
'· STUDIES IN COMTRACE MONOIDS

STUDIES IN COMTRACE MONOIDS

By

DAI TRI MAN Lfu, B. Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Computer Science

Department of Computing and Software

McMaster University

@ Copyright by Dai Tri Man Le, August 2008

ii

MASTER OF COMPUTER SCIENCE (2008)

(Department of Computing and Software)

McMaster University

Hamilton, Ontario

TITLE: Studies in Comtrace Monoids

AUTHOR: Dai Tri Man Le, B. Sc. (McMaster University)

SUPERVISOR: Dr. Ryszard Janicki

NUMBER OF PAGES: vii, 121

Abstract

Mazurkiewicz traces were introduced by A. Mazurkiewicz in 1977 as a language repre­

sentation of partial orders to model "true concurrency". The theory of Mazurkiewicz

traces has been utilised to tackle not only various aspects of concurrency theory but

also problems from other areas, including combinatorics, graph theory, algebra, and

logic.

However, neither Mazurkiewicz traces nor partial orders can model the "not later

than" relationship. In 1995, comtraces (combined traces) were introduced by Janicki

and Koutny as a formal language counterpart to finite stratified order structures.

They show that each comtrace uniquely determines a finite stratified order structure,

yet their work contains very little theory of comtraces.

This thesis aims at enriching the tools and techniques for studying the theory of

comtraces.

Our first contribution is to introduce the notions of absorbing monoids, generalised

comtrace monoids, partially commutative absorbing monoids, and absorbing monoids

with compound generators, all of which are the generalisations of Mazurkiewicz trace

and comtrace monoids. We also define and study the canonical representations of

these monoids.

Our second contribution is to define the notions of non-serialisable steps and

utilise them to study the construction which Janicki and Koutny use to build stratified

order structures from comtraces. Moreover, we show that any finite stratified order

structure can be represented by a comtrace.

Our third contribution is to study the relationship between generalised comtraces

and generalised stratified order structures. We prove that each generalised comtrace

uniquely determines a finite generalised stratified order structure.

lll

Acknowledgements

My profound gratitude to my supervisor, Dr. Ryszard Janicki, for his thoughtful

guidance, constructive criticism, and mentorship from the publishing my very first

paper until the completion of this Masters' thesis.

I am deeply indebted to my mentor, Dr. Gregory H. Moore, for his wonderful

courses which inspired me to do research relating to set theory and mathematical

logic. Without him, I would never think of going to graduate school.

My appreciation to Dr. Jeffery Zucker, an excellent teacher, for his significant

encouragement and the books he generously lent me. His lucid and humorous teaching

style affects my conducting tutorials a great deal.

My thanks to Dr. Michael Soltys, for the knowledge elicited from in his extremely

tough course on Complexity Theory.

I am grateful to Dr. Gregory H. Moore and the Master's Thesis committee mem­

bers, Drs. Jeffery Zucker and Michael Soltys, for carefully reading the manuscript

and for all the useful suggestions which led to further improvements of this thesis.

Many thanks to Drs. Christopher Anand and Jacques Carette, who introduced

me into research activities during my summer work in 2003 and 2004, and Dr. Emil

Sekerinski, who introduced me to Formal Methods and "the elements of style" when

writing papers.

I am grateful to my wonderful professors, Antoine Deza, Franya Franek, Tom

Maibaum, Sanzheng Qiao, William Smyth, Patrick Speissegger, Tamas Terlaky, and

Alan Wassyng, who gave me precious lessons and paved the way for the completion

of my thesis.

I truly appreciate the excellent service provided by the departmental adminis­

trator, Laurie Leblanc, and departmental secretaries, Daphne Kilgour, Tina Macala,

Catherine Roberts and Jessica Stewart.

IV

v 0. Acknowledgements

My thanks to Nadya Zubkova, who encouraged me in my writing of this thesis,

and Marek Janicki, who proofread several of my papers.

I highly appreciate the support of the Ashbaugh Graduate Scholarship (2006­

2007) and an Ontario Graduate Scholarship (2007-2008), which have played a signif­

icant role in my study as well as my life.

Finally, I would like to dedicate this thesis and all of my academic achievements

to my parents and my sisters to express my eternal gratitude for their sacrifices, love,

encouragement, and financial support for the last years.

