
DYNACOMM: THE EXTENSION OF COMMUNITY

TO SUPPORT DYNAMIC RECONFIGURATION

BY: XIANG LING

B.ENG.

DYNACOMM: THE EXTENSION OF COMMUNITY

TO SUPPORT DYNAMIC RECONFIGURATION

By

XIANG LING, B.ENG.

A Thesis
Submitted to the School of Graduate Studies

In partial fulfillment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

©Copyright by Xiang Ling, January 2007

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

MASTER OF SCIENCE (2007) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
DynaComm: The Extension of CommUnity to Support Dynamic Reconfiguration

AUTHOR: Xiang Ling, B.ENG. (Anhui University)

SUPERVISOR: Dr. Tom Maibaum

NUMBER OF PAGES: viii, 146

jj

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

Abstract

Architecture Description Languages were developed to support the abstract level
of software structuring that is the subject matter of software architecture.
CommUnity is an ADL built on co-ordination principles and a categorical
framework to support the composition of specifications of components to form
the system's specification. However, an important problem of CommUnity is the
lack of support for specifying the system's architectural changes in both the set
of components and the connections between them.

This thesis presents DynaComm, an extension of CommUnity to support
hierarchical design and dynamic reconfiguration of component based systems.
Several new language constructs are introduced into DynaComm: subsystems
are coarse grained components which are considered as the basic unit for the
construction of systems, connectors encapsulate a component interaction pattern
that can organize the possibly complicated interactions between the components
of a subsystem. We also propose the idea of interface manager to solve the
problem of incorrectly synchronized actions in CommUnity, and the concept of
population manager to manage the live instances of components in a subsystem,
through which we can model potentially complicated dynamic reconfigurations
in a system.

To use the semantics of CommUnity in defining the semantics of
DynaComm, a "normalization" technique is introduced to transform the
parameterized (indexed) actions into "normal" actions of CommUnity and reduce
the specification of connectors and subsystems to flat CommUnity designs, so that
we can derive the system's semantics in a certain state.

Two illustrative examples, fault-tolerant dynamic client-server and vending
machine systems, are also given to show the usage of DynaComm in modeling
complicated and dynamic systems.

Ill

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Tom Maibaum, for his
guidance, support and faith throughout my research of this thesis. Although
usually very busy, he was always willing to answer my questions, discuss the
problems and difficulties I encountered, and suggest directions or materials to
explore. I am really grateful that he agreed to supervise me.

I wish to thank Dr. William Farmer, Dr. Jacques Carette and Dr. Wolfram
Kahl who gave me useful advice and feedback on my thesis work. I would also
like to thank all the members of the Software Quality Research Laboratory.

Special thanks to my wife, my daughter and my parents, for their unflagging
love, encouragement and support, which provides me the best "Community" for
my work.

Last, I would like to acknowledge the financial support from Ontario
Graduate Scholarship of Science and Technology (OGSST).

iv

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Table of Contents

1. INTRODUCTION ... 1

1.1 Motivation .. 1
1.2 Some basic concepts .. 2
1.3 The origin of ADLs .. 5
1.4 Contributions and thesis outline .. 6

2. BACKGROUND ... 9

2.1 Dynamic Wright .. 10
2.2 Darwin .. 16
2.3 Dynamic Acme ... 20
2.4 CommUnity and its semantics .. 24

2.4.1 The syntax of the language ... 26
2.4.2 The semantics of CommUnity designs ... 29
2.4.3 The morphisms between designs .. 32
2.4.4 The composition of designs .. 42

2.4.4.1 Disjoint parallel composition ... 42
2.4.4.2 Parallel composition with interaction ... 44
2.4.4.3 Regulative superposition with refinement.. 46

2.4.5 The Producer-Consumer example ... 51
2.5 Summary .. 54

3. THE DYNACOMM LANGUAGE .. 55

3.1 The motivation of DynaComm ... 55
3.2 Syntax ... 56

3.2.1 Component .. 56
3.2.2 Connector .. 62
3.2.3 Subsystem ... 66

3.3 Population manager .. 69
3.3.1 Design choice .. 69
3.3.2 Our approach ... 70

3.4 The dynamic client-server system ... 71
3.4.1 Basic components ... 72
3.4.2 Subsystem MCServer serving multiple clients 73
3.4.3 Interface Manager: the regulator for MCServer 77
3.4.4 Connector DCS and subsystem DynamicCS .. 81
3.4.5 Some Temporal Properties ofDynamicCS ... 86

v

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

3.5 An improved dynamic client-server system .. 86
3.6 Summary ofthis chapter ... 95

4. THE SEMANTICS OF DYNACOMM ... 97

4.1 The normalization of actions .. 98
4.1.1 The actions for population management.. ... 98
4.1.2 Reconfiguration actions .. 100

4.1.2.1 Predicates of the connector ... 101
4.1.2.2 Attach and Detach actions .. 102

4.1.3 The sequence of actions .. 103
4.1.4 An example ... 104
4.1.5 Regulator for subsystem DynamicCS ... 108

4.2 The transformation procedure .. 113
4.3 Summary ... 115

5. DESIGN WITH EXTENSION MORPHISMS ... 117

5.1 Combine regulative superpositions with extension morphisms 117
5.2 An example vending machine system ... 119

5.2.1 The design of the customer ... 120
5.2.1.1 The interface controller .. 120
5.2.1.2 The slot ... 123

5.2.2 The design of the vending machine .. 126
5 .2.2.1 The vender .. 126
5.2.2.2 The inventory .. 130

5.2.2.3 The vending machine subsystem .. 132
5.2.3 The extended vending machine system .. 134

5.3 Summary .. 137

6. CONCLUSIONS AND FUTURE WORK .. 139

6.1 Review ofDynaComm and Contributions .. 139
6.2 Future Work ... 141

vi

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

List of Figures

Figure 2. 1 Configuror Producer-And-Two-Consumers 15
Figure 2. 2 Graphical Representation of Darwin Components 17
Figure 2. 3 Composite component Producer_ Consumer 18
Figure 2. 4 Graphical representation of Dynamic _Producer_ Consumer. 19
Figure 2. 5 Producer-Consumer system in Acme .. 21
Figure 2. 6 The Dynamic-Producer-Consumer system 23
Figure 2. 7 Disjoint parallel composition of designs 43
Figure 2. 8 The pushout of two designs ... 45
Figure 2. 9 Graphical notation of a connector ... 46
Figure 2. 10 Calculate the colimit of a connector .. 47
Figure 2. 11 Combine regulative superposition and refinement morphism ... 48
Figure 2. 12 Graphical notation of an instantiated connector 49
Figure 2. 13 Configuration diagram of Producer-Consumer system 53

Figure 3. 1 Graphical notation of component in DynaComm 59
Figure 3. 2 Higher-order connector Monitoring .. 65
Figure 3. 3 Graphical notation of subsystem in DynaComm 68
Figure 3. 4 Generating class manager .. 70
Figure 3. 5 Dynamic Client-Server system .. 72
Figure 3. 6 Configuration diagram of subsystem MCServer 74
Figure 3. 7 Graphical notation of subsystem MCServer 76
Figure 3. 8 The problem of synchronized actions in CommUnity 77
Figure 3. 9 The interface manager ... 79
Figure 3. 10 The regulator for interface management 80
Figure 3. 11 Configuration diagram of connector DCS 82
Figure 3. 12 Graphical notation of subsystem DynamicCS 85
Figure 3. 13 Configuration diagram of subsystem PMCServer. 87
Figure 3. 14 Graphical notation of subsystem PMCServer 89
Figure 3. 15 Configuration diagram of subsystem FT-MCServer 90
Figure 3. 16 Graphical notation of subsystem FT-MCServer 92

Figure 4. 1 The change of configuration in a dynamic system 97
Figure 4. 2 The mapping between the name variables and the name space 100
Figure 4. 3 The regulator for subsystem DynamicCS 109
Figure 4. 4 Graphical notation of subsystem DynamicCS 109

vii

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Figure 4. 5 Graphical notation of regulator DCS-reg 11 0
Figure 4. 6 Graphical notation of subsystem RDynamicCS 112
Figure 4. 7 Configuration diagram of system S .. 113
Figure 4. 8 The association ofthe system is a connector. 114

Figure 5. 1 Combine regulative superposition and extension morphism 118
Figure 5. 2 Graphical representation of the controller component 122
Figure 5. 3 Graphical representation of the slot component.. 126
Figure 5. 4 Graphical representation ofthe vender component 129
Figure 5. 5 Configuration diagram of the vending machine subsystem 132
Figure 5. 6 Configuration diagram of the vending machine system 133

viii

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Chapter 1

Introduction

This thesis is mainly concerned with the design of an Architecture Description
Language (ADL), DynaComm, to support dynamic reconfiguration and
hierarchical organization of component-based systems. This chapter provides an
introduction to this thesis, including the motivation, some basic concepts, the
origin of ADLs, contributions and thesis outline.

1.1 Motivation

According to [28], the concept of ADL is proposed to provide formal modeling
notations, analysis and development tools to support architecture-based
development, which focuses on the system's high-level structure rather than the
implementation details of any specific modules. CommUnity is an ADL built on
a categorical framework to support the composition of specifications of
components to form the system's specification, and serves as a basis for the
design of the DynaComm ADL. The mechanisms for composing specifications
consist of the notion of regulative superposition morphisms between the
component specifications and the use of universal constructions, such as the
pushout and colimit operations of category theory [15]. Through the separation
of the concepts of action blocking and action progress and the use of
underspecification for defining the effect of multiple assignments, CommUnity
also provides a well-defined notion of refinement, which is combined with the
composition mechanisms in a nice way (as we will show in section 2.4.4.3).
Moreover, CommUnity has some tool support, the CommUnity Workbench [32],
which provides an integrated environment for editing designs, defining the
interconnection between designs and performing the co limit generation [15].

However, CommUnity does not provide a coarse-grained construction unit
within the language, which can contain subcomponents, such that system
specification will be organized in a hierarchical way. The only language
construct of CommUnity is the notion of design and the system's architecture
built from designs is a flat configuration diagram without hierarchical structure.
We will introduce the concept of subsystems into DynaComm (see chapter 3) to
support the hierarchical organization of the system's architecture.

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Another problem of CommUnity, which is the main focus of this thesis, is
the lack of support for specifying a system's structural evolutions during run
time, because CommUnity itself does not provide the mechanisms for talking
about structural change in the configuration diagram of the specified system.
Although graph grammars [14] have been introduced to the CommUnity
language, to define the reconfiguration operations for creating or deleting
components and changing the connections between components so that the
change of configuration diagrams during dynamic reconfiguration can be
implemented by graph rewriting rules, it is not amenable to hierarchical
structuring because it uses a meta-language for the definition of these operations.
As a result, it will be difficult to reason about the properties of a system
specified by these two different languages. The DynaComm ADL will
incorporate dynamic reconfiguration operations into the language and some
temporal logic based formalisms can be related to DynaComm specifications to
support the verification of the properties of specified systems, including
reasoning about reconfiguration (see future work in chapter 6).

1.2 Some basic concepts

As we mentioned in the above section, the main intention for our work on
DynaComm is to describe the dynamic reconfiguration of component-based
systems. Therefore, some related concepts need to be clarified to provide a
context for the DynaComm ADL.

> Component-based systems

The term component is a common concept provided by most of the popular
ADLs, such as Wright [11], Darwin [26], Acme [19] and CommUnity [15].
According to [31], "A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to
composition by third parties". The key notion here is that the explicit
dependencies must be declared in component specifications, which distinguishes
components from the concept of classes in object-oriented languages, where the
dependencies cannot be enforced. Components are coarse grained in the sense
that they may contain subcomponents within themselves, and components can
be developed by a variety of coding paradigms. Therefore, component-based
systems have become popular in the software development field because

2

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

components are easy to understand, reuse, replace and deploy.
The key difference between component-based systems and traditional

systems is the incorporation of an underlying framework to support the
interactions between the components, which is called a component model. The
entities developed within component-based systems must conform to this model,
in which they are placed in containers and connected with other components.
Although the methodology of decomposing a system into smaller units with a
loose coupling among them is also used by traditional systems, it will not be
feasible to check the system's compliance with a component model due to the
lack of the underlying framework built into these systems.

To conform to the concept of designs in CommUnity, components are
treated as the atomic construction units in the DynaComm ADL, so that
substructures are not allowed to be included within components. Instead the
notion of subsystem is proposed as the appropriate definition of component
discussed above. A subsystem may contain (atomic) components or other
subsystems as constituents, thus providing the coarse-grained building blocks to
construct the systems in a hierarchical way and support the development of
component-based systems with the DynaComm ADL. We also have
well-defined relationship between the components, namely morphisms, inherited
from CommUnity, to define the interaction patterns of the components and guide
their composition.

~ Software Architecture (SA)

"Software Architecture involves the description of elements from which systems
are built, interactions among those elements, patterns that guide their
composition, and constraints on their patterns" [30]. The aim of SA is to address
the gross decomposition and organization of systems, in which component
interactions are identified as being first-class design entities, so that the
dependencies between the system's components can be captured and it supports
the reuse of individual components as well as the interaction patterns.
Meanwhile, presenting a system at the architectural level reveals the overall
structure of the system and makes it easier to understand and extend.

It is argued in [15] that the complexity of system construction mainly arises
from the interconnections between components that regulate how they will
interact, because the system's global properties emerging from these interactions
are difficult to predict. To control the complexity of software systems resulting
from the interactions between the components, Software Architecture uses

3

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

components and connectors to model complex systems [21]. The architecture of
a system is a directed graph, where components are represented by nodes and
connectors are the edges to interconnect the components. By explicitly modeling
the interactions among components with the notion of connectors, the
computational parts of the system are separated from the structure of a system
(which focuses on the interactions), such that the system's complexity arising
from the interactions between components can be addressed and controlled.

ADLs provide a formal way to describe the software architecture of a
system in terms of components and component interactions, and enable the
reasoning about the structural and behavioral properties of the system. The
DynaComm ADL has a well-defined concept of connector, through which we
are able to model the complicated and dynamic interaction patterns among
components and subsystems (which will be illustrated by the fault-tolerant
dynamic client-server example in chapter 3), thus supporting the
component-based software architecture principles.

>- Dynamic reconfiguration

Since one important objective of the DynaComm ADL is to incorporate dynamic
reconfiguration mechanisms into the language, we need to clarify the notion of
dynamic reconfiguration in the context of Software Architecture. From [13], the
behavior of modifying the system's architecture during its execution (run time)
is commonly known as run-time evolution, dynamism, or dynamic software
architecture. We use the term dynamic reconfiguration to refer to the dynamism
in a system's architecture and define it as the description of a system's structural
evolution as execution progresses, where the composition of interacting
components changes during the transition of the system from state to state. Our
definition of dynamic reconfiguration reflects the operational view of the
system's architecture, where each computation step of the system may change its
state or the configuration structure of the system.

For example, let us consider the specification of a system's architecture in
CommUnity, which is represented by a configuration diagram, where designs
(components) are interconnected by "middle" designs (cables) through
regulative superposition morphisms (see chapter 2). Because CommUnity does
not support the specification of actions to change the interconnections between
the components within the language, the configuration diagram of the system is
fixed in CommUnity once the specification of the system's architecture has been
accomplished. However, the configuration diagram of the system might be

4

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

changed as execution progresses, e.g. in a dynamic client-server architecture, a
new client may request to be connected to the server, the communication
protocol between the clients and the server can be changed, or a new server
needs to be created when the number of connected clients exceeds a certain limit.
Therefore, dynamic reconfiguration operations should be introduced into
CommUnity to specify the change of the system's configuration diagram under
the situations discussed above, which will be shown in our design of the
DynaComm ADL.

On the other hand, from the view of architectural style, a system's style can
be defined as a set of architectural elements and the rules governing how they
are composed. Generally these rules are defined by some constraints to restrict
the composition of these architectural elements, and a family of architectural
instances can derived from an architectural style. For example, in Wright a style
must be defined before specifying a system's architecture, which is declared by
a set of component and connector types and the constraints on the configurations
to which every instance of this style must conform. Assuming that we have
declared a style for the above dynamic client-server example, which represents
the set of architectural instances corresponding to those dynamic changes to the
system's configuration, we may conclude that there is no change to the
architectural style during system run time and dynamic reconfigurations occur at
a lower level than the architectural style when we hold an operational view of
the system's architecture. However, we still argue that dynamic reconfigurations
should be considered as an important issue in Software Architecture to deal with
the structural evolutions during system's execution. In addition, if we want to
reason about some temporal properties of the system's architecture, the
specification of dynamic reconfiguration is necessary for describing the system's
structural changes during the run time in order to verify if these properties will
hold during these changes.

1.3 The origin of ADLs

The notion of modularization was raised in the software development field
decades ago when the complexity of software systems was increasing. The
modularization methodology enables the developers to divide the system's
functionality into separate modules, such that the complexity of each individual
module can be managed. It also promotes the structured design principles and
the reusability of the software system by the reuse of existing modules. At the
level of architecture modeling, the consequences of the architectural design

5

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

decisions can be evaluated prior to the implementation stage by following the
modularization principle [4].

Object oriented (00) techniques originated from the idea of modularization,
which encapsulate both data and behaviors into the powerful concept of objects
and provide the mechanisms of class inheritance and polymorphism. 00
paradigms are very suitable for modeling real world entities and processes and
organizing software systems in a natural, elegant and clear way. On the other
hand, Software Architectures [9][20] emerged as a new branch of software
engineering. SA promotes modularization concepts at a higher level of
abstraction, namely components, and introduces the notion of connectors as a
second modularization concept for structurally representing and decomposing
systems in more abstract ways than 00 programming models of systems [4].
Meanwhile, the concept of association classes in UML models has some
relationship to connectors.

Then ADLs were invented as the specification language to provide
higher-level structural descriptions of systems (as introduced in section 1.1),
since describing systems at the programming language module level only
provided a low-level view of interconnections between components, and did not
separate the concerns between computational mechanisms and architectural
level issues (such as the interactions among the components) [21]. Meanwhile,
another issue was raised for ADLs, namely dynamic reconfiguration, which
requires the modification of a system's architecture at run time. Although some
transformation rules and operations have been introduced into some ADLs (e.g.
Dynamic Wright) to enable architectures to change dynamically, the verification
of a system's properties is often performed informally in some meta-languages
[17]. In particular, the previous work on the dynamism of CommUnity uses two
different languages to describe the individual components and the dynamic
changes of the configuration diagrams, which makes the reasoning about the
properties of the "mixed" architectural specifications difficult. This problem has
motivated our work to build the dynamic reconfiguration mechanisms into the
DynaComm ADL.

1.4 Contributions and thesis outline

This thesis contributes both to the successful extension of the CommUnity ADL
to support dynamic reconfiguration, and the illustration of DynaComm's
suitability in specifying reactive and dynamic systems through the investigation
of the design principles implied by different notions of morphisms between

6

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

designs, as well as their relationships and combinations, with two case studies.

The following is a list of specific contributions:

The DynaComm language:
• Clarified the language constructs of DynaComm, such as component,

connector and subsystem, to support the hierarchical organization of system
specification.

• Introduced indexed actions into DynaComm to specify population
management and reconfiguration actions, as well as the interface manager to
reduce the length of specification.

The methodological aspect of the language:
• Defined the concept of a population manager on the subsystem level to

manage the live instances of components, subsystems and connectors of the
subsystem.

• Provided the notion of interface manager to overcome the problem of
incorrectly synchronized actions in CommUnity when using the interaction
mechanisms in a naive way, and designed it as a regulator to be applied to
the target component to support the incremental design principle.

• Demonstrated the usefulness of regulative superpositions as the structuring
mechanism to build systems in an incremental way.

• Proved that in a well-formed configuration diagram, regulative
superpositions can be combined with refinement morphisms or extension
morphisms to form new regulative superpositions, thus enabling the use of
these structuring mechanisms in building designs.

Regarding the semantics of DynaComm:
• Designed a normalization technique to eliminate the indices of actions in

DynaComm and transform the specifications into CommUnity-like, flat
designs.

• Provided the transformation procedure to derive a dynamic system's static
semantics at a certain state.

7

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Case studies:

• Specified fault-tolerant dynamic client-server and vending machine systems
as the proof of concept for the DynaComm ADL, and explored the design
principles supported (and enforced) by this language.

The remainder of this thesis is divided into five chapters.

Firstly, several representative ADLs with support for dynamic reconfiguration
are surveyed in chapter 2, with a special focus on the syntax and semantics of
CommUnity.

Next, chapter 3 defines the basic language constructs of DynaComm and
demonstrates its suitability for specifying dynamic reconfiguration mechanisms
in a reasonably big system containing complicated interactions.

To define the semantics of the DynaComm language, in chapter 4, the
normalization technique is introduced to eliminate the indices of actions and
transform complex DynaComm specifications into CommUnity-like designs in a
systematic way.

Then, chapter 5 presents the approach of combining regulative
superpositions and extension morphisms to add new behavior into the existing
systems and a vending machine system is specified to illustrate the applicability
and necessity of this approach.

Finally, chapter 6 briefly reviews this thesis, summarises contributions and
suggests future work.

8

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Chapter 2

Background

Software architecture research is directed at presenting the high-level
decomposition and organization of systems, where component interactions are
incorporated into the notion of connectors and identified as first-class design
entities. Architecture description languages (ADLs) have been proposed to
provide formal modeling notations, analysis and development tools to support
architecture-based development, which focuses on the system's high-level
structure rather than the implementation details of any specific modules [28].

There has been some work in surveying ADLs providing broad comparisons.
The survey by Medvidovic, N., and Taylor, R.N., in [28] compared ADLs on
their ability to model components, connectors and configurations as well as tool
support for analysis and refinement. The survey by Bradbury, J.S., Cordy, J.R.,
Dingel, J., and Wermelinger, M., in [13] focused on the characteristics of
different ADLs to support self-managing architectures, which not only
implements the change internally but also initiates, selects and assesses the
change itself without the assistance of an external user. In this thesis, we are
interested in the ADLs with support for dynamic software architectures.
Therefore, Dynamic Wright [11], Darwin [26] and Dynamic Acme [19][33] are
surveyed on their language constructs, associated styles of specification and
mechanisms to achieve dynamic reconfiguration. We consider these languages
as a set of representatives of approaches to incorporate dynamism into such
languages.

A detailed review of CommUnity [15] and its semantics are given, and, in
particular, we rehearse the idea that the notion of superposition can be
formalized as a morphism between designs in CommUnity. The concept of
superposition is defined as a structure preserving transformation on designs
through the extension of their state space and control activity while preserving
their properties [15]. So, a regulative superposition morphism is proposed in
CommUnity as a means of augmenting an existing component by superposing a
regulator over it while preserving its functionality, thus supporting a layered
approach to system design. In addition, several different kinds of morphisms
(other than regulative superposition morphisms) between designs as well as their
relationships are also investigated to explain the language's well-founded
support for compositionality, reusability, enforcement of design principles and

9

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

refinement and traceability.
To illustrate the concepts, principles and styles of specifications adopted by

these surveyed ADLs in specifying a system's architecture, an example of
Producer-Consumer system is used through this chapter. The system's
requirement is described as follows. We want to describe a system consisting of
one producer and one consumer. The producer will produce items regularly and
store them into a local queue, from which an item is chosen and sent to the
consumer; then it will wait for a reply from the consumer. If the consumer is not
busy, this item can be consumed and an acknowledgement will be sent back to
the producer, so that it can get another item from the items queue and send it to
the consumer again.

2.1 Dynamic Wright

Dynamic Wright is based on the Wright ADL [10], which originally did not
support dynamic reconfiguration. A system is built from components and
interrelated by means of connectors. In this section we will review the basic
concepts of component, connector and configuration of Wright and use these
constructs to specify a Producer-Consumer system. Then the dynamic
reconfiguration mechanisms will be added to the system, by introducing the
extensions of Wright proposed in Dynamic Wright.

Components are the computational and data storage units of systems in
Wright which contain ports and computations. Ports declare the interface of a
component, which represent points of interaction for this component between its
computational part and the environment. The behavior of components is defined
by their corresponding computations in terms of a sequence of events. We can
view the behavior of a component as a state machine, in which the states are
given by the valid event sequences that can be generated from the specification
of ports and computations, and the alphabet of possible events defines the
transitions.

Components are not allowed to interact with each other directly in Wright.
Instead they must attach to the interaction points (roles) of connectors through
their ports. Glue is the computational part of connectors, which specifies the
coordination of the computations of interconnected components to form a larger
computation. By separating interaction from computation, connectors enable the
interconnected components to be completely independent. A system's
architecture can be specified as a collection of components combined via
connectors, and the families of architectures with common characteristics, which

10

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

are sometimes called an architectural style, is defined by imposing constraints
on components, connectors and configurations as style in Wright.

Now we will specify the Producer-Consumer system by declaring a style in
Wright, using components Producer and Consumer, connector Cable to
interconnect the components and the constraints as defined below:

Style Producer-Consumer
Component Producer

Port p = send __. ack - p II !
Computation = internalCompute - p.send - p.ack __. Computation

II!

Component Consumer
Port p = extract -- mlli - p [] !
Computation

Computation[] !

Connector Cable

p.extract

Role s = send - ack - s II !
Role c =extract - nm.lY __,.. c [] !
II Interconnect two roles
Glue = s.send - c.extract - Glue

[] c.reply _,. s.ack - Glue
[]

Constraints

internal Compute p.reply

VpE Component: TypeProducer(p) => (3c E Component: TypeConsumer(c) 1\
connected(p, c))
EndStyle

The protocol of Producer's port p specifies that the producer initiates event
send, then waits for the reply until it observes event ack and repeats this process,
or it can terminate by ! . In the computation part of Producer, we can see its
behavior: the producer iteratively generates items by internal computation,
makes send events on port p and waits for event ack on the same port, then it
will repeat this sequence or terminate by ! . The use of internal choice II in
Producer indicates that the producer can decide whether to send the item or
terminate. In contrast, the use of external choice [] in the Consumer component

II

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

means that the choice is left to the environment, so that the consumer will
consume the items sent to it continually unless it is "forced" to stop.

Connector Cable is defined to interconnect the producer and consumer,
where its roles s and c have the same protocol as port p of Producer and port p
of Consumer, respectively. The glue specifies the interaction protocol: it
observes the send event of producer and transmits it to consumer's event extract;
the reply event of the consumer is also observed and triggers the ack event of
producer.

A static Producer-Consumer system can be specified as a configuration in
Wright by using the Producer-Consumer style, where the components and
connector types have been defined and are available to be put into the
configuration. The attachment section specifies the connections between the
component instances and the roles of the connector instance. Specifically, the
port p of the producer instance P fills the role s of connector instance B, while
the port p of the consumer instance is attached to the role c of the connector.

Configuration Static-Producer-Consumer
Style Producer-Consumer
Instances P: Producer; C: Consumer; B: Cable
Attachments P.p as B.s; C.p as B.c

EndConfiguration

To specify the dynamism in the Producer-Consumer system, we will
introduce the extension of Wright in [11], Dynamic Wright, which supports the
modification of run time structure of the architecture. The key idea is to separate
the behavior related to the regular computations of components from the
behavior that controls the reconfiguration process. The concept of configuror is
introduced as a separate module to include the events that trigger
reconfiguration actions. The configuror can create and delete instances by using
new and del, and can connect or disconnect components from connectors with
attach and detach.

Now we consider a dynamic Producer-Consumer system consisting of one
producer and two consumers. Initially, the producer is connected to one
consumer. If the consumer is busy with some internal computations, the
reconfiguration action will change the system's configuration by switching the
producer's connection to the free consumer. First, we need to modify the style
specification of the original Producer-Consumer system, which takes the status
change of consumer into consideration and then modify the glue definition as

12

Master's Thesis - Xiang Ling McMaster- Department of Computing and Software

well.

Style Dynamic-Producer-Consumer
Component Producer

Portp=send- ack- Pll!
Computation = internalCompute - p.send - p.ack - Computation

II!

Component Consumer

Port p = (extract - ~ - p II control.busy - (![] control.free

- p))[] !
Computation = (p.extract - internalCompute - p.reply -

Computation II control.busy - (! [] control.free - Computation))[] !

Connector FTCable

Role s = send - ack - s II !
Role c = (extract - ~ - c II control.changeOK - c)[] !
II Interconnect two roles

Glue = s.send - c.extract - Glue
[] c.reply - s.ack - Glue
[]
I I reconfiguration
[] control.changeOK - Glue

Constraints
\1' p E Component: TypeProducer(p) ::::> (3c E Component: TypeConsumer(c) 1\
connected(p, c))
EndStyle

Then we specify the configuror as below, which takes care of the switch of
the producer's connection to a live consumer, whenever the current consumer is
busy.

Configuror Producer-And-Two-Consumers
Style Dynamic-Producer-Consumer
new.P: Producer

new.Cl: Consumer

- new.C2: Consumer

13

Master's Thesis - Xiang Ling McMaster- Department of Computing and Software

_.,. new.Con: FTCable
-+ attach.P.p.to.Con.s
-+ attach.Cl.p.to.Con.c
_.,. WairForChangeConsumer2
where

WaitForChangeConsumerl = (C2.control.busy - Cl.control.free _.,.
Con.control.changeOK -
Style Dynamic-Producer-Consumer
detach.C2.p.from.Con.c
attach.C l.p.to.Con.c
WaitForChangeConsumer2) [] !

WaitForChangeConsumer2 = (Cl.control.busy _.,. C2.control.free _.,.
Con.control.changeOK -
Style Dynamic-Producer-Consumer
detach.C l.p.from.Con.c
attach.C2.p.to.Con.c
WaitForChangeConsumerl) [] !

