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Abstract 

The Haskell programming language uses type classes to deal with overloading. Func
tions are overloaded by defining some types to be instances of a class. A meaningful 
instance should satisfy the invariants of the class. 

In this thesis we present one method to validate the type instances of classes 
informally, and another one to verify them in a formal way. 

The first method uses QuickCheck, which is an automatic testing tool for 
Haskell programs. We introduce how to specify the properties of type classes in 
QuickCheck by some examples, and I also present testing for Haskell standard types 
and classes. 

The second method I adopted uses the theorem prover Isabelle/HOL. To facil
itate the usage of Isabelle/HOL for Haskell programmers, I define a set of translation 
rules from Haskell programs to Isabelle/HOL, and design a simple automatic translat
ing tool based on those rules. Logical differences between Haskell and Isabelle/HOL 
need to be considered in the translation. For example Isabelle/HOL is not suitable 
to describe the semantics of lazy evaluation and of Haskell functions that are non
terminating. I also prove some type instances to illustrate how the properties are 
verified in Isabelle/HOL. 
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Chapter 1 

Introduction 

The major task of this thesis is to present some useful methods for verifying type 
classes of Haskell [HJW+92]. This chapter introduces the background of research in 
this area and some technologies involved. 

1.1 Background and Motivation 

Software reliability is very often an objective of software designers and developers. 
Currently, improvement on this issue is achieved through diverse ways: careful system 
design, high quality source code, rigorous testings, formal methods and some other 
techniques to detect and reduce bugs that leads the system to failure. In this thesis 
I present two methods: testing in QuickCheck [CHOO] to validate and Isabelle/HOL 
[NPW02] to verify type class laws for instances of a class. 

The type class system is a unique feature of the Haskell programming language. 
It is always. used to deal with overloadings. The basic idea is that class declarations 
group together overloaded functions which have some relation amongst themselves. 
The instance declaration includes a type into a class by providing definitions for 
members of the class. For example, the type class Eq provides the function ( =) to 
allow two values of its argument type to be compared in equality. 

We declare the type lnt to be a member of Eq 

instance Eq lnt where 
(=) x y = prim_EqJnt x y 

type Bool also could be compared 

instance Eq Bool where 

1 



2 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 

( _) x y = prim_Eq_Bool x y 

Not only can users declare some user-defined types to be W:ember of an existing 
type class, but they can also define their own classes and include both predefined or 
user-defined types in them. 

A type class is actually a general programming interface to which a type can 
easily be "adapted" by a third programmer even if the two programmers who wrote 
the type and type class were working separately and with no knowledge of each 
other. To be adapted correctly, frequently the interface exposed by a type class is 
expected to satisfy certain mathematical laws. It is customary to state these laws 
with documentation but Haskell has no mechanism to check theses laws. 

Look at the following datatypes: 

data List a =Nil! Cons a (List a) 
data Colist a= Nil I Cons (Colist a) 
data Stream a = Cons a (Stream a) 

and type classes of Functor, Applicative, Monad, CoMonad and Monoid 

Datatype List can be a member of any type class but Co Monad, Colist can be 
an instance of Monad and CoMonad, but violates the invariants of them, and a Stream 
instance of type class Monoid makes no sense. 

Validations or verifications are necessarily required to build confidence for 
programmers when they are working on type classes. Motivated by this issue, I 
present in this thesis some methods to test and verify the type instances. 

1.2 Approach Involved 

QuickCheck 

An automatic testing tool is highly recommended for validation of Haskell 
programs. It eases the testers from executing the programs again and again. Haskell 
programs are suitable for automatic testing due to its pure functional programming 
nature which has no side-effects. QuickCheck is a lightweight tool for testing of 
Haskell programs. 

To be tested, properties should be written in some specification language. 
QuickCheck uses the Haskell language itself. All properties were written as Haskell 
functions with return values of Bool type. As a simple example, testing the laws of 
the list reverse function defined in the Haskell prelude shows how to write properties 
and test them in QuickCheck. 
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QuickCheck can apply to higher-order types such as testing laws for function 
types. After defining the extensional equality ( ===) ~y (f === g) x = f x = g x 
you can test the associativity of function composition. While QuickCheck prints the 
counterexamples for the failed tests, four combinators makes it capable of monitoring 
test data. Combinator classify counts the trivial cases; combinator collect reports the 
data distribution, and so on. 

QuickCheck provides a set of testable types in its library. All of these types 
have a predefined data generator respectively. When a property ranges over those 
types, the testing is pretty simple, when users need to use some types that are not 
in the testable set they can write their own data generator through data generator 
combinators. one even can define function generators that explain the reason why 
properties on function types can be tested. 

QuickCheck is easy to use and is efficient. Most bugs can be exposed in a 
short time by running test cases in QuickCheck. But there are some shortcomings to 
prevent it from being fully trustable. Like other testing tools, it cannot ensure testing 
data covers all conditions. For some properties that are too general, the difficulties 
are obvious. If the laws of type classes could be verified by formal methods, it will 
greatly increase the program's quality concerning the usage of type classes, and raise 
the confidence of Haskell programmers. We choose Isabelle/HOL [NPW02] in this 
case. 

Isabelle/HOL 

Isabelle is a theorem proving framework which has built-in support for several 
logics including several first-order logics, Simple Type theory, and Zermelo-Fraenkel 
set theory [Pau89, Pau90b]. Isabelle/HOL is the specialization of Isabelle for HOL. 
We decided to choose Isabelle/HOL because of its functional programming feature 
which can be used to formalize the specifications that were originally expressed in the 
Haskell programming language; another reason is that HOL is a typed logic; its type 
system is close to that of Haskell. 

Working with Isabelle/HOL is a procedure of creating theories and finding 
proofs. A theory is composed by a collection of types, terms and formulae written in 
HOL syntax. 

Types are an important component of an Isabelle theory. In a typed system, 
every element should be well-typed. The definitions need not be explicitly typed 
because of Isabelle's type inference mechanism. 

Isabelle/HOL [NPW02] provides some built-in types such as nat, Pair, Bool, 
List, product,set etc.. It also allow the users to define new types. The general format 
to define a new type is of the form: 

datatype (al, ... 'an)t = cl Tn ... Tikl I ... I Cm Tml ... Tmkm 
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where O:i are distinct type variables, Ci are the type constructors and Tij are 
specific types. This definition resembles the data declarations of Haskell. Recursive 
datatypes are allowed. Besides new datatype definition, Isabelle/HOL [NPW02] offers 
type synonyms to define a alias for an existing type. For example 

types number = nat 

types gate = "bool =?- bool =?- bool" 

Terms mainly refers to function application. Isabelle supports some basic 
structures which are widely used in Haskell such as conditional expressions, let ex
pressions, and case expressions. 

Formulae are terms of type bool. 

Isabelle/HOL can be used to verify Haskell programs. The example of proving 
the specifications of Haskell function reverse shows us the possibility and manner of 
verification. This example can be found in [CHOOJ. 

1.3 Related Work 

Currently there are two projects in development which can be used to formalise and 
prove the Haskell programs; they are also implemented in Haskell. One is programat
ica (Hal03] which is developed at the OGI School of Science & Engineering. It is a 
program development environment which allows programmers to assert properties of 
program elements as part of their source code. Programatica integrates several tools 
to provide a range of validation options from low-cost automatic testing, to machine
assisted proof and formal methods through a generic interface. To be validated or 
verified, the properties expressed by a logic, named P-logic [HK05, Kie02], need to 
be translated to other logics. Property assertions are annotated with certificates 
that provide evidence of validity, and are managed by property management tools 
which provide users with facilities to browse or report on the status of properties and 
associated certificates within a program, and to explore different validation strategies. 

Another project is the heterogeneous toolset HETS which is developed by the 
DFKl Lab Bremen and department of Computer Science, University of Bremen, Ger
many. The purpose of this toolset is to specify large systems where heterogeneous 
multi-logic specifications are needed. Different logics which have their strengths in 
particular fields can be used to specify different aspects of a complex problem. Dif
ferent approaches being developed in different environments can be related, and in 
HETS the combination takes little effort. Heterogeneous specification is based on 
individual (homogeneous) logics and logic translations [MML07]. In HETS, logic and 
logic translations are called institution and institution comorphisms. Haskell logic's 



M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 5 

proof relies on Isabelle by translating Haskell specifications into Isabelle through an 
institution comorphism between them. HETS provides a translator from Haskell to 
Isabelle/HOLCF; but it does not support property-sp~cified verification. Instead, 
P-logic of Programatica has been integrated into HETS for specification purposes. 

P-logic, as the main logic of the Programatica project, is a modal logic. Its 
intended domain is interpreted as a family of sets with a particular structure instead 
of a simple set. Two modalities of the logic, called weak and strong respectively, 
determine whether a predicate is interpreted by a set of normalized values of its type, 
or by a set of computations of its type, which may or may not terminate [HK05]. 
P-logic is used to reason about the lazy-evaluation semantics of Haskell. However, 
while P-logic provides the advantage of specifying Haskell programs with precise 
semantics it also brings some difficulty. P-logic is a much more complex logic than 
Haskell; writing specification in P-logic is a big challenge to Haskell programmers. 
This thesis intends to provide simple methods by which Haskell programmers can 
specify properties solely using Haskell functions. 

For validation strategy, there are some other tools that are designed for test
ing Haskell programs, such as SmallCheck [CH06a] and SparseCheck [Nay06]. Small
Check, which will be introduced briefly in a later chapter, is a upgrade to QuickCheck 
designed by the same team. The purpose of SparseCheck is to test properties which 
have a sparse input domain. Those properties are usually associated with a condition 
that is not satisfied by a large portion of the input space. To test such properties, 
QuickCheck and Small Check spend most of their time in generating test data that 
falsifies the condition. The current version of SparseCheck is not used practically due 
to limitations of completeness and efficiency. 

1.4 Organization 

Chapter 2 introduces polymorphism, the Hindley /Milner type system (Hin69, DM82], 
and Haskell type classes. In this chapter the thesis also describe the laws for type 
classes, which thesis is working on. 

Chapter 3 introduces the testing tool, QuickCheck; thesis discuss how to test 
properties of type classes in this incomplete way. 

Chapter 4 introduces the theorem prover Isabelle/HOL,In section 4.2 thesis 
will discuss the syntax and semantics difference between Haskell and Isabelle/HOL, 
thesis will give suggestion on transformation from Haskell to Isabelle/HOL. In section 
4.3 the goal is to show how to verify type classes in Isabelle/HOL. 

In Chapter 5 discusses the conclusions on the work and contributions. In this 
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chapter thesis also propose some future work. 



Chapter 2 

Polymorphic type and type classes 
in Haskell 

This chapter provides a brief introduction to type polymorphism and type classes in 
the Haskell. 

2.1 Type polymorphism 

In programming languages, polymorphism is a way that allows names to be reused 
many times. It refers to a single definition of data or functions that can evaluate to 
or apply to many types. A polymorphic function definition can be used to replace 
several type-specific functions [CW85), and a polymorphic operator can apply to ex
pressions of multiple types. Many programming languages implement polymorphism; 
for example the object-oriented languages such as C++ and Java. 

A function is polymorphic if it takes parameters with various types and results 
in a value which ranges over different types. In addition to functions, polymorphism 
data types also could be polymorphic if some components of a type comes from 
multiple other types. It is said to be a polymorphic data type. 

Basically there are two kinds of polymorphism: Parametric polymorphism and 
ad-hoc polymorphism; the later one is also called overloading. Parametric polymor
phism ranges over any type while the number of types that ad-hoc polymorphism is 
constrained to is finite, and the combinations must be specified before use. Paramet
ric polymorphism allows one to implement code without being concerned about the 
difference among types and the code can be easily applied to any number user-defined 
new types. 

7 
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As mentioned above, the concept of polymorphism started to be popular since 
the object-oriented programming languages caught attention from programming com
munities. They consider polymorphism a unique feature and a ma]or benefit of object
oriented programming languages. However functional programming languages also 
take advantages of polymorphism. 

2.1.1 Parametric polymorphism 

Parametric polymorphism was first implemented in programming languages in 1976 
by ML [MTM97), after that more and more programming languages adopted it, such 
as Miranda [Tur90) and Haskell [HJW+92]. etc .. 

Parametric polymorphism is most often used in generic programming. Func
tions are defined generically to handle the objects of any data types. They don't need 
to consider the differences between types and treat them equally. Here we take the 
instance of calculation of length of a list: length, it is concerned with the number of 
elements of list, it does not care about the type of elements in the list. It calculates 
the length of lists of integer, length of lists of Bool and length of lists of tuples pair
ing with any other types. Let a be a type variable, a list generated from it has a 
type [a], we declare the function length with a type signature [a] ---+ Int; it shows 
parametric polymorphism parametrized by type variable a. By applying parametric 
polymorphism, the programs will be more expressive. 

Parametric polymorphism is classified as predicative and impredicative. 
The difference is in the way how one instantiates the type variables in a parametric 
polymorphism. In predicative parametric polymorphism, the types substituted for 
type variables are not polymorphic types themselves. In the impredicative situation, 
the types substituted could be polymorphic types or any types. 

Subtyping polymorphism Some textbooks mention subtyping polymor
phism, which is a special case of parametric polymorphism. It allows a function 
defined on a type T to work well on a typeS if typeS is a subtype of type T. We 
take the notation ::S and t to describe the relation between these types. S :::::; T shows 
S is subtype ofT, and T t S tells us T is supertype of S. In object-oriented pro
gramming languages this kind of polymorphism is known as inheritance, it is defined 
on the objects of virtual classes, and applied over objects of inherited classes. Its 
operation relies on late binding or dynamic binding. 
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2.1.2 Ad-hoc polymorphism(Overloading) 

Not all kinds of functions can be written in generic forin to apply to any type. Al
though sometimes one can find same function name could be used to different types 
due to the same objective of operation, the implementation details are very different. 
In some object-oriented languages, one can use ( + ): a x a ---+ a to concatenate two 
strings while + is a sum operator for NUM types. In most situations one should 
not implement some operation on some types. This second form of polymorphism is 
ad-hoc polymorphism or so called overloading 

Overloading allows one to define a single name to various functions, all of 
which take different number of arguments, different types of arguments or same ar
guments but with different orders from others. By passing specific parameters the 
complier decides to call the right one. It is kind of user-friendly mechanism,users 
just need to know the function name, its arguments and types for use, but producers 
have to implement multiple functions for each combination of parameters. This also 
determines that users can not apply the a overloading function to any arbitrary types. 
But overloading allows a function to perform some things completely different. 

