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Abstract 

Identifying design pattern instances within an existing software system 

can support understanding and reuse of the system functionality. Moreover, 

incorporating behavioral features through task scenario into the design pattern 

recovery would enhance both the scalability of the process and the usefulness 

of the design pattern instances. In this context, we present a novel method for 

recovering design pattern instances from the implementation of system behav­

ioral features through a semi-automatic and multi-phase reverse engineering 

process. 

The proposed method consists of a feature-oriented dynamic analysis and 

a two-phase design pattern detection process. The feature-oriented dynamic 

analysis works on the software system behavioral features' run-time informa­

tion and produces a mapping between features and their realization at class 

level. In the two-phase design pattern detection process, we employ an approx­

imate matching and a structural matching to detect the instances of the target 

design pattern described in our proposed Pattern Description Language (PDL), 

which is an XML-based design pattern description language. The correspon­

dence between system features and the identified design pattern instances can 

facilitate the construction of more reusable and configurable software compo­

nents. Our target application domain is an evolutionary development of soft­

ware product line which emphasizes on reusing software artifacts to construct a 

reference architecture for several similar products. We have implemented a pro­

totype toolkit and conducted experimentations on three versions of JHotDraw 

systems to evaluate our approach. 
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Chapter 1 

Introduction 

The role and function of software systems in modern industrial organizations are 

becoming more and more vital. In order to sustain their competitive position 

in industry, these organizations need customizable software systems with high 

quality, high reusability and short time-to-market. 

Software product line is a solution to help these organizations to fulfill 

their goals. A software product line is a set of software-intensive systems that 

share a common, managed set of features satisfying the specific needs of a par­

ticular market segment or mission [15]. This set of software-intensive systems 

are developed based on a reference architecture, which consists of common 

and variable parts. The variable parts can be modified to satisfy the various 

needs from the market which can improve the quality and efficiency of software 

development. 

Typically, an evolutionary development of a software product line starts 

from reverse-engineering a number of similar existing systems. The reverse en­

gineering activities are conducted to identify the important behavioral features 

which have a high reuse potential and to locate their corresponding software 
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artifacts which can be reused in the software product line [12]. In the con­

text of this thesis, a feature is an observable unit of software system behavior 

that describes a single functionality in the software system. For example, in a 

graphic drawing tool, JHotDraw [3], the operations "draw a rectangle", "move 

a rectangle" and "edit a rectangle" are three different features. 

Design pattern recovery is one of the reverse engineering activities to sup­

port the construction of the software product line. Design patterns represent 

a common solution to a recurring design problem in object-oriented software 

systems [20]. Consequently, knowing the applied design patterns can enable 

us to understand the software system implementation at the design level and 

provide the ground for further improvement [23]. Moreover, it can help us to 

decide whether the software artifacts can be reused under the new requirement 

of the software product line. Therefore, identifying the design patterns in­

stances applied in the existing systems can help both comprehension and reuse 

of the existing systems during the software product line construction process. 

This thesis aims to present a novel reverse engineering approach which com­

bines feature analysis with design pattern recovery to support an evolutionary 

development of a software product line. 

1.1 Problem Description 

Over the last decade, software product lines have proven to be one of the 

most promising software development paradigms. Software product line aims 

at designing and implementing a family of products sharing some common 

core features. By providing a reference architecture for the development of 

similar products, software product line can improve the efficiency of software 

2 
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development to satisfy the specific needs of the market. 

A prerequisite for an evolutionary development of a software product line 

is understanding the key functionalities of the existing systems using reverse 

engineering techniques. Design patterns represent a high level of abstraction in 

00 design. Therefore, identifying the applied design pattern instances within 

the implementation of the existing systems can help with the comprehension 

of the adopted solutions for the systems. Furthermore, incorporating the sys­

tem behavioral features into the design pattern recovery process not only en­

hance the scalability and the objectiveness of the process, but also improve the 

reusability of software artifacts during the software product line construction. 

Based on the above discussion, we define the problem of this thesis as: 

devising a method and the supporting tools for recovering the in­

stances of the design patterns which are represented by a high level 

pattern description method, from the implementation of software 

system behavioral features. 

1.2 Proposed Solution 

In this thesis, we propose a novel reverse engineering framework which com­

bines feature-oriented dynamic analysis with a two-phase design pattern detec­

tion process to identify the instances of design patterns for software behavioral 

features. 

1.2.1 Proposed Framework for Feature-Oriented Design 
Pattern Detection Approach 

3 
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Figure 1.1 illustrates the framework of the proposed feature-oriented de­

sign pattern detection approach. The framework consists of two parts: feature­

oriented dynamic analysis and two-phase design pattern detection process. We 

will give a brief description for these two parts in the remaining of this section. 

Feature-oriented dynamic analysis In the feature-oriented dynamic anal­

ysis part, initially we elicit a group of key features of the subject system 

through investigating domain knowledge and available software documen­

tation. As we mentioned above, a feature is an abstract description of 

an external system behavior. In order to perform dynamic analysis for a 

feature, we need to provide the system with usage scenarios to trigger the 

feature. In this context, a scenario represents the invocation of one single 

feature or a set of features. In a further step, for each feature we generate 

a feature-specific scenario set consisting of a set of scenarios, where each 

scenario invokes the subject feature. Then we execute each scenario on 

the subject system in profile mode and obtain the corresponding execution 

trace in the form of entry/exit listings of object invocations. For each fea­

ture, we store all the execution traces into an execution trace repository. 

In the following step, for each feature, we apply a data mining operation 

sequential pattern mining [36] on the execution traces contained in its ex­

ecution trace repository to extract the high-frequency patterns of classes, 

namely execution patterns. Next, we analyze the extracted execution pat­

terns using concept analysis [13], a mathematical technique to investigate 

binary relations. The concept lattice generated by the concept analysis 

allows us to collect the corresponding classes that exclusively contribute 

in implementing each feature, namely feature-specific classes. Thus, we 

5 
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obtain a mapping between features and their feature-specific classes as 

the result of the feature-oriented dynamic analysis. 

A two-phase design pattern detection process In this process, given a 

repository of target design patterns represented by the proposed Pattern 

Description Language (PDL) and the extracted system structural infor­

mation, we perform the two-phase design pattern detection process to 

identify all the instances of the target design patterns. 

The two-phase design pattern detection process consists of approximate 

matching and structural matching. 

I) approximate matching identifies the design pattern instances of the 

given target design pattern at a coarse-grained level. As we mentioned 

above, each target design pattern in the pattern repository is represented 

in PDL. In the PDL representation, we specify a main-seed class which is 

a center-role class in the target design pattern. Moreover, we name those 

classes directly related to the main-seed class as depth1-classes. Those 

classes which are not directly related to the main-seed class are denoted 

as depth2-classes. We will give the formal definitions of main-seed class, 

depthl-class and depth2-class in Chapter 3. By applying an approximate 

similarity function to all the source-classes in the search space, we collect 

the appropriate candidates for the main-seed class. For each candidate 

of the main-seed class, we grow it by adding all the related source-classes 

within two depths to generate a source-class cluster which contains one 

or more candidate design pattern instances. 

II) structural matching receives the list of source-class cluster obtained 

6 



M.A.Sc. Thesis- Lei Hu McMaster-Computing and Software 

from the approximate matching and searches each source-class cluster 

to find all the structurally matched design instances of the given tar­

get design pattern. The structural matching is mainly composed of two 

steps: Depth 1M atching and Depth2M atching, which are used to find 

the candidate source-classes for the depthl-classes and depth2-classes, 

respectively. 

The detailed description of these two parts of the proposed framework 

will be discussed in Chapters 4 and 5. 

1.3 Thesis Contribution 

This thesis presents a methodo which incorporates feature analysis into design 

pattern recovery to recover design pattern instances from the implementation 

of system behavioral features. The approach proposed in this thesis contributes 

the followings: 

• proposing a novel framework that incorporates feature-oriented dynamic 

analysis of a software system with static and template-based design pat­

tern detection process to identify the design pattern instances in the soft­

ware feature's implementations; 

• presenting a two-phase design pattern detection process, where an ap­

proximate matching operation generates a reduced search space for a 

structural matching operation, thus to reduce the complexity of the de­

sign pattern detection process; 

• providing a new design pattern representation, PDL (Pattern Description 

Language), which enables users to describe the structural information 

7 
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of design patterns efficiently and conveniently, even to define their own 

patterns (user-specified patterns) other than those design patterns in [20]; 

• enhancing the previous work [33] on mapping software behavior features 

to source code, including extending the target systems to object-oriented 

systems and improving the accuracy of the obtained running information 

by using Eclipse Test and Performance Tools Platform (TPTP) [4] as our 

profiling tool. 

1.4 Thesis Overview 

The remaining Chapters of this thesis are organized as follows: 

Chapter 2: summarizes the related work in the area of dynamic analysis 

and design pattern detection. 

Chapter 3: presents the definition of relevant terminology that we use 

throughout this thesis. 

Chapter 4: describes the feature-oriented dynamic analysis for feature 

implementation location. 

Chapter 5: gives a detailed description of the two-phase design pattern 

detection process. 

Chapter 6: discusses the experimental results of the applying the proposed 

approach to three versions of JHotDraw systems. 

Chapter 7: draws a conclusion for the whole thesis and gives the future 

work. 

8 



Chapter 2 

Related Work 

Design Patterns are descriptions of communicating classes and objects that 

provide a common solution to a general and recurring software design problem 

in a particular context [20]. Since design patterns were proposed by Gamma 

et al. in 1993, they have been widely applied by software engineers in object­

oriented software development and proved to be a useful technique of software 

engineering in the following aspects: 

• enhancing software artifacts reuse 

• helping understand adopted solution of existing software systems 

• providing a communication platform between software developers 

• facilitating software documentation 

According to the taxonomy proposed in [20], design patterns can be clas­

sified into the following three categories according to their purposes. 

• Structural design pattern 

9 
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This kind of design patterns mainly deal with the composition of the pat­

tern classes. Through defining class hierarchies and different inter-class 

relations, structural design patterns compose the pattern classes to form 

larger structures with new functionality. In structural design patterns 

most features are described with the declarations of the operations and 

attributes. 

• Behavioral design pattern 

Behavioral design patterns characterize the ways in which classes or ob­

jects interact and distribute responsibility [20]. They are concerned with 

not just patterns of objects or classes but also the patterns of communica­

tion between them, which can help us define the communication between 

objects and how the flow is controlled in a program. 

• Creational design pattern 

The creational design patterns focus on object creation mechanisms. In 

some particular context, the basic form of object creation could result in 

design problems or added complexity to the design. Creational design 

patterns solve this problem by controlling the type of the object and its 

multiplicity to create objects in a manner suitable to the situation. 

Table 2.1 shows classification of the 23 Design patterns presented in [20] 

based on their purposes. 

2.1 Design Pattern Detection 

In this section we discuss some related works that have been proposed to address 

the problem of design pattern detection. Based on the characteristic of these 

10 
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Structural Behavioral Creational 
Adapter Interpreter Abstract Factory 
Bridge Template Method Builder 

Composite Chain of Responsibility Factory Method 
Decorator Command Prototype 

Facade Iter a tor Singleton 
Proxy Mediator 

Memento 
Flyweight 
Observer 

State 
Strategy 
Visitor 

Table 2.1: Design Patterns Classification by Purpose [20]. 

techniques we can classify these different approaches into following three major 

categories. 

Design pattern detection based on class structure This kind of design 

pattern detection technique is performed to identify the design pattern 

instances which have the same pattern class structures with the target de­

sign patterns. There are several proposed approaches in this category:[ll, 

29, 37, 31, 45, 27, 14, 44]. 

Kramer et al. [29] proposed the Pat system, which can detect the in­

stances of structural design patterns from C++ source code. By using 

an object-oriented case tool, Paradigm Plus, Pat extracts the static in­

formation from the C++ head files and converts it into PROLOG facts. 

The extracted information includes class names, attribute names, method 

11 
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names, inheritance, association and aggregation relations. On the other 

hand, design patterns are defined by using the PROLOG rules. The pat­

tern detection process is accomplished by applying the PROLOG queries. 

However, due to the limitation of the extractor provided by Paradigm 

Plus, some structural information is missed, such as the category of class 

(abstract or concrete) and delegation. As a consequence, the precision of 

the Pat system is not satisfied. Comparing with the Pat system which is 

only focused on the static analysis, our proposed approach combines dy­

namic analysis with static analysis, thus achieves a more accurate result. 

