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Abstract 

We study a many particle system contained within a harmonic oscillator potential, 

with the single particle spacings equispaced and nondegenerate. We consider either 

fermions or bosons within this harmonic oscillator potential and derive the density 

of states for this system, with low excitation energy corrections. We extend our 

method for more than one species of fermions or bosons within this harmonic oscillator 

potential and compare our results with number-theoretic techniques. We move on to 

the degenerate harmonic oscillator potential and show that, for a fermion system, 

shell effects are contained within low excitation energy terms. We attempt to arrive 

at the density of states for an infinite number of bosons within the same potential. 
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Chapter 1 

Introduction 

The aim of this thesis is to derive an asymptotic formula for the density of 

states of many boson and many fermion systems incorporating low excitation energy 

corrections. We focus on particles confined in a harmonic oscillator system, due 

to the relative simplicity in calculating the exact number of states. For particles 

within an equispaced, nondegenerate single-particle energy spectrum, the number of 

excited configurations for a given excitation energy becomes uncountable by hand 

and computationally difficult. Asymptotic formulas, obtained by Bethe [1], for the 

one species density of states, 

eVi7r2g(eF)E 

P(l) (E) - ---=-- (1.1)- y'4BE ' 

and for the two species density of states, 

(1.2) 

provide a reasonable approximation to the exact number of microstates for large 

excitations while the error is considerable for low excitations. In Eq. 1.1 and Eq. 1.2, 
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the excitation energy is denoted by E, the fermi energy for the ith species of particles 

denoted by E~), the individual single-particle level densities at the respective fermi 

energies given by Y(i), and the sum of the individual levels densities given by Yo· 

With the 1-D harmonic oscillator spectrum containing one species of spinless 

particles, the number of excited configurations is equal to the number of partitions of 

an integer. Hardy and Ramanujan obtained an asymptotic equation[2] for the number 

of partitions for large integers and work later done by Rademacher[3] to obtain an 

exact series expression for the number of partitions. However, it should be stated 

that Leboeuf was able to derive low excitation corrections to the density of states 

using number-theoretic results[4, 5]. By generalizing "the circle method" [6], Leboeuf 

arrived at a series expressions for the density of states for two sets of noninteracting 

particles in a 1-D harmonic oscillator spectrum. 

The relevance of this work can also be found in evaporation spectra of the 

nucleus. In inelastic neutron scattering experiments of atoms with high, negative 

Q values[7], such that neutron producing reactions are impossible, Co and Ag were 

found to obey Bethe's formula relatively well with y0 as a fitting parameter for each 

nucleus. Work done by Ignatyuk et al. [8] matched Yo to several atomic numbers. 

Fluctuations were observed for Yo corresponding to the locations of magic numbers. 

The number of configurations of heavy nuclei grows large and only a statistical 

framework can be used to reasonably model the nuclear properties[9]. Knowing the 

statistical partition function and the single-particle energy levels, Ericson[lO] demon

strated the validity of a saddle-point technique in obtaining the correct density of 

states. Angular momentum and odd-even effects were included to the density of 

states calculation, but we ignore these effects in this thesis. In Chapter 2, we derive 

the Leboeuf's low excitation terms by using the saddle-point technique and by re
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taining the non-Gaussian terms to the entropy. Chapter 3 will repeat the calculation 

for bosons in a three-dimensional harmonic oscillator and a discussion of a fermion 

system in the same system. The author believes that a number-theoretic derivation 

for the density of states for fermions or bosons within a degenerate single-particle 

level system is not possible and only a statistical derivation for the density of states 

series expression is possible. 
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Chapter 2 

Numbers and one dimensional 

systems 

This chapter will review the basic concepts of partitioning an integer into its 

parts and the number of different partitions of that integer. The direct connection 

between the number of partitions of an integer to the number of excited states for 

fermions or bosons in a nondegenerate equispaced harmonic trap will be illustrated. 

We will use a canonical and Grand Canonical partition function to arrive at the 

density of states for either one species of particles in a harmonic trap or two species 

of particles in a harmonic trap. 

2.1 Partitioning an integer 

For an integer n, there exist a finite number of ways to add up to that integer. 