Overloading is commonly used in object-oriented programming languages, 
where are often seen a bunch of functions sharing same name in a class definition. 
More specific is function overriding which allows to completely change the behavior 
of existing functions or operators. 

Functional programming language Haskell [HJW+92) supports parametric 
polymorphism and ad-hoc polymorphism by the use of type classes. 

2. 2 Type classes in Haskell 

2.2.1 Hindley /Milner type system 

Before we talk about polymorphism in Haskell [HJW+92) language by means of type 
classes,It is useful to mention Hindley/Milner type system [Hin69, DM82), which we 
refer to as HM. HM has been adopted as the type language basis for most functional 
programming languages such as ML [MTM97], Miranda (Tur90), Haskell [HJW+92], 
etc .. 

HM is a restricted form of polymorphism. Type abstraction and application 
are implicit; it frees programmers from the effort of providing explicit type declara
tion. It's type inference algorithm was to used to infer the type information for each 
implicitly defined type. Take some examples [Jon97) from: 

data List a= Nil I Cons a (List a) 
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which defines a new data type with two constructors: 

Nil :: \;/ a. List a 

Cons :: \;/a. a --+ List a--+ List a 

The function head takes the first element from a list 

head :: \;/ a. List a --+ a 

head (Cons x xs) = x 

While the function length computes the number of elements of a list. 

length :: \;/ a. List a --+ lnt 

length Nil = 0 

length (Cons x xs) = 1 + length xs 

What makes the HM type system successful in programming language is the 
following features: 

Static type values involved in the program were statically typed, which means 
the type of a value was determined at compile time. It guarantees that the program 
does not go wrong due to type errors at run time. It significantly reduces the number 
of bugs compared to some dynamically typed programming languages, which have to 
check the type information at run time and hiding some bugs even for the software's 
whole life cycle. 

Type inference refers to the technology to deduce the type of the value 
derived from evaluation of an expression automatically, either partially or fully. The 
complier takes responsibility to infer the most general type without the requirement of 
as explicit type annotation or type signature on the expression. HM's type inference 
algorithm is used to determine whether a given program term is well-typed, and to 
calculate the principal type. Even though some programmers prefer to give explicit 
type information in their programs, they still can take advantage from type inference 
by means of type consistency checks that compares the given type signature and the 
type inferred automatically. 

Flexibility of usage: the most important feature of HM is allowing polymor
phism. The users define the functions applied on various types with uniform behavior. 
It eases the programmers from defining functions which would otherwise need to be 
defined several times regularly. 

Although the HM type system provides the above attractive features to lan
guage designers the limitations are also obvious. It is easy to find some classical 
examples [Jon95] that shows the difficulty designers meet. We take examples of func
tion of equality ( =) and function of arithmetic addition ( +) 

If we define equality function over some type constructor C as a monomorphic 
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function C ----* C ----* Bool, the equality of two values of type C could be compared; but 
it is not as general as we hoped to compare two values _of any types. If it is defined 
as polymorphic type a ----* a ----* Bool equality of function types has to be included as 
a case. 

When we define the addition function over integer type, it works well as a 
monomorphic function of type lnt ----* lnt ----* lnt to add two integer values. But it is 
impossible to be used to add two float point values together because it is less general 
as we expect. If we just pursue the general and define the function as a polymorphic 
type a ----* a ----* a we will take the risk that add two values of any type when addition 
just makes sense on numeric types. 

From the above examples we find that while monomorphic types set up a 
dilemma for us by being too less general, polymorphic types push us to another 
extreme by being too general. Some languages must then find solutions to fix these 
problems. For example, ML [MTM97] uses a special type variables to range over the 
types on which equality or addition are defined [NP93]. What causes these limitations 
is that both equality and addition differ from other polymorphic functions not only 
because of their restricted domain but also the reality of the dual property of both 
polymorphism and overloading. 

Type classes in Haskell [HJW+92] programming language were introduced to 
solve those problems by means of a middle step between of monomorphic and polymor
phic types. It allows functions to be defined over a range of types without necessarily 
ranging over all types. 

2.2.2 Type classes basics 

A type class could be treated as a set of types. It comes up with a class name and 
one or more operations. If a type needs to be an element of a specific type class, 
it needs to be declared an instance of that class by implementing the operations 
provided by it. Class Eq provides operations (-), ( :/=); class Ord provides operations 
( <), ( ~), (;;::: ), (>) etc ... 

class Ord a where 
( <), ( ~), C~ ), (>) ::a ----* a ----* Bool 
max, min :: a ----* a ----* a 

the predicate Ord a says that type a is a member of type class Ord, it is also 
called the context of class that always appears before a type expressions, e.g. 

sort :: ( Ord a) =* [a] ----* [a] 
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Context Ord a imposes a constraint on the type of function sort which allows 
it only to be applied on those types included in Ord class, not any arbitrary type. 
To understand type classes, we should describe how to define a· class, how the new 
types are declared an instance of a class, and how the existing type classes may be 
extended. 

2.2.3 Deriving classes and instance declaration 

Haskell [HJW+92] programmers often deal with type classes in their work, especially 
when a new datatype is defined. If one wants some standard functions to be applied 
on the new datatypes, the simplest way is integrating a list of classes as a component 
of the definition of the datatype, For example 

data Month = Jan I Feb I Mar I Apr I May I Jun 
I Jul I Aug I Sept I Oct I Nov I Dec 

deriving (Eq, Ord, Show, Text) 

The deriving clause in the third line of the datatype definition tells the com
piler to generate instances of the given classes for Month. The newly defined type 
Month will belong to standard classes: Eq, Ord, Show, Text. Now the datatype Month 
is a member of above four classes; it automatically overloaded the operations provided 
by them. For example: 

Predulel>l elem Mar [Jan,Feb,Mar,Apr]' 
True' 
Predulel>l show [Jan,Feb,Mar,Apr]' 
[Jan,Feb,Mar,Apr]' 

where elem has the type of Eq a => a -4 [a] -4 Bool 

It allows the value of data to be comparable when deriving a class of Eq. It 
allows the value of data could be transfered to characters and printed on screen when 
deriving a class of Show. 

Deriving is a convenient way to allow programmers to include some datatypes 
in some type classes but sometimes one will find he is in a position deriving does 
not work at all, such as if the user-defined datatype is not suitable to inherit some 
classes directly since the derived version of the overloaded function doesn't satisfy the 
semantics. For example of equality of Set [Jon95]. Define a datatype for set: 

data Set a = Set [a] deriving (Eq) 



M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 13 

The resulting for set equality will be 

Set xs - Set ys = xs ys 

But if xs and ys take the value of [ 1, 2], [ 1, 2, 2] respectively, xs and ys are not 
identical. At least we can see the element numbers in the two lists are not same. 
However in the sense of Set Set xs and Set ys are equal, because in the sets there 
are no duplicate elements. It is necessary for programmers to interpret the meaning 
of equality for the user-defined types. An alternative way to extend a class is the 
instance clause. To show how to declare an instance of a class we take a look of 
standard type class Eq 

class Eq a where 
( _) :: a ---t a ---t Bool 
( ¢) :: a ----* a ---t Bool 
x ¢ y = !(x _ y) 
x- y = !(x ¢ y) 

above code defines a type class Eq on polymorphic type a, the class provides 
two operations: equality and inequality of the type a ----* a ---t Bool; the last two lines 
give the default definition of operations ( ) and ( ¢) in terms of each other. If one of 
these functions is defined then the other one will be defined implicitly. 

To enable sets being comparable we declare an instance of class Eq on type 
Set by implementing one of the two operations on type Set with desired semantics. 
Here we redefine the datatype for Set and make an instance of class Eq 

newtype Set a = MkSet [a] 

instance Eq a:=;. Eq (Set a) where 
(-) (MkSet x) (MkSet y) =(subset x y) 1\ (subset y x) 

This instance describes the equality of sets. Function subset eliminates the 
duplicate in lists x and y, and returns the truth value if its first argument is the 
subset of its second argument. The complete definition of subset is found in the 
technical report by Mark Utting [Utt94]. 

2.2.4 Defining class 

In last section we talk about how to use classes and how to extend an existing class 
to include some new defined types. In most time this is enough for programmers, but 
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sometimes programmers will greatly benefit from defining their own type classes and 
instance some important types. 

Before create a class, one has to get the idea what operators they want to 
provide and these operators should reflect general properties among the datatypes 
one will make the instance. We define a Tree class [Jon95]and instance some popular 
tree types [Jon95] on it to show a complete procedure of application of classes. 

Trees are widely used data structures in programming languages especially in 
functional programming languages, Many of algorithms are designed on the datatype 
of trees, such as some search algorithms based on search trees, parsers based on ab
stract syntax trees(ASTs). There are some basic calculations on trees, such as depth, 
size, paths, mirrors. The computations depend on the form of the trees. Different 
trees implement their own version of the functions. By the recursive definition of tree 
types, we can find there exist some general computations; each iteration evaluates its 
subtree first which could be considered as general operations of a class. Following are 
definitions of various of tree types: 

data Bin Tree a= Leaf a 
I BinTreea: A :BinTreea 

This defines a binary tree, each leaf node contains the data, every inner node 
takes two subtrees. 

data Lab Tree I a = Tip a 
I LFork I (LabTree I a) (LabTree I a) 

label tree, besides the value of type a in each leaf node, every inner node is 
indexed by a label of type 1. 

Binary search tree, with data values of type a in the body of the tree. These 
values typically be used in conjunction with an ordering on the elements of type a in 
order to locate a particular item in the tree [Jon95]. 

data STree a = Empty 
I Split a (STree a) (STree a) 

Rose tree, in which each node is a labelled with a value of type a, and may 
have an arbitrary number of subtrees. 

data Rose Tree a = Node a [Rose Tree a] 

A simple abstract syntax tree which represents A expression in a interpreter 
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type Name = String 
data Term= Var Name 

I Ap Term Term 
I Lam Name Term 

McMaster University- Computing & Software 15 

After the definitions of tree types. we design a type class with a general 
operator subtrees which computes the all subtrees of a given tree. 

class Tree a where 
subtrees:: a ---7 [a] 

Function subtrees returns the list of subtrees of a given tree t of type a. We 
declare an instance for every tree types defined above. 

instance Tree (BiTree a) where 
subtrees (Leaf n) = [] 
subtrees (I: A : r) = [1, r] 

instance Tree (Lab Tree I a) where 
subtrees (Tip x) = [] 
subtrees (LFork xI r) = [1, r] 

instance Tree (STree a) where 
subtrees Empty = [] 
subtrees (Split xI r) = [1, r] 

instance Tree (RoseTree a) where 
subtrees (Node a gts) = gts 

instance Tree Term where 
subtrees (Var -) = [] 
subtrees (Ap f x) = [f,x] 
subtrees (Lam v b)= [b] 

Based on the definitions of subtrees, a library of functions could be defined, 
such as computation of depth and size. The function subtrees is also an important 
part of implementations of some complex algorithms such as depth-first algorithm 
and breath-first algorithm of tree data structures (Jon95]. 
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2.2.5 Functor and Monad 

Functor and Monad are two important classes in Haskell prelude.' 

Functor's mathematic foundation is category theory; a functor is the mapping 
between categories. The mathematical definition is 

Let C and D be categories. A functor F from C to D is a mapping that 

associates to each object X E Can object F(X) E D, 

associates to each morphism f : X ---+ Y E C a morphism F(f) : F(X) ---+ 
F(Y) ED 

and two properties should hold: 

F(idx) = idp(X) for every object X E C 

F(g of)= F(g) o F(f) for all morphisms f: X---+ Y and g: Y---+ Z. 

In Haskell, a functor could be defined as: 

map:: (a---+ b)---+ ([a]---+ [b]) 
mapf [] = [] 
map f (x: xs) = f x: map f xs 

This is a functor composed by the type constructor [] and the map function. 
An obvious shortcoming of this functor is that the domain of the functor is restricted 
to the list type. An overloaded version of map will be general to fit for more types It 
is declared by class Functor with an operator fmap: 

class Functor f where 
fmap ::(a---+ b)---+ (fa---+ f b) 

Some of the types defined in the prelude are treated as functors, such as ld, 
List, Maybe, Either ... 

instance Functor ld where 
fmap f (ld x) = ld (f x) 

instance Functor [a] where 
fmap f [] = [] 
fmap f (x: xs) = f x: fmap f xs 

instance Functor Maybe where 
fmap f (Just x) =Just (f x) 
fmap Nothing = Nothing 

instance Functor (Either a) where 
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fmap _ (Left x) = Left x 
fmap f (Right y) =Right (f y) 

Monads are special cases of functors. A monad in functional programming is 
a way to build parts of purely functional programs so that the functions involved are 
applied in a sequence, as an imperative language does. You can perform a sequence of 
operations while still taking a functional approach. The monad class has the following 
definition with basic operators of return and "bind". 

class Functor m :::} Monad m where 
return :: a ---+ m a 
~ :: m a---+ (a---+ m b)---+ m b 

Note: this is not valid Haskell98 definition. 

Some datatypes mentioned before are monads. For these, a monad instance 
can be declared: 

instance Monad ld where 

return= id 

id x~f = fx 

instance Monad [a] where 

return x = [x] 

[]~f =f 

(X : XS) ~ f = f X * ( XS ~ f) 

instance Monad Maybe where 

return x =Just x 

(Justx)~f=fx 

Nothing ~ f = Nothing 

2.2.6 Laws of type classes 

In last section we discussed the Functor and Monad classes. As mathematical con
cepts, there are some basic laws that they should obey. The laws determine what 
these mathematical definitions are, state what properties they have, and provide basic 
rules in proof and computation. 

The laws for functors reflect the properties of its mathematical foundation 
category theory: 
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On any category C one can define the identity functor ld which maps every 
object and morphism to itself 

fmap id = id 

fmap f o fmap h = fmap (f o h) 

What make the Monad a Monad are the laws of (Wad92] 

1 return a ~ f - f a 

2 f ~ return _ f 

3f~(..\x-+gx~h) = (f~g) ~h 

The first law says that return a~ f - f a. As we think about Monads as 
computation, this law states that if we construct a computation which just returns 
the value of a without considering its means, and then binds its result to another 
computation f, the whole job just can be replaced by a computation off on value a. 

The second law says f ~return_ f, when computation f binds the result to 
a return, it does the same thing by returing f along with it. 

The third one is the associativity law for monads. 