In [37], Nija Shi et al. proposed a new, fully automated approach to 

discover design patterns from Java source code. They focus on detecting 

the structural and behavior-driven patterns using only static program 

analysis. A structural design pattern can be identified by the inter-class 

relationships which are obtained by parsing the source code. To detect 

a behavior-driven design pattern, first they apply inter-class analysis to 

obtain the candidate pattern set which conforms to the structural aspects 

of the target pattern. The resulting candidate set is taken as the input for 

the following behavioral analysis. To address the problem of behavioral 

aspects of detecting design pattern process, the authors use data-flow 

analysis on Abstract Syntax Tree (AST) in terms of basic blocks. They 

do not analyze the whole AST of the method body. They generate a 

control-flow graph (CFG) for the method body by linking together the 

basic blocks based on execution flow. Then using the static analysis on 

the CFG, they can verify the behavioral aspects of the candidate pattern 

is consistent with the behavior of the target pattern. They also present a 

12 
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tool, PINOT (Pattern INference and recOvery Tool), which implements 

this new approach. Comparing with our presented toolkit, PINOT hard­

codes all design pattern detection algorithms, therefore it can not allow 

user to define their desired pattern. 

A similar approach was presented in [11], the authors described a method 

based on a multi-stage recovering strategy using Design Pattern Markup 

Language (DPML) and Columbus [32] to detect design patterns from 

C++ source code. First, an internal representation, Abstract Semantic 

Graph (ASG) is extracted from the C++ source code using the Columbus 

system. Next, pattern descriptions of the target patterns are loaded in 

a form of Design Pattern Markup Language (DPML). Finally, the multi­

stage recovering process match source classes with pattern classes and 

check whether they are related in a way which is described in DPML. The 

main advantage of this work is that it provides design pattern instance 

detection using a user-friendly language for design pattern description. 

However, because of the language limitation of Columbus, this method 

can only be applied for the C++ source code. Similar with our pro­

posed Pattern Description Language (PDL), DPML also provides an easy 

way for the users to define their own patterns to suit their needs. How­

ever, the proposed PDL classifies the pattern-class into main-seed class, 

depthl-class, seed-depthl-class and depth2-class to efficiently describe the 

structure of a design pattern. 

In [31] Lucia et al. proposed a two phase approach to the recovery of struc­

tural design pattern. In the first phase, a coarse-grained analysis, which 

was proposed in the previous work [16], was performed to reduce the num-

13 
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ber of the candidate patterns by analyzing the class diagram structure. 

In the second phase a fine-grained source code analyze was used to check 

whether the identified the candidate patterns are real patterns by verify­

ing the inter-class relations between the classes of the candidate patterns, 

which can eliminate the most of the false positive pattern instances. 

Design pattern detection based on metrics In this type of approaches, 

software metrics are used to characterize pattern classes. Typical tech­

niques include [7], [23] and [28]. 

In [7] Antoniol et al. presented an automatic and conservative multi-stage 

reduction approach, which uses software metrics to reduce the search 

space and then utilizes the structural information between classes to per­

form the extract structural matching. A target design pattern is rep­

resented as tuple of classes and relations among these classes. By or­

derly applying class level metrics constraints, shortest path constraints 

and structural constraints on the candidate sets, this approach avoid 

the combinatorial explosion in checking all possible class combinations 

while determining pattern constituents' candidate sets, which reduces the 

search space greatly. For the intent of language independence, by using 

AOL extractor, source code and design are converted to an intermediate 

representation, called Abstract Object Language (AOL). Then the AOL 

software artifacts are parsed to get the Abstract Syntax Tree (AST) from 

which software metrics and structural information can be extracted. By 

orderly applying class level metrics constraints, shortest path constraints 

and structural constraints on AST, instances of design patterns are iden­

tified. 

14 
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Yann-Gael et al. [23] proposed a technique, named fingerprinting, for 

detecting design patterns from source codes. To reduce the search space, 

they use software metrics (such as size, cohesion, and coupling) and a 

machine learning algorithm to fingerprint the role of each class partic­

ipating in the detected design pattern. In other words, they use a set 

of metric values to characterize the classes playing in a given role in the 

design pattern. In the following phase, actual pattern instance are found 

with structural matching. The efficiency of such an algorithm depends 

strongly on the learning samples that compose the repository of design 

motif roles. 

Comparing with above two approaches based on software metrics, we 

use a set of attribute values rather than to fingerprint one class but to 

perform an approximate matching to identify a candidate pattern (a set 

of classes) . 

Design pattern detection based on matrices This kind of design pattern 

detection approaches store the system's inter-class relations into matrices, 

similarly, the structural information of target patterns are also store into 

matrices. Thus, the pattern matching process is accomplished by matrices 

matching. 

Nikolaos et al. [43] presented an automatic approach which use a sim­

ilarity score algorithm to detect design patterns. Different structural 

inter-class relations are extracted and stored into corresponding matri­

ces. Similarly, the structural information of target design patterns are 

also represented by matrices. The detection of design patterns is accom-

15 
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plished by calculating the similarity score between the matrices of system 

and those of target design patterns. They present a tool and conduct ex­

periments on three Java open source systems: JHotDraw 5.1, JRefactory 

2.6.24 and JUnit 3.7. 

The authors of [17] also proposed a novel approach based on matrix to 

detect design patterns from source code. The inter-class relations is rep­

resented in a matrix and the value of each cell represents the different 

relations among the classes. The structure of each design pattern is also 

represented in matrix. The discovery of design patterns from source code 

becomes matching between the two matrices. In contrast to the approach 

in [43], they store all the inter-class relation information into a single ma­

trix using prime numbers. The authors developed a design pattern dis­

covery tool, DP-Miner, which implemented the novel approach and con­

ducted several experiments on the open-source systems, including JUnit, 

JEdit, JHotDraw, and Java.AWT. 

2.2 Concept Analysis 

Concept analysis [21] is a branch of lattice theory that allows us to identify 

meaningful groupings of objects that have common attributes. 

The sets of objects, attributes and binary relations between them are 

known as context, and the groupings based on the common attributes of the 

objects are named as concepts. Mathematically, concepts are maximal collec­

tions of objects sharing common attributes. 

The mathematical concept analysis was first introduced by Birkhoff in 

1940 [13]. In recent years, concept lattice analysis has been introduced to the 
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field of reverse engineering. It is used to recover class hierarchies in [10, 40]. In 

[30, 38, 39] concept lattice analysis is employed to identify modules from legacy 

source code. In dynamic analysis it is used to derive a feature-component 

correspondence [19, 36]. Moreover, it also helps to detect instances of design 

patterns in [9, 42]. 

2.3 Dynamic Analysis 

In general, reverse engineering techniques can be categorized into (1) static 

analysis, i.e., by analyzing the source code, (2) dynamic analysis, i.e., by ex­

amining the programs behavior, or (3) a hybrid of both. 

Static information obtained by static analysis describes the structure of 

the software, while dynamic information describes software system run-time 

behavior. To fully understand existing software both static and dynamic infor­

mation need to be extracted [41]. 

In the context of reverse engineering of object-oriented systems, due to 

polymorphism and late-binding, static analysis is often inaccurate with regard 

to the actual behavior of the application [46]. Dynamic analysis, however, is 

able to obtain a real information of the program's run-time behavior. Therefore, 

dynamic analysis takes an important role in the field of object-oriented reverse 

engineering. 

In [47, 26, 25, 24], through analyzing the execution traces of the software 

systems, frequently occurring interaction patterns between classes i.e., behav­

ioral design models, are extracted, which can help the program comprehension 

process. 

Many other researchers use run-time execution traces to address the prob-
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lem of feature location, i.e., locating low-level system components that imple­

ment a specific software feature [19, 22, 18, 34, 8]. 

2.4 Software Product Line 

A Software product line is a set of software-intensive systems that share a 

common, managed set of features satisfying the specific needs of a particular 

market segment or mission [15]. The similar products are developed based on 

a reference architecture, which consists of common and variable parts. The 

variable parts can be modified to satisfy the various needs from the market 

which can improve the quality and efficiency of software development. 

Over the last decade, software product line has been proven to be one of 

the most promising software development paradigms. Nowadays many organi­

zations are investing in software product line for the following reason: Through 

designing and implementing a family of products sharing some common core 

features, software product line allows those organizations to improve the quality 

and efficiency of software development, accelerate the process of introduction of 

new products, reduce the complexity and cost of development and maintenance, 

and manage the product variations needed for markets. 

2.4.1 An Evolutionary Development Process of A Soft­
ware Product Line 

An evolutionary process of development of a software product line architecture 

is described in Figure 2.1. The evolutionary process of building a software 

product line starts from reverse-engineering the legacy software systems. In a 

further step, by analyzing and comparing the new requirements to the former 
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Figure 2.1: An Iterative and Evolutionary Development Process for a Software 
Product Line [15] . 

ones, the software product line requirements is determined. Finally, during the 

phases 4-6 the reference architecture of software product line architecture is 

designed and implemented. If there is a need for a new costumer requirement, 

the process goes to a new iteration. 
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Chapter 3 

Formal Definition of the 
Proposed Approach 

In this chapter, we present the definitions of relevant terminology that we use 

throughout this thesis to describe the feature-oriented dynamic analysis and 

the two-phase design pattern detection of our proposed framework. In Section 

3.1, the definitions of feature, scenario, feature-specific scenario set and feature­

specific class are presented. In Section 3.2, we introduce Pattern Description 

Language (PDL), a novel representation of design pattern. Finally, in Section 

3.3, we present a brief description of the two-phase design pattern detection 

process using the defined notations. A thorough formal specification of the 

process is out of scope of this thesis. 

3.1 Terminology for Feature-Oriented Dynamic 
Analysis 

In this section, we present the definitions of the relevant terms that we use 

within the context of the feature-oriented dynamic analysis presented in our 

proposed approach. 
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Feature: A feature ¢, is a single functionality of the subject software system. 

For example, in a graphic drawing software system, the operation to draw 

a rectangle can be considered as a feature. The set of all the features in 

the software system is denoted as <I>. 

Scenario: A scenario represents a sequence of features of the subject software 

system. Formally, a scenario s is a sequence of features ¢ E <I>, hence 

s = [¢1, ¢2 , ... , ¢nl· For instance, a scenario for drawing a rectangle and 

moving the rectangle includes two features, "drawing a rectangle" and 

"moving a figure" . 

Feature-specific scenario set: A feature-specific scenario set Ss"' of a fea­

ture ¢ is a set of scenarios S¢, each of which contains the specific feature 

¢. As an example, for the feature "move" in a graphic drawing software 

system, the following two scenarios form a feature-specific scenario set. 

1 start, draw a rectangle, move, exit 

2 start, draw a ellipse, move, exit 

Execution trace: Let cs be the set of all classes in the software system, for a 

scenarios, the execution trace T 8 of the scenarios is a sequence of classes 

in cs invoked for executing this scenario. 

Execution trace repository: An execution trace repository Rs"' of a feature 

¢ is a set of execution traces obtained by executing each scenario s in the 

feature-specific scenario set Ss"'. 

Execution pattern: For a feature ¢, an execution pattern ep¢ is a contiguous 
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sequence of classes which is supported by at least MinSupport number 

of execution traces in the execution trace repository Rs<t>. An execution 

pattern ep<P is supported by an execution trace t iff ep<P is a subsequence 

oft. 

Execution pattern repository: An execution pattern repository Rep<!> of a 

feature</> is all the execution patterns obtained based on the definition of 

execution pattern above. 

Feature-specific class: For a feature </>, a feature-specific class C¢ is a class 

existing in the execution trace repository Rs<t> which exclusively corre­

sponds to the subject feature </> within the feature-specific scenario set 

Ss<t>. 

3.2 PDL Representation of Design Pattern 

Design pattern describes a common solution to a general and recurring software 

design problem in terms of classes and their communications. Therefore a 

generic representation of a design pattern p consists of a set of pattern-classes 

and inter-class relations. A pattern-class is specified as a participating class 

in the design pattern and an inter-class relation is a relation between pattern­

classes (e.g. inheritance, association, etc.). Formally, a design pattern p can be 

represented as a tuple< C, 'R >,where Cis a set of pattern-classes {c1, ... , ck} 

and 'R is a set of inter-class relations among these pattern-classes. 