Each way is known as a partition. We give the different partitions for some low 

integer examples in Table 2.1. The number of different partitions, denoted by p(n), 
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Table 2.1: Partitions of an integer 

Integer Partitions Number of Partitions p(n) 

1 1 1 

2 1 + 1 2 

2 

5 1+1+1+1+1 7 

1+2+2 

1+1+1+2 

1+1+3 

1+4 

2+3 

5 

grows exponentially large for large integers. For n = 5, the number of different 

partitions for 5 is 7, p(5) = 7. For n = 200, the number of different partitions for 200 

is 3972999029388 and a list of the different partitions is space consuming. 

Hardy and Ramanujan [2] derived a mathematical formula for the number of 

partitions, 

fi?
p(asymptotic)(n) ~ e~n ' (2.1) 

for large integers n. Inserting 200 for n into Eq. (2.1), the result is p(asymptotic)(200) = 

x 10124.1 which is similar in order to the exact answer. Further work done by 

Rademacher [3] yielded an exact series expression for the number of partitions of an 

integer. 

5 
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2.2 	 The equispaced nondegenerate harmonic oscil

lator spectrum 

Connecting the theory of partitions to physical systems, we consider an equi

spaced and nondegenerate harmonic oscillator spectrum. For either noninteracting, 

spinless bosons or noninteracting, spinless fermions within this harmonic oscillator 

spectrum, the number of excited energy levels is equal to the number of partitions 

of an integer, provided that the number of particles within the harmonic oscillator 

spectrum is greater than the number of parts for a particular partition of an integer. 

As an example, for the integer 5, one possible partition is 1 + 1 + 1 + 1 + 1 and 

cannot be realized for a system of 3 particles. 

As shown in Figure 2.2, for given excitation energy in units of the single particle 

spacing of the system, fu.v, the energy can distribute itself evenly among particles, 

primarily on one particle, or some mixture in between. There are two states possible 

for an excitation energy of two units of fu.v. For the fermion system, Pauli exclusion 

principle prevents two identical fermions from occupying the same energy state and 

particle indistinguishability reduces the number of configurations for the excitation 

energy. But the total number of microstates remains the same for both systems. 

Connecting Eq. (2.1) to the harmonic oscillator system, we are left with an 

asymptotic expression for the density of states of the system, 

E e2-ra;;E 
(2.2)p( ru.v) ~ v'48 :w ' 

with Yo the collection of constants in the exponential. The above formula states that 

systems within an equispaced, harmonic oscillator system should grow exponentially 

with the square root of the excitation energy. In studies of the nuclear evaporation 

6 
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5-------------5--------------5-------------5------------- 

4-------------4-------------4-------------4------------- 

3-------------3-------------3-------------3------------- 

2-------------2-------------2-------------2---------·~---

0 -----111·11-1···Hi·------ 0 -----li·II--WI·t----- 0 • 0 ••
Groundstate 1 unit of excitation 2 units of excitation 2 units of excitation 

5 5 5 5 

4 4 4 4 • 
3 3 3 3 

2 2 2 2 

0 0 0 0 

Groundstate 1 unit of excitation 2 units of excitation 2 units of excitation 

Figure 2.1: Excited particle states with a boson system on the top row and a fermion 

system on the bottom row. From left to right for each system i) The ground state of 

the system ii) A state with one particle excited iii) A state with two particles excited 

by one unit of energy iv) A state with one particle excited by two units of energy. 
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spectra to obtain the nuclear level densities of specific isotopes [7, 8], the nucleons can 

be modelled by a mean-field interaction and exponential growth in the level densities 

is observed. 

A fit of Eq. (2.2) to the experimental data, with 9o as an adjustable parameter, 

provides good agreement to the observed level densities, as shown in Figure 2.2. We 

can see deviations from this curve for low excitations. Because the formula for the 

density of states, given by Eq. (2.2) is an asymptotic result for high excitation 

energies, it should not be expected to hold for low excitations. To understand the 

nuclear level densities at low excitation energies and deviations away from the mean

field model of the nucleus, it is necessary to first provide the mean-field density of 

states in the low excitation energy regime. 

Leboeuf uses the number-theoretic work of Rademacher [3] to provide a few 

low excitation energy corrections to the one species density of states [4, 5], 

ln(1iwp<1l(E)) - 1¥- -In(v'48::) 

- 7r2 + 72 (~)-!- (~- _!_)( ~)-1 + 0((~)-~) (2.3)
24v'B7r 1iw 47r2 24 1iw 1iw ' 

and the two species density of states [6], 

12(~)£
ln(!iwp<2) (E)) - 2 - ln( 1'iw )

3i 
as 71"2 EE-(~ + ~)v'3(-)-! + 192 + 864 + 0((-)-~). (2.4)

36 l67r 1iw :w 1iw 

The goal of this chapter is to reproduce the low excitation energy corrections 

by a standard statistical technique rather than a number-theoretic technique. The 

8 
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Figure 2.2: The experimental level densities of Co, Ag, In, Ta, Au. Note that a = Yo· 


The symbol T corresponds to the fitted temperature for the constant temperature 

E 

model in which the level densities vary as ekbT. Data provided by K. Tsukada et al. 