In the beginner's mind there are many possibilities, in the expert's

mind there are few. - Shunryu Suzuki

I have made this letter longer than usual, because I lack the time to

make it short. - Blaise Pascal

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Background 4

2.1 Orders . 4

2.1.1 Equivalence Relation 4

2.1.2 Partial Order . . . 6

2.1.3 Szpilrajn Theorem 9

2.2 Monoids 14

2.3 Sequences and Step Sequences 15

3 Equational Monoids with Compound Generators 19

3.1 Equational Monoids and Mazurkiewicz Traces . . . 19

3.2 Absorbing Monoids and Comtraces 20

3.3 Partially Commutative Absorbing Monoids and Generalised Comtraces 25

3.4 Absorbing Monoids with Compound Generators 29

4 Canonical Representations 31

5 Algebraic Properties of Comtrace Congruence 36

5.1 Operations on Step Sequences and Properties of Comtrace Congruence 36

5.2 Uniqueness of Canonical Representation for Comtraces 44

vi

vii CONTENTS

6 Comtrace Languages 	 48

7 Paradigms of Concurrency 	 54

8 Relational Structures Model of Concurrency 	 56

8.1 Stratified Order Structure 	 56

8.2 Generalised Stratified Order Structure 	 57

8.3 Motivating Example 	 58

9 Relational Representation of Mazurkiewicz Traces and Comtraces 63

9.1 Partial Orders and Mazurkiewicz Traces 63

9.2 Stratified Order Structure Representation of Comtraces 65

9.3 Comtrace Representation of Finite Stratified Order Structures 78

10 Relational Representation of Generalised Comtraces 	 87

10.1 Properties of Generalised Comtrace Congruence 	 87

10.2 	Commutative Closure of Relational Structures 90

10.3 Generalised Stratified Order Structures Generated by Step Sequences 93

10.4 Generalised 	Stratified Order Structures Generated by Generalised

Comtraces 105

11 Conclusion and Future Works 	 117

viii CONTENTS

Chapter 1

Introduction

Mazurkiewicz traces or partially commutative monoids [1, 24, 8] are quotient monoids

over sequences (or words). The theory of traces has been utilised to tackle problems

from quite diverse areas including combinatorics, graph theory, algebra, logic and

especially concurrency theory [8].

As a language representation of partial orders, they can sufficiently model "true

concurrency" in various aspects of concurrency theory. However, the basic monoid

for Mazurkiewicz traces, whose elements are used in the equations that define the

trace congruence, is just a free monoid of sequences. It is assumed that generators,

i.e. elements of trace alphabet, have no visible internal structure, so they could

be interpreted as just names, symbols, letters, etc. This is a limitation when the

generators have some internal structure; for instance, when they are sets, their internal

structure may be used to define the set of equations that generate the quotient monoid.

In this paper, we assume that the monoid generators have some internal structure. We

call such generators compound, and then use the properties of that internal structure

to define an appropriate quotient congruence.

Another limitation of Mazurkiewicz traces and their generated partial orders is

that neither Mazurkiewicz traces nor partial orders can model the "not later than"

relationship [13]. If an event a is performed "not later than" an event b, where

the step {a, b} model the simultaneous performance of a and b, then this "not later

than" relationship can be modelled by the following set of two step sequences x =

{{a}{b}, {a, b}}. But the set x cannot be represented by any trace. The problem

1

2 1. Introduction

is that the trace independency relation is symmetric, while the "not later than"

relationship is not in general symmetric.

To overcome those limitations the concept of a comtrace (combined trace) was

introduced in [14]. Comtraces are finite sets of equivalent step sequences and the

congruence is determined by a relation ser, which is called serialisability and in general

is not symmetric. Monoid generators are 'steps', i.e. finite sets, so they have internal

structure. The set union is used to define comtrace congruence. Comtraces provide a

formal language counterpart to stratified order structures and were used to provide a

semantic of Petri nets with inhibitor arcs. However, [14] contains very little theory of

comtraces, only their relationship to stratified order structures has been considerably

developed.

Stratified order structures [9, 12, 14, 15] are triples (X,-<, c), where -< and C are

binary relations on X. They were invented to model both "earlier than" (the relation

-<) and "not later than" (the relation c) relationships, under the assumption that all

system runs are modelled by stratified partial orders, i.e. step sequences. They have

been successfully applied to model inhibitor and priority systems, asynchronous races,

synthesis problems, etc. (see for example [14, 18, 20] and others). It was shown in [14]

that each com trace defines a finite stratified order structure. However, the com traces

are so far much less often used than stratified order structures, even though in many

cases they appear to be more natural than stratified order structures. Perhaps this

is due to the lack of sufficient theory development of quotient monoids different from

that of Mazurkiewicz traces.

Both comtraces and stratified order structures can adequately model concurrent

histories only when the paradigm 1r3 of [13, 15] is satisfied. For the general case, we

need generalised stratified order structures, introduced and analysed in [10]. Gener­

alised stratified order structures are triples (X,<>, c), where <> and C are binary

relations on X modelling "earlier than or later than" and "not later than" relation­

ships respectively under the assumption that all system runs are modelled by strat­

ified partial orders. In this thesis, a sequence counterpart of generalised stratified

order structures, called generalised comtraces, are introduced and their properties are

discussed.

It appears comtraces and generalised comtraces are special cases of two more

general classes of quotient monoids, which we call absorbing monoids and partially

3 1. Introduction

commutative absorb1:ng monoids respectively. For these classes of absorbing monoids,

generators are still steps, i.e. sets. When sets are replaced by arbitrary compound

generators (together with appropriate rules for the generating equations), a new

model, called absorbing monoids with compound generators, is created. This model

allows us to describe formally asymmetric synchrony.