Like the Functor class and the Monad classes many other classes are associated 
with implicitly understood laws to their mathematical definitions. Eq takes laws of 
equivalence, Ord class has the laws of total order with respect to (-). In the coming 
chapters we will discuss how to test and prove a given instance of a class satisfy its 
laws. 



Chapter 3 

Validation of type instances 
Quick Check 

• 
Ill 

QuickCheck is a tool for testing Haskell programs. In this chapter thesis will give a 
brief introduction of QuickCheck, showing how to specify properties, how to define 
data generators, and then discuss how to test type instances. thesis also specify the 
properties of some standard classes. 

3.1 Overview of QuickCheck 

For long time, testing has remained an important approach to ensure software quality 
in software development. It aims to find errors in software by means of running 
the software. Testing comes in many flavors: unit testing [CH02], property testing, 
regression testing, contract checking, black-box/white-box testing [JJ06]. 

A test tool should deliver the testing result, that is a message of test success 
or failure and some counterexamples, in a short time, and it should be repeatable 
when the program or specification is modified [CHOO]. 

Testing could be manual or ideally automatic. Manual testing gives the tester 
flexibility to control the testing process and allows the tester to check the programs 
possibly completely, but it is somewhat laborious where the tester has to repeat one 
operation again and again. Automatic testing free testers from exhaustive repetition. 
For purpose of automatic test, the specification should be chosen in a formal way. 

Haskell is suitable for automatic testing. It takes this advantage from its nature 
as a functional programming language. Free of side-affects, Haskell is not concerned 
with state transfer in an execution. At the same time, as a term language, it also 

19 
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plays the part of the specification language. 

QuickCheck was designed by Koen Claessen and John Hughes [CHOO] to test 
Haskell programs; it is based on the technology of property satisfaction checking. 
Programmers write a function along with some other specifications which are used 
to formulate the properties of that function. In the QuickCheck environment those 
specifications are tested to find whether the properties are satisfied by the function. 
All the programs, both function and specifications, are written in Haskell language. 
The random input is automatically generated by the QuickCheck system. 

3.1.1 How to specify the properties 

QuickCheck was designed to test the functions' properties which are in the form of a 
set of parameterized assertions. To study how to check those properties, let us take a 
look at a simple example [CHOO]. FUnction reverse is defined to reverse a list of some 
type. It can be found in the Prelude module of the Haskell language. To reverse the 
order of an list of elements correctly, function reverse should obey three basic laws 
[CHOO]: 

reverse [ x) = [ x] 

reverse ( xs * ys) = reverse ys * reverse xs 

reverse (reverse xs) = xs 

The first two laws specify the situations in which the list is just only one 
element, and when the list consist of two sublists by concatenating them together. 

To be tested by QuickCheck, we need to write some assertions for those laws 
in the form of QuickCheck properties. 

prop_RevUnit x = 

reverse [x] [x] 

prop_RevApp xs ys = 

reverse ( xs * ys) _ reverse ys * reverse xs 

prop_RevRev xs = 

reverse (reverse xs) _ xs 

Here, these definitions are not different from general Haskell expressions, all of 
them return a value of boolean type. If it is true for all arguments the property holds. 
We pass these assertions as arguments to QuickCheck and run it in an interpreter 
environment, such as Hugs or GHCi, QuickCheck will generate 100 data values ran
domly for it, if it pass them all, a message of" OK, passed 100 tests" will be reported 
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to the user. otherwise Quick Check will give a counterexample to show the test failed. 
Since the test is based on the evaluation of expressions, and we see those laws were 
written in overloaded form, the testers have to provide. more information: we need 
to define the types of the arguments explictly. For examples, if we want to test the 
function reverse on list of lnt, Following type signatures are necessary 

prop_RevUnit :: lnt ~ Bool 

prop_RevApp :: [lnt] ~ [lnt] ~ Bool 

prop_RevRev :: [lnt] ~ Bool 

For convenience, types informations can be presented in alternative way: 

prop_RevUnit x = 
reverse [ x] [ x] 

where types= x :: lnt 

The examples show how to represent the properties for the laws of Haskell 
functions and how the result is reported. In fact QuickCheck as a practically useful 
tool can do not only that.QuickCheck is also capable of observing test case distribu
tion. 

Observing Test Case Distribution 

QuickCheck does this by incorporating special functions into the properties. 
Each time the properties are tested the trivial cases are collected, and a summary is 
displayed when tests are finished. 

trivial:: Testable a=? Bool ~a~ Property 

is the function used to counting the trivial cases 

The example [CHOO] shows how it works. 

prop_lnsert x xs = 
ordered xs == > 

null xs 'trivial' ordered (insert x xs) 
where types = x :: lnt 

Test cases for which the value of null xs is True are classified as trivial. Thus 
the QuickCheck output might be 

OK, passed 100 tests (58% trivial) 

The current version of QuickCheck defines 4 such observations. They are: 

label:: Testable a:::} String~ a~ Property 
collect:: (Show a, Testable b) :::} a~ b ~Property 
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classify:: Testable a :::} Bool -t String -t a -t Property 
trivial ::Testable a :::} Bool -t a -t Property 

3.1.2 Create the data generators 

Testing data of QuickCheck is randomly and automatically produced by data gener
ator. 

class Arbitrary a where 
arbitrary:: Gen a 
coarbitrary ::a -t Gen b -t Gen b 

The above is a type class that makes data generator of polymorphic type a. 
Any type that could be tested in QuickCheck has an instance of Arbitrary class. It 
provides two operations: arbitrary is the type of Gen a which represent a generator, 
coarbitrary helps to generate function types. 

newtype Gena= Gen (lnt -t StdGen -t a) 

where StdGen defined as an abstract type 

Generators of some basic types of Bool, lnt, Float, Double, tuple, list were 
predefined in QuickCheck. 

Following example shows how to define a data generator for lnt type. 

instance Arbitrary lnt where 
arbitrary= sized$ >.n -t choose ( -n, n) 
coarbitrary n =variant (if n ~ 0 then 2 * n else 2 * ( -n) + 1) 

this definition produces a generator for Int type by calling function choose. 

Sometimes users needs to define custom generators for the new types intro
duced. QuickCheck provides some combinators to make the definitions easier. 

The simplest combinator is oneof, which takes one from a list of generators 
which have equal chances to be selected. For example, the generator of type Bool is 
defined: 

instance Arbitrary Bool where 
arbitrary= oneof [return True, return False] 

It also can be defined through an alternative way 
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instance Arbitrary Bool where 
arbitrary = elements [True, False] 

frequency lets the user specify the frequency with which each alternative is 
chosen [CHOO]. Let's revisit the BinTree type in last chapter and produce a data 
generator for it by using function frequency. 

data Bin Tree a = Leaf a 
I Branch (Bin Tree a) (Bin Tree a) 

instance Arbitrary a :=:;. Arbitrary (Tree a) where 
arbitrary = sized arb Tree 

arb Tree 0 = liftM Leaf arbitrary 
arb Tree n = frequency [ ( 1, liftM Leaf arbitrary), 

(8, liftM2 Branch (arb Tree (n 'div' 2)) (arb Tree (n 'div' 2)))] 

Function frequency is defined as 

frequency:: [(lnt, Gena)] -t Gena 

It chooses a generator from the list randomly, but weights the probability of 
choosing each alternative by the factor given. 

QuickCheck is also capble of testing functions. By defining extensional equality 
(===)as 

(f ===g) X= f X g X 

and given property 

prop_(ompAssoc f g h = 

f 0 (g 0 h)=== (f 0 g) 0 h 

we can testing the associativity of functions. To test function types, there are 
two things one should know. First, it is impossible to report a counterexample of 
function types. The solution is to print function values as a constant string like 
"<<functions>>". The second thing is one needs to define the data generators for 
function type. 

function type of lnt -t StdGen -t (a -t b) represents Function generator of 
type Gen (a -t b), It is equivalent to a -t lnt -t StdGen -t b by reordering the 
parameters. And it can be further rewritten as a -t Gen b. So we define a function 

promote:: (a-t Gen b) -t Gen (a-t b) 
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This can be used to create generators for function types. One already noticed 
that in Arbitrary class there are two methods, another one is coarbitrary, It modifies 
a generator from it's first argument, it can be thought of as a generator transformer. 
Given functions of promote and method coarbitrary we can define: 

instance (Arbitrary a, Arbitrary b) ==;. Arbitrary (a -t b) where 
arbitrary= promote ('coarbitrary'arbitrary) 
coarbitrary f gen =arbitrary~ (('coarbitrary'gen) of) 

If one wants to generate random values for type a, they just need to define 
the method of arbitrary, while if want to generate functions, they need to define 
both of arbitrary and coarbitrary methods. By defining coarbitrary different values are 
interpreted as independent generator transformers. This can be done by variant 

variant:: lnt -t Gen a -t Gen a 

for natural numbers i and j, i =/= j, variant i g and variant j g are independent 
generator transformers. A definition on boolean type gives a concise example of how 
to use variant. 

instance Arbitrary Bool where 
arbitrary = elements [True, False] 
coarbitrary b = if b then variant 0 else variant 1 

After QuickCheck, Koen Claessen and John Hughes designed another 
lightweight testing tool for Haskell: SmallCheck. Basically SmallCheck is very similar 
to QuickCheck, such as the idea of using type-based data generators, and the way 
of properties expressed and reporting the testing results, however it also improves on 
QuickCheck in many ways. Instead of using randomly generated values, SmallCheck 
tests properties for finitely many values up to some depth, progressively increasing 
the depth used (CH06b]. This mechanism ensures that any counter-examples found 
are minimal. Writing properties of SmallCheck for user-defined types is very easy, 
and properties use existential as well as universals. More advantages and usages are 
noted in the user guide [CH06b]. In this thesis we will concentrate on QuickCheck, 
which is enough to show the basic ideas of testing of type instances in a automatic 
Haskell program testing environment. 

3.2 Testing the laws of type classes in QuickCheck 

After reviewing the type classes and QuickCheck, this section will use following ex
amples to illustrate how to test a instance of a type class by means of QuickCheck. 
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Maybe type is a standard data type which is pre-defined in the Prelude of Haskell. It 
is well known a FUnctor. We already saw its instance of_Functor class in the previous 
chapter. 

Maybe is not a pre-defined type of QuickCheck, If we want to make it testable, 
we must make a data generator for it by instancing it in the Arbitrary class. 

instance (Arbitrary a):::} Arbitrary (Maybe a) where 
arbitrary= frequency [(1, return Nothing), 

(2, liftM Just arbitrary)] 
coarbitrary Nothing = variant 0 
coarbitrary (Just n) = variant 1 o coarbitrary n 

As previously noted Maybe a is a polymorphic type itself. To show the work 
of QuickCheck, I test Maybe lnt type here. As a functor, Maybe lnt must satisfy two 
laws: id morphism and morphism composition. 

prop_id fa= fmap id fa_ fa 
where types= fa:: (Maybe lnt) 

prop_comp f g fa = fmap g (fmap f fa) _ fmap (go f) fa 
where types = (f :: lnt---+ lnt, g :: lnt---+ lnt, fa:: Maybe lnt) 

Note that "types" in the where clause was used to provide a place to restrict 
the types of parameters, in this case the types off, g, fa. 

One more example here is the Tree type. The procedure of checking Tree 
type involves more features of QuickCheck such as control over the distribution of 
generated values and limitation on size of values. Define a Tree type and Declare an 
instance of Functor 

data Btree a= Nil 
I Branch (Btree a) a (Btree a) 

deriving (Eq, Show) 

instance Functor Btree where 
fmap f Nil = Nil 
fmap f (Branch I a r) = Branch (fmap f I) (fa) (fmap f r) 

In the data generator for type Btree, function sized imposes a bound to limit 
the number of nodes in the generated trees. 

instance Arbitrary a :::} Arbitrary (Btree a) where 
arbitrary = sized arb Tree 
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coarbitrary Nil = 
variant 0 

coarbitrary (Branch t1 I t2) = 
variant 1 o coarbitrary t1 o coarbitrary I o coarbitrary t2 

arb Tree 0 = return Nil 
arb Tree n = frequency [ (1, return Nil), 

(8, liftM3 Branch (arb Tree (n 'div' 2)) 
arbitrary (arbTree (n 'div' 2)))] 

Running the QuickCheck to test the Id and composition laws of Btree functor 
for lnt type. 

prop_id_tree fa = fmap id fa = fa 
where types= fa:: (Tree lnt) 

prop_comp_tree f g tre = fmap g (fmap f tre) - fmap (go f) tre 
where types= (f :: lnt ---t lnt, g :: lnt ---t lnt, tre ::Tree lnt) 

This provides the evidence that Maybe and Btree types can be proved to be 
functors after including in Functor class and checking them in QuickCheck. 

Monad is another class that we use to show how the instances of a class are 
tested by QuickCheck. 

Monad laws are three basic rules that all monads must obey. left unit right 
unit. The third one is the composition which show the associative of morphism. 

form. 
The following functions specify the properties of Maybe monad in QuickCheck's 

prop_leftuniLmaybe fa= (return a~ f) =fa 
where types= (f :: lnt ---t Maybe lnt, a:: lnt) 

prop_rightunit_maybe f = f ~return_ f 
where types = f :: Maybe lnt 

prop_comp_maybe f g h = f ~ (>.x ---t g x ~h)_ (f ~g)~ h 
where types= (f :: Maybe lnt, g :: lnt ---t Maybe lnt, h :: lnt ---t Maybe lnt) 

The function constructor ---t was not defined to be a monad internally. By 
declaring it an instance of Monad one can check whether it is a monad. To be 
included in Monad, ---t should be a functor first, we just skip the step of instance of 
Functor. 

prop_MonadJUnit f x y = (return x ~f) y _ (f x) y 
where types= (f :: lnt ---t ( ---t) lnt lnt, x :: lnt, y :: lnt) 
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prop_Monad_rUnit f x = (f ~return) x _ f x 
where types= (f :: ( -t) lnt lnt, x :: lnt) 

prop_Monad_comp f g h x = (f ~(.Ax -t g x ~h)) 
X= ((f ~g)~ h) X 

where types = (f :: ( -t) lnt lnt, 
g :: lnt -t ( -t) lnt lnt, 
h :: lnt -t ( -t) lnt lnt, x :: lnt) 

The above examples illustrate how to justify the type class rules for different 
types. One obvious inconvenience is types must be specified explictly in a where 
clause. For example: the property prop_mMonad_comp takes four parameters and one 
has to give all of them the type signatures. 