[7] 
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process is quicker and we believe a statistical derivation of low excitation energy 

corrections can be applied to other systems, such as systems with energy degeneracy, 

whereas it would not be possible to obtain low excitation energy corrections by a 

number-theoretic technique. 

2.3 	 Method 

2.3.1 	 Alternate derivation to arrive at low excitation energy 

corrections for one species of particles 

In order to arrive at the density of states, we start with some basic concepts. 

The exact quantum density of states, 

p(€) = E 8(€-€n), 	(2.5) 
n 

is given by a sum of Dirac delta functions over all possible energy configurations, €n, 

of that system. By taking a Laplace transform of the quantum density of states, we 

obtain a partition function, 

Z(f3) = 1oo df, p(€)ef3e = E e-f3en. 	 (2.6) 
0 	 n 

The Laplace transform variable, {3, can be identified as the conjugate to the energy 

and is the inverse temperature in units of the inverse Boltzmann constant. By an 

inverse Laplace transform of the partition function, we get back an expression for the 

density of states, 

p(€) = _21 j~oo d{3 Z(f3)ef3e. 	 (2.7) 
1r~ -wo 
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We start with a canonical partition function, 

1 
Z({3) =II

00 

1- e-P€n' (2.8) 
n=O 

and valid as the number of particles goes to infinity, to arrive at the corrected density 

of states for one species of spinless particles in a nondegenerate harmonic trap. In 

a 1-D equispaced harmonic trap, the number of excited configurations for a many 

boson system and a many fermion system are equal. The single particle energy 

levels, En = fiwn, are indexed by the integer n. We set fiw = 1 for convenience. The 

total energy of the bosonic system, e' is equal to the excitation energy of the system, 

E, since the ground state energy has been set to zero. 

The partition function is rewritten as Z({3) = e1nZ(P) and ln Z({3) evaluated by 

an Euler-Maclaurin expansion. We collect all terms that appear in the exponent in 

Eq. (2.7) and define it as the entropy[11], 

21 7r 1 1
8({3) = {3E + lnZ({3) = {3(E- ) + {3 + 21n{3- 21n(21r) + 0({32

). (2.9)
24 6

It should be noted that retaining the shell correction -£i is essential in obtaining 

Leboeuf's density of states [4, 5]. Neglecting higher order {32 terms in Eq. (2.9), we 

use a saddle-point condition to arrive at the density of states with the saddle-point 

condition defined by the familiar equation , 

as a 
a[31Po = E + a[3o ln Z(f3o) = 0. (2.10) 

The previous equation has multiple roots in {3, but we choose {30 to be the positive, 

real root such that 

11 
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1 -3 + Jg + 24(E- 1~)-rr2 
f3o = E _ 1._ • (2.11)

12 12 

We expand S((3) about (30 using a Taylor series and expand the third and 

higher order (3 terms such that 

2 . 
S(f3) s<o) +S(2) (/3-~o) + "C?0 S(j) (/3-/3o)' _ e 2 Li3=3 31e 

oo ("'oo SCi) (f3-f3o)3)k
s<o> S(2) (/3-;:o>2 (1 ~ L..Jj=3 j! ) (2.12)- e e + L..J k! , 

k=l 

where S(k) = 8k%j~o) lf3o· Using the expansion in Eq. (2.12), we evaluate the density 

of states, 

es<o> S(4) S(6) + 108(3) 1 
(2.13)p(E) = V27r8(2) (1 + 8(8(2))2- 48(8(2))3 + 0((8(2))4)), 

with the non-Gaussian part retained. 

The first term for the density of states was obtained, for example, by Tran[11]. 

The first few saddle-point correction terms can be found in Hoare[12] and in Appendix 

A. We retain terms up to 12th order in the derivative of S ([3) with the reasoning stated 

in Appendix A. 