Considering a generic representation < C, 'R > of a design pattern p as a 

graph, where a vertex represents a pattern-class inC and an edge corresponds 

to an inter-class relation in 'R, we give the following two definitions. 
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ShortestPath: For two pattern-classes ci and Cj in C, the shortest path from 

ci to Cj, denoted as ShortestPath(ci, ci), is the minimum number of inter­

class relations traversed to reach ci from ci, regardless of the type of the 

inter-class relations [7]. 

Degree: The Degree of a pattern-class ci inC, denoted as deg( ci), is the number 

of the direct inter-class relations between ci and all the other pattern­

classes in the design pattern p. 

To construct an efficient design pattern detection approach, we propose 

Pattern Description Language (PDL), an XML-based language, to describe the 

structure of a design pattern. The proposed PDL representation is based on the 

generic representation and provides an efficient and convenient way to describe 

structural aspect of a design pattern. It also allows users to modify pattern 

description to suit their needs or even to define their own patterns that they 

desire to discover. 

In the remainder of this section, we first introduce PDL representation, 

then discuss how to describe a design pattern using PDL. 

3.2.1 Pattern Description Language (PDL) 

Similar with the design pattern generic representation, a design pattern PDL 

representation consists of a set of pattern-classes and inter-class relations as 

well. Moreover, to efficiently describe the structure of a design pattern, we 

classify the pattern-class into main-seed class, depthl-class, seed-depthl-class 

and depth2-class. An inter-class relation is a relation between pattern-classes 

including: 
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• InheriLFrom 

• Inherited_By 

• in_Association 

• ouLAssociation 

• is_A bstract 

The starting point of the design pattern PDL representation is the main­

seed class, which is the central-role pattern-class in the design pattern. The idea 

of main-seed class comes from the previous work on a pattern-based software 

architecture recovery [35]. Before giving its definition, we first introduce some 

fundamental concepts used in the definition of the main-seed class. 

We observe that for each design pattern presented in [20], there exists at 

least one pattern-class which can reach any other pattern-classes in the design 

pattern within a shortest path value 2. We name this kind of pattern-class as 

potential main-seed class, whose formal definition is given below. 

Potential main-seed class: In a design patternp = (C, R), a potential main­

seed class, denoted as cpms, is a pattern-class cpms E C such that \;/Cj E 

C • ShortestPath( cpms, ci) ~ 2. cpms is referred to the set of all the 

potential main-seed classes in the design pattern p. 

Taking into account the breath-first strategy adopted by our proposed 

design pattern detection approach, we select the potential main-seed class with 

the maximal degree as the main-seed class for the design pattern p. This 

can help reduce the search space during the further two-phase design pattern 
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detection process. The formal definition of the main-seed class is presented 

below. 

Main-seed class: In a design pattern p = (C, R), a main-seed class, denoted 

as ems, is a potential main-seed class ems E epms such that 

Vei E epms • deg(ei) ::; deg(ems). The set of main-seed class is denoted as 

ems. If there exist more than one main-seed classes in ems' we choose 

one of them randomly. 

Based on the definition of the main-seed class of the PDL representation, 

we give the definitions of depthl-class, seed-depthl-class and depth2-class as 

follows. 

Depthl-class: A depthl-class, denoted as edl, is a pattern-class in C which 

has a direct relation with the main-seed class ems. Formally, in a design 

pattern p = (C, R), a depthl-class is a pattern-class ed1 E C such that 

(edl, ems) E R V (ems, ed1) E R. The set of all the depthl-classes in the 

design pattern p is denoted as ed1. 

Depth2-class: A depth2-class, denoted as ed2
, is a pattern-class in C which 

is not related to the main-seed class directly. Formally, in a design pat­

tern p = (C, R),a depth2-classes is a pattern-class ed2 E C such that 

ShortestPath(ems, ed2) = 2. The set of all the depth2-classes in the de­

sign pattern p is denoted as ed2 . 

Seed-depthl-class: A seed-depthl-class denoted as esdl, is a depthl-class 

which is related to at least one depth2-class. 
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1 Depth 1-SuperC/ass 1 1 

.n 

1 Depth1-AssoCiass I ... 1 MainSeedCiass 1 

I I 
1 Depth2-SubCiass1 II Depth1-SubCiass1 1 1 Depth1-SubCiass21 

Figure 3.1: Class diagram of a target design pattern. 

3.2.2 Design Pattern Description in PDL 

In this section, we discuss how to describe a given design pattern with respect 

to the proposed PDL. 

We use a breadth-first strategy to describe all the inter-class relations 

existing in the design pattern. In the first depth ( depthl), starting with the 

main-seed class, we list all the involved inter-class relations of the main-seed 

class and the related depthl-classes in the item "Depthl" using the following 

syntax: 

<inter-class relation> <depthl-class>* 

In the second depth (depth2), we start with the seed-depthl classes, each 

of which is related to one or more depth2-classes. Similarly, we list the involved 

inter-class relations of the seed-depthl-class and the related depth2-classes in 
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1 Begin-PDL 
2 Pattern : TargetPattern 
3 Main-seed class : M ainSeedClass 
4 Depthl: 
5 Inherit_From : 
6 Depth1-SuperClass1 
7 lnherited_By : 
8 Depth1-SubClass1; 
9 Depth1-SubClass2 
10 in_Association : 
11 Depth1-AssoClass 
12 Depth2: 
13 Seed-Depthl: Depth1-AssoClass 
14 Inherited_By: 
15 Depth2-SubClass1 
16 AbstractClasses : 
17 Depth1-SuperClass1 
18 End-Pattern 
19 End-PDL 

Figure 3.2: PDL representation of the target pattern in Figure 3.1. 

item "Depth2" using the following syntax: 

<seed-depth1-class> <inter-class relation> <depth2-class>* 

In the item "AbstractClasses", we list all the abstract classes in the design 

pattern. 

Figure 3.2 illustrates the PDL description of a target pattern in Figure 

3.1. Line 2 indicates the name of the pattern. Each pattern in the pattern 

repository has a unique name. Line 3 specifies the main-seed class in the target 

pattern. Lines 4 to 11 describe the structural relations between main-seed class 

and all the depth1-classes. Lines 12 to 15 indicate the structural information 
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between the seed-depth1-class and the depth2-class in the pattern. Lines 16 to 

17 list the abstract classes. 

3.3 Modeling the Two-phase Design Pattern 
Detection Process 

In this section, we use the aforementioned definitions to model the proposed 

two-phase design pattern detection process. According to the proposed frame­

work presented in Chapter 1, the two-phase design pattern detection process 

consists of approximate matching and structural matching phases. The inputs 

of the process are a search space SP which consists of a set of source-classes 

and a target design pattern tp in PDL representation. 

• Approximate matching searches the eligible candidates within the 

search space SP for the main-seed class ems of the target design pattern 

tp, and returns a list of source-class clusters CL, each of which contains 

a candidate of the main-seed class c~~di· 

• Structural matching identifies the structurally matched design pattern 

instances within each source-class cluster cl E CL. It is composed of two 

steps: Depth1Matching and Depth2Matching. Depth1Matching receives 

a source-class cluster cl and collects the candidates for each depth1-class 

cd1 E Cd1 to generate a set of combinations of matched source-classes 

of all the depth1-classes, denoted as CMd1. Based on each combination 

cmd1 E CMd1 , Depth2Matching collects the candidates for each depth2-

class cd2 E Cd2 to generate a set of combinations of matched source­

classes of all the depth2-classes, denoted as C Md2
. Finally, we merge 
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the candidate of main-seed class c:~di' the input combination of depthl­

classes cmd1 and each combination cmd2 E C Md2 to obtain a complete 

identified design pattern instance . 
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Chapter 4 

Feature-Oriented Dynamic 
Analysis 

In the context of reverse engineering of object-oriented systems, due to poly­

morphism and late-binding, static analysis is often inaccurate with regard to 

the actual behavior of the application [46]. Dynamic analysis, however, is able 

to obtain real information on the software system's run-time behavior through 

analyzing its execution traces. Therefore, dynamic analysis takes an important 

role in the field of object-oriented reverse engineering. 

In this thesis, we propose a feature-oriented dynamic analysis approach 

to locate the implementation of key features in object-oriented systems, which 

is an enhancement of the previous work presented in [33, 34]. This previous 

work is limited to the software systems written in procedural language, while 

our proposed approach extends its target system to object-oriented systems. 

Moreover, we choose Eclipse Test and Performance Tools Platform (TPTP) [4] 

as our profiling tool which enables us to collect the software system's execution 

information more conveniently and accurately. 

The proposed feature-oriented dynamic analysis works on the run-time 
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execution traces of a set of subject features to locate the corresponding low-level 

system components that implement each feature. It consists of the following 

steps: 

• Feature-specific scenario set generation. 

• Execution traces generation. 

• Extracting execution patterns from the execution traces. 

• Execution pattern analysis 

The remainder of this chapter is organized as follows. In Section 4.1 we 

discuss the feature-specific scenario set generation. In Section 4.2 we present the 

process of execution traces generation. In Section 4.3 we discuss the execution 

pattern extraction. Finally we give a brief description for execution pattern 

analysis in Section 4.4. 

4.1 Feature-Specific Scenario Set Generation 

According to the definition in chapter 3, a feature is a unit of software behavior 

that describes a single functionality in the subject software system. Given a 

subject feature ¢, in order to locate its implementation classes, we first generate 

a feature-specific scenario set 88"' consisting of a set of scenarios S,p, each of 

which contains the subject feature ¢. 

As an example, for the feature "move" in JHotDraw [3], a graphic drawing 

software system, we select the following scenarios to create a feature-specific 

scenario set. 

1 start, draw a rectangle, move, exit 
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2 start, draw a ellipse, move, exit 

3 start, draw a polygon, move, exit 

4 start, draw a line, move, exit 

5 start, insert a image, move, exit 

McMaster-Computing and Software 

These 5 scenarios share the feature "move" which is an operation to move a 

figure in JHotDraw. 

The obtained feature-specific scenario set is taken as the input for the 

next step execution traces generation. 

4.2 Execution Traces Generation 

In this step, we use Eclipse Test and Performance Tools Platform (TPTP) to 

collect the execution traces generated by running the scenarios in the feature­

specific scenario set. TPTP is an open platform which provides the services 

such as application monitoring, profiling and tracing. It includes a profiler that 

uses the Java Virtual Machine Pro filer Interface ( JVMPI) to report applica­

tion events to the workbench. The examples of events include method entries, 

method exits, class loads and object allocations. 

In order to only collect our desired events, we can define an effective filter 

set to indicate the classes whose running information is to be collected. The 

content of the filter set is a collection of rules that are applied by the JVMPI 

agent from top to bottom (higher rules have a higher precedence over the rules 

below them) [4]. Each rule has the following syntax: 

<CLASS-NAME> <METHOD-NAME> <EXCLUDE I INCLUDE> 
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For example, to collect the execution traces of JHotDraw 5.1 system, we 

define a filter set which consists of the following two rules: 

1. CH.ifa.draw* * INCLUDE 

2. **EXCLUDE 

Rule 1 includes all classes with the prefix CH.ifa.draw and rule 2 excludes 

all other classes. Consequently, we are able to focus on the classes within 

JHotDraw 5.1 system and eliminate the library classes, e.g. Java system classes, 

from the execution traces. 

For a subject feature ¢, by running each scenario si within the feature­

specific scenario set Ssq, on the subject software system in a profiling mode, 

we obtain a corresponding execution trace ti of the scenario si in the form of 

entry/ exit listings of object invocations. We store all the execution traces into 

an execution trace repository, denoted as Rsq,. Figure 4.1 presents a part of the 

execution trace of a scenario. 

The large size of the execution traces is always a concern in dynamic anal­

ysis. Therefore, a preprocessing operation is applied to the execution traces to 

eliminate all the redundant object invocations caused by the program loops. 