The following steps will improve the specifications written down in Haskell 
language and make them more general. 

First we repeat the three properties which specify the laws of Monads in new 
form 

prop_Monad_IUnit f y =(.Ax -t return x ~f) y- f y 

prop_Monad_rUnit f = (f ~return) - f 

prop_Monad_comp f g h = (f ~(.Ax -t g x ~h)) 

= ((f ~g)~ h) 

By type inference, we obtain three type signatures for the above functions. 
Respectively they are 

prop_Monad_IUnit :: (Eq (m b), Monad m) =;.(a-t m b)-ta-t Bool 

prop_Monad_rUnit :: (Eq (m a), Monad m) =;.ma-t Bool 

prop_Monad_comp :: (Eq (m b), Monad m) =;.ma-t (a-t mal) -t 

(al -t m b) -t Bool 

To test these properties, the corresponding type should be given when running 
QuickCheck. When test left unit property of Monad for some type one should run 
the command: 

quickCheck (prop_MonadJUnit :: (Int -> Maybe Int) -> Int -> Bool) 

or 

quickCheck (prop_MonadJUnit :: (Int -> Maybe Char)-> Int -> Bool) 

for type Maybe lnt or Maybe Char 
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There are some other interesting type classes I like to formalize. In abstract 
algebra, a monoid is an algebraic structure with a single, associat!ve binary operation 
and an identity element. Its formal definition is: 

A monoid is a set M with binary operation 

*: M x M---> M, obeying the following axioms: 

Associativity: for all a, b, c in M, (a* b)* c =a* (b *c) 

Identity element: there exists an element 

e in M, such that for all a in M, a* e = e *a= a. 

In module Data.Monoid a type class was defined with name of Monoid and 
some types were defined as its instances. 

class Monoid a where 
e ::a 
op :: a ---> a ---> a 

instance Monoid [a] where 
e = [] 

op = (*) 
instance Monoid (a ---> a) where 

e = id 
op = (o) 

instance Monoid Integer where 
e=l 
op = (*) 

obviously Monoid class has the following properties to represent the laws: 

prop_monoidJid op x = e 'op' x = x 

prop_monoid_rid op x = x 'op' e = x 

prop_monoid_assoc op x y z = (x 'op' y) 'op' z = x 'op' (y 'op' z) 

Applicative is a functor with application which was defined in Haskell library. 
It describes a structure intermediate between a functor and a monad: it provides pure 
expressions and sequencing, but no binding. This class pre-includes the Maybe,[], 10 
and ---> etc .. 

class Applicative f where 

pure :: a ---> f a 

® ::f (a---> b)---. fa---> f b 
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Any instances should satisfy the following laws: 

identity: pure id ® v = v 

composition: pure (o) ® u ® v ® w = u ® (v ® w) 

homomorphism: pure f ® pure x =pure (f x) 

interchange: u ® pure y = pure ($ y) ® u 

The laws could be formalized in QuickCheck as 

prop_applicative_id v = (pure id ® v) v 

prop_applicative_comp u v w =(pure (o) ® u ® v ® w) == (u ® (v ® w)) 

prop_applicative_homo u f x = (pure f ® pure x) - asTypeOf (pure (f x)) u 

prop_applicative_intch u y = (u ®pure y) _(pure ($y) ® u) 

3.3 Testing for some predefined classes 

Besides the Functor and Monad classes, some standard type classes and types were 
also defined in Haskell Prelude. Most of these classes have a mathematical foundation 
behind them. We talk about them in this section and find the proper way to present 
the laws that make them what they are. 

Eq class 

Previously we already introduced the definition of Eq class. All basic datatypes 
except for functions and 10 are instances of this class. Instances of Eq can be derived 
for any user-defined datatype whose constituents are also instances of Eq (P J+03] 

In prelude it was defined in an alternative way. 

class Eq a where 
(=), (¢)::a~ a~ Bool 

x ¢ y = • (x _ y) 
x- y = • (x ¢ y) 

This declaration gives default method declarations for both/= and==, each 
being defined in terms of the other. If an instance declaration for Eq defines neither 
== nor /=, then both will loop. If one is defined, the default method for the other 
will make use of the one that is defined. If both are defined, neither default method 
is used [PJ+o3] 

Eq is superclass of some other type classes. such as Num, Ord. 

Eq encapsulates a mathematical structure of equivalence relation with the laws 
of: Reflexivity, Symmetry and Transitivity.Given equilvalence relation R, It's laws: 
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Reflexivity: a R a 

Symmetry: if a R b then b R a 

Transitivity: if a R b and b R c then a R c. 

The laws was expressed as following QuickCheck Assertion. 

prop_Eq_Reflexive r a = True==> a 'r' a 
prop_Eq_Symmetric r a b =(a 'r' b)==> (b 'r' a) 
prop_Eq_Transitive r abc= ((a 'r' b) 1\ (b 'r' c))==> a 'r' c 

To be tested one must give their types 

prop_Eq_Reflexive ::(Testable a) ::::} (t---+ t---+ Bool) ---+ t---+ Property 

prop_Eq_Symmetric :: (t---+ t---+ Bool) ---+ t---+ t ---+ Property 

prop_Eq_Transitive :: (t---+ t---+ Bool) ---+ t---+ t---+ t---+ Property 

when one executes the check they has to offer the relations explicitly as pa
rameter to the property being checked. Besides that one needs to supply the types 
of the rest of the type signature as well. 

For example when checking the symmetric property of an equivalence relation, 
one must run the following command: 

quickCheck ((prop_Eq_Symmetric (==)) :: Int- > Int- >Property) 

Num class 

Numeric types are important in almost every programming language, Haskell 
Prelude defines the most basic numeric types: fixed sized integers (Int), arbitrary 
precision integers (Integer), single precision floating (Float), and double precision 
floating (Double). 

Tthe type class Num defines the arithmetic operations that those Numeric 
types share like ( +) (-) (*),but not (/). It also provides the some other operations 
such as abs which computes absolute value, frominteger which converts a Integer to 
any other numeric values. 

Num encapsulates the mathematical structure of a (not necessarily commuta
tive) ring, with the laws of Associativity, Identity(Left and Right), Distributivity. 

Writing properties for these laws is straightforward. 

prop_Num..Associative abc =a* (b *c)_ (a* b)* c 
prop_Num_rldentity a = a * 1 - a 
prop_NumJidentity a = 1 *a= a 
prop_Num_Distributive a b c =a* (b +c) -a* b +a* c 

Ord class 
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Ord is defined as 

class (Eq a) ::::} Ord a where 
compare :: a --+ a --+ Ordering 
(<), (~), (;;:::), (>)::a--+ a--+ Bool 
max, mm ::a--+ a--+ a 

compare x y 
I X= y = EQ 
lx~y=LT 
I otherwise = GT 

x ~ y = compare x y =I= GT 
x < y = compare x y _ L T 
x;:?: y =compare x y =I= LT 
x > y = compare x y _ GT 

It is used for totally ordered datatypes, All basic data types except for function 
and IO are instances of this class. User defined data types also could be included in 
this class if they obey the constraint of ordering. 

The Ordering datatype allows a single comparison to determine the precise 
ordering of two objects. 

Ord encapsulates a mathematical structure of total order with the laws of 
Reflexivity, Antisymmetry and Transitivity. Another law is that any two elements in 
the set are comparable. 

The following expressions formulate the properties of the Ord class. 

prop_Ord_Reflexive a = a ~ a 
prop_Ord_aSymmetric a b =((a~ b) 1\ (b ~a))==> a_ b 
prop_Ord_Transitive abc =((a~ b) 1\ (b ~c))==> a~ c 
prop_Ord_Total a b =(a~ b) V (b ~a) 

QuickCheck is a practical testing tool for Haskell language; users write the 
properties using the same language as the programs. The testing data was automat
ically and randomly generated. Users control the data distribution to some degree 
and get the testing result in a short time. Although QuickCheck cannot guarantee 
the correctness of a program completely, it will still give testers the chance to find 
and eliminate most bugs of programs. A more reliable way to improve the software 
quality is via formal methods. This requires the program specifications to be written 
in some kind of logic, so they can be verified in a mathematical way. In the next 
chapter we discuss how to prove the type classes' laws by Isabelle, which is a theorem 
prover. 
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Chapter 4 

Verification of Instances in Isabelle 

This chapter introduces Isabelle/HOL (NPW02] and discusses how to verify classes 
laws using it. 

4.1 Overview of Isabelle/HOL 

The Isabelle theorem prover is an interactive theorem proving framework; various 
logics are included in it, such as several first-order logic, simply type theory, and 
Zermelo-Fraenkel set theory (Pau89, Pau90b]. Each new logic is formalized within 
Isabelle's meta-logic; new types and constants express the syntax of the logic, while 
new axioms express its inference rules (Pau90a] 

Isabelle/HOL [NPW02] is the specialization of Isabelle for HOL (NPW02], 
which refers to Higher-Order Logic. It provides some useful features to facilitate 
theory definitions and proving within a pre-defined library. 

One of reasons to choose Isabelle/HOL [NPW02] is that a theory could be 
constructed easily from the specifications written in Haskell language due to the fact 
of: 

HOL =Functional Programming+ Logic (NPW02] 

A typical Isabelle/HOL (NPW02] theory file contains definitions, lemmas and 
theorems, and proof scripts. 

4.1.1 Types in Isabelle/HOL 

HOL is a simply typed logic whose type system resembles that of functional program
ming languages like ML [MTM97] or Haskell (HJW+92] [NPW02]. Thus, there are 

33 
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basic types, such as bool, nat, etc .. , type constructors which are used to build new 
types, function types which are denoted by => and type vari~bles which are in a 
form of polymorphism: 'a, 'b .... 

Inductive datatypes are part of almost every application of Isabelle/HOL 
[NPW02]. As such, packages are provided to facilitate datatype definitions. Its 
mode of definition is: Users give simple description of new inductive types using a 
notation similar to ML or Haskell [HJW+92, NPW02]; the system then automatically 
generates a sizeable amount of characteristic theorems. 

A general datatype specification in Isabelle/HOL [NPW02] is of the following 
form [BW99]: 

datatype (&)t1 = C{Tf 1 ... T1
1 

1 I ... 1 Cf. Tk 1 ... Tk1 
1 

, ,m1 1 1, 1,mk
1 

and (a)tn = CfTf1 ... Tf mn I ... I ckn Tkn 1 ... Tf: mn 
' ' 1 n n, n, kn 

where a= (a!), ... , ah is a list of type variables, C/ are distinct constructor 
names and -r/i' are admissible types containing at most the type variables ab ... , ah. 

A type T occ~rring in a datatype definition is admissible if and only if 

• T is non-recursive, i.e. T does not contain any of the newly defined type con
structors, or 

• T = (a)ti' where 1 ~ j' ~ n, or 

• T = (T~), ... , T~,t' where t' is the type constructor of an already existing datatype 
and T~, ... , T~, are admissible types. 

• T = a --+ T1
, where T1 is an admissible type and a is non-recursive(i.e. the 

occurrences of the newly defined types are strictly positive) 

If some (a)ti' occurs in a type -r/i' of the form 
' 

( ... , ... (&)ti' ... , ... )t' 

this is called a nested occurrence. 

Types in HOL must be non-empty [BW99]. Each of the new datatypes (a)tj 
with 1 ~ j ~ n is non-empty iff it has a constructor C/ with the following property: 
for all argument types -r/i' of the form (a)ti' the datatype (a)tj' is non-empty. 

' 
If there is no nested occurrences of the newly defined datatypes, to be non

empty at least one of the newly defined datatypes ( a)tj must have a constructor cf 
without recursive arguments a base case. If there are nested occurrences,a datatype 
can still be non-empty without having a base case itself. 
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For example, the datatype definition of list 

datatype 'a list = Nil (" 0") (] is syntax annotation of empty list. 

I Cons 'a "'a list" (infixr "#" 65) "#" infix operator of Cons 

Sometimes it is unnecessary to define new types. For these cases one can use 
type synonyms. They are created by a types command 

types number = nat 

gate = "boo I ~ boo I ~ boo I" 

('a, 'b )a list = "('a*'b )list" 

Type synonyms are intended to improve the readability of theories, 

4.1.2 Functions and Terms 

Isabelle/HOL provides two mechanisms to define recursive functions (NPW05] 

Primitive recursion applies only on datatypes. 

Its general form is the keyword primrec is followed by a list of equations 
(NPW02] 

J X1 · · · ( C Yl · · · Yk) · · · Xn = T 

where C is a type constructor of a datatype t. All recursive calls off in T are 

f · · · Yi · · · . 
This ensures f terminates, since one argument becomes smaller with every 

recursive call [NPW02]. It is required that there is at most one equation for each 
constructor Ci for a datatype t, T can contain on free variables on the left-hand. 
Functions are in arbitrary order. It is unnecessary to define functions for every con
structor of a datatype, for any that are omitted, function is defined to return a default 
value. 

Following example shows a primitive recursive function definition 

consts app :: 'a list ~ 'a list~ 'a list 

primrec 

"app [] ys = ys" 

"app (x # xs) ys = x # app xs ys" 

Primitive recursion is suitable for total functions that have a natural recur
sive definition. But there are some drawbacks to prevent defining all functions in a 
primitive recursive form. 

The first limitation is that the set of primitive recursive functions does not 
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include every possible computable function. 

The second limitation is because there must be at most one reduction rule for 
each constructor one can not use full pattern-matching. 

In Isabelle/HOL, general recursive function could be defined by using the 
keyword reedef. It requires to provide a well-founded relation to control the recursion. 
Recursion does not need to apply on datatypes; termination is proved by showing that 
arguments of all recursive calls decrease under some relation. 

It is hard to avoid incompleteness of function definitions by using reedef, pat
terns also overlap. Proper order of patterns disambiguates the overlapping, and func
tions return default value for missed patterns. 

The Fibonacci function is a typical example to show a function definition using 
reedef. 

consts fib :: "nat ::::} nat" 

recdef fib "measure(.\n. n)" 

"fib 0 = 0" 

"fib (Sue 0) = 1" 

"fib (Sue(Sue x)) = fib x +fib (Sue x)" 

A function measure of .\n. n was embedded in this definition. It requires that 
the measure of the argument of fib on the left-side is strictly greater than that of the 
argument of each recursive call [NPW02]. This requirement was obviously satisfied 
because Sue (Sue x) is strictly greater than Sue x and x 

measure is an operator provided by Isabelle/HOL to build well-founded re
lations. The package automatically proves the relation which was constructed by 
measure is well-founded. Isabelle/HOL defines 5 such operators. 