This thesis is the expansion and revision of our previous work in [17], where [17,

Theorem 9.1], [17, Theorem 9.2], [17, Theorem 10.1] and some new major properties

are fully proved and analysed. The content of the thesis is organised as following.

In the next chapter, we review the basic concepts of order theory, which includes

the important Szpilrajn Theorem [31], and monoids theory. Chapter 3 introduces

equational monoids with compound generators and other types of monoids that are

discussed in this thesis. In Chapter 4 the canonical representations of absorbing

monoids, partially commutative absorbing monoids and absorbing monoids with com­

pound generators are defined and briefly analysed. In Chapter 5, we introduce some

basic algebraic operations on step sequences and utilise them to prove some prop­

erties of comtrace congruence and to give a new version of the proof that canonical

representation for comtraces is unique. Chapter 6 studies some basic properties of

comtrace languages. Chapter 7 reviews different paradigms of concurrent histories

and discuss how comtraces and generalised comtraces are classified with respect to

these paradigms. Chapter 8 surveys some basic background on relational structures

model of concurrency [9, 12, 14, 15, 10, 11] to prepare the readers for the chapters

followed. In Chapter 9, we introduce the notions of non-serialisable steps to study

the construction from com traces to finite stratified order structures by Janicki and

Koutny in [14]; we then prove that any finite stratified order structure can be rep­

resented by a comtrace. In Chapter 10, analogous to the notion of 0-closure which

Janicki and Koutny used to construct stratified order structures from comtraces, we

define the notion of commutative closure and utilise it to construct generalised strat­

ified order structures from comtraces; we prove that each generalised comtrace can

be represented by a finite generalised stratified order structure. Chapter 11 contains

some final discussion and comments on our future works.

Chapter 2

Background

2.1 Orders

In this section, we survey some standard order-theoretic definitions and results which

are used intensively in this thesis.

2.1.1 Equivalence Relation

Let X be a set and I is an index set. The family of sets { Ai I i E I} is called a

partition of X if and only if

1. Ai -=} 0 for all i,

2. Ai n Ai = 0 for all i-=} j, and

3. x = uiEI Ai.

We can observe that {{x} I x E X} (the set of all possible singletons of X) is the

finest partition possible of the set X.

An equivalence relation R on a set X is reflexive, symmetric and transitive binary

relation on X. In other words, the following must hold for all a, b, c E X:

1. a R a, (reflexive)

2. a R b =? b R a, (symmetric)

4

5 2. Background

3. 	 a R b Rc =? a R c. (transitive)

For every x E X, the set [x]R = {y I y R x 1\ y E X} is the equivalence class of

x with respect to R. We drop the subscript and write [x] to denote the equivalence

class of x when R is clear from the context. The set X equipped with an equivalence

relation R is called a setoid.

Proposition 2.1. Let R ~X x X be an equivalence relation on X. If a, bE X, the

following are equivalent:

1. 	 aRb

2. 	 [a] = [b]

3. 	 [a] n [b] # 0

Proof. • (1)=?(2): Assume that aRb, since it also implies bRa (by symmetry),

it suffices to show [a] ~ [b]. For any c E [a] = {x I x Ra 1\ x E X}, it follows

that c R a. Since aRb, we have c R b (by transitivity). Hence,

c E [b] ={xI xRbl\x EX}.

• 	 (2)=?(3): Since [a] = [b], it follows that a E [a] n [b]. Hence, [a] n (b] # 0.

• 	 (3)=?(1): Since [a] n [b] # 0, there exist some c E [a] n [b]. Since c E [a] and

c E [b], we have c R a and c R b. By reflexivity we have aRc and by transitivity

we have a R b as desired.

D

Corollary 2.1. If R is an equivalence relation on X and a, bE X, then

(a, b) ~ R ~ [a] n (b] = 0

Proof. From Proposition 2.1, we already have

(a, b) E R ~ [a] n [b] # 0.

6 2. Background

This is logically equivalent to

(a, b) rf_ R ~ [a] n [b] = 0.

0

For every equivalence relation R ~ X x X, we define X/R df {[a]R I a E X}.

Clearly X/R is the set of all equivalence classes of Ron X.

Proposition 2.2. For every equivalence relation R ~X x X, X/R is a partition of

the set X.

Proof. From Corollary 2.1 we already know any two distinct equivalence classes are

disjoint. It suffices to show X= UAEX/R A. But UAEX/R A~ X since A~ X for any

A E XjR. It remains to show X~ UAEX/RA. But for any x EX, [x] EX/Rand

hence x E UAEX/R A. 0

2.1.2 Partial Order

Let X be a set. A binary relation -< ~ X x X is a (strict) partial order if it is

irrefiexive and transitive, i.e. for all a, b, c E X, we have:

1. •(a-< a), (irrefiexive)

2. a -< b -< c =} a -< c. (transitive)

The pair (X,-<) in this case is called a partially ordered set (also called a poset), i.e.

the set X is partially ordered by the relation -<. The pair (X,-<) is called a finite

partially ordered set (also called a finite poset) if X is finite.