The detailed description of the repetition elimination is presented in [33]. The 

trimmed execution traces are then fed into the next step, execution pattern 

extraction. 
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1 Enter CHiifaldrawlutill PaletteButton 
2 Enter CHiifaldrawlstandardiToolButton 
3 Exit CHiifaldrawlstandardiToolButton 
4 Enter CHiifaldrawlstandardiToolButton 
5 Enter CHiifaldrawlutill Palette! con 
6 Exit CHiifaldrawlutill Palette! con 
7 Enter CHI if a I draw I utilI P alettel con 
8 Exit CHiifaldrawlutill Palette! con 
9 Exit CHiifaldrawlstandardiToolButton 
10 Exit CHiifaldrawlutiliPaletteButton 
11 Enter CHI if a I draw I utilI P aletteButton 
12 Enter CHiifaldrawlstandardiToolButton 
13 Exit CHiifaldrawlstandardiToolButton 
14 Enter CHiifaldrawlstandardiToolButton 
15 Enter CHiifaldrawlutiliPalettelcon 
16 Exit C H lifal draw lutil I Palette! con 
17 Enter CHiifaldrawlutiliPalettelcon 
18 Exit CHiifaldrawlutiliPalettelcon 
19 Exit CHiifaldrawlstandardiToolButton 
20 Exit CHiifaldrawlutill PaletteButton 
21 Enter CHiifaldrawlutill PaletteButton 
22 Exit CHiifaldrawlutill PaletteButton 

Figure 4.1: A part of an execution trace collected by TPTP. 

4.3 Execution Pattern Extraction 

In this section, we briefly describe the process of extracting highly repeated 

execution patterns of a subject feature from its execution trace repository. It 

receives an execution trace repository of a feature and returns a set of corre­

sponding execution patterns for the feature. 

As we mentioned in Chapter 3, an execution pattern is defined as a con­

tiguous part in an execution trace that exists in certain number of execution 
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traces within the execution trace repository. Given a subject feature and the 

corresponding feature-specific scenario set, by applying a modified version of 

the sequential pattern mining algorithm [6] to the execution trace repository of 

the feature-specific scenario set, we obtain the execution patterns of the subject 

feature. 

The sequential pattern mining algorithm consists of two main procedures: 

candidate two-items pattern generation (Procedure cpGenerator) and pattern 

extension (Procedure DoExtend) [33]. The procedure cpGenerator takes the 

execution trace repository as input and computes all eligible two-items patterns. 

The procedure DoExtend iteratively increases the length of the patterns ob­

tained from Procedure cpGenerator to generate the eligible execution patterns. 

The detailed description of the algorithm is presented in [33]. 

This strategy generates the meaningful execution patterns for a subject 

feature, each of which consists of a set of classes implementing common func­

tionalities within the feature-specific scenario set of the feature. 

4.4 Execution Pattern Analysis 

As we discussed in the previous two sections, we first generate a feature-specific 

scenario set Ssq, consisting of a set of scenarios, each of which contains the 

subject feature rp. In a further step, by applying the aforementioned sequential 

pattern mining algorithm to the the execution trace repository Rsq, generated 

by running the scenarios in the feature-specific scenario set Ssq,, we obtain the 

execution patterns of the subject feature rp. However, since each scenario in 

the feature-specific scenario set Ssq, contains not only the subject feature rp but 

also some other features, such as software initialization / termination, mouse 
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tracking, etc., which are needed to compose each scenario in the feature-specific 

scenario set Ssq,· Therefore, the execution patterns extracted by the sequential 

pattern mining algorithm reflect both the implementation of the subject feature 

<P and the implementation of those common features [33]. In order to locate 

the implementation of the subject feature </>, we need to identify those classes 

which exclusively correspond to the subject feature </> within the feature-specific 

scenario set S Sq,, we call this kind of class feature-specific class. 

To address the above problem, we first examine a set of different features 

ci> in the subject software system, then extract the corresponding execution 

patterns for each of them. In a further step, we employ concept analysis to 

assign the corresponding feature-specific classes to each feature </> E ci>. 

In the remainder of this section, we first introduce concept analysis, then 

give a brief description of the execution pattern analysis using concept analysis. 

4.4.1 Concept Analysis 

Concept analysis is a mathematical technique that provides significant insights 

into a binary relation between objects and attributes to identify meaningful 

groupings of objects that have common attributes. 

Context A context C = (0, A, R), where 0 is a set of objects, A is a set of 

attributes and R is a binary relation between 0 and A. 

Common attributes For a set of objects 0 ~ 0, the set of common attributes 

e7 is defined as: 

e7(0) ={a E A I Vo E 0 • (o,a) E R}. 
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Common objects For a set of attributes A ~ A, the set of common objects 

T is defined as: 

T(A) = {o E 0 IVa E A • (o, a) E R}. 

Concept A concept is a maximal collection of objects that possess common 

attributes, i.e., it is a grouping of all the objects that share a common set 

of attributes. In formal, a concept c is defined as a pair < 0, A >, such 

that: 

A= cr(O) A 0 = T(A). 

0 is said to be the extent of the concept c and A is said to be the intent. 

Concept lattice Given two concepts eo= (00,A0 ) and c1 = (01,A1), c0 is 

a subconcept of c1 if 0 0 ~ 0 1 (or, equivalently A1 ~ A0 ). The relation 

subconcept forms a partial order over the set of all concepts in a given 

context C. Moreover, the set .C of all concepts in the context C and the 

partial order form a concept lattice [13]: 

.C(C) = {(0, A) E 2° x 2A I A= cr(O) A 0 = T(A)} 

A concept lattice can be represented as an acyclic directed graph where 

a node represents a concept and an edge represents a subconcept relation [13]. 

To get more information from the concept lattice, we label the graph node with 

an attribute a E A whose represented concept is the most general concept that 

has a in its intent. 
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Each node (concept) Ni in the labeled graph representation of the concept 

lattice owns the following characteristics [18]: 

• the contained objects of Ni are all the objects at and below Ni in the 

lattice. 

• the contained attributes of Ni are all the attributes at and above Ni in 

the lattice. 

The characteristics of the labeled concept lattice provide a significant 

insight into the structure of a relation between objects and attributes. Those 

attributes shared among most of the objects will appear in the upper region of 

the lattice, the nodes in the lower region of the lattice possess the attributes 

that are specific to the individual objects [33]. Therefore we can exploit this 

property to cluster the classes in the extracted execution patterns. 

4.4.2 Execution Pattern Analysis Using Concept Anal­
ysis 

In order to employ concept analysis to cluster the classes in the extracted 

execution patterns for a given group of features <I>, we define the context C = 

(0, A, R) as follows: 

• an object o E 0 is a subject feature cp E <1>, which is shared in the 

feature-specific scenario set Ss<t>. 

• an attribute a E A is a class c. 

• a pair ( cp,c) is in the binary relation R if class c participates in the exe­

cution patterns within Ss<t>· 
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The generated concept lattice by applying concept analysis to the defined 

context enables us to collect the feature-specific classes for each subject feature 

<P E <I>. Since omnipresent classes are executed through almost every task 

scenario of the software system, these classes exist in the intent of almost every 

concept of the lattice and consequently appear in the upper region of the lattice. 

On the contrary, the feature-specific classes specific to each feature exist in the 

lower region of the lattice [33]. 
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Chapter 5 

Design Pattern Detection 

Design pattern represents a high level of abstraction in object-oriented design. 

Thus, by retrieving its instances from software system, we are able to reveal 

the design decisions and adopted solutions of the system. Nevertheless, design 

pattern detection is not a trivial task, since we need to find all the possible 

design pattern instances whose structures are consistent with the target design 

pattern. Therefore, design pattern detection is a time-consuming, combinato­

rial problem with high complexity, easily resulting in combinatorial explosion 

[43]. To handle this issue, we present a novel and automated two-phase design 

pattern detection process which exploits the fact that there exists a main-seed 

class in each design pattern. As we discussed in Chapter 3, the main-seed class 

of a design pattern can reach any other pattern-classes within a shortest path 

value 2. Consequently, through finding the eligible candidates for the main-seed 

class, the system is partitioned into a group of source-class clusters, to which 

we apply the design pattern detection rather than to the entire system. This 

chapter is organized as follows. In Section 5.1 we give a brief introduction to 

system structural information extraction. An overview of the proposed two-
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phase design pattern detection process is presented in Section 5.2. In Section 

5.3 we discuss the process of approximate matching. A detailed description of 

structural matching is provided in Section 5.4. In Section 5.6 we use an example 

to illustrate the process of the proposed two-phase pattern detection approach. 

5.1 Pre-processing: Structural Information Ex­
traction 

Before we conduct the two-phase design pattern detection process, we need 

to obtain the structural information of the subject system, i.e., inter-class re­

lations. To accomplish this task, we employ a Java bytecode manipulation 

framework [1], which enables us perform a detailed analysis on the system's 

structure and extract the structural information we need in the further design 

pattern detection. The information retrieved includes inheritance, association 

and abstraction. We encode each kind of inter-class relation into an n x n 

matrix, where n is the number of the classes of the subject system and the 

columns and rows are all the classes in the system. Using matrices to represent 

the inter-class relations can facilitate us in the later approximate matching and 

structural matching. 

5.2 Overview of the Proposed Two-phase De­
sign Pattern Detection Process 

According to the proposed framework presented in Figure 5.1, the process of the 

two-phase design pattern detection process consists of approximate matching 

and structural matching phases. In the approximate matching phase, through 
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identifying the eligible candidates for the main-seed class of the target design 

pattern, we reduce the search space for a target design pattern to a list of 

source-class clusters, each of which contains a candidate of the main-seed class. 

In the structural matching phase, we identify the structurally matched design 

pattern instances within the list of source-class clusters, which are obtained 

from the approximate matching. The structural matching phase is composed of 

two steps: DepthlM atching and Depth2M atching, which are used to find the 

source-class candidates for the depthl-classes and depth2-classes, respectively. 

In Sections 5.3 and 5.4, we will give the detailed description of approximate 

matching and structural matching, respectively. 
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5.3 Approximate Matching 

One of the most important issues in design pattern detection is the sheer size 

of search space for a large software system [43]. As we mentioned in Chapter 

3, A design pattern p can be represented as a tuple < C, R >, where C is a 

set of pattern-classes { c1, ... , ck} and R is a set of inter-class relations among 

these pattern-classes. Given a subject system containing n source-classes and 

a target design pattern p consisting of k pattern-classes, a brute force approach 

to identify all the design pattern instances against the target design pattern 

p works in following steps. First it lists all the n(n- l)(n- 2) ... (n- k + 1) 

ordered combinations of the k pattern-classes within the n source-classes. Then 

it checks the validity of the set of inter-class relations R for each combination. 

Definitely, a combinational explosion would happen due to a great number of 

the source-classes within the subject system. 

To address the combinational explosion problem, an approximate match­

ing is proposed to find those source-class clusters containing potential candi­

date design pattern instances. First, through parsing the PDL (Pattern De­

scription Language) representation of the target design pattern, we can obtain 

the specified main-seed class and a set of attributes (attribute vector) which 

characterizes the structural aspects of the design pattern with respect to its 

main-seed class. Secondly, an approximate similarity function is applied on all 

the source-classes in the search space to collect the appropriate candidates for 

the main-seed class. Finally, for each source-class candidate of the main-seed 

class, we grow it to form a source-class cluster by adding all the related classes 

within two levels. In summary, instead of matching all the pattern-classes at a 

time, the approximate matching only identifies those eligible candidates for the 
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main-seed class. This can reduce the search space to a number of source-class 

clusters, each of which contains one or more potential instances of the target 

design pattern. 

5.3.1 Attribute Vector 

To characterize a participating class in a design pattern in a structural per­

spective, we can specify an attribute vector, where each element is the number 

of inter-class relations of a certain type with which this class is involved. 

The attribute vector includes the following items: 

• the number of Inherit_Frorn relation 

• the number of Inherited_By relation 

• the number of in_Association relation 

• the number of ouLAssociation relation 

• the number of is_Abstract relation (0 or 1) 1 

As an example shown in Figure 5.2, the main-seed class" M ainSeedClass" 

has one in_.Association relation, one I nheritYrom relation, and two I nherited_By 

relations, therefore the corresponding attribute vector Attr _Vec(M ainSeedClass) 

is [1, 2, 1, 0, 0]. 

1 If a class is abstract, the item value is 1, otherwise 0. 
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Depth 1-SuperC/ass 1 

MainSeedCiass 

Depth2-Su bC lass1 

Figure 5.2: Class diagram of a target pattern. 

5.3.2 Proposed Similarity Function 

For a target design pattern tp, we apply a similarity function on all the source­

classes within the search space to find all the eligible candidates for the main­

seed class. 

For the main-seed class ems of the target design pattern tp, we generate an 

attribute vector Attr _Vee( ems) = [at, ... , ak], where a1 , ... , ak are the numbers 

of the inter-class relations rt, ... , rk, with which ems is involved. 

