
VERIFICATION OF HASKELL TYPE

CLASSES

By

FENG WANG, B. ENG.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.A.Sc. in Software Engineering

McMaster University

©Copyright by Feng Wang, Sept 2007

MASTER OF APPLIED SCIENCE (2007)
(Computing and Software)

TITLE: Verification of Haskell Type Classes

McMaster University
Hamilton, Ontario

AUTHOR: Feng Wang, B. Eng. (Northeastern University, China)

SUPERVISOR: Dr. Wolfram Kahl

NUMBER OF PAGES: vi, 55

11

Abstract

The Haskell programming language uses type classes to deal with overloading. Func
tions are overloaded by defining some types to be instances of a class. A meaningful
instance should satisfy the invariants of the class.

In this thesis we present one method to validate the type instances of classes
informally, and another one to verify them in a formal way.

The first method uses QuickCheck, which is an automatic testing tool for
Haskell programs. We introduce how to specify the properties of type classes in
QuickCheck by some examples, and I also present testing for Haskell standard types
and classes.

The second method I adopted uses the theorem prover Isabelle/HOL. To facil
itate the usage of Isabelle/HOL for Haskell programmers, I define a set of translation
rules from Haskell programs to Isabelle/HOL, and design a simple automatic translat
ing tool based on those rules. Logical differences between Haskell and Isabelle/HOL
need to be considered in the translation. For example Isabelle/HOL is not suitable
to describe the semantics of lazy evaluation and of Haskell functions that are non
terminating. I also prove some type instances to illustrate how the properties are
verified in Isabelle/HOL.

Acknowledgements

I got a lot of help during the writing of this thesis. Here I like to express my thanks
and appreciations to those who give me support.

First I give my thanks to Dr. Wolfram Kahl who is my supervisor. It is him
to lead me into an amazing world of Haskell programming. During two years study
under his supervision, I learn a lot from him, not only in my research area, but also
in a wide spectrum of computer science. They are so important to me for a successful
career in the future.

Second I like to give my thanks to Paul Hachmann and Scott_ West. They are
my colleagues who are also supervised by Dr. Kahl. They provide great help on the
revision of this thesis. I got the final version from draft in a short time following their
detailed suggestions.

Third I want to express my thanks to my family, Yankun Li who is my wife
gives me great support from home, and my son Roger Wang who bring family the
happiness.

I also want to thank rest of others not mentioned here, I want they know their
help and regard are so important to me.

lll

iv

Contents

Acknowledgements

1 Introduction

1.1 Background and Motivation

1.2 Approach Involved

1.3 Related Work

1. 4 Organization

2 Polymorphic type and type classes in Haskell

2.1 Type polymorphism

2.1.1 Parametric polymorphism

2.1.2 Ad-hoc polymorphism(Overloading) .

2. 2 Type classes in Haskell

2.2.1 Hindley/Milner type system

2.2.2 Type classes basics

2.2.3 Deriving classes and instance declaration

2.2.4 Defining class

2.2.5 Functor and Monad .

2.2.6 Laws of type classes

3 Validation of type instances in QuickCheck

3.1 Overview of QuickCheck

3.1.1 How to specify the properties

3.1.2 Create the data generators .

v

iii

1

1

2

4

5

7

7

8

9

9

9

11

12

13

16

17

19

19

20

22

3.2 Testing the laws of type classes in QuickCheck 24

3.3 Testing for some predefined classes · .. 29

4 Verification of Instances in Isabelle 33

4.1 Overview of Isabelle/HOL .. 33
4.1.1 Types in Isabelle/HOL 33
4.1.2 Functions and Terms . 35
4.1.3 Specifications and Proof 37

4.2 Suggestions for a translator from Haskell to Isabelle 37
4.2.1 Rules for translating Terms 38
4.2.2 Types translation 42
4.2.3 Generating theorems ... 45
4.2.4 Implementing a translator 46

4.3 Verify class properties in Isabelle/HOL 47

5 Conclusions and Future work 51

5.1 Contributions 51

5.2 Conclusions 52

5.3 Future work 52

vi

Chapter 1

Introduction

The major task of this thesis is to present some useful methods for verifying type
classes of Haskell [HJW+92]. This chapter introduces the background of research in
this area and some technologies involved.

1.1 Background and Motivation

Software reliability is very often an objective of software designers and developers.
Currently, improvement on this issue is achieved through diverse ways: careful system
design, high quality source code, rigorous testings, formal methods and some other
techniques to detect and reduce bugs that leads the system to failure. In this thesis
I present two methods: testing in QuickCheck [CHOO] to validate and Isabelle/HOL
[NPW02] to verify type class laws for instances of a class.

The type class system is a unique feature of the Haskell programming language.
It is always. used to deal with overloadings. The basic idea is that class declarations
group together overloaded functions which have some relation amongst themselves.
The instance declaration includes a type into a class by providing definitions for
members of the class. For example, the type class Eq provides the function (=) to
allow two values of its argument type to be compared in equality.

We declare the type lnt to be a member of Eq

instance Eq lnt where
(=) x y = prim_EqJnt x y

type Bool also could be compared

instance Eq Bool where

1

2 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

(_) x y = prim_Eq_Bool x y

Not only can users declare some user-defined types to be W:ember of an existing
type class, but they can also define their own classes and include both predefined or
user-defined types in them.

A type class is actually a general programming interface to which a type can
easily be "adapted" by a third programmer even if the two programmers who wrote
the type and type class were working separately and with no knowledge of each
other. To be adapted correctly, frequently the interface exposed by a type class is
expected to satisfy certain mathematical laws. It is customary to state these laws
with documentation but Haskell has no mechanism to check theses laws.

Look at the following datatypes:

data List a =Nil! Cons a (List a)
data Colist a= Nil I Cons (Colist a)
data Stream a = Cons a (Stream a)

and type classes of Functor, Applicative, Monad, CoMonad and Monoid

Datatype List can be a member of any type class but Co Monad, Colist can be
an instance of Monad and CoMonad, but violates the invariants of them, and a Stream
instance of type class Monoid makes no sense.

Validations or verifications are necessarily required to build confidence for
programmers when they are working on type classes. Motivated by this issue, I
present in this thesis some methods to test and verify the type instances.

1.2 Approach Involved

QuickCheck

An automatic testing tool is highly recommended for validation of Haskell
programs. It eases the testers from executing the programs again and again. Haskell
programs are suitable for automatic testing due to its pure functional programming
nature which has no side-effects. QuickCheck is a lightweight tool for testing of
Haskell programs.

To be tested, properties should be written in some specification language.
QuickCheck uses the Haskell language itself. All properties were written as Haskell
functions with return values of Bool type. As a simple example, testing the laws of
the list reverse function defined in the Haskell prelude shows how to write properties
and test them in QuickCheck.

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 3

QuickCheck can apply to higher-order types such as testing laws for function
types. After defining the extensional equality (===) ~y (f === g) x = f x = g x
you can test the associativity of function composition. While QuickCheck prints the
counterexamples for the failed tests, four combinators makes it capable of monitoring
test data. Combinator classify counts the trivial cases; combinator collect reports the
data distribution, and so on.

QuickCheck provides a set of testable types in its library. All of these types
have a predefined data generator respectively. When a property ranges over those
types, the testing is pretty simple, when users need to use some types that are not
in the testable set they can write their own data generator through data generator
combinators. one even can define function generators that explain the reason why
properties on function types can be tested.

QuickCheck is easy to use and is efficient. Most bugs can be exposed in a
short time by running test cases in QuickCheck. But there are some shortcomings to
prevent it from being fully trustable. Like other testing tools, it cannot ensure testing
data covers all conditions. For some properties that are too general, the difficulties
are obvious. If the laws of type classes could be verified by formal methods, it will
greatly increase the program's quality concerning the usage of type classes, and raise
the confidence of Haskell programmers. We choose Isabelle/HOL [NPW02] in this
case.

Isabelle/HOL

Isabelle is a theorem proving framework which has built-in support for several
logics including several first-order logics, Simple Type theory, and Zermelo-Fraenkel
set theory [Pau89, Pau90b]. Isabelle/HOL is the specialization of Isabelle for HOL.
We decided to choose Isabelle/HOL because of its functional programming feature
which can be used to formalize the specifications that were originally expressed in the
Haskell programming language; another reason is that HOL is a typed logic; its type
system is close to that of Haskell.

Working with Isabelle/HOL is a procedure of creating theories and finding
proofs. A theory is composed by a collection of types, terms and formulae written in
HOL syntax.

Types are an important component of an Isabelle theory. In a typed system,
every element should be well-typed. The definitions need not be explicitly typed
because of Isabelle's type inference mechanism.

Isabelle/HOL [NPW02] provides some built-in types such as nat, Pair, Bool,
List, product,set etc.. It also allow the users to define new types. The general format
to define a new type is of the form:

datatype (al, ... 'an)t = cl Tn ... Tikl I ... I Cm Tml ... Tmkm

4 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

where O:i are distinct type variables, Ci are the type constructors and Tij are
specific types. This definition resembles the data declarations of Haskell. Recursive
datatypes are allowed. Besides new datatype definition, Isabelle/HOL [NPW02] offers
type synonyms to define a alias for an existing type. For example

types number = nat

types gate = "bool =?- bool =?- bool"

Terms mainly refers to function application. Isabelle supports some basic
structures which are widely used in Haskell such as conditional expressions, let ex
pressions, and case expressions.

Formulae are terms of type bool.

Isabelle/HOL can be used to verify Haskell programs. The example of proving
the specifications of Haskell function reverse shows us the possibility and manner of
verification. This example can be found in [CHOOJ.

1.3 Related Work

Currently there are two projects in development which can be used to formalise and
prove the Haskell programs; they are also implemented in Haskell. One is programat
ica (Hal03] which is developed at the OGI School of Science & Engineering. It is a
program development environment which allows programmers to assert properties of
program elements as part of their source code. Programatica integrates several tools
to provide a range of validation options from low-cost automatic testing, to machine
assisted proof and formal methods through a generic interface. To be validated or
verified, the properties expressed by a logic, named P-logic [HK05, Kie02], need to
be translated to other logics. Property assertions are annotated with certificates
that provide evidence of validity, and are managed by property management tools
which provide users with facilities to browse or report on the status of properties and
associated certificates within a program, and to explore different validation strategies.

Another project is the heterogeneous toolset HETS which is developed by the
DFKl Lab Bremen and department of Computer Science, University of Bremen, Ger
many. The purpose of this toolset is to specify large systems where heterogeneous
multi-logic specifications are needed. Different logics which have their strengths in
particular fields can be used to specify different aspects of a complex problem. Dif
ferent approaches being developed in different environments can be related, and in
HETS the combination takes little effort. Heterogeneous specification is based on
individual (homogeneous) logics and logic translations [MML07]. In HETS, logic and
logic translations are called institution and institution comorphisms. Haskell logic's

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 5

proof relies on Isabelle by translating Haskell specifications into Isabelle through an
institution comorphism between them. HETS provides a translator from Haskell to
Isabelle/HOLCF; but it does not support property-sp~cified verification. Instead,
P-logic of Programatica has been integrated into HETS for specification purposes.

P-logic, as the main logic of the Programatica project, is a modal logic. Its
intended domain is interpreted as a family of sets with a particular structure instead
of a simple set. Two modalities of the logic, called weak and strong respectively,
determine whether a predicate is interpreted by a set of normalized values of its type,
or by a set of computations of its type, which may or may not terminate [HK05].
P-logic is used to reason about the lazy-evaluation semantics of Haskell. However,
while P-logic provides the advantage of specifying Haskell programs with precise
semantics it also brings some difficulty. P-logic is a much more complex logic than
Haskell; writing specification in P-logic is a big challenge to Haskell programmers.
This thesis intends to provide simple methods by which Haskell programmers can
specify properties solely using Haskell functions.

For validation strategy, there are some other tools that are designed for test
ing Haskell programs, such as SmallCheck [CH06a] and SparseCheck [Nay06]. Small
Check, which will be introduced briefly in a later chapter, is a upgrade to QuickCheck
designed by the same team. The purpose of SparseCheck is to test properties which
have a sparse input domain. Those properties are usually associated with a condition
that is not satisfied by a large portion of the input space. To test such properties,
QuickCheck and Small Check spend most of their time in generating test data that
falsifies the condition. The current version of SparseCheck is not used practically due
to limitations of completeness and efficiency.

1.4 Organization

Chapter 2 introduces polymorphism, the Hindley /Milner type system (Hin69, DM82],
and Haskell type classes. In this chapter the thesis also describe the laws for type
classes, which thesis is working on.

Chapter 3 introduces the testing tool, QuickCheck; thesis discuss how to test
properties of type classes in this incomplete way.

Chapter 4 introduces the theorem prover Isabelle/HOL,In section 4.2 thesis
will discuss the syntax and semantics difference between Haskell and Isabelle/HOL,
thesis will give suggestion on transformation from Haskell to Isabelle/HOL. In section
4.3 the goal is to show how to verify type classes in Isabelle/HOL.

In Chapter 5 discusses the conclusions on the work and contributions. In this

6 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

chapter thesis also propose some future work.

Chapter 2

Polymorphic type and type classes
in Haskell

This chapter provides a brief introduction to type polymorphism and type classes in
the Haskell.

2.1 Type polymorphism

In programming languages, polymorphism is a way that allows names to be reused
many times. It refers to a single definition of data or functions that can evaluate to
or apply to many types. A polymorphic function definition can be used to replace
several type-specific functions [CW85), and a polymorphic operator can apply to ex
pressions of multiple types. Many programming languages implement polymorphism;
for example the object-oriented languages such as C++ and Java.

A function is polymorphic if it takes parameters with various types and results
in a value which ranges over different types. In addition to functions, polymorphism
data types also could be polymorphic if some components of a type comes from
multiple other types. It is said to be a polymorphic data type.

Basically there are two kinds of polymorphism: Parametric polymorphism and
ad-hoc polymorphism; the later one is also called overloading. Parametric polymor
phism ranges over any type while the number of types that ad-hoc polymorphism is
constrained to is finite, and the combinations must be specified before use. Paramet
ric polymorphism allows one to implement code without being concerned about the
difference among types and the code can be easily applied to any number user-defined
new types.

7

8 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

As mentioned above, the concept of polymorphism started to be popular since
the object-oriented programming languages caught attention from programming com
munities. They consider polymorphism a unique feature and a ma]or benefit of object
oriented programming languages. However functional programming languages also
take advantages of polymorphism.

2.1.1 Parametric polymorphism

Parametric polymorphism was first implemented in programming languages in 1976
by ML [MTM97), after that more and more programming languages adopted it, such
as Miranda [Tur90) and Haskell [HJW+92]. etc ..