Given a poset (X,-<), we define the binary relation ~-<~ X x X in a pointfree

manner as follows:

In other words, for all a, b E X, a ~-< b if and only if •(a -< b) 1\ •(b -< a), that is

if and only if a and b are either distinct incomparable with respect to (w.r.t.) -< or

identical elements of X.

7 2. Background

Let idx denote the identity relation on X, i.e. idx = {(x, x)ix E X}. We then

define the distinct incomparability relation as following

df \....-...-< = ~-< 1,'dX·

Proposition 2.3. For any poset (X,-<), ~-<=....-...-< U idx.

Proof. Since~-< df (X x X)\ (-< U -<-1) and idx rl:_ -<, we have idx ~ ~-<· Hence,

....-...-< U idx = (~-< \ idx) U idx = ~-<.

D

For our convenience, from a poset (X,-<) we also define the following binary

relations-<~~ X x X and ::S~ X x X as

-<~ df -< u -<

_J df 'd _, =-<U1-x

Intuitively, a -<~ b means a is "less than" or incomparable to b and a ::S b means

a is "less than" or equal to b.

If the relation ,....__-< of a poset (X,-<) is empty, then the partial order -< is called a

total (or linear) order, and the pair (X,-<) is called a totally ordered set.

A binary relation -<~X x X is a stratified (or weak) order if and only if (X,-<) is

a poset and ~-< is an equivalence relation.

Proposition 2.4. For any poset (X,-<) the following are equivalent:

1. ~-< is an equivalence relation

2. for all x, y, z EX, if (x-...-< y 1\ y-...-< z) then (x-...-< z V x = z)

Proof. • (1)=>(2): Assume that ~-< is an equivalence relation and x-...-< y and

y-...-< z, we want to show that x-... z or x = z. Since ...-...-<c~-<, it follows that

x ~-< y andy~-< z. By the transitivity of the equivalence relation~-<, we have

x ~-< z. By Proposition 2.3 we have ~-<=....-...-< U idx, so it follows that x-... z

or x = z as desired.

8 2. Background

• 	 (2)::::?(1): Assume that for all x, y, z EX, if x--..-< y andy.....--..-< z then x--..-< z

or x = z. We want to show~-< is indeed an equivalence relation.

- Reflexivity: Since idx ~ ~-<, the relation ~-< is reflexive

- Symmetry: If a~-< b, then •(a -< b) 1\ •(b-< a). But this implies b ~-< a.

Hence, the relation ~-< is symmetric.

- Transitivity: Assume a ~-< b and b ~-< c, we want to show a ~-< c. Since

~-<=.....--..~ U idx, there are three possible cases.

* If a--..~ b and b = c, then a--..~ c. Hence, a ~~ c.

* 	If a = b and b--..~ c, again we have a ~-< c.

* 	If a--..-< b and b--..~ c, it follows that a--..~ c or a = c. Hence, a ~~ c.

As a result of Proposition 2.4, we can alternatively define that a binary relation

-< ~ X x X is a stratified order if and only if for all x, y, z E X,

(x--..~ y 1\ y--..~ z) ::::? (x--..~ z V x = z).

If (X,-<) is a poset and A is a nonempty subset of X, and a EX, then:

• 	 a is a maximal element of A if a EX and Vx EA. •a-< x.

• 	 a is a minimal element of A if a E X and Vx E A. •X -< a.

• 	 a is the greatest element of A if a E A and Vx EA. x ~a.

• 	 a is the least element of A if a E A and Vx EA. a~ x.

• 	 a is an upper bound of A if Vx E A. x ~ a.

• 	 a is a lower bound of A if and only if Vx EA. a~ x.

• 	 a is the least upper bound (also called supremum) of A, denoted sup(A), if

- x ~ a for all x E A,

- for all b E X if b is an upper bound then a ~ b.

0

9 2. Background

• a is the greatest lower bound (also called infimum) of A, denoted inf(A), if

-	 a ~ x for all x E A,

-	 for all b E X if b is a lower bound then b ~ a.

• 	 a set A is called a chain if and only if (A, ~IAxA) is a totally ordered set where

R IBxc df Rn (B x C).

The greatest element, the least element, upper bound, lower bound, supremum and

infimum might fail to exist. Note that if X is totally ordered by ~' then a maximal

element of X is its greatest element (similarly for a minimal element).

2.1.3 Szpilrajn Theorem

Let ~ 1 and -<2 be partial orders on a set X. The partial order ~2 is is defined to

be an extension of ~ 1 if and only if ~ 1~~2 . The goal of this subsection is to review

the Szpilrajn Theorem [31], which is fundamental in the foundation of concurrency

theory. Since the original paper is in French, we provide a version of the proof to

make the theorem more accessible and the thesis self-contained. Furthermore, the

results in Chapter 9 and Chapter 10 are motivated by the Szpilrajn Theorem and its

proof. But before doing so, we need some preliminary results.