Considering a search space SP = { e1 , e2 , ... , Cn}, for each source-class ei E 

SP, we also generate a corresponding attribute vector Attr _Vec(ci) = [bt, ... , bk], 

where b1 , ... , bk are the numbers of the inter-class relations r1, ... , rk, with which 

ei is involved. 

Given the main-seed class ems of the target design pattern tp and a source­

class ei E SP, the approximate similarity function simapx is defined as: 

46 



M.A.Sc. Thesis - Lei Hu McMaster-Computing and Software 

simapx(Attr _Vec(ci), Attr _Vee( ems))= 

{ 
.D.(Attr _Vee( Ci), Attr _Vee( ems)) Attr _Vee( ei) 2:: Attr _Vee( ems) 

0 otherwise 

h "(Att V ( ·) Att V ( ms)) = 1 _ Et= 1 (Attr_Vecj(c;)-Attr_Vecj(Cm
8
)) w ere Ll r _ ee e~ , r _ ec e "k ( ( ( ) ( ))) . 

L....j=l max Attr_Vecj c; ,Attr_Vecj ems 

Attr_Vec(ei) 2:: Attr_Vec(ems) means that for any element akin the at­

tribute vector Attr _Vee( ei) is greater than or equal to bk in the attribute vector 

Attr _Vee( ems). In this context, the function simapx computes the approxi­

mate similarity value between the target design pattern (represented by the 

main-seed class ems) and the candidate instance pattern (represented by the 

main-seed candidate class ci)· 

5.3.3 Algorithm 

Algorithm 1 describes the process of the proposed approximate matching in 

detail. It receives a search space, the matrices of inter-class relations of the 

search space, a PDL representation of a target design pattern, and a cut-off 

threshold similarity value, and returns a list of source-class clusters, each of 

which contains an eligible candidate of the main-seed class. 

The algorithm first generates an attribute vector for the main-seed class 

ems specified in the PDL representation of the target design pattern tpPd1• In 

the second step, it iteratively generates an attribute vector for each source­

class ci within the search space SP and invokes function simapx to compute 

the similarity between this source-class ei and the main-seed class ems. If the 

resulting similarity value is greater than or equal to the threshold similarity 

value tsh, then the source-class ei is considered as an eligible candidate of 
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Algorithm 1: ApproximateMatching 
Input: 
SP: search space (set of classes obtained from the subject system) 
M s: matrices of inter-class relations 
tpPd1: PDL representation of a target design pattern tp 
tsh: cut-off threshold similarity value 
Local Variable: 
ems: main-seed class of design pattern tp 
ci: a source class in SP 
Attr _Vee( ei): attribute vector of ei 
Attr _Vee( ems): attribute vector of ems 
cl: a source-class cluster which contains an eligible candidates of 
main-seed class 
Result: 
C L: list of source-class clusters containing eligible candidates of 
main-seed class 
begin 

CL:= []; 
ems := GetM ainSeedClass(tpPd1); 

Attr_Vee(ems) := ComputeAttrVeetor(t[iPd1); 

for class ei E SP do 

end 
l 

Attr_Vee(ei) := ComputeAttrVeetor(ei, M s) ; 
if si mapx ( Attr _Vee( ems), Attr _Vee( ei)) ~ tsh then 

l cl := GenerateCluster(ei); 
CL := append(CL, cl); 
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the main-seed class ems. Finally, for each candidate of the main-seed class, 

the function GenerateCluster() is invoked to generate a source-class cluster 

surrounding the candidate of the main-seed class by adding all the related 

source-classes within two depths. The output of the algorithm is a list of 

source-class clusters, each of which contains an eligible candidate of the main­

seed class ems, which is taken as the input of the following structural matching. 

5.4 Structural Matching 

The structural matching deals with the identification of all the instances of 

the target design pattern within a source-class cluster2 of obtained from the 

aforementioned approximate matching. 

5 .4.1 Algorithm 

Algorithm 2 describes the process of the structural matching. It receives a 

source-class cluster, a candidate of main-seed class, a PDL representation of 

a target design pattern, and the matrices of inter-class relations of the search 

space, and returns all matched design pattern instances within the source-class 

cluster. 

The algorithm starts by collecting depthl-classes and depth2-classes of 

the target design pattern. This is accomplished by invoking functions Get­

Depthl Classes() and GetDepth2Classes(), respectively, which extract the cor­

responding depthl-classes and depth2-classes from the PDL representation of 

the target design pattern. 

2Note that the number of the pattern-classes in a target design pattern is usually fewer 
than the number of the source classes in a source-class cluster, hence there may exist more 
than one matched pattern instances within the source-class cluster. 
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Algorithm 2: BFS-StructuralMatching 
Input: 
cl: a cluster of source-classes which contains an eligible candidate of 
main-seed class 
<~~di: a candidate source-class of main-seed class 
tpPd1: PDL representation of a target design pattern tp 
M s: matrices of inter-class relations 
Local Variable: 
cmd1: a combination of matched source-classes of all the depthl-classes 
cmd2 : a combination of matched source-classes of all the depth2-classes 
C Jvfd1: set of all combinations of matched source-classes of all the 
depthl-classes 
C Md2 : set of all combinations of matched source-classes of all the 
depth2-classes 
Cd1: set of all depthl-classes in target design pattern 
Cd2 : set of all depth2-classes in target design pattern 
Result: 
R: set of identified design pattern instances 
begin 

R:=0; 
Cd1 := GetDepth1Classes(tpPd1); 

Cd2 := GetDepth2Classes(tpPd1); 

CMd1 := DepthlM atching(tpPdl, c':~di' Cd1 , cl, M s); 
for cmd1 E CMd1 do 

end 
l 

CMd2 := Depth2Matching(tpPd1,cmdl,Cd2 ,cl,Ms); 
for cmd2 E CMd2 do 
L R := R U merge( c:~di' cmd1

, cmd2); 
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Algorithm 3: DepthlMatching 
Input: 
cl: a source-class cluster which contains an eligible candidate source 
class of main-seed class 
M s: matrices of inter-class relations 
c:~di: a candidate source-class of main-seed class 
tpPd1: PDL representation of a target design pattern tp 
Cd1: set of all depthl-classes in target design pattern 
Local Variable: 
Ltuple: list of tuple < relation-type, depthl-class > 
t<rel,dl>: tuple < relation-type, depthl-class > 
Mal-srcclass: mapping between depthl-class and candidate source class 
set 
C~ndi : set of candidate source-classes for a depthl-class 
Result: 
C Md1: set of all combinations of matched source-classes of all the 
depthl-classes 
begin 

Ltuple := GetListof RelDepth1Tuple(tpPd1); 

Mal-srcclass = Createandi nitializeM apping( Cdl); 
for t<rel,dl> E Ltuple do 

l C~~ndi = GetCandiSrcClass(c:~ai' t<rel,dl>, cl, M s); 
AddtoM apping(Mal-srcclass, dl, C~~ndi); 

CMdl = GenerateDepthlCombinations(Mal-srcclass); 
end 
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In the second stage, the candidates are collected for each depthl-class. 

This is done by the function Depth 1M atching() which is presented in Algo­

rithm 3. In the function DepthlM atching(), first a mapping between each 

depthl-class and its candidate set is created, and each candidate set is initial­

ized with an empty set. Secondly, by parsing the PDL representation of the 

target design pattern, a list of tuples < relation-type, depthl-class > are ob­

tained, each of which represents an inter-class relation between the main-seed 

class and a depthl-class. Next, for each tuple < relation-type, depthl-class > 

we search the input source-class cluster to find those source-classes which have 

the same relation-type with the candidate of the main-seed class and add them 

to the candidate set of the depthl-class. Finally, by invoking the function Gen­

erateDepthl Combinations(), a set of combinations of matched source-class of 

the depthl-classes are obtained. Each combination is taken as an input to the 

function Depth2M atching() to locate the eligible candidates for the depth2-

classes. 

In the next stage, for each combination of depthl-classes we search to find 

all the possible combinations of depth2-classes. This is accomplished by the 

function Depth2M atching() which is presented in Algorithm 4. The function 

Depth2M atching() receives a combination of depthl-classes and generates a 

set of combinations of depth2-classes. Likewise, it first generates a mapping 

between each depth2-class and its candidate set, and initialize each candidate 

set with an empty set. Secondly, by parsing the PDL representation of the 

target design pattern, we obtain a list of triples <seed-depthl-class, relation­

type, depth2-class>. As we mentioned in Chapter 3, a seed-depthl-class is 

a depthl-class which is related to one or more depth2-classes. Each triple 
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Algorithm 4: Depth2Matching 
Input: 
cl: a source-class cluster which contains an eligible candidate source 
class of main-seed class 
tpPd1: PDL representation of a target design pattern tp 
cmd1: a combination of matched source-classes of all the depthl-classes 
M s: matrices of inter-class relations 
Cd2 : set of all depth2-classes in target design pattern 
Local Variable: 
Ltriple: list of triple <seed-class, relation-type, depth2-class > 
t<s,rel,d2>: a triple < seed-class, relation-type, depth2-class > 
Md2-srcclass: mapping between depth2-class and candidate source class 
set 
C~Jndi : set of candidate source-classes for a depth2-class 
Result: 
CMd2 : set of all combinations of matched source-classes of all the 
depth2-classes 
begin 

Ltriple := GetListofSeed-Rel-D2Triple( tpPd1
); 

Md2-srcclass = Greateandi nitializeM apping( Cd2
); 

for t<s,rel,d2> E Ltriple do 

l c~;ndi = GetCandiSrcClass(t<s,rel,d2>, Cdl, cl, M s); 
AddtoM apping(Md2-srcclass, d2, CgJndi); 

CMd2 = GenerateDepth2Combinations(Md2-sr·cclass); 
end 
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describes an inter-class relation between a seed-depthl-class and a depth2-class. 

Next, for each triple <seed-depth1-class, relation-type, depth2-class> we search 

the source-classes which have the same relation-type with the candidate of seed­

depthl-class and add them to the candidate set of the depth2-class. Finally, 

through invoking the function GenerateDepth2Combinations(), we obtain a 

set of combinations of matched source-class of depth2-classes. 

In the last stage, we merge each combination in the resulting set of combi­

nations depth2-classes, the input combination of depthl-classes and the candi­

date of main-seed class to obtain a complete identified design pattern instance. 

5.5 Algorithm Complexity Analysis 

The design of a tractable algorithm is the most challenging part of the design 

pattern matching process. As we mentioned before, when the size of the search 

space becomes large, the brute force approach would result in a combinational 

explosion. To address this problem, a two-phase design pattern detection pro­

cess is proposed to reduce the complexity of the matching process by finding 

those source-class clusters containing potential candidate design pattern in­

stances first. The proposed approximate matching algorithm and structural 

matching algorithm of the two-phase design pattern detection process is a ma­

jor contribution of this work. In this section, we discuss the complexity of 

the approximate matching algorithm and the structural matching algorithm, 

respectively. 
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5.5.1 Complexity of Approximate Matching Algorithm 

In the proposed approximate matching algorithm, we identify the eligible can­

didates for the main-seed class of the target design pattern p by comparing 

the attribute vector of each source-class in the search space with that of the 

main-seed class. The running time of comparing the attributor vectors costs 

time 0(1), therefore, the running time of the approximate matching algorithm 

is O(n), where n is the number of source-classes in the search space SP. 

5.5.2 Complexity of Structural Matching Algorithm 

Figure 5.3: A model of source-class cluster. 

The structural matching algorithm deals with the identification of all the 
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instances of the target design pattern within a reduced search space known as a 

source-class cluster obtained from the aforementioned approximate matching al­

gorithm. It is composed of two steps: DepthlM atching and Depth2M atching, 

which are used to find the source-class candidates for the depthl-classes and 

depth2-classes, respectively. 

The complexity analysis of the structural matching is performed based on 

the following quantities: 

• n: the number of source-classes in the search space SP. 

• k: the number of pattern-classes in the target pattern p. 

• m: the number of source-class clusters obtained from the approximate 

matching. 

• d1: the number of depthl source-classes in the source-class cluster model. 

• d2 : the number of depth2 source-classes which are related to a depthl 

source-class in the source-class cluster model. 

• pd1 : the number of depthl-classes in the target pattern p. 

• pd2 : the number of depth2-classes which are related to a depthl-class in 

the target pattern p. 