Parametric polymorphism is most often used in generic programming. Func
tions are defined generically to handle the objects of any data types. They don't need
to consider the differences between types and treat them equally. Here we take the
instance of calculation of length of a list: length, it is concerned with the number of
elements of list, it does not care about the type of elements in the list. It calculates
the length of lists of integer, length of lists of Bool and length of lists of tuples pair
ing with any other types. Let a be a type variable, a list generated from it has a
type [a], we declare the function length with a type signature [a] ---+ Int; it shows
parametric polymorphism parametrized by type variable a. By applying parametric
polymorphism, the programs will be more expressive.

Parametric polymorphism is classified as predicative and impredicative.
The difference is in the way how one instantiates the type variables in a parametric
polymorphism. In predicative parametric polymorphism, the types substituted for
type variables are not polymorphic types themselves. In the impredicative situation,
the types substituted could be polymorphic types or any types.

Subtyping polymorphism Some textbooks mention subtyping polymor
phism, which is a special case of parametric polymorphism. It allows a function
defined on a type T to work well on a typeS if typeS is a subtype of type T. We
take the notation ::S and t to describe the relation between these types. S :::::; T shows
S is subtype ofT, and T t S tells us T is supertype of S. In object-oriented pro
gramming languages this kind of polymorphism is known as inheritance, it is defined
on the objects of virtual classes, and applied over objects of inherited classes. Its
operation relies on late binding or dynamic binding.

M.A.Sc. Thesis - Feng Wang McMaster University- Computing & Software 9

2.1.2 Ad-hoc polymorphism(Overloading)

Not all kinds of functions can be written in generic forin to apply to any type. Al
though sometimes one can find same function name could be used to different types
due to the same objective of operation, the implementation details are very different.
In some object-oriented languages, one can use (+): a x a ---+ a to concatenate two
strings while + is a sum operator for NUM types. In most situations one should
not implement some operation on some types. This second form of polymorphism is
ad-hoc polymorphism or so called overloading

Overloading allows one to define a single name to various functions, all of
which take different number of arguments, different types of arguments or same ar
guments but with different orders from others. By passing specific parameters the
complier decides to call the right one. It is kind of user-friendly mechanism,users
just need to know the function name, its arguments and types for use, but producers
have to implement multiple functions for each combination of parameters. This also
determines that users can not apply the a overloading function to any arbitrary types.
But overloading allows a function to perform some things completely different.

Overloading is commonly used in object-oriented programming languages,
where are often seen a bunch of functions sharing same name in a class definition.
More specific is function overriding which allows to completely change the behavior
of existing functions or operators.

Functional programming language Haskell [HJW+92) supports parametric
polymorphism and ad-hoc polymorphism by the use of type classes.

2. 2 Type classes in Haskell

2.2.1 Hindley /Milner type system

Before we talk about polymorphism in Haskell [HJW+92) language by means of type
classes,It is useful to mention Hindley/Milner type system [Hin69, DM82), which we
refer to as HM. HM has been adopted as the type language basis for most functional
programming languages such as ML [MTM97], Miranda (Tur90), Haskell [HJW+92],
etc ..

HM is a restricted form of polymorphism. Type abstraction and application
are implicit; it frees programmers from the effort of providing explicit type declara
tion. It's type inference algorithm was to used to infer the type information for each
implicitly defined type. Take some examples [Jon97) from:

data List a= Nil I Cons a (List a)

10 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

which defines a new data type with two constructors:

Nil :: \;/ a. List a

Cons :: \;/a. a --+ List a--+ List a

The function head takes the first element from a list

head :: \;/ a. List a --+ a

head (Cons x xs) = x

While the function length computes the number of elements of a list.

length :: \;/ a. List a --+ lnt

length Nil = 0

length (Cons x xs) = 1 + length xs

What makes the HM type system successful in programming language is the
following features:

Static type values involved in the program were statically typed, which means
the type of a value was determined at compile time. It guarantees that the program
does not go wrong due to type errors at run time. It significantly reduces the number
of bugs compared to some dynamically typed programming languages, which have to
check the type information at run time and hiding some bugs even for the software's
whole life cycle.

Type inference refers to the technology to deduce the type of the value
derived from evaluation of an expression automatically, either partially or fully. The
complier takes responsibility to infer the most general type without the requirement of
as explicit type annotation or type signature on the expression. HM's type inference
algorithm is used to determine whether a given program term is well-typed, and to
calculate the principal type. Even though some programmers prefer to give explicit
type information in their programs, they still can take advantage from type inference
by means of type consistency checks that compares the given type signature and the
type inferred automatically.

Flexibility of usage: the most important feature of HM is allowing polymor
phism. The users define the functions applied on various types with uniform behavior.
It eases the programmers from defining functions which would otherwise need to be
defined several times regularly.

Although the HM type system provides the above attractive features to lan
guage designers the limitations are also obvious. It is easy to find some classical
examples [Jon95] that shows the difficulty designers meet. We take examples of func
tion of equality (=) and function of arithmetic addition (+)

If we define equality function over some type constructor C as a monomorphic

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 11

function C ----* C ----* Bool, the equality of two values of type C could be compared; but
it is not as general as we hoped to compare two values _of any types. If it is defined
as polymorphic type a ----* a ----* Bool equality of function types has to be included as
a case.

When we define the addition function over integer type, it works well as a
monomorphic function of type lnt ----* lnt ----* lnt to add two integer values. But it is
impossible to be used to add two float point values together because it is less general
as we expect. If we just pursue the general and define the function as a polymorphic
type a ----* a ----* a we will take the risk that add two values of any type when addition
just makes sense on numeric types.

From the above examples we find that while monomorphic types set up a
dilemma for us by being too less general, polymorphic types push us to another
extreme by being too general. Some languages must then find solutions to fix these
problems. For example, ML [MTM97] uses a special type variables to range over the
types on which equality or addition are defined [NP93]. What causes these limitations
is that both equality and addition differ from other polymorphic functions not only
because of their restricted domain but also the reality of the dual property of both
polymorphism and overloading.

Type classes in Haskell [HJW+92] programming language were introduced to
solve those problems by means of a middle step between of monomorphic and polymor
phic types. It allows functions to be defined over a range of types without necessarily
ranging over all types.

2.2.2 Type classes basics

A type class could be treated as a set of types. It comes up with a class name and
one or more operations. If a type needs to be an element of a specific type class,
it needs to be declared an instance of that class by implementing the operations
provided by it. Class Eq provides operations (-), (:/=); class Ord provides operations
(<), (~), (;;:::), (>) etc ...

class Ord a where
(<), (~), C~), (>) ::a ----* a ----* Bool
max, min :: a ----* a ----* a

the predicate Ord a says that type a is a member of type class Ord, it is also
called the context of class that always appears before a type expressions, e.g.

sort :: (Ord a) =* [a] ----* [a]

12 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

Context Ord a imposes a constraint on the type of function sort which allows
it only to be applied on those types included in Ord class, not any arbitrary type.
To understand type classes, we should describe how to define a· class, how the new
types are declared an instance of a class, and how the existing type classes may be
extended.

2.2.3 Deriving classes and instance declaration

Haskell [HJW+92] programmers often deal with type classes in their work, especially
when a new datatype is defined. If one wants some standard functions to be applied
on the new datatypes, the simplest way is integrating a list of classes as a component
of the definition of the datatype, For example

data Month = Jan I Feb I Mar I Apr I May I Jun
I Jul I Aug I Sept I Oct I Nov I Dec

deriving (Eq, Ord, Show, Text)

The deriving clause in the third line of the datatype definition tells the com
piler to generate instances of the given classes for Month. The newly defined type
Month will belong to standard classes: Eq, Ord, Show, Text. Now the datatype Month
is a member of above four classes; it automatically overloaded the operations provided
by them. For example:

Predulel>l elem Mar [Jan,Feb,Mar,Apr]'
True'
Predulel>l show [Jan,Feb,Mar,Apr]'
[Jan,Feb,Mar,Apr]'

where elem has the type of Eq a => a -4 [a] -4 Bool

It allows the value of data to be comparable when deriving a class of Eq. It
allows the value of data could be transfered to characters and printed on screen when
deriving a class of Show.

Deriving is a convenient way to allow programmers to include some datatypes
in some type classes but sometimes one will find he is in a position deriving does
not work at all, such as if the user-defined datatype is not suitable to inherit some
classes directly since the derived version of the overloaded function doesn't satisfy the
semantics. For example of equality of Set [Jon95]. Define a datatype for set:

data Set a = Set [a] deriving (Eq)

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 13

The resulting for set equality will be

Set xs - Set ys = xs ys

But if xs and ys take the value of [1, 2], [1, 2, 2] respectively, xs and ys are not
identical. At least we can see the element numbers in the two lists are not same.
However in the sense of Set Set xs and Set ys are equal, because in the sets there
are no duplicate elements. It is necessary for programmers to interpret the meaning
of equality for the user-defined types. An alternative way to extend a class is the
instance clause. To show how to declare an instance of a class we take a look of
standard type class Eq

class Eq a where
(_) :: a ---t a ---t Bool
(¢) :: a ----* a ---t Bool
x ¢ y = !(x _ y)
x- y = !(x ¢ y)

above code defines a type class Eq on polymorphic type a, the class provides
two operations: equality and inequality of the type a ----* a ---t Bool; the last two lines
give the default definition of operations () and (¢) in terms of each other. If one of
these functions is defined then the other one will be defined implicitly.

To enable sets being comparable we declare an instance of class Eq on type
Set by implementing one of the two operations on type Set with desired semantics.
Here we redefine the datatype for Set and make an instance of class Eq

newtype Set a = MkSet [a]

instance Eq a:=;. Eq (Set a) where
(-) (MkSet x) (MkSet y) =(subset x y) 1\ (subset y x)

This instance describes the equality of sets. Function subset eliminates the
duplicate in lists x and y, and returns the truth value if its first argument is the
subset of its second argument. The complete definition of subset is found in the
technical report by Mark Utting [Utt94].

2.2.4 Defining class

In last section we talk about how to use classes and how to extend an existing class
to include some new defined types. In most time this is enough for programmers, but

14 M.A.Sc. Thesis -Feng Wang McMaster University- Computing & Software

sometimes programmers will greatly benefit from defining their own type classes and
instance some important types.

Before create a class, one has to get the idea what operators they want to
provide and these operators should reflect general properties among the datatypes
one will make the instance. We define a Tree class [Jon95]and instance some popular
tree types [Jon95] on it to show a complete procedure of application of classes.

Trees are widely used data structures in programming languages especially in
functional programming languages, Many of algorithms are designed on the datatype
of trees, such as some search algorithms based on search trees, parsers based on ab
stract syntax trees(ASTs). There are some basic calculations on trees, such as depth,
size, paths, mirrors. The computations depend on the form of the trees. Different
trees implement their own version of the functions. By the recursive definition of tree
types, we can find there exist some general computations; each iteration evaluates its
subtree first which could be considered as general operations of a class. Following are
definitions of various of tree types:

data Bin Tree a= Leaf a
I BinTreea: A :BinTreea

This defines a binary tree, each leaf node contains the data, every inner node
takes two subtrees.

data Lab Tree I a = Tip a
I LFork I (LabTree I a) (LabTree I a)

label tree, besides the value of type a in each leaf node, every inner node is
indexed by a label of type 1.

Binary search tree, with data values of type a in the body of the tree. These
values typically be used in conjunction with an ordering on the elements of type a in
order to locate a particular item in the tree [Jon95].

data STree a = Empty
I Split a (STree a) (STree a)

Rose tree, in which each node is a labelled with a value of type a, and may
have an arbitrary number of subtrees.

data Rose Tree a = Node a [Rose Tree a]

A simple abstract syntax tree which represents A expression in a interpreter

M.A.Sc. Thesis- Feng Wang

type Name = String
data Term= Var Name

I Ap Term Term
I Lam Name Term

McMaster University- Computing & Software 15

After the definitions of tree types. we design a type class with a general
operator subtrees which computes the all subtrees of a given tree.

class Tree a where
subtrees:: a ---7 [a]

Function subtrees returns the list of subtrees of a given tree t of type a. We
declare an instance for every tree types defined above.

instance Tree (BiTree a) where
subtrees (Leaf n) = []
subtrees (I: A : r) = [1, r]

instance Tree (Lab Tree I a) where
subtrees (Tip x) = []
subtrees (LFork xI r) = [1, r]

instance Tree (STree a) where
subtrees Empty = []
subtrees (Split xI r) = [1, r]

instance Tree (RoseTree a) where
subtrees (Node a gts) = gts

instance Tree Term where
subtrees (Var -) = []
subtrees (Ap f x) = [f,x]
subtrees (Lam v b)= [b]

Based on the definitions of subtrees, a library of functions could be defined,
such as computation of depth and size. The function subtrees is also an important
part of implementations of some complex algorithms such as depth-first algorithm
and breath-first algorithm of tree data structures (Jon95].

16 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

2.2.5 Functor and Monad

Functor and Monad are two important classes in Haskell prelude.'

Functor's mathematic foundation is category theory; a functor is the mapping
between categories. The mathematical definition is

Let C and D be categories. A functor F from C to D is a mapping that

associates to each object X E Can object F(X) E D,

associates to each morphism f : X ---+ Y E C a morphism F(f) : F(X) ---+
F(Y) ED

and two properties should hold:

F(idx) = idp(X) for every object X E C

F(g of)= F(g) o F(f) for all morphisms f: X---+ Y and g: Y---+ Z.

In Haskell, a functor could be defined as:

map:: (a---+ b)---+ ([a]---+ [b])
mapf [] = []
map f (x: xs) = f x: map f xs

This is a functor composed by the type constructor [] and the map function.
An obvious shortcoming of this functor is that the domain of the functor is restricted
to the list type. An overloaded version of map will be general to fit for more types It
is declared by class Functor with an operator fmap:

class Functor f where
fmap ::(a---+ b)---+ (fa---+ f b)

Some of the types defined in the prelude are treated as functors, such as ld,
List, Maybe, Either ...

instance Functor ld where
fmap f (ld x) = ld (f x)

instance Functor [a] where
fmap f [] = []
fmap f (x: xs) = f x: fmap f xs

instance Functor Maybe where
fmap f (Just x) =Just (f x)
fmap Nothing = Nothing

instance Functor (Either a) where

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 17

fmap _ (Left x) = Left x
fmap f (Right y) =Right (f y)

Monads are special cases of functors. A monad in functional programming is
a way to build parts of purely functional programs so that the functions involved are
applied in a sequence, as an imperative language does. You can perform a sequence of
operations while still taking a functional approach. The monad class has the following
definition with basic operators of return and "bind".

class Functor m :::} Monad m where
return :: a ---+ m a
~ :: m a---+ (a---+ m b)---+ m b

Note: this is not valid Haskell98 definition.