In the above specification, the configuror first creates one instance of
Producer, two instances of Consumer and one instance of connector FTCable,
and connects the producer instance with the first consumer instance C1 through
the connector. When the control event of C 1 indicates busy and C2 is free, C 1 is
detached from role c of the connector and C2 is attached to role c. Then if the
system detects that C2 is busy, the connection with the producer will be
switched back to Cl. A diagram to illustrate the mechanism of the configuror to
achieve dynamic reconfigurations is as follows:

14

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

Cl:Consumer

p:Prodncer
Con:FTCable

C~:Consumer
4 ..

Producer instance p is connected to the first Consumer instance C 1

·~ C 1 :Consumer

Con:.FTCable

C2:Cousumer

Producer in~tance pis connected to tbe second Con~umer in~tance C2

Figure 2. 1 Configuror Producer-And-Two-Consumers

By introducing the concept of configuror, the reconfiguration actions (such
as attach and detach) corresponding to the events (which trigger the
reconfiguration) can be described explicitly in Dynamic Wright. The imperative
nature of the configuror specification imposes ordering requirements on the
reconfiguration operations, and multiple reconfiguration events can be declared
in the configuror, where each event corresponds to a sequence of reconfiguration
actions to describe the change to the system's configuration when this event
occurs. However, the specification of the configuror will be tedious if we want
to have a dynamic number of consumers in the above example, because for each
consumer (connected to the producer) in the system, a sequence of
reconfiguration actions should be specified in response to the control event that
it is busy.

15

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

2.2 Darwin

Darwin is a declarative language which is intended to be a general purpose
notation for specifying the structure of distributed systems composed from
diverse components using diverse interaction mechanisms [26]. It is different
from an operational language in the sense that it focuses on the description of
the system's structure, which separates the concerns of computation and
interaction. In contrast, we must specify the interaction between components by
the protocols of ports and connectors in Wright, and describe the concrete
computation mechanisms of components in CommUnity. Darwin has built-in
mechanisms to support dynamic reconfiguration, which includes the change of
bindings between components and the creation and deletion of component
instances during run time.

Component is the main computational unit of Darwin, which contains ports,
instances of other components and bindings between ports. Ports signify the
services that one component requires to interact with other components
(indicated by require keyword) or provides to other components for them to
interact with it (indicated by provide keyword). There is a type associated with a
port, which specifies the kind of service required or provided by this port. To
illustrate how components are defined in Darwin, we can look at the
Producer-Consumer example again, and declare the components Producer and
Consumer as follows:

interface Message {}
interface Item {}

component Producer {
require ack: Message;
provides send: Item;

}

component Consumer {
require extract: Item;
provides reply: Message;

}

Component Consumer has a required service called extract, which is of type
Item and corresponds to the item to be consumed by the Consumer. It also
provides a reply service to indicate that it is ready to consume one item. On the

16

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

other hand, component Producer requires a service ack of type Message to make
sure that it can send out the produced item, and provides the service called send
corresponding to the item to be sent by the Producer. The types of services
Message and Item should be declared, and we skip the detailed description here.
Darwin also has a graphical notation for the above specifications as depicted in
Figure 2.2, where the empty circles represent services required by a component
and filled circles represent services provided by a component.

Producer

ack

send

C 011Sutlle!'

reply

extract

Figure 2. 2 Graphical Representation of Darwin Components

To enable the interaction between components, we need to introduce the
concept of bindings, which defines a one-to-many relation between provided
and required ports. Through a binding, the service required by a component is
associated with the service provided by another component. Since the relation is
one-to-many, there may be many required ports bound to a provided port, but a
required port can have at most one provided port bound to it. Composite
components can be constructed from the bindings of basic components, which
allows for a hierarchical composition of systems. (However, composite
components are not supported in Wright, thus limiting the hierarchical
organization of a system's architecture.) For example, we can connect
component Producer and Consumer to obtain a new component
Producer Consumer as follows:

component Producer_ Consumer {
inst

p: Producer;
c: Consumer;

bind {
p.send -- c.extract;
p.ack -- c.reply;

17

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

}
}

The graphical representation is shown in Figure 2.3:

p:Producer c:Consumt>r

r r----Areply

extract

Figure 2. 3 Composite component Producer_ Consumer

Darwin has the built-in mechanisms to support dynamic structures of the
evolving system. Basically it provides two techniques to capture the system's
structural dynamism: lazy instantiation and direct dynamic instantiation. The
meaning of lazy instantiation is that the component providing a service is not
instantiated until a user of that service requires it. For instance, in component
Producer_ Consumer, we can put the keyword dyn before the Consumer so that
the Consumer instance c will be actually created when its reply service is
required by the Producer.

The other mechanism for dynamic reconfiguration is direct dynamic
instantiation [26], which enables the system's structures to evolve in a flexible
way. We will illustrate this mechanism by modifying the Produce_ Consumer
component to allow the creation of new consumers through a new service of the
updated composite component Dynamic_ Producer_ Consumer.

component Dynamic_Producer_Consumer {
provide new<dyn>;
inst

p: Producer;
bind {

new -- dyn Consumer;
p.send -- Consumer.extract;

18

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

p.ack -- Consumer.reply;
}

}

The composite component Dynamic _Producer_ Consumer provides the
service new, which is bound to the component type Consumer prefixed with the
keyword dyn and this port will create Consumer instances dynamically as a
result of component Dynamic_Producer_Consumer's computation. Notice that
we only declare an instance of component Producer in the above specification,
because the Consumer instances created through direct dynamic instantiation are
anonymous and cannot be referred to in the Darwin program. As a result, the
bindings are from Producer instance p to component type Consumer and not to
any instance of it. We can create a dynamic number of Consumer instances in
Dynamic_ Producer_ Consumer and all the live instances of Consumer should be
bound to the Producer instance p. The graphical notation for the composite
component Dynamic_Producer_Consumer is as follows:

p•Producer

ack

send a-----<

;--------------------,
Commner

, Reply

extract
'
' -~--~---~-~~-------~

Figure 2. 4 Graphical representation ofDynamic_Producer_Consumer

Darwin's semantics is based on a process calculus, the n-calculus.
Compared with Dynamic Wright, Darwin does not have the notion of connector
as a language construct. If required, connectors can be modeled with
components and ports along with their bindings, by defining glue and roles as
components and their connections as the bindings. There are certain limitations
for the possible reconfigurations in Darwin, since the two techniques introduced
above for capturing dynamic structure are intended to retain the declarative
notation of Darwin, but do not support general reconfiguration operations. When
the system's architecture must change in response to some influence (events)
during run time, some imperative constructs are required to describe the

19

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

sequence of actions for changing the system's architectural configuration, which
is not supported by Darwin because the component instances created through
direct dynamic instantiation are anonymous and cannot be referred to in these
actions. For example, in the Dynamic Producer-Consumer system, if the current
consumer (connected to the producer) is busy, we need the imperative constructs
to specify the switch operation, which detaches the current consumer from the
producer and attaches a free consumer to it.

2.3 Dynamic Acme

Acme is an ADL built on the experience of using other ADLs, which provides
the essential elements of the architectural description for component-based
systems [19]. Components are the basic computational and data storage units in
Acme, and they are connected by means of connectors to interact with each
other and characterize the joint behavior of component-based systems. In this
section, we will briefly review the syntax of Acme, and use the language to
specify a static Producer-Consumer system to give a view of how architectures
of systems are described in Acme. Since there is no direct support in Acme for
dynamic reconfiguration, the extension of the language, Dynamic Acme, will be
introduced later to specify the dynamic Producer-Consumer system.

The interfaces of components are called ports, which identify the points of
interaction between the components and their corresponding environments. This
concept is similar to a port in Darwin, which declares the services of a
component but does not specify how these services are implemented. Acme's
declarative style originates from the language's intention to serve as a common
representation for software architectures and permits the integration of diverse
collections of independently developed architectural analysis tools [19].

Acme connectors are used to represent the interactions between components.
The interface of a connector is defined by a set of roles, where each role
specifies a participant of the interactions defined by this connector. Systems are a
collection of interconnected components defined by graphs, in which the nodes
represent components and the arcs represent connectors. We may also assign
properties to components or connectors to specify auxiliary information about a
system's architecture, such as the protocols of the interaction and the attributes
of components or connectors. To put these elements together, we can specify the
Producer-Consumer system in Acme as follows:

20

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

System Producer-Consumer = {
Component producer = { Port send }

}

Component consumer = {
Port extract;
Properties { busy: boolean} }

Connector cable = {

Role sender;
Role receiver }

Attachments {
producer.send to cable.sender;
consumer.extract to cable.receiver }

Component producer simply has one port send to deliver the produced items.
The consumer component provides the port extract to get the item to be
consumed, and has a property busy of the boolean type to indicate whether it is
ready to work with the producer. In order to connect these two components, we
define a connector cable with two roles designated sender and receiver, which
provides the acknowledgement/reply communication protocol (the interaction
protocol between the roles can be specified as properties of the connector and
we skip the detailed description here) for the transmission of items, so that we
do not specify the ack port in producer and the reply port in consumer. Then we
can declare the attachments of components and connectors, with the producer's
send port connected to the cable's sender port, and the consumer's extract port
connected to the cable's receiver port. A graphical representation of the system
is as follows:

producer cable
~ consumer ...

send L sender receiver W extract

Figure 2. 5 Producer-Consumer system in Acme

21

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

We may also use component types or connector types to define them, which
allows for the definition of multiple instances of the same type. To support the
hierarchical organization of system specifications, Acme provides the concept of
representation to allow any components or connectors to be represented by
detailed and low-level descriptions. For each representation, a rep-map will be
defined to specify the correspondence between the internal ports (internal
system representation) and the external ports (its external interface).

Now we will introduce the extension of Acme, Dynamic Acme, which
provides dynamic reconfiguration mechanisms through the notion of open

systems. A system is said to be closed if one can assume that all of its parts have
been described and that the only parts that will exist have been described [33].
When we use the keyword open before a system, it indicates that the complete
specification of the system is not present, which implies that a dynamic number
of instances of some components or connectors within the system might be
created or deleted, and the configuration structure of the system will be changed
during run time [33].

The key mechanism in Dynamic Acme to specifY a dynamic element is the
identification process. A component is alive when it is identified to exist in the
system. For the same reason, the properties of the dynamic elements and the
relationships between them need only hold when they have been identified. A
prefix operator, id, is introduced into the predicate language to represent that an
element of the architecture has been identified with some elements of the artifact
being described. Now, we can specify a dynamic Producer-Consumer system
with a finite number (n) of consumers in Dynamic Acme as follows:

open System Dynamic- Producer-Consumer = {
Component producer= { Port send }

open l..n Component consumer= {
Port extract;
Properties { busy: boolean } }

open l..n Connector cable = {
Role sender;
Role receiver } }

Attachments {
producer.send to cable[*].sender;
consumer[*].extract to cable[*].receiver }

22

}

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Constraints:
forany i :: (id consumer[i]) and (id cable[i]) =>

(forany j :: j != i => (not id consumer[j]) and (not id cable[j]))
exists j :: G > 0) and G < n+ 1) and (id consumer[j]) and (id cable[j])
id consumer[j] => consumer[j].busy =false

Component producer is fixed in the system. Since we may have a dynamic

number of consumers in the system and one of them should be free to be
connected with the producer, keyword open is used to indicate consumers are
dynamic elements of the system and there may exist one or many consumer
instances. Meanwhile, the connector cable should also be dynamic to connect
the producer with these consumers, respectively, as specified in the attachments
section. The key section is the constraints section, where we state that only one
live consumer and one live cable is connected with the producer (constraints 1),
and there must exist a live connection between the producer and one consumer
(constraint 2). Finally, the live consumer should not be busy (constraint 3). A
graphical representation of the system is shown in Figure 2.6.

~

(...... ··-·····-···-·

producer cable[1] I comumer[1]
seud c seiidei; recei\:tp extract

se·nder
l ··••••••·•••··••••••

cable[n]

recei\'er 1 consnmer[n]
.<J extract

Figure 2. 6 The Dynamic-Producer-Consumer system

In the above example, the declarative style of specifications in Dynamic
Acme enables us to describe a dynamic number of consumers within the system
by the identification mechanism and using the constraints to specify possible
architectural configurations. However, we are not able to define the
reconfiguration operations (such as the switch operation) explicitly in the

specification due to the lack of imperative constructs in the language.

23

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

2.4 CommUnity and its semantics

In this section we will review the syntax and semantics of CommUnity. The
review is heavily based on the work of Tom Maibaum and J.L. Fiadeiro in [15],
which serves as a milestone for the language. There have been some changes to
CommUnity (e.g. the introduction of progress guards, the mapping of the
actions is from the target design to the source design and partial) [18] since the
publication of that paper, and we have updated the corresponding definitions,
propositions and proofs in this thesis.

CommUnity is an ADL developed to illustrate the categorical formalization
of parallel program design, which is in the style of UNITY and combines
elements from Interacting Processes for a richer model of system
interconnection and superposition. The language and the design framework have
been extended to provide a formal platform for testing ideas and experimenting
with techniques for the architectural design of open, reactive and reconfigurable
systems.

The modeling of software architecture requires the description of the
architectural structure by connected graphs of components, connectors and the
bindings between them, which are called architectural configurations. In
CommUnity architectural configuration is described by a configuration diagram,
which consists of the components, connectors, and the morphisms between them.
The model of interaction between components is based on action
synchronization and the interconnection of input channels of a component with
output channels of other components, which are standard means of
interconnecting components. This mechanism gives rise to CommUnity's
approach to architectural description: to coordinate the components and build
large systems from simpler components. In addition, the categorical framework
on which CommUnity is based ensures that the system's semantics can be
derived from the colimit of its configuration diagram. In the following
discussion (heavily based on [15]) we will focus on the distinguishing features
of CommUnity and clarify the reasons for the language's general suitability to
architectural description of complex systems.

• Compositionality

Compositionality is a mechanism that allows architectures to describe software
systems at different levels of detail: complex structure and behavior may be
explicitly represented or they may be abstracted into a single component or
connector [28]. To enable an ADL to support this feature, modularity and

24

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

layered, incremental system design must be incorporated into the design of the
language.

CommUnity is based on Category Theory, which supports the definition of
"scientific laws" of system modularization and composition. The unification of
modularization principles provided by Category Theory applies not only to
mathematical models of program behavior and their logical specifications, but
also to parallel program design languages, such·as CommUnity, based on the
notion of superposition. Superposition was proposed as a means of supporting a
layered approach to systems design by which we are allowed to build on already
developed components by "augmenting" them through extending their state
space and/or their action/control activity while preserving their properties. In
mathematics, preservation of structure is usually formalized in terms of
homomorphisms between the objects concerned, so in CommUnity
superposition is formalized in terms of morphisms of programs.

For example, with the notion of regulative superposition, we can design a
simple component (say account, with the functionality of deposit and withdraw)
and superpose a regulator upon it (a guard for withdraw). An explicit diagram to
show the configuration of the regulated account consists of account, regulator,
the implicit cable to interconnect them and the regulative superposition
morphisms between these components. The colimit of this configuration
diagram is considered as a new component, which represents the regulated
account that itself can be interconnected with other components in the system.

• Reusability

CommUnity supports the discipline of reuse in the sense that components can be
developed independently and interconnected at system configuration time.
Names are local to designs in CommUnity, which means that the use of the same
name in different designs is treated as being purely accidental and expresses no
relationship between the components. This use of local names, as opposed to the
usual approach of a global name space, is essential to support such a degree of
reusability and the resulting systems are also structured because they are
connected to their components through the colimit morphisms.

Locality of names is intrinsic to Category Theory and it forces
interconnections to be explicitly established outside the designs. Hence, the
categorical framework of CommUnity is much more apt to support the complete
separation between the structural language that describes the software
architecture and the language in which the components are themselves
programmed or specified.

25

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

• The enforcement of design principles

This ability to characterize the structure of objects in terms of relationships
(morphisms) with other objects and to define operations of composition that
preserve that structure is one of the reasons that make the categorical framework
so useful for formalizing disciplines of decomposition and organization of
systems into components. That is, choosing a particular notion of morphism, we
define a way of establishing relationships between objects and, hence, of
structuring our world according to the components that these relationships allow
us to identify.

Indeed, one of the basic principles of the categorical approach is that, for
every notion of structure, there is a corresponding notion of transformation
(morphism) that preserves that structure. For instance, with respect to the category
of designs with regulative superposition morphisms, one of the structural notions
enforced is encapsulation of local state (attributes): the fact that morphisms are
required to preserve the locality of design attributes implies that any operation on
designs defined, like co limits, in terms of universal properties of morphisms, will
guarantee that the attributes of the component designs remain local.

In this sense, we can claim that categories can be used to formalize system
design disciplines. By changing from one category to another, for instance by
keeping the same objects (designs), but changing the way we can interconnect
them (morphisms), we obtain a different paradigm.

• Refinement and Traceability

Refinement is an important dimension in structuring development. A notion of
refinement morphism has been defined in CommUnity to capture the refinement
relation for CommUnity designs, which gives rise to the well-defined concept of
refinement of components and connectors. As a result, CommUnity enables
correct and consistent refinement of architectures into executable systems and
traceability of changes across levels of architectural refinement, which enables
us to overcome the problems associated with the use of informal "boxes and
lines" diagrams for designs and informal programming language concepts.

2.4.1 The syntax of the language

In CommUnity, the basic building block of the language is called a design or, as

26

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

a special case, a program. The syntax of a CommUnity design is:

design Pis
out out(V)
in in(V)
prv prv(V)
do

[prv] g[D(g)] : L(g), U(g) -> R(g)

A fixed collection of data types (say S) is assumed to be given by a
first-order algebraic specification and the design is defined over such data types.
Because data types chosen in the design determine the nature of the elementary
computations that can be performed locally by the components, the emphasis in
the language is put on the coordination mechanisms between system
components rather than data refinement which focuses on computational aspects.
As a result, it does not support polymorphism directly.

In the above example, V is the set of channels in the design P. Each channel
vis typed with a sort from S. in(V) represents input channels, which read data
from the environment of the component and the component has no control over
them. out(V) and prv(V) are output channels and private channels, respectively.
They are controlled locally by the component. Output channels allow the
environment to read data produced by the component, while private channels
support internal activity that does not involve the environment. We use loc(V) to
represent out(V) u prv(V).

For any action g, D(g) is a subset of loc(V) consisting of the local channels
that can be written to by action g (we call it the write frame of g). U(g) is a
progress condition, which establishes the upper bound for enabledness and L(g)
indicates the lower bound. In a program, L(g) = U(g), so the guards in a design
define the "interval" within which the guard of the action in a program
implementing the design must lie. R(g) is a condition on V and D(g)', where by
D(g)' we mean the set of primed channels from D(g). Primed channels account
for references to the values of channels after the execution of an action. The
condition is a first-order logic formula built from V and D(g)'. Usually, we
define it as a conjunction of implications of the form pre => post, which
corresponds to a pre/post condition specification in the sense of Hoare and
where pre does not contain primed channels. Using this form, the number of
conjuncts in the formula will correspond to the number of channels in the write
frame of g, so that we can understand the meaning of the action fairly easily.
Moreover, it will be convenient for us to calculate the colimit of the diagram

27

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

(see 2.4.4.3) if we have put all the designs in this form.

In order to study the relationship between designs, we need the formal definition
for designs as follows:

Definition 2.1 A design signature is a tuple (V, r, tv, ta, D) where:
* Vis the set of channels, which is an S-indexed family of mutually disjoint sets.
The channel is typed with sorts in S, which is a fixed set of data types specified as
usual via a first-order specification.
* r is a finite set of actions.
*tv is a total function from V to {prv, in, out}, which partitions V into three disjoint
sets of channels, namely private, input and output channels, respectively. Loc(V)
represents the union of private and output channels.
* ta is a total function from r to {sh, prv}, which divides r into private and shared
actions. Only shared actions can serve as the synchronization points with other
designs.
* D is total function from r to ioc(V). The write frame of action g is represented by
D(g).

Since we allow parameters in the definition of component, connector and
subsystem, it may influence the signature of the design. For example, if the
parameter is a sort which can be instantiated by some sort s in S, the design 's
signature will depend on the sort s we choose. Therefore, in this thesis when we talk
about the signature of a design, we actually refer to the instantiated design, where
its parameters have already been instantiated.

All these sets of symbols are assumed to be finite and mutually disjoint.
Channels are used as atoms in the definition of terms:

Definition 2.2: Given a design signature 8=(V, r, tv, ta, D), the language of terms
is defined as follows:
for every sort s E S,
* t5 ::=a, where a E V and of types
* ts : := c, where c is a constant with sort s

*

The language of propositions is defined as follows:

$:: = (tts Ps hs) I $1 => $2l $1 1\ $2 I •$
where Psis a binary predicate defined on sorts. The set of predicates defined on
sort s must contain = s·

28

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Having defined the signature of designs and given the language of terms and
propositions, we can formalize the notion of designs as follows:

Definition 2.3: A design is a pair (8, A), where 8 = (V,r,tv,ta,D) and A is (I,R,L,U)
where:
* I is a proposition defined on 8, which constrains the values ofthe channels when
the program is initialized.
* R assigns to every action g E r an expression R(g).
* For every action g E r, L(g) assigns the enabling guard to it and U(g) assigns the
progress guard.
*For every action g E r, for any a E D(g), tv(a) E {prv, out}.

Recall that R(g) specifies the effect of action g on its write frame. For any
channel a E D(g), we will use R(g,a) to denote the expression that represents the
effect of action g on channel a.

2.4.2 The semantics of CommUnity designs

Before we define the semantic structures for a design, a model for the abstract
data type specification (S) needs to be introduced. The model is given by a
I: -algebra U, i.e., a set su is assigned to each sort symbols E S, a value in su(cu)

is assigned to each constant symbol c of sort s, a (total) function rV: SJ u X ... X

Sn u - su is assigned to each function symbol fin S, and a relation Ps u c s X s is
assigned to each binary predicate Ps defined on sort s.

The semantic interpretation of designs is given in terms of transition systems:
Definition 2.4: A transition system (W, w0, E, -)consists of:
* a non-empty set W of states or possible worlds
* w0 E W, the initial state
* a non-empty set E of events
* an £-indexed set of partial functions - on W, W - (E - W), defines the
state transition performed by each event.

Having transition systems to represent the state transitions of a design, we
can interpret the signature of a design with the following structure:

29

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Definition 2.5: A B-interpretation structure for a signature 8=(V, r, tv, ta, D) is a
triple (T, A, G) where:
* Tis a transition system (W, w0, E, --)
*A is an S-indexed family of maps As: V s -- (W - su).
* G: r - 2£.

That is to say, A interprets attribute symbols as functions that return the value
that each attribute takes in each state, and G interprets the action symbols as sets
of events -- the set of the events during which the action occurs.

It is possible that no action will take place during an event. Such events
correspond to environment steps, which means steps performed by the other
components in the system. Interpretation structures are intended to capture the
behavior of a design in the context of a system of which it is a component.
Because environment steps are taken into account, state encapsulation techniques
can be formalized through particular classes of interpretation structures.

Definition 2.6: A B-interpretation structure (T ,A,G) for a signature 8=(V, r, tv, ta,
D) is called a locus iff, for every aEloc(V) and w, w' E W, if(w, e, w') is in -,
and for any g E D(a), e is not in G(g), then A(a)(w') = A(a)(w).

This means a locus is an interpretation structure in which the values of the
program variables remain unchanged during events in which no action occurs that
contains them in their write frame.

Having defined the interpretation structures for designs and the model for the
abstract data type specification (S), we are able to give the semantics of the terms
and propositions in the language given by the design signature.

Definition 2.7: Given a signature e = (V, r, tv, ta, D) and a B-interpretation
structure S= (T ,A,G), the semantics of terms (for every sort s, term t of sort s and
wE W, [tY(w) E su is the value taken by tin the world w) is defined as follows:
* ift is aEAs, [aY(w) =A(a)(w)
* ift is a constant c, [c]\w) = cu

* if t is rV: SJ u X ... X S11 u -+- su, [f(t~,t2, ... ,t11)Y(w) = rV([tJ]\w), [t2Y(w), ... ,
[tn]\w))
The semantics of propositions is defined as:
* (S,w) i= (t1 =s h) iff [t1Y(w) = [t2Y(w)
* (S,w) i= (t1 Ps h) iff [t1Y(w) Ps u [tz]\w)
* (S,w) i= $1 => $2, iff(S,w) i= $1 implies (S,w) i= $2
* (S,w) i= (•$) iff -,((S,w) i= $)

30

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Now on the semantic level, we can represent whether a proposition (in a
signature) is true or valid in the interpretation structure of the signature:

Definition 2.8: A B-proposition ~ is true in an B-interpretation structure S, written
S j= ~' iff (S,w) j= ~ at every state w. A proposition ~ is valid, written j= ~' iff it is
true in every interpretation structure.

Having introduced the above concepts, we can now define when an
interpretation structure is a model of a design.

Definition 2.9: Given a design (8, A), where 8 = (V,f',tv,ta,D) and A is a triple
(I,R,L,U), a model of (8, A) is an interpretation structure S=(T ,A,G) for 8, such
that:
* (S,wo) j= I
* for every g E f', a E D(g), e E G(g) , and (w, e, w') is in -, then A(a)(w')=
[R(g,a) YC w)
* for every wE Wand g E f', if e E G(g) and for some w' E W, (w, e, w') is in
then (S,w) i= L(g).

-'

That is to say, a model of a design is an interpretation structure for its
signature that enforces the assignments, only permits actions to occur when their
enabling guards are true, and for which the initial state satisfies the initialization
constraint.

A model is said to be a locus if it is a locus as an interpretation structure,
which enforces the encapsulation of local attributes.

Since the progress guard was introduced after the publication of [15], we need
to update the definition of politeness. A model Sis said to be polite iff for every w
E Wand g E 1, (S,w) j= U(g) implies that there exists e E G(g) and w' E W such
that(w, e, w') is in -. That is to say, a model is polite if actions are allowed to
affect transitions in every world in which their progress guard is satisfied. This
notion generalizes the notion of fairness as used in parallel program design.

This classification of models reflects the existence of different levels of
semantics for the same design (taken as a set of models), depending on which
subset of the set of its models is considered. These different semantics are
associated with different notions of superposition (design morphism) that have
been used in the literature, namely regulative, invasive and spectative. This means
that there is no absolute notion of semantics for designs: it is always relative to the
use one makes of designs. This corresponds to the categorical way of capturing

31

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

the "meaning" of objects through the relationships (morphisms) that can be
defined between them.

2.4.3 The morphisms between designs

The concept of superposition has been proposed and used as a structuring
mechanism for the design of parallel programs and distributed systems.
Structuring preserving transformations are usually formalized in terms of
homomorphisms between the objects concerned, thus justifying the
formalization of superposition in terms ofmorphisms of designs in CommUnity.

Having defined designs over signatures in the above section, we first
introduce signature morphisms as a means of relating the "syntax" of two
designs.

Definition 2.10: A signature morphism cr from a signature 8
1
=(V

1
,rl' tv

1
, ta

1
, D1)

to 82=(V2,r2, tv2, ta2, D) consists of a total functions cra: Vt ~ V2 , and a partial
mapping cry : r 2 ~ r 1 such that:
*For every v E V1 , cra(v) has the same type as v.
*For every o E out(VI), cra(o) E out(V2).

*For every p E prv(Vt), cra(P) E prv(V2).
*For every i E in(VI), cra(i) E out(V2) u in(V2).
For every g E r 2, such that cry(g) is defined:
* g E sh(r2), then cry(g) E sh(rJ).
* g E prv(r 2), then cry (g) E prv(r t).
* O'a(Dt(cry(g)) ~ D2(g).

A signature morphism maps attributes of a design to attributes of the system
of which it is a component, and the direction of the mapping is reversed for
actions. The first condition enforces the preservation of the type of each attribute
by the morphism. Output and private attributes of the component should keep
their classification in the system, while input attributes may be turned into
output attributes, when they are synchronized with output channels of other
components and thus represented as output channels of the system. The
restriction over action domains means that the type of each action is preserved
by the morphism. In other words, the images of the write frame of an action in
the source program must be contained in the write frame of the corresponding
action in the target program. Notice that more attributes may be included in the

32

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

domain of the target program's action via a morphism. This is intuitive because

an action of a component may be shared with other components within a system
and, hence, has a larger domain.

Signature morphisms provide us with the means for relating a design with

its superpositions. However, superposition is more than just a relationship

between signatures on the level of syntax. To capture its semantics, we need a
way of relating the models of the two designs as well as the terms and
propositions that are used to build them.

Signature morphisms define translations between the languages associated
with each signature in the obvious way:

Definition 2.11: Given a signature morphism cr: 81 --) 82, we can define
translations between the languages associated with each signature:

*tis a term

cr(t) ::= cr(a)
c

f(cr(ti), ... , cr(tn))

* ~ is a proposition
cr(~) ::= cr(ti) = cr(t2)

cr(ti) Ps cr(t2)

cr(~I) => cr(~2)

cr(~I) /\ cr(~2)
-,cr(~')

t is a variable a
t is a constant c

t= f(t), ... , tn)

~ is t1 = t2
~ is t1 Ps t2

~is~~=> ~2

~is~~ A ~2
~is-,~'

Definition 2.12: Given a signature morphism cr: 8 1 --) 82 and a 82 -interpretation
structure S = (T ,A,G), its 0'-reduct, Slcr, is the 81-interpretation structure (T,
Alcr ,Gicr), where Alcr(a) = A(cr(a)), Glcr(g) = u G(cr"1(g)). (We change the
definition of Glcr(g) in [15] since the mapping of actions has been changed as r 2
--) r).)

