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Abstract 

Global routing in VLSI (very large scale integration) design is one of the 

most challenging discrete optimization problems in computational theory and 

practice. In this thesis, we present a polynomial time approximation algorithm 

for the global routing problem based on an integer programming formulation. 

The algorithm features a theoretical approximation bound, while ensuring all 

the routing demands are concurrently satisfied. 

We provide both a serial and a parallel implementation, as well as 

develop several heuristics to improve the quality of the solution and reduce 

running time. Our computational tests on a well-known benchmark set show 

that, combined with certain heuristics, our new algorithms perform very well 

compared with other integer programming approaches. 
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Chapter 1 

Introduction 

It does not take an expert to see that the need and use of computers is rising. 

They are used in almost every facet of industry. The quality of computing relies 

heavily on the quality of the technology they are built upon. At the center of 

all this is the demand for better integrated circuits. The rate at which these 

circuits are growing in complexity is astonishing. The degree of integration 

we use to measure a chip is the number of transistors contained within it. 

Currently, we are working with circuits that contain millions of transistors. 

It is estimated that, in the next decade, we will reach circuits that contain 

billions of transistors [15]. Thus, the need for computer aided design (CAD) 

tools to aid the circuit layout process is increasing rapidly. 

VLSI circuit layout is the process by which the physical layout of a 

circuit is realized from its functional description and specifications. This is 

typically broken into multiple phases due to the increasing complexity of VLSI 

circuits. Generally, we can break these phases into three main classes: parti­

tioning, placement, and routing. In the partitioning phase, we split the area 

of the chip into smaller, more manageable pieces. The assumption is that each 
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of these pieces may be designed independently. In the placement phase, we fix 

the locations of all blocks within the chip, as well as produce a list of blocks 

whose specific pins need to be connected with wire. In the routing phase, the 

goal is to find a realization of the connections provided from the placement 

phase. Typically, routing is broken into two distinct processes: global routing, 

and detailed routing. In global routing, we wish to find an approximate in­

terconnection between the blocks. Detailed routing takes the output from the 

global router and produces the exact geometric layout of the wires to connect 

the blocks. 

1.1 Graph Theory 

We begin with a brief introduction of graph theory. For all graphs and graph 

algorithms in this chapter, see [1, 6] and references therein. A directed graph 

G = (V, E) consists of a finite set of vertices V and a finite set E of edges 

(arcs). An edge is an ordered pair of vertices ( u, v) where u, v E V. Often, an 

edge ( u, v) is written as u -+ v. We say that an edge u -+ v is from u to v and 

that v is adjacent to u. The degree of a vertex in an undirected graph is the 

number of edges incident to it. 

We can also define an undirected graph G = (V, E) where V is a finite set of 

vertices and E is a finite set of undirected edges, i.e., in an undirected graph, 

each edge is an unordered set of vertices. That is, if ( u, v) is an edge in G, 

then ( v, u) is the same edge in G. 

We define a weighted graph to be a graph (directed or undirected) with an 

associated weight function w : E -+ ffi.. A path in a graph G = (V, E) from 

2 
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vertex 'IL to vertex u' is a sequence of vertices (v0 , 'U1, .. . , vk), where v0 = 'IL 

and vk = u' and (vi_ 1 , vi) E E fori= 1 ... k. The length of a path from u to 

v/ is the length of the vertex sequence defining the path or 2:7=1 w( Vi-1, vi). 

A path (v0 , v1 , ... , vk) forms a cycle if v0 = vk and the path contains at least 

one edge. A graph that contains at least one cycle is called a cyclic graph. A 

graph that contains no cycle is called acyclic. A graph is said to be planar if 

it can be drawn in the plane such that its edges only intersect at vertices [4]. 

There exist two standard ways to represent a graph G = (V, E). The sim­

plest is known as an adjacency matrix. Suppose V = { 1, 2, · · · , n}. The 

adjacency matrix A for G is an n by n matrix where Ai,j = 1 if and only if 

(i,j) E E. In a weighted graph, the element A,j = w(i,j) corresponds to 

the weight associated with edge i -+ j. The adjacency matrix representation 

is suited to dense graphs. A dense graph is a graph G = (V, E) for which 

lEI ~ IVI 2 where lEI is the cardinality of E (the number of edges) and lVI is 

the cardinality of V (the number of vertices). If lEI ~ lVI, we call G a sparse 

graph. It is clear that, if we represent a sparse graph as an adjacency matrix, 

then most of the matrix elements will be 0. To represent sparse graphs, we 

use adjacency lists. An adjacency-list representation of a graph G = (V, E) 

consists of an array L of O(IVI) lists, one for each vertex of G. For each i E V, 

L[i] is a list of all vertices j such that ( i, ,j) E E. An example of the differ­

ent representations is shown in Figure 1.1. It is also noted that an adjacency 

matrix requires 8(IVI 2
) storage, while an adjacency list requires 8(1VI +lEI) 

storage. 

3 
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(a) A graph G 

(b) Adjacency list repre­

sentation of G 

0 1 1 
0 0 0 
0 1 0 

(c) Adjacency matrix rep­

resentation of G 

Figure 1.1: A graph is shown along with its different data structures used to 

represent it. 

A special type of graph known as a (free) tree is defined as a connected, 

acyclic, undirected graph. The tree edges may or may not be weighted. There 

are several ways to represent a tree. Since trees are just a special type of 

graph, either the adjacency list or adjacency matrix can be used to represent 

a tree. However, since trees are sparse, an adjacency matrix is a poor choice. 

In our case, all trees will be subgraphs of some larger graph. Because this is a 

special case, we may use an unordered edge list to represent a tree. 

Figure 1.2(a) shows a graph G. We can see that tree Tin Figure 1.2(b) 

is a subgraph of G. Each edge in G is indexed by an integer 1 through 7. Thus, 

the tree Tis represented as a list T = (1, 2, 4). It should be noted that since 

4 
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(a) A graph G (b) A tree T 

Figure 1.2: A tree (b) within a graph (a). 

we use an unordered edge list, the list \1, 2, 4) is the same as the list \2, 4, 1). 

1.2 Single Source Shortest Paths 

A classical problem in graphs is to find the shortest path from a single vertex 

in the graph to every other vertex in the graph. This problem is known as the 

single source shortest paths pmblem. The problem is defined as follows. We arc 

given a weighted graph G = (V, E) along with its respective weight function 

w : E --+ R The problem is to determine the minimal cost of the paths from 

a source vertex s E V to every other vertex in the graph. We define the cost 

of a path p = \v0, 'lh, ... , vk) to be the sum of the costs of the edges contained 

lil p: 
k 

c(p) = L w(vi-l, vi)· 
i=l 

The shortest path weight from vertex 'U to v in a graph is defined as: 

{ 

min { c(p) : 'U !;, v} if there is a path from u to v, 
6(u,v)= 

oo otherwise. 

5 
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Thus, the shortest path from vertex u to vertex v IS any path p 

(u, ... ,v), where c(p) = 6(u,v). 

The best known method for solving the single source shortest paths prob­

lem in graphs is by an algorithm presented by Dijkstra in 1959 [7]. This is 

a classical example of a greedy algorithm in that making a locally optimal 

(greedy) choice leads to a globally optimal solution. This is not always true 

for greedy algorithms, but as it turns out, Dijkstra's algorithm always gives 

the optimal solution, if it exists. The pseudocode for Dijkstra's algorithm is 

given in Algorithm 1. 

The input consists of a weighted graph G = (V, E) along its respective weight 

function w. Dijkstra's algorithm requires that no edge in G have negative 

weight. However, free edges or edges with weight 0 are allowed. We must also 

specify a source verex s. This is the vertex for which we wish to compute the 

shortest paths from. 

The algorithm works by maintaining a set of unvisited vertices along with the 

shortest distance so far from the source to all vertices. The aforementioned set 

is defined by S and the distances are stored in the array d. At each iteration, 

we select an unvisited vertex u whose distance from the source is minimal. This 

is achieved by storing the distance estimates in a min-priority queue. We then 

check each vertex v adjacent to u to see if going through vertex v can improve 

the shortest path estimate. This step is known as relaxation. Additionally, if 

we wish to reconstruct the shortest paths, we must store an additional array, 

7f, that records the parent of each vertex in the shortest path. 

6 
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Input: G = (V, E), w: E ~ ffi.+, s E V 

Output: d, 1r 

1 for v +-- 1 to IV I do 

2 d[v] +-- oo; 

3 1r[v] +-- NIL; 

4 end 

5 d[s] +-- 0; 

6 sf- 0; 

7 Q f- d; 

8 while Q f 0 do 

9 u +-- EXTRACT-MIN(Q); 

10 sf- s u { u }; 

11 for each vertex v a~jacent to u do 

12 if d[v] > d[u] + w(u, v) then 

13 d[v] +-- d[u] + w(u, v); 

14 1r[v] +-- 'u; 

15 end 

16 end 

11 end 

Algorithm 1: Dijkstra's algorithm for finding shortest paths. 