Some datatypes mentioned before are monads. For these, a monad instance
can be declared:

instance Monad ld where

return= id

id x~f = fx

instance Monad [a] where

return x = [x]

[]~f =f

(X : XS) ~ f = f X * (XS ~ f)

instance Monad Maybe where

return x =Just x

(Justx)~f=fx

Nothing ~ f = Nothing

2.2.6 Laws of type classes

In last section we discussed the Functor and Monad classes. As mathematical con
cepts, there are some basic laws that they should obey. The laws determine what
these mathematical definitions are, state what properties they have, and provide basic
rules in proof and computation.

The laws for functors reflect the properties of its mathematical foundation
category theory:

18 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

On any category C one can define the identity functor ld which maps every
object and morphism to itself

fmap id = id

fmap f o fmap h = fmap (f o h)

What make the Monad a Monad are the laws of (Wad92]

1 return a ~ f - f a

2 f ~ return _ f

3f~(..\x-+gx~h) = (f~g) ~h

The first law says that return a~ f - f a. As we think about Monads as
computation, this law states that if we construct a computation which just returns
the value of a without considering its means, and then binds its result to another
computation f, the whole job just can be replaced by a computation off on value a.

The second law says f ~return_ f, when computation f binds the result to
a return, it does the same thing by returing f along with it.

The third one is the associativity law for monads.

Like the Functor class and the Monad classes many other classes are associated
with implicitly understood laws to their mathematical definitions. Eq takes laws of
equivalence, Ord class has the laws of total order with respect to (-). In the coming
chapters we will discuss how to test and prove a given instance of a class satisfy its
laws.

Chapter 3

Validation of type instances
Quick Check

•
Ill

QuickCheck is a tool for testing Haskell programs. In this chapter thesis will give a
brief introduction of QuickCheck, showing how to specify properties, how to define
data generators, and then discuss how to test type instances. thesis also specify the
properties of some standard classes.

3.1 Overview of QuickCheck

For long time, testing has remained an important approach to ensure software quality
in software development. It aims to find errors in software by means of running
the software. Testing comes in many flavors: unit testing [CH02], property testing,
regression testing, contract checking, black-box/white-box testing [JJ06].

A test tool should deliver the testing result, that is a message of test success
or failure and some counterexamples, in a short time, and it should be repeatable
when the program or specification is modified [CHOO].

Testing could be manual or ideally automatic. Manual testing gives the tester
flexibility to control the testing process and allows the tester to check the programs
possibly completely, but it is somewhat laborious where the tester has to repeat one
operation again and again. Automatic testing free testers from exhaustive repetition.
For purpose of automatic test, the specification should be chosen in a formal way.

Haskell is suitable for automatic testing. It takes this advantage from its nature
as a functional programming language. Free of side-affects, Haskell is not concerned
with state transfer in an execution. At the same time, as a term language, it also

19

20 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

plays the part of the specification language.

QuickCheck was designed by Koen Claessen and John Hughes [CHOO] to test
Haskell programs; it is based on the technology of property satisfaction checking.
Programmers write a function along with some other specifications which are used
to formulate the properties of that function. In the QuickCheck environment those
specifications are tested to find whether the properties are satisfied by the function.
All the programs, both function and specifications, are written in Haskell language.
The random input is automatically generated by the QuickCheck system.

3.1.1 How to specify the properties

QuickCheck was designed to test the functions' properties which are in the form of a
set of parameterized assertions. To study how to check those properties, let us take a
look at a simple example [CHOO]. FUnction reverse is defined to reverse a list of some
type. It can be found in the Prelude module of the Haskell language. To reverse the
order of an list of elements correctly, function reverse should obey three basic laws
[CHOO]:

reverse [x) = [x]

reverse (xs * ys) = reverse ys * reverse xs

reverse (reverse xs) = xs

The first two laws specify the situations in which the list is just only one
element, and when the list consist of two sublists by concatenating them together.

To be tested by QuickCheck, we need to write some assertions for those laws
in the form of QuickCheck properties.

prop_RevUnit x =

reverse [x] [x]

prop_RevApp xs ys =

reverse (xs * ys) _ reverse ys * reverse xs

prop_RevRev xs =

reverse (reverse xs) _ xs

Here, these definitions are not different from general Haskell expressions, all of
them return a value of boolean type. If it is true for all arguments the property holds.
We pass these assertions as arguments to QuickCheck and run it in an interpreter
environment, such as Hugs or GHCi, QuickCheck will generate 100 data values ran
domly for it, if it pass them all, a message of" OK, passed 100 tests" will be reported

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 21

to the user. otherwise Quick Check will give a counterexample to show the test failed.
Since the test is based on the evaluation of expressions, and we see those laws were
written in overloaded form, the testers have to provide. more information: we need
to define the types of the arguments explictly. For examples, if we want to test the
function reverse on list of lnt, Following type signatures are necessary

prop_RevUnit :: lnt ~ Bool

prop_RevApp :: [lnt] ~ [lnt] ~ Bool

prop_RevRev :: [lnt] ~ Bool

For convenience, types informations can be presented in alternative way:

prop_RevUnit x =
reverse [x] [x]

where types= x :: lnt

The examples show how to represent the properties for the laws of Haskell
functions and how the result is reported. In fact QuickCheck as a practically useful
tool can do not only that.QuickCheck is also capable of observing test case distribu
tion.

Observing Test Case Distribution

QuickCheck does this by incorporating special functions into the properties.
Each time the properties are tested the trivial cases are collected, and a summary is
displayed when tests are finished.

trivial:: Testable a=? Bool ~a~ Property

is the function used to counting the trivial cases

The example [CHOO] shows how it works.

prop_lnsert x xs =
ordered xs == >

null xs 'trivial' ordered (insert x xs)
where types = x :: lnt

Test cases for which the value of null xs is True are classified as trivial. Thus
the QuickCheck output might be

OK, passed 100 tests (58% trivial)

The current version of QuickCheck defines 4 such observations. They are:

label:: Testable a:::} String~ a~ Property
collect:: (Show a, Testable b) :::} a~ b ~Property

22 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

classify:: Testable a :::} Bool -t String -t a -t Property
trivial ::Testable a :::} Bool -t a -t Property

3.1.2 Create the data generators

Testing data of QuickCheck is randomly and automatically produced by data gener
ator.

class Arbitrary a where
arbitrary:: Gen a
coarbitrary ::a -t Gen b -t Gen b

The above is a type class that makes data generator of polymorphic type a.
Any type that could be tested in QuickCheck has an instance of Arbitrary class. It
provides two operations: arbitrary is the type of Gen a which represent a generator,
coarbitrary helps to generate function types.

newtype Gena= Gen (lnt -t StdGen -t a)

where StdGen defined as an abstract type

Generators of some basic types of Bool, lnt, Float, Double, tuple, list were
predefined in QuickCheck.

Following example shows how to define a data generator for lnt type.

instance Arbitrary lnt where
arbitrary= sized$ >.n -t choose (-n, n)
coarbitrary n =variant (if n ~ 0 then 2 * n else 2 * (-n) + 1)

this definition produces a generator for Int type by calling function choose.

Sometimes users needs to define custom generators for the new types intro
duced. QuickCheck provides some combinators to make the definitions easier.

The simplest combinator is oneof, which takes one from a list of generators
which have equal chances to be selected. For example, the generator of type Bool is
defined:

instance Arbitrary Bool where
arbitrary= oneof [return True, return False]

It also can be defined through an alternative way

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 23

instance Arbitrary Bool where
arbitrary = elements [True, False]

frequency lets the user specify the frequency with which each alternative is
chosen [CHOO]. Let's revisit the BinTree type in last chapter and produce a data
generator for it by using function frequency.

data Bin Tree a = Leaf a
I Branch (Bin Tree a) (Bin Tree a)

instance Arbitrary a :=:;. Arbitrary (Tree a) where
arbitrary = sized arb Tree

arb Tree 0 = liftM Leaf arbitrary
arb Tree n = frequency [(1, liftM Leaf arbitrary),

(8, liftM2 Branch (arb Tree (n 'div' 2)) (arb Tree (n 'div' 2)))]

Function frequency is defined as

frequency:: [(lnt, Gena)] -t Gena

It chooses a generator from the list randomly, but weights the probability of
choosing each alternative by the factor given.

QuickCheck is also capble of testing functions. By defining extensional equality
(===)as

(f ===g) X= f X g X

and given property

prop_(ompAssoc f g h =

f 0 (g 0 h)=== (f 0 g) 0 h

we can testing the associativity of functions. To test function types, there are
two things one should know. First, it is impossible to report a counterexample of
function types. The solution is to print function values as a constant string like
"<<functions>>". The second thing is one needs to define the data generators for
function type.

function type of lnt -t StdGen -t (a -t b) represents Function generator of
type Gen (a -t b), It is equivalent to a -t lnt -t StdGen -t b by reordering the
parameters. And it can be further rewritten as a -t Gen b. So we define a function

promote:: (a-t Gen b) -t Gen (a-t b)

24 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

This can be used to create generators for function types. One already noticed
that in Arbitrary class there are two methods, another one is coarbitrary, It modifies
a generator from it's first argument, it can be thought of as a generator transformer.
Given functions of promote and method coarbitrary we can define:

instance (Arbitrary a, Arbitrary b) ==;. Arbitrary (a -t b) where
arbitrary= promote ('coarbitrary'arbitrary)
coarbitrary f gen =arbitrary~ (('coarbitrary'gen) of)

If one wants to generate random values for type a, they just need to define
the method of arbitrary, while if want to generate functions, they need to define
both of arbitrary and coarbitrary methods. By defining coarbitrary different values are
interpreted as independent generator transformers. This can be done by variant

variant:: lnt -t Gen a -t Gen a

for natural numbers i and j, i =/= j, variant i g and variant j g are independent
generator transformers. A definition on boolean type gives a concise example of how
to use variant.

instance Arbitrary Bool where
arbitrary = elements [True, False]
coarbitrary b = if b then variant 0 else variant 1

After QuickCheck, Koen Claessen and John Hughes designed another
lightweight testing tool for Haskell: SmallCheck. Basically SmallCheck is very similar
to QuickCheck, such as the idea of using type-based data generators, and the way
of properties expressed and reporting the testing results, however it also improves on
QuickCheck in many ways. Instead of using randomly generated values, SmallCheck
tests properties for finitely many values up to some depth, progressively increasing
the depth used (CH06b]. This mechanism ensures that any counter-examples found
are minimal. Writing properties of SmallCheck for user-defined types is very easy,
and properties use existential as well as universals. More advantages and usages are
noted in the user guide [CH06b]. In this thesis we will concentrate on QuickCheck,
which is enough to show the basic ideas of testing of type instances in a automatic
Haskell program testing environment.

3.2 Testing the laws of type classes in QuickCheck

After reviewing the type classes and QuickCheck, this section will use following ex
amples to illustrate how to test a instance of a type class by means of QuickCheck.

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 25

Maybe type is a standard data type which is pre-defined in the Prelude of Haskell. It
is well known a FUnctor. We already saw its instance of_Functor class in the previous
chapter.

Maybe is not a pre-defined type of QuickCheck, If we want to make it testable,
we must make a data generator for it by instancing it in the Arbitrary class.

instance (Arbitrary a):::} Arbitrary (Maybe a) where
arbitrary= frequency [(1, return Nothing),

(2, liftM Just arbitrary)]
coarbitrary Nothing = variant 0
coarbitrary (Just n) = variant 1 o coarbitrary n

As previously noted Maybe a is a polymorphic type itself. To show the work
of QuickCheck, I test Maybe lnt type here. As a functor, Maybe lnt must satisfy two
laws: id morphism and morphism composition.

prop_id fa= fmap id fa_ fa
where types= fa:: (Maybe lnt)

prop_comp f g fa = fmap g (fmap f fa) _ fmap (go f) fa
where types = (f :: lnt---+ lnt, g :: lnt---+ lnt, fa:: Maybe lnt)

Note that "types" in the where clause was used to provide a place to restrict
the types of parameters, in this case the types off, g, fa.

One more example here is the Tree type. The procedure of checking Tree
type involves more features of QuickCheck such as control over the distribution of
generated values and limitation on size of values. Define a Tree type and Declare an
instance of Functor

data Btree a= Nil
I Branch (Btree a) a (Btree a)

deriving (Eq, Show)

instance Functor Btree where
fmap f Nil = Nil
fmap f (Branch I a r) = Branch (fmap f I) (fa) (fmap f r)

In the data generator for type Btree, function sized imposes a bound to limit
the number of nodes in the generated trees.

instance Arbitrary a :::} Arbitrary (Btree a) where
arbitrary = sized arb Tree

26 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

coarbitrary Nil =
variant 0

coarbitrary (Branch t1 I t2) =
variant 1 o coarbitrary t1 o coarbitrary I o coarbitrary t2

arb Tree 0 = return Nil
arb Tree n = frequency [(1, return Nil),

(8, liftM3 Branch (arb Tree (n 'div' 2))
arbitrary (arbTree (n 'div' 2)))]

Running the QuickCheck to test the Id and composition laws of Btree functor
for lnt type.

prop_id_tree fa = fmap id fa = fa
where types= fa:: (Tree lnt)

prop_comp_tree f g tre = fmap g (fmap f tre) - fmap (go f) tre
where types= (f :: lnt ---t lnt, g :: lnt ---t lnt, tre ::Tree lnt)

This provides the evidence that Maybe and Btree types can be proved to be
functors after including in Functor class and checking them in QuickCheck.

Monad is another class that we use to show how the instances of a class are
tested by QuickCheck.

Monad laws are three basic rules that all monads must obey. left unit right
unit. The third one is the composition which show the associative of morphism.

form.
The following functions specify the properties of Maybe monad in QuickCheck's

prop_leftuniLmaybe fa= (return a~ f) =fa
where types= (f :: lnt ---t Maybe lnt, a:: lnt)

prop_rightunit_maybe f = f ~return_ f
where types = f :: Maybe lnt

prop_comp_maybe f g h = f ~ (>.x ---t g x ~h)_ (f ~g)~ h
where types= (f :: Maybe lnt, g :: lnt ---t Maybe lnt, h :: lnt ---t Maybe lnt)

The function constructor ---t was not defined to be a monad internally. By
declaring it an instance of Monad one can check whether it is a monad. To be
included in Monad, ---t should be a functor first, we just skip the step of instance of
Functor.

prop_MonadJUnit f x y = (return x ~f) y _ (f x) y
where types= (f :: lnt ---t (---t) lnt lnt, x :: lnt, y :: lnt)

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 27

prop_Monad_rUnit f x = (f ~return) x _ f x
where types= (f :: (-t) lnt lnt, x :: lnt)

prop_Monad_comp f g h x = (f ~(.Ax -t g x ~h))
X= ((f ~g)~ h) X

where types = (f :: (-t) lnt lnt,
g :: lnt -t (-t) lnt lnt,
h :: lnt -t (-t) lnt lnt, x :: lnt)

The above examples illustrate how to justify the type class rules for different
types. One obvious inconvenience is types must be specified explictly in a where
clause. For example: the property prop_mMonad_comp takes four parameters and one
has to give all of them the type signatures.

