x(2:k1-1,i))+x(k1,i)); 

end 

for k2=2:n 

y(k2,i+1)=(h/2)*(Y(1,i+1)+2.*sum(Y(2:k2-1,i+1))+Y(k2,i+1)); 

end 

end 

yExact=exp(s'); 

Appendix 3 Example 3.1 

clear all 


close all 


a = 10; N = 400; m=N/2; d=11; 


dx = 2*a/N;h=0.005; 


t=O:h:1; M=length(t); x =-a dx a-dx; 


j=-m:l:m-1; xi=(pi/a)*j; 
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u=zeros(length(t),length(x),d); 

g = sech(x); 

FF =[g(m+1:N),g(1:m)] 

C=fft(FF); 

c=[C(m+1:N),C(1:m)]; 

for 	s=1:M 

uhat = exp(-i.*t(s).*(xi).~2 ).*c; 

uuhat=[uhat(m+1:N),uhat(1:m)]; 

uu =ifft(uuhat); 

u(s,:,1)= [uu(m+1:N),uu(1:m)]; 

end 

for m1=1:M; 

for m2=1:N; 

V(m2)=3.*i.*(sech(x(m2)))~2*u(m1,m2,1)-i*(abs(u(m1,m2,1))).~2*(u(m1,m2,1: 

end 

FF =[V(m+1:N),V(1:m)] 

C=fft(FF); 

S(m1,:)=[C(m+1:N),C(1:m)]; 

end 

u(1,:,2)=zeros(1,N); 

for m3=2:M 

for m4=1:m3 


Vhat = exp(-i.*(t(m3)-t(m4)).*(xi).A2 ).* S(m4,:); 


VVhat=[Vhat(m+1:N),Vhat(1:m)]; 


VV =ifft(VVhat); 


V1(m4,:)=[VV(m+1:N), VV(1:m)]; 


end 
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http:exp(-i.*(t(m3)-t(m4)).*(xi).A2


u(m3, :,2)=(h/2)*(V1(1,:)+2*sum(V1(2:m3-1,:))+V1(m3,:)); 

end 

figure(!) 

[X,T] = meshgrid(x,t(11:end)); 

xlabel('x'); ylabel('t'); zlabel('u'); 

mesh(T,X,abs(u(11:end,:,1))); 

U2=u(:,:,1)+u(:,:,2); 

figure(2) 

mesh(T,X,abs(U2(11:end,:))); 

figure (3) 

Uex=exp(i*t')*sech(x); 

E1=max(abs(Uex'-u(:,:,1)')); 

plot(t(21:end),log10(E1(21:end))); 

hold on 

E2=max(abs(Uex'-U2')); 

plot(t(21:end),log10(E2(21:end)),'r:'); 

hold on 

for 	e=2:d-1; 

for m1=1:M; 

for 	m2=1:N; 


W=O; 


for f=1:e; 


Z=O; 


for q=1:e-f+1 

Z=Z+(conj(u(m1,m2,q))).*u(m1,m2,f).*u(m1,m2,e-f-q+2); 

end 
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W=W+Z; 

end 

V(m2)=3.*i.*(sech(x(m2)))-2.*u(m1,m2,e)-i.*W; 

end 

FF =[V(m+1:N),V(1:m)] 


C=fft(FF); 


S(ml,:)=[C(m+l:N),C(l:m)]; 


end 

for 	m3=2:M 

for m4=1:m3 

Vhat = exp(-i.*(t(m3)-t(m4)).*(xi).-2 ).* S(m4,:); 

VVhat=[Vhat(m+l:N),Vhat(l:m)]; 

VV =ifft(VVhat); 

V1(m4,:)=[VV(m+1:N), VV(l:m)]; 

end 

u(m3,:,e+1)=(h/2)*(V1(1, :)+2*sum(V1(2:m3-1,:))+Vl(m3,:)); 

end 

end 
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