7 
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Theorem 1.1. {6} If we are given a graph G = (V, E) along with a nonnegative 

weight function w and a source vertex s E V, then running D~jkstra 's algorithm 

will terminate with d[v] = 6(s, v) for all vertices v E V. 

When Disjktra first presented this algorithm, he made no mention of using 

a priority queue to find the minimum distance estimate. However, as we 

will soon see, the choice of queue drastically affects the performance of this 

algorithm. Lines 1 through 7 are used to perform initialization. We set the 

distance estimates to infinity for all vertices except the source vertex s. This 

is to ensure that the source vertex is the first vertex we pick in the main loop. 

Additionally, we initialize the array of parent pointers to NIL and the set S 

of visited vertices to empty. Line 7 initializes a priority queue Q to contain 

the distance estimates found in d. Lines 8 through 17 make up the main 

loop of the algorithm. Line 9 finds the next unvisited vertex by extracting 

the minimum element from the priority queue. Line 10 marks the vertex as 

visited. Line 11 through 16 perform the so-called relaxation procedure. The 

overall running time of the algorithm depends on the choice of priority queue 

used to implement Q. In general we give the following theorem. 

Theorem 1.2. {6} The complexity of Dijkstra's algorithm is 8(1VI)·TExTRAcT-MrN+ 

8(IEI) ·TDEcnEA~E-KEv where TExTRAcT-MrN and TDEcRroAsE-KEY are the running times 

for the EXTRACT-MIN and DECREASE-KEY procedures respectively for any 

implementation of a priority queue. 

Proof. For a proof, see [ 6]. D 

We summarize in Table 1.1 the overall complexity of Dijkstra's algo­

rithm with various priority queues. 

8 
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Table 1.1: Complexity of Disjktra's algorithm for various priority queues. 

Q TEXTHACT-MIN TDECREASE-KEY Total 

array O(V) 0(1) O(V2
) 

binary heap O(lg V) O(lg V) O(E lg V) 

Fibonacci heap 1 O(lg V) 0(1) O(E+VlgV) 

As we can see, using a heap to implement a priority queue improves the 

complexity of the algorithm. However, several considerations must be taken 

in order to determine which heap best suits the problem. For instance, al­

though Fibonacci heaps yeild the best theoretical complexity, they have a 

large constant that becomes hidden within the big-oh notation. It is often the 

case that for sparse graphs, the simplicity of a binary heap will outweigh the 

overhead involved in using a Fibonacci heap. 

1.3 Minimum Spanning 'frees 

Another common problem arising in graph theory is known as the minimum­

spanning tree (MST) pmblem. This problem is defined as follows. We are given 

a weighted graph G = (V, E) along with its corresponding weight function w. 

We wish to find a subset T <;;;; E that is acyclic, connects all vertices V E G, 

and whose weight is minimal among all such subsets. Figure 1.3 shows an 

example of a graph along with an MST for that graph. It should be clear from 

the figure that an MST for an arbitrary graph G may not be unique. In the 

example shown, any one of the edges with weight 5 could have been omitted 

1Amortized time [6]. 

9 
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to produce another MST. 

10 

5 1 5 

( --
5 1 5 

(a) A graph G (b) An MST T of G 

Figure 1.3: A graph G is shown in (a) along with one MST for Gin (b). 

We now present the two most well known algorithms for finding an MST in 

a graph. Both use a greedy technique to build up a minimum spanning tree. 

The first is known as Kruskal's algorithm. This is due to Kruskal and was first 

presented in [17] in 1956. Given a graph G = (V, E), the algorithm initializes 

lVI sets, each consisting of one vertex from the graph. At each iteration of the 

algorithm, it finds the minimum weight edge to connect two disjoint sets. It 

then takes the union of these sets and adds the edge to the collection of edges 

making up the minimum spanning tree. The pseudocode for the algorithm 

taken from [6] is given in Algorithm 2. Line 1 initializes the set T of MST 

edges to be empty. The for loop in lines 2 to 4 initialize a set for each vertex 

in the graph. Lines 6 through 13 build the minimum spanning tree by finding 

the minimum edge that does not connect two vertices in the same set. Here 

we assume that FIND-SET( u) returns the set containing the vertex u. Lines 7 

and 8 find the sets containing u and v respectively. Line 9 checks if they are 

distinct sets. If so, then we add the edge ( u, v) to the set of tree edges T and 

10 
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Input: G = (V, E), w: E---+ lR 

Output: a set of edges T that forms a minimum spanning tree in G 

1 T +-- 0; 

2 for each vertex v E V do 

3 MAKE-8ET(v); 

4 end 

5 sort edges in non-decreasing order by weight w; 

6 for each edge ( 1L, v) E E taken in non-decreasing order by weight w do 

7 S11 +-- FIND-8ET(u); 

8 Sv +-- FIND-SET(v); 

9 if Su -::1 Sv then 

10 T +-- T U {(v,, v)}; 

11 UNION(Su, Sv); 

12 end 

13 end 

14 return T; 

Algorithm 2: Kruskal's algorithm for finding minimum spanning trees. 

11 



M.Sc. Thesis - Chris Dickson McMaster- Computing and Software 

perform the union of the sets containing u and v. 

Theorem 1.3. (6} If we are given a graph G = (V, E) and a weight function 

w, then Tunning Kruskal's algorithm will find one minimum spanning tree T 

in G. 

We must now analyze the running time of Kruskal's algorithm. Us­

ing the disjoint set implementation described in [6], the overall complexity 

of Kruskal's algorithm is O(IEilg lEI). If we have a sparse graph where 

lEI = O(lg lVI), then the complexity is improved to O(IEilg lVI). 

One drawback of implementing Kruskal's algorithm is that it requires 

a good implementation of a relatively complex data structure for disjoint sets. 

Another algorithm known as Prim's algorithm [22] does not require such a 

complex data structure. Prim's algorithm also finds a minimum spanning tree 

in a graph G and is given in Algorithm 3. The pseudocode for this algorithm 

is taken from [6]. 

Prim's algorithm works by maintaining a set Q of vertices not yet en­

countered. Each time it removes a vertex v from Q, it checks if the weight of 

each edge incident upon u is less than the key value for the vertices adjacent 

to u. This is very similiar to the way that Dijkstra's algorithm finds short­

est paths. Similar to Dijkstra's algorithm, we must also use a min-priority 

queue to store the key values of the vertices. The running time of Prim's al­

gorithm depends on the choice of min-priority queue. If a binary heap is used 

to implement the min-priority queue, the running time of Prim's algorithm is 

O(IEilog lVI). 

12 
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Input: A graph G = (V, E) along with its weight function w and a root 

vertex rEV 

Output: Arrays key, and 1r representing a minimum spanning tree 

1 for each u E V do 

2 key[v,] +- oo; 

3 1r[u] +- NIL; 

4 end 

5 key[r] +- 0; 

6 Q +- V; 

7 while Q =/= 0 do 

8 u +- EXTRACT-MIN(Q); 

g for each v adjacent to u do 

10 if v E Q and w(u, v) < key[v] then 

11 1r[v] +- u; 

12 key[v] +- w(u, v); 

13 end 

14 end 

15 end 

Algorithm 3: Prim's algorithm for finding minimum spanning trees. 

13 
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1.4 Approximation Algorithms 

An approximation algorithm for a minimization problem is an algorithm 

that returns a near optimal solution in polynomial time. We say that an 

approximation algorithm has an approximation ratio of r if the ratio of the 

objective value produced by the algorithm and the optimal objective value 

is less than or equal to r [6]. Furthermore, we call an algorithm with an 

approximation ratio of r an /-approximation algorithm. 

A polynomial time approximation scheme (PTAS) is an algorithm such 

that for any fixed E > 0, we obtain a (1 +E)-approximation algorithm. 

1.5 Steiner Minimal Trees 

The Steiner minimal tree problem is a problem arising in graph theory that 

can be defined as follows. Given a weighted graph G = (V, E) and a set of 

vertices S s;;; V, find a minimum weight connected subgraph of G that includes 

all vertices in S. An example of this is illustrated in Figure 1.4. 

In Figure 1.4( a) we see a graph G along with a set of vertices S. The 

set S is denoted by the vertices that are shaded. We assume that all edges in 

G have equal weight. Figures 1.4(b) and 1.4( c) show two Steiner trees in G. 

However, the tree in Figure 1.4( c) is of minimal weight, while the other is not. 

It is worth noting that there may be more than one Steiner minimal tree for 

a given graph G and a set S. 

Although this problem appears to be similar to the minimum spanning 

tree problem, it was shown in [8] that the SMT problem is NP-complete. 