The following steps will improve the specifications written down in Haskell
language and make them more general.

First we repeat the three properties which specify the laws of Monads in new
form

prop_Monad_IUnit f y =(.Ax -t return x ~f) y- f y

prop_Monad_rUnit f = (f ~return) - f

prop_Monad_comp f g h = (f ~(.Ax -t g x ~h))

= ((f ~g)~ h)

By type inference, we obtain three type signatures for the above functions.
Respectively they are

prop_Monad_IUnit :: (Eq (m b), Monad m) =;.(a-t m b)-ta-t Bool

prop_Monad_rUnit :: (Eq (m a), Monad m) =;.ma-t Bool

prop_Monad_comp :: (Eq (m b), Monad m) =;.ma-t (a-t mal) -t

(al -t m b) -t Bool

To test these properties, the corresponding type should be given when running
QuickCheck. When test left unit property of Monad for some type one should run
the command:

quickCheck (prop_MonadJUnit :: (Int -> Maybe Int) -> Int -> Bool)

or

quickCheck (prop_MonadJUnit :: (Int -> Maybe Char)-> Int -> Bool)

for type Maybe lnt or Maybe Char

28 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

There are some other interesting type classes I like to formalize. In abstract
algebra, a monoid is an algebraic structure with a single, associat!ve binary operation
and an identity element. Its formal definition is:

A monoid is a set M with binary operation

*: M x M---> M, obeying the following axioms:

Associativity: for all a, b, c in M, (a* b)* c =a* (b *c)

Identity element: there exists an element

e in M, such that for all a in M, a* e = e *a= a.

In module Data.Monoid a type class was defined with name of Monoid and
some types were defined as its instances.

class Monoid a where
e ::a
op :: a ---> a ---> a

instance Monoid [a] where
e = []

op = (*)
instance Monoid (a ---> a) where

e = id
op = (o)

instance Monoid Integer where
e=l
op = (*)

obviously Monoid class has the following properties to represent the laws:

prop_monoidJid op x = e 'op' x = x

prop_monoid_rid op x = x 'op' e = x

prop_monoid_assoc op x y z = (x 'op' y) 'op' z = x 'op' (y 'op' z)

Applicative is a functor with application which was defined in Haskell library.
It describes a structure intermediate between a functor and a monad: it provides pure
expressions and sequencing, but no binding. This class pre-includes the Maybe,[], 10
and ---> etc ..

class Applicative f where

pure :: a ---> f a

® ::f (a---> b)---. fa---> f b

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 29

Any instances should satisfy the following laws:

identity: pure id ® v = v

composition: pure (o) ® u ® v ® w = u ® (v ® w)

homomorphism: pure f ® pure x =pure (f x)

interchange: u ® pure y = pure ($ y) ® u

The laws could be formalized in QuickCheck as

prop_applicative_id v = (pure id ® v) v

prop_applicative_comp u v w =(pure (o) ® u ® v ® w) == (u ® (v ® w))

prop_applicative_homo u f x = (pure f ® pure x) - asTypeOf (pure (f x)) u

prop_applicative_intch u y = (u ®pure y) _(pure ($y) ® u)

3.3 Testing for some predefined classes

Besides the Functor and Monad classes, some standard type classes and types were
also defined in Haskell Prelude. Most of these classes have a mathematical foundation
behind them. We talk about them in this section and find the proper way to present
the laws that make them what they are.

Eq class

Previously we already introduced the definition of Eq class. All basic datatypes
except for functions and 10 are instances of this class. Instances of Eq can be derived
for any user-defined datatype whose constituents are also instances of Eq (P J+03]

In prelude it was defined in an alternative way.

class Eq a where
(=), (¢)::a~ a~ Bool

x ¢ y = • (x _ y)
x- y = • (x ¢ y)

This declaration gives default method declarations for both/= and==, each
being defined in terms of the other. If an instance declaration for Eq defines neither
== nor /=, then both will loop. If one is defined, the default method for the other
will make use of the one that is defined. If both are defined, neither default method
is used [PJ+o3]

Eq is superclass of some other type classes. such as Num, Ord.

Eq encapsulates a mathematical structure of equivalence relation with the laws
of: Reflexivity, Symmetry and Transitivity.Given equilvalence relation R, It's laws:

30 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

Reflexivity: a R a

Symmetry: if a R b then b R a

Transitivity: if a R b and b R c then a R c.

The laws was expressed as following QuickCheck Assertion.

prop_Eq_Reflexive r a = True==> a 'r' a
prop_Eq_Symmetric r a b =(a 'r' b)==> (b 'r' a)
prop_Eq_Transitive r abc= ((a 'r' b) 1\ (b 'r' c))==> a 'r' c

To be tested one must give their types

prop_Eq_Reflexive ::(Testable a) ::::} (t---+ t---+ Bool) ---+ t---+ Property

prop_Eq_Symmetric :: (t---+ t---+ Bool) ---+ t---+ t ---+ Property

prop_Eq_Transitive :: (t---+ t---+ Bool) ---+ t---+ t---+ t---+ Property

when one executes the check they has to offer the relations explicitly as pa
rameter to the property being checked. Besides that one needs to supply the types
of the rest of the type signature as well.

For example when checking the symmetric property of an equivalence relation,
one must run the following command:

quickCheck ((prop_Eq_Symmetric (==)) :: Int- > Int- >Property)

Num class

Numeric types are important in almost every programming language, Haskell
Prelude defines the most basic numeric types: fixed sized integers (Int), arbitrary
precision integers (Integer), single precision floating (Float), and double precision
floating (Double).

Tthe type class Num defines the arithmetic operations that those Numeric
types share like (+) (-) (*),but not (/). It also provides the some other operations
such as abs which computes absolute value, frominteger which converts a Integer to
any other numeric values.

Num encapsulates the mathematical structure of a (not necessarily commuta
tive) ring, with the laws of Associativity, Identity(Left and Right), Distributivity.

Writing properties for these laws is straightforward.

prop_Num..Associative abc =a* (b *c)_ (a* b)* c
prop_Num_rldentity a = a * 1 - a
prop_NumJidentity a = 1 *a= a
prop_Num_Distributive a b c =a* (b +c) -a* b +a* c

Ord class

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 31

Ord is defined as

class (Eq a) ::::} Ord a where
compare :: a --+ a --+ Ordering
(<), (~), (;;:::), (>)::a--+ a--+ Bool
max, mm ::a--+ a--+ a

compare x y
I X= y = EQ
lx~y=LT
I otherwise = GT

x ~ y = compare x y =I= GT
x < y = compare x y _ L T
x;:?: y =compare x y =I= LT
x > y = compare x y _ GT

It is used for totally ordered datatypes, All basic data types except for function
and IO are instances of this class. User defined data types also could be included in
this class if they obey the constraint of ordering.

The Ordering datatype allows a single comparison to determine the precise
ordering of two objects.

Ord encapsulates a mathematical structure of total order with the laws of
Reflexivity, Antisymmetry and Transitivity. Another law is that any two elements in
the set are comparable.

The following expressions formulate the properties of the Ord class.

prop_Ord_Reflexive a = a ~ a
prop_Ord_aSymmetric a b =((a~ b) 1\ (b ~a))==> a_ b
prop_Ord_Transitive abc =((a~ b) 1\ (b ~c))==> a~ c
prop_Ord_Total a b =(a~ b) V (b ~a)

QuickCheck is a practical testing tool for Haskell language; users write the
properties using the same language as the programs. The testing data was automat
ically and randomly generated. Users control the data distribution to some degree
and get the testing result in a short time. Although QuickCheck cannot guarantee
the correctness of a program completely, it will still give testers the chance to find
and eliminate most bugs of programs. A more reliable way to improve the software
quality is via formal methods. This requires the program specifications to be written
in some kind of logic, so they can be verified in a mathematical way. In the next
chapter we discuss how to prove the type classes' laws by Isabelle, which is a theorem
prover.

32 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

Chapter 4

Verification of Instances in Isabelle

This chapter introduces Isabelle/HOL (NPW02] and discusses how to verify classes
laws using it.

4.1 Overview of Isabelle/HOL

The Isabelle theorem prover is an interactive theorem proving framework; various
logics are included in it, such as several first-order logic, simply type theory, and
Zermelo-Fraenkel set theory (Pau89, Pau90b]. Each new logic is formalized within
Isabelle's meta-logic; new types and constants express the syntax of the logic, while
new axioms express its inference rules (Pau90a]

Isabelle/HOL [NPW02] is the specialization of Isabelle for HOL (NPW02],
which refers to Higher-Order Logic. It provides some useful features to facilitate
theory definitions and proving within a pre-defined library.

One of reasons to choose Isabelle/HOL [NPW02] is that a theory could be
constructed easily from the specifications written in Haskell language due to the fact
of:

HOL =Functional Programming+ Logic (NPW02]

A typical Isabelle/HOL (NPW02] theory file contains definitions, lemmas and
theorems, and proof scripts.

4.1.1 Types in Isabelle/HOL

HOL is a simply typed logic whose type system resembles that of functional program
ming languages like ML [MTM97] or Haskell (HJW+92] [NPW02]. Thus, there are

33

34 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

basic types, such as bool, nat, etc .. , type constructors which are used to build new
types, function types which are denoted by => and type vari~bles which are in a
form of polymorphism: 'a, 'b

Inductive datatypes are part of almost every application of Isabelle/HOL
[NPW02]. As such, packages are provided to facilitate datatype definitions. Its
mode of definition is: Users give simple description of new inductive types using a
notation similar to ML or Haskell [HJW+92, NPW02]; the system then automatically
generates a sizeable amount of characteristic theorems.

A general datatype specification in Isabelle/HOL [NPW02] is of the following
form [BW99]:

datatype (&)t1 = C{Tf 1 ... T1
1

1 I ... 1 Cf. Tk 1 ... Tk1
1

, ,m1 1 1, 1,mk
1

and (a)tn = CfTf1 ... Tf mn I ... I ckn Tkn 1 ... Tf: mn
' ' 1 n n, n, kn

where a= (a!), ... , ah is a list of type variables, C/ are distinct constructor
names and -r/i' are admissible types containing at most the type variables ab ... , ah.

A type T occ~rring in a datatype definition is admissible if and only if

• T is non-recursive, i.e. T does not contain any of the newly defined type con
structors, or

• T = (a)ti' where 1 ~ j' ~ n, or

• T = (T~), ... , T~,t' where t' is the type constructor of an already existing datatype
and T~, ... , T~, are admissible types.

• T = a --+ T1
, where T1 is an admissible type and a is non-recursive(i.e. the

occurrences of the newly defined types are strictly positive)

If some (a)ti' occurs in a type -r/i' of the form
'

(... , ... (&)ti' ... , ...)t'

this is called a nested occurrence.

Types in HOL must be non-empty [BW99]. Each of the new datatypes (a)tj
with 1 ~ j ~ n is non-empty iff it has a constructor C/ with the following property:
for all argument types -r/i' of the form (a)ti' the datatype (a)tj' is non-empty.

'
If there is no nested occurrences of the newly defined datatypes, to be non

empty at least one of the newly defined datatypes (a)tj must have a constructor cf
without recursive arguments a base case. If there are nested occurrences,a datatype
can still be non-empty without having a base case itself.

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 35

For example, the datatype definition of list

datatype 'a list = Nil (" 0") (] is syntax annotation of empty list.

I Cons 'a "'a list" (infixr "#" 65) "#" infix operator of Cons

Sometimes it is unnecessary to define new types. For these cases one can use
type synonyms. They are created by a types command

types number = nat

gate = "boo I ~ boo I ~ boo I"

('a, 'b)a list = "('a*'b)list"

Type synonyms are intended to improve the readability of theories,

4.1.2 Functions and Terms

Isabelle/HOL provides two mechanisms to define recursive functions (NPW05]

Primitive recursion applies only on datatypes.

Its general form is the keyword primrec is followed by a list of equations
(NPW02]

J X1 · · · (C Yl · · · Yk) · · · Xn = T

where C is a type constructor of a datatype t. All recursive calls off in T are

f · · · Yi · · · .
This ensures f terminates, since one argument becomes smaller with every

recursive call [NPW02]. It is required that there is at most one equation for each
constructor Ci for a datatype t, T can contain on free variables on the left-hand.
Functions are in arbitrary order. It is unnecessary to define functions for every con
structor of a datatype, for any that are omitted, function is defined to return a default
value.

Following example shows a primitive recursive function definition

consts app :: 'a list ~ 'a list~ 'a list

primrec

"app [] ys = ys"

"app (x # xs) ys = x # app xs ys"

Primitive recursion is suitable for total functions that have a natural recur
sive definition. But there are some drawbacks to prevent defining all functions in a
primitive recursive form.

The first limitation is that the set of primitive recursive functions does not

36 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

include every possible computable function.

The second limitation is because there must be at most one reduction rule for
each constructor one can not use full pattern-matching.

In Isabelle/HOL, general recursive function could be defined by using the
keyword reedef. It requires to provide a well-founded relation to control the recursion.
Recursion does not need to apply on datatypes; termination is proved by showing that
arguments of all recursive calls decrease under some relation.

It is hard to avoid incompleteness of function definitions by using reedef, pat
terns also overlap. Proper order of patterns disambiguates the overlapping, and func
tions return default value for missed patterns.

The Fibonacci function is a typical example to show a function definition using
reedef.

consts fib :: "nat ::::} nat"

recdef fib "measure(.\n. n)"

"fib 0 = 0"

"fib (Sue 0) = 1"

"fib (Sue(Sue x)) = fib x +fib (Sue x)"

A function measure of .\n. n was embedded in this definition. It requires that
the measure of the argument of fib on the left-side is strictly greater than that of the
argument of each recursive call [NPW02]. This requirement was obviously satisfied
because Sue (Sue x) is strictly greater than Sue x and x

measure is an operator provided by Isabelle/HOL to build well-founded re
lations. The package automatically proves the relation which was constructed by
measure is well-founded. Isabelle/HOL defines 5 such operators.

• less_than is relation of "less than" on natural number

• measure f, where f is a map of T ::::} nat

• inv _image R f is a generalisation of measure.

• R1 <*lex*> R2 is the lexicographic product of two relations

• finite_psubset is the proper subset relation on finite sets

Terms in HOL are formed by applying functions on arguments.