That is, we take the same transition system of the target design and interpret

attribute symbols of the source design in the same way as their images under cr,
and action symbols of the source design as the union of their images under cr -I.
Reducts provide us with the means for relating the behavior of a design with that
of the superposed one. The following proposition establishes that properties of
reducts are characterized by translation of properties.

Proposition 2.1: Given a 8 1 proposition ~ and a 82-interpretation structure

S=(T,A, G), we have for every w E W: (S,w) 1= cr(~) iff (Sicr, w) 1= ~-

33

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

We prove this proposition as follows:
We can prove this proposition by induction on the structure of~- The base

case is easy to check. For the induction step, we assume this proposition holds

on the subformulae of~:

*~is t1 = h
If (S,w) j= a(~), so (S,w) i= (a(t1) = a(t2)), which implies in state w, A(a(ti)) =
A(a(t2)). Since Ala(ti) = A(a(ti)), Ala(h) = A(a(t2)), we have in state w, Aja(t1) =
Ala(tz), therefore (S]a,w) j= t1 = h, (Sia ,w) i= ~-
The other direction can be proved similarly.

*~is t1 Ps h
If (S,w) i= a(~), so (S,w) i= (a(t1) Ps a(h)), which implies in state w, A(a(ti)) Ps
A(a(t2)). Since Ala(ti) = A(a(ti)), Ala(t2) = A(a(t2)), we have in state w, Ala(ti) Ps
Ala(h), therefore (Sia,w) i= t1 Ps t2, (Sia ,w) i= ~-
The other direction can be proved similarly.

* ~ is ~ 1 :::::> ~2
Suppose (S1a, w) j= ~' so (Sia, w) i= ~~ :::::> ~2, which means (Sia, w) i= ~~ implies
(S1a, w) i= ~2; from the induction hypothesis, (S, w) j= a(~ I) iff (Sia, w) i= ~ 1, (S,
w) i= a(~z) iff(Sia, w) i= ~2, so we have (S, w) i= a(~I) implies (S, w) i= a(~z),
(S, w) i= a(~I) :::::> a(~2), since a(~I :::::> ~2) = a(~I) :::::> a(~2), (S, w) i= a(~I :::::> ~2),

(S, w) i= a(~).
The other direction can be proved similarly.

*~is-.~'

If(S, w) i= a(~), then (S, w) i= a(-.~'). Since a(-.f) = -.a(f), we have (S, w)
i= -.a(~'). From the definition of the semantics of propositions,
(S, w) i= (-.~) iff--, ((S, w) i= ~), so we have --, ((S, w) i= a(~')). From the
induction hypothesis, (S, w) i= a(~') iff CS1a, w) I= f, so we have -.((Sia, w) i=
~'), (Sia, w) i= ·~', (Sia, w) i= ~-
The other direction can be proved similarly.

To identify the properties of morphisms required for capturing the
superposition relationship between designs, invasive superposition is introduced
to enforce that the functionality of the base design be preserved in terms of the
assignments performed on its local channels, and it allows for the guards of its
actions to be strengthened. However, there is nothing to prevent "old attributes",

34

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

i.e. translations of attributes of the base design, to be changed by "new actions",
i.e. actions of the target design that are not mapped to the actions of the base
design. Therefore, superposition morphisms that preserve locality are introduced
as regulative superposition morphisms as follows:

Definition 2.13 A regulative superposition morphism a from a design (81, A1) to
another design (82, A2) is a signature morphism cr: 81 __.., 82 such that:

1. i= (h => cr(l1)).
2. Ifv E loc(V1), g E f'2and cra(v) E D2(g), then gis mapped to an action cry(g)
and v E D1(cry(g)).
For every g E 12 for which cry(g) is defined,
3. If v E loc(V 1) and g E D2(O'a (v)), then i= (R2(g, O'a (v)) ¢::> cra(RI(cry (g), v))).
4. i= (L2(g) => cr(LI(cry(g)))).
5.!= (U2(g) => cr(U1(cry (g)))).

Notice that we do not require cra. to be injective, and two channels of the
same category (output/private/input) in the source design can be mapped to one

channel of the target design. Because we only consider the actions in the target
design mapped to the source design, cry does not need to be surjective.

The second condition implies that actions of the system in which a
component C is not involved cannot have local channels of the component C in
their write frame, which corresponds to the locality condition: new actions
cannot be added to the domains of attributes of the source program. The
justification is as follows: suppose system action g has cra.(v) in its write frame,
VE loc(V 1), then cry (g) must be defined, and cry(g)E D1(v). Therefore, component
C is involved in the system action.

Regulative superposition morphisms require that the functionality of the
base design in terms of its variables be preserved (the underspecification cannot
be reduced) and allows for the enabling and progress conditions of its actions to
be strengthened. Strengthening of the lower bound reflects the fact that all the
components that participate in the execution of a joint action have to give their
permission for the action to occur. On the other hand, the progress of a joint
action can only be guaranteed when the involved components can locally
guarantee so. Regulative superpositions preserve encapsulation and do not
change the actions themselves, as far as they relate to the basic variables.

35

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Proposition 2.2: Let cr: (9~, A,) ~ (82, A2) be a regulative superposition
morphism. Then the reduct of every model of (92, A2) is also a model of (9 1, A,).

We prove this proposition as follows:

Suppose S=(T,A, G) is a model of (92, A2); we need to show its a--reduct, Sla
= (T, Ala ,Gicr) is a model of (9,, AJ).

1. (S!cr, Wo) i= I 1

We have (S, wo) i= h; since i= (h ~ cr(I,)), so (S, wo) i= cr(I 1), and from

proposition 2.1, we can get (Sicr, wo) i= I 1 •

2. For every g E r 1, a E D(g), e E Glcr(g), and (w, e, w') is in __., then

Alcr(a)(w')= [R(g,a)t1cr(w).
Since e E Glcr(g) = u G(cr- 1(g)), pick one action g' E r 2 mapped to g and e E
G(g'). Because aE D(g), from the definition of signature morphism, cr(a) E

D(g'). (w,e,w') is in --, and S=(T,A,G) is a model of (92, A2), so we have

A(cr(a))(w') = [R2(g',cr(a))]s(w).

By the third condition ofregulative superposition morphism, [R2(g',cr(a))]s(w) =

[cr(R(g,a))]s(w), and from the definition of cr-reduct, it is easy to see
[R(g,a)]Sicr(w) = [cr(R(g,a))]s(w) and Alcr(a)(w') =A(cr(a))(w').

Therefore, we have Alcr(a)(w')= [R(g,a)]Sicr(w).

3. For every wE Wand g E r 1, if e E Glcr(g) and for some w' E W, (w, e, w') is

in -,then (Sicr,w) i= L1(g).
e E G!cr(g) = u G(cr -I (g)), pick up one action g' E r 2 mapped to g and e E G(g ').
Because S=(T,A,G) is a model of(92, A2) and (w, e, w') is in __.,we have (S, w)

i= L2(g').

By the definition of regulative superposition morphism, L2(g') ~ cr(L 1(cry(g'))),

so we have L2(g') ~ cr(L 1(g)), so (S, w) i= cr(L,(g)).

From proposition 2.1, (S, w) i= cr(LI(g)) iff (Sicr,w) i= L,(g).

We find that in the proof of proposition 2.2, we do not use condition 2 of

regulative superposition morphism, which means this proposition will hold
without enforcing the encapsulation principle. When we consider condition 2
and the definition of signature morphism, we will have the following assertion:

Proposition 2.3: Ifv E loc(V 1), then D1 (v) = cry(D2 (cra (v))).
Proof

(1) D, (v) ::J cry (D2 (cra (v))).

36

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

This is obvious from condition 2.

(2) D1 (v) ~cry (Dz (cra (v))).
Suppose g'ED1(v) and g"E r 2 is mapped tog'. Since we have cra(D1(cry(g)) c
Dz(g), so cra(DJ(g')) ~ Dz(g"), with VED1(g'), we have cra(v) E Dz(g").
Therefore, g" E Dz (cra (v)), since g' = cry(g"), we get g' E cry (Dz (cra (v))).
Note: we only consider the actions in D1(v) which have been mapped to the
target design.

This result implies the following property:

Proposition 2.4: Let cr: (91, A1) ---+ (92, A2) be a regulative superposition
morphism, then the reduct of every locus of (92, A2) is also a locus of (91, A1).

The reason is that through regulative superposition, the domains of the
attributes remain the same up to translation, as we prove above. Therefore, it will
prevent "old attributes" from being changed by "new actions", i.e., actions of the

target design not mapped to the source design.

It is easy to see that for regulative superposition morphisms, the reduct of a
polite model of the target design is not necessarily polite for the source design
and the counterexample can be derived from the proof of proposition 2.5.
However, if we do not allow the enabling and progress guards to be
strengthened, it can be proved (in proposition 2.5) that reducts preserve
politeness. Such superposition morphisms are called spectative superpositions:

Definition 2.14: A spectative superposition morphism cr from a design (9~, A1)
to another design (92, A2) is a regulative superposition morphism such that:
1. cry is bijective, cra is injective.
2. For every proposition~ in the language of81, ifl=ez (h=> cr(~)), then l=e1 (11

=> ~).
For every g E r 2 where cry (g) is defined,
3.J= (L2(g) <=> cr(L1(cry(g)))).
4. 1= (Uz(g) <=> cr(UJ(cry(g)))).

lnjectivity of cr means that no confusion is introduced among actions or
attributes. The second condition requires that the strengthening of the initial
condition be conservative, i.e, it cannot put further constraints on the initial
values of the attributes of the source program. The enabling and progress guards
should remain unchanged in spectative superposition.

37

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Proposition 2.5: Let cr: (91,A1) ---+ (92, A2) be a spectative superposition
morphism, if S=(T,A, G) is a polite model of (82, A2), then its a-reduct, Slcr = (T,

Ala ,GJcr) is a polite model of (9t, At).

Proof
In Slcr , for any wE W and g E it, if (Sicr, w) i= U 1 (g), then according to

proposition 2.1, (S,w) 1= cr(U1(g)). Since cr is a spectative superposition
morphism and cry is bijective, action g' of the target design is mapped to g and
U2(g') <=> cr(U t(g)), so (S,w) i= U2 (g'). Since S is polite, there exists e E G(g')
and w' E W such that(w, e, w') is in -. Because GJcr(g) = u G (cr -I (g)), e E

Glcr(g), so g will occur and we know that Slcr = (T, Ala ,Gicr) is a polite model of
(9t, At).

We can prove a fundamental property of spectative superpositiOn: it is
model-expansive, which means that it does not change the base (source) design,
i.e., the base design is extended by spectative superposition without affecting its
underlying behavior. Model-expansive transformations have been identified as
playing a very important role in modularity and this property suggests the
definition of the notion of superposing an observer on a base design. It will also
appear in the extension morphism we will introduce later.

Proposition 2.6: Let cr: (9~, A1) ---+ (92, A2) be a spectative superposition
morphism; for every modelS of (91, A1), there will exist a modelS' of (92, A2),

such that S ~ S 'Ia·

This result implies that for every model S of the base design, we will be able
to find a model S' of the target design, whose reduct is equivalent to S and

demonstrates the same behavior as S. By S ~ S'lcr we mean that these two
interpretation structures (for the signature e = (V, 1, tv, ta, D)) are equivalent
and there exists an isomorphism between them, which consists of a relation R
between Wand W ', and a relation Q between E and E' such that:
*woRwo';
* if (w1,e,w2) is in - and w1 R w1', then there exists e' EE', w2' E W', such
that e Q e', w2 R w2', and (w1',e',w2') is in -'.

if (wt ',e' ,w/) is in -' and Wt R w1 ', then there exists e E E, w2 E W, such
that e Q e', w2 R w2', and (w1,e,w2) is in -.
* if w R w', then for every a E V, A(a)(w) =A '(a)(w').

38

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

* ife Q e', then G(e) = G'(e').

It is worth mentioning that this definition comes from bisimulation [25],

which defines an equivalence relation between state transition systems.
We find that this result will not hold for a regulative superposition

morphism. The reason is as follows:
If this proposition holds for regulative superposition, then every run P of the

source design will have a corresponding run P' in the target design. Supposes is

the start state of P, in which I1 will hold. The corresponding start state s' of P'
will interpret the channels mapped from the source design with the same values

as ins, so cr(I 1) will hold. However, we only have i= (h ~ cr(I 1)), so we cannot
guarantee that h will hold ins'. So, P' may not be a run of (82, Az).

Now we will introduce the notion of extension morphism related to the
model-expansive property. The motivation of extension morphism originated

from the substitutability principle from object oriented program design, which

says if a component P2 extends another component P~, then we can replace P1 by
P2 and the "clients" of P1 must not perceive the difference. This principle cannot
be characterized by regulative superpositions or refinement morphisms, as we
may want to extend the component by breaking encapsulation.

Definition 2.15: An extension morphism cr from a design (8~, A1) to another
design (82, A2) is a signature morphism such that:

1. cry is surjective.
2. cra is injective.
3. There exists a formula B, which contains only channels from (Vz-cra(VI)),
and B is satisfiable, i= h ~ cr(I J) 1\ B.
For every g E r 2 for which cry (g) is defined,
4. If v E loc(V 1) and g E D2(cra (v)), then there exists a formula B, which
contains only primed channels from (V z' -cra(V 1)'), and B is satisfiable,

i= cr (LJ(cry (g)))~ (Rz(g, cra (v)) ~ cra(RI(cry (g), v)) 1\ B) .
5. Ifv E loc(V 1), g E Dz(cra(v)), then v E DI(cry(g)).

6.J= (cr(Lt(cry(g))) => L2(g)).
7.1= (cr(Ut(cry(g))) ~ Uz(g)).

This definition of extension morphism is based on [8], where we clarify an
extension morphism as a signature morphism first and use the notations
introduced so far. Because we expect that the extended design can replace the
original design in a system and the clients of the original component should not

39

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

perceive any difference, the first two conditions ensure the preservation of its
interface. The initialization condition of the original design can be strengthened
in its extended version, while respecting the initialization of the channels of the
original component, as required in the third condition. The fourth condition
indicates that the actions corresponding to those of the original design should
preserve the assignments to old channels and the assignments to new channels
must be realisable, when the safety guards of their image actions in the original
design are satisfied. The fifth condition establishes that for each action of the
extended design that is mapped to an action of the original design, it can only
modify old channels that have been modified by the corresponding action of the
original design. The last two conditions indicate that both the enabling and
progress guards can be weakened, but not strengthened.

Because an extension morphism relaxes the enabling guard of the source
design, the reduct of a model of the target design may not be a model of the
source design. However, the model-expansive property holds for extension
morphism [8], which means the extended design can replace the source design
and the clients of the original design will not perceive the difference.

Definition 2.16: Regulative and spectative superposition morphisms, and
extension morphisms define categories we shall denote REG, SPE and EXT
respectively.
To prove this result, the key point is to show that the composition of regulative
(spectative, extension) morphisms is a regulative (spectative, extension)
morphism (composition law), then the remaining parts to prove that the
proposed structures are categories will be straightforward. The composition of
two regulative (spectative, extension) morphisms cr = cr 1 ; cr2 is defined by the
composition of the corresponding mappings of channels and actions:
Suppose crt : 91 ---+ 92 and cr2 : 92---+ 93 , the morphism cr is defined as:
* <Ja is a total function: for every channel v in el, <Ja (v) = <J'2a (<Jta (v)).
* cry is a partial mapping: for every action g in 93 , if cr2y (g) is defined and
City(Ci2y (g)) is also defined, cry(g) =City (cr2y (g)); otherwise, it is undefined.

For regulative and spectative morphisms, it is easy to verify the
corresponding conditions of these morphisms and the composition law will hold.
In the case of extension morphism, the proof is more complicated and has been
shown as Theorem 1 in [8].

These three categories just differ in their morphisms. It is the morphisms
that characterize the structural properties of a category, meaning that the
different notions of superposition have different algebraic properties.

40

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

The notion of morphisms defined above does not ensure that any
implementation of the target design provides an implementation for the source
design, which we call the refinement relation. The reason is that regulative and
extension morphisms do not preserve the interval assigned to the guard of each
action. Because refinement is an important aspect of structuring development,
we need to introduce refinement morphism and discuss the ways of supporting it
in a categorical setting.

Definition 2.17: A refinement morphism a from a design (8I, AI) to another
design (82, A2) is a signature morphism a: 8I ~ 82 such that:
1. For every i E in(V I), a a (i) E in(V 2).
2. a a is injective on input and output channels.
3. ay is surjective on shared actions in !I .
4. i= (h => a(II)).
5. Ifv E loc(VI), g E 1 2and aa(v) E D2(g), then gis mapped to an action ay(g)
and v E DI(ay (g)).
For every g E 1 2 where a y (g) is defined,
6. lfv E loc(VI) and g E D2(aa(v)), then i= (R2(g, aa(v)) => aa(RI(ay(g), v))).
7. i= (L2(g) => a(LI(ay(g)))).
For every shared action gE li,
8. i= (a(UI(g)) => V U2(ay -I(g))).

A refinement morphism identifies a way in which design (81, A1) is refined
by a more concrete design (82, A2). The first three conditions must be
established to ensure that refinement does not change the interface between the
system and its environment. Notice that we do not require ay to be injective
because the set of actions in the target design that are mapped to action g of the
source design can be viewed as a menu of refinements that is made available for
implementing g. Different choices can be made at different states to take
advantage of the structures available at the more concrete level.

As for the "old actions", the last two conditions in the refinement morphism
definition require that the interval defined by their enabling and progress
conditions must be preserved or reduced. This is intuitive because refinement
should reduce underspecification, so the enabling condition of any
implementation must lie in the "old interval": the lower bound cannot be
weakened and the upper bound cannot be strengthened. This is also the reason
why the underspecification regarding the effects of the actions of the more
abstract design are required to be reduced.

41

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

2.4.4 The composition of designs

One of the advantages of working with CommUnity in the proposed categorical
framework is that mechanisms for building complex systems out of components
can be formalized through universal constructs. A general principle is given by
J.Goguen in his work on General System Theory [22][23)[24]: "given a category
of widgets, the operation of putting a system of widgets together to form a
super-widget corresponds to taking a colimit of the diagram of widgets that
shows how to interconnect them."

In this section, we will first investigate the applicability of these principles
to the composition of CommUnity designs based on regulative superposition,
and then propose the framework in which regulative superpositions can be
combined with refinement morphisms and still ensure that the colimit of the
updated configuration diagram could be calculated. The use of regulative
superposition as a program composition operator, which is a special kind of
concurrent composition operation, can be formalized using these categorical
principles.

First we will show two cases of parallel composition of designs.

2.4.4.1 Disjoint parallel composition

Coproducts are the categorical construction that explains how two components
can be put together in a system without any interconnection between them.
Given two designs P1 and P2, it consists of finding the minimal program P1 II P2
that is a regulative superposition of both P1 and P2 . The coproduct consists of a
third design P1 II P2 and two regulative superposition morphisms li: Pi:-P1 II P2
(i=1,2) such that, given any other design P and regulative superposition
morphisms cri : Pi - P, there is one and only one regulative superposition
morphism k: P1 II P2 - P such that li; k= cri (i=1,2). Minimality is expressed by
the requirement on the existence and uniqueness of k. The corresponding
categorical diagram is shown below:

42

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

p

Figure 2. 7 Disjoint parallel composition of designs

Coproducts of designs are computed by first determining the coproduct of
the underlying signatures. Design signatures are based on sets and functions
between sets, for which coproducts compute disjoint unions.

Proposition 2.7: Signature morphisms between designs define the category SIG,
which admits coproducts. The coproduct of two signatures 81=(V I'r1, tv1, tal' D1)
and 8

2
=(V

2
,r

2
, tv

2
, ta

2
, D) is given by the signature 81118

2
=(V,r,tv,ta,D) and

morphisms 11 and h ,where Vis the disjoint union ofV 1 and V2 , lia can be easily
defined from channels in Vi to the corresponding channels in V; and r is the
disjoint union of r I and r

2
, liy Can be defined similarly from actions in r to the

corresponding actions in ri. For every g E r, suppose liy(g) is in ri' we define
D(g) = lia(Dpiy (g))). Having V and r defined, tv and ta can be defined easily.

It is easy to show li (i=l,2) are signature morphisms based on definition
2.10. These two morphisms keep track of the renamings in the disjoint union:
for example, mapping different channels in V to the channel of V 1 and V

2
with

the same name.
At the level of designs, we will move to the category REG and have the

following proposition for the coproducts:

Proposition 2.8: REG admits coproducts. A coproduct of two designs P1 = (81,
A1) and P2 = (82, A2) is given by the design (81118

2
, A) and morphisms li (i=1,2)

obtained as follows:

* 81118
2

and li (i=1,2) are a coproduct of81 and 82•

A= (I,R,L,U) can be computed as follows:

* I= II(II) 1\ b(h).

43

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

* For every g E r, aED(g), ifliy(g) is in ri, t(ai)=a, we define R(g,a) =

li(R i(liy(g), ai).
* For every g E r, if liy(g) is in ri,
L(g) ¢:> li(L i(liy(g))),
U(g) ¢:> t(Ui(liy(g))).

Based on the definition of regulative superposition morphism, it is easy to

check that li (i=l ,2) satisfies all the conditions and together with (811182, A) gives

the coproduct.

2.4.4.2 Parallel composition with interaction

Coproducts allow us to put together systems of components that run side by side
with no interference between them. However, most systems are put together by
interconnecting components. The categorical mechanisms responsible for
composition with interconnections are pushouts.

Suppose we have two designs P1 and P2, and they are interconnected by a
"middle" design C with the corresponding regulative superposition morphisms
cr1 and cr2, where the channels inC identify the synchronized channels of V 1 and
V2 and the actions of C establish the rendez-vous points; the morphisms cr1 and
cr2 identify the actions of P1 and P2 participating in this point of interaction as
well as the channels being bound.

The design P1llcP2 that we are looking for can be characterized as providing
the minimal superposition ll1: pi-. P1llcP2 and ll 2: P2__. PdlcP2 of P1 and P2
such that O"J ; ll 1 = cr2 ; ll 2 . The triple< P1llcP2, ll 1, ll 2> is called the pushout of
cr 1 and cr2.

The resulting design and morphisms are related to the coproduct computed
in the previous section by a morphism (coequaliser) ll: PJ!IP2- PJ!IcP2 such
that ll 1= l1; ll and ll 2= h; ll . This morphism computes quotients for the
equivalence relations defined by the pairs of actions and channels identified
through the design C and the morphisms cr1 and cr2. The equivalence classes
provide us with the required synchronization sets and bindings of channels, that
is to say, ll imposes the required interconnections on top of disjoint parallel
composition.

44

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

Figure 2. 8 The pushout of two designs

Proposition 2.9: REG admits pushouts. A pushout of two regulative

superposition morphisms cr1: (9, A) ~ (91, A1) and cr2: (9, A) ~ (92, A2) is given

by the design (81 llm92, A') and regulative superposition morphisms J.l 1: (81, A1)

~ (81 llm92, A') and J.l 2: (82, A2) ~ (81 llm92, A') obtained as follows:

* 81 llm92 , J.l 1 and J.l 2 are a pushout of cr1 and cr2 as signature morphisms. 91
llm92 = (V',f',tv',ta',D') where V' is the amalgamated sums of V1 and V2

relative to V, and f' is the amalgamated sums of f1 and f2 relative to f. J.l ia

and J.l iy (i= 1 ,2) can be easily defined from P1 and P2 to the amalgamated sums of

channels and actions based on cr1 and cr2. For every gEf', suppose criy(g) is

defined in both f.,(i=l,2), we define D'(g) = U ll ia(D.(criy (g))).
I I

*A'= (I',R',L',U') can be computed as follows:

let J.l : PJ!IP2- PdlcP2 be the morphism given by the coequaliser:

--I'= J.l I(II) A J.l z(lz).

--For every g E f'' a E D(g), ifJ.l i y(g) is in ri' J.l i(ai)=a, we define R(g,a) =

J.l i(R i(J.l i y (g), ai))). (i=l ,2)
--For every g E f', if J.l iy(g) is defined in both ri, (i=l,2)

L(g) <=> A ll i(L i(ll iy (g))),

U(g) <=> A ll i(Ui(ll iy (g))),

and if aED(g), J.l i(a i) =a, a iE D i(J.l iy (g)), then we have

J.l 1 (R I(J.l 1 y (g), ai)) = J.l 2 (R2(J.l 2y (g), az)).

45

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

2.4.4.3 Regulative superposition with refinement

In section 3 .2.2 we will introduce the notion of connector, which is the essential
building block for building systems in the DynaComm language. It consists of a
glue g and a set of roles R1, R2, ... Rn, as shown in Figure 2.9. The set of roles
can be instantiated with specific components of the system under construction,
and the glue describes how the activities of the role instances are to be
coordinated. 81, 82, ... en are "middle" designs to interconnect the glue and the
roles with regulative superposition morphisms. In this thesis, we use the
following graphical notations to represent categorical diagrams, where the
rectangles refer to components, the circles represent cables (special components
to be introduced later), and the morphisms between components are represented
by the lines with arrows.

RoleR, Role R,

Figure 2. 9 Graphical notation of a connector

The generalization of the pushout operation to complex diagrams like this
one is called a colimit and a category that admits (finite) colimits is said to be
(finitely) cocomplete. From [12, page 77], we have the following proposition:

Proposition 2.10: A category C is finitely cocomplete iff it has initial objects
and pushouts of all pairs of morphisms with common source.

In REG, the initial object will be the empty design (the set of channels and
actions are empty) and as shown in proposition 2.8, for each pair of regulative
superposition morphisms with common source we can derive the pushout.
Therefore, we conclude that REG is finitely cocomplete. Meanwhile, it has been

46

Master's Thesis - Xiang Ling McMaster- Department of Computing and Software

shown in [18, page 187] that for any finite configuration diagram in REG, the
co limit will exist. The semantics of configurations is given by the co limit of the
underlying diagrams.

Actually, we can calculate the colimit of the configuration diagram in
Figure 2.9 incrementally through a sequence ofpushouts as below:

lllt

Figure 2. 10 Calculate the co limit of a connector

First we compute the pushout of g and Rl to get g lle 1 R1 and the
morphisms f1 ' and m 1' based on the method proposed in the above section.
Then we can combine f2 and f1' (the composition law) to get a new regulative
superposition morphism from 82 to glie1Rl, through which we can compute the
pushout of R2 and glitliR1. Because glue g is a subcomponent of glie 1R1 and the
diagram is finite, we can repeat this procedure to obtain the colimit of the
connector.

According to the defintion of connector instantiation in [18, page 200],
when a connector is instantiated, each role of the connector will be instantiated
by the role instance through a refinement morphism. To ensure that the diagram
defined by the instantiation has a colimit, we need to show how refinement
morphisms will work together with the regulative superpositions to give
semantics to the instantiated connector.

First, we will clarify the notion of"middle" designs (such as 81, 82, ... 8n) in
the configuration digram of a connector. In a "middle" design C, we will only
expect input channels, which can be used to interconnect designs. The reason is
that output channels cannot be used in C to connect the input channel of one
design with the output channel of another design, and it will make no sense to
interconnect output channels of different designs. Also we set the enabling guard
and progress guard of each action to true and set R(g) to "skip" (by "skip" we
mean this action has no effects on the local channels of the design), which is
enough to synchronize the actions. Generally a "middle" design of the above

47

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

form is called a cable in this thesis, containing only input channels and its
actions having the following form g: true-> skip.

As we will show in the proof of proposition 2.11, it is crucial to have the
notion of cables to interconnect the glue and the roles, in order to combine the
regulative superpositions from the cables to the roles and the refinement
morphisms from the roles to the role instances, thus ensuring that the
instantiated connector has a defined colimit. The following discussion will
establish this result.

Consider the case that in the configuration diagram of a connector, one of its
roles Ri is instantiated by the role instance Ci through refinement morphism. Our
intention is to show that there exists a regulative superposition from the cable ei
to this instance, given the fact that there is a regulative superposition from ei to
the role Ri and a refinement morphism from Ri to Ci, as shown in the following
diagram:

Figure 2. 11 Combine regulative superposition and refinement morphism

We have the following proposition:

Proposition 2.11: Suppose m is a regulative superposition morphism from cable
ei to Rio and n is a refinement morphism from Ri to Ci; there will exist a
regulative superposition morphism n' from ei to Ci.
Proof

The morphism n' is defined as:
* n'a.is a total function: for every channel v in ei' n'a. (v) = lla. (rna. (v)).
* n' y is a partial mapping: for every action gin Ci, if ny (g) is defined and my (ny
(g)) is also defined, n' y (g) =my (ny (g)); otherwise, it is undefined.

Because both m and n are signature morphisms and SIG is a category, we know
n' is a signature morphism. To shown' is a regulative superposition morphism,

48

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

we need to check the following conditions:

* lei=> n'(lei).
We have lei=> n(IRi), IRi => m(lei), so n(IRi) => n(m(lei)) ~ n'(lei), and lei=>
n'(lei).

* lfv E loc(8i), g Erei and n'a(v)E Dei(g), then g is mapped to an action n'y(g)
and VE Dei(n' y (g)).
* For every gEr ei where n' y (g) is defined, if v E loc(8i) and gE Dei(n' a (v)),
then Rei(g, n' a (v)) ~ n' a (Rei (n' y (g),v)).
Because ei only contains input channels, loc(8i) is empty, so these two
conditions hold.

* L ei(g) => n'(Lei (n' y (g))).
* U ei(g) => n'(Uei (n' y (g))).
From our definition of"middle" design, Lei (n' y (g))~ true, Uei (n' y (g))~ true,
so these two conditions hold.