Under certain restrictions, several exact solvers have been developed to find 

14 
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(a) A graph G along wit h a 

set of terminals S (shaded) 

(b) A Steiner t ree in G (c) A Steiner minimal tree 

in G 

Figure 1.4: An example of the Steiner minimal tree problem in graphs. 

SMT's. GeoSteiner [9] is the best known. GeoSteiner is able to find rectilinear 

and euclidean SMT's given a set of (x, y)-coordinates. The main restriction 

imposed by GeoSteiner is that t he graph G must be planar with unit-length 

edges. Another exact solver which is widely used for the global routing problem 

is FLUTE [5]. FLUTE finds an optimal SMT based on lookup t able method. 

It has pre-computed Steiner trees based on all configurations of terminals up to 

degree 9. There are several drawbacks of this method . First , like GeoSteiner , 

the graph must be planar with unit edge weights. Also, it only finds optimal 

t rees for a set of t erminals of degree 9 or less . In global routing it is often 

necessary to find SMT's with more than 9 t erminals. 

15 
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As well as exact techniques, several approximation methods for finding 

SMT's have been presented. In [16] a 2-approximation algorithm is proposed. 

This algorithm is designed for general graphs, and imposes no restrictions on 

the edge weights. Another advantage of this algorithm is its simplicity to 

implement as it requires only the algorithms discussed in Sections 1.2 and 

1.3. Although this algorithm comes with a 2-approximation bound, we will 

see in Chapter 5 that, for our case, it delivers solutions which are very close 

to optimal. The details of this algorithm are presented in Chapter 3. 

16 



Chapter 2 

Mathematical Formulation 

(a) A path with a 

bend on v. 

(b) A path with a 

bend on v. 

(c) A path without a 

bend on v . 

Figure 2.1: Figure illustrating bends within a path . 

17 
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In the global routing problem, we aim to minimize the wire-length for 

the ultimate physical design of the circuit. Generally, the circuit is modeled as 

a grid graph. An m x n grid graph, also called a lattice graph, is the product 

of path graphs on m and n vertices. A path graph is a tree with two vertices 

of degree 1, and the remaining n- 2 vertices of degree 2. An example of a 

grid graph is illustrated in Figure 1.4(a) (see page 15). Thus, the vertices of 

a grid graph represent the components in the circuit, and the edges represent 

the routing channels or the areas in which wire may be placed. A set of 

vertices which need to be connected with wire is known as a net. Each vertex 

contained in a net is called a terminal. In a particular instance of the global 

routing problem, we are given many nets to connect. Furthermore, each edge 

of the grid graph is associated with an integral capacity constraint. That is, 

the number of wires that may pass through that edge. A solution to the global 

routing problem is a set of trees that connects the terminals of each net, and 

satisfies the edge capacity constraints. 

Formally, we are given a planar, weighted grid graph G = (V, E) and a 

set of nets S1 , ... , SK ~ V. The edge set is associated with a length function 

l: E----+ JR.+ U {0} and a capacity function c: E----+ JR.+ 2
. We assume that ISkl 

is bounded by some constant for all k = 1, ... , K. A feasible solution is a set 

of K trees spanning S1 , ... , SK with respect to the edge capacity constraints. 

The overall cost of the solution consists of two parts: (i) the edge cost and (ii) 

the total number of bends in the trees called the bend-dependent vertex cost 

(see Figure 2.1). The goal is to minimize the overall cost defined as a linear 

combination altotal + f)vtotal, where ltotal is the sum of edge length of all K 

2 Although we arc physically restricted to having integral edge capacities, for the presen­

tation of the algorithm we allow fractional capacities. 

18 
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trees and Vtotal is the sum of numbers of bends of all K trees, while o:, /3 ~ 0 

are predefined weights representing to the impact of the total wire-length and 

the total number of bends in the trees whose values are set according to the 

design requirements and are given in advance. In VLSI design, bends in trees 

are known as vias. For simplicity, we denote by ci the capacity of edge ei E E 

from now on. In addition, by scaling, we can set a+ /3 = 1, i.e., the overall 

cost is a convex combination of the total edge length and the total number of 

bends. 

The global routing problem in VLSI design is NP-hard. It is at least 

as hard as the minimum Steiner tree problem in graphs because the global 

routing problem contains the minimum Steiner tree problem as a special case. 

We now develop the integer linear programming (ILP) formulation of 

our generalized model. Denote by '4 the set of all trees in G connecting the 

vertices in Sk. It is worth noting that 1'41 can be exponentially large. We also 

denote by xk(T) the indicator variable as follows: 

{ 

1, if T E '4 is selected for the net Sk; 
Xk(T) = 

0, otherwise. 

In addition, we define by l(T) and v(T) the length of tree T and the number 

of bends in the tree T, respectively. Therefore, the ILP of the global routing 

problem is as follows: 

K K 

rmn a L L l(T)xk(T) + /3 L L v(T)xk(T) 
k=l TETk k=l TET,. 

s.t. L xk(T) = 1, Vk = 1, ... ,K; 
TETk (2.1) 

K 

2..: 2::: xk(T) Sci, \lei E E; 
k=l TET,.,&eiET 

xk(T) E {0, 1}, \IT, k = 1, ... , K. 

19 



M.Sc. Thesis - Chris Dickson McMaster- Computing and Software 

The third set of constraints enforce that the value of x for each tree be either 

0 or 1. This implies that the first set of constraints enforces that exactly one 

tree is chosen to route the net Sk. The second set of constraints are capacity 

constraints for the edges. 

Lemma 2.1. (26} For any given f E (0, 1), if we can solve the following linear 

program 

mm A. 

s.t. 
K 

I: 
k=l TE~,&e;ET 

K 

Xk(T) 
--<A. 

- ' C· 1. 

K 

a L L l(T)xk(T) j3 L L v(T)xk(T) 
k=l TETk k=l TETk < \ ___ ___:::.,g:----- + ___ ___:::.,g=----- - A, 

L .Tk (T) = 1' 'Ilk = 1' ... ' K; 
TETk 

Xk(T) E [0, 1], VT,k=1, ... ,K 

(2.2) 

where g is the guessed objective value for (2.1), then we can find a (1 +c)­

approximate solution to the LP-relaxation of (2.1). 

Formulation (2.2) is a convex min-max resource-sharing problem [10, 

12] 

min{A.!.fm(x) ~A., mE {1, ... , M}, x E B}, (2.3) 

where f : B ---+ IR~ is a vector of M non-negative continuous convex functions 

defined on a non-empty convex compact set B E IRN. In this way, we may 

approximately solve (2.1) by using existing algorithms for the convex min­

max resource-sharing problem. We shall refer to the LP relaxation (2.2) as 

the fractional global routing problem. 
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Since I'Ik I may be exponentially large, many exact algorithms for LPs 

such as standard interior point methods cannot be applied to obtain a polyno­

mial time algorithm. It is possible to solve such a problem by the volumetric­

center [2] or the ellipsoid methods with separation oracle [11]. However, those 

approaches will lead to a large running time, which is unsuitable for global 

routing, as instances of these problems are typically too large. 

We will apply the approximation algorithm £ in [13] for convex min­

max resource-sharing problems. Algorithm 4 (see page 26) is a specialization 

of£ for the global routing problem. By applying this algorithm, we avoid the 

exponential size of T. In £, we generate K minimum Steiner trees for the 

K nets in each iteration. Thus, there is only a polynomial number of Steiner 

trees generated in total. In fact, it is shown in [26] that the approximation 

algorithm generates at most O(Km(logm+c:-2 logc:-1
)) Steiner trees, where 

m is the number of edges in the grid graph, and the following result for the 

fractional global routing holds: 

Theorem 2.1. Algorithm 4 is an r(1 + c:)-appmxirnation algorithm for the 

fractional global muting pmblem (2.2) pmvided that an r-approximate mini­

mum Steiner tree solver is available. 

Approximation algorithm£ is solving, at each iteration, a sub-problem 

which the authors refer to as the block problem. It is shown in [26] that the 

block problem is as follows: 

. rf( ) ~ W ~ . [~. (Pi+ O!Pm+lli) + Pm+lf3v(T)l mm p x = L.....t k = 6 mm L.....t - . 
xEB TETk Ci g g 

k=l k=l eiET . 

The first term in the internal minimization problem can be regarded as the 

weights associated with edges in G, while the second term corresponds to the 
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Figure 2.3 : Virtual layer graph H. 

bend-dependent vertex cost . We define g to be the guessed object ive value 

from (2.1 ). The vector p is the current dual vector. In order to deal with the 

bend-dependent vertex cost , the virtual layer m ethod is proposed in [26] as 

follows. 

We begin by part it ioning the edge set E from G into two disjoint subsets 

Ex and Ey, where E = Ex U Ey. Ex contains only the horizontal edges from 

E, while Ey contains only vertical edges . A two-layer graph H is constructed 

as fo llows. For each vertex v E G , there are two vertices v and v' in H . 