The logarithm of the density of states is taken and then expanded about a 

large excitation, E, to reproduce Bethe's asymptotic terms in Eq. (1.1) along with 

Leboeuf's low excitation energy corrections[4, 5]. Ayoub's compressed formula[13] for 

the density of states is given as well with E = E - i4 • 

The density of states, 
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Number partition and Density of States for single 
species of particles 

- Bethe's density of states -Leboeuf's density of states X Exact Result 

~35 

!Sao 
-leU)

!25 
tl) 20 

0 
~15 

·;;c 10 

CD 
Cs 

0 2 9 

Excitation Energy E/(l'lw) 

10 

Figure 2.3: The density of states for one species of particles in a harmonic well. The 

top curve is Bethe's approximation and the lower curve is with Leboeuf's excitation 

energy corrections. Crosses represent the exact number of states p(E). 
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lnp<1)(E) 

(2.14) 

is plotted against Bethe's asymptotic density of states and the exact number of states 

as shown in Figure 2.3. 

2.3.2 Derivation for two species of particles 

For two species of particles, such as a neutron and proton system, within the 

equispaced, nondegenerate spectra, the excitation energy can distribute itself over 1 

set of particles or over both sets. This creates more possible excited configurations 

as shown in Figure 2.4. The exact number of states for n units of 1iw is 

n 

p<2)(n) = Lp(i)p(n- i). (2.15) 
i=O 

Because we are dealing with two species of particles, the canonical partition 

we used in the previous section is not convenient and we need a Grand Canonical 

partition function. The quantum density of states, 

p(e, N, P) = L 8(N- n)8(P- p)8(e- ei(n, p)), (2.16) 
i,n,p 

is summed over all possible energy configurations, ei(n, p). We label one species as 

neutrons and label the number of neutrons by N and the other species as protons and 

label the number of protons by P. A triple Laplace transform of the density of states 

yields a Grand Canonical partition function, 

14 
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7 7 7 

6 6 6 

5 5 

4 4 4 

3 3 3 

2 2 

1 

0 0 0 

Groundstate 1 unit of excitation 1 unit of excitation 

7 


6 6 


5 5 


4 4 


3 3 


2 2 


0 0 

2 units of excitation 2 units of excitation 
7--------- 7 7 

6 6 6 


5 5 


4 4 4 

3 3 3 

2 2 

0 0 0 

2 units of excitation 2 units of excitation 2 units of excitation 

Figure 2.4: Two species of noninteracting particles in a harmonic oscillator well. 

(Top-right) The ground state of the system. (Top-left) Two states are possible for 

one unit of excitation. (Bottom) Five states are possible for two units of excitation. 
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Z/;({3, aN, ap) - 1oo 1aoo100 

df. dN dP p(~, N, P)e"'PP+o.NN-f3e 

- E eapp+a.Nn-f3f.i(n,p). (2.17) 
i,n,p 

The variables conjugate to particle numbers P and N, ap and aN respectively, are 

defined as ap = f3J..Lp and J..Lp the proton chemical potential, and aN = f3/-LN and J..LN 

the neutron chemical potential. Inverse Laplace transforming the partition function 

gives us our density of states for the system, 

We use a product definition of the Grand Canonical partition function, 

00 

zg(ap, aN' {3) = IT((1 + eap-f3€n) (1 + ea.N-f3€n) )g(n)' (2.19) 
n=O 

for fermions (14]. The single particle energy levels are denoted by En. The energy 

degeneracy is denoted by g(n) and g(n) = 1 for a nondegenerate spectrum. 

The total energy of the system is ~ with ~ = ~o +E and ~0 the ground state of 

the system associated with a fermi system. To correspond to the number of partitions 

with two sets of integers, the protons and neutrons are assumed to be spinless and 

noninteracting. 

As previously, lnZg(ap, aN, {3) is evaluated by an Euler-Maclaurin expansion 

which yields an expression, 

(2.20) 

16 
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after neglecting cubic and higher order (3 terms and assuming the chemical potentials 

are large. Similar to an expression in Rosenzweig [15] but for two species of particles. 

We evaluate the chemical potential integrals by setting the exact ground state 

to e~i) = i(i - 1)/2 for the ith species and then by completing the square on the 

variables ai. We are left with a similar two species entropy condition, 

1 1T"2 
82((3) = (3(E- ) + (3 + ln(3 -ln(21r), (2.21)

12 3

as in Eq. (2.7) with the particle number information eliminated. 