Having this proposition, the diagram in Figure 2.11 can be replaced by a
simpler diagram, which consists of the cable ei, the role instance ci and the
regulative superposition n' between them. Therefore, in the configuration
diagram of a connector, we can combine each pair of regulative superposition
and refinement morphisms and obtain a regulative superposition from the cable
ei to design Ci, as shown in Figure 2.12. So, we obtain an updated configuration
diagram of the instantiated connector containing only regulative superpositions,
through which we are able to derive its colimit.

lllt

Figure 2. 12 Graphical notation of an instantiated connector

49

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

This result can be generalized to the case of a well-formed configuration
diagram. In a well-formed configuration diagram, all the designs (components)
are interconnected by cables through regulative superposition morphisms. From
proposition 2.11, we have the conclusion that in a well-formed configuration
diagram of a system, we can refine any subcomponents of the system and obtain
an updated well-formed configuration diagram, through which the system's
semantics can be derived from its colimit.

From the proof of proposition 2.11, it is not difficult to see that the
composition of a regulative superposition and a refinement morphism may not
give a regulative superposition, if ei is not a cable. So, it is crucial to enforce the
designs to be interconnected by cables in a well-formed configuration diagram
(connector is a special case), so that the co limit will exist after refining any of
the designs in the diagram.

In proposition 2.11, we restrict the form of ei to ensure the combination of
regulative superposition and refinement morphism will give a new regulative
superposition. Actually, we can relax the form of ei and one condition of the
regulative superposition and give a general condition for the combination to
work.

Proposition 2.12: Suppose ei is a design with one restriction, that the enabling
and progress guards of its actions are true, and in condition 3 of the definition of
regulative superposition, we relax the formula to allow the underspecification to
be reduced. Then suppose m is an updated regulative superposition from ei to Ri,
and n is a refinement morphism from Ri to Ci , there will exist an updated
regulative superposition n' from ei to ci.
Proof
The morphism n' is defined as:
* n' a is a total function: for every channel v in ei, n' a (v) = na (rna (v)).
* n' y is a partial mapping: for every action g in Ci, if ny (g) is defined and my (ny
(g)) is also defined, n'y(g) =my (ny (g)); otherwise, it is undefined.

Because both m and n are signature morphisms and SIG is a category, we know
n' is a signature morphism. To shown' is a regulative superposition morphism,
we need to check the following conditions:

* lei=> n'(Iei).
We have lei=> n(IRi), IRi => m(lei), so n(IRi) => n(m(Iei)) <=> n'(Iei), and lei=>
n'(lei).

50

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

* lfv E loc(8i), g Efci and n'a(v)E DCi(g), we know na(Illa(v)) E Dci(g), since
napreserves the categories of channels, we have rna (v) E loc(Ri). So we know g
is mapped to an action ny (g) and ma(v) ED Ri (ny (g)). With the condition v E
loc(8i), we have ny (g) is mapped to an action my (ny (g))= n'y (g), and v E Dei
(my (ny (g))).
Therefore, we have g is mapped to n'y(g) and VE Dei(n'y (g)).

For every g E r ci where n' y (g) is defined,
* lfv E loc(8i) and gE Dci(n'a(v)),
since n is a refinement morphism, we have II1a (v) E loc(Ri), ny (g) is defined, gE
Dci(na (rna (v))), so
Rci(g, na (rna (v))) ~ ila (R Ri (ny (g), II1a (v))).
Because v E loc(8i), ny (g) ED Ri (ma(v)), and my (ny (g)) is defined, we will have

RRi(ny (g), ma(v)) ~ ma(Rei(n'y (g),v)).
So, na (RRi (ny (g), rna (v))) ~ ila (ma(Rei (n' y (g),v)))
q n' a (Rei (n' y (g),v)).
Therefore, Rci(g, n'a(v)) ~ n'a(Rei(n'y (g),v)).

* L ci(g) ~ n'(Lei (n' y (g))).
* U ci(g) ~ n'(Uei (n' y (g))).
From our restriction of ei , Lei (n' y (g)) q true, Uei (n' y (g)) q true, so these two
conditions hold.

2.4.5 The Producer-Consumer example

Now we want to specify the Producer-Consumer system discussed in section 2.3
in CommUnity. The syntax of CommUnity has been introduced in section 2.4.1.
It is assumed that basic data types such as nat, int, bool, string, list, array, and
enumeration have already been defined in S. According to the system's
requirements, a component design of the producer is as follows (for the list data
type, operation* is used to add an element into the list):

design producer
out o item: s
prv cur_item: s;

item_q: list (s);
st_g: bool; II guard for storing the item

51

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

ack _g: bool II guard for awaiting the reply
init st_g =false 1\ cur_item =NULL 1\ ack_g =true 1\ item_q =NULL
do

prv prod [cur_item,st_g]: -,st_g ,false-> cur_item' = random(s) 1\ st_g' =true
[] prv store [item_q, st_g]: st_g ,false-> item_q' = item_q * cur_item 1\ st_g' =
false
[] send [o_item,ack_g,item_q]: ack_g 1\ item_q <>NULL, false -> o_item' =
head(item_q) 1\ item_q' = tail(item_q) 1\ ack_g' =false
[] ack [ack_g] :true, false-> ack_g'= true

We assume that the item type s has already been defined in S. Private
actions prod and store will produce the items and store them into the Items
queue (item_ q), and the guard st_g is used to prevent the producer from
producing a new item until the current item has been stored. Send action obtains
an item from the head ofitem_q and puts it in the output channel o_item. Before
the action ack is called, send action will not be executed again. The design of
component consumer has the following form:

design consumer
in i item: s
prv cur _item: s;

con_g: bool; II guard for consuming the item
re _g: bool II guard for replying producer

init con_g =false 1\ cur_item =NULL 1\ re_g =false
do

prv consume [re_g,con_g]: -,re_g 1\ con_g ,false-> con_g' =false 1\ re_g' =
true
[]extract [cur_item,con_g]: -,con_g, false-> cur_item' = i_item 1\ con_g' =true
[]reply [re_g] : re_g, false-> re_g'= false

The producer's send action is intended to be synchronized with the extract
action of the consumer, such that when the consumer wants an item, the
producer will get it from the items queue. The consumer will not extract another
item until the current item has been consumed by the consume action, and it will
also send the reply to the producer after consuming the current item. Also the
producer cannot send a new item to the consumer (by using the guard ack _g)
until it receives the acknowledgement from the reply action of consumer,
because ack_g can only be enabled in the ack action, which is synchronized with
the reply action of consumer.

52

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

In order to achieve action synchronization and channel connections in
CommUnity, special kinds of components, "cables", are defined, which are then
connected to the interacting components through regulative superposition
morphisms. In this example, we define a cable as follows:

design component cable
in v: s
do

sync 1: true -> skip
[] sync2: true-> skip

The following configuration diagram gives the mapping of channels and
actions between the cable and producer, consumer. The joint behavior of the
configuration is then characterized by the colimit of this configuration diagram
based on the pushout operation of Category Theory.

Cable

Y->o _item v->i _item
sync !->send sync !->extract

>ync2->reply

Producer Consumer

Figure 2. 13 Configuration diagram of Producer-Consumer system

Now we will consider the dynamism of the system, in which the consumer
will be deleted and replaced by a newly created consumer if it does not work
normally due to unexpected problems. By means of graph grammars, we are
able to define an operation to delete the old consumer node and to create a new
consumer node in the graph of the system's configuration and the operational
semantics of reconfiguration can be obtained in this way [14]. However, in order
to verify any properties of the reconfigurable system, some meta-language must
be introduced to perform the reasoning [2].

53

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

2.5 Summary

In this chapter we have reviewed four mainstream ADLs to support the
specification of dynamic software architectures. The reasons for extending the
CommUnity language to support dynamic reconfiguration will be discussed in
section 3.1. For the other three ADLs, we think they have the following
shortcomings:

* Dynamic Wright
It has provided some dynamism for connectors, as we show in the

Producer-Consumer example, to change the connections between the roles and
components. However, the language only allows the connector to have a fixed
number of roles and the glue cannot be changed, which has restricted the
reconfigurability of the connector. In addition, Dynamic Wright does not support
the hierarchical organization of system's architecture, due to the lack of
language constructs for specifying composite components in Wright.

*Darwin
Darwin does not provide the language construct of connectors, and if we

want to model the interaction between components, we can only simulate it by
using components and ports. It will limit the language's ability to model and
reuse the interaction patterns of the components.

* Dynamic Acme
Since the intention of Acme is to provide an interchange language, to relate

different ADLs, it does not provide a fully defined semantics. Therefore, it will
be difficult to reason about the properties of the specified systems within the
language, because Acme does not consider the semantics of the different layers
in a specification and their relationships in its first-order logic semantics [19].

As we will show in the following chapters, DynaComm has nice support for
overcoming the above problems of these ADLs, thus serving as a competitive
ADL for modeling the dynamic aspects of complex systems. In addition, based
on Category Theory and the formal semantics being derived, in our future work,
we will try to relate DynaComm specifications to first-order temporal logic [3],
to analyze and reason about the specifications.

54

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

Chapter 3

The DynaComm language

We now start describing DynaComm, a new ADL defined as an extension of
CommUnity, to support hierarchical design and dynamic reconfiguration in
specifying complex, reactive and concurrent systems. First, the motivation for
the extension of CommUnity is discussed. Then the syntax of the DynaComm
language is defined to clarify the concepts introduced in [7] and provide
constructs of DynaComm, such as components, connectors and subsystems, for
the specification of large and hierarchical systems. We also propose the idea of
interface manager to solve the synchronization problem in CommUnity, and the
concept of population manager to manage the live instances of components in a
subsystem, through which we can model complicated reconfiguration in a
system. A dynamic client- server example is given in order to show how we
apply the above constructs and ideas of DynaComm to specify the dynamism of
the system, and to illustrate the design principles motivated by the different
categories of morphisms between designs we discussed in the previous chapter.

3.1 The motivation of DynaComm

The main problems of CommUnity are the lack of support for specifying
systems capable of modifying their architecture at run time and the lack of a
coarse-grained construction unit, which can contain subcomponents, so that
system specification will be organized in a hierarchical way. The solution of the
second problem is essential for the support of hierarchical organization of
systems, and the corresponding language construct, subsystem, will be proposed
in the DynaComm language to solve this problem.

Dynamism is the main reason for our work on the extension of CommUnity.
Actually, as we mentioned in the above section, graph grammars have been
introduced into the CommUnity language, to trace the configuration change in
the system's configuration graph during dynamic reconfiguration. However, we
must use some other meta-languages to reason about the properties of a system's
dynamically changing graph described by graph grammars, while some
first-order temporal logic formalisms need to be related to CommUnity to verify
the designs' properties. It will be very difficult to combine these different

55

Master's Thesis - Xiang Ling McMaster- Department of Computing and Software

formalisms to reason about •the properties of systems specified in this way,
especially when dealing with complicated dynamic reconfigurations in large and
complex systems. We think the key problem is that CommUnity itself does not
provide the mechanisms for talking about the architectural changes of the
specified systems. Therefore, our intention is to incorporate the dynamic
reconfiguration actions into the DynaComm language and provide the semantics
based on CommUnity's semantic model to unify the static and dynamic parts of
the language. Then in a standard way [6], some first-order temporal logic
formalisms [4] can be related to the DynaComm language to reason about the
properties of specified systems within the same level of the language, as shown
in the research work of [6] to reason about the temporal properties of the designs
in CommUnity.

To cope with the issues of the complexity and size of large-scale software,
ADLs should provide a mechanism to scale an architecture by adding elements
to the interior or boundaries of the system. It is expected that adding new
components into a connector will not require the modification to this connector
instance. Additionally, ADLs that allow a variable number of components to be
attached to a single connector are better suited to scaling up than those that
specify the exact number of components a connector can service [28]. We will
propose the concept of interface manager in DynaComm to enable the connector
to have the capacity of containing a variable number of components by
instantiating a dynamic number of roles, which overcomes the use of static
action synchronization in CommUnity.

3.2 Syntax

As reviewed in section 2.4, CommUnity only provides the concept of designs as
a basic unit for the construction of systems and connector types to organize the
coordination between components, through which the system's configuration
diagram can be built. To support the hierarchical and incremental design of
system, we will sharpen the concepts proposed in CommUnity and introduce a
set of language constructs, such as component, connector and subsystem of
DynaComm in this section.

3.2.1 Component

At earlier stages of system development, the architecture of the system is given

56

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

in terms of components that are usually abstractions of programs and can be
refined into programs in later steps. In DynaComm, we propose the concept of
Component as the encapsulation of isolated units of computation without
internal structure. So, the notion of design as defined in CommUnity can be
adopted for our purpose, with the following syntax:

design component component-name (parameters)
in var-name: type
out var-name: type
prv var-name: type
init init-expr
actions

[prv] action-name [var-name:type]: [L-expr, U-expr] -> R-expr
endofdesign

The definition of channels and actions is the same as for designs in
CommUnity, and two extensions are introduced into components as follows:

• Initial condition

The keyword init indicates the declaration of the initial condition of the
component, which constrains the values of its local channels when a component
instance is created. Init-expr is a first-order logic sentence defined on the local
channels of the component to describe its initial state. It is worth mentioning
that some previous versions of CommUnity supported the definition of initial
conditions, such as the ones we require.

• Parameters of the component

In the constructor methods of a class in most object-oriented languages,
parameterization is a key mechanism to provide the features of multiple
inheritance and polymorphism. We introduce parameters into component
definitions to facilitate the design and development of systems. As for the
definition of channels in designs of CommUnity, we only allow the type of a
component's channel to be from S, i.e., to be a basic type. However, the
parameter of a component can have a value which is a type in S or a specific
value in a type from S, as shown in the following two examples.

57

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

* The type of a parameter is some type from S

We may consider this parameter as an input channel of the component, with
the restriction that its value will be fixed after the component is instantiated. It
can appear in the initial condition and L(g), U(g) and R(g) of the actions. The
signature of the component will include this parameter in V and it will be
mapped to in by the tv function. For example, in the design of the component
server below, the parameter smode can have value main or backup, which will
be set when an instance of component server is created and indicates whether
the server is in main mode or backup mode, such that it will provide different
interfaces to the clients. (The keyword enum represents enumeration type, which
is defined in S.)

design component server(smode: enum(main,backup))
in syn_in: int
out res_ data: int;

syn_out: int;
mode: enum(main,backup)

prv stat: int;
res: bool //indicate if the server can send data to client

init mode = smode 1\ res = false A stat = 0
actions

update[stat,syn_out]: mode=main, false -> stat' = stat + 1 A syn_out' =
stat+ 1
[] sync[stat]: mode= backup, false-> stat'= syn_in
[] accept[res]: mode=main 1\ ---,res, false -> res' = true
[] send[res_data,res]: res, false-> res_data' =stat A res'= false
endofdesign

* The value of a parameter is a type in S

If we declare a parameter of a component to be of type S, the value of this
parameter will be used to define the types of channels of the component.
Therefore, we cannot define the signature of this component until its parameters
of type S have been instantiated. Generally before we put this component into a
configuration diagram, we will refine this kind of parameter by some type in S
to instantiate the component.

For example, the parameters is of type S in the following bounded buffer
component, so this buffer can contain elements of any fixed type from S when it

58

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

is instantiated. The other parameter bound is of type integer from S, which
defines the size of this buffer.

design component buffer(s:S, bound:int)
in i:s
out o:s
prv rd:bool;

b:list(s)
init rd = false
actions

put[b]: lbl<bound -> b'=b*i
[] prv next[o,b,rd]: lbi>O 1\ -.rd -> o' = head(b) 1\ b' = tail(b) 1\ rd' =true
[] get[rd]: rd -> rd' =false
endofdesign

When a component design C is defined, it indicates that we have defined a
component type C. So, C is not a concrete component and we should instantiate
it before putting it into a configuration diagram. The concept of population
manager will be introduced later on in this chapter to manage the creation and
deletion of instances of a component type in the system. For example, when we
declare c 1 : C in a subsystem, we are implicitly using such a create action of the
population manager defined in the subsystem to create a live instance c1 of C.

For the user of a component or other components, which need to interact
with this component, the main concern is the interface of the component, such as
its public channels and the actions that can be seen from the outside. We will use
the following graphical notation to represent a component along with its
interface, and the signature of this component can be obtained from its graphical
representation.

r··--·-··-·--·-·-·-····---·---·-~

1 Component C i

~: var :type
var: type

f var: type I

I
action-name J ,+
action-name

I
I

Figure 3. 1 Graphical notation of component in DynaComm

59

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

A component type is depicted as a box, with two sections for channels and
actions. In the channels section, we use # to represent input channels and + or
- refers to output or private channels, respectively. Similarly, + represents
public actions and - means private actions in the section for actions. To define
the interface of a component, filled circles are put next to the channels and
actions exposed to the outside of the component. The interface of a DynaComm
component will correspond to its input and output channels, and public actions.
It is important to notice that a notion of hiding and interface, similar to the one
we are using here, is already present in standard CommUnity. This is provided
in CommUnity by the "local" keyword for channels, and "private" keyword for
actions.

To support dynamic reconfiguration in the specification of systems, and
possibly for other applications, we consider that the following extensions should
be made to the definition of components in DynaComm.

• Parameters for actions (Schema actions)

As we specify the dynamic client-server system later on in this chapter, we
find it will be convenient to have parameterized actions in DynaComm to
specify reconfiguration actions, which is not supported by CommUnity. For
example, we can define action g as follows:

g(index:int): L(g), U(g) -> R(g)

Instead of using the notion of parameters in actions, we call this kind of
action a schema action or indexed action, and the formal definition is as follows:

Definition 3.1 A schema action is a collection of actions with different
identifications (the index). Each member of this finite set of actions has the same
behavior, which can only be distinguished by the unique index. This index can
appear in the enabling and progress guards, and the R(g) expression of the
schema action g.

We need this extension for the specification of multiple interfaces of the
same body of a component, which is essential for dynamic reconfiguration in
DynaComm (especially for the design of interface manager in section 3.4.3). For

60

Master's Thesis- Xiang Ling McMaster - Department of Computing and Software

example, in the previous example of component server, we need to specify
multiple interfaces of the send and accept actions for a dynamic number of
clients.

For any schema action in a design, the corresponding set of actions should
be finite, so that the signature of this design will be finite. This restriction is
necessary and related to the finitely cocompleteness property of the category
REG we work in. To ensure that the colimit will exist for a well-formed
configuration diagram in REG, the signature of each design within the diagram
must be finite. The finiteness restriction also explains the reason for not using
the notion of parameterized actions in DynaComm, because a parameter can
have a type from S, such as integer, so the set of actions could be infinite and the
finiteness of the signature cannot be guaranteed.

To make the semantics of DynaComm consistent with CommUnity, the
normalization procedure for indexed actions will be introduced in section 4.1 to
replace them by "standard" actions, such that the semantic model of standard
CommUnity designs can be applied to derive the semantics of DynaComm
specifications with indexed actions.

• The actions of a component manager

We need a component manager M to create and delete instances of a
component type C. Whether we need separate component managers for different
component types within a system, or one population manager that can be put at
the subsystem level to manage all the instances of different classes is a design
choice, which will be discussed in the population manager section. In both cases,
parameters will be required in its actions to indicate the instances being created
or deleted, and predicates to indicate the status of instances (alive or dead)
should also be introduced.

For example, we want to define an action to delete an instance of
component type server in its component manager. In order to indicate the status
of the instance, we will use the component type as a predicate, e.g. --,Server'(sl);
this primed predicate means that s 1 will not be a live instance of server after the
execution of delete server action.

Then the delete action can be defined as follows, and the corresponding
propositions for predicates Server and Server' will be defined in section 4.1.1.

delete_server(y:NAME): Server(y), false-> --,Server'(y)

However, it will be a bad design choice to put component creation and

61

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

deletion actions inside the component. The reason is that it will cause the
self-reference problem when we use an action of a component to create an
instance of it, and it is difficult to give the semantics of this component using the
CommUnity categorical approach.

3.2.2 Connector

Connectors are components specialized in implementing interactions, which
separate the computational part of a component from its interaction with its
environment. A component interaction pattern is encapsulated into the connector,
so that the same pattern can be applied in different contexts. CommUnity does
not provide the syntax for connectors, which is essential for the specification of
complex systems in DynaComm and ADLs generally. However, it proposes the
concept of connector type defined by a set of roles that can be instantiated with
specific components of the system under construction, and a glue specification
that describes how the activities of the role instances are to be coordinated.
Based on this concept, we define the syntax of a connector as follows:

design connector connector-name (parameters)
[refines connector-name]
[attributes [prv I in I out] var: type]
[constraints C-expr]
glue component-name (parameters) I subsystem-name (parameters)
[refines component-name I subsystem-name
connections

< component-name.var I subsystem-name.var to
component-name.var I subsystem-name.var >

< component-name.action I subsystem-name.action to
component-name.action I subsystem-name.action >]

<role component-name(parameters) I subsystem-name(parameters)
[refines component-name I subsystem-name
connections

< component-name.var I subsystem-name.var to
component-name.var I subsystem-name.var >
< component-name.action I subsystem-name.action to

component-name.action I subsystem-name.action >]
connections
< component-name.var I subsystem-name.var to

62

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

component-name.var I subsystem-name.var >
< component-name.action I subsystem-name.action to

component-name.action I subsystem-name.action >
>
init init(V)
actions

< [prv] action-name (parameters): [L-expr,U-expr] -> R-expr >
endofdesign

We use notation < > to indicate that the definition inside it can be repeated
any number of times, and [] to indicate that the corresponding declaration is
optional. The definition of connectors can be related to association classes in the
Unified Modeling Language.

As an optional choice, attributes and constraints can be defined in a connector
specification to enable it to specify a general architectural pattern, which will be
inherited by the subsystem instantiating the connector.

An attribute can be private, input or output, as the definition of channels in a
component. C-expr is a formula in first-order temporal logic [27], which
constrains the architectural evolution of the connector's configuration. A
connector contains a glue, a finite set of roles and the connections between the
glue and roles, where the connection between each role and the glue is given by
the synchronization of channels and actions between them, for which we can
define a "middle" component (a cable) and corresponding regulative
superpositions from it to the glue and the role. Roles define a minimum
requirement on components (to instantiate the roles) and their behaviors to be
plugged into the connector. Each role can refine another already defined
component or subsystem, in which the refinement morphism is given by the
mapping of the channels and actions between the components or subsystems.

When we define the connector, it is assumed that a set of predicates is built
into it to decide if the roles have been instantiated by the corresponding role
instances. (We will discuss these predicates in section 4.1.2.1.) ROLE-NAMES
is the name space for the roles of a connector, in which each role must have a
distinct name even if they have the same type. We have the predicates with the
following form:

Role_connected (role-name: ROLE-NAMES, role-instance: role-type)
Role_disconnected (role-name: ROLE-NAMES, role-instance: role-type)

63

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

For example, assume we have defined components client, server and buffer,
as well as the connector CBS which connects client and server (roles) through
the buffer (glue). Then predicate Role_connected(client: ROLE-NAMES, c:
Client) will indicate if the role client has been instantiated by the client instance
c.

In the case that a dynamic number of instances of a component type will
connect to the glue, which indicates that a set of roles of the same type should be
defined, we need an interface manager to specify the connections to overcome
the problem of incorrectly synchronized actions in CommUnity, which will be
discussed in detail in section 3.4. This fixed set of roles will be defined as an
array of the component type and we can distinguish them by the indices.

In the above discussion, we assume the connector has fixed glue and
specification of roles, so that the dynamic reconfiguration will take place at the
subsystem level by dynamically attaching or detaching role instances. If we also
need to change the glue and roles of the connector, for example, the capacity of
buffer should be enlarged in connector CBS, actions connect and disconnect
should be defined to specify the corresponding change of connections between
the glue and roles (see section 4.1.2.1). Again, they are indexed actions and can
be transformed into "normal" actions by the procedure being introduced in
section 4.1.2.

The parameters of a connector can have the same types as for component
specification. To support the use of higher-order connectors proposed in [7] to
specify aspects as architectural transformation patterns, we also allow
connectors to act as parameters of a connector specification. For example, in [7],
the higher-order connector Monitoring is defined as:

design connector Monitoring (AsyncSR(s,k), msg, s)
glue Observer-Buffer-Mpass (msg)
role Client
role Monitor(s)
role Server
endofdesign

Notice that AsyncSR(s,k) is a connector, which 1s passed to the glue
Observer-Buffer-Mpass (msg) as a parameter:

64

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

design connector Observer-Buffer-Mpass(msg)
refines AsyncSR(s,k)
glue Buffer(s,k)
role Observer(msg) refines Sender(s)
role Mpass(msg) refines Receiver(s)
endofdesign

Connector]vfonitoring

Glue Observer-Buffer-Mpass

AsyncSR

Sender Receiver

Client Mom tor Server

Figure 3. 2 Higher-order connector Monitoring

In our view, the glue is a component or subsystem, which specifies the
interactions between the associated roles. Therefore, it has a tight relationship
with the roles it will coordinate. However, we also can associate different sets of
roles with the same glue for different interaction patterns, and thus define
different connectors. Roles are explicit in a connector, which represent the
interface of the connector. Meanwhile, the semantics of a connector can be
obtained from the co limit of its configuration diagram.

65

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

However, a connector is not a concrete subsystem and its glue or roles must
first be instantiated in the specification of systems. We consider it as the
essential building block for building subsystems in a hierarchical way,
organizing the complicated interactions between the components of a subsystem.
As shown in the dynamic client server example of this chapter, we need
connectors for the construction (or decomposition) of subsystems in an
appropriate way.

3.2.3 Subsystem

In DynaComm, subsystems are coarse grained components, which are
considered as the basic unit for the construction of systems. Intuitively, one
might think of subsystems as configurations of simpler components, which due
to reconfiguration can be dynamically modified. They can be ·used to combine
the instances of components, connectors and other subsystems. When we define
a subsystem, a schema of the subsystem is also defined, which means the
instances of this subsystem can be used to construct other subsystems. The
syntax of a subsystem specification is as follows:

design subsystem subsystem-name (parameters)
associations connector-name(parameters) I

<component component-name I subsystem subsystem-name>
morphisms
<component-name I subsystem-name to component.:name I
subsy&tem-name

connections
< component-name.var I subsystem-name.var to
component-name.var I subsystem-name.var
component-name.action I subsystem-name.action to

component-name.action I subsystem-name.action >
>

participants< component-instance: component-name I
subsystem-instance: subsystem-name>

[attributes [prv I in I out] var: type]
[constraints C-expr]
interface

var to var. component-name I subsystem-name

66

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

action to action. component-name / subsystem-name
init init(V)
actions

< [prv] action-name (parameters): [L-expr,U-expr] -> R-expr >
endofdesign

The associations section in the subsystem definition will specify the
possible relationships between the participants (components or subsystems).
When the interaction between the components is complicated, we usually define
the associations by a connector (which encapsulates the definition of the
interaction). In the case that the relationships between the participants are simple
and straightforward, we just list the components and subsystems as well as the
morphisms between them explicitly. The morphisms are defined between
components and subsystems, indicated by the morphisms key word, and the
connections section will give the synchronization of channels and actions.

Since we use subsystem as a coarse grained component for the construction
of a large, hierarchical system and it may contain a (dynamic) number of
components and subsystems, we need a notation of interface to restrict the
access to the subsystem from other components outside it. From our discussion
of the parallel composition of designs in section 2.4, the coordinated actions of
components and subsystems can be considered as joint actions of their pushout,
which provides us the way to declare the public actions of interconnected
subcomponents in the interface of the subsystem, through appropriate selection
and renaming, where the input channels of subcomponents that have not been
connected with channels of other subcomponents must be included in the
interface. In addition, the public (input/output) channels and reconfiguration
actions declared in the subsystem will be included in its interface too. The
graphical notation for the interface of a subsystem is shown next, with an
example illustrating how we select the joint actions.

67

Master's Thesis- Xiang Ling

var :type

+ var: t)ve
var: type

McMaster- Department of Computing and Software

Sub~y;,tem S
-r actlon-natne

action-name
.--------~+ action-nmu.e

Yar -------+----~~

c1: c:

var :type
+ var: type

\·ar: type

+ action-name
action-name

+ var: type
.----1 var: tyve

action-name
action-name

Figure 3. 3 Graphical notation of subsystem in DynaComm

In the first section of the subsystem diagram we include the attributes and
reconfiguration actions, where input and output attributes along with the public
actions specified in the subsystem are part of the interface. Within the subsystem
the association is defined by a connector W, and the roles are instantiated by
instance cl of component type C and instance bl of component type B. To
export the interface of this configuration, we declare the interface containing one
input channel and one action, which are linked to the corresponding input
channel of b 1 and public action of c1 (which might be synchronized with actions
of other components in the system). If there are other live instances of a
component type (say C) and we want to access one of them from outside the
subsystem, a channel typed with C can also be declared here as a reference to
one of the live instances with component type C. Again filled circles are placed
next to the channels and actions to show the interface of the subsystem.

C can be used as a predicate to indicate whether this instance is a live
instance of C in the subsystem. Actually, it will be appropriate to declare this
kind of channel of type NAME in a subsystem, and indicate their status by using
predicates such as C. Meanwhile, the semantics of a channel with type NAME
can only be given for a certain state of the system, because it may represent the
instance of different components or subsystems during the execution of this

68

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

system.
The parameters of an action can be of type NAME, which indicates that an

instance of a component or subsystem is passed to this action to operate on. As
we discussed before, this kind of action should be viewed as a schema action,
which is indexed by the channels of type NAME. For example, the following
action will create a server instance y with the desired mode, where two indices
are used in this schema action. (Correspondingly, the mechanism to eliminate
these indices will be discussed in detail in chapter 4, by means of which the
semantics of CommUnity could be reused for DynaComm.)

create_server(y:NAME, mode:enum(main,backup)): -,Server(y) -> Server'(y,
mode)

Before the execution of this action, y is not a live instance of server; the
primed predicate Server' means that y will be a live instance of server after the
execution of the create server action.