Lemma 2.1. Let (X,-<) be a poset, a, b E X such that a ,......,.~ b. The relation ~a,b

defined as

x ~a,b y ~ (x-< y V (x ~a 1\ b ~ y))

is a partial order on X satisfying

1. 	 a ~a,b b

2. 	 ~a,b is an extension of~' i.e. ~ C ~a,b

Proof. Firstly, we have to show ~a,b is indeed a partial order.

• 	 Irrefiexivity: for any element x E X, we want to show -.(x -<a,b x). Since ~

is irrefiexive, we have -.(x ~ x). It remains to show that -.(x ~ a 1\ b ~ x).

Suppose for a contradiction that (x ~a 1\ b ~ x). Since ~ is transitive (and so

is ~), it follows that a= b, but this contradicts that a,......,.~ b.

10 2. Background

• 	 Transitivity: for any three elements x, y, z E X such that x -<a,b y -<a,b z, we

want to show x -<a,b z. By the definition of -<a,b, there are three possible cases

to consider:

- If x-< y and (y ~a 1\ b ~ z): Since x-< y andy-< a, it follows that x ~a.

So (x ~ a 1\ b ~ z).

-If (x ~ al\b ~ y) andy-< z: Since b-< y andy~ z, it follows that b ~ z.

So (x ~ a 1\ b ~ z).

- If (x ~ a 1\ b ~ y) and (y ~ a 1\ b ~ z): Since b ~ y and y -< a, by

transitivity of ~ we have b ~ a. But this contradicts that a ,......._-< b.

Secondly, we have to verify that a -<a,b b, which follows from that (a ~ a 1\ b ~ b).

Finally, we want to show -< C -<a,b but this follows from the definition of -<a,b· 0

Lemma 2.1 says that for any partial order (X,-<) if there exists a pair of distinct

incomparable elements a, b then we can add suitable pairs of elements into the

relation -< (extends the relation -<) to build a relation -<a,b such that a -<a,b b, i.e. a

is comparable to b.

Although we are only interested in the case of finite sets, Szpilrajn Theorem is

proved for the general case of arbitrary posets (X,-<), where X can be infinite. As a

result, the proof of Szpilrajn Theorem requires the Axiom of Choice (cf. [30, 21, 3]).
For the sake of completion we include an equivalent form of the Axiom of Choice called

the Kuratowski-Zorn Lemma. Since the proof of the Kuratowski-Zorn Lemma requires

introducing prerequisite background on axiomatic set theory up to the concepts of

ordinal number and transfinite recursion (cf. [30, 21]), we state the result with only

an informal proof sketch. This proof sketch follows the idea of a very short and

elegant proof given in [32].

Kuratowski-Zorn Lemma. Every partially ordered set (X,-<) in which every chain

C ~ X has an upper bound contains at least one maximal element.

Proof. Suppose for a contradiction that the lemma were false. Then there exists a

poset (X,-<) such that every totally ordered subset has an upper bound, and every

element x E X has an element y E X such that y > x. For every chain C ~ X

11 2. Background

we pick an upper bound g(C) fj. C, because C has at least one upper bound, and

that upper bound has a greater element. However, to actually define the function

g : f/J X -t X, we need the Axiom of Choice to magically "pick the right elements"

from the arbitrary large set X.

Using the function g, starting from an arbitrary element a0 EX, we are going to

define a sequence of elements a0 < a1 < a2 < a3 < ... in X using transfinite recursion

by defining ai = g({ai I j < i}). We know that every pair of element ai and ai are

distinct, otherwise we have a cycle which contradicts that (X,-<) is a partial order.

This sequence is really long: the indices are not just the natural numbers, but

all ordinals. In other words, we can define an injective map from all the ordinals

into X. Since there is no set with the "size" of all ordinals, we have the desired

contradiction. 0

Note that we do not need the Axiom of Choice for this proof of the Kuratowski­

Zorn Lemma when X is finite. The proof of the Kuratowski-Zorn Lemma for the

finite case follows.

Proposition 2.5. Every finite partially ordered set (X,-<) in which every chain C ~

X has an upper bound contains at least one maximal element.

Proof. We proceed similarly to the previous proof by assuming the proposition were

false. Then there exists a finite poset (X,-<) such that every chain C ~ X has an

upper bound, and every element has a greater one. For every chain C ~X we find

an upper bound g(C) fj. C, and this process is exhaustive because we only search

through the finite search space X.

Using the function g, starting from an arbitrary element ao E X, we build a

sequence of distinct elements a0 < a1 < a2 < a3 < ... in X recursively by defining

ai = g({ai I j < i}). Since X is finite, there is some natural number m such that

lXI = m. Suppose for some ak where k < m- 1, we cannot find any element in X

greater than ak, then we have the desired contradiction. Otherwise, considering the

element am-1, by the assumption, there exist some y E X such that am_1 < y. But

y can only be one of the a0 , ••• , am_2 , which implies y = ai < ... < am-1 < ai = y.