These vertices have the same x and y-coordinates as in G but differ in their 

z-coordinates . To construct the edge set of H we consider the edg sets Ex 

and Ey. Ex connects vertices of H in the lower (horizontal) lay r , while Ey 

connect s vertices of H in the upper (verti cal) layer. In order to connect vertices 

v and v' we introduce an additional edge set Ez. Each edge in Ez connects a 

pair of vert ices v and v' in H. (see Figure 2.3). vVe can see that if a path in G 

has a bend on vertex vi , t his corresponds to using an edge in Ez that connects 

vert ices vi and v~ in H . Similarly, a path in H that uses an edge in Ez must 
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have a bend on its corresponding path in G. 

We now set the weights to the edges in H. For any edge ei E Ex U Ey, 

we assign a weight wi = pi/ ci + O:Pm+ 1ld g according to their indices in the 

original graph G. For every edge inEz, we assign a weight Pm+ 1(3jg. In this 

weighted, two-layer graph H, a minimum Steiner tree for a net Sk corresponds 

to a tree for Sk in G with the minimum Wk. So when we apply Algorithm 

£, the block problem corresponds to the classical Steiner tree problem in the 

graph H to minimize the overall edge weight of the Steiner tree connecting 

the vertices in Sk. We can apply an approximate solver for the Steiner tree 

problem as the block solver of Algorithm £. 

Once we have a fractional solution given by the approximation algo­

rithm £, we must round it to find a feasible integer solution. In addition, 

we must have a performance guarantee of the approximation ratio. We use 

randomized rounding (see Section 3.3) as described in [24, 23]. Algorithm 4 

on page 26 summarizes the afformentioned method. For that algorithm, the 

following theorem holds: 

Theorem 2.2. Algorithm 4 is an approximation algorithm for the linear prob­

lem (2.2) sv.ch that the objective value is bounded by: 

{ 

r ( 1 + c) 0 PT + ( exp ( 1) - 1) ( 1 + c) J r · 0 PT ln m, 

r( 1 + c)OPT + exp(1)(1 +c) ln m , 
1 + ln(ln m/(r ·OPT)) 

ifr ·OPT> lnm; 

otherwise, 

where OPT denotes the optimal value of the instance, r is the approximation 

ratio of the block solver, and m is the number of edges in the grid graph. 
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Chapter 3 

Implementation 

In this chapter, we present an implementation of the approximation algorithm 

in [26] for the ILP formulation of the global routing problem in VLSI design. 

We first present a basic outline of this algorithm, then go into some details 

about the methods for Steiner tree approximation, as well as rounding approx­

imate solutions to the ILP formulation. 

3.1 Outline 

We now present a basic outline of the approximation algorithm used to solve 

the LP (2.2) in Chapter 2. We outline this in Algorithm 4. 

Our input is given as a grid graph G = (V, E). Usually, this is sim­

plified to two integers corresponding to the length and the width of graph 

G. Additionally, we may be given a list of missing vertices (holes) and/or an 

edge length function. If no edge lengths are specified, then they are assumed 

to be of unit-length, i.e., length one. We are also given a non-empty set of 

nets. Each net Sk is a set of vertices (coordinates) in G, where ISkl ~ 2 for 
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Algorithm 4: Approximation algorithm for global routing in VLSI de-

s1gn. 

Input: A graph G = (V, E) and a setS of nets where lSI = K and 

Sk c V fork E {1 ... K}. 

Output: A set of K trees where each tree in the set spans its 

corresponding net in S. 

1 Initialization of variables and virtual layer graph generation 

2 for k +- 1 to K do 

3 Call approximate Steiner tree solver to generate a tree for Sk 

4 end 

5 Compute edge congestion 

6 while stopping criteria not satisfied do 

1 Reweight edges in graph 

s for k +- 1 to K do 

9 Call approximate Steiner tree solver to generate a tree for Sk 

10 end 

11 Compute a step length T and move to new solution 

12 Update edge congestion 

13 end 

14 Perform rounding such that we choose one tree to route each net Si 
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kE{1 ... K}. 

Line 1 involves initializing local variables as well as transforming the 

grid graph G into a viTtual layeT gmph which will be denoted as H. In lines 

2 - 4 we generate a tree for each net in S. To achieve this, we simply call 

our approximate Steiner tree solver which will generate a tree when given the 

graph Hand a net Sk. In line 5 we compute the edge congestion for each edge 

in G. The edge congestion for the edge ei is equal to the number of trees that 

pass through it. 

We now enter the main loop of our algorithm. Line 7 reweights the 

edges in our virtual layer graph. The edge weights are chosen such that highly 

congested edges will have a larger weight in H than those edges that are less 

congested. In this way, when we compute the next set of trees in lines 8- 10, 

the edges that are frequently used in previous iterations will be avoided. In 

line 11 we compute a step length T E (0, 1] for the current iteration. This step 

length can be thought of as a measure of "goodness" for the current iteration. 

The details of computing the step length are discussed in Section 4. 

After each iteration of the main loop (lines 6 through 13), we compute 

the congestion for each edge ei. However, since we keep the trees generated 

in previous iterations, we must measure how often each edge is used in all 

iterations. Without loss of generality, the edge congestion for an edge ei can 

be scaled by its capacity such that it is a non-negative real number. We will 

denote this scaled congestion as k Formally, fi = nd ci where n; is the number 

of edge crossing edge ei and ci is the capacity. A value of fi that is strictly 

greater than 1 implies that this edge is over capacity. This leads to the concept 

of fmctional edge congestion. We compute the new fractional edge congestion 
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for edge ei by the following formula: 

Here, fi corresponds to the scaled edge congestion of edge ei for the trees 

generated in the current iteration for all i = 1, ... , m. Additionally, we have an 

extra constraint that corresponds to the objective value. During initialization, 

the value of T is set to be 1. Thus, for the first iteration, the fractional edge 

congestion is equal to the congestion ofthe current block solution. Now, define 

A to be the maximum fractional edge congestion for all edges. That is: 

A= maxfi· 
e;EE 

After each iteration, we wish to decrease the value of A. We update x in the 

same manner f is updated at each iteration. 

The stopping rules can be varied according to the problem being solved. 

The problem is fractionally feasible when fi :::;: 1 for all i = 1, ... , m. 

Finally, in line 14 we finalize the trees, one for routing each net. The 

details of this procedure are discussed in Chapter 3.3. 

3.2 Steiner Tree Approximation 

The Steiner minimal tree problem is AP X-hard. An optimization problem 

is APX-hard if it is NP-hard and it admits a constant-factor approxima­

tion algorithm [3]. For certain instances, it is possible to get a true Steiner 

minimal tree fast (but not in polynomial time). GeoSteiner [27] is a soft-

ware package that computes Steiner minimal trees, however it operates only 

on planar lattice/grid graphs. Also, these graphs are assumed to have unit 
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length. Although the edge lengths in our grid graph may have unit length, 

the edge weights in the virtual layer graph may not have unit length. Thus, 

this package is unsuitable in our algorithm. Additionally, GeoSteiner does not 

run in polynomial time in the worst case. From now on, the notion of Steiner 

minimal trees will be abbreviated as SMT and the abbreviation MST refers to 

the minimum spanning tree problem. 

There are many known approximation algorithms for computing SMT's, 

where some have performance guarantees or approximation ratios while oth­

ers do not. We will discuss only those with an approximation ratio, as this is 

needed to provide a performance guarantee for our overall algorithm. A simple 

2-approximation algorithm was presented in [16]. Robins and Zelikovsky [25] 

developed a !.55-approximation method, implementations of which exist, but 

yield large running times which is unsuitable for our applications. The best 

known lower bound of the approximation ratio is ~~ [14]. It should be noted 

that there is no polynomial time approximation algorithm that guarantees this 

ratio. 

We choose to use the 2-approximation algorithm introduced in [16] due 

to its simplicity and low running time as well as its theoretical performance. 

Computation results indicate that for our application, the approximation ratio 

is very close to one. The pseudo-code for this approximation algorithm is 

presented in Algorithm 5. 

An example of this algorithm is illustrated in Figure 3.1. The computa­

tional bottleneck of this algorithm is the computation of the complete distance 

network. The complete distance network is the shortest distance between all 

pairs of terminals in the net. We use Dijkstra's algorithm with a binary heap 

as priority queue in order to achieve a complexity of O(IEilog lVI). There are 
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Algorithm 5: 2-approximate Steiner tree algorithm [16] 

Input: A weighted graph G = (V, E) and a set of terminals S ~ V. 

Output: A steiner tree T for the terminal set K in the graph G. 

1 Compute the complete distance network N 

2 Compute an MST MN of N 

3 Transform MN into a reduced graph N[MN] by replacing each edge of 

MN by the corresponding shortest path 

4 Compute an MST M in N[MN] 

5 Transform M into a Steiner tree T by deleting all leaves that are not 

terminals 

Initial 2 

3 4 5 

Figure 3.1: The various steps of Steiner tree approximation algorithm. 