3.3 Population manager

If we want to incorporate dynamic reconfiguration mechanisms into the
DynaComm language, it is necessary to have the constructs in the language to
create and delete instances of components or subsystems dynamically. In other
words, for a design in DynaComm, whether it is a component, connector or
subsystem (we can consider it as a class), a class manager [12] will be generated
to manage the instances of this class.

3.3.1 Design choice

The straightforward way for the design of class managers will be to generate
independent class managers for different designs (classes), which take care of
the creation and deletion of the corresponding instances. However, in spite of
quite different implementations of various classes, the management actions are
quite the same. For example, suppose we have multiple instances of client and
server classes in our system, then the class manager for client will have actions
to manage the name space while the same situation applies to class server. These
two class managers will have the same set of actions for managing the name

69

Master's Thesis- Xiang Ling McMaster- Department of Computing and Software

space, which causes duplication.
Therefore, we may consider another design choice: have a component

named M which has the common actions for managing populations of different
classes and a concrete class C can be interconnected with M to generate the class
manager of C. On the subsystem level, we introduce the population manager M
to manage the name space of the subsystem, and for each class the actions to
manage its live instances can be defined by using the common actions of M.

~~
~~~ ~--~----z-l Cia<;> ?v1annge-r 

ofC 
"~--,-·--••~·-,··•w·~~-· ·~•·• 

Figure 3. 4 Generating class manager 

3.3.2 Our approach 

We will define the name space of a subsystem, which consists of distinct names 
for instances of different classes in the system, because their names must be 
distinguished at the subsystem level. First we assume data type NAME has been 
defined, which contains all the distinct names that can be used in the system. 
Then we will include a channel in the subsystem, which is defined as a set of 
type NAME to represent the names of live instances of different classes in the 
system as follows: 

prv S_NAME: set ofNAME 

Then the actions for managing the name space of the subsystem are defined 
and they are considered as common actions of the population manager, which 
will be called by population management actions of different classes in the 
subsystem. (The choose function will return an available name in the name 
space, which has not been included in S_NAME.) 

assign(x: NAME): true, false-> x' = choose(NAME- S_NAME) A S_NAME' 
= S_NAME u choose(NAME- S_NAME) 

70 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

collect(x: NAME): true, false-> S_NAME' = S_NAME- {x} 

Now, we can define the actions to manage live instances of each specific 
class in the subsystem. For example, a class S will have its population 
management actions as follows: 

create_S(y: NAME): -.S(y), false-> assigned'(y) 1\ S'(y) 
delete_S(y: NAME): S(y), false-> -.S'(y) A collected'(y) 1\ -.assigned'(y) 

Notice that we use primed predicates assigned'(y) and collected'(y) in the 
above actions, which can be viewed as the short hand for the propositions 
specified in the assign and collect actions. In the delete_ S action, the predicate 
-.assigned'(y) is redundant because its meaning is equivalent to that of the 
predicate collected' (y). 

The population management actions (create_ S and delete_ S) are schema 
actions indexed by the channels of type NAME. We claim that these indexed 
actions can be considered as a short hand for a set of "normal" actions, in the 
sense of CommUnity, and the "normalization" procedure will be described in 
detail in section 4.1 to eliminate the indices and transforming the predicates 
(such as S, S', assigned' and collected') into normal propositions, so that the 
corresponding set of standard actions in CommUnity can be derived. Because 
we use a finite set of channels (of type NAME) to eliminate the indices, the 
finiteness of the population management actions is guaranteed. 

3.4 The dynamic client-server system 

Having the basic building blocks and constructions in DynaComm defined 
above, let us look at how a complex system can be built from components, 
subsystems and connectors. 

We want to model a client-server system, in which a dynamic number of 
clients will request the data from the server. The server simply keeps an integer 
as the data required by the clients, which is increased by one regularly. When the 
server is down, a new server will be created and attached to the configuration as 
an active service provider. 

The dynamics of the system is explicitly described by the server's failure 
triggering the change of system topology during its execution. In order to achieve 
this effect, we must introduce operations that characterize dynamic changes in the 
architecture. First, we need the operations to create, delete, attach and detach 

71 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

instances of components in the subsystem. Second, events that can trigger a 
reconfiguration should be defined. In this example, we use the output channels of 
components to indicate their state, which can be considered as events that will be 
observed by other components or the subsystem. Finally, we give the 
specification of what reconfigurations are triggered by each event. We achieve 
this by using the events as guards for reconfiguration operations, which describes 
how the corresponding event triggers reconfigurations. The overall architecture of 
the system is shown in the diagram below: 

i 

! Dynamic 

1 ciient~ 
I ---\,_--------~ 

Figure 3. 5 Dynamic Client-Server system 

3.4.1 Basic components 

The basic components in this dynamic client-server system are client and server. 

design component client 
in data: int 
prv stat: int; 

req: bool 
init req = false 
actions 

send _req [ req]: -,req, false -> 
[] receive [stat,req]: req, false-> 
endofdesign 

req' =true 
stat'= data 1\ req' =false 

The client component simply generates the request to the server by means 
of the send _req action, which will be synchronized with some action of the 
server to accept the request. Private channel req is used to prohibit a client 
sending another request before it receives a response. Action receive will store 
the value of input channel data into its own channel stat, which stores the data 
requested by the client. The interface of the client component is the input 

72 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

channel data, and the actions send _req and receive. 

design component server 
out res_ data: int; 

down: bool //indicate if the server has gone down 
prv stat: int; 

res: bool //indicate if the server can send data to the client 
init stat = 0 1\ res = false 1\ down = false 
actions 

update[ stat]: true ,false-> stat'= stat+ 1 
[] accept[res]: --.res ,false-> res'= true 
[] send[res_data,res]: res, false-> res_data' =stat 1\ res'= false 
I I this event will trigger reconfiguration operations in the subsystem 
[] prv godown[down] :--.down, false-> down'= true 
endofdesign 

Component server has actions update, accept and send, which update its 
own state and respond to the requests from the clients. Currently it is designed to 
serve clients sequentially, which means it will not accept the request from 
another client until requested data has been sent to the current client (by using 
guard res). Action godown will be triggered when the server is going down. 
Notice that we use the output channel down to indicate the state of the server at 
an abstract design level, and the implementation of this server design will 
provide the mechanism for the server's failure behavior. The change of this 
channel can be observed by the subsystem to trigger the reconfiguration 
operations. 

3.4.2 Subsystem MCServer serving multiple clients 

To enable the server to respond to requests from multiple clients, we want to add 
channels and actions into the server component to record the id of the current 
client making a request. We achieve this goal by superposing a regulator me-reg, 
which performs the recording task, onto the server component, making the 
design clean and modularized. 

73 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

II Specification ofthe regulator which records client id 
design component me-reg 
in in id: int 
out out id: int 
prv client_id: int 
actions 

al [ client_id]: true -> client_id' = in _id 
[] a2[out_id]: true-> out_id' = client_id 
endofdesign 

II Specification of the cable to interconnect the server and the regulator 
design component cable2 
actions 

sync 1: true -> skip 
[] sync2: true-> skip 
endofdesign 

Then we can define the subsystem MCServer usmg the configuration 
diagram below: 

# in_id: int 
- out_id: int 
-dient_id: int 

- al 

- a2 r-c__ ____ _, 

+ syncl 
+ sync:! I 

~'-..~ -update 
'------- ' -accept 

~,. -send 

I godo\\"n 

l 

Figure 3. 6 Configuration diagram of subsystem MCServer 

We use regular lines to indicate the mapping of actions and channels 
between the components, and the arrowed lines in the configuration diagram 
represent the regulative superposition morphisms defined by these associations. 
In subsystem MCServer, there are regulative superposition morphisms from 
cable2 to me-reg and server, so we can compute the pushout of this diagram and 
derive its semantics. The specification of subsystem MCServer is as follows: 

74 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

design subsystem MCServer 
associations 

component me-reg, cable2, server 
morphisms 

cable2 to me-reg 
connections 
sync l.cable2 to al.mc-reg 
sync2.cable2 to a2.mc-reg 
cable2 to server 
connections 
syncl.cable2 to accept.server 
sync2.cable2 to send.server 

participants 
r:mc-reg; c:cable2; s:server 

interface 

in it 

in 
in id to in id.r 

- -

out 
res data to res data.s - -
down to down.s 
out id to out id.r 
actions 
update to update.s 
accept to accepts 
send to send.s 

Mc-reg(r) 1\ Server(s) 1\ Cable2(c) 1\ MCS(r,c,s) 
endofdesign 

Clearly the action al of regulator me-reg will be synchronized with the 
server's action accept which will record the client's id when accepting the 
request of the client. Similarly when the server sends the data back to the client, 
action a2 of me-reg will send the client id too. After the subsystem MCServer is 
defined, we can use the predicate MCS to indicate if the component instances in 
the subsystem are connected appropriately. Notice that in the interface part of 
the subsystem, we define the mapping between channels and actions declared in 
the interface to that of subcomponents inside the subsystem. If we want to refer 
to some participants of the subsystem, the mapping can also be declared in the 

75 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

interface, such that the subcomponents can be seen outside the subsystem. A 
graph notation representing subsystem MCServer along with its interface and 
internal structure is shown as follows: 

1 + out_id: int 
dieut_id: int 

...L al 

+ a2 

Subsystem l\1CSeJYer 

I 
+update -~ 
-accept 
~send ~ 

L-----------,1 
~ res._data:int 
-+-down: boo! 

stat: int 
res: bool 

-+-update 
-+-accept 
-+-send 

-godo\vn 

Figure 3. 7 Graphical notation of subsystem MCServer 

Actually subsystem MCServer can be considered as a big component, 
which can be obtained by taking the pushout of the configuration diagram in 
Figure 3.6. The detailed calculation is described in section 2.4, when we review 
the categorical semantics of CommUnity. Here we show the result of the 
pushout operation, which is named as component MCServerl. 

design component MCServerl 
in in id: int 
out res_ data: int; 

down: bool; 
out id: int 

prv stat: int; 
res: bool; 
client id: int 

in it res' = false 

76 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

actions 
update[ stat]: true, false-> stat'= stat+ 1 

[] accept[res,client_id]: -,res, false-> res'= true 1\ client_id' = in_id 
[] send[res_data,res,out_id]: res, false -> res_data' = stat 1\ res' = false 1\ 

out id' =client id - -
[] prv godown[down] :-,down, false-> down'= true 
endofdesign 

3.4.3 Interface Manager: the regulator for MCServer 

Having the ability to serve multiple clients with the mechanism to record the id 
of current client, another difficulty will appear when we try to connect a 
dynamic number of clients to subsystem MCServer by synchronizing send_req 
actions of different clients to the same action accept of MCServer. The problem 
of synchronized actions originates from the mechanism of action 
synchronization in CommUnity, where the synchronized actions must occur 
simultaneously. An example to show the negative effect of this problem is as 
follows: 

c l: client 

~ al ~ 
'------~' 

cable 
server 

~ sync 1 e=' --.--• ·--"" + s 
~ sync2 , '-----·--------c~• client 

......... ·-·······-·····- .. ____ _.I 

+ a2 

Figure 3. 8 The problem of synchronized actions in CommUnity 

In the above diagram, action al of clientl and action a2 of client2 are 
synchronized with the same action s of server. Assume action al is executed, the 
server's action s will be synchronized, which will call action a2 of client2. 
Therefore, these two clients will not be able to communicate with the server 
independently. This is not what we expected, so a regulator should be introduced 
to provide multiple interfaces for action s of the server. We call this kind of 
regulator an interface manager, because it is designed to provide a set of actions 
(schema action) for each action of the service provider component, to 

77 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

synchronize with the service request actions of a dynamic number of 
components, and we have determined that it can be derived in an automatic way 
from the example shown below. The idea of the interface manager is motivated 
by the object interface in [16], through which we are able to achieve 
independent synchronization between clients and server in this example. 

If we consider the communication between a dynamic number of service 
request components (named as clients) and the component providing the service 
(named as server), there are two cases of the communication: 

• The clients will send the requests to the server independently. The design of 
the interface manager is as follows: 

design component client-interface 
out out id: int 
prv req_id: int; 

ac: bool 
init ac = false 
actions 

C-accept(C-id:int)[ac,req_id]: -.ac, false-> ac'=true 1\ req_id' = C-id 
[] accept[out_id,ac]: ac, false-> out_id' = req_id 1\ ac' =false 
endofdesign 

When a client (which has C-id as its identity) sends a request to the 
interface manager, the corresponding schema action C-accept(C-id) will be 
synchronized and set the guard ac to false to disable all the interface actions 
(C-accept). They will not be enabled until the real accept action is executed, 
which sends the request to the server. Therefore, the clients can send the 
requests to the server independently, though sequentially, through the interface 
manager. 

• The server will send the response to the corresponding client. We will 
design the interface manager as follows: 

78 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

design component server-interface 
in in id: int 
prv sg: bool 
init sg = false 
actions 

C-send(C-id:int)[sg]: in_id' = C-id 1\ sg, false-> sg' =false 
[] send[sg]: -,sg, false-> sg' =true 
endofdesign 

The send action of the server is synchronized with the interface manager's 
send action, which will enable the guard sg for schema action C-send(C-id). 
Then the corresponding C-send action (with its index C-id equal to the in_id 
sent by the server) will inform the right client. Meanwhile, the interface manager 
will not respond to the server until the right C-send action is executed. 

If both of the above communications will occur between the clients and 
server, we can combine the above designs and obtain the corresponding 
interface manager, which will be shown in the design of the server-reg 
component. The following diagram shows the connections between the clients, 
interface manager and the server. 

+ ~end_req 
l't'CeJW 

. ulterface-nk1nager 

' ;: in id: int 
! -

I + out_id int 

! 

+ C-accept(C-id) 

..,. C-send(C -idl 

! +accept 

j -:-send 

I 
' 

Figure 3. 9 The interface manager 

Now we can define the regulator for MCServer as follows, which serves as 
the interface manager between the clients and MCServer. 

79 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

design component server-reg 
in in _id: int; 

in data :int 
out out_id: int; 

out_ data: int; 
cur id: int II the recent assigned interface action id 

prv req_id: int; 
stat: int; 
ac: bool; 
sg: bool; 
C-guard: array(bool) 

init ac = false 1\ C-guard [] = false 1\ sg = false 
actions 

C-accept(C-id:int)[ac,req_id]: C-guard[C-id] 1\ --,ac ,false-> ac'=true 1\ 

req_id' = C-id 
[] C-send(C-id:int)[out_data,sg]: C-guard[C-id] 1\ in_id' = C-id 1\ sg, false-> 
out_ data'= stat 1\ sg' =false 
[] accept[out_id,ac]: ac, false-> out_id' = req_id 1\ ac' =false 
[] send[stat,sg]: --,sg, false-> stat'= in_data 1\ sg' =true 
[] assign[ cur _id,C-guard] : --,C-guard.full, false -> cur_ id' = C-guard.find 1\ 

C-guard'[C-guard.find] =true 
[] collect(x: int)[C-guard]: C-guard[x], false-> C-guard'[x] =false 
endofdesign 

The graphical representation of the regulator server-reg is as follows: 

SetYer-reg 

-"i; 111_1(1: lllt 

"' in datn tnt 

+out id: int 

+out data: 111t 

+cur icl· iut 

+ C-accept(C-tcl) 

+ C>send(C-td) 

+accept 

+~end 

-'- assign 

+ colleC't(x:int) 

Figure 3. 1 0 The regulator for interface management 

80 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

C-accept and C-send are schema actions, which represent a finite set of 
pairs of actions with the same behavior, one pair for each client connected to the 
server. We use array C-guard to store the guards for these actions and the index 
of the array corresponds to the index of the schema actions. C-guard is assumed 
to have a fixed number of entries, which is designated as max_index. Actions 
assign and collect are introduced as interface manager actions to assign or 
collect the available indices of C-guard, which is the C-id assigned to the client. 
C-guard[C-id] is initially set to false to indicate that the corresponding interface 
actions are disabled so that they can be assigned to new clients who want to 
connect to the server. 

Channels req_id, in_id and out_id are used to record the client id so that the 
corresponding C-send(C-id) action will be called to send the data back to the 
right client. Output channel cur _id will store the recently assigned id of an 
interface action, by means of which the client will connect to the server. 

Also we have actions accept and send in server-reg to synchronize with the 
corresponding actions of MCServer, which accept the request from the regulated 
server and send the requested data back to it. We assume the boolean array data 
type has the predicate full which indicates if all the entries are of value true, and 
the function find returns an index where the corresponding entry has value false, 
indicating that there is the capacity to accept a new client. 

3.4.4 Connector DCS and subsystem DynamicCS 

Having defined the interface manager server-reg to coordinate the interactions 
between a dynamic number of clients and the server, we are ready to specify a 
connector to incorporate this interaction pattern. The connector DCS is defined 
by the following configuration diagram, which has server-reg as the glue, a fixed 
set of clients and MCServer as roles. According to the requirement of the 
dynamic client-server system, a dynamic number of clients will be connected to 
the server. Therefore, we specify a fixed set of roles with type client in the 
connector, which will be instantiated dynamically when attaching or detaching 
the client instances. 

81 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

+ receiw 

+out id: mt 

.,. out data: mt 

..,. cur id: int 

- C-accept(C-tc) 

- C-sencl(C-!d) 

-'-accept 

~send 

+ aSSlg11 

- rollect(x:int) 

iv!C:Serwr 

- res data: mt 

- dom1: boo! 

Figure 3. 11 Configuration diagram of connector DCS 

To show the connections between the glue server-reg and its roles, we use 
an implicit cable to interconnect them, which can be generated automatically. 
Again, arrowed lines represent regulative superpositions from cable to the glue 
and roles, which is consistent with the definition of connector type in 
CommUnity, and the mapping of channels and actions are also given by the 
links between interfaces in the diagram. We show a schema of connections 
between a role client and the glue server-reg, where the same pattern will be 
applied to all the roles of type client. The corresponding specification in 
DynaComm is as follows: 

design connector DCS 
glue server-reg 
role MCServer 
connections 
in_id.MCServer to out_id.server-reg 
res_ data.MCServer to in_ data. server-reg 
out_id.MCServer to in_id.server-reg 
accept.MCServer to accept.server-reg 
send.MCServer to send.server-reg 
role client [max_index: nat] 
connections 
data.client[C-id] to out_ data. server-reg 
send_req.client[C-id] to C-accept(C-id). server-reg 

82 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

receive.client[C-id] to C-send(C-id). server-reg 
endofdesign 

Having defined the interface of subsystem MCServer, we are ready to 
specify its connections with the glue in a straightforward way, where the 
subsystem is an encapsulation of its subcomponents and their interconnections 
and we can access its functionality through the interface. Clients are defined as a 
fixed set of roles (with max_index as the upper limit of its size) and the 
connections part specifies a schema for the morphisms between different clients 
with their corresponding interface actions. So, the configuration of connector 
DCS is fixed and dynamic reconfiguration is achieved by instantiating and 
uninstantiating the set of client roles dynamically. (We will give the static 
semantics for a certain state of the connector with dynamic reconfiguration 
capabilities in chapter 4.) It is easy to check that our design of the connector 
DCS has incorporated the dynamic interactions between the clients and the 
server, thus satisfying the requirements of the dynamic client-server system. 

Finally, subsystem DynamicCS is defined by instantiating glue server-reg 
with its instance sr, role MCServer with its subsystem instance mcs and the set 
of client roles with a dynamic number of client instances. 

design subsystem DynamicCS 
associations DCS 
participants 

sr: server-reg; mcs: MCServer 
attributes 

prv 
//the association between client instances and interface actions 
R:list (<NAME,int>); 
S_NAME: set ofNAME; 
new mcs: NAME 
interface 

init 
init Server-reg(sr) !\ MCServer(mcs) !\ DCS(sr, mcs) 
actions 

attach_client(x:NAME): Client(x), false-> sr.assigned' !\ 

DCS.Role_connected'(client[sr.cur_id], x) !\ R.inserted'(x, sr.cur_id) 

[] detach_client(x:NAME): Client(x) !\ DCS.Role_connected(client[R(x)], x), 
false-> sr.collected'(R(x)) !\ DCS.Role_disconnected'(client[R(x)], x) !\ 

83 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

R.deleted'(x, R(x)) 

[]prv attach_mcserver(y:NAME): MCServer(y) !\ DCS.Role_disconnected 
(MCServer, y), false-> DCS.Role_connected'(MCServer,y) 

[]prv detach_mcserver(y:NAME): MCServer(y) !\ DCS.Role_connected 
(MCServer,y) -> DCS.Role_disconnected'(MCServer,y) 

[]prv change_mcserver(y:NAME): MCServer(y) !\ y.s.down, false-> 
detached_ mcserver' (y) !\ deleted_ mcserver '(y) !\ created_ mcserver' 
(new_ mcs) !\ attached_ mcserver' (new_ mcs) 

[]prv create_mcserver(y:NAME): -,MCServer(y), false-> assigned'(y) !\ 

MCServer'(y) 

[]prv delete_mcserver(y:NAME): MCServer(y), false-> -,MCServer'(y) !\ 

co 11 ected' (y) 

[] create_client(x:NAME): -,Client(x), false-> assigned'(x) !\ Client'(x) 

[] delete_client(x:NAME): Client(x), false-> -,Client'(x) !\ collected'(x) 

[]prv assign(x:NAME): true, false-> x' = choose(NAME- S_NAME) !\ 

S_NAME' = S_NAME u choose(NAME- S_NAME) 

[]prv collect(x: NAME): true, false-> S_NAME' = S_NAME- x 
endofdesign 

In the above specification, we use list R( <NAME, int>) to record the 
relationship between connected clients and interface actions. Combined with the 
predicates for connectors we defined in section 3 .2.2 and the interface 
management actions of server-reg, we are able to specify the reconfiguration 
operations for dynamically attaching and detaching client instances. For 
example, in the attach_ client action, we first ask the interface manager sr to 
assign an available index of the schema actions (which has been connected to 
the client role of the same index), then the corresponding client role is 
instantiated by the client instance and the mapping between the index and the 
client instance is recorded in R. 

Also dynamic reconfiguration actions (attach_ mcserver, detach me server 

84 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

and change_mcserver) have been added to DynamicCS subsystem, which 
enables the subsystem MCServer to be replaced when it is going down. Notice 
that as population management actions, reconfiguration actions are also schema 
actions, where each live instance of the corresponding class will have this set of 
actions, and we can use the "normalization" procedure in section 4.1 to 
transform them into "normal" actions to derive the standard semantics as in 
CommUnity. 

In the interface part of the subsystem specification, we declare an init action 
corresponding to the initialization condition of the subsystem. The behavior of 
adding a new client or removing an existing client can be achieved by calling a 
sequence of reconfiguration actions in the interface of the subsystem. (We will 
introduce the notion for sequencing of actions in section 4.1.3.) For example, if 
we want to add a new client into the system, actions create_ client and 
attach_ client can be called sequentially. The graphical notation for subsystem 
DynamicCS (for a certain state of the system) is as follows, with two clients 
connected to the connector DCS by instantiating the roles of clients through 
refinement morphisms, and the other role MCServer instantiated by a MCServer 
instance mcs. 

Subsystem DynamicCS 

-- R list (NA:'v1E. int) 

- S_NA:'viE: set of :NAME 

~ init 

+create_ client (x:NA:tvlE) 

-'-delete_ client (x:NA:'>>'!E) 

-'-attach_ clieut (x.:'-L~\,lE) 

-,-detach_chent (x:NA:vfE) 

mcs::tv1CSen·er 

+ res data: int 

+down: boo! 

Figure 3. 12 Graphical notation of subsystem DynamicCS 

85 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

From this example, we can view the construction of a system as applying 
connectors to components and subsystems in a hierarchical way so that it can be 
used to represent more general, hierarchically organized software architectures. 
When a system is decomposed, a connector will be at the highest level of its 
architecture. 

3.4.5 Some Temporal Properties of DynamicCS 

* Server-reg will keep the current client's req_id until the client's request, along 
with its id, has been sent to the server. 

* The server will not accept another client's request until it has sent the 
requested data to server-reg. 

* Server-reg will send the data back to the client (action C-send) before it 
receives the server's data again. 

We will represent these properties in first-order temporal logic formula and 
translate DynaComm specifications into the corresponding logical specification 
so that they can be verified in a formal way, which will be investigated in our 
future work (chapter 6). 

3.5 An improved dynamic client-server system 

There is a problem with the above client-server system, where the data stored in 
the server (the channel stat) will get lost when it goes down and the newly 
created server may not be able to provide the correct data required by the clients. 
Therefore, we will design a backup server to synchronize its state with the main 
server and it will replace the broken main server without interrupting the service 
to the clients. Currently, we do not consider in our specification the case that the 
server and its backup both go down. 

Since the backup server should be able to replace the main server and 
provide the same service to the clients, parameterized design will be required to 
achieve this effect. So, we propose a parameterized MCServer, which can switch 
its mode between main and backup, thus providing different interfaces 

86 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

depending on the requirement. Again, we can design a regulator to incorporate 
the parameter (smode), and superpose it onto the original MCServer to obtain 
the parameterized MCServer. 

design component mode-reg(smode: enum(main,backup)) 
in syn_in: int 
out syn _out: int; 

mode: enum(main,backup) 
prv stat:int 
init mode = smode 1\ stat = 0 
actions 

update[syn_out]: mode=main, false-> stat'= stat+ 1A syn_out' =stat+ 1 
[] accept: mode=main, false -> skip 
[] sync[ stat]: mode = backup, false -> stat' = syn _in 
[] switch[ mode]: mode = backup, false -> mode' = main 
endofdesign 

We call this regulator mode-reg, which will provide a different interface 
according to its parameter smode. If smode has the value main, mode-reg will 
provide the update action to update the state of main server, and action accept to 
accept the request of the clients. It also has a private channel stat to be 
synchronized with the channel stat of MCServer through the synchronization of 
update actions, and the syn _out channel will output its stat to be read by backup 
server if the server is in main mode. On the other hand, sync action will set the 
server's state by the value of input channel syn_in when it is in backup mode, 
while the switch action will turn a backup server into a main server. 

Then we can interconnect the regulator mode-reg with the MCServer, and 
obtain the parameterized MCServer (as a subsystem PMCServer) using the 
configuration diagram below: 

n1ode-reg 

">}1l_in: int 

~ syn_out~ int 

-mode 

-update 

-accept 

- s\·nc 

-~witch 

Cable3 

1 + svucl 
I -'- ,;1lC2 

Y!CSen:t>r 

+down: boo! 

+out id: 1nt 

+update 

+accept 

Figure 3. 13 Configuration diagram of subsystem PMCServer 

87 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

The specification of subsystem PMCServer is as follows, where the mapping of 
channels and actions between the regulator and the MCServer is given by the 
associations section. 

design subsystem PMCServer(smode: enum(main,backup)) 
associations 

component mode-reg, cable3, MCServer 
morphisms 

cable3 to mode-reg 
connections 
sync l.cable3 to update.mode-reg 
sync2.cable3 to accept.mode-reg 
cable3 to MCServer 
connections 
sync l.cable3 to update.MCServer 
sync2.cable3 to accept.MCServer 

participants 
mr:mode-reg; c:cable3; mcs:MCServer 

interface 
in 
syn_in to syn_in.mr 
in id to in id.mcs 
out 
syn _out to syn _ out.mr 
mode to mode.mr 
res data to res data.mcs - -

down to down.mcs 
out id to out id.mcs - -

actions 
update to update.mcs 
accept to accept.mcs 
send to send.mcs 
switch to switch.mr 
sync to sync.mr 

init Mode-reg(mr) 1\ MCServer(mcs) /\Cable3(c) 1\ PMCS(mr,c,mcs) 
endofdesign 

The interface of the parameterized MCServer is declared as above and we 

88 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

can figure out that the original interface of MCServer has been preserved when 
we set its mode to main, such that the clients of MCServer can use PMCServer 
(smode=main) instead, without perceiving any difference. The graphical 
notation for PMCServer is as follows, which illustrates the interface of this 
parameterized subsystem clearly: the interface of its subcomponent MCServer 
represents the interface of the main mode PMCServer, while if PMCServer is in 
backup mode, the channel syn _in and actions sync and switch of the regulator 
mode-reg will give its interface. 

I 
~ # in_1d:uu 

411 + res_data int 

~ +down: boo! 

• ~out 1d· int 

•
I. - . 