This contradicts that (X,-<) is a poset. D

We now provide a proof of Szpilrajn Theorem using Lemma 2.1 and Kuratowski­

Zorn Lemma.

12 2. Background

Szpilrajn Theorem ([31]). For every poset (X,-<) there exists a totally ordered set

(X, T) such that-<~ T.

Proof. Let us define

7 ={TIT is a partial order on X and -< ~ T}.

Since-< ~ -<,we know 7 =10. Consider (7, c). Clearly (7, c) is a poset. Let C ~ 7

be a chain, i.e. for each Ti, 72 E C, Ti C 72 or 72 C Ti or Ti = 72. Define the binary

relation Tc on X as
Tc df uT.

TEC

We want to show Tc is a partial order. Clearly Tc is irrefl.exive since each Tin C

is irrefl.exive. We need to show transitivity. Assume x Tc y Tc z, we want to show

x Tc z. But it follows that there exist Ti, 72 E C such that x Ti y andy 72 z. There

are three cases to consider:

• 	Ti = 72: This means x Ti y andy Ti z. Hence, x Tc z by transitivity of Ti.

• 	Ti C 72: This means This means x 72 y and y 72 z. Hence, x Tc z by

transitivity of Ti.

• 	Ti C 72: We have x Tc z by transitivity of Ti.

Hence, the relation Tc is a partial order. By the definition, \IT E C. T ~ Tc, so Tc

is an upper bound of the chain C.

We want to show that there exist some element T-< E 7 such that T-< is the maximal

element of 7. From Kuratowski-Zorn Lemma, we can now deduce that there exists

T-< such that T-< is a maximal element of 7 and -< ~ T-<.
We want to show that T-< is total. Suppose for a contradiction that T-< is not

total, i.e. there are some pair of element a, b such that a ,..-..,T-< b. We can then using

Lemma 2.1 to construct T-<a,b" Clearly since -< ~ T-< ~ T-<a,b' -< ~ T-<a,b" Hence,

T-<a,b E 7 and T-< ~ T-<a,b, which is a contradiction since T-< is maximal. Hence,

(X, T-<) is a totally ordered set extending the partial order -< as desired. D

A total order T which extends the partial order -< on X is called a total (linear)

order extension of -<. A corollary of Szpilrajn Theorem is that every partial order

13 2. Background

is uniquely determined by the intersection of all of its total order extensions. In

other words, a partial order is completely defined by the set of all of its total order

extensions.

Lemma 2.2. Let I be an index set and each (X, ~i) be a poset. Then (X,~) where

df n~ = ~i

iEI

is also a poset.

Proof. We want to check:

• Irreflexivity: 	 Assume for a contradiction that there exists x E X such that

X ~ x. Since ~ = niEI ~i' we have X ~i x. But this contradicts that each ~i

is a partial order.

• Transitivity: Suppose x ~ y ~ z for some x, y, z E Z, we want to show x ~ z.

Since it follows that (x, y), (y, z) E niEI ~i' we have

Vi E /. ((x, y) E~i 1\ (y, z) E~i)·

Hence, by transitivity of ~i,

ViE/. (x, z) E~i .

Thus, (x, z) E niEI ~i, which means X~ z.

Hence, the relation ~ is a partial order on X. D

Let (X,~) be a poset, we define

Totalx (~) df { T I (X, T) is a totally ordered set and ~ ~ T}.

Corollary 2.2. For every poset (X,~),

~= T.n
TETotalx(-<)

14 2. 	Background

Proof. The corollary is correctly formulated, i.e. nTETotalx(-<) T is well-defined, be­

cause it follows from Szpilrajn Theorem that Totalx(-<.) =j:. 0.
(~) Since every T E Totalx(-<.) satisfies -<.~ T, it follows that

n T.
TETotalx(-<)

(:2) Suppose for a contradiction that nTETotalx(-<) T ~-<.. Then there is some pair

(x, y) satisfying (x, y) E T for all T E Totalx(-<.) but (x, y) ~-<.. Hence, either y -<. x

or x ,......,.-< y.

• 	If y -<. x: For any T E Totalx(-<.), since -<.~ T, it follows that (x, y) E T and

(y, x) E T. This contradicts that Tis a total order.

• 	 If x ,......,.-< y: We observe that by Lemma 2.1, we can build the extension -<.y,x of

the partial order -<. where (y, x) E-<.y,x· We then apply the Szpilrajn Theorem

for (X, -<y,x) to get a total extension Tu,x of -<.y,x, where (y, x) E Ty,x·

But since -<. ~ -<.y,x, it follows that Ty,x is also a total extension of -<.. Hence,

Ty,x E Totalx(-<.). Since we assume that (x, y) E T for all T E Totalx(-<.), it

follows that (x, y) E Tu,x and (y, x) E Ty,x, which contradicts that Ty,x is a total

order.