• less_than is relation of "less than" on natural number 

• measure f, where f is a map of T ::::} nat 

• inv _image R f is a generalisation of measure. 

• R1 <*lex*> R2 is the lexicographic product of two relations 

• finite_psubset is the proper subset relation on finite sets 

Terms in HOL are formed by applying functions on arguments. 

Isabelle offers some basic structures which also are implemented in the Haskell 
programming language such as 
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-conditional expressions: 

if b then t 1 else t2 

-Let expressions: 

let x =tin u 

-and case expressions: 
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case e of c1 => e1 I . . . I Cn => en 

4.1.3 Specifications and Proof 

Specifications are represented in Isabelle as a theorem or a lemma; they are Isabelle 
expressions prefixed with keyword theorem or lemma respectively. The two key
words are interchangeable; the only concern is to emphasize the importance of some 
properties. 

theorem rev_rev[simp] : "rev(rev xs) = xs" 

• establishes a new theorem to be proved. 

• gives the theorem the name rev_rev 

• imposes the attribute simp on the theorem; declaring it as a simplification rule. 

Given a theorem or lemma, the proving process in Isabelle is to apply a sequence of 
commands. For example: the proof of above theorem. 

apply(inducLtac xs) 

apply( auto) 

For the complete example refer to [NPW02]. Proof of most theories is not so 
simple; it involves a sequence of commands, rules and method, sometimes requiring 
one to define and prove a set of lemmas that help to establish the ultimate theorem. 

4.2 Suggestions for a translator from Haskell to 
Isabelle 

To verify the Haskell programs we need to transfer the types, functions and spec
ifications written in Haskell into the form of Isabelle/HOL [NPW02]. But HOL is 
a logic of total functions and is not suitable to express the non-strict semantics of 
Haskell directly. For example, it is hard for Isabelle/HOL [NPW02] to express the 
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lazy evaluations of the Haskell language. However our goal is not to translate every 
structure of Haskell to Isabelle; thus it is suitable to describe the_semantics of Haskell 
functions that always terminate and that do not make essential use of laziness. 

The translation from Haskell to a model in the theorem prover Isabelle/HOL 
[NPW02] is mostly syntactic and can be automated. This section of the thesis will 
discuss the similarities and differences between Haskell and HOL syntax. It also 
propose the rules for possible translations. 

4.2.1 Rules for translating Terms 

Rules for general structures 

Functions play a major role in Haskell programming language. A program is composed 
of various function definitions and function calls. Functions could be defined curried 
or uncurried, the difference between these forms is the type of arguments. Function 
application associates to the left while the Function constructor ---+ associates to the 
right, so as an example the function add 

add:: lnt---+ lnt---+ lnt 
add X y =X* y 

Its type lnt---+ lnt ---+ lnt has another equivalent form of lnt---+ (lnt ---+ lnt) and 
its application add 1 2 could be expressed as (add 1) 2. A function can be returned as 
a value by means of partial application of a curried function: (add 1). This was called 
section. Haskell has other program structures, such as if expression, let expression, 
where expression, case and ,\etc .. They can be translated to HOL in the following 
manner. 

[if b then t1 else t2~ := if [b~ then [t 1 ~ else [t2 ~ 

[(ope)]:= %x ---+x[op~[e~ 

[( e op)] := %x ---+ [e~ [op~ x 

[ f a1, ... , an = E(Z) where Z1 = F1 (Qi) ... Zn = Fn (aj)D := 

let[z1~ = [FlH[cii~); ... ;[zn~ = Fn([aj~)= [Fn~([a~~)in[E)([Z]) 
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~~ gd1 = e1 I gd2 = e2 I · · · I gdn = en~ := 

if ~gd1 ~ then [e 1 ~ else if [gd2~ then [e2~ else if ... else [en~ 

Notation [-~ defines the conversion function from Haskell to Isabelle. Above 
structures are often seen in Haskell programs. Understanding their meanings is helpful 
to translate them correctly into HOL. Semantics of terms could be defined by giving 
identities that relate those constructs to case expressions 

Semantics of conditional expression 

if b then T else F =case b of {True--+ T; False--+ F} 

Semantics of let expression 

let PI= ei; ... ;pn =en in eo =let (Pb ... ,Pn) = (e1, ... , en) in eo 

let p = ei in e0 = case ei of p --+ e0 

where no variables in p appears free in ei 

For A abstraction, the following identity holds: 

API·. ·Pn--+ e = AX1 ... Xn--+ case (xi, ... ,xn) of (PI, ... ,Pn)--+ e 

where the xi are new identifiers. 

Semantics of partial function application(section) is defined by a A
abstractions. HOL does not provide syntax for sections, but a translation to A
abstractions will properly preserve the semantics of Haskell. Let expressions intro
duce a nested, lexically-scoped, mutually-recursive list of declarations [P J+o3] The 
declarations scope the expression e and the right hand side from declarations. In 
Haskell another way to create nested scope in an expression is where clause. A 
where clause is only allowed at the top level of a set of equations or case expression. 
The same properties and constraints on bindings in let expressions apply to those in 
where clauses [HPF99]. 

We suggest translating some where clauses into HOL as let expressions. How
ever there are some limitations. For example: 

gxyly>z= ... 
jy-z= .. . 
I y<z = .. . 

where z = X*X 

A let expression can not be used to express above statement. These two 
forms of local declarations look similar, but in fact they have some differences, let is 
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a expression and where is only the part of function declaration and case expression 
[HPF99]. 

Function bindings in a let expression are allowed, an example in Haskell 

let y =a* b 
fx=(x+y)/y 

in f c + f d 

This expression can be used in HOL after changing some operators. 

Not all pattern bindings can be used in let expressions, for example If we have 
a datatype of State 

data type ('a, 's) State = ST "'s ::::} 'a* 's" 

We can define a function containing pattern binding 

(ST g)= gg a 

This pattern binding is allowed in Haskell, but not in HOL. One solution to 
this problem is to define a deconstructor of of ST naming unST: 

unST (ST x) = x 
g'=gga 
g = unST g 

Rules for recursion 

Functions provided by type classes are important to verifications, as they are over
loaded by specific types. When proving the correctness in Isabelle/HOL, those func
tions must be translated into Isabelle/HOL. In addition to the overloaded class meth
ods, some auxiliary functions are also necessary to be translated. 

To define the rules for translating functions we must understand how functions 
are defined both in Haskell and lsabelle/HOL. 

Function types in Haskell are constructed by type constructor (--+), they are 
in the form of T1 --+ T2 . Since Ti could be function types themselves, function types 
were declared recursively. A function is defined in Haskell in the following form 

name patternl pattern2 ... pattern= expression (n /=0) 

where name is the function name and patterns play the roles of parameters. 
The functions declaration and definition in HOL are similar to those of Haskell, the 
obvious difference is the function type constructor (::::} ); both (--+) and (::::}) associate 
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to right. While type signatures can be ignored in Haskell, they must be explicitly 
given in HOL. Type inference does not infer the types. of functions defined on top 
level. 

In both Haskell and Isabelle/HOL, inductive datatypes lead to recursive func
tions. Isabelle/HOL provides two mechanism to define recursive functions: primitive 
recursion and well-founded recursion. Primitive recursion applies only on datatypes, 
the termination relies on the one fixed argument becoming smaller [NPW02). There 
must be at most one reduction rule for each constructor [NPW05). Well-founded 
recursion is a more general method: its termination is guaranteed by a well-founded 
relation. Besides the recursive function definitions, Isabelle/HOL provides constant 
definitions which can be used to formalize some structures that primitive and well
founded recursion can not, an example of which we will show later. 

Analyzing function definitions of Haskell provide the guidance on how to trans
late functions and what form of recursions in Isabelle/HOL should be chosen. Two 
things should be addressed: function bindings and pattern matching (discussed in the 
previous section). Function binding binds a variable to a function value [PJ+03). 

x Pn ... Plk match1 

X Pnl ... Pnk matchn 

each Pii is a pattern, and where each matchi is of the general form: = ei where 
declsi . matchi is also a form of a guard expressions. 

The meaning of function binding expressed by case expression is 

x = >.x1 ... Xk ~case (x1 , ... , xk) of 

(pu, ... ,Pik) match1 

(Pni, · · · ,Pnk) matchn 

This can be expressed by HOL. The matchi in the form of guards can be 
represented by nested conditional statements. 

Functions also can be defined in let and where expressions locally. 

The following rules determine how functions are translated: 

dJ PI X = e1 · · · f Pn X = enD := 

primrec" (!) W1D (xD = (e1D ... VD WnD (xD = [enD" 
where patterns Pi are in the form of Ci if for the datatype t ii = Ci 7. One 

requirement for translating recursive functions in Haskell to primitive recursion in 
HOL is Ci is distinct in pattern p, the reason is the HOL restriction of at most one 
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reduction rule for each constructor. Some functions with full pattern matching can 
not be processed in this thesis, for example a function defined on list type 

f[] = [] 

f [x] = p x 
f (x: xs) = q x: f xs 

Functions defined in this form are suitable to be translated to general recursion, 
which need an associated well-founded relation to ensure termination. In this case 
we can use relation of "ensure >.xs. length xs". HOL provides some operators to 
generate the relations. How to use them for formalizing Haskell functions will be a 
topic for future discussion. 

[fx = C $ e~ := constdefs f :: T "[!~ (x~ = (CD(ef' 

[fx = e~ := constdefs f :: T "~n ~x~ = [ef 

The above two rules translate some Haskell code to constant function defini
tions. The first one says that when no arguments contain constructors of given type; 
and the function returns the value prefixed with a constructor, such functions are 
transformed to a constant function definition. One example is return of Monad. 

The second rule translates general Haskell functions which have no pattern 
matching. The patterns used, and placement of the constructors of the arguments 
affect the choice of which rule is applied. 

4.2.2 Types translation 

Types are important to both Haskell and Isabelle/HOL. Haskell defines some base 
types in its prelude module, such as lnt, Float, Bool, Char .... and also some composite 
types: tuple types (t1, t2, ... , tn), list types [t1], and function types (t1 --+ t2) where 
t1, ... , tn are types themselves [Tho99] 

Types definitions 

It is hard for Haskell to define enumerate types such as a type representing days of 
week, or a type containing either a number or a string [Tho99] by means of compo
sition of base types. All these types can be introduced by algebraic types via a data 
statement. 

data [context :::::?]type tv1 ... tvi = con1 T1 ... Tn 
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I ... 
I conm TI ... Tq 

[deriving] 

Given type is the type name or type constructor, tvi are a set of type variables. 
coni are a set of data constructors, each of which was followed by a list of type 
variables or type constants. [context :=;.] restricts some type variables of tvi to some 
type classes. [deriving] includes the new defined type into some type classes. 

Types can be introduced through other ways; one is expressed by a type 
statement which creates a type synonym and it does not use new data constructors; 
another is expressed by statement of newtype which changes the type name and 
supply a data constructor. 

Similarly Isabelle/HOL predefines a set of types, such as nat, the type of nat
ural numbers, bool, the type of boolean and some composition type such as list, pair, 
tuple. To be able to describe the real world, Isabelle/HOL also provides mechanism 
to introduce new types. In section 3.1.1 we already saw the syntax for defining a 
new recursive datatype which has a set of constraints. Isabelle also provide type 
synonyms, defined via keyword types. 

If we ignore the statements [context =}], and [deriving] of Haskell language; 
the syntax difference on new datatype definition between Haskell and Isabelle/HOL 
is subtle. The type variables on the left hand side of HOL type definitions have 
different order from those of Haskell and are grouped in different form. They all 
consist of a type name( type constructor), a sequence of type variables on the left 
hand side, and a set of data constructors on the right hand that are all associated 
with some types(possibly none). Types defined in Haskell and Isabelle/HOL may 
each be polymorphic and both must be non-empty. We define the translation rules 
for types definitions below: 

Qdata type a1 ... ai · · · TJ 1 I · · · I CDnmTf 1 · · · T~ 1 ) ·-,m1 1. 1,mk1 

[conl][T[,1D ... [TJ,mlD 

[newtype type a1 ... ai = con1 T[ 1 ... T1
1 1D := 

' ,ml 

datatypes ([a1), ... , Qa2)) Qtype)=[conl)[Tf,l) ... [Tf,mlD 
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These three rules are used to translate type definitions from Haskell to Is
abelle/HOL. In implementation, one should be aware that in Isa~elle/HOL type vari
ables are in the form of 'o:i. For example: A type of Tree defined in Haskell: 

data Tree a = Leaf I Branch (Tree l) x (Tree r) 

translating to Isabelle/HOL datatype by rule 1 

datatype 'a Tree = Leaf I Branch "'a Tree" 'a "'a Tree" 

From this example we can see that under the syntax of Isabelle/HOL, the 
algebraic types take form of"' a Type". Translating type definitions is straightforward, 
the semantics are also preserved in the sense that the Isabelle type contains exactly 
the finite fully-defined elements of the Haskell type. 

Translating type signatures and type annotations 

One advantage of the HM type system is type inference. It greatly reduce the amount 
of explicit type information that needs to be provided by a user for a Haskell program. 
But that does not mean that one can abandon the type information completely. In 
Haskell programs, type signatures are required when declaring functions, for example 
when one defines a type class with some operators. In Isabelle/HOL type signatures 
are required to be given explicitly. Isabelle/HOL provides some pre-defined base 
types, such as nat, int, real and bool and associated theories on those types. Not all 
built-in base types of Haskell are suitable to be translated to Isabelle/HOL [NPW02]. 
But some of them, such as Float,Double, and Bool can find their counterparts in 
Isabelle/HOL.The translation is natural and straightforward, lnt ~ int,Fioat ~ real, 
Bool ~ bool. For other base types of Haskell, one way is to extend the theory of 
Isabelle/HOL to include these types. This thesis concentrates on polymorphic types, 
and is concerned little about those base types of Haskell, so we pay more attention 
to composition types such as Thples, Lists, Types of Functions. 

[a]:=' a 

[(a, b)] :=[a] x [b] 

[[a)] := ['a] [list] 

[a -t b] := [a] :::} [b] 

[TyCon &] := [(&H [TyCon] 

The above rules determine how to translate built-in types. When those types 
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appear in programs, the direct translation is easy to do and theories associated with 
those types will simplify programmers' job. Thples and lists are built up by combining 
a number of pieces of data into a single object [Tho99]. In a tuple we can combine 
various values into a single object even of different types. Its general definition consists 
of components of simpler types: (t1, t2 , ... , tn)· From its definition a tuple comes 
with various number of components, tuples could be called pairs, triples, quadruples, 
quintuples .... For completeness, Haskell provides a nullary tuple(). It contains two 
members, j_ and () [Bir98]. 