To analyze the complexity of the structural matching algorithm, we use 

a model of a source-class cluster which is presented in Figure 5.3. To simplify 

the problem, but without loss of generality, we assume that in the source-class 

cluster model there exists only one type of inter-class relation and each depthl 

source-classes has d2 depth2 source-classes. 
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The Depth 1M atching is conducted to find the source-class candidates for 

the pd1 depthl-classes within the d1 depthl source-classes of the source-class 

cluster. Therefore, the running time is (dt~~dt)!' i.e., O(dfd
1 
). 

For each ordered combination of depthl-classes, the Depth2M atching is 

invoked to find the source-class candidates for all the depth2-classes. More 

specifically, for each depthl-class, we search to find the candidates for the pd2 

depth2-classes, which are related to this depthl-class, within d2 depth2 source­

classes of the source-class cluster. Since there exist d1 depthl-classes, the total 

. t' 1 't . d d2 ! . O(d dpd2) runmng Ime comp exi y IS 1 (d2-pd2)!, I.e., 1 · 2 . 

As a result, the total running time complexity of the structural matching 

1 'th . dd d d2! . O(dPdt+1 dpd2) a gon ms IS (dt-Pdt)! · 1 · (d2-pd2)!' I.e., 1 · 2 · 

5.6 An Example 

In this section, we will illustrate the operations of the two-phase design pattern 

detection process with a simple example. As shown in Figure 5.5, the search 

space SP 1 of our example consists of classes { c1 , c2 , ... , c32 }. We take Bridge 

design pattern as our target design pattern whose class diagram and PDL 

representation are presented in Figure 5.4. 

According to the proposed two-phase design pattern detection process, we 

start with parsing the PDL representation of the Bridge design pattern to obtain 

the attribute vector for the main-seed class Implementor. The main-seed class 

Implementor is an abstract class and has two I nherited_By relations, one 

in .Association relation, therefore its attribute vector Attr _ V ec( Implementor) 

is [0, 2, 1, 0, 1]. 

In the approximate matching phase, the similarity function simapx is in-
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Implementor Abstrac- Concrete- Concrete-
(main-seed class) tion Implementor A lmplementorB 

Cz C1 cu c12 

Cz c1 c12 cu 

C3 Cz Cg ClQ 

C3 C2 ClQ Cg 

Table 5.1: Combinations of matched source classes of depth1-classes 

Implementor Abstrac- Concrete- Concrete- Refined-
(main-seed class) tion Implementor A lmplementorB Abstraction-

C3 c2 Cg ClQ 

C3 Cz Cg ClQ 

Table 5.2: Identified instances of Bridge design pattern base on one combination 

voked to compute the similarity value between the main-seed class Implementor 

and each source-class ci in the search space SP1. According the obtained 

similarity values, we obtain two candidates c2 and c3 of the main-seed class 

Implementor, where the attribute vectors of these two candidates are both 

[1, 2, 1, 1, 1]. For these two candidates, we generate the corresponding source­

class clusters clc2 and clc3 by adding all the related source-classes within two 

levels. The generated source-class cluster clc2 contains source-classes c1, c2, c3, 

c4, c9 , c 10 , c 11 , c 12, c16, c1s and c 30 , and the generated source-class cluster clc3 

c 16 , c 17 and c 18 , where c 2 and c 3 are the candidates of the main-seed class in 

each source-class cluster. 

cu 

c12 

After finishing the approximate matching, we conduct the structural match­

ing on the source-class clusters clc2 and clc3 • For each source-class cluster, we 

apply the functions Depth1M atching() and Depth2M atching() orderly. In the 
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function Depth 1M atching() we only collect the source-classes for the depth1-

classes which are specified in the PDL representation of the Bridge pattern. 

Table 5.1 reports the result of executing the function Depth 1M atching(). 

In a further step, for each combination of matched depth1-classes we 

perform the Depth2M atching() to identify complete instances of the Bridge 

design patten. To illustrate the process of Depth2M atching(), we take the 

combination < c3 , c2 , c9 , c10 > in Table 5.1 as an example. First, we parse 

the PDL representation of the Bridge pattern to obtain all the inter-class 

relations between depth1-classes and depth2-classes, i.e., a list of triples < 

seed-depth1-class, relation-type, depth2-class >. 

As shown in the PDL representation in Figure 5.4, Bridge pattern has 

only one depth2-class, RefinedAbstraction, thus the obtained triple is 

< Abstraction, Inherited_by, RefinedAbstraction >. In the combination 

< c3 , c2 , c9 , c10 > the corresponding source-class for Abstraction is c2 , then 

we search in the source-class cluster clc3 to find those classes by which c2 is 

inherited. The results are c11 and c12 . Table 5.2 presents the identified design 

pattern instances based on the depth1-class combination < c3 , c2 , c9 , c10 >. 
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Abstraction 

Refi nedAbstractlon 

1 Begin-PDL 
2 Pattern : Bridge 
3 Main-seed class : Implementor 
4 Depthl: 
5 Inherited_By : 

6 C oncretei mplementor A; 
7 C oncretei mplementor B 
8 in_Association : 
9 Abstraction 
10 Depth2: 
11 Seed-Depthl: Abstraction 
12 Inherited_By : 
13 Ref inedAbstraction 
14 AbstractClasses: 
15 Implementor; 
16 Abstraction 
17 End-Pattern 
18 End-PDL 

Figure 5.4: Class diagram and PDL representation of Bridge design pattern. 
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Figure 5.5: Class diagram of search space SP1. 
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Chapter 6 

Case Study 

In this chapter we apply the proposed feature-oriented design pattern detection 

approach on three versions of JHotDraw [3] systems. The case study is con­

ducted in accordance with the proposed framework presented in Chapter 1. The 

process of the case study includes the following major steps: feature-specific 

scenario sets generation, execution pattern extraction, concept analysis and 

two-phase design pattern detection. The structure of this chapter is organized 

as follows. In Section 6.1, we give a description of our experimental hardware 

and software platform. In Section 6.2, we introduce the adopted subject sys­

tems used for our case study. Section 6.3 describes the process of applying the 

feature-oriented dynamic analysis on the subject systems. Section 6.4 presents 

the experimental results generated by applying the proposed two-phase design 

pattern detection approach. Finally, we discuss how we can exploit the ob­

tained experimental results to support the task of migrating existing software 

systems into a software product line. 
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Systems Version # Classes #Files #LOC 
JHotDraw 5.1 172 144 8419 
JHotDraw 6.0b1 405 289 21091 
JHotDraw 7.0.7 331 309 32122 

Table 6.1: Statistics of the three versions JHotDraw systems. 

6.1 Experimental Platform 

The case study is performed on a Windows XP professional edition running on 

a laptop with a 1.5GHZ centrino processor, 1024M bytes memory and 1G bytes 

virtual memory. The implemented prototype toolkit is executed on Eclipse 3.2.1 

[2], and as we mentioned in Chapter 4, we use Eclipse Test and Performance 

Tools Platform 4.2 as our profiling tool to collect the execution traces generated 

by running the scenarios in the feature-specific scenario set. 

6.2 Subject System 

We apply the proposed approach on a Java open-source project, JHotDraw, 

which is a Java framework for drawing two-dimensional graphics[3]. We select 

it for our case study due to the following reasons. 

• JHotDraw was originally developed to demonstrate the good use of design 

patterns for designing software systems. 

• The designers of JHotDraw indicate some applied design patterns in the 

documentation. 

• JHotDraw is an open-source project with their source code available. 
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Table 6.1 presents several system statistics of the three versions of JHot­

Draw systems in the case study. 

6.3 Feature-Oriented Dynamic Analysis 

In the feature-orient dynamic analysis part, we aim to locate the core implemen­

tation classes for those features having high potential reusability and generate 

a mapping between features and feature-specific classes. 

According to the proposed framework, this part of the case study consists 

of feature-specific scenario set generation, execution trace generation, execution 

pattern extraction and execution pattern analysis. In the remainder of this 

section, we will describe each stage in detail. 

6.3.1 Feature-Specific Scenario Set Generation 

First, by investigating the existing legacy documentation (e.g., user manuals, 

architectural descriptions and requirements documentation), we select the fol­

lowing ten key features which are of our interest as our target features for our 

case study. 

• "Draw a Rectangle", 

• "Draw a RoundRectangle" 

• "Draw an Ellipse" 

• "Draw a Polygon" 

• "Draw a Line" 

• "Draw a LineConnection" 
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• "Draw a Text" 

• "Move a Figure" 

• "Delete a Figure" 

• "Group Figures" 

In a further step, in order to extract the core implementation classes of 

each key feature, we devise a feature-specific scenario set for each subject fea­

ture. As an example, for the feature "Draw a Rectangle", we create a feature-

specific scenario set below. 

1 start, draw a rectangle, exit 

2 start, draw a rectangle, move, exit 

3 start, draw a rectangle, edit, exit 

4 start, draw a rectangle, delete, exit 

Next, for each feature, by running all the scenarios in its feature-specific 

scenario set on Eclipse Test and Performance Tools Platform (TPTP), we col­

lect the corresponding execution traces and store them into an execution trace 

repository. In Figure 6.1, we list the average size of the execution traces of the 

scenarios of the 10 features in the three versions of JHotDraw systems. 

6.3.2 Execution Pattern Extraction 

In this stage, by applying a modified version of the sequential pattern mining 

algorithm [6] to the execution trace repository of each feature, we extract the 

execution patterns of each feature. 
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Figure 6.1: Average execution trace size of selected scenarios of the 10 features 
in three versions of JHotDraw systems. 

Table 6.2 depicts the experimental results of execution trace extraction 

of the 10 features of the three versions of JHotDraw systems. For each feature 

the fo llowing statistics are provided: 

• number of scenarios 

• average trace size 

• average pruned trace size 

• number of extracted execution patterns 

• average size of the execution patterns 
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Specific Feature Number of 
of JHotDraw Scenarios 

Rectangle 41414 
Round Rectangle 41414 
Ellipse 41414 
Polygon 41414 
Line 41414 
Move 41414 
Delete 41414 
Group 5 I 5 I 5 
LineConnection 4 I 4 I 4 
Text 4 I 4 I 4 

Legend: A I B I C 
A: data for JHotDraw 5.1 
B: data for JHotDraw 6.0b1 
C: data for JHotDraw 7.0.7 

--

Average 
Trace Size 

2494 1 4889 1 11962 
2369 1 5o4o 1 10620 
2104 1 5492 1 10580 
4553 1 15769 1 17130 
1439 1 4253 1 9882 
2599 1 4930 1 11341 
1323 1 5739 1 8540 
4579 1 12978 1 33921 
5238 1 10356 1 24075 
1524 /6074 1 18629 

Average Pruned Number of Average 
Trace Size Extracted Patterns Pattern Size 

927 1 2165 1 2110 13 1 24 1 23 126 1 110 1 220 
927 1 2327 1 1864 15 I 25 1 19 153 1 138 1 183 
773 1 2226 1 1915 15 1 22 1 24 112 1 185 1 175 
1654 1 4029 1 3142 21 1 41 1 38 199 1 192 1 130 
546 1 2224 1 2123 7 I 24 1 27 157 1 110 1 126 
774 1 2688 1 2487 18 1 34 1 52 31 I 89 I 37 
623 1 2456 1 969 16 1 32 1 24 36 1 89 1 49 
1397 1 4675 1 4842 36 I 66 1 57 26 1 85 I 49 
1681 1 4158 1 4437 38 1 53 1 56 36 1 78 1 73 
781 1 2435 1 22o4 11 1 35 1 12 62 1 105 1 288 

Table 6.2: Results of execution trace extraction and execution pattern mining for 10 features of three versions 
of JHotDraw systems. 
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6.3.3 Execution Pattern Analysis 

Figure 6.2: Concept lattice representation of the features and classes in JHot­
Draw 5.1. 

In the execution pattern analysis stage, we employ concept analysis to 

produce a mapping between features and feature-specific classes. We supply 

the resulting execution patterns obtained from execution pattern extraction to 

a concept lattice generation tool, ConExp [5]. The generated concept lattices of 

JHotDraw 5.1, 6.0bl and 7.0.7 are presented in Figures 6.2, 6.3 and 6.4 respec­

tively, where each bubble represents a feature and the shaded labels represent 

classes. The feature-specific classes of each feature are gathered in the lower 

region , whereas the omnipresent classes are clustered in the upper region. 
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Figure 6.3: Concept lattice representation of the features and classes in JHot­
Draw 6.0bl. 

Tables 6.3, 6.4 and 6.5 present a detailed description of the mapping 

between features and feature-specific classes of the three versions of JHotDraw 

systems. 