I F 1)1l_lll: nll 

.. ~ o;\·n_out· int 

• "'"mode 
I 

! 
mode-no•;;, 

# Wll_UL int 

"'" syn_ out: int 

-mode 

-update 

+accept 

-sync 
.,. SWitCh 

Sub<.ystl?m PMCSI?IYer 

Cable3 

MCServer 

# in id: int 

+ res_ data: int 

+down: boo! 

+ out 1d: mt 

- svnc 

-switch 

Figure 3. 14 Graphical notation of subsystem PMCServer 

Having the parameterized MCServer, we can design the subsystem 
FT-MCServer with a fault tolerant capability by interconnecting a main mode 
MCServer with a backup mode MCServer through a cable, in order to make 
them synchronized on their internal states (the channel stat of main PMCServer 
and backup PMCServer). Meanwhile, we also specify the corresponding 
reconfiguration actions (change_ mserver and change_ bserver) to respond to the 
events such as main server is down or backup server is down. The configuration 
diagram of the fault tolerant server is as follows: 

89 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

design component cable4 
in v: int 
actions 

sync 1: true -> skip 
endofdesign 

~ ~:~;~;~~ .] ... ---~~:t~i~}::-~i:~~~~-i~;:~;-~~1 
n--_-'-,,'-' .. n:::.c'-1 ----i·--~ ~ -1;1ode I 

+down: boo! 

+ out_id: int 

+ syn_ out: int 

+mode 

+update 

+ arc<'pt ~ 
+send 
-------·-~--

--------.... ~ ~ down boo! I 
._. - 0,\11(' I 

_j . I 
., ~ smtch I 

t-.~-· -·--~ -·-··'<- ·---<~<"'"""""" • -···•-·-v•-••J 

Figure 3. 15 Configuration diagram of subsystem FT-MCServer 

The corresponding specification for the fault tolerant MCServer is given as 
below, and we notice that the interface part of this subsystem comes from the 
participant mcm, which is an instance of the main mode PMCServer. 

design subsystem FT-MCServer 
associations 

component PMCServer(main), cable4, PMCServer(backup) 
morphisms 

cable4 to PMCServer(main) 
connections 
v.cable4 to syn_out.PMCServer(main) 
sync l.cable4 to update.PMCServer(main) 
cable4 to PMCServer(backup) 
connections 
v.cable4 to syn_in.PMCServer(backup) 
sync l.cable4 to sync.PMCServer(backup) 

participants 
mcm:PMCServer; c:cable4; mcb:PMCServer 

attributes 
prv new_mcb: NAME 
interface 

90 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

init 
input 

in id to in id.mcm - -
output 

res data to res data.mcm - -
out id to out id.mcm - -

actions 

in it 

accept to accept.mcm 
send to send.mcm 

PMCServer(mcm, main) 1\ PMCServer(mcb,backup) /\Cable4(c) 1\ 

FTMCS(mcm,c,mcb) 
actions 
II action to change the main MCServer 

prv change_ mserver(y:NAME): PMCServer(y,main) 1\ y.down, false -> 
detached_ mserver' (y) 1\ deleted _pmcserver '(y) 1\ detached_ bserver' ( mcb) 
switched'(mcb) 1\ attached_mserver'(mcb) 1\ created_pmcserver'(new_mcb, 
backup) 1\ attached_bserver'(new_mcb) 

II action to change the backup MCServer 
[]prv change_bserver(y:NAME): PMCServer(y,backup) 1\ y.down, false-> 
detached_ bserver '(y) 1\ deleted _pmcserver '(y) 1\ created _pmcserver' (mcb, 
,backup) 1\ attached_bserver'(mcb) 

[]prv attach_mserver(y:NAME): PMCServer(y,main), false-> 
FTMCS.Role_connected'(PMCServer(main),y) 

[]prv detach_mserver(y:NAME): PMCServer(y,main), false-> FTMCS. 
Role_disconnected'(PMCServer(main),y) 

[]prv attach_bserver(y:NAME): PMCServer(y,backup), false-> 
FTMCS.Role_connected'(PMCServer(backup),y) 

[]prv detach_bserver(y:NAME): PMCServer(y,backup), false-> FTMCS. 
Role_ disconnected' (PMCServer(backup ),y) 

[]prv delete_pmcserver(y:NAME): PMCServer(y), false-> -.PMCServer'(y) 1\ 

collected' (y) 

91 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

[]prv create_pmcserver(y:NAME, mode:enum(main,backup)): -.PMCServer(y), 
false-> assigned'(y) 1\ PMCServer'(y,mode) 

[]prv assign(x: NAME): true, false-> x = choose(NAME- S_NAME) 1\ 

S_NAME' = S_NAME u choose(NAME- S_NAME) 

[]prv collect(x: NAME): true, false-> S_NAME' = S_NAME- {x} 
endofdesign 

The population management actions for managing the live instances of 
subsystem PMCServer, and the reconfiguration actions to attach, detach or 
change the main and backup PMCServers are specified similarly ·as in the 
dynamic client-server system. Notice that all the actions are declared as private 
in the system, because the fault tolerant functionality is incorporated into the 
FT-MCServer subsystem and these actions should not be accessed from outside. 

The graphical representation of subsystem FT-MCServer is as follows. As 
we mentioned before, the interface of this subsystem comes from an instance of 
main mode PMCServer. We have also explained that the interface of the main 
mode PMCServer will preserve the interface of MCServer, thus the clients of 
subsystem MCServer can connect to subsystem FT-MCServer and obtain the 
same serv1ce. 

Subsystem FT-:'vlCSerwr 

#m_id 

~---~ 
I 

+ re~_data 
+ont_1d 

.. ------------~----- -------------- J.---------- ..... 
1 
1 r _ 
I I Plv!CSernr(malll) '[ [3 # in id: ult 
- ~ -'- res_data: int 

I ~ out_td: mt 

• + down: boo! 
I 
1 ....... ~yn_out· 111t 

• -mode 

I +update 

t---•' + accept 

-----.; ~ send 

Figure 3. 16 Graphical notation of subsystem FT-MCServer 

92 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

Now we will show that the role MCServer of connector DCS can be 
regulated to obtain the role FT-MCServer, which preserves the interface of 
MCServer. First, we superpose a regulator mode-reg(smode=main) onto 
MCServer to obtain subsystem PMCServer(main), so there is a regulative 
superposition morphism from MCServer to PMCServer(main). Then we create 
another subsystem PMCServer(backup) and interconnect it with subsystem 
PMCServer(main) to obtain subsystem FT-MCServer. From Figure 3.16, we can 
see that FT-MCServer provides the same interface as MCServer to the glue of 
DCS, so that it can replace the role MCServer in connector DCS. The 
corresponding change to the specification of connector DCS is shown as follows, 
where we only need to replace the occurrence ofMCServer by FT-MCServer. 

design connector DCS 
glue server-reg 
role FT-MCServer 
connections 
in_id.FT-MCServer to out_id.server-reg 
res_data.FT-MCServer to in_data.server-reg 
out_id.FT-MCServer to in_id.server-reg 
accept.FT-MCServer to accept.server-reg 
send.FT-MCServer to send.server-reg 
role client [max index: nat] 
connections 
data.client[C-id] to out_data. server-reg 
send_req.client[C-id] to C-accept(C-id). server-reg 
receive.client[C-id] to C-send(C-id). server-reg 
endofdesign 

Now we can derive the fault-tolerant dynamic client-server system with a 
small modification (actually simplification, since the reconfiguration actions to 
achieve the fault tolerant capabilities have been incorporated into the 
FT-MCServer subsystem) to the old specification, where only the population 
management actions and the attach and detach actions for the client are kept. 

design subsystem FT-DynamicCS 
associations DCS 

93 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

participants 
sr: server-reg; ftmcs: FT-MCServer 

attributes 
prv 
R: list (<NAME, int> ); 
S NAME: set ofNAME 
interface 

init 
init Server-reg(sr) 1\ FT-MCServer(ftmcs) 1\ DCS(sr, ftmcs) 
actions 

attach_client(x:NAME): Client(x), false-> sr.assigned' 1\ DCS. Role_connected 
(client[sr.cur_id], x) 1\ R.inserted'(x, sr.cur_id) 

[] detach_ client(x:NAME): Client(x) 1\ DCS.Role _connected( client[R(x) ],x), 
false-> sr.collected'(R(x)) 1\ DCS. Role_disconnected'(client[R(x)], x) 1\ 

R.deleted'(x, R(x)) 

[] create_client(x:NAME): -,Client(x), false-> assigned'(x) 1\ Client'(x) 

[] delete_client(x:NAME): Client(x), false-> -,Client'(x) 1\ collected'(x) 

[]prv assign(x: NAME): true, false -> x' = choose(NAME - S_NAME) 1\ 

S NAME' = S NAME u choose(NAME- S NAME) - - -

[]prv collect(x: NAME): true, false-> S_NAME' = S_NAME- x 
endofdesign 

The colimit of subsystem MCServer and mode-reg(main) will give the 
subsystem PMCServer(main). It is easy to show that there is a regulative 
morphism from MCServer to the subsystem PMCServer(main). After we 
superpose subsystem PMCServer(backup) to it and get FT_MCServer, there will 
still be a regulative morphism from MCServer to this new subsystem (the 
composition law of the category REG). Hence, in connector DCS there is a 
regulative morphism between the cable and glue Server-reg, as well as between 
the cable and FT-MCServer, respectively, through which we can calculate the 
colimit of the configuration diagram. Meanwhile, FT-MCServer can be viewed 
as a regulated role of MCServer in connector DCS and will provide the same 

94 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

interface to the glue server-reg. 

3.6 Summary of this chapter 

We have defined the basic language constructs of DynaComm in this chapter 
and shown its suitability for specifying dynamic reconfiguration mechanisms in 
a reasonably big system, which contains complicated interactions, by the 
dynamic client-server system example. From its extended version, a fault 
tolerant dynamic client-server with the mechanism to provide consistent service 
when the main server is down, we can figure out the flexibility to refine a 
connector (by refining a role of a connector, we can obtain a refined connector) 
or regulate a connector to add new functionality to existing systems, which 
supports the incremental design principle. In the above example, we regulate the 
role server of connector DCS and obtain a new role FT-MCServer which 
provides the same interface to glue Server-reg. Therefore, we can modify the 
specification of connector DCS and subsystem DynamicCS by simply replacing 
all the occurrences of MCServer by FT-MCServer and derive the improved 
version of the old system in a structured and incremental way. 

95 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

96 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

Chapter 4 

The Semantics of DynaComm 

In this section we will start to define the semantics of the DynaComm language. 
To make the discussion easier at first, we will only consider a static system with 
a fixed configuration diagram. More generally, it can be viewed as the semantics 
of the configuration diagram corresponding to a certain state of a system 
containing dynamic reconfiguration mechanisms, which is specified by 
DynaComm with reconfiguration actions. 

S 1 with configmation 1-----.,; S2 with configuration 
diagram 1 ,..] diagram 2 

~----------------

SystemS 

-------.. 
----------------

Figure 4. 1 The change of configuration in a dynamic system 

For example, we have a system S with reconfiguration actions, which could 
change the configuration diagram of S. Therefore, it can be viewed as a 
transition system, which takes S 1, S2, ... as worlds and reconfiguration actions 
as events to trigger the transition between the worlds. The configuration of the 
components and the connectors may be different in each of S 1, S2, . . . . 
Currently we will consider the semantics of systems S 1, S2, . . . individually, 
instead of systemS. 

In the dynamic client-server example of chapter 3, we have introduced 
population management actions as well as other dynamic reconfiguration actions, 
which allow parameters (indices) in the actions to specify the system. This is a 
deviation from the philosophy of CommUnity, which enforces the action 

97 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

coordination between the components by sharing the channels instead of 
through the parameters. In order to make DynaComm follow this principle, in 
section 4.1, we will show how to "normalize" these indexed actions and obtain 
the equivalent "pure" actions, in the sense of CommUnity, which do not have 
indices and only perform multiple assignments to their channels. 

We have mentioned in section 2.4.4.3 that for any finite configuration 
diagram in REG, the co limit will exist and the semantics of the configuration is 
given by the colimit of its underlying diagram. Therefore, the semantics of a 
DynaComm specification (in a certain state) can be derived by transforming this 
fixed diagram into a flat configuration diagram (we will give this procedure in 
section 4.2), which consists of only basic components, cables and regulative 
superposition morphisms between them. Having the normalization technique to 
obtain CommUnity-like designs from the specifications of dynamic systems, we 
can consider the reconfiguration actions and related channels of the dynamic 
system specification as a high-level transition system, which defines new states 
and triggers transitions between different configuration diagrams. So, we are 
able to talk about the change in a dynamic system's configuration diagram 
within the DynaComm language, by using the syntax and semantic model of 
CommUnity. Meanwhile, in a certain state of the dynamic system, its 
configuration diagram is fixed and the semantics can be derived based on the 
above discussion. 

4.1 The normalization of actions 

We have defined the semantics of designs m CommUnity in section 2.4. 
Because we extend the syntax of actions in DynaComm, the "normalization" 
procedure will be introduced in this section to transform them into "pure" 
actions, in the style of CommUnity, such that the semantics of systems specified 
by DynaComm can then be derived. 

4.1.1 The actions for population management 

First we will look at the population management actions, which are used for the 
creation and deletion of the instances of components and subsystems in the 
system. For example, consider the instance creation and deletion actions of class 
C introduced in section 3.3.2, where a channel (index) of type NAME will be 
provided for the population management actions of C to indicate the reference to 

98 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

the instance to be created or deleted. The general forms of the actions are: 

create_C (x: NAME): -,C(x), false-> C'(x) 
delete_C (x: NAME): C(x), false-> ---.C'(x) 

To normalize these actions, first we need to give the explicit expressions 
corresponding to C(x) and C'(x). Then we will show how to remove the indices 
of these actions by introducing additional channels into the design of the 
subsystem. 

When a subsystem contains a component or subsystem of type C, a finite set 
of objects with type C (objC: set of C) will be included in the subsystem, which 
represents the live instances of C. C(x) and C'(x) are the shorthand for the 
following expressions: 

C(x): x in objC 

C'(x): objC' = objC u {x} 
---.C(x): ---.(x in objC) 
---.C'(x): objC' = objC- {x} 

Suppose component type C is included in the subsystem S and type NAME 
has been defined for the name space of the live instances in S; the actions for 
managing the name space need to be introduced in S, as we have specified in 
section 3.3. In order to transform these indexed actions, we need to introduce 
private channels, such as Cl below. Cl will be used to record the reference to 
the newly created instance of C, by means of which we will be able to remove the 
indices of the creation and deletion actions of C. 

prvCl:NAME 
[]create_ Cl [Cl, S_NAME]: true, false-> Cl' = choose(NAME- S_NAME) 1\ 

S_NAME' = S_NAME u {choose(NAME- S_NAME)} 1\ C'(choose(NAME 
- S_NAME)) 
[]delete_ Cl [S_NAME]: true, false-> ---.C'(Cl) 1\ S_NAME' = S_NAME
{Cl} 

If there is at most one live instance of C in the subsystem at any moment, it 
is enough to have one channel Cl to record the reference to the live instance. 
However, when the class has multiple instances in the subsystem, a schema for 

99 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

the creation and deletion actions (indexed by C-id) is defined below, which 
indicates a set of pairs of actions (schema actions) are defined in the system. The 
corresponding finite set of channels to refer to a dynamic number of live 
instances of class C should also be defined. 

prv C : array(NAME); 
[] create_C(C-id:int)[S_NAME]: true, false-> C[C-id]' = choose(NAME
S_NAME) A S_NAME' = S_NAME u {choose(NAME- S_NAME)} A 

C'(choose(NAME- S_NAME)) 
[] delete_C(C-id:int)[S_NAME]: true, false-> -,C'(C[C-id]) 1\ S_NAME' = 
S_NAME- {C[C-id]} 

Notice that instead of using indices for the population management actions, 
we define a set of pairs of population management actions for the dynamic 
number of live instances of a class in the system we are designing. 
Correspondingly, a finite set of channels of type NAME is defined in the 

subsystem to refer to the live instances of this class. This finiteness restriction is 
necessary, because we must ensure that the signature of a design to be finite, as 
we discussed in section 3.2.1. The relationship between these channels and the 
name space of the subsystem is shown in the following diagram, where A 1, 
A2, ... represent names of live instances in the subsystem. 

C(l]KA?v1E 

Figure 4. 2 The mapping between the name variables and the name space 

4.1.2 Reconfiguration actions 

Now we will consider the reconfiguration actions of the subsystem, which 

100 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

change the configuration diagram of the system by putting new instances of 
components and subsystems into the diagram or removing the existing instances 
from the diagram. During the reconfiguration, the roles of the connector might 
be instantiated or uninstantiated. Therefore, the explicit actions corresponding to 
the predicates Role_ connected and Role_ disconnected should be given first. 
Then a general procedure for removing the indices of the reconfiguration actions 
will be introduced. As in section 4.1.1, we should distinguish between the two 
cases, where only one live instance of a class is in the system or multiple 
instances of a class will appear. 

4.1.2.1 Predicates of the connector 

We assume predicates DCS.Role_connected and DCS.Role_disconnected are 
defined within the connector DCS to manage the morphisms between the roles 
and their instances. When they appear in predicate R(g) associated with an 
action g, we should consider them as shorthand for a set of multiple assignments, 
which will change the connections between the roles and role instances. The 
types of the predicates are: 

Role_connected (role-name: ROLE-NAMES, role-instance: role-type) 
Role_disconnected (role-name: ROLE-NAMES, role-instance: role-type) 

We will show how to define the corresponding multiple assignments to the 
channels in the subsystem containing the predicates. When the connector is 
defined, the set of morphisms (MPSet) between the roles and the role instances 
are also defined in the following form: 

<role-name: ROLE-NAMES, set of <gl: G-NAMES, g2: G-NAMES> I <al: 
A-NAMES, a2: A-NAMES>, role-instance: role-type, set of <gl: G-NAMES, 
g2: G-NAMES> I <al: A-NAMES, a2: A-NAMES>> 

G-NAMES and A-NAMES are the name spaces for the actions and the 
channels of the subsystem, respectively. The first set of tuples specifies the 
morphism between the glue and the role, while the second set of tuples 
represents the refinement morphism between the role and the role instance. 
When the connector is defined, the first set of tuples will be given, and the role
instance as well as the second set of tuples is set to NULL. We can see that 
MPSet contains all the information about the connection status between the glue, 

101 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

the roles and the role instances during dynamic reconfigurations of the system, 
through which we will be able to construct the configuration diagram of the 
subsystem at any state. Meanwhile, the meaning of predicates Role_ connected 
and Role_ disconnected are given as follows, depending on where they appear in 
the actions. 

• Role_connected (role-name: ROLE-NAMES, role-instance: role-type) 
If it appears in the guards, we can derive the corresponding conditions by 

the description below: 
Find the entry in MPSet by role-name and check if role-instance and the 

refinement morphism have been set. 

If it appears in R(g), the corresponding multiple assignments can be 
obtained as follows: 

Find the entry in MPSet by role-name and set role-instance as well as the 
refinement morphism by using the second parameter. 

• Role_disconnected (role-name: ROLE-NAMES, role-instance: role-type) 
If it appears in the guards, we can derive the corresponding conditions by 

the description below: 
Find the entry in MPSet by role-name and check if role-instance and the 

refinement morphism are set to NULL. 

If it appears in the R(g) expressions, the corresponding multiple 
assignments can be obtained as follows: 

Find the entry in MPSet by role-name and set role-instance as well as the 
refinement morphism to NULL. 

4.1.2.2 Attach and Detach actions 

If there is only one live instance of class C in the subsystem, we know that it 
will correspond to at most one role of the connector (say CON), and we can 
refer to it by one name variable C 1 in the subsystem. Therefore, the indices of 
the reconfiguration actions are not required. The attach and detach actions of 
class C can be defined as: 

102 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

prvCl:NAME 
attach_C: C(Cl), false-> CON.Role_connected (C, Cl) 
detach_C: C(Cl), false-> CON.Role_disconnected (C, Cl) 

Now we will consider the class C with a dynamic number of live instances 
in the system. Recall our discussion about the interface manager: a set of roles 
of type C will be defined in the connector CON and the glue sr: server-reg will · 
contain a set of interface actions to connect with multiple instances, where a list 
R is introduced to record the mapping between the live instances of C and the 
indices of interface actions. For the dynamic reconfiguration actions attach and 
detach, we do not need to define them for every live instance of C. Instead, we 
assume these reconfiguration actions will happen serially so that two private 
channels are introduced to record the index ( c _con) of C instance to attach to the 
connector, and the name of C instance to detach from the connector at a certain 
time, respectively. 

prv c _con: int; 
c_dcon: NAME; 
R: list(<NAME, int>) 

attach_C: C(C[c_con]), false-> sr.assigned' 1\ CON.Role_connected' 
(C[sr.cur_id], C[c_con]) 1\ R.inserted'(C[c_con], sr.cur_id) 

detach_C: C(c_dcon), false-> sr.collected'(R(c_dcon)) 1\ C[C.find]' = c_dcon 1\ 

CON.Role_disconnected'(C[R(c_dcon)], c_dcon) 1\ R.deleted'(c_dcon, 
R(c_dcon)) 

In action detach_ C, we assume C.find will return an index of array C, which 
is not referring to any live instance of C. 

4.1.3 The sequence of actions 

In the above example, the sequence of the multiple assignments in some actions 
must be ordered to ensure the right result. For example, in action attach_ C the 
index of interface actions should be assigned before the instance can be put into 

103 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

the configuration diagram. Therefore, a guard will be introduced to ensure the 
right order of the assignments, which is initialized to be true. 

prv gl: bool 
attach_ C _1: g 1, false-> sr.assigned' 1\ g 1' = false 
attach_ C_2: -.g1, false -> CON.Role_connected'(C[sr.cur_id], C[c_con]) 1\ 

R.inserted'(C[c_con], sr.cur_id) 1\ g1' =true 

To make the design concise, we will introduce some syntactic sugar into 
DynaComm to express the sequence of multiple assignments in R(g): 
action-name: [L-expr,U-expr] -> R-exprl; R-expr2; ... ;R-exprn 

It will correspond to the following sequence of actions (the set of boolean 
variables are all initialized to be true): 

prv g: array(bool) 
action-name _1: g[ 1], false -> R -exprl 1\ g[ 1 ]' = false 
action-name_2: -,g[1] 1\ g[2], false-> R-expr2 1\ g[2]' =false 

action-name_n: -,g[1] 1\ -,g[2] 1\ ... 1\ -,g[n-1] -> R-expm 1\ g[1]' =true 1\ g[2]' 
=true ... Ag[n-1]'=true 

4.1.4 An example 

To illustrate how to implement the above methods in the normalization of 
indexed actions, let us take the dynamic client-server example and consider the 
subsystem DynamicCS. 

First, we will normalize the population management actions. Based on the 
discussion in section 4.1.1, we will get the following actions for subsystem 
MCServer, which only has one live instance in the system. 

104 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

create_MCServer[mcs, S_NAME]: true, false-> mcs' = choose(NAME 

- S_NAME) A S_NAME' = S_NAME u {choose(NAME-S_NAME)} A 

MCServer' ( choose(NAME-S _NAME)) 

delete_MCServer[S_NAME] :true, false-> -,MCServer'(mcs) A S_NAME' = 
S_NAME- {mcs} 

For component type client, which has a dynamic number of instances in the 
subsystem, which will instantiate a set of roles (of type client) of the connector 
DCS. The corresponding schema of population management actions are derived 
as below: 

prv client : array(NAME); 

create_client(C-id:int)[S_NAME]: true, false-> client[C-id]' = 
choose(NAME-S_NAME) A S_NAME' = S_NAME u 
{ choose(NAME-S _NAME)} A client'( choose(NAME-S _NAME)) 

delete_client(C-id:int)[S_NAME]: true, false-> -,client'(client[C-id]) A 

S_NAME' = S_NAME- {client[C-id]} 

Then we come to the reconfiguration actions. For subsystem MCServer, it is 
straightforward to get the attach and detach actions as follows: 

prv mcs: NAME 

attach MCServer: MCServer(mcs), false-> DCS.Role connected'(MCServer, - -

mcs) 

detach_MCServer: MCServer(mcs), false-> DCS.Role_disconnected' 
(MCServer, mcs) 

The action to change the server when it is going down can be specified as: 

105 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

change_MCServer: mcs.down, false-> detached_MCServer' 1\ 

deleted_MCServer'; created_MCServer' 1\ attached_MCServer' 

For component client, the reconfiguration actions can be normalized following 
the second case in section 4.1.2.2: 

prv c _con: int; 
c _ dcon: NAME; 
R: list( <NAME , int>) 

attach_ client: Client( client[ c _con]), false-> sr.assigned' ; DCS. Role_ connected' 
(client[sr.cur_id], client[c_con]) 1\ R.inserted'(client[c_con], sr.cur_id) 

detach_ client: Client(c_dcon), false-> sr.collected'(R(c_dcon)) 1\ DCS. 
Role_ disconnected' ( client[R( c _ dcon) ], c _ dcon) ; R.deleted'( c _ dcon, R( c _ dcon)) 
1\ client[C.find]' = c_dcon 

Finally, we can update the design of subsystem DynamicCS by introducing 
additional channels into the system specification, and eliminating the indices of 
the population management and reconfiguration actions. Notice that the channel 
MPSet is not modified explicitly by the actions in the specification. Actually the 
operations on MPSet are incorporated into the predicates of connector DCS (as 
we discussed in 4.1.2.1 ), and these predicates can be replaced by a sequence of 
standard actions. In this sense, the following specification of subsystem 
DynamicCS is partial and we use schema actions, the syntactic sugar for 
sequence of actions and the above predicates to reduce the length of the 
specification. 

design subsystem DynamicCS 
associations DCS 
participants 

sr: server-reg; mcs: MCServer 
attributes 
prv g: array(bool); //for the sequence of actions 

client: array (NAME); 

106 



Master's Thesis - Xiang Ling McMaster- Department of Computing and Software 

c_con: int; 
c_dcon: NAME; 
S_NAME: set ofNAME; 
MPSet: set of(<ROLE-NAMES, set of(<G-NAMES, G-NAMES> I< 

A-NAMES, A-NAMES>), NAME, set of(< G-NAMES, G-NAMES> I 
<A-NAMES, A-NAMES>)>); 

R: list (<NAME, int>) 
interface init 
in it 

Server-reg(sr) 1\ MCServer(mcs) 1\ DCS(sr, mcs) 
actions 

attach_client: Client(client[c_con]), false-> sr.assigned'; DCS. Role_connected' 
(client[sr.cur_id], client[c_con]) 1\ R.inserted'(client[c_con], sr.cur_id) 

[]detach_ client: Client(c_dcon), false-> sr.collected'(R(c_dcon)) 1\ DCS. 
Role_disconnected'(client[R(c_dcon)], c_dcon); R.deleted(c_dcon, R(c_dcon)) 
1\ client[C.find]' = c_dcon 

[]prv attach_MCServer: MCServer(mcs), false-> DCS.Role_connected' 
(MCServer, mcs) 

[]prv detach_MCServer: MCServer(mcs), false-> DCS. Role_disconnected' 
(MCServer, mcs) 

[]prv change_MCServer: mcs.s.down, false-> detached_MCServer' 1\ 

deleted_MCServer'; created_MCServer' 1\ attached_MCServer' 

[] create_client(C-id:int)[S_NAME]: true, false-> client[C-id]' = 
choose(NAME-S NAME) 1\ S NAME'= S NAME u 

- - -
{ choose(N AME-S_ NAME)} 1\ client' ( choose(NAME-S _NAME)) 

[] delete_client(C-id:int)[S_NAME] :true, false-> -,client'(client[C-id]) 1\ 

S_NAME' = S_NAME- {client[C-id]} 

[]prv create_MCServer[mcs, S_NAME]: true, false-> mcs' = choose(NAME 
- S_NAME) 1\ S_NAME' = S_NAME u {choose(NAME-S_NAME)} 1\ 

MCServer' ( choose(NAME-S _NAME)) 

107 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

[]prv delete_MCServer[S_NAME] :true, false-> -,MCServer'(mcs) 1\ 

S_NAME' = S_NAME- {rues} 
endofdesign 

Compared with the original specification of subsystem DynamicCS, the 
sequence of actions are specified in some actions (e.g. attach_client) of the 
updated specification, and a boolean array g is included to transform the action 
sequence into a set of standard actions. The indices of the reconfiguration 
actions (attach_client, detach_client, attach_mcserver, detach_mcserver and 
change_mcserver) have been eliminated by the method introduced in section 
4.1.2. For the population management actions of the client, the mechanism of 
schema actions has been applied to remove the indices of these actions, and 
provide a set of actions to create or delete the live instances of the client 
independently. In addition, the private actions assign and collect for managing 
the name space of the subsystem have been removed and incorporated into the 
population management actions of different classes, to show the complete 
specification of separate class manager actions. 

It is worth mentioning that the length of the above specification wi11 be 
increased quickly (n2

), when we try to transform it into a standard CommUnity 
design. The main factors contributing to this increase are the schema actions 
(population management) and the sequence of actions. However, since our work 
focuses on the theoretical aspect of the DynaComm language, we will not take 
the complexity issue into consideration at this stage and this problem will be 
investigated when we try to implement this language (as a development tool) 
and use it to model, develop and analyze real systems in some industrial setting. 

4.1.5 Regulator for subsystem DynamicCS 

In the above example, the creation and deletion actions of the class can be called 
arbitrarily because we do not put any guards for these actions. The reason for 
leaving the guards empty is to make the actions general so that the reusability 
and extensibility ofthe design is kept. 

From the requirements of the Dynamic Client-Server system, a dynamic 
number of clients will exist in the system and the client can connect or 
disconnect from the server depending on its status. Therefore, the live instance 
of the client has three states: con, dcon, and del. The first state means that the 
client has been connected to the server and put into the configuration diagram of 

108 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

the system. The second state represents that the client has just been created or 
has disconnected from the server. If the client is deleted, it will be set to the third 

state. We will design a regulator for the subsystem DynamicCS to record the 

states of the clients and regulate the creation and deletion actions of the client 
class in the subsystem. The following diagram describes the relationship 
between the actions of subsystem DynamicCS and the regulator DCS-reg we 
will design. 

DynamicCS DC'S-reg 

C:lt~nt(C-td) · NA_ME State(C-!d): (con.clocn,d~!l 

C:-id 
Create_ cliem(C:-id) 

/ 
Set dron 

_{'.ltl 
Delete_ cliem(C-id) / Set_del 

Attach_ client 7 Set con 
----

Detach_ c hem 

Figure 4. 3 The regulator for subsystem DynamicCS 

The graphical notation for subsystem DynamicCS is as follows, and we add 
one channel out_id into it to record the current client id, which will be 
synchronized with the corresponding channel of the regulator to modify the 
client's state. 

DynamicCS 

- out id: int 
- init 
- create_client(C-id:int) 

delete_ client( C-id:int) 
attach client 
detach client 

Figure 4. 4 Graphical notation of subsystem DynamicCS 

At the same time, we need to modify the actions of DynamicCS to set the 
value of out_id to the current client's id in the action. So, in actions create_ client 

109 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