In HOL, an ordered pair (a,b) is of the type of 7 1 x 72 with a's type being 
7 1 and b's type being 72. Thples are constructed by pairs nested to right so that 
( a 1 , a2, a3) is equivalent ( a 1 , ( a 2 , a 3 )) and has a type of 7 1 x 7 2 x 7 3 or equivalently 
in the form of 7 1 x (72 x 7 3) HOL also provides a unit (). 

List is defined to contain a sequence of values of the same types. In Haskell a 
list of some type is introduced by type constructor of []. For example, [Int] defines a 
list of Int type. It also plays the role of a data constructor. [] stands for the empty 
list, while [0] is a list of Int with only one element. HOL defines a list type through 
the datatype command. Its type constructor is List. [] in HOL just represents the 
empty list and a non-empty list is built by its data constructor of Cons or the infix 
operator#. Translation of user-defined datatypes is very natural, they take the same 
set of type constructors, data constructors, and type variables, All that remains is 
just to reconstruct them in the syntax of Isabelle/HOL. An example: 

map:: (a-t b) -t [a] -t [b) transform to HOL 

map :: "('a::::} 'b) ::::} ('a list::::} 'b list)" 

4.2.3 Generating theorems 

Programming with Haskell type classes includes type classes declaration, instance 
declaration and user-defined types. In this thesis we intend to check whether the 
instance of a class which is newly defined, or standard for some data types no matter 
built-in or user-defined satisfies the laws of that class. While Haskell type classes 
handle polymorphic types, this thesis will check monotypes. 

In HOL properties which need to be verified were normally represented by 
theorems or lemmas. They reflect the characters of some datatypes and functions 
defined on them. To verify the laws of Haskell type classes, the specifications that 
express the laws should be provided. We can generate the theorems based on those 
specifications. The rule for translating specifications simple: 

[Spec (a)= E(f)D := lemma [SpeeD a = [ED([JD) 
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where fare the polymorphic functions defined in type classes, We Translate 
Haskell specifications into lemmas of HOL by substituting any pqlymorphic functions 
in specifications with monomorphic functions. For example: 

A instance of Functor class of type Maybe. 

instance Functor Maybe where 
fmap f Nothing = Nothing 
fmap f (Just a) =Just (fa) 

We get monomorphic functions in HOL by translating polymorphic functions 
of Haskell for specified types. 

consts 
fmap_Maybe :: " ('a => 'b) => ('a Maybe => 'b Maybe)" 

pnmrec 
"fmap_Maybe 
"fmap_Maybe 

f Nothing = Nothing" 
f (Just a) = Just (f a) 11 

The specification for functor id law: 

checkFunctor _id fa = fmap id fa -fa 

Based on the above instance and specification of type Maybe for Functor type 
class, the following lemma says that the Maybe functor satisfies the id law. 

lemma checkFunctor _id_Maybe: 11 fmap_Maybe id fa = fa 11 

4.2.4 Implementing a translator 

A translator from Haskell to Isabelle/HOL is implemented based on the translating 
rules described in last section. It could be used to translate Haskell programs and 
specifications which are explicitly given by programmers along with the programs. 
Current version does not support all rules, such as where and Let expressions. 

Translator gets the abstract syntax tree( AST) from Haskell source code by 
calling function parseModule. Top level structure of AST is a module storing the 
variable of type HsModule. By analyzing the module, translator constructs all parts 
that are needed to generate a complete theory file of Isabelle/HOL. Translating is 
a process involving several scans on AST and keeps a module as static environ
ment(means without update). The reason to scan module more than once is some 
structures taking components from same term but they can not be done at same time. 

Most Haskell functions will be translated to Isabelle versions. The functions 
that represent the specifications will be transfered to proof obligations such as lemmas 
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or theorems. Functions representing specifications are defined in Haskell with the 
names prefixed by a string of "check". To do so tran~lator will easily distinguish 
specifications with other functions. More description refers to appendix. 

4.3 Verify class properties in Isabelle/HOL 

In this section we will study some examples to show how to verify the instances in 
Isabelle/HOL. 

The type Maybe is predefined in Haskell prelude. The purpose of the Maybe 
type is to provide a method of dealing with illegal or optional values without termi
nating the program. It comes with a set of operations like isJust, fromJust, from Maybe 
etc .. Besides this, it overloads fmap,~ and return functions through the program
ming interface of type classes of Functor and Monad. In previous section we already 
translated Maybe type of Haskell and its Functor instance to HOL to illustrate the 
procedure of generating theorem. We will complete its proof for Functor laws and 
Monad laws. 

data Maybe a = Nothing I Just a 

By the translating rules, in HOL this type could be defined through keyword 
datatype. 

datatype 'a maybe = Nothing I Just 'a 

Revisiting the translation of function fmap 

consts 
fmap_Maybe :: 11 ('a => 'b) => ('a Maybe => 'b Maybe) 11 

pnmrec 
"fmap_Maybe 
"fmap_Maybe 

f Nothing = Nothing" 
f (Just a) = Just (f a)" 

The function fmap was translated into primitive recursion because maybe is an 
algebraic type although it is not a recursive type. The second reason is that every 
constructor appears in pattern not more than once. This is also one of principles for 
automatic translation. 

Specifications are not parts of Haskell programs. To express the Functor's 
properties users could write them in Haskell language explicitly, and for reason of 
distinguishing from general Haskell functions The names are prefixed with the text 
"check" such as inthe allowing examples: 
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checkFunctor_id ::(Functor f, Eq (fa))::::} fa-+ Bool 
checkFunctor _id fa = fmap id fa _ fa 

checkFunctor_comp ::(Functor f, Eq (f c))::::} (a-+ b)-+ (b-+ c)-+ fa-+ Bool 
checkFunctor_comp f g fa= fmap g (fmap f fa) fmap (go f) fa 

These two specifications express the identity morphism and morphism compo
sition of Functors. Their counterparts in HOL are lemmas for which we are ready to 
write some proof scripts. 

fa) 

Theorems which represent laws of Maybe functor and their proof scripts are: 

lemma checkFunctor Jd_Maybe: "fmap_Maybe id fa = fa" 

apply(induct_tac fa) 

1. fmap_Maybe id Nothing = Nothing 

2. !!a:: 'a. fmap_Maybe id(Just a)= Just a 

apply( auto) 

No subgoals! 

done 

lemma checkFunctor_comp_Maybe: "fmap_maybe g (fmap_maybe f 

= fmap_maybe (g . f) fa" 

apply(induct_tac fa) 

1. fmap_Maybe g (fmap..Maybe f Nothing)= fmap_Maybe (g . f) 
Nothing 

2. !!a:: 'c. fmap_Maybe g (fmap..Maybe f (Just a))=fmap_Maybe 
(g . f) (Just a) 

apply( auto) 

No sub goals! 

done 

Proofs for Maybe functor are fairly easy, requiring just one step. 

Let's see a more complex example with the State monad. State monad is 
adopted by Haskell to transfer programs' state internally. By using the state monad, 
programs can hide the state information which usually must be passed to functions 
as arguments. It is defined as a function of type s -+ (a, s), from a initial state, a 
value of type a was returned paired with a new state after computation. The type of 
State is: 
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type States a= s-+ (a, s) 

Overloading the function of~ and return makes the State to be a Monad. 

instance Monad (States) where 
return a= AS-+ (a, s) 
(~) m f =AS-+ 

let ( s', a) = m s 
m' =fa 

in m' s' 

Three specifications describe the basic properties of a monad along with their 
signatures. 

Left unit. 

checkMonadJunit ::(a-+ m b)-+ a-+ Bool 
checkMonadJunit f x =(return x) ~ f- f x 

Right unit. 

checkMonad_runit :: m a-+ Bool 
checkMonad_runit x = x ~return = x 

Bind composition. 

checkMonad_comp :: m a-+ (a-+ m b) -+ (b-+ m c) -+ Bool 
checkMonad_comp f g h = f ~(Ax-+ g x ~h)_ (f ~g)~ h 

When we take the Monad declaration from a predefined file which describes the 
built-in types and classes of Haskell, we almost have everything necessary to generate 
a theory of State Monad. The type State was declared as a type synonym of a function 
types-+ (a, s), it can be redeclared as another type synonym in HOL. 

types ('a,' s) State= "' s => 'a \<times> 's" 

By the type signatures of function ~ and return, we get the monomorphic 
type of ~ and return defined on State. Observing the State type is not recursive 
and it has just one pattern we don't need define ~ and return as recursive functions. 
Renaming the ~ to a function name in text: 

constdefs 
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return_state :: '"a=> ('a,'s) State" 

"return_state x == (%y. (x,y))" 

constdefs 

bind_state :: " ('a,' s) State = > 

('a=> ('b,'s) State ) => ('b,'s) State" 

"bind...state st f == (%x. let(a,st') 

= st x in (let m' =fa in m' st'))" 

The nested let expression in bind...state needs to be addressed. It was translated 
from the sequence of let expressions. 

After translating the type and functions, generating proof obligations for 
monad laws is straightforward. The theorems or lemmas come from the specifica
tions explicitly provided above. The procedure involves a sequence of function name 
substitution and without using specifications signatures (which sometimes can be 
ignored). 

lemma checkMonadJ.unit_state[simp]: 

"bind..state ( return_state x) f = f x" 

lemma checkMonad_runit..state: 

"bind_state f return_state = P' 

lemma checkMonad_comp_state: 

"bind..state f (%x. bind_state (g x) h ) = 

bind_state (bind_state f g) h" 

The complete proof refers to appendix. The appendix also include translations 
and proofs of Monadplus on some basic types. The example of MonadT is worth some 
description, the polymorphic function lift ( m a ---+ t m a)lifts one Monad to another. 
The proofs verify two laws which were suggested by ShengLing, Paul Hudak and Mark 
Jones [LHJ95] 

lift o unitm = unittm 

lift (m 'bind'm, k) = lift m 'bind~m (lift o k) 

The example lifts a Maybe monad to a State Monad, but not List, because we 
cannot define a list monad transformer [LHJ95]. 

The examples given so far illustrate how to translate type instance for classes 
to HOL, and how to generate HOL proof obligations for laws of type classes specified 
in Haskell. 



Chapter 5 

Conclusions and Future work 

Type classes are a unique feature of Haskell programming language. Using classes, a 
Haskell programmer can overload functions over a set of types rather than just one. It 
provides Haskell programmers a way to define general programming interfaces. Type 
classes associate some invariants which should be satisfied when a type was defined to 
be a member of the types. To guarantee the correctness of type instances of a class, 
validation and verification must be done. In this thesis we discuss two methods· to 
test and verify type instances, one is QuickCheck which is a testing tool for Haskell, 
and another is Isabelle which is a formal method tool used to prove theorems. 

5.1 Contributions 

The first method adopted is QuickCheck, which is an automatic testing tool for 
Haskell programs. It was used to check the properties of Haskell functions. One of 
the attractions of this tool is that properties could be expressed by Haskell language 
itself. By giving some examples, it shows how to express type classes' invariants in 
QuickCheck, and provide library of QuickCheck tests for prelude class instances. 

The second method used is Isabelle/HOL. In Isabelle/HOL properties could he 
expressed as theorems or lemmas. Isabelle/HOL can prove them in a formal way. To 
prove laws of type classes of Haskell in Isabelle/HOL, the functions and specifications 
of Haskell programs need to be translated to Isabelle. Syntax differences require 
translating from Haskell to Isabelle/HOL. This thesis suggests a set of translating 
rules to guide function translation, datatype translation and specification translation 
while preserving the semantics. Based on the translating rules a simple automatic 
translator is implemented to ease the Haskell programmers who want to verify their 
type instances in Isabelle/HOL. By giving some example, this thesis also shows how 
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the types and functions are translated; how the laws of type classes are presented in 
Isabelle/HOL, and how the theorems are proved. Appendix B includes the proving 
scripts for the type instances in the examples. 

5. 2 Conclusions 

QuickCheck is suitable for testing type instances; new types could be easily defined 
as testable and writing properties is straightforward. 

Type instances could be verified in lsabelle/HOL while the functions, types 
and specifications are translated to Isabelle/HOL. For the most part, this translation 
was purely syntactical and straightforward with regular expression matching. While 
the new datatype, functions and specifications are defined within the range that the 
translation rules support, automatic translating is applicable. 

5.3 Future work 

The work done in this thesis could be extended in two aspects. 

Firstly, when checking the properties in QuickCheck, type information has to 
be given explicitly. The QuickCheck procedure could be improved by existential type 
of GADTs; it allows properties to be checked on a list of testable types automatically. 