30 



M.Sc. Thesis - Chris Dickson McMaster- Comput·ing and Software 

other advanced data structures such a Fibonacci heaps or pairing heaps which 

give a better theoretical complexity result. However, these heaps require sig­

nificant overhead and only have better performance in the case of vertices with 

high degree (dense graphs), while our underlying graphs are sparse. We use 

a O(IVI 2
) version of Prim's algorithm to compute minimum spanning trees. 

It should be noted that the graphs in which we run Prim's algorithm have 

significantly less vertices than the original graph, so we would not expect to 

see a big improvement in running time even if we used an MST algorithm with 

a better time complexity. 

Additional improvements have been made to this algorithm that not 

only improve the running time but also the quality of the solution. These are 

discussed in Chapter 4. 

3.3 Rounding 

We implement randomized rounding [24, 23] in order to obtain an integer 

solution from our fractional solution. Assume that we perform a total of p 

iterations while solving the LP (2.2) in Chapter 2. We know that for each 

net Sk we will have a total of p + 1 Steiner trees corresponding to this net. 

Each tree for net Sk has a corresponding value of x E (0, 1]. Additionally, for 

each net, the sum of corresponding x values is 1. We regard this value as the 

probability that this tree will be chosen to route the given net. 

We can think of this randomized rounding as a lottery system. For each 

net, we have a set of trees, each with a given probability (see page 28). Trees 

with an x value close to 1 will almost always be picked while trees with an x 

value close to zero will rarely be picked. Figure 3.2 illustrates this principle. 
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Xk (l) = 0.5 Xk(2) = 0.3 Xk(3) = 0.2 

(a) Trees generated for net k . 

x!.:( l ) I Xk(2) I Xk(3) I 

t t t t 
0 0.5 0.8 1 

(b) Number line corresponding to Xk values . 

Figure 3.2: Randomized rounding 
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In Figure 3.2(a) we have 3 trees generated for net k. Below each tree 

we see the xk value associated with its respective tree. We map these values 

to a number line over [0, 1) as shown in Figure 3.2(b). Each tree is associated 

with a range of values over this number line. For each net k = 1, ... , K, we 

generate a random number over [0, 1) to find the tree that will be chosen to 

route net k. For example, if the random number was in the range [0, 0.5), the 

first tree for net k would be chosen. If the random number was in the range 

[0.5, 0.8), the second tree would be chosen. The tree corresponding to xk(T) 

that is chosen to route net k is assigned the value 1, while other trees for net 

k are assigned the value 0. 

In practice, we repeat randomized rounding several times in order to 

obtain the best possible solution. The amount of time spent in rounding is 

extremely small compared to the time spent generating trees and solving the 

LP. Also, in the case that we cannot generate a feasible integer solution, we 

only keep solutions which have fewer constraint violations than the solutions 

that came previously. In the case of ties in the number of edge capacity 

violations, we keep the solution that has the lowest objective value. 
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Chapter 4 

Heuristics and Improvements 

We now show some practical improvements we have made to this algorithm. 

We will present the details of choosing the step length T in this chapter. As 

well, we will discuss some improvements made to the running time of the 

Steiner tree solver. A multithreaded version of the algorithm is discussed, as 

well as several heuristics used to improve the quality of the solution. 

4.1 Potential Function Minimization 

We base our LP solver on a g1ven algorithm for solving convex mm-max 

resource-sharing problems. A potential function for convex min-max resource-

sharing problems (2.3) is introduced in [13] as follows: 

t M 

c/Jt(x) = lne- M L ln(e- f~n(x)), ( 4.1) 
m=l 

where t is a parameter depending on the error tolerance E and the parameter 
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e is the solution of the following equation: 

t M e 
M ~ e ~ frn(x) = 1. 

(4.2) 

It is shown in [13] that a good approximation of the minimum of ,\ 

can be attained at an x minimizing the potential function c/Yt ( x). The approx­

imation algorithm for convex min-max resource-sharing problems in [13] is 

based on this property and is applied in [26] for developing the approximation 

algorithm for the VLSI global routing problem. 

In this algorithm, there is a given formula to compute the step length 

T. However, in practice we notice that this produces small values for T. This 

causes the algorithm to converge slowly and thus requires many iterations 

though the complexity bound in [26] still holds. Therefore, we need to decide 

a relatively larger step length for speedup. On the other hand, we cannot 

choose T to be too large. Otherwise our algorithm will begin to cycle and 

converge slowly. 

Our heuristic to determine the step length T is to find a new iterate x' 

between the old iterate x and the block solution :i; by line search such that the 

new fractional congestion f' minimizes the potential function c/Yt ( x) over all x' 

between .T and .1:. We have used a bisection method in order to minimize this 

function. Specifically, we approximate the derivative of the potential function 

by using divided-differences as shown in equation ( 4.3) for some small 6 > 0. 

(4.3) 

We then find the zero of this function using the bisection method. It 

should be noted that we have several fail-safe mechanisms for this line search. 

We have safe-guarded a maximum number of iterations to avoid numerical 

36 



M.Sc. Thesis - Chris Dickson McMaster- Computing and Software 

instability. Also, in the case that a zero does not exist, we simply use the 

default step length. However, generally when no zero of the derivative to the 

potential function can be found, the stopping criteria for solving the LP have 

been met and the approximation bound has been reached. That is to say, no 

step length can further reduce the congestion, so we can go no further. 

4.2 Recording Shortest Paths 

With regards to the Steiner tree solver, there are some simple improvements 

that can be made to significantly reduce the running time. When we compute 

Steiner trees, it is necessary to first compute a complete distance network of 

the terminal set. This involves (1 5{1) calls to Dijkstra's algorithm for each net 

Sk for k = 1 ... K. However, since in each iteration of our algorithm, we are 

working with the same graph, the shortest paths from any given vertex in H 

do not change. By storing the paths, we can eliminate the unnecessary calls to 

Dijkstra's algorithm. Once we call Dijkstra's algorithm for a given terminal, 

we can reduce the complexity of finding shortest paths to O(IVI) as we need 

only to do a linear search to find the destination vertex, and trace its path back 

to the source vertex. This technique yields a great improvement in running 

time, especially for large instances with many nets. The only drawback is that 

this significantly increases the memory demand on the system. After each 

iteration, we must re-weight the graph H. Thus, the stored paths are only 

valid for the current iteration and must be computed again in the following 

iteration. 
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4.3 Parallel Tree Generation 

Similar to the improvement we made in the Steiner tree solver, we are able to 

exploit the fact that the graph weights remain constant throughout a given 

iteration. Because of this, we may generate trees in any order without changing 

the result of the solution. This naturally leads to the idea of parallelization. If 

NP is the number of processes on our machine, then we may assign a total of 

NP threads to generate trees. We can assume that, for each instance, each net 

is labeled from 1 to K where K is the total number of nets. We assign each 

thread a lower bound and an upper bound which represent the range of nets for 

which it must produce trees. Specifically, each thread will generate lff J trees. 
p 

We also assign the last thread the additional K mod NP trees. It is worth 

noting that since K is generally much larger than NP, these additional trees 

do not have a large effect on upsetting the workload balance for each thread. 

In Chapter 5 we will provide computational results on the time improvement 

using this technique. 

4.4 Hybridization of Concurrent and Sequen-

tial Routing 

The motivation for this heuristic is that sequential routers are generally able 

to find a good solution in terms of feasibility, but not in terms of wire-length. 

However, if we begin our algorithm with a "good" set of trees, then we may be 

able to improve the total wire-length of the solution, while still maintaining 

as much feasibility as possible. 

In our implementation, we allow the solutions from a sequential router 

38 



M.Sc. Thesis - Chris Dickson McMaster- Computing and Software 

called Labyrinth [18] to warm start our algorithm. Labyrinth uses the ma7oe 

runner heuristic introduced by Lee in [19]. While being very good at finding 

feasible solutions, Labyrinth has serveral limitations. First, the grid graph 

must be uniform. That is, there may not be holes (missing vertices) in the 

graph. Also, capacity must be uniform across the graph, restricted to a single 

horizontal and vertical value. Additionally, this program does not take into 

account vias or bends in the trees. We may use the solutions produced by 

Labyrinth to reduce the running time of our own algorithm. However, m 

order to fully exploit this technique, further investigation is needed. 

4.5 Fixing Trees 

Another class of heuristics that have been implemented deal with a fixing a 

subset of nets to a single tree generated in the first iteration. The idea is to 

determine a certain subset of the K total nets, and generate only a single tree 

for this net. A similar heuristic has been implemented in [18] which allows 

the user to route all 2-terminal nets first. A side effect of our heuristic is that 

after the first iteration, we reduce the number of nets we need to find trees for 

in subsequent iterations. This reduces the problem size, and thus reduces the 

overall time taken to solve the problem. 