and delete_client, we will add out_id' = C-id, and assignments out_id' = c_con, 
out_id' = C.find should be added to actions attach_client, detach_client, 
respectively. Because all these assignments only write the new channel out_id, 
there exists a regulative superposition morphism from the "old" DynamicCS to 
this new subsystem. However, since the change is minor, we will still use the 
name DynamicCS to represent this new subsystem. 

Then we define the regulator DCS-reg for DynamicCS as follows: 

design component DCS-reg 
in c id: int 
out state: array( enum( con,dcon,del)) 
actions 

set_dconl(C-id:int): state[c-id] <> dcon, false-> state[c_id]' = dcon 
[] set_dcon2: true, false-> state[c_id]' = dcon 
[] set_ del(C-id:int): state[ c-id] = dcon, false -> state[ c _id]' = del 
[] set_con: state[c_id] = dcon, false-> state[c_id]' =con 

endofdesign 

In Figure 4.3, we notice that actions create_client and detach_client will 
connect to the same action set_dcon of the regulator. Due to the problem of 
action synchronization of CommUnity, we replace action set_dcon by two 
actions to connect different actions of DynamicCS. We should also keep in mind 
that since create_ client and delete_ client are schema actions, their synchronized 
actions set_dconl and set_del in the regulator would be schema actions too, 
which means that a set of actions (with index C-id) for each of them should be 
defined in DCS-reg. The graphical representation of component DCS-reg is 
given below: 

DCS-reg: 
t # in id: int 

~ 
+. set.·_dconl(C-id:int) 
+ set_ del( C -id:int) 
+set dcon2 

• +set con 
!.. _____ =-~--~---·-····- --

Figure 4. 5 Graphical notation of regulator DCS-reg 

110 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

Then we can interconnect subsystem DynamicCS with the regulator 
DCS-reg with a cable and obtain the following specification of new system 
RDynamicCS. Notice that we need schema actions in the cable to interconnect 
systems having schema actions. 

design component cableS 
in v: int 
actions 

syncl(C-id:int): true-> skip 
[] sync2(C-id:int): true -> skip 
[] sync3: true -> skip 
[] sync4: true-> skip 
endofdesign 

design subsystem RDynamicCS 
associations 

component cableS, DCS-reg 
subsystem DynamicCS 
morphisms 

cableS to DynamicCS 
connections 
v.cableS to out_id. DynamicCS 
sync 1 (C-id).cableS to create_ client(C-id).DynamicCS 
sync2(C-id).cableS to delete_ client(C-id).DynamicCS 
sync3.cableS to attach_client. DynamicCS 
sync4.cableS to detach_client. DynamicCS 
cableS to DCS-reg 
connections 
v.cableS to c _id. DCS-reg 
sync 1 (C-id).cable5 to set_ dconl (C-id).DCS-reg 
sync2(C-id).cableS to set_del(C-id).DCS-reg 
sync3.cableS to set_con. DCS-reg 
sync4.cable5 to set_dcon2. DCS-reg 

participants 
dynes: DynamicCS; c:cable5; drg:DCS-reg 

Ill 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

interface 
init 

actions 
create_ client(C-id) to create_ client(C-id).dyncs 
delete_ client(C-id) to delete_ client(C-id).dyncs 
attach_ client to attach_ client.dyncs 
detach_ client to detach_ client.dyncs 

init DynamicCS(dyncs) /\CableS( c)/\ DCS-reg(drg) /\ RDCS(dyncs,c,drg) 
endofdesign 

The graphical representation of subsystem RDynamicCS is as follows, 
which has the same interface as subsystem DynamicCS and provides the control 
for dynamic reconfiguration actions. 

+ere at~_ dient(C-id) 

+de let~_ chent(C-!d) 

+ attach_ client 

+ dE'tach client 

.... .J2)."~:~~lic <=::~----
+ out 1d: im 

+ create_chent(C-id) 

+ delete_chent(C-id) 

+attach_ chent 

+detach chent 

CableS 

;tv: int 

---~• + >yncl(C-td) 

~---~~ + sync:!(C-id) 

--~• +synd 
+ >ync4 

DCS-reg: 

# c id: int 

- set_dei(C-id) 

- set_dconl(C-id) 

I 
-set_ con 

- set_dcon2 

........ J 

Figure 4. 6 Graphical notation of subsystem RDynamicCS 

112 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

4.2 The transformation procedure 

The purpose of this procedure is to take the system specified by DynaComm 
(with a fixed configuration diagram, i.e. a certain state of the system) as input 
and reduce it to the flat configuration diagram, which consists only of 
components, cables and regulative superposition morphisms. According to the 
proposition in section 2.4.4.3, the colimit of a flat configuration diagram will 
exist and the semantics of the configuration can be derived from the colimit 
directly based on the semantics of CommUnity we introduced in chapter 2. We 
call this procedure TransComm with the input CompDg (complicated diagram in 
DynaComm) and the output FlatDg (flat diagram in CommUnity). 

Behind the DynaComm specification of any system there is a complicated 
configuration diagram built from components, connectors, subsystems and the 
corresponding morphisms, which we call CompDg. For components, they are 
the basic building blocks of FlatDg and nothing needs to be reduced. The main 
concerns are the connector, which serves as the crucial mechanism to 
interconnect the components, and the subsystem that contains subcomponents 
connected by morphisms between them. From the definition of subsystem in 
section 3.2.3, there will be two cases when we try to decompose CompDg. 

• The association of the subsystem is specified by the components, 
subsystems and the morphisms among them. 

We will look at the subcomponents of the system, which could be a 
component or a subsystem. Assume the configuration diagram of system S is as 
the following diagram, which consists of component instance c 1 and subsystem 
instance sl as subcomponents interconnected by cable c2. 

cl:C' 
.,. var :t)1)e 
+ var: type 

var: t)Ve 

+ action-name 
action-name 

Cablec2 
# var :t)Ve 

+ action-name 

Subsyst<>m Sl 

# var :type 
+ nr: t)ve 

var: type 

- action-name 
action-name 

Figure 4. 7 Configuration diagram of systemS 

113 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

* If the subcomponent is a component, such as C 1 iri the diagram, then it need 
not be reduced. 

* When the subcomponent is a subsystem, say S 1 in system S, we will apply the 
TransComm procedure to the configuration diagram of S 1 to get the flat diagram 
of subsystem S 1. Then we can compute the co limit of the flat diagram, which is 
considered as a big component. The flat diagram of S will be obtained after we 
apply the TransComm procedure to all the subsystem subcomponents of S. 

• The association of the subsystem is given by a connector C, which has glue 
g and roles R1, R2, ... Rn. 

81~ 

T 
8'? 

) 

RoleR2 

Figure 4. 8 The association of the system is a connector 

In this case, we should consider the refinement morphisms between 'the 
roles and role instances in system S. According to our discussion in section 2.4, 
suppose role R1 is instantiated by an instance c1 with a refinement morphism, 
we can combine the regulative superposition from the cable to Rl with the 
refinement morphism to get a regulative superposition from the cable to c 1, and 
the whole diagram can be updated similarly. After this step, we will be able to 
apply the TransComm procedure to the subcomponents of S recursively and get 
the flat diagram for systemS, with the same method discussed in the first case. 

114 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

4.3 Summary 

To define the semantics of the DynaComm language, we have described a 
systematic approach to eliminate the parameters of actions, which are essential 
in specifying population management and reconfiguration actions in 
DynaComm. This approach has been applied to the dynamic client-server 
system we specified in chapter 3, to illustrate its effectiveness in transforming 
complex DynaComm specifications into CommUnity-like designs by 
introducing additional channels to record dynamic instances and morphisms 
between components and subsystems. Then we can obtain a high level semantic 
model by considering the dynamic subsystem's different configuration diagrams 
as states, and its reconfiguration actions as events to trigger the transition from 
one configuration diagram to another configuration diagram. Along with the 
method we have proposed to obtain a dynamic system's static semantics at a 
certain state, we believe that with further research in investigating their 
relationships, the semantics of the DynaComm language can be unified based on 
this solid foundation. 

115 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

116 



Master's Thesis - Xiang Ling McMaster - Department of Computing and Software 

Chapter 5 

Design with extension morphisms 

It has been shown in [5] that higher-order connectors provide a very convenient 
basis for enhancing the behavior of an architecture of component designs, by the 
superimposition of aspects, such as fault tolerance, security, monitoring, 
compression, etc. Owing to the coordination mechanism of CommUnity, the 
coupling between the components has been reduced to a minimum so that we 
can superimpose aspects on existing systems through replacement, superposition 
and refinement of components. However, higher-order connectors are not 
powerful enough for defining various kinds of aspects, because some of them 
require extensions of the components and connectors [8]. Therefore, we will 
consider extension morphism (see definition 2.15 in chapter 2) as a candidate for 
defining extensions of components, which justifies the notion of substitutability 
arising in the context of object oriented design and programming, and provides a 
structuring principle for augmenting components by breaking encapsulation of 
the component in a controlled way [8]. 

This means that in a well-formed configuration diagram we should be able 
to replace component C by its valid extension, component C', and preserve the 
wellformedness of the diagram. We will prove this property in section 5.1. To 
illustrate the application of this principle in designing systems with the 
DynaComm language, a vending machine system example will be discussed in 
section 5.2 to show how we can combine regulative superpositions with 
extension morphims to derive an "augmented" version of the original system. 

5.1 Combine regulative superpositions with extension morphisms 

In this section we will consider the case that in a well-formed configuration 
diagram one component is extended by a design through extension morphism. 
Since we know that all the components are interconnected by cables through 
regulative superposition morphisms in a well-formed configuration diagram, the 
component to be replaced by the extended design is connected to a cable by the 
regulative superposition morphism, as shown in Figure 5 .1. We will show that 
the regulative superposition can be combined with the extension morphism to 
obtain a new regulative superposition from the cable to the extended component. 

117 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

Again, it is crucial to have the notion of cables to interconnect the components, 
to ensure that the composition of regulative superposition and extension 
morphism will give a new regulative superposition. 

El 

Figure 5. 1 Combine regulative superposition and extension morphism 

Proposition 5.1 Suppose m is a regulative superposition morphism from cable 8 
to design Ci, and n is an extension morphism from design Ci to design Ei; there 
will exist a regulative superposition morphism n' from cable 8 to design Ei. 

Proof 
The morphism n' is defined as follows: 
* n' a is a total function: for every channel v in 8, n' a (v) = na (rna (v)). 
* n' y is a partial mapping: for every action gin Ei, if ny (g) is defined and 
my (ny (g)) is also defined, n' y (g)= my (ny (g)); otherwise, it is undefined. 

Since an extension morphism is also a signature morphism, we know n' is a 
signature morphism. To check if n' is a regulative superposition morphism, we 
need to check the following conditions: 

* lEi=> n'(le ). 
Because n is an extension morphism, there exists a formula a, usmg only 
channels contained in (V Ei-na (V ci )), and a is satisfiable, 

1= lEi~ n(Ici)/\a. 

We have lEi=> n(Ici ), lei=> m(Ie ), so n(Ici) => n(m(Ie )) ~ n'(Ie ), and lEi=> 
n'(Ie ). 

* Ifv E loc(8), g ErEi and n'a(v)E DEi(g), then g is mapped to an action n'y(g) 
and VE De(n' y (g)). 
*For every gErEi where n'y (g) is defined, ifv E loc(8) and gE DEi(n'a(v)), 

118 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

then REi(g, n' a (v)) ~ n' a (Ro (n' y (g),v)). 
Because e only contains input channels, loc(9) is empty, so these two conditions 
hold. 

* L Ei(g) => n'(Lo (n' y (g))). 
* U Ei(g) => n'(Uo (n' y (g))). 

From our definition of "middle" design, Le(n' y (g)) ~true, U0(n'y (g)) ~true, 
so these two conditions hold. 

With this property, in a well-formed configuration diagram, we are able to 
replace each component by its extension component, by combining the 
regulative superposition from the cable to the old component with the extension 
morphism between the old component and its extension, to obtain a new 
regulative superposition from the cable to the extended component. Therefore, 
we reach the conclusion that in a well-formed configuration diagram of a system, 
we can extend any subcomponents of the system (through extension morphisms), 
and obtain an updated well-formed configuration diagram only containing 
regulative superpositions, through which the semantics of the new system can be 
derived from its colimit following the procedure introduced in section 2.4.4.3. 
Moreover, it can be shown that the co limit of the new configuration diagram is 
an extension of the co limit of the old configuration diagram (8]. 

From the proof of proposition 5.1, we can see that if ei is not a cable, the 
composition of a regulative superposition and an extension morphism may not 
give a regulative superposition. Therefore, it is necessary to enforce the designs 
to be interconnected by cables in a well-formed configuration diagram, so that 
the co limit will exist after extending any of the designs in the diagram through 
extension morphisms. 

5.2 An example vending machine system 

Now we want to model a system consisting of a customer and a vending 
machine with the DynaComm language. The requirement of this system is 
described as follows. The vending machine maintains a list of items, along with 
the price and amount of each item. The customer can place an order with the 
name of item and the payment to the vending machine. To simplify the example, 
currently we only allow the customer to order one item in a transaction, which 
will be extended later. The vending machine will check the price of the item and 

119 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

decide if the order is accepted. If so, it will deliver the item along with the 
change to the customer; otherwise, the payment is returned to the customer. 
Currently, the vending machine will only accept payment comprised of nickels, 
dimes, quarters and 1 dollars, so it will refuse the order if the customer puts one 
cent in the payment. Meanwhile, if the vending machine is not able to make the 
change, it will also refuse the order and return the payment. 

5.2.1 The design of the customer 

Instead of modeling the customer with arbitrary behaviors, we choose to 
consider the machine's interface operated by the customer as the simulation of 
the customer's behavior. To make the system simple and general at first, the 
interface is divided into two parts: the buttons and the slot. The names of 
different items label the corresponding item buttons, and after the customer 
presses one of them, other item buttons will be disabled, so that he can only 
choose one item in an order. Then the customer can choose the "confirm" button 
to continue the order, where the slot will indicate to him to put the coins in and 
the complete order will be sent to the vending machine. If the customer chooses 
the "cancel" button, all the item buttons will be enabled and he can start another 
order. 

The vending machine will check the price of this order and whether the 
ordered item is still available in its storage. If so, it will ask the slot to make the 
change. Then the vending machine will deliver the product to the slot and enable 
the item buttons, if the change can be made. Otherwise, the order will be refused 
and the payment is returned to the customer. 

5.2.1.1 The interface controller 

According to the above requirement, the customer places his order of an item 
through the buttons (including the item buttons and the command buttons: 
confirm and cancel) on the machine's interface, so we design an interface 
controller to model these buttons, as well as the customer's interaction with the 
interface of the machine. A finite set of actions for the item buttons and 
"confirm", "cancel" buttons are specified in the following design. The slot_get 
and slot_ret actions are designed to interact with the slot component to get the 
payment from the customer. Meanwhile, we use the order action to send the 
complete order to the vending machine, and after the order has been processed 
by the vending machine, the order ret action will be called to reset the 

120 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

controller. 

design component controller 
in 

II the customer's payment in the slot 
i_pay: int 

prv 
b_item: array (int); 
bt_g: bool; //guard for item buttons 
bt_confirm: bool; //guard for confirm/cancel buttons 
slot_g:bool; II guard for slot get action 
s_req:bool; 
ord_g: bool; II guard for order action 
o_req: bool 

out 
II order to vending machine 
c_item: list (int); 
c_pay: int 

in it ord _g = false 1\ o _req = false 1\ bt_g = true 1\ bt_ confirm = false 1\ slot_g 
=false 1\ s_req =false 1\ c_item =NULL 
actions 

button_select (id: int) [bt_g,c_item,bt_confirm] : bt_g, false-> bt_g' =false 1\ 

c_item' = c_item * b_item [id] 1\ bt_confirm' =true 
[] button_confirm [bt_confirm,slot_g] : bt_confirm, false-> bt_confirm' =false 
1\ slot_g' =true 
[] button_cancel [bt_confirm,bt_g,c_item] : bt_confirm, false -> bt_g' =true 1\ 

bt confirm'= false 1\ c item'= NULL 
- -

[] slot_get [slot_g,s_req]: slot_g, false-> slot_g' =false 1\ s_req' =true 
[] slot_ret [c_pay, s_req, ord_g]: s_req, false-> c_pay' = i_pay 1\ s_req' =false 
1\ ord_g' =true 
[]order [o_req,ord_g]: ---,o_req 1\ ord_g, false-> o_req' =true 1\ ord_g' =false 
II enable all the item buttons 
[]order _ret [o_req, bt_g, c_item]: o_req, false-> o_req' =false 1\ bt_g' =true 1\ 

c item'= NULL 
endofdesign 

The input channel i_pay indicates the payment received from the customer. 

121 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

A finite set of item button actions (button_select) are defined, which correspond 
to the sequence of item buttons on the machine's interface. Again they are 
schema actions indexed by the id (in the above sequence) of the item buttons. 
We use a fixed size array b_item to store the item's index in the storage of the 
vending machine, and the index of array b _item will correspond to the id of the 
item button, e.g. the second item button b_item[2] may correspond to the item 
index 6 in the item list of the vending machine's storage. 

The workflow of the controller component is described as follows. After 
one item button is selected, the guard bt_g is set to false to disable all the item 
buttons, so that the customer can only choose button confirm or cancel (as the 
enabling guards of other actions are disabled). If he chooses the confirm button, 
the guard slot_g is enabled and the slot_get action will be executed to request 
the customer's payment in the slot component. If the cancel option is selected, 
the controller will enable all the item buttons and wait for the customer's input 
from the beginning. After the payment is obtained from the slot, the order action 
will be called and it will send the order (c_item, c__pay) to the vending machine, 
then wait for the result of the order. After the vending machine processes the 
order and indicates the result to the order _ret action of the controller, the 
order_ret action will reset the item buttons and the c_item list, to be ready to 
accept another order. The graphical notation for the controller component is 
shown in Figure 5.2 (we ignore private channels and actions): 

controller 

# i_pay:int 

+ c _item: list (int) 

+ c_pay: int 

+button_ select(id:int) 

+ button confinu 
+ button cancel 
+ slot_get 

+slot ret 
+order 

+order ret 

Figure 5. 2 Graphical representation of the controller component 

Notice that we use a number of guards to control the sequence of actions in 

122 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

the controller, and the correctness of our design can be ensured by controlling 
the right workflow of the component through the appropriate use of these guards. 
We also use the list data structure to record the ordered items, although currently 
only one item is allowed in the order. The reason is that in the different kinds of 
design morphisms we have discussed so far, the mapping of channels requires 
the types of channels to be preserved. If we use one channel of integer type to 
record the ordered item now and there is a new requirement to allow the 
customer to select multiple items in an order, we have to add new channels to 
the component and modify the corresponding actions as well, which seems 
awkward. Therefore, we choose the list data structure for the ordered items and 
the corresponding actions are designed to process the list of items. 

We have also designed a pattern for a pair of actions of one component (e.g. 
slot_get and slot_ret), which sends a request to another component and waits for 
its response to proceed. The trick is to assign a guard (initialized to be false) to 
the callback action to make sure that it will not be called arbitrarily m an 
unexpected situation, and it will only be enabled in the request action. 

5.2.1.2 The slot 

The slot component takes care of the acceptance of the customer's payment and 
decides if the correct change can be made depending on its current storage of 
coins. When the interface controller requests the payment from the customer, the 
slot will distinguish the coins and it will refuse the payment and indicate this 
event to the controller if there exists one cent in the customer's input. Otherwise, 
it will store the coins and send the payment amount to the controller. Regarding 
the function for making the change, the slot is able to compute the composition 
of coins for the amount of change requested by the vending machine based on 
its current storage. If the computation is not successful, the vending machine 
will refuse the order and inform the slot to return the payment, which can 
certainly be made. 

In the following design of component slot, a set of input channels such as 
i_dollar, i_quarter etc. represents the payment from the customer, a set of private 
channels is included as the coin storage of the slot, and we also use output 
channels o _nickel, o _dime, o _quarter and o _dollar to represent the change made 
by the slot. The get_pay action stores the coins in the payment and the send_pay 
action puts the amount of payment in the output channel o _pay. According to the 
amount of change that should be made in the input channel r _change, the 
comp _change action will compute the composition of coins, and the 

123 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

send_ change action will send the result of the computation (change_ res) and 
update the storage of coins if needed. While the ordered item is accepted by the 
action rec _item, and the rec _return action receives the returned payment amount 
and returns the coins to the customer. 

design component slot 
in 

II input coins from customer 
i _cent: int; 
i_ nickle: int; 
i_dime: int; 
i_quarter: int; 
i _dollar: int; 
II received change amount and items from vending machine 

r _change : int; 
r_item: list (ITEM) 

prv 
II coins storage 
s _ nickle: int; 
s_dime: int; 
s _quarter: int; 
s _dollar: int; 
II guards for action sequence 
get_g: bool; 
change _g:bool; 
item_g: bool 

out 
II changes made by the slot 
o_nickle: int; 
o_dime: int; 
o_quarter: int; 
o _dollar: int; 
s_item: list (ITEM); II items to slot 
o_pay: int; II payment amount to the controller 
change _res: bool 

init get_g =true 1\ change_g =true 1\ change _res= false 1\ item_g =false 
actions 

get_pay [get_g, s_nickle, s_dime, s_quarter, s_dollar]: get_g 1\ i_cent = 0, 

124 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

false-> get_g' =false 1\ s_nickle' = s_nickle + i_nickle 1\ s_dime' = s_dime + 
i_dime 1\ s_quarter' = s_quarter + i_quarter 1\ s_dollar' = s_dollar + i dollar 
[] send_pay [get_g, o_pay]: -, get_g , false -> get_g' = true 1\ o_pay' = 
IOO*i_dollar + 25*i_quarter + IO*i_dime + 5*i_nickle 

[] comp_change [change_g, change_res]:change_g, false -> get_changed 1\ 

change _g' = false 

[] send_ change [change _g]: -,change _g, false -> change _g' = true 1\ 

( change_res = true => item_g' = true 1\ s_nickle' = s_nickle - o_nickle 1\ 

s_dime' = s dime- o_dime 1\ s_quarter' = s_quarter- o_quarter 1\ s_dollar' 
= s_dollar- o_dollar) 

[] rec_item [s_item, item_g]: item_g, false -> s_item' = r_item 1\ item_g' = 
false 
[] rec_return [ret_g, s_item,] :true, false-> s_item' =NULL 1\ get_ changed 
endofdesign 

In the above design, we assume the function to compute the composition of 
change, namely get_ change, has already been defined, which takes r _change as 
input and computes the number of nickels, dimes, quarters and dollars. If the 
computation is successful, it will set change _res to be true and the output 
channels for the change. Otherwise, change _res is set to false and this event is 
sent to the vending machine. Actually, get_change solves a linear programming 
problem, which takes s_nickel, s_dime, s_quarter, s_dollar and r_change as 
parameters. To simplifY the specification of slot component, we do not describe 
the detailed procedure here. 

The workflow of the slot component is described as below. When the 
interface controller requests the payment from the customer, the get_pay and 
send _pay actions will be executed to provide the payment amount to the 
controller. After the vending machine receives the order and recognizes that the 
payment is enough, it will ask the slot to compute the change. So, the 
comp_change action is called and the result of computation (change_res) is sent 
to the vending machine by the send_ change action. If the result is successful, the 
change is given to the customer by the slot and the vending machine will send 
the product to the slot by means of the rec _item action. Otherwise, the 
rec _return action will get the amount of payment from the vending machine and 
give it back to the customer by calling the get_ change function. The graphical 
notation for the slot component is as follows, where we ignore the private 
channels and actions. 

125 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

# i_ cent: int 
# i_nickle: int 
# i dime: int 
# i_qum1er: int 
# i_ dollar: int 

slot 

# r_ change : int 
# r_item: list (ITBv1) 

+ o _uickle: int 
+ o_dime: i.nt 
+ o_quru1er: int 
+ o _dollar: int 
+ s_item: list (ITE:\,1) 

+ o _JJay: int 
+ cham1.e res: bool 
+ get_pny 
+ send_pay 
+ comp _ clmnge 
+send_ change 
+ rec _item 
+ rec_retun1 

Figure 5. 3 Graphical representation of the slot component 

5.2.2 The design of the vending machine 

Based on the functional requirement of the vending machine, we will divide it 
into two components: vender and inventory, where the vender is in charge of the 
interaction with the customer interface (controller and slot), and the inventory 
serves as a database for storing the actual products (items) and maintaining the 
price and amount of each item. 

5.2.2.1 The vender 

The duty of the vender is to accept the order from the customer (the accept 
action), ask the inventory to the check the price and amount the the ordered 
item(s) (actions check_inv and check _ret), send the amount of change to the slot 
and ask if the change can be made (actions change and change _ret), request the 
item(s) from the inventory (actions req_item and reg_ return), deliver the item(s) 
to the customer (the delivery action) or return the payment (the return_ord 
action), and inform the interface controller to be reset to start a new order (the 

126 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

reset_controller action). The design of the vender component is as follows, and 

the meaning of the channels is explained as the comments. 

design component vender 
in 

II the ordered item(s) and payment from the controller 
in_item: list (int); 
in_pay: int; 
II the price of the ordered item( s) from the inventory 
inv _price: int; 
inv _item: list(ITEM); 
II the result of checking whether the change can be made from the slot 
chg_res: bool 

prv 
II the set of guards to control the sequence of actions 
ac: bool; 
ck: bool; 
cg: bool; 
rt: bool; 
rq:bool; 
rc: bool; 
dl:bool; 
II stores the requested item(s) from the inventory 
v _item: list(ITEM); 
II stores the order and payment from the customer 

ord_item: list(int); 
ord _pay: int 

out 
II the order and payment to be sent to the inventory 
ck_item: list(int); 
ck_pay: int; 
II the amount of change to be sent to the slot 

chg_ amt: int; 
II the ordered item(s) sent to the customer 
out_item: list(ITEM); 
II the returned amount of payment to be sent to the slot 
ret amt: int 

in it 

127 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

ac' =false 1\ ck' =false 1\ cg' =false Art'= false A dl' =false A rq' =false A 
rc' =false 
actions 

accept [ac, ord_item, ord_pay, ck ]: -,ac, false -> ac' = true A ord_item' = 
in _item 1\ ord_pay' =in _pay A ck' =true 
[] check_inv [ck, ck_item, ck_pay]: ck, false-> ck_item' = ord_item A ck_pay' 
= ord _pay 1\ ck' = false 
[] check _ret [ cg, rt, v _item]: true, false -> ( inv _price >= 0 ~ cg' = true) V 

( inv _price= 0 ~ rt' =true) 
[]change [cg, chg_amt]: cg, false-> chg_amt' = ord_pay - inv_price A cg' = 
false 
[] change _ret[ rq, rt ] : true, false -> ( chg_ res = true ~ rq' = true ) V ( chg_res = 

false~ rt' =true) 
[] req_item [rq, ck_item]: rq, false-> ck_item' = ord_item A rq' =false 
[] req_return [v_item, dl]:true, false-> v_item' = inv_item A dl' =true 
[] return_ord [rt, ret_amt, out_item, ac, rc] : rt, false-> rt' =false 1\ ret_amt' = 
ord_pay 1\ out_item' =NULL 1\ rc' =true 
[]delivery [dl, ac, out_item]: dl, false-> dl' =false 1\ out_item' = v_item 1\ rc' 
=true 
II inform the controller to accept another order 

[] reset_ controller [ rc]: rc, false -> rc' = false 1\ ac' = false 
endofdesign 

According to the initialization condition of this design, only the accept 
action is enabled and it is synchronized with the order action of controller to 
accept the order of the customer. It also sets the guard ck to be true, so that the 
check_inv action will be executed to ask the inventory to check the price and 
amount of the ordered item(s). The check_ret action waits for the response from 
the inventory: if inv _price>=O, it means that the transaction can continue and 
this action sets the guard cg to be true, to call the slot to check if the change can 
be made; otherwise, it enables the guard rt to call the return_ ord action, if any 
item is not available or the payment is not enough. 

If the order can continue, the change action is synchronized with the 
comp _change action of the slot to make the appropriate change to the customer. 
Then the change _ret action will wait for the response from the slot indicated by 
the input channel chg_res: if the change can be made, the vender will request the 
item(s) from the inventory by the req_item action, which is synchronized with 
the rec _req action of the inventory; otherwise, the return_ ord action is called to 

128 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

return the payment. After the vender receives the requested item( s) from the 
inventory by the req_return action, the delivery action will be called, which is 
synchronized with the rec_item action of the slot to deliver the item(s). 
Otherwise, the action return_ord will be executed and the slot's action rec_return 
will be synchronized to return the payment to the customer. Finally, the vender 
will call the reset_controller action to synchronize with the order_ret action of 