Thus, we conclude -<. = nTETotalx(-<) T as desired. 	 D

2.2 Monoids

A triple (X,o, n.), where X is a set, o is a total binary operation on X, and]. EX,

is called a monoid, if (a o b) o c =a o (b o c) and a o]. =]. o a= a, for all a, b, c EX.

An equivalence relation rv ~X x X is a congruence in the monoid (X, o, li) if

15 2. Background

The triple (X/""', o, [li]), where [a]o[b] = [a o b], is called the quotient monoid of

(X, o, 1) under the congruence""'· The mapping¢: X---+ X/,.._, defined as ¢(a) = [a]
is called the natural homomorphism generated by the congruence,.._, (for more details

see for example [2]). The symbols o and oare often omitted if this does not lead to

any discrepancy.

2.3 Sequences and Step Sequences

By an alphabet we shall understand any finite set. For an alphabet I::, I::* denotes the

set of all finite sequences of elements (words) of I::, A denotes the empty sequence, and

any subset of I::* is called a language. In the scope of this thesis, we only deal with

finite sequences. Let ·denote the sequence concatenation operator (usually omitted).

Since the sequence concatenation operator is associative, the triple (I::*, ·,.A) is a

monoid (of sequences).

For each set X, let .9(X) denote the set of all subsets of X, i.e.

&f?J(X) df {Y I y ~X}.

We also let &i(X) denote the set of all non-empty subsets of X, i.e.

&i(X) df &f?J(X) \ {0}.

Let f : A---+ B be a function and Cis a set, then we let f[C] denote the range of

the restriction of the function f to the set C, i.e.

f[C] df {f(a) Ia E C}.

Consider an alphabet § ~ &i(X) for some finite X. The elements of § are

called steps and the elements of §* are called step sequences. For example if

§ = {{a}, {a, b}, {c}, {a, b, c}} then {a, b}{c}{a, b, c} E §* is a step sequence.

The triple (§*, •, .A), where • is the step sequence concatenation operator (usually

omitted), is a monoid (of step sequences), since the step sequence operator is also

associative.

16 2. Background

Let t = A1 ... Ak be a step sequence. We can uniquely construct its event­

enumerated step sequence t as
- df- ­
t = A1 .. .Ak

where

and
Ai df { e(#evente(Al···Ai-1)+1) : e E Ai}.

We will call such a= e(i) E Ai an event occurrence of e. For each event occurrence

a = e(i), let l(a) denote the label of a, i.e. l(a) = l(e(i)) = e. Then from an

event-enumerated step sequence t = A1 ... Ak, we can also uniquely construct its

corresponding step sequence

t = l(A1] . .. l[Ak]·

For instance if u = {a, b}{b, c}{c, a}{a}, then

k ­Let :Eu = Ui=l Ai denote the set of all event occurrences in all steps of u. For

example, when u ={a, b}{b, c}{c, a}{a},

For each a E :Eu, let posu(a) denote the consecutive number of a step where a

belongs, i.e. if a E Aj then posu(a) = j. For our example example posu(a(2
)) = 3,

posu(b(2)) = 2, etc.

Given a step sequence u, we define a stratified order <Ju on :Eu by:

And we define a relation ~u on :Eu by:

a ~u {3 {=:::} posu (a) = posu ([3).

17 2. 	Background

Obviously, we have <1;7 = <luU ~u and <1; = <luU ,....._u· We can also define <1;7 and

<I; explicitly as follows:

a <I~ (3 {:::=:} posu (a) :::; posu((3)

a <I: (3 {:::=:} a# (3 1\ posu(a) :::; posu(f3)

Proposition 2.6. Given a step sequence u = B1 ... En, the relation ~u is an equiv­

alence relation on Eu.

Proof. Since a ~u J3 {:::=:} posu(a) = posu(f3), it follows that a, (3 E Bi for some

1 :::; i :::; n. Hence, ~u is an equivalence relation defined based on the partitions

B1, ... , En of Eu 0

Conversely, let <I be a stratified order on a set :E. The set :E can be represented

as a sequence of equivalence classes n<J = B1 ... Bk (k ~ 0) such that

<I= U(Bi x Bj) and
i<j

The sequence n<J is exactly the event-enumerated step sequence which represents <I.

The correctness of the existence of n<J is shown the in following proposition.

Proposition 2. 7. If <I is a stratified order on a set :E and A, B are two distinct

equivalence classes of ~<J, then either Ax B ~ <I orB x A~ <I.

Proof. Since both A and B are non-empty equivalence classes of ~<J, we pick a E A

and b E B. Clearly, a <I b or b <I a, otherwise a ,....._<J b which contradicts that a,b are

elements from two distinct equivalence classes. There are two cases:

1. 	 If a <I b: we want to show Ax B ~ <I. Let c E A and dEB, it suffices to show

c <I d. Assume for contradiction that •(c <I d). Since c 'f.<J d, it follows that

d <I c. There are three different subcases:

(a) If a= c, then d <I a and a <I b. Hence, d <I b. This contradicts that d, bE B.