We use bounding-box area, and the sum of bounding-box dimensions 

as the properties for determining which nets become fixed. A bounding-bo:r; 

for a net is the tightest rectangle that includes all the terminals in its net. 

An example of a bounding-box for a net is illustrated in Figure 4.5. In the 

example shown, we have a 5 x 6 bounding box. Thus, the bounding-box area 

is 30 while the sum of bounding-box dimensions is 11. First, the nets are 
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Figure 4.1: A bounding-box for a net in a grid graph (edges ommited). 

sorted in non-decreasing order based on the given property. We then select a 

certain percentage of the total nets for which we wish to fix. A tree is then 

generated for each of the nets we have sel cted . The remaining steps of the 

algorithm are run as usual. The idea for sorting the nets in non-decreasing 

order is as fo llows. If we assume that our heurist ic is to use bounding-box 

area, then selecting the nets with the smallest bounding-box area will reduce 

the probability that the fixed nets will overlap. This increases the probability 

that the congestion will be spread out more evenly over the area of the chip. 

The justification for using the sum of bounding-box dimensions is as 

follows. Many of the nets in a given instance have a low number of terminals 

(two or three). Since net s with two colinear terminals have a bounding-box 

with area zero , we wish to include some nets with more than two terminals 

in the set of nets to be fixed. However, if we only use bounding box area as 

40 



M.Sc. Thesis - Chris Dickson McMaster- Computing and Software 

a heuristic to fix nets, we arc guaranteed to fix all colinear two terminal nets 

first. By using the dimension sum heuristic, we add the possibility to fix nets 

with a higher number of terminals. This is desirable as some two terminal nets 

may be very long, while some three terminal nets may be very close together. 

Another issue that arises in the discussion of this class of heuristics, is 

how to appropriately choose the percentage of nets to fixed for a given instance. 

In general, there is no way to determine ahead of time what percentage will 

work the best for a given problem. Additionally, we have tried sorting in non­

increasing order, but this method showed no improvement. In Chapter 5 we 

will aim to determine some trends for a given set of benchmarks and show 

that the use of any of these heuristics leads to some improvement. 
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Chapter 5 

Computational Results 

In this chapter we provide the computational results for our algorithm, as well 

as for all the heuristics described in Chapter 4. We use the well-known MCNC 

benchmark collection for our computational tests [20]. All codes are written 

in C and all experiments are performed on an 8x AMD dual-core Opteron 885 

workstation with 64GB of RAM running OpenSUSE 10.2 Linux. All running 

times are reported in seconds. 

We begin with a comparison of the two mam versiOns of our code. 

The first uses the path saving heuristic. The table in Table 5.1 compares the 

running times of the algorithm without the heuristic versus using the heuristic. 

Only the running time for solving the LP is given because time taken to round 

the fractional solution is independent of the method used to solve the LP. It 

should be noted that only the largest sets of test data are shown in this table 

because the running times of small test sets are less than 1 second for both 

versiOns. 

As we can see, the time spent generating trees is greatly reduced using this 
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B E] Tree Generation Time {s) IG Dimensions 
Path Saving II I Imp No Saving 

prim2 26x26 2043 1 6 500% 
bio 46x46 3460 18 65 261% 
ind2 72x72 10542 135 659 388% 
ind3 54x54 18037 56 560 900% 
avq.small 80x80 16649 238 1160 387% 
avq.large 86x86 18666 322 1420 341% 

Table 5.1: Comparison of tree generation times with and without path saving 

heuristic. 

method. From the benchmarks specified in the table, we can see there is an 

average of a four and a half times improvement in tree generation time. The 

exact reduction depends on the number of nets that use a given vertex over all 

nets in the instance. For example, an instance with 20 nets that has distinct 

terminals in each net shows no improvement. The more times a terminal 

is repeated throughout the K total nets, the more time improvement we see. 

Fortunately, these instances of these problems have terminals that are repeated 

frequently throughout all nets. However, one must consider the space versus 

time tradeoff when using this method. As the graph increases in size, the 

amount of memory required to store the shortest paths will increase rapidly. 

This heuristic is thus suited for smaller instances and proves to be impractical 

when considering very large scale problems. However, it can still provide some 

usc. There are techniques emerging that apply refinement techniques to the 

global routing problem [28]. These techniques start with a small graph and 

gradually refine the dimensions until the true size is attained. Because the first 

few steps would typically be small, this heuristic is very beneficial to reduce 

computation time. 
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We now present the results for parallel tree generation in our algorithm. 

A shared memory model is utilized with POSIX threads underlying the multi­

threading. We run our algorithm on a select subset of the MCNC benchmarks 

using 1, 2, 4, 8, and 16 threads in the tree generation phase. The table in Fig­

ure 5.1 illustrates this result. Again, we only test are the larger benchmarks 

in the data set. The dotted line labeled "Ref' represents perfect scaling. That 
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Figure 5.1: Effect of multithreading tree generation 

---l~J 

1s, each time we double the number of threads, the running time is halved. 

Clearly, in practice there is overhead involved in multithreading. Also, only 

the tree generation phase of our algorithm is parallelized. The other steps of 
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the algorithm such as updating the edge weights in the graph, and computing 

step lengths are not performed in parallel. However, we can still see that our 

algorithm scales very well. This is due to the fact that the majority of the 

running time in each iteration is spent in generating trees. Thus, speeding up 

tree generation has a large effect on speeding up the whole algorithm. 

We now evaluate the set of heuristics that involve fixing a certain per­

centage of the nets after the first iteration. The three tree properties we focus 

on are objective value, edge overflow (as a percentage of the total number of 

edges) and maximum edge congestion, also known as maximum routing den­

sity (MRD). Tables 5.2 and 5.3 show the raw data for each instance in the test 

set when fixing nets based on non-decreasing bounding box area. The graphs 

in Figures 5.2 and 5.3 illustrate the average reduction of each tree property 

over all the instances in the test set. We interpret the graphs as follows. The 

x-axis shows the percentage of the total nets that are fixed after the first it­

eration. That is, these nets which are selected are confined to a single tree 

generated in the first iteration of the algorithm. The y-axis shows the scaled 

values of the delivered solution. We scale each y-value to the reference value 

which occurs when we fix 0% of the nets. We can make several observations 

from these graphs. First, we can see that, on average, the wire-length is in­

versely related to the percentage of the nets that we fix. This is intuitive as 

in the first iteration, the trees will be short. As we progress throughout the 

algorithm, the new trees grow in length to detour around congested areas. If 

we fix trees after the first iteration, these trees will not grow in length. How­

ever, we must be careful as fixing too many nets will cause congested edges 

that can never be feasible. This is illustrated by observing the MRD for fixing 

90% of the nets. The most important observation from these figures is that 
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fixing nets significantly reduces the number of infeasible edges. On average, 

we see that fixing 70% of the nets based on non-decreasing bounding box area 

gives the global minimum for overflow. We also see that MRD is decreased at 

this percentage, and in the case of wire-length minimization, the minimum for 

overflow and MRD occur at the same fixing percentage. 
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Figure 5.2: Average reduction for minimizing wire-length by non-decreasing 

bounding box area. 

Another heuristic used for fixing nets is the sum of bounding box di­

mensions. Tables 5.4 and 5.5 illustrate the results of these tests. On average, 

we see the graphs in Figures 5.4 and 5.5 have the same shape as the graphs 
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Bounding-Box Area (Via Minimization) 
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Figure 5.3: Average reduction for minimizing vias by non-decreasing bounding 

box area. 

in Figures 5.2 and 5.3. For wire-length minimization, we see both a decrease 

in overflow and in wire-length for fixing 70% of the nets. However, fixing by 

non-decreasing bounding-box area appears to give the best feasibility results. 

Our final results in Tables 5.6 and 5. 7 show tables comparing our best 

results to those of another concurrent router using an ILP based algorithm 

proposed in [28]. The column "WL Lower Bound" represents the best possible 

wire-length if we ignore edge capacities which is the total wire-length if the 

a SMT is chosen to route each net. This lower bound is infeasible in general 
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Figure 5.4: Average reduction for minimizing wire-length by non-decreasing 

sum of bounding box dimensions. 

because the capacity constraints are violated on many edges. GeoSteiner v3.1 

is used to find optimal SMT's [9]. In [28], they make the assumption that 

any net with 10 or more terminals may be ignored by the global router. For 

fairness, we also make this assumption. They perform tests on a 900 MHz Sun 

Blade 200 workstation with 1GB of memory. Additionally, they use CPLEX 

8.0 as a solver for their ILP. On the other hand, our implementation use no 

commercial software. 