6.4 Design Pattern Detection 

In this part of the case study, for each JHotDraw system, we apply the proposed 

two-phase design pattern detection on the system to recover all the instances 

of the target design patterns. Then by analyzing the identified instances of the 

target design patterns and the mapping between features and feature-specific 

classes, we correlate the features to those identified design pattern instances. 
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Figure 6.4: Concept lattice representation of the features and classes in JHot­
Draw 7.0.7. 

6.4.1 Pattern Repository 

Currently, our pattern repository contains the following design patterns: Adapter, 

Proxy, Observer, Bridge and Strategy. Each design pattern in the pattern repos­

itory is describe in the proposed PDL representation. As an example, Figure 

6.5 illustrates the PDL representation of Bridge design pattern. 

6.4.2 Results of Design Pattern Detection 

For each subject system, we conduct t he two-phase design pattern detection 

approach to identify each target design pattern in the design pattern repository. 
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Specific Feature-speciffc 
Features Classes 
Draw a Rectangle RectangleFigure 
Draw a RoundRectangle RoundRectangleFigure, RadiusHandle 
Draw an Ellipse Ellipse Figure 
Draw a Polygon PolygonHandle, PolygonTool, PolygonFigure, PolygonScaleHan-

dle, SelectAreaTracker 
Draw a Text TextTool, FontSizeHandle, FloatingTextField, TextFigure 
Group Figures GroupHandle, GroupFigure, GroupCommand 
Move a Figure SouthEastHandle, SouthHandle, NorthHandle, East Handle, 

WestHandle, South WestHandle, NorthEastHandle, NorthWest-
Handle, RelativeLocator, BoxHandleKit 

Delete a Figure FigureTransferCommand, DeleteCommand 
Draw a Line PolylineLocator, PolylineFigure, LineFigure, PolylineHandle 
Draw a LineConnection Lineconnection, AbstractConnector, ConnectionTool, ArrowTip 

Table 6.3: Results of feature-specific classes assignment for 10 features of JHot­
Draw 5.1. 

To filter out the false-positive patterns in the detected pattern instances, we 

perform a manual verification on these resulting pattern instances by inspecting 

the corresponding source code. 

To correlate an identified design pattern instance with a feature, we check 

the overlap between the feature-specific classes of the feature (obtained from 

concept lattice) with the participating classes of the design pattern instance. 

If there exists an overlap, it means that there is a relation between the fea­

ture and the design pattern instance. For example, Figure 6.6 presents an 

instance of Strategy design pattern that is detected from JHotDraw 5.1. This 

pattern instance is related with the feature Drawing a Polygon since classes 

PolygonHandle and PolygonScaleHandle are feature-specific classes of the fea-

ture. 

Table 6.6, 6. 7, 6.8 and 6.9 present the correlation between the features 

and the identified design pattern instances in JHotDraw 5.1. 
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~pecific .f:<'eature-specific 
Features Classes 
Draw a Rectangle org/j hotdraw /figures /RectangleFigure 
Draw a RoundRectangle org/ j hotdraw /figures /RoundRectangleFigure 

org/ j hotdraw /figures /Radi usHandle 
Draw an Ellipse org/ j hotdraw /figures /Ellipse Figure 

org/jhotdraw / contrib /PolygonFigure 
org/ jhotdraw / contrib /PolygonScaleHandle 

Draw a Polygon org/jhotdraw / contrib /PolygonHandle 
org/ jhotdraw / contrib /Polygon Tool 
org/ jhotdraw /figures/PolylineFigure 

Draw a Line org/jhotdraw /figures/Poly lineLocator 
org/j hotdraw /figures /LineFigure 
org/ j hotdraw /figures /Poly lineHandle 
org/jhotdraw /standard/SouthHandle 
org/ j hotdraw /standard /N orthHandle 
org/ jhotdraw / standard/EastHandle 
org/j hotdraw / standard/WestHandle 

Move a Figure org/ jhotdraw / standard/SouthEastHandle 
org/ jhotdraw /standard/South WestHandle 
org/ j hotdraw / standard/N orthEastHandle 
org/jhotdraw /standard/North WestHandle 
org/j hotdraw /standard /Relati veLocator 
org/ jhotdraw / standard/BoxHandleKit 
org/ j hotdraw /standard /ResizeHandle 
org/ j hotdraw /standard /FigureTransferCommand 

Delete a Figure org/jhotdraw / standard/DeleteCommand 
org/jhotdraw /standard /DeleteFromDrawing Visitor 
org/jhotdraw /figures/GroupFigure 

Group Figures org/ j hotdraw /figures/ G rou pHandle 
org/jhotdraw /GroupCommand 
org/j hotdraw /standard /Select Area Tracker 
org/jhotdraw / figures/TextFigure 

Draw a Text org/jhotdraw /figures/TextTool 
org/ j hotdraw /figures /FontSizeHandle 
org/ jhotdraw /util/FloatingTextField 
org/jhotdraw /standard/ AbstractConnector 
org/jhotdraw /figures/LineConnection 

Draw a LineConnection org/j hotdraw /standard/ Connection Tool 
org/jhotdraw /figures/ ArrowTip 
org/ j hotdraw /figures/ A bstractLineDecoration 
org/jhotdraw /standard/ChopBoxConnector 

Table 6.4: Results of feature-specific classes assignment for 10 features of JHot­
Draw 6.0bl. 
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Table 6.10 and 6.11 present the correlation between the features and the 

identified design pattern instances in JHotDraw 6.0bl. 

Table 6.12, 6.14, and 6.13 present the correlation between the features 

and the identified design pattern instances in JHotDraw 7.0.7. 

6.5 Discussion 

The results obtained from the two-phase pattern detection process can sup­

port the task of migrating existing software systems into a software product 

line. For example, Figure 6. 7 presents three detected Adapter design pattern 

instances of feature Draw a Polygon in JHotDraw 5.1, 6.0b1 and 7.0.7, respec­

tively. By comparing and analyzing the detected pattern instances of the three 

versions JHotDraw systems, we notice that the implementation of the feature 

Draw a Polygon in JHotDraw 5.1 and 6.0b1 is very similar, while there exist 

some differences between the implementation in JHotDraw 7.0. 7 with that in 

JHotDraw 5.1 and 6.0bl. Performing such comparison and analysis on the de­

tected pattern instances of these 10 features, which are used most frequently in 

the applications and shared by all the three versions of JHotDraw systems, can 

help to comprehend the features' implementation in a design level and allows 

for a quick understanding of evolution of the features within the software. 
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Specific Feature-specific 
Features Classes 
Draw a Rectangle org/ jhotdraw /draw /RectangleFigure 
Draw a RoundRectangle org/ jhotdraw /draw /RoundRectangleFigure 

org/ jhotdraw /draw /RoundRectRadiusHandle 
Draw an Ellipse org/ jhotdraw /draw /EllipseFigure 

org/jhotdraw /draw /BezierTool 
org/ j hotdraw / geom/ G rowStroke 
org/jhotdraw / geom/DoubleStroke 

Draw a Polygon org/ jhotdraw /draw /BezierScaleHandle 
org/ j hotdraw /draw /Bezier Figure 
org/ j hotdraw / geom/Bezier 
org/ jhotdraw /draw /LineFigure 
org/jhotdraw /draw /BezierNodeEdit 

Draw a Line org/jhotdraw /draw /BezierNodeHandle 
org/jhotdraw /draw /Handle'fracker 
org/jhotdraw /draw /HandleMulticaster 

Move a Figure org/jhotdraw /draw /'fransformEdit 
org/jhotdraw /draw /MoveHandle 

Delete a Figure org/ jhotdraw /draw/ AbstractDrawing 
org/ jhotdraw / app / action/DeleteAction 

Group Figures org/ jhotdraw /draw/ AbstractCompositeFigure 
org/ jhotdraw /draw/ action/ Group Action 
org/jhotdraw /draw /TextFigure 
org/ jhotdraw /draw /FontSizeHandle 

Draw a Text org/jhotdraw /draw /FontSizeLocator 
org/jhotdraw /draw /TextTool 
org/jhotdraw / geom/Insets2DDouble 
org/ jhotdraw /draw /FloatingTextField 
org/ jhotdraw /draw /LineConnectionFigure 

Draw a LineConnection org/ jhotdraw /draw/ Abstract Connector 
org/ jhotdraw /draw/ ChopBoxConnector 
org/ j hotdraw /draw/ Connection Tool 
org/jhotdraw /draw/ AttributeKey 

Table 6.5: Results of feature-specific classes assignment for 10 features of JHot­
Draw 7.0.7. 
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1 Begin-PDL 
2 Pattern : Bridge 
3 Main-seed class : Implementor 
4 Depthl: 
5 lnherited_By : 
6 C oncretei mplementor 
7 in_Association : 
8 Abstraction 
9 Depth2: 
10 Seed-Depthl : Abstraction 
11 Inherited_By: 
12 Ref inedAbstraction 
13 AbstractClasses : 
14 Implementor; 
15 Abstraction 
16 End-Pattern 
17 End-PDL 

Figure 6.5: Class diagram and PDL representation of Bridge design pattern. 
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HandleTracker ... Handle 
, 

if 
I I 

Polygon Sea leHa ndle PolygonHandle 

Figure 6.6: A Strategy design pattern instance of feature Drawing a Polygon 
in JHotDraw 5.1. 

Des1gn Pattern Instance ltelated ~eature 
CH/ifa/ draw /figures/PolyLineFigure (Target) 
CH/ifa/ draw /figures/LineConnection (Adapter) Draw a Line 
CH/ifa/ draw/ framework/ Connector ( Adaptee) 
CH/ifa/ draw /standard/ AbstractHandle (Target) 
CH/ifa/draw /figures/RadiusHandle (Adapter) Draw a RoundRectangle 
CH/ifa/ draw /figures/RoundRectangleFigure (Adaptee) 
CH/ifa/draw/standard/ AbstractHandle (Target) 
CH/ifa/ draw/ contrib /PolygonHandle (Adapter) Draw a Polygon 
CH/ if a/ draw/ framework/Locator ( Adaptee) 
CH/ifa/ draw /standard/ Abstract Tool (Target) 
CH/ifa/draw/contrib/PolygonTool (Adapter) Draw a Polygon 
CH/ifa/ draw/ contrib /PolygonFigure (Adaptee) 
CH/ifa/draw/util/Command (Target) 
CH/ifa/ draw/ figures/ GroupCommand (Adapter) Group Figures 
CH/ifa/ draw /framework/Drawing View (Adaptee) 
CH/ifa/ draw/ framework/ Connector (Target) 
CH/ifa/ draw /standard/ Abstract Connector (Adapter) Draw a LineConnection 
CH/ifa/ draw/ framework/Figure ( Adaptee) 
CH/ifa/ draw /framework/ConnectionFigure (Target) 
CH/ifa/ draw /figures/LineConnection (Adapter) Draw a LineConnection 
CH/ifa/ draw/ framework/ Connector ( Adaptee) 
CH/ifa/ draw /figures/Poly LineFigure (Target) 
CH/ifa/ draw /figures/LineConnection (Adapter) Draw a LineConnection 
CH/ifa/ draw/ framework/ Connector ( Adaptee) 

Table 6.6: Results of identified Adapter design pattern instances and related 
features in JHotDraw 5.1 system 
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Ues1gn Pattern instance Related Feature 
CH/ifa/ draw /figures/PolyLineFigure (Abstraction) 
CH/ifa/draw jfigures/LineConnection (RefinedAbstraction) Draw a LineConnection 
CH/ifa/ draw /figures/LineDecoration (Implementor) 
CH/ifa/ draw /figures/ ArrowTip ( Concretelmplementor) 
CH/ifa/ draw /figures/LineConnection (Abstraction) 
CH/ifa/ draw /figures/ElbowConnection (RefinedAbstraction) Draw a LineConnection 
CH/ifa/ draw/ framework/ Connector (Implementor) 
CH/ifa/ draw /standard/ Abstract Connector ( Concretelmplementor) 

Table 6. 7: Results of identified Bridge design pattern instances and related 
features in JHotDraw 5.1 system 