Isabelle offers some basic structures which also are implemented in the Haskell
programming language such as

M.A.Sc. Thesis- Feng Wang

-conditional expressions:

if b then t 1 else t2

-Let expressions:

let x =tin u

-and case expressions:

McMaster University- Computing & Software 37

case e of c1 => e1 I . . . I Cn => en

4.1.3 Specifications and Proof

Specifications are represented in Isabelle as a theorem or a lemma; they are Isabelle
expressions prefixed with keyword theorem or lemma respectively. The two key
words are interchangeable; the only concern is to emphasize the importance of some
properties.

theorem rev_rev[simp] : "rev(rev xs) = xs"

• establishes a new theorem to be proved.

• gives the theorem the name rev_rev

• imposes the attribute simp on the theorem; declaring it as a simplification rule.

Given a theorem or lemma, the proving process in Isabelle is to apply a sequence of
commands. For example: the proof of above theorem.

apply(inducLtac xs)

apply(auto)

For the complete example refer to [NPW02]. Proof of most theories is not so
simple; it involves a sequence of commands, rules and method, sometimes requiring
one to define and prove a set of lemmas that help to establish the ultimate theorem.

4.2 Suggestions for a translator from Haskell to
Isabelle

To verify the Haskell programs we need to transfer the types, functions and spec
ifications written in Haskell into the form of Isabelle/HOL [NPW02]. But HOL is
a logic of total functions and is not suitable to express the non-strict semantics of
Haskell directly. For example, it is hard for Isabelle/HOL [NPW02] to express the

38 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

lazy evaluations of the Haskell language. However our goal is not to translate every
structure of Haskell to Isabelle; thus it is suitable to describe the_semantics of Haskell
functions that always terminate and that do not make essential use of laziness.

The translation from Haskell to a model in the theorem prover Isabelle/HOL
[NPW02] is mostly syntactic and can be automated. This section of the thesis will
discuss the similarities and differences between Haskell and HOL syntax. It also
propose the rules for possible translations.

4.2.1 Rules for translating Terms

Rules for general structures

Functions play a major role in Haskell programming language. A program is composed
of various function definitions and function calls. Functions could be defined curried
or uncurried, the difference between these forms is the type of arguments. Function
application associates to the left while the Function constructor ---+ associates to the
right, so as an example the function add

add:: lnt---+ lnt---+ lnt
add X y =X* y

Its type lnt---+ lnt ---+ lnt has another equivalent form of lnt---+ (lnt ---+ lnt) and
its application add 1 2 could be expressed as (add 1) 2. A function can be returned as
a value by means of partial application of a curried function: (add 1). This was called
section. Haskell has other program structures, such as if expression, let expression,
where expression, case and ,\etc .. They can be translated to HOL in the following
manner.

[if b then t1 else t2~ := if [b~ then [t 1 ~ else [t2 ~

[(ope)]:= %x ---+x[op~[e~

[(e op)] := %x ---+ [e~ [op~ x

[f a1, ... , an = E(Z) where Z1 = F1 (Qi) ... Zn = Fn (aj)D :=

let[z1~ = [FlH[cii~); ... ;[zn~ = Fn([aj~)= [Fn~([a~~)in[E)([Z])

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 39

~~ gd1 = e1 I gd2 = e2 I · · · I gdn = en~ :=

if ~gd1 ~ then [e 1 ~ else if [gd2~ then [e2~ else if ... else [en~

Notation [-~ defines the conversion function from Haskell to Isabelle. Above
structures are often seen in Haskell programs. Understanding their meanings is helpful
to translate them correctly into HOL. Semantics of terms could be defined by giving
identities that relate those constructs to case expressions

Semantics of conditional expression

if b then T else F =case b of {True--+ T; False--+ F}

Semantics of let expression

let PI= ei; ... ;pn =en in eo =let (Pb ... ,Pn) = (e1, ... , en) in eo

let p = ei in e0 = case ei of p --+ e0

where no variables in p appears free in ei

For A abstraction, the following identity holds:

API·. ·Pn--+ e = AX1 ... Xn--+ case (xi, ... ,xn) of (PI, ... ,Pn)--+ e

where the xi are new identifiers.

Semantics of partial function application(section) is defined by a A
abstractions. HOL does not provide syntax for sections, but a translation to A
abstractions will properly preserve the semantics of Haskell. Let expressions intro
duce a nested, lexically-scoped, mutually-recursive list of declarations [P J+o3] The
declarations scope the expression e and the right hand side from declarations. In
Haskell another way to create nested scope in an expression is where clause. A
where clause is only allowed at the top level of a set of equations or case expression.
The same properties and constraints on bindings in let expressions apply to those in
where clauses [HPF99].

We suggest translating some where clauses into HOL as let expressions. How
ever there are some limitations. For example:

gxyly>z= ...
jy-z= .. .
I y<z = .. .

where z = X*X

A let expression can not be used to express above statement. These two
forms of local declarations look similar, but in fact they have some differences, let is

40 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

a expression and where is only the part of function declaration and case expression
[HPF99].

Function bindings in a let expression are allowed, an example in Haskell

let y =a* b
fx=(x+y)/y

in f c + f d

This expression can be used in HOL after changing some operators.

Not all pattern bindings can be used in let expressions, for example If we have
a datatype of State

data type ('a, 's) State = ST "'s ::::} 'a* 's"

We can define a function containing pattern binding

(ST g)= gg a

This pattern binding is allowed in Haskell, but not in HOL. One solution to
this problem is to define a deconstructor of of ST naming unST:

unST (ST x) = x
g'=gga
g = unST g

Rules for recursion

Functions provided by type classes are important to verifications, as they are over
loaded by specific types. When proving the correctness in Isabelle/HOL, those func
tions must be translated into Isabelle/HOL. In addition to the overloaded class meth
ods, some auxiliary functions are also necessary to be translated.

To define the rules for translating functions we must understand how functions
are defined both in Haskell and lsabelle/HOL.

Function types in Haskell are constructed by type constructor (--+), they are
in the form of T1 --+ T2 . Since Ti could be function types themselves, function types
were declared recursively. A function is defined in Haskell in the following form

name patternl pattern2 ... pattern= expression (n /=0)

where name is the function name and patterns play the roles of parameters.
The functions declaration and definition in HOL are similar to those of Haskell, the
obvious difference is the function type constructor (::::}); both (--+) and (::::}) associate

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 41

to right. While type signatures can be ignored in Haskell, they must be explicitly
given in HOL. Type inference does not infer the types. of functions defined on top
level.

In both Haskell and Isabelle/HOL, inductive datatypes lead to recursive func
tions. Isabelle/HOL provides two mechanism to define recursive functions: primitive
recursion and well-founded recursion. Primitive recursion applies only on datatypes,
the termination relies on the one fixed argument becoming smaller [NPW02). There
must be at most one reduction rule for each constructor [NPW05). Well-founded
recursion is a more general method: its termination is guaranteed by a well-founded
relation. Besides the recursive function definitions, Isabelle/HOL provides constant
definitions which can be used to formalize some structures that primitive and well
founded recursion can not, an example of which we will show later.

Analyzing function definitions of Haskell provide the guidance on how to trans
late functions and what form of recursions in Isabelle/HOL should be chosen. Two
things should be addressed: function bindings and pattern matching (discussed in the
previous section). Function binding binds a variable to a function value [PJ+03).

x Pn ... Plk match1

X Pnl ... Pnk matchn

each Pii is a pattern, and where each matchi is of the general form: = ei where
declsi . matchi is also a form of a guard expressions.

The meaning of function binding expressed by case expression is

x = >.x1 ... Xk ~case (x1 , ... , xk) of

(pu, ... ,Pik) match1

(Pni, · · · ,Pnk) matchn

This can be expressed by HOL. The matchi in the form of guards can be
represented by nested conditional statements.

Functions also can be defined in let and where expressions locally.

The following rules determine how functions are translated:

dJ PI X = e1 · · · f Pn X = enD :=

primrec" (!) W1D (xD = (e1D ... VD WnD (xD = [enD"
where patterns Pi are in the form of Ci if for the datatype t ii = Ci 7. One

requirement for translating recursive functions in Haskell to primitive recursion in
HOL is Ci is distinct in pattern p, the reason is the HOL restriction of at most one

42 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

reduction rule for each constructor. Some functions with full pattern matching can
not be processed in this thesis, for example a function defined on list type

f[] = []

f [x] = p x
f (x: xs) = q x: f xs

Functions defined in this form are suitable to be translated to general recursion,
which need an associated well-founded relation to ensure termination. In this case
we can use relation of "ensure >.xs. length xs". HOL provides some operators to
generate the relations. How to use them for formalizing Haskell functions will be a
topic for future discussion.

[fx = C $ e~ := constdefs f :: T "[!~ (x~ = (CD(ef'

[fx = e~ := constdefs f :: T "~n ~x~ = [ef

The above two rules translate some Haskell code to constant function defini
tions. The first one says that when no arguments contain constructors of given type;
and the function returns the value prefixed with a constructor, such functions are
transformed to a constant function definition. One example is return of Monad.

The second rule translates general Haskell functions which have no pattern
matching. The patterns used, and placement of the constructors of the arguments
affect the choice of which rule is applied.

4.2.2 Types translation

Types are important to both Haskell and Isabelle/HOL. Haskell defines some base
types in its prelude module, such as lnt, Float, Bool, Char and also some composite
types: tuple types (t1, t2, ... , tn), list types [t1], and function types (t1 --+ t2) where
t1, ... , tn are types themselves [Tho99]

Types definitions

It is hard for Haskell to define enumerate types such as a type representing days of
week, or a type containing either a number or a string [Tho99] by means of compo
sition of base types. All these types can be introduced by algebraic types via a data
statement.

data [context :::::?]type tv1 ... tvi = con1 T1 ... Tn

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 43

I ...
I conm TI ... Tq

[deriving]

Given type is the type name or type constructor, tvi are a set of type variables.
coni are a set of data constructors, each of which was followed by a list of type
variables or type constants. [context :=;.] restricts some type variables of tvi to some
type classes. [deriving] includes the new defined type into some type classes.

Types can be introduced through other ways; one is expressed by a type
statement which creates a type synonym and it does not use new data constructors;
another is expressed by statement of newtype which changes the type name and
supply a data constructor.

Similarly Isabelle/HOL predefines a set of types, such as nat, the type of nat
ural numbers, bool, the type of boolean and some composition type such as list, pair,
tuple. To be able to describe the real world, Isabelle/HOL also provides mechanism
to introduce new types. In section 3.1.1 we already saw the syntax for defining a
new recursive datatype which has a set of constraints. Isabelle also provide type
synonyms, defined via keyword types.

If we ignore the statements [context =}], and [deriving] of Haskell language;
the syntax difference on new datatype definition between Haskell and Isabelle/HOL
is subtle. The type variables on the left hand side of HOL type definitions have
different order from those of Haskell and are grouped in different form. They all
consist of a type name(type constructor), a sequence of type variables on the left
hand side, and a set of data constructors on the right hand that are all associated
with some types(possibly none). Types defined in Haskell and Isabelle/HOL may
each be polymorphic and both must be non-empty. We define the translation rules
for types definitions below:

Qdata type a1 ... ai · · · TJ 1 I · · · I CDnmTf 1 · · · T~ 1) ·-,m1 1. 1,mk1

[conl][T[,1D ... [TJ,mlD

[newtype type a1 ... ai = con1 T[1 ... T1
1 1D :=

' ,ml

datatypes ([a1), ... , Qa2)) Qtype)=[conl)[Tf,l) ... [Tf,mlD

44 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

These three rules are used to translate type definitions from Haskell to Is
abelle/HOL. In implementation, one should be aware that in Isa~elle/HOL type vari
ables are in the form of 'o:i. For example: A type of Tree defined in Haskell:

data Tree a = Leaf I Branch (Tree l) x (Tree r)

translating to Isabelle/HOL datatype by rule 1

datatype 'a Tree = Leaf I Branch "'a Tree" 'a "'a Tree"

From this example we can see that under the syntax of Isabelle/HOL, the
algebraic types take form of"' a Type". Translating type definitions is straightforward,
the semantics are also preserved in the sense that the Isabelle type contains exactly
the finite fully-defined elements of the Haskell type.

Translating type signatures and type annotations

One advantage of the HM type system is type inference. It greatly reduce the amount
of explicit type information that needs to be provided by a user for a Haskell program.
But that does not mean that one can abandon the type information completely. In
Haskell programs, type signatures are required when declaring functions, for example
when one defines a type class with some operators. In Isabelle/HOL type signatures
are required to be given explicitly. Isabelle/HOL provides some pre-defined base
types, such as nat, int, real and bool and associated theories on those types. Not all
built-in base types of Haskell are suitable to be translated to Isabelle/HOL [NPW02].
But some of them, such as Float,Double, and Bool can find their counterparts in
Isabelle/HOL.The translation is natural and straightforward, lnt ~ int,Fioat ~ real,
Bool ~ bool. For other base types of Haskell, one way is to extend the theory of
Isabelle/HOL to include these types. This thesis concentrates on polymorphic types,
and is concerned little about those base types of Haskell, so we pay more attention
to composition types such as Thples, Lists, Types of Functions.

[a]:=' a

[(a, b)] :=[a] x [b]

[[a)] := ['a] [list]

[a -t b] := [a] :::} [b]

[TyCon &] := [(&H [TyCon]

The above rules determine how to translate built-in types. When those types

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 45

appear in programs, the direct translation is easy to do and theories associated with
those types will simplify programmers' job. Thples and lists are built up by combining
a number of pieces of data into a single object [Tho99]. In a tuple we can combine
various values into a single object even of different types. Its general definition consists
of components of simpler types: (t1, t2 , ... , tn)· From its definition a tuple comes
with various number of components, tuples could be called pairs, triples, quadruples,
quintuples For completeness, Haskell provides a nullary tuple(). It contains two
members, j_ and () [Bir98].

In HOL, an ordered pair (a,b) is of the type of 7 1 x 72 with a's type being
7 1 and b's type being 72. Thples are constructed by pairs nested to right so that
(a 1 , a2, a3) is equivalent (a 1 , (a 2 , a 3)) and has a type of 7 1 x 7 2 x 7 3 or equivalently
in the form of 7 1 x (72 x 7 3) HOL also provides a unit ().

List is defined to contain a sequence of values of the same types. In Haskell a
list of some type is introduced by type constructor of []. For example, [Int] defines a
list of Int type. It also plays the role of a data constructor. [] stands for the empty
list, while [0] is a list of Int with only one element. HOL defines a list type through
the datatype command. Its type constructor is List. [] in HOL just represents the
empty list and a non-empty list is built by its data constructor of Cons or the infix
operator#. Translation of user-defined datatypes is very natural, they take the same
set of type constructors, data constructors, and type variables, All that remains is
just to reconstruct them in the syntax of Isabelle/HOL. An example:

map:: (a-t b) -t [a] -t [b) transform to HOL

map :: "('a::::} 'b) ::::} ('a list::::} 'b list)"

4.2.3 Generating theorems

Programming with Haskell type classes includes type classes declaration, instance
declaration and user-defined types. In this thesis we intend to check whether the
instance of a class which is newly defined, or standard for some data types no matter
built-in or user-defined satisfies the laws of that class. While Haskell type classes
handle polymorphic types, this thesis will check monotypes.