Proceeding in much the same way as in the previous subsection, we obtain a 

two species density of states, 

ln(p2(E)) = 

(2.22) 

The first two terms are Bethe's asymptotic terms found in Eq. (1.2) and 

the E-! term matches Leboeuf's term. But the E-1 correction coefficient does not 

3match Leboeuf's E-1 correction coefficient[6], 1 + ~:. However, a plot of Figure 2.5; 2 

shows the Gaussian integrated technique to achieve a slightly better fit than Leboeuf's 

number-theoretic technique to the actual density of states. 
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2 species density of states 

I • Exact -Bathe's -Leboeuf's - ·- · Saddle-point methods I 

70 

i' 
.Cso 
:;""" 
U) 
Cl) 50 

i 
U)40 

0 
~ 30 

·;; 

£! 
c 20 

10 

o~------~------~------~--------~------~-------4 
0 2 3 4 5 6 

Excitation Energy E/(fuo) 

Figure 2.5: The density of states for two species of particles in a trapped harmonic 

well. The top curve is Bethe's approximation. Leboeuf's number-theoretic corrections 

are higher than the evaluation of the density of states by a saddle-point technique, 

which is represented by the dashed line. Diamonds represent the exact number of 

states for two sets of particles. 
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Chapter 3 

Particles confined in degenerate 

spectrums 

We now study systems of particles confined to a degenerate equispaced spec

trum, the 3-D harmonic oscillator. In the previous chapter, it could be shown that 

the number of macrostates for bosons or fermions within an equispaced, nondegen

erate spectrum was directly related to the number of partitions of an integer. This 

is not the case for bosons or fermions confined to in a degenerate spectrum. In 1-D, 

the number of macrostates was one for the system at the groundstate. The number 

of macrostates for a fermion system at the ground state energy can be shown to be 

n(O) = 9Cp with g the energy degeneracy of the last filled shell and p the number of 

particles occupying the last filled shell. Four such states are shown in Figure 3 

There is no quick method to calculate the number of excited states for a system 

of fermion particles within the degenerate, harmonic oscillator spectrum. Each excited 

microstate must be saved and compared with other possible microstates of the system 

to eliminate possible duplicate microstates being computed. We can arrive at a series 

19 
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5--------------------------- 5---------------

4-------------------------- 4 --------------------

2 -----~·~·~·-·~·~·~·-·---- 2 ---~·~·~·-·--·~·~·-------

1 -----------ii·----·f--lliil·-------- 1 -------i·---·1---ii·l-------
0---------------llilll--------- 0---------·~----------
5---------------- 5-------------

4-------------------- 4------------------

2 ----~·~·~·.r~·~·~·------- 2 -----·~·~·~·---·~·~-----

1 ---------i·---·~·-------- 1 --------1·-·--·~·-----------

0----------·~------
0 -------~·-·~------

Figure 3.1: Four out of 210 possible microstate configurations are shown for a fermion 

system at the ground state energy. 
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expression for the density of states of the system and show that the density of states 

fluctuates at the magic numbers of the system, Pt = l:~=0 g(n), with the degeneracy 

of each level for the 3-D harmonic oscillator given by g(n) = (n+l)Jn+2). 

The generation of the exact number of microstates for a system of boson 

particles is much easier. The number of excited microstates of this system is related 

to the number of repeating parts in a partition of integers and the degeneracy of the 

level for the integer value of the repeating part. The integer 3 can be expressed as 

3 = 1+1+1. Three particles are excited to the first excited state with the degeneracy 

of the level, g(1) = 3. There are ten possible microstate configurations and can be 

counted by obtaining the partitions of the number of particles in the level with the 

number of parts less than or equal to the degeneracy of the level. Table 3.1 gives the 

exact number of microstates for an excitation energy in integer units of the spacing 

of the levels, 1iw. 

The evidence for shell effects can be found in nuclear level densities for various 

elemental isotopes [8]. At the nuclear magic numbers, {2, 8, 20, 28, 50, 82, 126}, the 

fitting parameter g0 from Eq. (2.2) drops from the mean value. The major shell effect 

can be reproduced theoretically by insertion of orbital periods and other numerical 

constants. However, this chapter will show that it is possible to reproduce the major 

shell effects by the statistical approach with the oscillations contained in the low 

excitation energy corrections. 
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Table 3.1: Number of microstates for boson particles in a 3-D harmonic 

spectrum. 