Secondly, the translator needs to be extended to cover more Haskell and Is
abelle/HOL features, for example, translating functions to well-founded recursions 
which is generally recursive and supporting full pattern matchings. In the future 
some theories of built-in types of Haskell are required to make the translation easier. 
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Appendix A 

A simple translator from Haskell to Isabelle 

entrf is the main entry of the program. It reads source code from a file and 
parses it using the Haskell parser. 

entrf :: FilePath -t 10 () 
entrf fp ty = do x +- readFile fp 

writeFile ty 
("imports thy \n\n" * (prettyPrint $ trimok $ 
parseModule (unlines (docu (lines x)))) 

* "\n\n" * (entr2 x)) 

entrl :: FilePath -t 10 () 
entrl fp =do x +- readFile fp 

putStrln $ 
"\n\ \begin{isabelle}" * "\n\n" * unlines ( fdecl ( extdecl $ trimok 
$ parseModule (unlines (docu (lines x)))) 
[]) * "\ \end{isabelle}" 

entr2 ::String -t String 
entr2 x = "\ \begin{isabelle}" * "\n\n" 

* unlines (scnimpt ta) * "\nn 
* unlines (fdecl ta ta) * "\ \end{isabelle} 11 

where ta = ( extdecl o trimok o 
parseModule o unlines o docu o lines) x 

Function trimok analyzes the Haskell module. After calling this function we 
already have a HsModule data structure. 

trimok :: ParseResult HsModule -t HsModule 
trimok modu =case modu of 

(ParseOk x) -t x 
(ParseFailed loc str) -terror "r" 

Function extdecl extracts the declaration part of from the Haskell program. 
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extdecl :: HsModule---+ [HsDecl] 
extdecl (HsModule ____ xs) = xs 

Function senimpt takes first round of scan to find what theories need to be 
imported. The information could be obtained from contexts of definitions of classes, 
instances, or functions. 

senimpt :: [HsDecl] ---+ [String] 
senimpt [] = [] 
senimpt (n: ns) =case n of 

( Hs T ypeDecl sl x xs ht) ---+ 
senimpt ns 

(HsDataDecl sl he hn xs ys zs) ---+ 
rmdup (ext he) (senimpt ns) 

(HslnfixDecl sl ha i xs) ---+ 
senimpt ns 

(HsNewTypeDecl sl he hn xs hd ys) ---+ 
rmdup (ext he) (senimpt ns) 

(HsCiassDecl sl hex xs ys) ---+ 
rmdup (ext he) (senimpt ns) 

(HslnstDecl sl he hq xs ys) ---+ 
rmdup (ext he) (senimpt ns) 

(HsDefaultDecl sl xs) ---+ 
senimpt ns 

(HsTypeSig sl xs hq) ---+ 
let (HsQuaiType he ht) = hq 

in (rmdup (ext he) (senimpt ns)) 
(HsFunBind xs) ---+ 

senimpt ns 
(HsPatBind sl hp hsr xs) ---+ 

senimpt ns 

In the first round scan of the Haskell source code, function ext checks the 
context of data, newtype, class, instance, and type signature clauses to find what 
theories of Isabelle will be used in the current theory and generates the imports lines for 
it. You should be aware that in this way, you need to avoid importing the same theory 
more than once, for example if (Eq a) => appears in two different type signatures. 
Another thing you need to avoid is to import the current theory. This could happen 
because your defined classes were referenced as context by some other object in the 
current module. We keep a list of theory names that we need to import and generate 
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new by ext if the one of more results of ext are included in the list then do nothing 
otherwise add them into the list. 

ext:: HsContext --t [String] 
ext[]=[] 
ext (x: xs) = ( 11 imports 11 * rmrt (unlines y) 

* 11 .thy11
): ext xs 

where y =let (hq, zs) = x 
in dataqnf hq 

rmdup ::[String] --t [String] --t [String] 
rmdup [] xs = xs 
rmdup (x: xs) ys =if (elem x ys) then rmdup xs ys 

else x : rmdup xs ys 

rmrt removes the all returns in a string. 

rmrt :: String --t String 
rmrt [] = [] 
rmrt (x: xs) =if x = '\n' then rmrt xs 

else x: rmrt xs 

Function fdecl handles the declarations. 

fdecl :: [HsDecl] --t [HsDecl] --t [String] 
fdecJ [ ] X = [ 11 11 

] 

fdecl (n : ns) env =case n of 
(HsTypeDecl sl x xs ht) --t 

rmrt (unlines (typedecl x xs ht)): fdecl ns env 
(HsDataDecl sl he hn xs ys zs) --t 

( datadecl hn xs ys zs) * fdecl ns env 
(HslnfixDecl sl ha i xs) --t 

fdecl ns env 
(HsNewTypeDecl sl he hn xs hd ys) --t 

fdecl ns env 
(HsCiassDecl sl he z xs ys) --t 

classdecl sl he z xs ys env * fdecl ns env 
(HslnstDecl sl he hq xs ys) --t 

instdecl he hq xs ys env * fdecl ns env 
(HsDefaultDecl sl xs) --t error 11 HsDeaul tDecl 11 

(HsTypeSig sl xs hq) --t 

( tpsigdecl xs hq) : fdecl ns env 
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(HsFunBind xs) -----+ 
( funcdecl xs) * [ "\n "] * fdecl ns env 

(HsPatBind sl hp hsr xs) -----+error "HsPatBind" 

59 

Function datadecl handles the datatype declarations of the Haskell module to 
generate the data declarations in Isabelle. 

datadecl :: HsName-----+ [HsName] -> [HsConDecl] 
-> [HsQName]-> [String] 

datadecl hn xs ys zs = 
lines (rmrt (unlines (lines (rmrt (bfeq * 

II= II * II II ) ) * CStrf ys))) * [ II \n II J 

where xnf :: [HsName]-> String 
xnf (] = (] 
xnf (f: fs) =let (Hsldent n2) = f 

in " ' " * n2 * " " * xnf fs 
cstrf :: (HsConDecl] -> (String] 
cstrf [] = [] 
cstrf (h : hs) =if (length hs _ 0) then 

lines (rmrt (gcondecl h)) 
else (rmrt ((gcondecl h)*" \n" 

*"I" 
*" ")): cstrf hs 

bfeq = "datatype "* xnf xs 
* " " * datanf hn * " " 

blkspc n =if (n > 0) then " "* blkspc (n- 1) 
else"" 

Function gcondecl generates the constructor parts of a datatype in Isabelle 
relating to the original Haskell data declaration. 

datanf changes the HsName to a String by removing the type constructor of 
Hsldent. 

gcondecl :: HsConDecl-> String 
gcondecl hcd = case hcd of 

(HsConDecl sri hsn hbs) -> datanf hsn * (hbtype hbs) 
(HsRecDecl sri hsn [ (hsn2, hbt)]) -> datanf hsn 

datanf :: HsName-> String 
datanf (Hsldent nl) = nl 

dataqnf changes the qualified name to a list of strings. 
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dataqnf :: HsQName---+ (String] 
dataqnf (Qualm n) =lines (datanf n) 
dataqnf (UnQual n) =lines (datanf n) 
dataqnf (Special h) = case h of 

HsUnitCon ---+ [" () "] 
Hslist(on ---+ ["List"] 
HsFunCon---+ ["->"] 
HsTupleCon n---+ ("n"] 
HsCons ---+ [" : "J 

hbtype :: (HsBangType] ---+String 
hbtype [] = "" 
hbtype (x: xs) = " "* typ * hbtype xs 

where typ =case x of 
(HsBangedTy ht) ---+ hstype ht 
(HsUnBangedTy ht) ---+ hstype ht 

hstype changes the type of the form Hs Type to a string. 

hstype :: HsType---+ String 
hstype (HsTyFun x y) = (hstype x) * 

" => " * hstype y 
hstype (HsTyTuple (x: xs)) = 

"(" * hstype x * (tts xs) 
where tts :: [HsType] ---+String 

tts [] = n)u 

tts (z: zs) = "," * hstype z * (tts zs) 
hstype (HsTyApp x y) = 1111 11 ++ hstype y 
11 ++ hstype x ++ " 1111 

hstype (HsTyVar x) = "' 11 * datanf x 
hstype (HsTyCon x) = unlines (dataqnf x) 

++ It 

Appendix A 

Function typedecl translates the type synonyms of Haskell program to Isabelle 
type synonyms. 

typedecl :: HsName---+ [HsName] 
---+ HsType---+ [String] 

typedecl x xs t =["types 11
] 

* lines ( datanf x) 
* [ 11 = "] *lines (hstype t) 

* ["\n"] 
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Function funcdecl extracts the function bindings from source code, Its output 
is a list of strings with a head of function name. 

Most function definition will appear in an Isabelle theory. But the functions 
that define the specification will be transfered to proof obligations such as lemma 
or theorem so their original version will be hiden. I define such specification with a 
name prefixed by "check"; we use the function hid check to pick them out. 

funcdecl :: [HsMatch] -t [String] 
funcdecl [] = [] 

funcdecl (x: xs) = 

if (hidcheck x "check") then funcdecl xs 
else ("primrec\n" * 

(prettyPrint x)): funcdecl xs 

hidcheck :: HsMatch -t String -t Bool 
hidcheck (HsMatch sl hn xs y zs) pt = 

if (pt (take (length pt) (datanf hn))) then True 
else False 

Function tpsigdecl ( typesig) was used to construct the general type signature 
in a Haskell program. 

tpsigdecl :: [HsName] -t HsQuaiType -t String 
tpsigdecl [] qtp = [] 

tpsigdecl (x: xs) qtp =if (take 5 (datanf x)- "check") 
then tpsigdecl xs qtp 
else ("consts\n "* (datanf x) *" :: \'11

' 

* ( tpsigdecl2 qtp) * "\" ") * tpsigdecl xs qtp 

tpsigdecl2 :: HsQuaiType -t String 
tpsigdecl2 (HsQuaiType he ht) = hstype ht 

Function instdecl finds out all instance declarations and translates them into 
Isabelle syntax. As output, three things will be generated: The first is an Isabelle 
consts declaration; the second is a function definition; the third is a list of lemmas 
which were derived from specification and type signature. 

instdecl :: HsContext -t HsQName -t [HsType] -t 

[HsDecl] -t [HsDecl] -t [String] 
instdecl he hq xs ys env = [" consts"] 

* consts hq xs ys env 
* ["primrec"] * primrec hq xs ys env * ["\n"] 
*lemma hq xs ys env * ["\n"] 
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Function eonst helps to generate the eonst declaration of Isabelle from it's 
counterpart in the Haskell module. hq is the class name xs is the types that will be 
instanced. ys is the declarations. cis contains a class declaration. 

tdecl picks all class declarations from the Haskell module. 

Functions edecl and bdecl together select the specific class declaration corre
sponding to the current instance from the return of tdecl 

eonsts :: HsQName -t [HsType] -t 

[HsDecl] -t [HsDecl] -t [String] 
eonsts hq xs ys env = ieonsts xs cis * [ 11 \n 11 

] 

where cis = edecl hq ( tdecl env) 

iconsts :: [HsType] -t HsDecl -t [String] 
ieonsts [] _ = [] 

ieonsts (x: xs) y = 
repclassdef (hstype x) (takclstype y) y 

takclstype :: HsDecl -t String 
takclstype (HsCiassDecl sf he z xs ys) = tnm xs 

where tnm :: [HsName] -t String 
tnm [] = 1111 

tnm (y: ys) = datanf y 
ta kclstype _ = 11 11 

repclassdef :: String -t String -t HsDecl -t [String] 
repclassdef x y (HsCiassDecl sf he z xs ys) = 

repdecl x y ys 
repclassdef _ - - = [] 

repdecl __ [] = [] 
repdecl tl t2 (x: xs) = 

( repsig tl t2 x) : ( repdecl tl t2 xs) 

repsig :: String -t String -t HsDecl -t String 
repsig t1 t2 (HsTypeSig _ xs y) = 

rmrt ( 11 "* (datanf (head xs)) 

* "-" *tl 
*" :: \1111 * pptypesig tl t2 ( etypesig y) 
* 11\1111) 

repsig ___ = 11 11 

etypesig (HsQuaiType x y) = y 

pptypesig ::String -t String -t HsType -t String 
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pptypesig t1 t2 (HsTyFun x y) = (ptypesig t1 t2 x) 
*" => "* (ptypesig tl t2 y) 

pptypesig tl t2 x = ptypesig tl t2 x 

ptypesig ::String-+ String-+ HsType-+ String 
ptypesig tl t2 (HsTyFun x y) = 11 

(" * (ptypesig t1 t2 x) 
*II => II* (ptypesig tl t2 y) * 11 ) II 

ptypesig t1 t2 (HsTyTuple (x: xs)) = 
11 

(" * ptypesig tl t2 x * (tts xs) 
where tts :: [HsType]-+ String 

tts [] = ")" 
tts (z: zs) = 11

," * ptypesig t1 t2 z * (tts zs) 
ptypesig t1 t2 (HsTyApp x y) = (ptypesig t1 t2 y) 

*" "* (ptypesig t1 t2 x) 
ptypesig t1 t2 (HsTyVar x) =if (t2 _ datanf x) 

then t1 
else rmrt ( 11 

' " * datanf x) 
ptypesig t1 t2 (Hs TyCon x) = unlines ( dataqnf x) 

cdecl :: HsQName-+ [HsDecl] -+ HsDecl 
cdecl _[]=error "No proper class" 
cdecl hq (x: xs) =if (bdecl hq x) then x 

else cdecl hq xs 

bdecl :: HsQName-+ HsDecl-+ Bool 
bdecl hq x =if ((head (dataqnf hq)) _ (cname x)) 

then True 
else False 

cname (HsCiassDecl __ n __ ) = datanf n 

tdecl :: [HsDecl] -+ [HsDecl] 
tdecl [] = [] 
tdecl (x: xs) =case x of 

(HsCiassDecl _____ ) -+ x: tdecl xs 
_-+ tdecl xs 
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Function primrec generates the primrec section for an isabelle theory. Functions 
following it help to combine a new consts function name which show it is an instance 
of the type. 

primrec :: HsQName-+ [HsType] -+ 
[HsDecl] -+ [HsDecl] -+ [String] 
primrec hq (] ys env = [] 
primrec hq (x: xs) ys env = sbtprc ys (hstype x) 
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-H- primrec hq xs ys env 

sbtprc :: (HsDecl] ~ String ~ (String] 
sbtprc [] _ = [] 

sbtprc (x : xs) pt = ( sbtdecl x pt) -H- sbtprc xs pt 

sbtdecl :: HsDecl ~String~ [String] 
sbtdecl hd [] = [prettyPrint hd] 
sbtdecl (HsFunBind xs) y = sbtfb xs y 
sbtdecl _ y = [] 

sbtfb :: [HsMatch] ~String~ [String] 
sbtfb [] _ = [] 

sbtfb (x: xs) [] = (prettyPrint x): sbtfb xs [] 
sbtfb (x: xs) hd = ( 11 11 -H- (sbtmtch x hd)): sbtfb xs hd 
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sbtmtch substitutes the polymorphic function with a monomorphic function 
within a primrec definition. 