the controller to inform it that the next order can be taken now. 

The graphical notation for the vender component is as follows (we ignore 
private channels and actions): 

Vender 
# in_ item: list (int) 
# in_pay: int 
# inv _price: int 
# inv_item: list(ITEM) 
# cbg_res: bool 
+ ck_item: list(int) 
+ ck_pay: int 
+ chg_mnt: int 
+ ont_item: list(ITEM) 
+ret amt: int 
+accept 
+ check_ulY 
+check _ret 
+change 
+ change _ret 
+ retLitem 
+ req_retum 
+ retum_ ore! 
+ deliYery 
+reset_ controller 

Figure 5. 4 Graphical representation of the vender component 

Again, we use a set of guards to control the sequence of actions in the 
vender component, and in the above explanation of the component's work 
mechanism, we are able to control the right workflow of the design through the 
appropriate use of these guards, so that the correctness of our design can be 
ensured. 

129 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

5.2.2.2 The inventory 

The design of component inventory can be derived from its functional 
requirement described at the beginning of section 5.2.2. The inventory 
component maintains a list of items along with their price and remaining amount: 
(item_id:int, item:ITEM, price:int, amount:int), where item_id is the item's 
index in the storage and item represents the real item product. We use an array 
db (with a fixed size) to store this list of items, and the index of this array 
corresponds to item_id. Meanwhile, we assume functions first, second and third 
have been defined to return the first, second and third member of db, 
respectively. 

The private action count_item calculates the amount of each ordered item 
and stores it in the channel s_item. It also computes the total price of the order. 
The check_price action goes through the inventory database and compares the 
amount of each ordered item with the amount of that item in the storage. If the 
storage is not enough or the payment is less than the price of the order, the 
output channel will be set to 0; otherwise, it will set to the value in p _price. The 
get_item action will retrieve the items from the storage according to the order 
and update the db channel. The specification of the inventory component is as 
follows: 

design component inventory 
in 

II the ordered item(s) and payment from the vender 
i_item: list (int); 
i_pay: int 

prv 
II stores the ordered item(s) 
p_item: list (int); 
r _item: list (int); 
p_price: int; 
I I array index is item id 
db: array (ITEM, int, int); 
II stores the amount of each ordered item, all the entries are initialized to be 0. 
s_item: array (int); 
j :int; 
II the guards to control the sequence of actions 
price_g: bool; 

130 



Master's Thesis- Xiang Ling 

amt_g: bool; 
ret_g: bool; 
send g: bool 

out 
o_item: list (ITEM); 

McMaster- Department of Computing and Software 

I I the price of the order sent to the vender 
o_price: int 

init p_item = NULL 1\ price_g = false 1\ amt_g = false 1\ ret_g = false 1\ 

o_price = 0 1\ o_item =NULL 1\ r_item =NULL 1\ send_g =false 
actions 

check[]: true, false-> p_item' = i_item 
[] prv count_item []: p_item !=NULL, false-> s_item [head(p_item)]' = s_item 
[head(p_item)] + 1 1\ p_price' = p_price +second (db [head(p_item)]) 1\ p_item' 
= tail(p_item) 1\ ( tail(p_item) =NULL~ price_g' =true) 
[] prv check _price[] : price_g, false-> price_g' =false 1\ ((i_pay >= p_price ~ 
amt_g' =true Aj' = 1) V (i_pay < p_price ~ ret_g' =true 1\ o_price' = 0)) 

[] prv check_amt[] : amt_g 1\ (j <= sizeof(db)) , false -> ((s_item[j] <= 
third(db[j]) ~ j' = j + 1 1\ (j =sizeof(db) ~ ret_g' =true 1\ o_price' = p_price)) 
V (s_item[j] > third(db[j]) ~ amt_g' =false 1\ o_price' = 0 1\ ret_g' =true)) 
[] inv _ret[] : ret_g, false-> ret_g' =false 
[] rec_req []:true, false-> r_item' = i_item 
[] prv get_item [] : r _item != NULL, false -> o _item ' = o _item * 
first(db[head(r_item)]) 1\ third(db[head(r_item)])' = third(db[head(r_item)])-1 1\ 

r_item' = tail(r_item) 1\ ( tail(r_item) =NULL~ send_g' =true) 
[] send_item [] : send_g, false-> send_g' =false 
endofdesign 

The workflow of this component is as follows. First, the check action is 
called to enable the guard of the count_item action. Then the action check _price 
is called to decide if the total price is less than ck_pay. If so, the inv _ret action 
will be enabled to return the result (inv _price) to the vender. Otherwise, the 
check amt action is executed to check if the amount of each ordered item in the 
inventory is greater than the number of this item requested in the order. If so, it 
will call action inv _ret to return inv _price > 0 (the total price of the items in 
ck_item); otherwise, it will return inv _price = 0 in the inv _ret action. After the 
vender verifies that the change can be made, it will call the req_item action, 
which is synchronized with the rec _req action of the inventory, to get the 
ordered items and update the storage, and the inventory has the send_item action 

131 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

to send the ordered items back to the vender. 
Notice that in the count_item action we use the guard p_item !=NULL to 

iterate through the list of ordered items. It can be generalized as a mechanism to 
implement the loop structures in the DynaComm language. (See future work.) 

5.2.2.3 The vending machine subsystem 

According to our design of the vender and inventory components and the 
discussion of their interactions, we can put them together by interconnecting the 
vender and the inventory through a cable. The configuration diagram of the 
vending machine subsystem is as follows: 

Vender 

# in_item: list (int) 

# inJ)ay: int 

# inv_item: h:,t(ITEM) 

# inv_price: int 

# chg_res: boo! 

- ck_item: list(int) 

+ ckyay: int 

"""chg_amt: int 

- out_item: list(ITEM) 

-'- ret amt: int 

+ nccept 

-check inv 

~check ret 

-change 

~ change_ret 

- req_item 

+ req_return 

+ return ord 

-'-delivery 

+ reset_ controller 

cable 

#vl :list(int) 

#y2:mt 

+sync:! 

+sync3 

+sync4 

in;-entorv 

# t_item:list(int) 

# iJXlY : int 

+ o_item: li~t (ITE).l) 

+ OJ)nce:int 
·+cl!ecK ___ -· - ·--

+ inv ret 

+ rec_req 

+ c,end_item 

Figure 5. 5 Configuration diagram of the vending machine subsystem 

The specification of the subsystem vending machine can be obtained easily 
from the above configuration diagram and we do not describe it in detail here. 
We can also determine the interface of this subsystem by looking at the left part 

132 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

interface of the vender component in the diagram, which will interact with the 
interface controller and the slot. 

Now we can put the vending machine subsystem together with the interface 
part (the controller and slot) to obtain the required vending machine system, 
which satisfies the design requirements, and the morphims between them are 
described in the following configuration diagram. 

"'i_JJay:int 

- c _item hst (int) 

~ c_Jxry: int 

, 

-butt. on_select(id:int) 
- button confirm 

- button caned 

- slot_get 

- slot ret 

I -order 

l .. =.~~·-~~~::)·et 

-;ubsy!'.tem \·ending machine 

if in_ item bt(int) 

# in_J)ay : int 

# chg_res: bool 

- chg_amt: int 

- ret mnt int 

- out tlenL li'>t (ITEi\I) 

-accept 

-change 

..,_ change_ret 

- return_ orcl 

- delivery 

~ reset_comroller 

#v4:hst(ITEM) 

-syncl 

-'-sync.:?. 

~sync3 

+sync4 

slot 

# i cent: int 

# i_nickle: int 

# 1 clune: int 

# i_quarter: iut 

# 1 dollaL int 

# r_ change : int 

# r_item: list (ITEM) 

+ o mckle: int 

+ o dime: int 

+ o_quarter: 1nt 

+ o dollar: in t 

+ s_item: list (ITEM) 

+ o _j)ay: int 

+ change_reo,: boo! 

+ ger_pay 

+ send_pay 

+ c01np _change 

+send_ change 

+ rec item 

+ rec return 

Figure 5. 6 Configuration diagram of the vending machine system 

The interface of the system is shown in the left interface section of the 
controller component and the right interface section of the slot component, m 

133 



Master's Thesis - Xiang Ling McMaster- Department of Computing and Software 

which the controller provides the buttons for the customer to select his favorite 
item and confirm or cancel the order, and the slot indicates to the customer to 
put the coins and get his ordered item and change. 

5.2.3 The extended vending machine system 

Now we want to add more behaviors to the vending machine system to improve 
the quality of its service. There are two extensions to be made, and we will show 
that they can only be achieved by the usage of extension morphisms. 

• The extension allowing multiple items in an order 

One extension we want to make is to allow the customer to select more than 
one item in an order, which should be done in the controller component. We 
must modify the actions of item buttons to achieve this effect. First, we will 
extend the controller component and show there is an extension morphism from 
the old controller to this extended new component. Then a proof is given to 
justify that it is impossible to regulate or refine the controller to obtain the 
required functionality and the extension morphism is necessary for our purpose. 

We introduce a new channel ac: bool (initialized to be true) and weaken the 
guards of item buttons actions by taking the disjunction of ac with bt_g. The 
modified actions of the controller are as follows: 

init ord_g =false 1\ o_req =false 1\ bt_g =true A bt_confirm =false A slot_g 
=false 1\ s_req =false 1\ c_item =NULL 1\ ac =true 
actions 

button_select (id: int) [bt_g,c_item,bt_confirm] : bt_g V ac, false-> bt_g' = 
false 1\ c_item' = c_item * b_item [id] 1\ bt_confirm' =true 
[] button_ confirm [bt_ confirm,slot_g,ac] : bt_ confirm, false -> bt_ confirm' = 
false 1\ slot_g' =true A ac' =false 
[] button_cancel [bt_confirm,ac,bt_g,c_item] : bt_confirm, false-> bt_g' =true 
1\ ac' =true A bt confirm'= false 1\ c item'= NULL - -
[] order_ret [o_req,bt_g,c_item,ac]: o_req, false-> o_req' =false 1\ bt_g' =true 
1\ c item'= NULL A ac' =true 

134 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

We call the extended version of the controller component controller'. It is 
easy to determine that controller' satisfies the new requirement. After the 
customer selects an item button, the enabling guards of button_select actions 
will remain true because ac is true. They will not be disabled until the customer 
selects the confirm button, and after the vending machine subsystem informs the 
controller that the order has been processed by calling the order_ret action, all 
the item buttons will be reset. 

We need to show that there exists an extension morphism from the old 

controller component (say P1) to controller' (say P2). The morphism cr is defined 
as follows: the mapping of the channels cra will map each channels of P1 to the 
identical channel of P2, and cry defines the mapping of actions from each action 
in P2, to the identical action in P1. We assert that cr is an extension morphism 
from P1 to P2. 
Proof 

First we will show that cr is a signature morphism. Since the mappings of 
channels and actions are the identity, it is easy to see that all the conditions of a 

signature morphism are satisfied, except the condition cra(DI(cry (g)) c D2(g). 
Since the actions in P2 keep the effect of assignment to the mapped channels of 
P 1, this condition also holds. Therefore, cr is a signature morphism. 

Then we will check the conditions of extension morphism according to 
definition 2.15: 
* Obviously cry is surjective and cra is injective. 
* There exists a formula a, which contains only charmels from (V2- cra(VI)), 
and a is satisfiable, i= h ~ cr(II) 1\ a. 
a~ ac = true, this condition holds. 

For every g E r 2 where cry (g) is defined, 
* If v E loc(V 1) and g E D2( cra (v)), then there exists a formula a, which 
contains only primed channels from (V2'-cra(V1)'), and a is satisfiable, J= cr 
(LI(cry(g))) => (R2(g, cra(v)) ~ cra(RI(cry(g), v)) 1\ a). 

For action button_confirm, a~ ac' =false, this condition holds. 
For action button_cancel, a~ ac' =true, this condition holds. 
For action order _ret, a~ ac' =true, this condition holds. 

* Ifv E loc(V1), g E D2(cra(v)), then v E D1(cry(g)). 
Since the mappings of channels and actions are the identity and the actions in 

P2 keep the effect of assignment to the mapped channels of P1, this condition 
will hold. 

* i= (cr(L1(cry(g))) => L2(g)). 

135 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

For each action button_select (id: int), bt_g ~ bt_g V ac. 

* 1= (cr(Ut(cry(g))) ~ U2(g)). 
The progress guards of each mapped action are the same. 

Now we will prove that the new functional requirement cannot be achieved 
by regulating or refining the controller component. 
Proof 

The enabling guards of these button_select actions cannot be strengthened 
because in that case, all the buttons will be disabled after the customer selects 
one item button. The justification for this statement is as follows: 

Suppose we have regulated or refined the controller component, then in the 
target component the enabling guards of the button_ select actions will be 
strengthened, say one of the actions is g, its enabling guard is f and f ~ cr(bt_g) 
(bt_g must be translated). According to the definition of regulative superposition 
and refinement morphism, we have R2(g, cr (bt_g)) ~ cr(Rt( cry (g), bt_g)). Since 
bt_g is set to false after the button_ select action is called in the old controller, 
we know that cr(bt_g) should also be set to false after the execution of g in the 
extended controller. Because we have f ~ cr(bt_g) and it should hold all the 
time, if cr(bt_g)' is false, we know f' must be false. Therefore, after the 
button_ select action is executed in the target component, this action will be 
blocked, which means this item button is disabled. 

• The extension of payment options 

We expect that instead of only accepting payment consisting of nickels, dimes, 
quarters and one dollars, the vending machine system can also accept the 
payment including one cents and make the correct change. It is clear that we 
cannot refine or regulate component slot to achieve this goal, because we must 
modify its action get_pay and relax its enabling guard, which is not allowed in 
regulative superpositions and refinement morphisms. Therefore, we have to 
apply an extension morphism to the slot by modifying the get_pay action as 
follows and obtain the extended slot component. 

get_pay [get_g, s_nickle, s_dime, s_quarter, s_dollar, s_cent]: get_g, false -> 
get_g' =false 1\ s_nickle' = s_nickle + i_nickle 1\ s_dime' = s_dime + i_dime 1\ 

s_quarter' = s_quarter + i_quarter 1\ s_dollar' = s_dollar + i_dollar 1\ s_cent' = 

136 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

s cent + i cent - -

Notice that we need to add a new channel s_cent into the slot component to 
store the cents and make the corresponding assignment to this channel. However, 
based on the definition of extension morphism, there will exist an extension 
morphism from the old component to this extended component (the proof is 
similar to the first extension case). For the same reason, we can modify the 
following actions of the slot component as well (and add the channel o_cent): 

send_pay [get_g, o_pay]: -, get_g , false -> get_g' = true 1\ o_pay' 
lOO*i_dollar + 25*i_quarter + lO*i_dime + 5*i_nickel + i_cent 

send_change [change_g]: -,change_g, false-> change_g' =true 1\ ( change_res 
= true ~ item_g' = true 1\ s_nickle' = s_nickle - o_nickle 1\ s_dime' = 
s dime - o_dime 1\ s_quarter' = s_quarter - o_quarter 1\ s_dollar: = 
s dollar - o_dollar 1\ s_cent' = s_cent- o_cent) 

Since we have divided the functionality of the system in an appropriate way, 
we can simply reuse the vending machine subsystem and the controller 
component. 

5.3 Summary 

In this chapter we have presented the approach of combining regulative 
superpositions and extension morphisms to add new behavior into the existing 
systems specified by DynaComm, which cannot be accomplished by refinement 
morphisms and regulative superpositions. The theoretical foundation of this 
approach has been established first by proving that regulative superpositions and 
extension morphisms can be merged into "new" regulative superpositions in the 
context of a well-formed configuration diagram, to ensure the effectiveness of 
colimit constructions to the diagram, and the colimit itself will be an extended 
version of the original system [8]. 

137 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

A vending machine system has been specified to illustrate the applicability 
of the above approach, by showing that extension morphisms are necessary for 
incorporating new features into the system, and we need to augment the existing 
system through the regulation and extension of its subcomponents to make them 
work together. The support for structural and incremental design principles of 
our approach has been demonstrated by this example. 

138 



Master's Thesis - Xiang Ling McMaster- Department of Computing and Software 

Chapter 6 

Conclusions and Future Work 

This chapter contains a brief review of the DynaComm language proposed in 
this thesis and a summary of our contributions in the extension of CommUnity 
to specify dynamic software architectures. We discuss possible directions for 
future research on the semantics of DynaComm and relating DynaComm to 
temporal logic specifications to support reasoning about system properties. 
Some further exploration on the relationship between different design 
morphisms is also discussed. 

6.1 Review of DynaComm and Contributions 

We have presented the syntax and (partial) semantics of a new Architecture 
Description Language for the specification of component-based systems, 
providing special support for dynamic reconfiguration. To clarify the motivation 
of this language, several representative ADLs with support for dynamic 
reconfiguration are surveyed, with a focus on their language constructs, 
associated styles of specification and mechanisms to achieve dynamic 
reconfiguration. Then we provide a detailed review of the CommUnity ADL, 
focusing on its semantic model, well-formed mathematical foundations rooted in 
Category Theory and the clarification of different categories of morphisms 
between designs. Because we can treat designs as objects in a category and 
specify regulative superpositions as morphisms between designs, the category 
REG is defined such that we are able to apply pushout and colimit constructions 
to build large systems from interconnected components. 

Given the nice properties of CommUnity designs, the language's effective 
support for compositionality, modularity, reusability and enforcement of design 
principles is explained to give the rationale for our work on DynaComm, the 
"refinement" and extension of CommUnity to incorporate dynamic 
reconfiguration mechanisms, containing good features of the ADLs we have 
surveyed. Specifically, DynaComm allows for the specification of 
reconfigurable component-based systems by defining: 

139 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

• Components: the smallest computational and data storage units not 
composed of simpler components. They are equivalent to the concept of 
designs in CommUnity, which are also called basic components, through 
which we are able to build complex systems out of simpler ones. 

• Connectors: the encapsulation of component interaction patterns that can 
organize the complicated interactions between the components of a system. 
We provide a systematic syntax of connector, which offers a clear definition 
of connections between the glue and roles, supports the refinement of a 
connector by refining its glue or roles, incorporates attributes and 
constraints on the connector level to enable the specification of architecture 
patterns, and for the purpose of specifying flexible reconfigurations, 
introduces actions into connector definitions to support dynamic connectors 
that can reconfigure themselves. 

• Subsystems: the coarse grained components which contain basic 
components, subsystems and their interactions (usually represented by 
connectors) as well. Subsystems encapsulate data in the form of their 
attributes, internal component or subsystem instances and the attributes of 
interacting subcomponent instances. Subsystems also encapsulate behavior 
by the joint actions of interconnected subcomponents, population 
management actions and reconfiguration actions, which create or delete 
instances of subcomponents, and modify the way in which these 
subcomponents interact (dynamic connectors). 

• Population manager: the attributes and actions defined on the subsystem 
level to manage the creation and deletion of subcomponent instances inside 
the subsystem. We provide the rationale to justify our design choice of 
population manager for managing the name space of the whole subsystem, 
instead of specifying class managers for individual component or subsystem 
classes. 

DynaComm also has the notion of interface manager, which overcomes the 
problem of incorrectly synchronized actions, originated from the mechanism of 
action synchronization in CommUnity, where the synchronized actions must 
occur simultaneously. This scenario is very common in the context of dynamic 
reconfigurable systems, where multiple instances of a component will be 
connected to the other component. To follow the composition principle of 
CommUnity, we have designed the interface manager as a regulator to be 

140 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

applied to the target component and derive the "augmented" component 
automatically. 

With respect to the semantics of the DynaComm language, we have 
described a systematic approach to eliminate the indices of actions, since indices 
are necessary for defining reconfiguration actions in a dynamic architecture. We 
have also shown the effectiveness of this approach in transforming subsystem 
specifications of DynaComm into CommUnity-like designs, where a high level 
semantic model can be obtained by considering different configuration diagrams 
of the subsystem as states, and the reconfiguration actions as events. 

We have been greatly motivated by the structural and incremental design 
principles based on the investigation of appropriate ways of combining 
regulative superpositions and refinement morphisms in designing a complex 
system. The soundness of the combination of these design morphisms has been 
proved. Through the development of a fault tolerant dynamic client-server 
system, we determined that connectors can be regulated by superposing 
regulators onto their roles while preserving the interfaces, to add new 
functionalities into existing systems, which supports hierarchical specification 
and incremental design principles. 

Finally, we investigated a new notion of extension morphism, which enables 
us to establish extension relationships between the components, in the sense of 
inheritance in object orientation. Compared with regulative superposition and 
refinement morphisms, it is of a different nature and characterizes a structured 
use of invasive superpositions to allow the breaking of encapsulation while 
preserving certain properties. We have presented the approach of combining 
regulative superpositions and extension morphisms to add new behavior into the 
existing systems, which cannot be accomplished by refinement morphisms and 
regulative superpositions. The theoretical foundation of this approach has been 
established, by proving that regulative superpositions and extension morphisms 
can be merged into "new" regulative superpositions in the context of a 
well-formed configuration diagram, to ensure the effectiveness of colimit 
constructions for the diagram, and the colimit produced will be an extended 
version of the original system. 

6.2 Future Work 

We have shown the "static" semantics of the DynaComm language by 
transforming a certain state of the dynamic system's configuration diagram into 
a flat diagram and deriving its semantics by the use of systematic pushout and 

141 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

colimit construction in CommUnity. With the high-level semantic model of 
subsystem specifications derived from the normalization procedure, some 
further investigation of their relationships needs to be conducted to find an 
appropriate way to combine them and obtain the unified semantics of the 
DynaComm language. 

We notice that the property proved in section 5.1 might not hold when 
combining extension and refinement morphisms. Suppose component C' is a 
refinement of component C and there is an extension morphism from C' to 
another component C". Because C' will strengthen the enabling guard of C 
while C" can weaken the enabling guard ofC', it might happen that the enabling 
guard of C" is weaker than that of C, therefore, C" is not a refinement of C. 
However, we expect the refinement of C can be preserved by C". Therefore, ill 
future research, we will try to find the conditions under which we are able to 
combine a refinement morphism with an extension morphism (or vice versa) to 
obtain a new refinement morphism (or extension morphism). Furthermore, we 
want to answer the question about how to make refinement, extension and 
regulative superposition morphisms work together in specifYing a complex 
system, and study the corresponding design principles implied by their 
relationships. 

With respect to the ADLs we reviewed in chapter 2, namely Dynamic 
Wright, Darwin and Dynamic Acme, which are able to modifY the system's 
structure during run time, the internal mechanisms for reasoning about possible 
system evolution have not been incorporated into these languages, although they 
provide the definition of components, connectors and transformation operations 
to change architectures dynamically. Actually they each require some 
meta-language to perform reasoning about a system's properties and behaviors 
in some informal way. A temporal logic based formalism has been proposed in 
[1][2] for the specification of reconfigurable systems, where temporal logic is 
used as a formal basis for specifYing software architectures and provides direct 
support for reasoning. Based on the understanding of the relationship between 
CommUnity designs and temporal logic specifications in [17], we will 
investigate the appropriate ways of transforming the specifications in 
DynaComm (with the new language constructs we introduced) into the 
corresponding temporal logic specifications, so that reasoning about system 
properties and evolution will be supported within the DynaComm language. 

142 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

Bibliography 

[1] Aguirre, N., and Maibaum, T., A Temporal Logic Approach to the 
Specification of Reconfigurable Component-Based Systems, ASE 2002, pp. 
271-274. 

[2] Aguirre, N., and Maibaum, T., A Logical Basis for the Specification of 
Reconjigurable Component-Based Systems, FASE 2003, pp. 37-51. 

[3] Aguirre, N., and Maibaum, T., Some Institutional Requirements for 
Temporal Reasoning on Dynamic Reconfiguration of Component Based 
Systems, Verification: Theory and Practice 2003, pp. 407-435. 

[4] Aguirre, N., A Logical Basis For the Specification of Reconfigurable 
Component Based Systems, Ph.D. Thesis, King's College London, 
Department of Computer Science, 2004. 

[5] Aguirre, N., Alencar, P., and Maibaum, T., Designing with Aspects, or Why 
you always knew that aspect weaving was colimit construction, submitted 
2005. 

[6] Aguirre, N., Maibaum, T., Alencar, P., and Regis, G., Reasoning about 
Temporal Properties of CommUnity Designs, submitted 2005. 

[7] Aguirre, N., Maibaum, T., and Alencar, P., Abstract Design with Aspects, 
submitted, 2005. 

[8] Aguirre, N ., Maibaum, T., and Alencar, P., Extension Morphisms for 
CommUnity, Essays Dedicated to Joseph A. Goguen, Lecture Notes in 
Computer Science, vol. 4060/2006, pp. 173-193, 2006. 

[9] Allen, R., and Garlan, D., Formalizing Architectural Connections, m 
Proceedings ICSE'94, Sorrento, Italy, 1994. 

[10] Allen, R.J., A Formal Approach to Software Architecture, Ph.D. Thesis, 
Carnegie Mellon University, School of Computer Science, available as TR# 
CMU-CS-97-144, May 1997. 

143 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

[11] Allen, R., Douence, R., and Garlan, D., SpecifYing and Analyzing Dynamic 
Software Architectures, in: Astesiano E, ed. Proc. of the Fundamental 
Approaches to Software Engineering. LNCS 1382, Berlin: Springer-Verlag, 
pp. 21-37, 1998. 

[12] Bicarregui, J.C., Lano, K.C., and Maibaum, T., Towards a Compositional 
Interpretation of Object Diagrams, Algorithmic Languages and Calculi, 
Chapman & Hall, pp. 187-207, 1997. 

[13] Bradbury, J.S., Cordy, J.R., Dingel, J., and Wermelinger, M., A survey of 
self-management in dynamic software architecture specifications, Proc. of 
the 2nd Workshop on Self-Healing Systems, ACM Digital Library, 2004. 

[14] Corradini, A., and Hirsch, D., An Operational Semantics of COMMUITY 
Based on Graph Transformation Systems, Electr. Notes Theor. Comput. 
Sci. 109: pp. 111-124,2004. 

[15] Fiadeiro, J.L., and Maibaum, T., Categorical Semantics of Parallel 
Program Design, Technical Report, FCUL and Imperial College, 1995. 

[16] Fiadeiro, J.L., and Maibaum, T., Design Structures for Object Based 
System, in Formal Methods and Object Technology, Springer-Verlag, 
pp. 183-204, 1996. 

[17] Fiadeiro, J.L., and Maibaum, T., Interconnecting Formalisms: Supporting 
Modularity, Reuse and Incrementality, SIGSOFT FSE, pp. 72-80, 1995. 

(18] Fiadeiro, J.L., Categories for Software Engineering, Spinger, 2005. 

[19] Garlan, D., Monroe, R., and Wile, D., ACME: An Architecture Description 
Interchange Language, in Proceedings of CASCON'97, Toronto, Ontario, 
1997. 

(20] Garlan, D., Software Architecture: A Roadmap, in The Future of Software 
Engineering, Filkenstein A. (ed), ACM Press, 2000. 

[21] Georgiadis, 1., Self-Organising Distributed Component Software 
Architectures, Ph.D. Thesis, Imperial College of Science, Technology and 
Medicine, Department of Computing, 2002. 

144 



Master's Thesis- Xiang Ling McMaster- Department of Computing and Software 

[22] Goguen, J., Mathematical Representation of Hierarchically Organised 
Systems, in Attimger, E. (ed), Global Systems Dynamics, Krager, pp. 
112-128, 1971. 

[23) Goguen, J., and Ginali, S., A Categorical Approach to General Systems 
Theory, in Klir, G. ( ed), Applied General Systems Research, Plenum, pp. 
257-270, 1978. 

[24] Goguen, J., Categorical Foundations for General Systems Theory, in 
Pichler, F., and Trapp!, R. (eds), Advances in Cybernetics and Systems 
Research, Transcripta Books, pp. 121-130, 1973. 

[25] Larsen, K.G., and Skou, A., Bisimulation through probabilistic testing, 
Information and Computation, 94:1-28, 1991. 

[26] Magee, J., and Kramer, J., Dynamic Structure in Software Architectures, in 
Proceedings of the ACM SIGSOFT '96: Fourth Symposium on the 
Foundations of Software Engineering, San Francisco, CA, pp. 24-32, Oct., 
1996. 

[27] Manna, Z., and Pnueli A., The Temporal Logic of Reactive and Concurrent 
Systems, Springer-Verlag, 1991. 

[28) Medvidovic, N., and Taylor, R.N., A classification and comparison 
framework for software architecture description languages, IEEE Trans. 
on Software Engineering, 26(1): pp. 70-93, 2000. 

[29] Perry, D.E., and Wolf, A.L., Foundations for the study of software 
architectures, SIGSOFT Software Eng. Notes, vo1.17, no. 4, pp. 40-52, 
Oct.1992. 

[30] Shaw, M., and Garlan, D., Software Architecture: Perspectives on an 
Emerging Discipline, Prentice Hall, Apr. 1996. 

[31] Szyperski, C., and Pfister, C., Component-Oriented Programming: 
WCOP '96 Workshop Report, Special Issues in Object-Oriented 
Programming: Workshop Reader of the 1 01

h European Conference on 
Object-Oriented Programming ECOOP '96, Linz, pp. 127-130. 

145 



Master's Thesis- Xiang Ling McMaster - Department of Computing and Software 

[32] Wermelinger, M., and Oliveira, C., The CommUnity Workbench, in Proc. 
of the 241

h Intl. Conf. on Software Engineering, page 713. ACM Press, 
2002. 

[33] Wile, D.S., Using Dynamic Acme, in Proceedings of a Working Conference 
on Complex and Dynamic Systems Architecture, Brisbane, Australia. Dec. 
2001. 

146 