Integer Number of Microstates 

0 1 


1 3 


2 12 


3 38 


4 117 


5 330 


6 906 


7 2367 


8 6027 


9 14873 


10 35892 
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;~!'';'::ti.o 
.. ,..,...... ::····.:·::t.''.o.:,.·.·.'.>.••..'··:····,.~ ~·L~... _: ;' ·.: :·..:·._:· ~ 

. ··'' 

Figure 3.2: A plot of the single particle level density parameter, y0 , for various nuclear 

elements. The fitting parameter, a = y0 , variies about the mean trend line of the 

particle number given by~· 
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3.1 Method 

3.1.1 Derivation for systems of bosons 

We start with a canonical formulation for the density of states. The canonical 

partition function is given as 

(3.1) 


with x = e-f31iw and BN(x) a bosonic polynomial, with the polynomials to the 2-D 

harmonic oscillator found in Tran's thesis work [16] and the polynomials to the 3-D 

harmonic oscillator found in Schmidt and Schnack [17]. The energy degeneracy for 

the 3-D harmonic oscillator system is g(n) = (n+l)in+2). The single particle energy 

spacing is set to !iJ.JJ = 1. The Euler-Maclaurin expansion is peformed on the logarithm 

of the partition function, Z((3), to obtain 

-{3 19 7r
4 3((3)

lnZ((3) - lnBN(e ) - 480(3 + 90(33 + 2{32 
2

7r 5 1 3 1+ (3 + 81n(3- 2ln(27r) + ((1, -1) + 2((1, -2). (3.2)
6 2

with the single parameter zeta function the Riemann Zeta function and the double 

parameter zeta function to be the Hurwitz Zeta function, ((n, q) = I:%:1 (k;q)n. 

We neglect lnBN(e-f3) from the partition function by the assumption that when the 

temperature is low, this term goes to zero and when the temperature is high, the 

value of the function is negligent compared to the dominant 9~;3 temperature term. 

Using the temperature saddle point condition, ~~ lf3o = 0, the solution to the 

saddle point condition, {30 , is a solution to a quartic equation and not easily express

ible. We use the standard expression for the saddle point density of states, 
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s<o) 
(E)- e (3.3)P - 2) '-v;:::2rr==s::::;c~

as found in Ttan [11], for example. The non-Gaussian correction terms are left out 

because of series convergence issues for small excitations. A plot of the non-Gaussian 

correction terms, given by Figure 3.3 and as they appear in Appendix A, shows 

convergence for large values of the excitation energy. It's possible that not enough 

non-Gaussian terms are being retained, for small excitation energies, to obtain an 

overall reasonable correction term. A large excitation energy series expansion also fails 

due to the amount of recursion necessary to evaluate the series expression. However, 

a plot of of the density of states in Figure 3.4 shows considerable agreement to the 

exact number of bosonic microstates for a fixed excitation energy. 

3.1.2 System of fermions 

The main goal in this section is to show that the density of states can naturally 

explain the shell effects of half-filled levels and oscillation can be explained by the 

coefficients to the low excitation terms in the density of states calculations. Our 

method will closely follow Bohr & Mottelson [14]. We start with a Grand Canonical 

fermion partition function 

zt; (aN' ap, {3) = II
00 

(1 + eaN-f3€n) (1 + eap-f3€n )g(n)' (3.4) 
n=O 

valid as the number of particles grows large. We label one species of particles 

as neutrons and the other species as protons as defined in Chapter 2. The single 

particle energy levels are defined as En = liw (n + ~). The fermions are not assumed 

spinless this time and the energy degeneracy, g(n) = (n + 1) (n +. 2), accounts for 
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Figure 3.3: Hoare's non-Gaussian correction factors to the density of states. For large 

excitation values, the correction factors become negligent. 
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Figure 3.4: A plot of the density of states for one species of bosons residing in a 

degenerate harmonic well. Crosses represent the exact number of microstates for the 

given excitation energy. 
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this. We evaluate the entropy, S(aN, ap, {3) = f3e- aNN- apP + lnZ(aN, ap, {3), 

with the chemical potentials of the respective particles and temperature assumed to 

be large, specifically under the condition 1iw << T ~ J.L(i)' where Tis the temperature 

in units of the Boltzmann constant, kb. This leads to defining the logarithm of the 

partition function, ln Z(aN, ap, {3), as 

lnZ~(ow, ap, {3) - }:0!3 + (11'P + 1/'N) (a(i) - {3€)ij(€) dt 

~2 7~4 
+6{3(g(J.Lp) +Y(J.LN)) + {33 (g"(J.Lp) + g"(J.LN)), (3.5)360

with g(E) as the energy degeneracy as a function of the energy. 