Function lemma generates a lemma in Isabelle from the source code and spec
ification in Haskell. 

lemma:: HsQName ~ [HsType] ~ 
[HsDecl) ~ [HsDecl] ~ [String] 
lemma hq xs ys env = 
lemmas nn hq xs ys (Jespec hq env) 

where nn = "check 11 -H- head (dataqnf hq) 

lemmas:: String~ HsQName ~ [HsType] 
~ [HsDecl] ~ [HsDecl] ~ [String] 

lemmas nn hq [] _ env = [] 

lemmas nn hq _ [] env = [] 

lemmas nn hq __ [] = [] 

lemmas nn hq xs (z: zs) ys = 
Jemmass nn hq (head xs) z ys -H- lemmas nn hq xs zs ys 

lemmass ::String~ HsQName ~ HsType 
~ HsDecl ~ [HsDecl] ~ [String] 

lemmass nn hq __ [] = [] 

lemmass nn hq x z (y: ys) = 

rmrt ("lemma "-H- ispec nn y 
* 11

_ 
11 * hstype X* II ; II 

-H- 11
\

1111 -H- stblemma y (funame z) (hstype x) -H- "\'11
') 

: lemmass nn hq x z ys 

stblemma :: HsDecl ~String~ String~ String 
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stblemma decl tl t2 = stbrhs (stbmt (stbfb decl)) tl t2 

stbfb (HsFunBind (x: xs)) = x 

stbmt (HsMatch ___ x _) = x 

stbrhs :: HsRhs--+ String --+ String --+ String 
stbrhs (HsUnGuardedRhs e) tl t2 = stbexp e tl t2 
stbrhs (HsGuardedRhss (e: es)) t1 t2 = 1111 

stbexp :: HsExp --+ String --+ String --+ String 
stbexp (HsVar x) tl t2 =if (head ( dataqnf x) tl) 

then rmrt (head ( dataqnf x) * 11
_

11 * t2) 
else head ( dataqnf x) 

stbexp (HsCon x) tl t2 =if (head (dataqnf x) = tl) 
then rmrt (head ( dataqnf x) * 11

_" * t2) 
else head ( dataqnf x) 

stbexp (Hslit x) tl t2 = prettyPrint x 
stbexp (HslnfixApp x y z) tl t2 = 

rmrt ( (stbexp x t1 t2) 

* " 11 * prettyPrint y 
* 11 "* (stbexp z tl t2)) 

stbexp (HsApp x y) t1 t2 = (stbexp x t1 t2) *" 11 

* (stbexp y t1 t2) 
stbexp (HsNegApp x) tl t2 = 11 !" * stbexp x t1 t2 
stbexp (Hslambda x ys z) t1 t2 = 11

" 

stbexp (Hslet xs y) t1 t2 = "11 

stbexp (Hslf x y z) t1 t2 = 

"if ( 11 * stbexp x t1 t2 * ")" 
* " then " * stbexp y tl t2 * 11 else 11 * stbexp z tl t2 

stbexp (HsCase x ys) t1 t2 = 1111 

stbexp (HsDo xs) t1 t2 = 1111 

stbexp (HsTuple xs) tl t2 = 11 
(

11 * tupexp xs 
where tupexp :: [HsExp] --+String 

tupexp [] = [] 

tupexp (y: []) = stbexp y t1 t2 * ") 11 

tupexp (y: ys) = stbexp y tl t2 * 11
,

11 * tupexp ys 
stbexp (Hslist xs) tl t2 = 11 

[" * lstexp xs 
where lstexp :: [HsExp]--+ String 

lstexp [] = [] 

lstexp (y: []) = stbexp y t1 t2 * 11
]" 

lstexp (y : ys) = stbexp y tl t2 * 11 
, 

11 * lstexp ys 
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5tbexp (H5Paren x) t1 t2 = " (" * 5tbexp x t1 t2 * ")" 
5tbexp (H5LeftSection x y) t1 t2 = " ( " 

* 5tbexp x t1 t2 * " " 
* prettyPrint y * ") " 

5tbexp (H5RightSection x y) tl t2 = " ( " 

* prettyPrint x * 11 
" * 5tbexp y tl t2 * ") " 

5tbexp (H5RecCon5tr x y5) t1 t2 = "" 

5tbexp (H5RecUpdate x y5) t1 t2 = "" 

5tbexp (H5EnumFrom x) t1 t2 = " [" * 5tbexp x t1 t2 * " .. ] " 
5tbexp (H5EnumFromTo 5 y) tl t2 = "["-++- 5tbexp 5 tl t2 

* II • • II * 5tbexp Y t1 t2 * II] II 

5tbexp (H5EnumFromThen x y) t1 t2 = "" 

5tbexp (H5EnumFromThenTo x y z) t1 t2 = 1
"

1 

5tbexp (H5ListComp x ys) t1 t2 = "" 

5tbexp (H5ExpTypeSig x y z) t1 t2 = 11
" 

5tbexp (H5A5Pat x y) t1 t2 = " 11 

5tbexp H5WildCard tl t2 = 11 
_ " 

5tbexp (H5IrrPat x) t1 t2 = "" 

funame :: H5Decl -+ String 
funame (H5FunBind (x: x5)) = 

let (H5Match _55 ___ ) = x 
in datanf 55 

funame _ = [] 
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To build lemma function, le5pec takes class name and the whole AST of pro
grams to pick out the specifications (rules) of a type class by matching the names. 

le5pec _ [] = [] 

le5pec hq (x: xs) =if (kk ¢ "") 
then x : le5pec hq X5 
else lespec hq xs 
where nn ="check"* head (dataqnf hq) 

kk = i5pec nn x 

i5pec test every object to find whether it is a function bind; if so, it returns 
the function name; if not, it returns the empty string. 

i5pec ::String-+ H5Decl-+ String 
i5pec y (H5FunBind (x: x5)) = 

let (H5Match 51 hn Z5 hrh5 h5) = x 
in if (y _ take (length y) ( datanf hn)) 
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then datanf hn 
else"" 

ispec y (HsFunBind []) = "" 

ispec y _ = "" 

classdecl :: Srcloc --+ Hs(ontext --+ HsName --+ [HsName] --+ 

[HsDecl] --+ [HsDecl] --+ [String] 
classdecl sl he hn xs ys env = [] 
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Appendix B 

Isabelle Proofs for Selected Standard Instances 

theory aclass 
imports Main Fun List 

begin 
datatype 'a maybe = Nothing I Just 'a 

consts 
fmap-maybe :: ('a=> 'b) => ('a maybe => 'b maybe) 

primrec 
fmap-maybe f Nothing = Nothing 
fmap-maybe f (Just x) = Just (! x) 

lemma checkFunctor-id-maybe: fmap-maybe id fa= fa 
apply( induct-tac fa) 
apply( auto) 
done 

constdefs 
nn :: nat=> nat 
nn x == let y = x+x; z = x+x in y + z 

lemma checkFunctor-comp-maybe: fmap-maybe g (!map-maybe f fa) = fmap-maybe (g o 

f) fa 
apply( induct-tac fa) 
apply( auto) 
done 

consts 
bind-maybe :: 'a maybe => ('a => 'b maybe) => 'b maybe 

primrec 
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bind-maybe (Just x) f = f x 
bind-maybe Nothing f = Nothing 

constdefs return-maybe :: 'a => 'a maybe 
return-maybe x == Just x 

lemma checkMonad-lUnit-maybe[simp]: bind-maybe (return-maybe x) f = f x 
apply( simp only: return-maybe-de!) 
apply( auto) 
done 

lemma checkMonad-runit-maybe: bind-maybe f return-maybe = f 
apply( induct-tac f) 
apply( auto) 
apply( simp only: return-maybe-de!) 
done 
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lemma checkMonad-comp-maybe: bind-maybe f (%x. bind-maybe (g x) h ) = bind-maybe 
(bind-maybe f g) h 
apply( induct-tac f) 
apply( auto) 
done 

constdefs zero-maybe :: 'a maybe 
zero-maybe == Nothing 

consts plus-maybe :: 'a maybe => 'a maybe => 'a maybe 

primrec 
plus-maybe Nothing x = x 
plus-maybe (Just x) y = Just x 

lemma checkMonad-lzero-maybe: bind-maybe m (%x . zero-maybe) = zero-maybe 
apply( induct-tac m) 
apply( auto) 
apply( simp only: zero-maybe-de!) 
done 

lemma checkMonad-rzero-maybe: bind-maybe zero-maybe m = zero-maybe 
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apply( simp only: zero-maybe-de!) 
apply( auto) 
done 

lemma checkMonad-plusr-maybe :plus-maybe m zero-maybe = m 
apply( induct-tac m) 
apply( auto) 
apply( simp only: zero-maybe-de!) 
done 

lemma checkMonad-plusl-maybe: plus-maybe zero-maybe m = m 
apply( induct-tac m) 
apply( simp only: zero-maybe-de!) 
apply( auto) 
apply( simp only: zero-maybe-de!) 
apply( auto) 
done 

consts 
bind-list :: 'a list => ('a=> 'b list ) => 'b list 

primrec 
bind-list 0 f = 0 
bind-list ( x # xs) f = (J x) @ (bind-list xs f) 
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lemma bindConcatlist [simp]: ! ys . bind-list ( xs @ ys) f = bind-list xs f @ bind-list ys f 
apply( induct-tac xs) 
apply( auto) 
done 

constdefs return-list :: 'a => 'a list 
return-list x == x # [] 

constdefs zero-list :: 'a list 
zero-list == [] 

consts monplus :: 'a list => 'a list => 'a list 

primrec 
monplus [] x = x 
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monplus (x#xs) y = x # (xs@ y) 

lemma checkMonad-lunit-list[simp]: bind-list (return-list x)· f = f x 
apply( simp only: return-list-de!) 
apply( auto) 
done 

lemma checkMonad-runit-list: bind-list f return-list = f 
apply( induct-tac f) 
apply( auto) 
apply( simp only: return-list-de!) 
done 
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lemma checkMonad-comp-list: bind-list (bind-list f g) h = bind-list f (%x. bind-list (g 
x) h ) 
apply( induct-tac f) 
apply( simp) 
apply( auto) 
done 

lemma checkMonad-rzero-list: bind-list m (%x . zero-list) = zero-list 
apply( induct-tac m) 
apply( auto) 
apply( simp only: zero-list-de!) 
apply( simp only: zero-list-de!) 
done 

lemma checkMonad-lzero-list: bind-list zero-list m = zero-list 
apply( simp only: zero-list-de!) 
apply( auto) 
done 

lemma checkM onad-plusr-list : monplus m zero-list = m 
apply( induct-tac m) 
apply( auto) 
apply( simp only: zero-list-de!) 
apply( simp only: zero-list-de!) 
done 

lemma checkMonad-plusl-list: monplus zero-list m = m 
apply( induct-tac m) 
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apply( simp only: zero-list-de!) 
apply( auto) 
apply( simp only: zero-list-de!) 
apply( auto) 
done 

data type ( 1 a, 'b) either = Left 1 a I Right 'b 

consts 
fmap-either :: ('a=> 'b) => (('c,'a) either => ('c,'b) either) 

primrec 
fmap-either f (Left x) = Left x 
fmap-either f (Right y) = Right (J y) 

lemma checkFunctor-id-either: fmap-either id fa = fa 
apply( induct-tac fa) 
apply( auto) 
done 
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lemma checkFunctor-comp-either : fmap-either g (!map-either f fa) = fmap-either (g o f) 
fa 
apply( induct-tac fa) 
apply( auto) 
done 

consts 
bind-either:: ('c,'a) either=> ('a=> ('c,'b) either)=> ('c,'b) either 

primrec 
bind-either (Left x) f = Left x 

bind-either (Right y) f = f y 

constdefs return-either:: 'a=> ('b,'a) either 
return-either x == Right x 

lemma checkMonad-lunit-either[simp]: bind-either (return-either x) f = f x 
apply( simp only: return-either-de!) 
apply( auto) 
done 



Appendix B 73 

lemma checkMonad-runit-either: bind-either f return-either = f 
apply( induct-tac f) 
apply( auto) 
apply( simp only: return-either-de!) 
done 

lemma checkMonadcomp-either: bind-either f (%x. bind-either (g x) h ) = bind-either 
(bind-either f g) h 
apply( induct-tac f) 
apply( auto) 
done 

types ('a,'s) State= 's => 'a x 's 

constdefs 
fmap-state :: ('a=> 'b) => (('a,'c) State => ('b,'c) State) 
fmap-state f st == (%s. (let (x,s~ = st sin (! x, s~)) 

constdefs return-state:: 'a=> ('a,'s) State 
return-state x == (%y. (x,y)) 

constdefs 
bind-state :: ('a,'s) State=> ('a=> ('b,'s) State) => ('b,'s) State 
bind-state st f == (%x. let (a,st~ = st x in (let m' =fa in m' st~) 

lemma checkFunctor-id-state: fmap-state id fa =fa 
apply( simp only: fmap-state-def) 
apply( simp only: Let-de!) 
apply( simp add: split-de!) 
done 

lemma checkFunctor-comp-state: fmap-state g (fmap-state f fa) = fmap-state (g o f) fa 
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apply( simp only: fmap-state-def) 
apply( auto) 
apply( simp add: Let-de!) 
apply( simp only: split-de!) 
apply( auto) 
done 

lemma checkMonad-lunit-state[simp]: bind-state (return-state x) f = f x 
apply( simp only: return-state-de!) 
apply( simp only: bind-state-de!) 
apply( auto) 
apply( simp add: Let-de!) 
done 

lemma checkMonad-runit-state: bind-state f return-state = f 
apply( simp only: bind-state-de!) 
apply( simp only: return-state-de/) 
apply( simp only: Let-de!) 
apply( simp only: split-de!) 
apply( auto) 
done 

lemma checkMonad-comp-state: bind-state f (%x. bind-state (g x) h ) 
(bind-state f g) h 
apply( simp only: bind-state-de!) 
apply( simp only: Let-de!) 
apply( simp only: split-de!) 
done 

types ('a,'s) StateT = 's => ('s x 'a) maybe 

constdefs 
returnT :: 'a=> ('a,'s) StateT 
returnT x == (%k. return-maybe (k,x)) 

constdefs 
bindT :: ('a,'s) StateT => (fa=> ('b,'s) StateT) => ('b,'s) StateT 
bindT m f == %p. (bind-maybe ( m p) (%(q,a). ((!a) q))) 

constdefs 
lift:: 'a maybe=> ('a,'s) StateT 
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bind-state 
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lift m == %p. (bind-maybe m (%q. return-maybe (p,q))) 

lemma Monadtrans-liftunit: (lift o return-maybe) x = retu'rnT x 
apply( simp add: camp-de!) 
apply( simp add: return-maybe-de!) 
apply(simp add: lift-de!) 
apply(simp add: return-maybe-de!) 
apply(simp add: returnT-def) 
apply(simp add: return-maybe-de!) 
done 

lemma Monadtrans-liftbind: lift (bind-maybe m k) = bindT (lift m) (lift o k) 
apply(simp add: lift-de!) 
apply(simp add: return-maybe-de!) 
apply( simp add: bindT-def) 
apply(simp add: lift-de!) 
apply(simp add: return-maybe-de!) 
apply( induct-tac m) 
apply( auto) 
done 

end 
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