In HOL properties which need to be verified were normally represented by
theorems or lemmas. They reflect the characters of some datatypes and functions
defined on them. To verify the laws of Haskell type classes, the specifications that
express the laws should be provided. We can generate the theorems based on those
specifications. The rule for translating specifications simple:

[Spec (a)= E(f)D := lemma [SpeeD a = [ED([JD)

46 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

where fare the polymorphic functions defined in type classes, We Translate
Haskell specifications into lemmas of HOL by substituting any pqlymorphic functions
in specifications with monomorphic functions. For example:

A instance of Functor class of type Maybe.

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just a) =Just (fa)

We get monomorphic functions in HOL by translating polymorphic functions
of Haskell for specified types.

consts
fmap_Maybe :: " ('a => 'b) => ('a Maybe => 'b Maybe)"

pnmrec
"fmap_Maybe
"fmap_Maybe

f Nothing = Nothing"
f (Just a) = Just (f a) 11

The specification for functor id law:

checkFunctor _id fa = fmap id fa -fa

Based on the above instance and specification of type Maybe for Functor type
class, the following lemma says that the Maybe functor satisfies the id law.

lemma checkFunctor _id_Maybe: 11 fmap_Maybe id fa = fa 11

4.2.4 Implementing a translator

A translator from Haskell to Isabelle/HOL is implemented based on the translating
rules described in last section. It could be used to translate Haskell programs and
specifications which are explicitly given by programmers along with the programs.
Current version does not support all rules, such as where and Let expressions.

Translator gets the abstract syntax tree(AST) from Haskell source code by
calling function parseModule. Top level structure of AST is a module storing the
variable of type HsModule. By analyzing the module, translator constructs all parts
that are needed to generate a complete theory file of Isabelle/HOL. Translating is
a process involving several scans on AST and keeps a module as static environ
ment(means without update). The reason to scan module more than once is some
structures taking components from same term but they can not be done at same time.

Most Haskell functions will be translated to Isabelle versions. The functions
that represent the specifications will be transfered to proof obligations such as lemmas

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 47

or theorems. Functions representing specifications are defined in Haskell with the
names prefixed by a string of "check". To do so tran~lator will easily distinguish
specifications with other functions. More description refers to appendix.

4.3 Verify class properties in Isabelle/HOL

In this section we will study some examples to show how to verify the instances in
Isabelle/HOL.

The type Maybe is predefined in Haskell prelude. The purpose of the Maybe
type is to provide a method of dealing with illegal or optional values without termi
nating the program. It comes with a set of operations like isJust, fromJust, from Maybe
etc .. Besides this, it overloads fmap,~ and return functions through the program
ming interface of type classes of Functor and Monad. In previous section we already
translated Maybe type of Haskell and its Functor instance to HOL to illustrate the
procedure of generating theorem. We will complete its proof for Functor laws and
Monad laws.

data Maybe a = Nothing I Just a

By the translating rules, in HOL this type could be defined through keyword
datatype.

datatype 'a maybe = Nothing I Just 'a

Revisiting the translation of function fmap

consts
fmap_Maybe :: 11 ('a => 'b) => ('a Maybe => 'b Maybe) 11

pnmrec
"fmap_Maybe
"fmap_Maybe

f Nothing = Nothing"
f (Just a) = Just (f a)"

The function fmap was translated into primitive recursion because maybe is an
algebraic type although it is not a recursive type. The second reason is that every
constructor appears in pattern not more than once. This is also one of principles for
automatic translation.

Specifications are not parts of Haskell programs. To express the Functor's
properties users could write them in Haskell language explicitly, and for reason of
distinguishing from general Haskell functions The names are prefixed with the text
"check" such as inthe allowing examples:

48 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

checkFunctor_id ::(Functor f, Eq (fa))::::} fa-+ Bool
checkFunctor _id fa = fmap id fa _ fa

checkFunctor_comp ::(Functor f, Eq (f c))::::} (a-+ b)-+ (b-+ c)-+ fa-+ Bool
checkFunctor_comp f g fa= fmap g (fmap f fa) fmap (go f) fa

These two specifications express the identity morphism and morphism compo
sition of Functors. Their counterparts in HOL are lemmas for which we are ready to
write some proof scripts.

fa)

Theorems which represent laws of Maybe functor and their proof scripts are:

lemma checkFunctor Jd_Maybe: "fmap_Maybe id fa = fa"

apply(induct_tac fa)

1. fmap_Maybe id Nothing = Nothing

2. !!a:: 'a. fmap_Maybe id(Just a)= Just a

apply(auto)

No subgoals!

done

lemma checkFunctor_comp_Maybe: "fmap_maybe g (fmap_maybe f

= fmap_maybe (g . f) fa"

apply(induct_tac fa)

1. fmap_Maybe g (fmap..Maybe f Nothing)= fmap_Maybe (g . f)
Nothing

2. !!a:: 'c. fmap_Maybe g (fmap..Maybe f (Just a))=fmap_Maybe
(g . f) (Just a)

apply(auto)

No sub goals!

done

Proofs for Maybe functor are fairly easy, requiring just one step.

Let's see a more complex example with the State monad. State monad is
adopted by Haskell to transfer programs' state internally. By using the state monad,
programs can hide the state information which usually must be passed to functions
as arguments. It is defined as a function of type s -+ (a, s), from a initial state, a
value of type a was returned paired with a new state after computation. The type of
State is:

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 49

type States a= s-+ (a, s)

Overloading the function of~ and return makes the State to be a Monad.

instance Monad (States) where
return a= AS-+ (a, s)
(~) m f =AS-+

let (s', a) = m s
m' =fa

in m' s'

Three specifications describe the basic properties of a monad along with their
signatures.

Left unit.

checkMonadJunit ::(a-+ m b)-+ a-+ Bool
checkMonadJunit f x =(return x) ~ f- f x

Right unit.

checkMonad_runit :: m a-+ Bool
checkMonad_runit x = x ~return = x

Bind composition.

checkMonad_comp :: m a-+ (a-+ m b) -+ (b-+ m c) -+ Bool
checkMonad_comp f g h = f ~(Ax-+ g x ~h)_ (f ~g)~ h

When we take the Monad declaration from a predefined file which describes the
built-in types and classes of Haskell, we almost have everything necessary to generate
a theory of State Monad. The type State was declared as a type synonym of a function
types-+ (a, s), it can be redeclared as another type synonym in HOL.

types ('a,' s) State= "' s => 'a \<times> 's"

By the type signatures of function ~ and return, we get the monomorphic
type of ~ and return defined on State. Observing the State type is not recursive
and it has just one pattern we don't need define ~ and return as recursive functions.
Renaming the ~ to a function name in text:

constdefs

50 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

return_state :: '"a=> ('a,'s) State"

"return_state x == (%y. (x,y))"

constdefs

bind_state :: " ('a,' s) State = >

('a=> ('b,'s) State) => ('b,'s) State"

"bind...state st f == (%x. let(a,st')

= st x in (let m' =fa in m' st'))"

The nested let expression in bind...state needs to be addressed. It was translated
from the sequence of let expressions.

After translating the type and functions, generating proof obligations for
monad laws is straightforward. The theorems or lemmas come from the specifica
tions explicitly provided above. The procedure involves a sequence of function name
substitution and without using specifications signatures (which sometimes can be
ignored).

lemma checkMonadJ.unit_state[simp]:

"bind..state (return_state x) f = f x"

lemma checkMonad_runit..state:

"bind_state f return_state = P'

lemma checkMonad_comp_state:

"bind..state f (%x. bind_state (g x) h) =

bind_state (bind_state f g) h"

The complete proof refers to appendix. The appendix also include translations
and proofs of Monadplus on some basic types. The example of MonadT is worth some
description, the polymorphic function lift (m a ---+ t m a)lifts one Monad to another.
The proofs verify two laws which were suggested by ShengLing, Paul Hudak and Mark
Jones [LHJ95]

lift o unitm = unittm

lift (m 'bind'm, k) = lift m 'bind~m (lift o k)

The example lifts a Maybe monad to a State Monad, but not List, because we
cannot define a list monad transformer [LHJ95].

The examples given so far illustrate how to translate type instance for classes
to HOL, and how to generate HOL proof obligations for laws of type classes specified
in Haskell.

Chapter 5

Conclusions and Future work

Type classes are a unique feature of Haskell programming language. Using classes, a
Haskell programmer can overload functions over a set of types rather than just one. It
provides Haskell programmers a way to define general programming interfaces. Type
classes associate some invariants which should be satisfied when a type was defined to
be a member of the types. To guarantee the correctness of type instances of a class,
validation and verification must be done. In this thesis we discuss two methods· to
test and verify type instances, one is QuickCheck which is a testing tool for Haskell,
and another is Isabelle which is a formal method tool used to prove theorems.

5.1 Contributions

The first method adopted is QuickCheck, which is an automatic testing tool for
Haskell programs. It was used to check the properties of Haskell functions. One of
the attractions of this tool is that properties could be expressed by Haskell language
itself. By giving some examples, it shows how to express type classes' invariants in
QuickCheck, and provide library of QuickCheck tests for prelude class instances.

The second method used is Isabelle/HOL. In Isabelle/HOL properties could he
expressed as theorems or lemmas. Isabelle/HOL can prove them in a formal way. To
prove laws of type classes of Haskell in Isabelle/HOL, the functions and specifications
of Haskell programs need to be translated to Isabelle. Syntax differences require
translating from Haskell to Isabelle/HOL. This thesis suggests a set of translating
rules to guide function translation, datatype translation and specification translation
while preserving the semantics. Based on the translating rules a simple automatic
translator is implemented to ease the Haskell programmers who want to verify their
type instances in Isabelle/HOL. By giving some example, this thesis also shows how

51

52 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

the types and functions are translated; how the laws of type classes are presented in
Isabelle/HOL, and how the theorems are proved. Appendix B includes the proving
scripts for the type instances in the examples.

5. 2 Conclusions

QuickCheck is suitable for testing type instances; new types could be easily defined
as testable and writing properties is straightforward.

Type instances could be verified in lsabelle/HOL while the functions, types
and specifications are translated to Isabelle/HOL. For the most part, this translation
was purely syntactical and straightforward with regular expression matching. While
the new datatype, functions and specifications are defined within the range that the
translation rules support, automatic translating is applicable.

5.3 Future work

The work done in this thesis could be extended in two aspects.

Firstly, when checking the properties in QuickCheck, type information has to
be given explicitly. The QuickCheck procedure could be improved by existential type
of GADTs; it allows properties to be checked on a list of testable types automatically.

Secondly, the translator needs to be extended to cover more Haskell and Is
abelle/HOL features, for example, translating functions to well-founded recursions
which is generally recursive and supporting full pattern matchings. In the future
some theories of built-in types of Haskell are required to make the translation easier.

Bibliography

[Bir98] Richard Bird. Introduction to functional programming using Haskell. Pren
tice Hall Europe, University of Oxford, 1998.

[BW99] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL -
lessons learned in formal-logic engineering. In Theorem Proving in Higher
Order Logics, pages 19-36, 1999.

[CHOO) Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In ICFP '00: Proceedings of the fifth
ACM SIGPLAN International Conference on Functional Programming,
pages 268-279, New York, NY, USA, 2000. ACM Press.

[CH02) Koen Claessen and John Hughes. Testing Monadic Code with QuickCheck.
ACM SIGPLAN Notices, 37(12), December 2002.

[CH06a] Koen Claessen and John Hughes. Smallcheck: another lightweight testing
library in haskell, November 2006.

[CH06b) Koen Claessen and John Hughes. SmallCheck: another lightweight testing
library in Haskell. http:/ jwww.cs.york.ac.ukjfpjdarcs/smallcheck, Nov.
2006.

[CW85) Luca Cardelli and Peter Wegner. On understanding types, data abstrac
tion, and polymorphism. ACM Comput. Surv., 17(4):471-523, 1985.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro
grams. In POPL '82: Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 207-212, New
York, NY, USA, 1982. ACM Press.

[Hal03] Thomas Hallgren. Haskell tools from the programatica project. In Haskell
'03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages
103-106, New York, NY, USA, 2003. ACM Press.

53

54 M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, ~46:29-60, Dec 1969.

[HJW+92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fair
bairn, Joseph Fasel, Marfa M. Guzman, Kevin Hammond, John Hughes,
Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John
Peterson. Report on the programming language Haskell: a non-strict,
purely functional language version 1.2. SIGPLAN Not., 27(5):1-164, 1992.

[HK05] William L. Harrison and Richard B. Kieburtz. The logic of demand in
haskell. J. Funct. Program., 15(6):837-891, 2005.

[HPF99] Paul Hudak, John Peterson, and Joseph Fasel. A Gentle Introduction To
Haskell 98. http:/ jwww.haskell.org/tutorial/, 1999.

[JJ06] Patrik Jansson and Johan Jeuring. Testing properties of generic func
tions. Technical report, Institute of Information and Computing Sciences
Utrecht University, 2006.

[Jon95] Mark P. Jones. Functional programming with overloading and higher
order polymorphism. In Advanced Functional Programming, First Inter
national Spring School on Advanced Functional Programming Techniques
- Tutorial Text, pages 97-136, London, UK, 1995. Springer-Verlag.

[Jon97] Mark P. Jones. First-class polymorphism with type inference. In POPL
'97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 483-496, New York, NY,
USA, 1997. ACM Press.

[Kie02] Richard B. Kieburtz. P-logic: property verification for Haskell programs.
www .cse. ogi. ed u /PacSoft /projects/ progra matica / plogic. pdf, February 2002.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod
ular interpreters. In POPL '95: Proceedings of the 22nd ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages, pages
333-343, New York, NY, USA, 1995. ACM Press.

[MML07] Till Mossakowski, Christian Maeder, and Klaus Lttich. The Heterogeneous
Tool Set, volume 4424. Springer-Verlag Heidelberg, 2007.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Stan
dard ML. MIT Press, Cambridge, MA, USA, 1997.

M.A.Sc. Thesis- Feng Wang McMaster University- Computing & Software 55

[N ay06] Matthew Naylor. SparseCheck a logic programming library for test-data
generation, 2006.

[NP93] Tobias Nipkow and Christian Prehofer. Type checking type classes. In
POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 409-418, New York, NY,
USA, 1993. ACM Press.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[NPW05] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle's logics: HOL.
http:/ /isabelle.in.tum.de/docjlogics-HOL.pdf, October 2005.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363-397, 1989.