For wire-length minimization, we find that our algorithm finds a more 
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Figure 5.5: Average reduction for minimizing vias by non-decreasing sum of 

bounding box dimensions. 

feasible solution than in [28] in almost all test cases. As well, it can be seen 

that wire-length is not greatly sacrificed in order to achieve a reduction in 

the maximum routing demand. On average, we reduce the maximum routing 

demand by 25.8% while only increasing the wire-length by 1.4%. It is crucial 

that our algorithm is able to get a solution with fewer capacity violations, as 

feasibility is the most important and challenging issue in the global routing 

problem. 

We see a similar situation for our via minimization model. Although 
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we have a larger number of vias in our solutions, in almost all cases we im­

prove the maximum routing demand significantly. In the best case, we see a 

36% improvement in MRD, while on average, an improvement of 30% is seen. 

Again, it should be noted that feasibility is always the most important issue. 

Furthermore, we see that our via minimization model reduces the number of 

vias by an average of 4% over our wire-length minimization model. 

In terms of running time, it can be seen that our algorithm is of the 

same order as the algorithm presented in [28]. It should be noted that in Table 

1 of [28] they present an edge congestion minimization model. Comparing 

these results with ours in Tables 5.6 and 5.7, we find that our MRD is very 

close to the MRD presented in [28]. Additionally, in order for them to achieve 

this improvement in edge congestion, they require a significant amount of 

additional computation time. On the largest problems, they see a 55% increase 

in running time on average, and 68% for the largest instance. 
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I
I circuit llproperty 1!~1\ ==~====¥===~==~r=~~==~P~er~c~en~t~a~ge~F~ix~ed~b~y~N~o~n~-D~e~c~re~a~s~in~g~B~o~u~n~di~n~g~B~o~x~A~re~a~~~===v==~~==~==~~~ o% 1o% 20% II 30% II 40% II so% II 60% II 70% 80% 90% 

WL 26323 26310 26078 25970 26106 26568 26255 25834 25942 25942 
fract OVR 20.5 18.8 17.9 18.7 19.6 15.2 17.8 16.0 14.2 17.0 

MRD 6 6 6 6 6 6 6 6 7 7 
WL 341141 342055 339882 339098 330350 329441 330237 321812 321698 322264 

struct OVR 13.6 13.8 13.2 12.7 11.0 11.7 10.7 10.7 11.4 11.0 
MRD 8 8 8 8 8 8 7 9 9 9 
WL 638371 637382 638371 637792 636913 637502 636334 646442 638327 636859 

prim1 OVR 10.0 9.0 9.9 10.2 8.4 8.3 7.9 9.3 8.0 9.0 
MRD 9 9 9 9 9 9 9 8 11 13 
WL 3343050 3342560 3311273 3306075 3309998 3318727 3306271 3298621 3328240 3264687 

prim2 OVR 20.4 20.0 19.8 18.6 19.9 19.2 19.0 18.0 17.4 19.2 
MRD 15 15 15 15 15 15 15 15 14 16 
WL 1066898 1072331 1082989 1084025 1086162 1079402 1075817 1070599 1063371 1046830 

bio OVR 4.7 4.7 3.7 4.4 3.8 3.5 3.2 3.2 3.6 4.1 
MRD 8 8 8 8 8 8 8 8 7 9 
WL 978558 977522 977376 972687 976361 980229 987628 986800 981950 994924 

ind1 OVR 48.8 51.1 49.5 49.0 50.2 50.0 51.1 51.4 50.4 53.3 
MRD 18 18 18 18 18 17 17 17 17 19 
WL 12625392 12570171 12570749 12550187 12499592 12483828 12419794 12414983 12390044 12322415 

ind2 OVR 4.4 3.9 3.8 3.5 3.4 2.7 2.8 2.5 2.5 3.9 
MRD 16 16 16 16 16 15 16 15 15 17 
WL 49083925 49063802 49161481 48970406 48877719 48815338 48795539 48590970 48358063 48053830 

ind3 OVR 4.9 4.9 4.9 4.0 4.2 4.2 3.8 3.2 3.3 4.4 
MRD 37 36 36 36 35 35 35 35 36 39 
WL 9377272 9368794 9342804 9338653 9317210 9252418 9260603 9260833 9199266 9179896 

avq.s OVR 6.6 6.4 6.8 6.4 6.3 5.3 5.1 4.8 6.3 5.2 
MRD 17 16 16 16 16 16 16 15 17 18 
WL 10724983 10753773 10718299 10701025 10687063 10658180 10590604 10566493 10566020 10537304 

avq.l OVR 12.4 11.3 11.4 10.3 10.5 10.8 10.3 10.1 10.4 10.9 
MRD 15 15 15 15 15 15 15 15 16 16 

Table 5.2: Table of results for minimizing wire-length by non-decreasing bounding box area. 
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I
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o% 1o% 2o% II 30% II 40% II so% II 60% II 70% 80% 90% 
VIAS 141 141 140 136 142 138 128 125 120 132 

fract OVR 16.1 18.8 19.6 19.6 15.2 16.1 16.1 16.1 17.9 19.6 
MRD 5 5 5 s 5 5 5 5 7 8 
VIAS 882 847 847 918 874 795 787 739 740 762 

struct OVR 12.6 12.2 12.9 11.5 12.3 12.6 11.1 11.3 11.0 12.2 
MRD 8 8 8 7 7 8 8 9 9 9 
VIAS 919 905 938 939 942 919 905 926 747 752 

prim1 OVR 10.2 10.6 9.5 8.1 8.0 8.0 6.2 8.9 10.0 9.7 
MRD 9 9 8 8 8 8 8 8 10 12 
VIAS 3196 3259 3254 3243 3268 3495 3747 3657 3357 2828 

prim2 OVR 19.8 19.5 20.6 20.8 19.4 22.5 23.1 19.8 17.7 19.6 
MRD 16 16 16 16 16 16 20 16 15 18 
VIAS 3092 3209 3134 3112 3112 3138 2968 3130 3079 2771 

bio OVR 4.3 4.6 4.5 4.6 3.9 3.7 4.7 3.2 3.5 4.5 
MRD 8 8 8 8 8 8 8 8 8 8 
VIAS 1562 1520 1525 1514 1574 1513 1555 1527 1564 1314 

ind1 OVR 56.2 53.8 55.0 53.1 58.8 52.4 56.7 53.1 55.5 48.3 
MRD 18 18 18 18 17 18 17 17 16 20 
VIAS 13208 13394 13493 13541 13547 13692 13956 14101 14173 13321 

ind2 OVR 3.9 3.7 3.9 3.5 3.5 3.0 3.0 2.7 2.7 3.8 
MRD 16 16 16 16 16 16 16 15 15 16 
VIAS 23708 23405 23323 23509 23613 23813 23812 24041 24776 24059 

ind3 OVR 4.8 5.0 4.7 4.7 3.9 3.7 3.6 3.4 3.2 4.2 
MRD 36 36 36 36 35 35 35 35 35 39 
VIAS 18205 18485 18317 18661 19166 19854 20075 20040 19550 17426 

avq.s OVR 7.0 6.5 6.5 6.5 5.9 5.1 5.0 4.8 6.9 5.2 
MRD 15 16 16 15 15 15 15 15 18 19 
VIAS 20308 20793 21033 22103 21869 22425 22645 22695 22078 20894 

avq.l OVR 11.8 11.1 11.3 10.9 10.6 9.5 10.4 10.6 10.4 10.8 
MRD 15 15 15 15 15 15 16 16 15 16 

Table 5.3: Table of results for minimizing vias by non-decreasing bounding box area. 



Wirelength Minimization Model 

I circuit II property II 
Percentage of Nets Fixed by Non-Decreasing Sum of Bounding Box Dimensions I! 