Design Pattern Instance Itelated Feature 
CH/ifa/draw/framework/Figure (Observer) 
CH/ifa/ draw /framework/ConnectionFigure ( ConcreteObserver) Draw a LineConnection 
CH/ifa/ draw jstandard/CompositeFigure (Subject) 
CH/ifa/ draw /figuresjGroupFigure ( ConcreteSubject) 
CH/ifa/ draw /framework/Figure (Observer) 
CH/ifa/ draw /framework/ConnectionFigure ( ConcreteObserver) Draw a LineConnection 
CH/ifa/draw/standard/CompositeFigure (Subject) 
CH/ifa/ draw/ standard/StandardDrawing ( ConcreteSu b ject) 

Table 6.8: Results of identified Observer design pattern instances and related 
features in JHotDraw 5.1 system 
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Design Pattern instance .ttelated J:t'eature 
CH/ifa/ draw /figuresjPolyLineFigure (Context) 
CH/ifa/ draw /figures/LineDecoration (Strategy) Draw a Line 
CHjifajdraw /figures/ ArrowTip (ConcreteStrategy) 
CH/ifa/ draw /figures/Poly LineFigure (Context) 
CH /if a/ draw/ figures /LineDecoration (Strategy) Draw a LineConnection 
CH/ifa/ draw /figures/ ArrowTip ( ConcreteStrategy) 
CH/ifa/ draw /standard/FigureTransferCommand (Context) 
CH/ifa/ draw /framework/Drawing View (Strategy) Delete a Figure 
CH/ifa/ draw/ standard/StandardDrawingView ( ConcreteStrategy) 
CH/ifajdraw /figures/TextTool (Context) 
CH/ifa/drawjstandard/TextHolder (Strategy) Draw a Text 
CH/ifa/ draw /figures/TextFigure ( ConcreteStrategy) 
CH/ ifa/ draw/ standard/ Abstract Connector (Context) 
CH/ifajdraw /framework/Figure (Strategy) Draw a LineConnection 
CH/ifa/ draw/ framework/ ConnectionFigure ( ConcreteStrategy) 
CH/ifa/ draw /standard/ Abstract Connector (Context) 
CH/ifa/ draw /framework/Figure (Strategy) Draw a LineConnection 
CH/ if a/ draw/ framework/ ConnectionFigure ( ConcreteStrategy) 
CH/ifa/ draw /figures/LineConnection (Context) 
CH/ifa/ draw /framework/Connector (Strategy) Draw a LineConnection 
CH/ifa/ draw /standard/ Abstract Connector ( ConcreteStrategy) 
CH/ifa/ draw/ contrib /PolygonHandle (Context) 
CH/ifa/draw /standard/ AbstractLocator (Strategy) Draw a Polygon 
CH/ if a/ draw/ standard/ Abstract Connector ( ConcreteStrategy) 

Table 6.9: Results of identified Strategy design pattern instances and related 
features in JHotDraw 5.1 system 

78 



M.A.Sc. Thesis - Lei Hu McMaster-Computing and Software 

Design Pattern Instance Related l<'eature 
org/jhotdraw /framework/Figure Visitor (Target) 
org/jhotdraw /standard/DeleteFromDrawingVisitor (Adapter) Delete a Figure 
org/jhotdraw /framework/Drawing ( Adaptee) 
org/jhotdraw /standard/ AbstractHandle (Target) 
org/ j hotdraw /figures /Radi usHandle (Adapter) Draw a RoundRectangle 
org/jhotdraw /figuresjRoundRectangleFigure ( Adaptee) 
org/jhotdraw /framework/Figure (Target) 
org/jhotdraw/figuresjTextFigure (Adapter) Draw a Text 
org/ jhotdraw /standard/ OffsetLocator ( Adaptee) 
org/jhotdraw /standard/ AbstractTool (Target) 
org/jhotdraw / contrib /Polygon Tool (Adapter) Draw a Polygon 
org/jhotdraw / contrib jPolygonFigure ( Adaptee) 
org/jhotdraw /framework/ Connector (Target) 
org/jhotdraw /standard/ AbstractConnector (Adapter) Draw a LineConnection 
org/jhotdraw /framework/Figure ( Adaptee) 
org/ jhotdraw /framework/Figure (Target) 
org/jhotdraw /figures/LineConnection (Adapter) Draw a LineConnection 
org/jhotdraw /framework/ Connector ( Adaptee) 

Table 6.10: Results of identified Adapter design pattern instances and related 
features in JHotDraw 6.0bl system 
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Design Pattern Instance Related I<eature 
orgjjhotdraw jstandard/DeleteFromDrawingVisitor (Context) 
orgfjhotdraw /framework/Drawing (Strategy) Delete a Figure 
orgjjhotdraw /standard/StandardDrawing ( ConcreteStrategy) 
orgjjhotdraw / util/U ndoableCommand (Context) 
orgfjhotdraw jutil/Command (Strategy) Delete a Figure 
orgjj hotdraw / standard/Deletecommand ( ConcreteStrategy) 
orgjjhotdraw /figures/TextTool (Context) 
orgjjhotdraw jstandard/TextHolder (Strategy) Draw a Text 
orgj jhotdraw / figures/TextFigure ( ConcreteStrategy) 
org/jhotdraw jfigures/TextAreaTool (Context) 
orgj jhotdraw / standard/TextHolder (Strategy) Draw a Text 
orgj j hotdraw /figures /TextFigure ( ConcreteStrategy) 
orgjjhotdraw / contrib/PolygonHandle (Context) 
orgj jhotdraw /framework/Locator (Strategy) Draw a Polygon 
orgj jhotdraw /figures /Poly LineLocator ( ConcreteStrategy) 
orgj jhotdraw / contrib /PolygonHandle (Context) 
orgj jhotdraw /framework/Locator (Strategy) Draw a Polygon 
orgjjhotdraw /standard/ OffsetLocator ( ConcreteStrategy) 
orgjjhotdraw /figures/Poly LineFigure (Context) 
orgjjhotdraw /figures/LineDecoration (Strategy) Draw a Line 
orgj jhotdraw /figures/ ArrowTip ( ConcreteStrategy) 
orgfjhotdraw /standard/ AbstractConnector (Context) 
orgfj hotdraw /framework/Figure (Strategy) Draw a LineConnection 
orgjjhotdraw /figures/LineConnection ( ConcreteStrategy) 
orgj j hotdraw /figures /LineConnection (Context) 
orgjjhotdraw /framework/ Connector (Strategy) Draw a LineConnection 
orgj jhotdraw /standard Chopboxconnector ( ConcreteStrategy) 
orgj jhotdraw /standard/ Connection Tool (Context) 
orgjjhotdraw /framework/ConnectionFigure (Strategy) Draw a LineConnection 
orgj j hotdraw /standard/ Chopboxconnector ( ConcreteStrategy) 

Table 6.11: Results of identified Strategy design pattern instances and related 
features in JHotDraw 6.0b1 system 

Design Pattern Instance Related Feature 
orgfjhotdraw /draw/ AbstractTool (Target) 
orgj j hotdraw /draw /BezierTool (Adapter) Draw a Polygon 
orgj jhotdraw /draw /BezierFigure ( Adaptee) 
org/ jhotdraw /draw/ Connection Figure (Target) 
orgj jhotdraw /draw /LineConnectionFigure (Adapter) Draw a LineConnection 
org/ jhotdraw /draw/ Connector ( Adaptee) 

Table 6.12: Results of identified Adapter design pattern instances and related 
features in JHotDraw 7.0.7 system 
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Destgn Pattern Instance Related .Feature 
org/jhotdraw /draw/ action/GroupAction (Context) 
org/jhotdraw /draw /CompositeFigure (Strategy) Group Figures 
org/jhotdraw /draw /Graphica!CompositeFigure ( ConcreteStrategy) 
org/jhotdraw /draw /Text Tool (Context) 
org/jhotdraw /draw /Text Holder (Strategy) Draw a Text 
org/jhotdraw /draw /Text Figure ( ConcreteStrategy) 
org/ jhotdraw /draw /Text Tool (Context) 
org/jhotdraw /draw /TextHolder (Strategy) Draw a Text 
orgjjhotdraw /draw /TextAreaFigure ( ConcreteStrategy) 
org/jhotdraw /draw /Text Area Tool (Context) 
org/jhotdraw /draw /TextHolder (Strategy) Draw a Text 
org/jhotdraw /draw /TextAreaFigure ( ConcreteStrategy) 
org/jhotdraw /draw /Text Area Tool (Context) 
org/jhotdraw /draw /Text Holder (Strategy) Draw a Text 
org/jhotdraw /draw /Text Figure ( ConcreteStrategy) 
orgjjhotdraw /draw /LineConnectionFigure (Context) 
org/jhotdraw /draw /Connector (Strategy) Draw a LineConnection 
org/jhotdraw /draw/ ChopBoxConnector ( ConcreteStrategy) 

Table 6.13: Results of identified Strategy design pattern instances and related 
features in JHotDraw 7.0.7 system 

Uestgn Pattern Instance Related l<'eature 
orgjjhotdraw /draw/ AbstractConnector (Abstraction) 
org/jhotdraw /draw /ChopBoxConnector (RefinedAbstraction) Draw a LineConnection 
orgjjhotdraw /draw /Figure (Implementor) 
org/ jhotdraw /draw /LineConnectionFigure ( Concretelmplementor) 

Table 6.14: Results of identified Bridge design pattern instances and related 
features in JHotDraw 7.0.7 system 
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AbstractToot 
mouseClicked() { 

+mouseClicked() createdFigure.getStartPoin t ( ... ) 

fi.. } ,. .,.. .,.. .,.. .,.. 
BezlerTool BezlerFigure 

-createdFigure: BezierFigure +getStartPoint() 
+mouseClicked() 

b. JHotDraw 7.0.7 

Figure 6.7: Adapter design pattern instances related to feature Drawing a 
Polygon in JHotDraw 5.1, 6.0bl and 7.0.7. 
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Chapter 7 

Conclusion and Future Work 

In this thesis we presented a method to identify individual design pattern in­

stances from the implementation of system behavioral features. The main ad­

vantage of our approach over the existing design pattern recovery approaches 

is incorporating dynamic feature analysis into design recovery. This allows 

us to perform a goal-driven design pattern detection and focus ourselves on 

design patterns that implement specific software functionality as opposed to 

conducting a general pattern detection which are susceptible to high complex­

ity problem. 

The major parts of the proposed approach are summarized as follows. The 

first part (feature-oriented dynamic analysis) consists of feature and scenario 

identification, execution pattern mining, and concept analysis to produce a 

mapping between features and feature-specific classes, which is used to correlate 

the features to the identified design pattern instances. In the second part (two­

phase design pattern detection), a target design pattern is represented in a novel 

design pattern description language, PDL, which uses a center-role main-seed 

class, depthl-classes, depth2-classes and the inter-class relations among them 
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to describe the structural information of the design pattern. The matching 

process consists of an approximate matching and a structural matching that 

identify the specified pattern while providing scalability of the process. 

We have applied our proposed approach on three versions of JHotDraw 

systems and obtained a very promising experimental results in both feature 

analysis and design pattern detection. Finally, we have implemented a proto­

type toolkit for the proposed approach on the Eclipse open platform. 

7.1 Discussion 

In Table 7.1 we compare our technique with several current major design pat­

tern detection techniques based on different criteria such as: category of tech­

niques; kind of pattern description language; automatic or human assisted; and 

applicable programming language. 
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Design Pattern Category of Pattern Descrip- Applicable Prog- Degree of hu-
Detection Techniques Techniques tion Language -ramming Language man involvement 
Jing D. [17] matix-based NA Java automatic 
Nija Shi [37] structure-based NA Java automatic 
Zsolt Balanyi [11) structure-based DPML C++ automatic 
Nikolaos [43] matix-based NA Java automatic 
Lucia [31] structure-based VL Java automatic 
Antonial [7) metric-based AOL C++ automatic 
Yann-Gael [23) metric-based NA Java automatic 
Vassilios [45] structure-based RSF & REQL Effiel semi-automatic 
C. Kramer [29] structure-based PROLOG Small Talk automatic 
Our technique feature-oriented PDL Java semi-automatic 

Table 7.1: Comparison of several design pattern detection techniques 
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7.2 Future Work 

Our future work will mainly concentrate on the following directions: 

• extracting more inter-class relations, such as delegation and method invo­

cation, to improve the accuracy of the result of design pattern detection 

process. 

• applying our proposed approach on a real evolutionary development of 

software product line. 

• tracking the evolution of software systems at design level by analyzing 

the evolution of design patterns. 

• building a benchmark which allow us to compare different design pattern 

detection systems and evaluate the results of the different approaches. 
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