[Pau90a] L. C. Paulson. A formulation of the simple theory of types (for isabelle).
In COLOG-88: Proceedings of the international conference on Computer
logic, pages 246-274, New York, NY, USA, 1990. Springer-Verlag New
York, Inc.

[Pau90b] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. Logic and
Computer Science, pages 361-385, 1990.

{PJ+o3] Simon Peyton Jones et al. The Revised Haskell 98 Report. Cambridge
University Press, 2003. Also on http:/ /haskell.orgj.

(Tho99] Simon Thompson. Haskell: The Craft of Functional Programming, Second
Edition. Addison-Wesley Longman, 1999.

[Tur90] David Turner. An overview of Miranda 1. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[Utt94] Mark Utting. A Haskell implementation of Z data types.
http:/ fciteseer.ist.psu.edujutting94haskell.html, 1994.

[Wad92] Philip Wadler. The essence of functional programming. In Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 1-14, Albequerque, New
Mexico, 1992.

56 Appendix A

Appendix A

A simple translator from Haskell to Isabelle

entrf is the main entry of the program. It reads source code from a file and
parses it using the Haskell parser.

entrf :: FilePath -t 10 ()
entrf fp ty = do x +- readFile fp

writeFile ty
("imports thy \n\n" * (prettyPrint $ trimok $
parseModule (unlines (docu (lines x))))

* "\n\n" * (entr2 x))

entrl :: FilePath -t 10 ()
entrl fp =do x +- readFile fp

putStrln $
"\n\ \begin{isabelle}" * "\n\n" * unlines (fdecl (extdecl $ trimok
$ parseModule (unlines (docu (lines x))))
[]) * "\ \end{isabelle}"

entr2 ::String -t String
entr2 x = "\ \begin{isabelle}" * "\n\n"

* unlines (scnimpt ta) * "\nn
* unlines (fdecl ta ta) * "\ \end{isabelle} 11

where ta = (extdecl o trimok o
parseModule o unlines o docu o lines) x

Function trimok analyzes the Haskell module. After calling this function we
already have a HsModule data structure.

trimok :: ParseResult HsModule -t HsModule
trimok modu =case modu of

(ParseOk x) -t x
(ParseFailed loc str) -terror "r"

Function extdecl extracts the declaration part of from the Haskell program.

Appendix A 57

extdecl :: HsModule---+ [HsDecl]
extdecl (HsModule ____ xs) = xs

Function senimpt takes first round of scan to find what theories need to be
imported. The information could be obtained from contexts of definitions of classes,
instances, or functions.

senimpt :: [HsDecl] ---+ [String]
senimpt [] = []
senimpt (n: ns) =case n of

(Hs T ypeDecl sl x xs ht) ---+
senimpt ns

(HsDataDecl sl he hn xs ys zs) ---+
rmdup (ext he) (senimpt ns)

(HslnfixDecl sl ha i xs) ---+
senimpt ns

(HsNewTypeDecl sl he hn xs hd ys) ---+
rmdup (ext he) (senimpt ns)

(HsCiassDecl sl hex xs ys) ---+
rmdup (ext he) (senimpt ns)

(HslnstDecl sl he hq xs ys) ---+
rmdup (ext he) (senimpt ns)

(HsDefaultDecl sl xs) ---+
senimpt ns

(HsTypeSig sl xs hq) ---+
let (HsQuaiType he ht) = hq

in (rmdup (ext he) (senimpt ns))
(HsFunBind xs) ---+

senimpt ns
(HsPatBind sl hp hsr xs) ---+

senimpt ns

In the first round scan of the Haskell source code, function ext checks the
context of data, newtype, class, instance, and type signature clauses to find what
theories of Isabelle will be used in the current theory and generates the imports lines for
it. You should be aware that in this way, you need to avoid importing the same theory
more than once, for example if (Eq a) => appears in two different type signatures.
Another thing you need to avoid is to import the current theory. This could happen
because your defined classes were referenced as context by some other object in the
current module. We keep a list of theory names that we need to import and generate

58 Appendix A

new by ext if the one of more results of ext are included in the list then do nothing
otherwise add them into the list.

ext:: HsContext --t [String]
ext[]=[]
ext (x: xs) = (11 imports 11 * rmrt (unlines y)

* 11 .thy11
): ext xs

where y =let (hq, zs) = x
in dataqnf hq

rmdup ::[String] --t [String] --t [String]
rmdup [] xs = xs
rmdup (x: xs) ys =if (elem x ys) then rmdup xs ys

else x : rmdup xs ys

rmrt removes the all returns in a string.

rmrt :: String --t String
rmrt [] = []
rmrt (x: xs) =if x = '\n' then rmrt xs

else x: rmrt xs

Function fdecl handles the declarations.

fdecl :: [HsDecl] --t [HsDecl] --t [String]
fdecJ [] X = [11 11

]

fdecl (n : ns) env =case n of
(HsTypeDecl sl x xs ht) --t

rmrt (unlines (typedecl x xs ht)): fdecl ns env
(HsDataDecl sl he hn xs ys zs) --t

(datadecl hn xs ys zs) * fdecl ns env
(HslnfixDecl sl ha i xs) --t

fdecl ns env
(HsNewTypeDecl sl he hn xs hd ys) --t

fdecl ns env
(HsCiassDecl sl he z xs ys) --t

classdecl sl he z xs ys env * fdecl ns env
(HslnstDecl sl he hq xs ys) --t

instdecl he hq xs ys env * fdecl ns env
(HsDefaultDecl sl xs) --t error 11 HsDeaul tDecl 11

(HsTypeSig sl xs hq) --t

(tpsigdecl xs hq) : fdecl ns env

Appendix A

(HsFunBind xs) -----+
(funcdecl xs) * ["\n "] * fdecl ns env

(HsPatBind sl hp hsr xs) -----+error "HsPatBind"

59

Function datadecl handles the datatype declarations of the Haskell module to
generate the data declarations in Isabelle.

datadecl :: HsName-----+ [HsName] -> [HsConDecl]
-> [HsQName]-> [String]

datadecl hn xs ys zs =
lines (rmrt (unlines (lines (rmrt (bfeq *

II= II * II II)) * CStrf ys))) * [II \n II J

where xnf :: [HsName]-> String
xnf (] = (]
xnf (f: fs) =let (Hsldent n2) = f

in " ' " * n2 * " " * xnf fs
cstrf :: (HsConDecl] -> (String]
cstrf [] = []
cstrf (h : hs) =if (length hs _ 0) then

lines (rmrt (gcondecl h))
else (rmrt ((gcondecl h)*" \n"

*"I"
*" ")): cstrf hs

bfeq = "datatype "* xnf xs
* " " * datanf hn * " "

blkspc n =if (n > 0) then " "* blkspc (n- 1)
else""

Function gcondecl generates the constructor parts of a datatype in Isabelle
relating to the original Haskell data declaration.

datanf changes the HsName to a String by removing the type constructor of
Hsldent.

gcondecl :: HsConDecl-> String
gcondecl hcd = case hcd of

(HsConDecl sri hsn hbs) -> datanf hsn * (hbtype hbs)
(HsRecDecl sri hsn [(hsn2, hbt)]) -> datanf hsn

datanf :: HsName-> String
datanf (Hsldent nl) = nl

dataqnf changes the qualified name to a list of strings.

60

dataqnf :: HsQName---+ (String]
dataqnf (Qualm n) =lines (datanf n)
dataqnf (UnQual n) =lines (datanf n)
dataqnf (Special h) = case h of

HsUnitCon ---+ [" () "]
Hslist(on ---+ ["List"]
HsFunCon---+ ["->"]
HsTupleCon n---+ ("n"]
HsCons ---+ [" : "J

hbtype :: (HsBangType] ---+String
hbtype [] = ""
hbtype (x: xs) = " "* typ * hbtype xs

where typ =case x of
(HsBangedTy ht) ---+ hstype ht
(HsUnBangedTy ht) ---+ hstype ht

hstype changes the type of the form Hs Type to a string.

hstype :: HsType---+ String
hstype (HsTyFun x y) = (hstype x) *

" => " * hstype y
hstype (HsTyTuple (x: xs)) =

"(" * hstype x * (tts xs)
where tts :: [HsType] ---+String

tts [] = n)u

tts (z: zs) = "," * hstype z * (tts zs)
hstype (HsTyApp x y) = 1111 11 ++ hstype y
11 ++ hstype x ++ " 1111

hstype (HsTyVar x) = "' 11 * datanf x
hstype (HsTyCon x) = unlines (dataqnf x)

++ It

Appendix A

Function typedecl translates the type synonyms of Haskell program to Isabelle
type synonyms.

typedecl :: HsName---+ [HsName]
---+ HsType---+ [String]

typedecl x xs t =["types 11
]

* lines (datanf x)
* [11 = "] *lines (hstype t)

* ["\n"]

Appendix A 61

Function funcdecl extracts the function bindings from source code, Its output
is a list of strings with a head of function name.

Most function definition will appear in an Isabelle theory. But the functions
that define the specification will be transfered to proof obligations such as lemma
or theorem so their original version will be hiden. I define such specification with a
name prefixed by "check"; we use the function hid check to pick them out.

funcdecl :: [HsMatch] -t [String]
funcdecl [] = []

funcdecl (x: xs) =

if (hidcheck x "check") then funcdecl xs
else ("primrec\n" *

(prettyPrint x)): funcdecl xs

hidcheck :: HsMatch -t String -t Bool
hidcheck (HsMatch sl hn xs y zs) pt =

if (pt (take (length pt) (datanf hn))) then True
else False

Function tpsigdecl (typesig) was used to construct the general type signature
in a Haskell program.

tpsigdecl :: [HsName] -t HsQuaiType -t String
tpsigdecl [] qtp = []

tpsigdecl (x: xs) qtp =if (take 5 (datanf x)- "check")
then tpsigdecl xs qtp
else ("consts\n "* (datanf x) *" :: \'11

'

* (tpsigdecl2 qtp) * "\" ") * tpsigdecl xs qtp

tpsigdecl2 :: HsQuaiType -t String
tpsigdecl2 (HsQuaiType he ht) = hstype ht

Function instdecl finds out all instance declarations and translates them into
Isabelle syntax. As output, three things will be generated: The first is an Isabelle
consts declaration; the second is a function definition; the third is a list of lemmas
which were derived from specification and type signature.

instdecl :: HsContext -t HsQName -t [HsType] -t

[HsDecl] -t [HsDecl] -t [String]
instdecl he hq xs ys env = [" consts"]

* consts hq xs ys env
* ["primrec"] * primrec hq xs ys env * ["\n"]
*lemma hq xs ys env * ["\n"]

62 Appendix A

Function eonst helps to generate the eonst declaration of Isabelle from it's
counterpart in the Haskell module. hq is the class name xs is the types that will be
instanced. ys is the declarations. cis contains a class declaration.

tdecl picks all class declarations from the Haskell module.

Functions edecl and bdecl together select the specific class declaration corre
sponding to the current instance from the return of tdecl

eonsts :: HsQName -t [HsType] -t

[HsDecl] -t [HsDecl] -t [String]
eonsts hq xs ys env = ieonsts xs cis * [11 \n 11

]

where cis = edecl hq (tdecl env)

iconsts :: [HsType] -t HsDecl -t [String]
ieonsts [] _ = []

ieonsts (x: xs) y =
repclassdef (hstype x) (takclstype y) y

takclstype :: HsDecl -t String
takclstype (HsCiassDecl sf he z xs ys) = tnm xs

where tnm :: [HsName] -t String
tnm [] = 1111

tnm (y: ys) = datanf y
ta kclstype _ = 11 11

repclassdef :: String -t String -t HsDecl -t [String]
repclassdef x y (HsCiassDecl sf he z xs ys) =

repdecl x y ys
repclassdef _ - - = []

repdecl __ [] = []
repdecl tl t2 (x: xs) =

(repsig tl t2 x) : (repdecl tl t2 xs)

repsig :: String -t String -t HsDecl -t String
repsig t1 t2 (HsTypeSig _ xs y) =

rmrt (11 "* (datanf (head xs))

* "-" *tl
*" :: \1111 * pptypesig tl t2 (etypesig y)
* 11\1111)

repsig ___ = 11 11

etypesig (HsQuaiType x y) = y

pptypesig ::String -t String -t HsType -t String

Appendix A

pptypesig t1 t2 (HsTyFun x y) = (ptypesig t1 t2 x)
" => " (ptypesig tl t2 y)

pptypesig tl t2 x = ptypesig tl t2 x

ptypesig ::String-+ String-+ HsType-+ String
ptypesig tl t2 (HsTyFun x y) = 11

(" * (ptypesig t1 t2 x)
II => II (ptypesig tl t2 y) * 11) II

ptypesig t1 t2 (HsTyTuple (x: xs)) =
11

(" * ptypesig tl t2 x * (tts xs)
where tts :: [HsType]-+ String

tts [] = ")"
tts (z: zs) = 11

," * ptypesig t1 t2 z * (tts zs)
ptypesig t1 t2 (HsTyApp x y) = (ptypesig t1 t2 y)

" " (ptypesig t1 t2 x)
ptypesig t1 t2 (HsTyVar x) =if (t2 _ datanf x)

then t1
else rmrt (11

' " * datanf x)
ptypesig t1 t2 (Hs TyCon x) = unlines (dataqnf x)

cdecl :: HsQName-+ [HsDecl] -+ HsDecl
cdecl _[]=error "No proper class"
cdecl hq (x: xs) =if (bdecl hq x) then x

else cdecl hq xs

bdecl :: HsQName-+ HsDecl-+ Bool
bdecl hq x =if ((head (dataqnf hq)) _ (cname x))

then True
else False

cname (HsCiassDecl __ n __) = datanf n

tdecl :: [HsDecl] -+ [HsDecl]
tdecl [] = []
tdecl (x: xs) =case x of

(HsCiassDecl _____) -+ x: tdecl xs
_-+ tdecl xs

63

Function primrec generates the primrec section for an isabelle theory. Functions
following it help to combine a new consts function name which show it is an instance
of the type.

primrec :: HsQName-+ [HsType] -+
[HsDecl] -+ [HsDecl] -+ [String]
primrec hq (] ys env = []
primrec hq (x: xs) ys env = sbtprc ys (hstype x)

64

-H- primrec hq xs ys env

sbtprc :: (HsDecl] ~ String ~ (String]
sbtprc [] _ = []

sbtprc (x : xs) pt = (sbtdecl x pt) -H- sbtprc xs pt

sbtdecl :: HsDecl ~String~ [String]
sbtdecl hd [] = [prettyPrint hd]
sbtdecl (HsFunBind xs) y = sbtfb xs y
sbtdecl _ y = []

sbtfb :: [HsMatch] ~String~ [String]
sbtfb [] _ = []

sbtfb (x: xs) [] = (prettyPrint x): sbtfb xs []
sbtfb (x: xs) hd = (11 11 -H- (sbtmtch x hd)): sbtfb xs hd

Appendix A

sbtmtch substitutes the polymorphic function with a monomorphic function
within a primrec definition.