0% II 10% II 20% I 30% 40% I 50% II 60% II 70% II 80% II 90% II 
WL 26323 26282 26459 25657 26064 26105 25928 25942 25874 26010 

fract OVR 20.5 17.8 17.8 16.0 16.9 21.4 16.9 18.7 20.5 19.6 
MRD 6 6 6 6 7 6 7 6 7 8 
WL 341141 341596 339659 337847 337393 340120 339659 340230 348423 325526 

struct OVR 13.6 11.5 13.5 12.6 12.9 13.0 12.5 12.0 14.2 12.6 
MRD 8 8 8 8 8 8 8 8 7 8 
WL 638371 638081 638606 638084 636093 635157 635803 637264 637202 636682 

prim1 OVR 10.0 8.0 9.6 9.5 8.1 9.2 8.1 10.2 8.4 9.7 
MRD 9 9 9 9 9 9 9 9 9 13 
WL 3343050 3348444 3349523 3345012 3340304 3311175 3349425 3308135 3296758 3272337 

prim2 OVR 20.4 18.7 19.8 21.4 18.8 19.3 20.4 18.4 18.5 18.7 
MRD 15 15 15 15 15 15 15 15 15 16 
WL 1066898 1068483 1066167 1068312 1073764 1077721 1086837 1089886 1056772 1044278 

bio OVR 4.7 4.8 4.9 4.4 4.7 4.4 4.2 3.6 3.9 4.8 
MRD 8 8 8 8 8 8 8 8 8 10 
WL 978558 978035 979427 983811 978167 974302 985342 984002 1001389 959610 

ind1 OVR 48.8 51.1 50.4 51.6 50.2 49.2 51.4 49.0 51.1 44.7 
MRD 18 18 18 17 18 18 17 17 18 29 
WL 12625392 12596127 12577901 12561699 12546085 12525594 12511655 12461403 12404046 12364204 

ind2 OVR 4.4 4.1 3.9 4.0 3.9 3.2 3.4 3.0 3.0 3.6 
MRD 16 16 16 16 16 16 16 16 16 16 
WL 49083925 49155196 49186648 48952696 48950568 48864517 48779295 49033084 48755553 48251991 

ind3 OVR 4.9 5.0 5.7 5.0 5.2 4.6 4.6 4.1 3.5 4.6 
MRD 37 36 37 37 37 36 36 35 35 38 
WL 9377272 9392839 9391456 9374161 9399066 9355371 9331160 9301299 9228664 9182548 

avq.s OVR 6.6 6.9 6.8 6.3 6.5 6.2 6.0 5.5 7.3 5.5 
MRD 17 16 16 16 16 16 16 15 18 18 
WL 10724983 10735772 10752310 10745288 10712496 10751935 10762003 10645796 10645781 10537878 

avq.l OVR 12.4 12.0 11.7 12.1 12.0 11.7 11.4 10.5 10.2 10.1 
MRD 15 15 15 15 15 15 15 15 15 16 

Table 5.4: Table of results for minimizing wire-length by non-decreasing sum of bounding box dimensions. 



Via Minimization Model I 

I circuit II property II 
Percentage of Nets Fixed by Non-Decreasing Sum of Bounding Box Dimensions 

II 0% II 10% II 20% II 30% II 40% II 50% II 60% II 70% II 80% II 90% I 
VIAS 141 140 141 139 138 136 134 129 130 127 

fract OVR 16.1 16.1 17.0 16.1 16.1 16.1 15.2 16.1 18.8 16.1 
MRD 5 5 5 5 5 5 5 5 8 7 
VIAS 882 885 856 876 867 863 916 878 884 767 

struct OVR 12.6 13.3 14.5 11.8 13.3 12.5 13.9 10.7 12.1 12.5 
MRD 8 8 8 8 8 8 7 8 7 8 
VIAS 919 922 927 913 912 978 951 938 955 759 

prim1 OVR 10.2 8.6 10.4 9.5 10.5 8.3 10.1 6.7 7.2 10.2 
MRD 9 9 9 9 9 8 8 8 8 12 
VIAS 3196 3312 3217 3212 3241 3296 3239 3396 3342 2858 

prim2 OVR 19.8 20.5 19.8 21.6 20.1 21.1 20.5 17.1 17.8 20.5 
MRD 16 15 16 16 16 15 16 15 15 17 
VIAS 3092 2915 3011 2962 2984 2968 2950 3359 3050 2758 

bio OVR 4.3 5.0 4.2 4.8 4.9 4.9 4.6 3.0 4.1 4.7 
MRD 8 8 8 8 8 8 8 7 8 8 
VIAS 1562 1553 1558 1526 1552 1532 1569 1544 1513 1295 

ind1 OVR 56.2 55.5 57.6 54.3 52.6 54.3 57.4 55.0 53.3 50.2 
MRD 18 18 18 18 18 18 17 17 17 21 
VIAS 13208 13453 13292 13629 13446 13842 14154 13972 13793 13156 

ind2 OVR 3.9 3.7 4.1 4.1 4.1 3.7 3.1 2.8 3.0 3.1 
MRD 16 16 16 16 16 16 15 16 15 16 
VIAS 23708 23297 23679 23692 23538 23592 23737 24212 24427 23864 

ind3 OVR 4.8 5.5 4.9 5.0 5.0 4.1 4.2 3.8 3.1 4.9 
MRD 36 37 36 36 36 36 36 35 35 38 
VIAS 18205 18256 18204 18292 18771 18717 19097 19614 19490 17049 

avq.s OVR 7.0 6.8 6.7 7.0 6.5 6.4 5.7 5.5 7.1 5.7 
MRD 15 16 16 16 15 15 16 15 17 19 
VIAS 20308 20390 20428 20726 20831 21078 22270 22289 22177 20517 

avq.l OVR 11.8 12.1 12.1 11.9 11.5 11.7 10.7 10.9 10.6 10.9 
MRD 15 15 15 15 15 15 15 15 15 15 

Table 5.5: Table of results for minimizing vias by non-decreasing sum of bounding box dimensions. 
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Circuit Size 

fract 8x8 
struct 21x21 1296 318886 
prim1 19x19 678 621878 644423 
prim2 26x26 2043 3160108 3 3187597 
bio 46x46 3460 1018806 186 1032444 
ind1 15x15 1412 951440 10 986911 
ind2 72x72 10542 12067540 12091689 9490 
ind3 54x54 18037 47130739 47205901 16457 
avq.s 80x80 16649 9065565 9192349 9096280 12146 
av .I 86x86 18666 10382010 10667658 10411364 12994 

Table 5.6: Wire-length minimization results for the test sets in [28] 

I Circuit IBB WL Lower 
Bound 

fract 8x8 111 25480 
struct 21x21 1296 318886 
prim1 19x19 678 621878 
prim2 26x26 2043 3160108 43 3197111 
bio 46x46 3460 1018806 1081848 325 1039595 
ind1 15x15 1412 951440 1044835 9 7 989845 
ind2 72x72 10542 12067540 12499231 16 2318 12114767 
ind3 54x54 18037 47130739 48730621 36 1970 47395661 
avq.s 80x80 16649 9065565 919235 2347 9122104 
av .I 86x86 18666 10382010 1067248 5660 10446320 

Table 5. 7: Via minimization results for the test sets in [28] 
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Chapter 6 

Conclusions and Future Work 

In this thesis, we have presented a polynomial time approximation algorithm 

for the global routing problem in VLSI design which has a theoretical approx­

imation bound. We provide a serial as well as a parallel implementation of 

this approximation algorithm. In practice, our solutions are much closer to 

optimality than the bound suggests. From Table 5.6 we find there is very little 

gap between the lower bounds for the optimal solutions and our approximate 

solutions. On average, we find that we are within 3% of the lower bound on 

wire-length, and in some cases, less than 1% while the theoretical approxima­

tion ratio is 2. 

A number of techniques and heuristics have been developed to improve 

the objective function value, as well as reduce computation time. 

We have found that by preserving the shortest paths computed through­

out an iteration of our algorithm, we can reduce the running time of our serially 

implemented algorithm by nearly a factor of 5 on average and up to a factor of 

9. Additionally, we have presented a parallel implementation of the algorithm 

which allows for a significant reduction in running time, as well as lower mem-
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ory usage compared to our serial version which uses path saving. The tree 

generation phase is multi-threaded in order to minimize the time spent in this 

step of the algorithm. Since this is the most costly part of the algorithm in 

terms of CPU time, we see that as the number of processors increases, our al­

gorithm scales well, especially in the largest instances that contain many nets. 

Our computational experiments also show that confining a certain percentage 

of the total nets to a single tree not only lead to better feasibility results, 

but help to improve the objective function value. On average, we find that 

fixing 70% of the nets based on non-decreasing bounding box area reduces 

the number of infeasible edges by nearly 22% while simultaneously reducing 

the wire-length by nearly 2%. When minimizing vias, this heuristic is able to 

reduce overflow by nearly 16%, while only leading less than a 2% increasing in 

the number of vias. In the best case, this heuristic was able to reduce overflow 

by more than 43% and wire-length by nearly 6%. Fixing by non-decreasing 

bounding box sum of dimensions also proves to be a valuable heuristic to 

this algorithm. On average, we also find that fixing 70% of the nets gives 

the optimal reduction in overflow. Across the entire benchmark set, fixing 

70% yields an 11% reduction in infeasible edges, while reducing wire-length 

by close to 6%. When minimizing vias, this heuristic gives a 17% reducing 

in infeasible edges, while sacrificing 3.2% in the number of vias. Additionally, 

we have showed that our algorithm is very competitive with other ILP based 

approaches and, in many cases, provides significantly better feasibility results 

with similar objective values. 

Our future work involves changing the way the edge congestion is esti­

mated. We believe that by updating the edge congestion several times through­

out a given iteration, we can improve the quality of the solution as well as 
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reduce the number of iterations required to obtain it. We plan to develop 

new, fast techniques for tree generation which constitutes 98% of the total 

time required for the algorithm. Such techniques may include Voronoi region 

based partitioning/ compacting of the underlying graph [21]. 
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