The shell correction, J8~, is specific to the 3-D spherical harmonic oscillator 

potential but other than this constant, (3.5) is still a general expression for a fermion 

system. We are left with a triple saddle-point condition to solve for the corrected 

density of states. 

as(ap, aN, {3) I - 0 (3.6)aap aNo,apo,f3o 

as(ap, aN, {3) I - 0 (3.7)aaN aNo,apo,f3o 

as(ap, aN, {3) I - 0 
8{3 aNo, apo, f3o - (3.8) 

There is no analytic solution for the chemical potentials and temperature so we 

130approximate the chemical potential saddle-points further by defining P = J
~ 

dE g(E)0 

where the fermi energy is the chemical potential for the ith species. Our temperature 

independant saddle points for the chemical potentials are 

1 1 1 1
J.Lio = - (12P + v'-1 + 144P2)3 + - (3.9)

2 2 (12P + y'-1 + 144P2) 3 
1 • 
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This allows us to obtain a solution for the saddle point temperature as defined by the 

following reduced quartic equation, 

8S(ap, aN, {3) 17 1r
2 

8{3 laNo, apo, {1o - E + 8e5 + 8e~ + 480 - 6{35 (g(J-Lpo) + g(J-LNo)) 
2 

7r (-'( )/-LPO -1( )/-LNO)-- 9 /-LPO - - 9 /-LNO 
6~ ~ ~ 

17 7r2 
2 2 1 1 77r

4 

- E + 480- 2((J-LNo) + (J-LPo) - 6) f35 - 90{3~ 
- 0, (3.10) 

and 8eai) = eai) - tai) the difference between the exact quantum mechanical zero

temperature groundstate eai) and the smooth quantum mechanical groundstate tai) = 

JciiO d€ €g( €). 

With the given saddle-points, we expand S(ap, aN, {3) by a triple Taylor series 

about the saddle-points. The zeroth order derivative is taken outside of the integral, 

while the first order derivatives vanish under the saddle-point conditions. Our density 

of states then becomes 

p(N,P,E) 

(3.11) 

with the second order derivatives collected into the expression, 
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(3.12) 

all third order derivatives collected into S(3), etc. The integral is solved by completing 

the square on the second order terms defined by Eq. (3.12). The density of states 

can be expressed as 

_ eS(a.No,a.po,f3o) ( ) ( ) 
p(N,P,E)- y'l5 (1+G 4 +G 6 + ...), (3.13) 

where Dis a determinant of second order entropy derivatives and can also be found 

in Bohr & Mottelson [14], and Q(k) represents the Gaussian integrated kth order 

derivative terms, when e8<3)+s<4>+... is expanded as a Taylor series. Finally, performing 

a large one-particle level density series expansion on this density of states, we obtain 

the following density of states 

!J77E+! (ot.C +ot.~+&>. IJ[es a 2 v FJ 
p(N, P, E) ex 5 , (3.14)

E4 

with 'fJ = 1r2 ( J'tro~J'ko - ~) closely related to the single particle density at the fermi1
energy. 

A plot of Eq. (3.14) in Figure 3.5 shows a lower density of states when the 

shells are completely filled compared to the high density of states when the shells are 

half-filled. We provide a 2-D plot of this density of states along the P = 41 line in 

Figure 3.6. 
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Figure 3.5: The density of states for two species of particles in a 3-D harmonic well. 

For a fixed excitation energy of 5 units of 1iw we can see oscillation structure at the 

harmonic oscillator magic numbers and we see growth in the density of states with 

increasing particle number. 

31 




M.Sc. Thesis- A. Jelovic 
McMaster - Physics & Astronomy 

ln(Density of States) forE= 5at 41 

52.5 
,.,.....__ 
U)..Q) ..ca 47.5 

t/) .... 
0 42.5 ..>·-U)c 37.5 

Q) 
Q,__,., 
c 32.5-

27.5 
0 10 20 30 40 50 60 70 80 

Neutron Number N 

Figure 3.6: The logarithm of the density of states with fixed proton number P = 41, 

and varying neutron number only. 
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Chapter 4 


Discussion 


Working with the canonical partition, we are able to derive Leboeuf's low 

excitation energy corrections [4, 5] for particles confined within the equispaced, non

degenerate single-particle spectrum. A high temperature asymptotic expansion for 

the density of states, while incorporating non-Gaussian corrections, was valid. The 

hope was that a statistical derivation for the density of states for other systems would 

provide us with a correct series expansion for the density of states for other systems. 