Function lemma generates a lemma in Isabelle from the source code and spec
ification in Haskell.

lemma:: HsQName ~ [HsType] ~
[HsDecl) ~ [HsDecl] ~ [String]
lemma hq xs ys env =
lemmas nn hq xs ys (Jespec hq env)

where nn = "check 11 -H- head (dataqnf hq)

lemmas:: String~ HsQName ~ [HsType]
~ [HsDecl] ~ [HsDecl] ~ [String]

lemmas nn hq [] _ env = []

lemmas nn hq _ [] env = []

lemmas nn hq __ [] = []

lemmas nn hq xs (z: zs) ys =
Jemmass nn hq (head xs) z ys -H- lemmas nn hq xs zs ys

lemmass ::String~ HsQName ~ HsType
~ HsDecl ~ [HsDecl] ~ [String]

lemmass nn hq __ [] = []

lemmass nn hq x z (y: ys) =

rmrt ("lemma "-H- ispec nn y
* 11

_
11 * hstype X* II ; II

-H- 11
\

1111 -H- stblemma y (funame z) (hstype x) -H- "\'11
')

: lemmass nn hq x z ys

stblemma :: HsDecl ~String~ String~ String

Appendix A

stblemma decl tl t2 = stbrhs (stbmt (stbfb decl)) tl t2

stbfb (HsFunBind (x: xs)) = x

stbmt (HsMatch ___ x _) = x

stbrhs :: HsRhs--+ String --+ String --+ String
stbrhs (HsUnGuardedRhs e) tl t2 = stbexp e tl t2
stbrhs (HsGuardedRhss (e: es)) t1 t2 = 1111

stbexp :: HsExp --+ String --+ String --+ String
stbexp (HsVar x) tl t2 =if (head (dataqnf x) tl)

then rmrt (head (dataqnf x) * 11
_

11 * t2)
else head (dataqnf x)

stbexp (HsCon x) tl t2 =if (head (dataqnf x) = tl)
then rmrt (head (dataqnf x) * 11

_" * t2)
else head (dataqnf x)

stbexp (Hslit x) tl t2 = prettyPrint x
stbexp (HslnfixApp x y z) tl t2 =

rmrt ((stbexp x t1 t2)

* " 11 * prettyPrint y
* 11 "* (stbexp z tl t2))

stbexp (HsApp x y) t1 t2 = (stbexp x t1 t2) *" 11

* (stbexp y t1 t2)
stbexp (HsNegApp x) tl t2 = 11 !" * stbexp x t1 t2
stbexp (Hslambda x ys z) t1 t2 = 11

"

stbexp (Hslet xs y) t1 t2 = "11

stbexp (Hslf x y z) t1 t2 =

"if (11 * stbexp x t1 t2 * ")"
* " then " * stbexp y tl t2 * 11 else 11 * stbexp z tl t2

stbexp (HsCase x ys) t1 t2 = 1111

stbexp (HsDo xs) t1 t2 = 1111

stbexp (HsTuple xs) tl t2 = 11
(

11 * tupexp xs
where tupexp :: [HsExp] --+String

tupexp [] = []

tupexp (y: []) = stbexp y t1 t2 * ") 11

tupexp (y: ys) = stbexp y tl t2 * 11
,

11 * tupexp ys
stbexp (Hslist xs) tl t2 = 11

[" * lstexp xs
where lstexp :: [HsExp]--+ String

lstexp [] = []

lstexp (y: []) = stbexp y t1 t2 * 11
]"

lstexp (y : ys) = stbexp y tl t2 * 11
,

11 * lstexp ys

65

66

5tbexp (H5Paren x) t1 t2 = " (" * 5tbexp x t1 t2 * ")"
5tbexp (H5LeftSection x y) t1 t2 = " ("

* 5tbexp x t1 t2 * " "
* prettyPrint y * ") "

5tbexp (H5RightSection x y) tl t2 = " ("

* prettyPrint x * 11
" * 5tbexp y tl t2 * ") "

5tbexp (H5RecCon5tr x y5) t1 t2 = ""

5tbexp (H5RecUpdate x y5) t1 t2 = ""

5tbexp (H5EnumFrom x) t1 t2 = " [" * 5tbexp x t1 t2 * " ..] "
5tbexp (H5EnumFromTo 5 y) tl t2 = "["-++- 5tbexp 5 tl t2

* II • • II * 5tbexp Y t1 t2 * II] II

5tbexp (H5EnumFromThen x y) t1 t2 = ""

5tbexp (H5EnumFromThenTo x y z) t1 t2 = 1
"

1

5tbexp (H5ListComp x ys) t1 t2 = ""

5tbexp (H5ExpTypeSig x y z) t1 t2 = 11
"

5tbexp (H5A5Pat x y) t1 t2 = " 11

5tbexp H5WildCard tl t2 = 11
_ "

5tbexp (H5IrrPat x) t1 t2 = ""

funame :: H5Decl -+ String
funame (H5FunBind (x: x5)) =

let (H5Match _55 ___) = x
in datanf 55

funame _ = []

Appendix A

To build lemma function, le5pec takes class name and the whole AST of pro
grams to pick out the specifications (rules) of a type class by matching the names.

le5pec _ [] = []

le5pec hq (x: xs) =if (kk ¢ "")
then x : le5pec hq X5
else lespec hq xs
where nn ="check"* head (dataqnf hq)

kk = i5pec nn x

i5pec test every object to find whether it is a function bind; if so, it returns
the function name; if not, it returns the empty string.

i5pec ::String-+ H5Decl-+ String
i5pec y (H5FunBind (x: x5)) =

let (H5Match 51 hn Z5 hrh5 h5) = x
in if (y _ take (length y) (datanf hn))

Appendix A

then datanf hn
else""

ispec y (HsFunBind []) = ""

ispec y _ = ""

classdecl :: Srcloc --+ Hs(ontext --+ HsName --+ [HsName] --+

[HsDecl] --+ [HsDecl] --+ [String]
classdecl sl he hn xs ys env = []

67

68 Appendix B

Appendix B

Isabelle Proofs for Selected Standard Instances

theory aclass
imports Main Fun List

begin
datatype 'a maybe = Nothing I Just 'a

consts
fmap-maybe :: ('a=> 'b) => ('a maybe => 'b maybe)

primrec
fmap-maybe f Nothing = Nothing
fmap-maybe f (Just x) = Just (! x)

lemma checkFunctor-id-maybe: fmap-maybe id fa= fa
apply(induct-tac fa)
apply(auto)
done

constdefs
nn :: nat=> nat
nn x == let y = x+x; z = x+x in y + z

lemma checkFunctor-comp-maybe: fmap-maybe g (!map-maybe f fa) = fmap-maybe (g o

f) fa
apply(induct-tac fa)
apply(auto)
done

consts
bind-maybe :: 'a maybe => ('a => 'b maybe) => 'b maybe

primrec

Appendix B

bind-maybe (Just x) f = f x
bind-maybe Nothing f = Nothing

constdefs return-maybe :: 'a => 'a maybe
return-maybe x == Just x

lemma checkMonad-lUnit-maybe[simp]: bind-maybe (return-maybe x) f = f x
apply(simp only: return-maybe-de!)
apply(auto)
done

lemma checkMonad-runit-maybe: bind-maybe f return-maybe = f
apply(induct-tac f)
apply(auto)
apply(simp only: return-maybe-de!)
done

69

lemma checkMonad-comp-maybe: bind-maybe f (%x. bind-maybe (g x) h) = bind-maybe
(bind-maybe f g) h
apply(induct-tac f)
apply(auto)
done

constdefs zero-maybe :: 'a maybe
zero-maybe == Nothing

consts plus-maybe :: 'a maybe => 'a maybe => 'a maybe

primrec
plus-maybe Nothing x = x
plus-maybe (Just x) y = Just x

lemma checkMonad-lzero-maybe: bind-maybe m (%x . zero-maybe) = zero-maybe
apply(induct-tac m)
apply(auto)
apply(simp only: zero-maybe-de!)
done

lemma checkMonad-rzero-maybe: bind-maybe zero-maybe m = zero-maybe

70

apply(simp only: zero-maybe-de!)
apply(auto)
done

lemma checkMonad-plusr-maybe :plus-maybe m zero-maybe = m
apply(induct-tac m)
apply(auto)
apply(simp only: zero-maybe-de!)
done

lemma checkMonad-plusl-maybe: plus-maybe zero-maybe m = m
apply(induct-tac m)
apply(simp only: zero-maybe-de!)
apply(auto)
apply(simp only: zero-maybe-de!)
apply(auto)
done

consts
bind-list :: 'a list => ('a=> 'b list) => 'b list

primrec
bind-list 0 f = 0
bind-list (x # xs) f = (J x) @ (bind-list xs f)

Appendix B

lemma bindConcatlist [simp]: ! ys . bind-list (xs @ ys) f = bind-list xs f @ bind-list ys f
apply(induct-tac xs)
apply(auto)
done

constdefs return-list :: 'a => 'a list
return-list x == x # []

constdefs zero-list :: 'a list
zero-list == []

consts monplus :: 'a list => 'a list => 'a list

primrec
monplus [] x = x

Appendix B

monplus (x#xs) y = x # (xs@ y)

lemma checkMonad-lunit-list[simp]: bind-list (return-list x)· f = f x
apply(simp only: return-list-de!)
apply(auto)
done

lemma checkMonad-runit-list: bind-list f return-list = f
apply(induct-tac f)
apply(auto)
apply(simp only: return-list-de!)
done

71

lemma checkMonad-comp-list: bind-list (bind-list f g) h = bind-list f (%x. bind-list (g
x) h)
apply(induct-tac f)
apply(simp)
apply(auto)
done

lemma checkMonad-rzero-list: bind-list m (%x . zero-list) = zero-list
apply(induct-tac m)
apply(auto)
apply(simp only: zero-list-de!)
apply(simp only: zero-list-de!)
done

lemma checkMonad-lzero-list: bind-list zero-list m = zero-list
apply(simp only: zero-list-de!)
apply(auto)
done

lemma checkM onad-plusr-list : monplus m zero-list = m
apply(induct-tac m)
apply(auto)
apply(simp only: zero-list-de!)
apply(simp only: zero-list-de!)
done

lemma checkMonad-plusl-list: monplus zero-list m = m
apply(induct-tac m)

72

apply(simp only: zero-list-de!)
apply(auto)
apply(simp only: zero-list-de!)
apply(auto)
done

data type (1 a, 'b) either = Left 1 a I Right 'b

consts
fmap-either :: ('a=> 'b) => (('c,'a) either => ('c,'b) either)

primrec
fmap-either f (Left x) = Left x
fmap-either f (Right y) = Right (J y)

lemma checkFunctor-id-either: fmap-either id fa = fa
apply(induct-tac fa)
apply(auto)
done

Appendix B

lemma checkFunctor-comp-either : fmap-either g (!map-either f fa) = fmap-either (g o f)
fa
apply(induct-tac fa)
apply(auto)
done

consts
bind-either:: ('c,'a) either=> ('a=> ('c,'b) either)=> ('c,'b) either

primrec
bind-either (Left x) f = Left x

bind-either (Right y) f = f y

constdefs return-either:: 'a=> ('b,'a) either
return-either x == Right x

lemma checkMonad-lunit-either[simp]: bind-either (return-either x) f = f x
apply(simp only: return-either-de!)
apply(auto)
done

Appendix B 73

lemma checkMonad-runit-either: bind-either f return-either = f
apply(induct-tac f)
apply(auto)
apply(simp only: return-either-de!)
done

lemma checkMonadcomp-either: bind-either f (%x. bind-either (g x) h) = bind-either
(bind-either f g) h
apply(induct-tac f)
apply(auto)
done

types ('a,'s) State= 's => 'a x 's

constdefs
fmap-state :: ('a=> 'b) => (('a,'c) State => ('b,'c) State)
fmap-state f st == (%s. (let (x,s~ = st sin (! x, s~))

constdefs return-state:: 'a=> ('a,'s) State
return-state x == (%y. (x,y))

constdefs
bind-state :: ('a,'s) State=> ('a=> ('b,'s) State) => ('b,'s) State
bind-state st f == (%x. let (a,st~ = st x in (let m' =fa in m' st~)

lemma checkFunctor-id-state: fmap-state id fa =fa
apply(simp only: fmap-state-def)
apply(simp only: Let-de!)
apply(simp add: split-de!)
done

lemma checkFunctor-comp-state: fmap-state g (fmap-state f fa) = fmap-state (g o f) fa

74

apply(simp only: fmap-state-def)
apply(auto)
apply(simp add: Let-de!)
apply(simp only: split-de!)
apply(auto)
done

lemma checkMonad-lunit-state[simp]: bind-state (return-state x) f = f x
apply(simp only: return-state-de!)
apply(simp only: bind-state-de!)
apply(auto)
apply(simp add: Let-de!)
done

lemma checkMonad-runit-state: bind-state f return-state = f
apply(simp only: bind-state-de!)
apply(simp only: return-state-de/)
apply(simp only: Let-de!)
apply(simp only: split-de!)
apply(auto)
done

lemma checkMonad-comp-state: bind-state f (%x. bind-state (g x) h)
(bind-state f g) h
apply(simp only: bind-state-de!)
apply(simp only: Let-de!)
apply(simp only: split-de!)
done

types ('a,'s) StateT = 's => ('s x 'a) maybe

constdefs
returnT :: 'a=> ('a,'s) StateT
returnT x == (%k. return-maybe (k,x))

constdefs
bindT :: ('a,'s) StateT => (fa=> ('b,'s) StateT) => ('b,'s) StateT
bindT m f == %p. (bind-maybe (m p) (%(q,a). ((!a) q)))

constdefs
lift:: 'a maybe=> ('a,'s) StateT

Appendix B

bind-state

Appendix B

lift m == %p. (bind-maybe m (%q. return-maybe (p,q)))

lemma Monadtrans-liftunit: (lift o return-maybe) x = retu'rnT x
apply(simp add: camp-de!)
apply(simp add: return-maybe-de!)
apply(simp add: lift-de!)
apply(simp add: return-maybe-de!)
apply(simp add: returnT-def)
apply(simp add: return-maybe-de!)
done

lemma Monadtrans-liftbind: lift (bind-maybe m k) = bindT (lift m) (lift o k)
apply(simp add: lift-de!)
apply(simp add: return-maybe-de!)
apply(simp add: bindT-def)
apply(simp add: lift-de!)
apply(simp add: return-maybe-de!)
apply(induct-tac m)
apply(auto)
done

end

75