Generalizing the saddle point technique to two species of fermion could provide us 

with the first of Leboeuf's low excitation energy corrections [6] but the coefficient to 

the second correction, under the saddle point technique, was an order of magnitude 

smaller than Leboeuf's. 

Generalizing to a system with degeneracy, the saddle point does hold for a 

system of bosons. The difficulty in attempting to obtain an exact series expansion 

for the density of states is in the amount of recursion necessary to expand the quartic 

solution for the temperature. The non-Gaussian correction factors also appear diver

gent for low excitation energies with the possible explanation that not enough of the 
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correction factors have been retained. 

The issue of a density of states phase transition in Bose-Einstein condensation 

was not addressed. The number of particles was very large and the critical tempera

ture Tc ex: Nl w, such that the saddle point temperature was never above the critical 

temperature of the system. 

Applying the saddle point technique to a system of fermions within a degen

erate single particle spectrum does yield shell structure in the low excitation energy 

corrections, as a function of the particle numbers. As Rosenzweig [15] had predicted, 

the density of states is highest when the partially filled shell level is half filled and 

lowest when completely filled. The algorithm to generate the exact number of states 

was not developed, due to the necessity of linked list data structures and the number 

of levels that would need to be reproduced. 

34 




Appendix A 

Non-Gaussian terms 

1 1c+too
h(y) = £(f(x), y) = -() dx e8 (x) (A.l)

21f''/, C-'1.00 

We start with the inverse Laplace transform of any single variable function 

and c a real constant to the right of all singularities. The functions, S(x) and g(x), 

are defined as S(x) = g(x) +yx and g(x) = e1nf(:.r:). In this paper, S(x) is the entropy 

and g(x) is the logarithm of the partition function. Taylor expanding S(x) about a 

positive, real point of zero slope given by x0 leaves us with 

e d S(2) (m-mo)2 b(x)S(O) 1'*""'h(y) - -- xe 21 e (A.2)
21f''/, C-'1.00 

sC3) (x- xo)3 sC4) (x - xo)4b(x) - (A.3)3! + 4! + .... 

We follow the notation as in in Chapter 2 and define S(k) = txS(x)lxo· The 

second exponential function, the non-Gaussian part eb(x), is expressed as its Maclaurin 

expansion. A variable substitution is made in order to evaluate the integral. The 
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constant c is set so that c = xo and define the integration variable u so that imaginary 

numbers are eliminated from the density of states, with u = x~xo . Odd powers of u 

in the exponential expansion drop out when integrated and we collect similar even 

powers of u which leaves us with 

(A.4) 

2
We use the Gaussian integration relation J: dx x2ne-ax = <2;n~~)!! J! to ob

tain a final expression for 

es<o> 8(4) 8(6) + 10(8(3))2

h(y) 
 - V27r8(2) (1 + 8(8(2))2 48(8(2))3 


8<8) + 568<3)8<5) + 35(8<4))2 


+ 	 384(8(2) )4 

8<10) + 1208(3)8<7>+ 2100(8<3))28<4> + 126(8<5))2+ 2108<4)8<6) 

3840(8(2)) 5 

5958(4) 8(8) + 462(8<6>) 2 + 277208(3) 8<4)8<5) + 15400(8<3))4 

+ 	 46080(8(2))6 
2208<3) 8<9) + 8<12) + 7928<5) s<7) + 9240(8<3)) 28<6> + 5775(8<4>)3 

+ 	 46080(8(2))6 

1 
+0((8(2))7)) 	 (A.5) 

up to 7th order in s~> . 

For the equispaced nondegenerate harmonic oscillator, with the appropriate 

· bl b 't · 1 · · · · s<4
> d cs<a~)2 • ldvaria e su stl utions, a arge excitation senes expansion on csc2>)2 an csc2 ) 3 yie s 

IT Th (S(6) S(3)S(5) (St))2 (S(3))2S(4) d (S~3~)4 • ld 
terms o f order y "E· e terms, ~' cs<2))4 , (s 2>)4 , cs<2>) 5 , an (S 2 ) 6 y1e terms 

of order -k. The leading order on these terms does change with one species of particles 

or two species of particles. 
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