(b) If b = d, then b<I c and a <I b. Hence, a <I c. This contradicts that a, c E A.

(c) If a # c and b =f d, then a ,....._<J c and b ,....._<J d and •(a ,....._<J d) and

•(c ,....._<J b). Since •(a ,....._<J d), either a <I d or d <I a.

18 2. Background

• If a <l d: since d <l c, it follows a <l c. This contradicts a ,.-.,.<l c.

• If d <l a: since a <l b, it follows d <l b. This contradicts d ,.-.,.<l b.

Therefore, we conclude Ax B ~ <J.

2. 	 If b <l a: using a symmetric argument, it follows that B x A~ <J.

D

The idea of Proposition 2.7 is that if we define a relation <J on the set of equivalence

classes {BI, ... , Bn} of ~<l such that

then <J is a total order on {BI, ... , Bn}· Hence, Proposition 2.7 is fundamental for

understanding the equivalence of stratified partial orders and step sequences.

Since total order is a special case of stratified order (equivalence classes of ~<l

are singletons), each sequence can be interpreted as a total order, and each finite

total order can be represented by a sequence. Observe that each 8 = XI ... Xn can

be seen as the step sequence 8
1 = {xi} ... {xn}· Hence, if 8 1 = {ai} ... {an} is the

event-enumerated step sequence of 8
1

, then we can define the enumerated sequence of

8 to be the sequence 8 = ai ... an. We let :E8 = :E8 ,, <l 8 = <ls' and ,.-.,.s=,.-.,.s'· Since

,.--.. 8 = 0, it follows that (:E8 , <ls) is a totally ordered set representing the sequence

8. Conversely, given a finite totally ordered set (:E, <l) (assume :E is a set of event

occurrences), we let n<l = {aI} ... {an}. Then we apply the label function l to get a

sequence 8<l = l(ai) .. . l(an), which represents the totally ordered set (:E, <l).

Chapter 3

Equational Monoids with

Compound Generators

3.1 Equational Monoids and Mazurkiewicz Traces

Let M = (X, o,]_)be a monoid and let

EQ = { Xi = Yi Ii = 1, ... , n }

be a finite set of eq'uations. Define =EQ (or just _) to be the least congruence on M

satisfying, xi = Yi ===? Xi -EQ Yi, for each equation Xi = Yi E EQ. We call the

relation =EQ as the congruence defined by EQ, or EQ-congruence.

The quotient monoid M==sq = (X/=EQ, a,[].]), where [x]o[y] = [x o y], is called

an equational monoid (see for example [26]).

The following folklore result shows that the relation -EQ can also be uniquely

defined in an explicit way.

Proposition 3.1. For equational monoids, the EQ-congruence - is the reflexive

symmetric transitive closure of the relation~, i.e. - (~ U ~-1)*, where~ ~

X x X, and

19

20 3. Equational Monoids with Compound Generators

Proof. Define ~ = ~ U ~-I. Clearly (~)* is an equivalence relation. Let XI _

YI and x2 - Y2· This means xi(~)kYI and x2 (~) 1y2 for some k, l 2:: 0. Hence,

XI ox2 (~)k YI ox2 (~) 1 YI oy2, i.e., XI ox2 YI oy2. Thus, -is a congruence. Let r-..J

be a congruence that satisfies (u = w) E EQ ==? u r-..J w for each u = w from EQ.

Clearly x~y ==? x r-..J y. Hence, x = y {=:::::? x(~)my ==? x r-..Jm y::::} x r-..J y. Thus,

=is the least. D

Definition 3.1 ([8, 25]). Let M = (E*, o, A) be a free monoid generated by E, the

relation ind s;;:; E x E be an irrefl.exive and symmetric relation (called independency

or commutation), and

EQ df {ab = ba I (a, b) E ind}.

Let =ind' called trace congruence, be the congruence defined by EQ. Then the equa­

tional monoid M=.ind = (E* / =ind, o, [A]) is a free partially commutative monoid or

monoid of Mazurkiewicz traces. The pair (E, ind) is called a concurrent alphabet (or

trace alphabet).

We will omit the subscript ind from trace congruence and write if it causes no

ambiguity.

Example 3.1. Let E = {a, b, c}, ind = {(b, c), (c, b)}, i.e. EQ = { be = cb }.

For example abcbca accbba (since abcbca ~ acbbca ~ acbcba ~ accbba), ti =

[abc]= {abc,acb}, t2 = [bca] = {bca,cba} and t3 = [abcbca] = {abcbca,abccba,acbbca,

acbcba, abbcca, accbba} are Mazurkiewicz traces. Also t3 = ti ot2 (as [abcbca] =

[abc]o[bca]).

For more details on Mazurkiewicz traces, the reader is referred to [8, 25]. For the

equational representations of Mazurkiewicz traces, the reader is referred to [26].

3.2 Absorbing Monoids and Comtraces

The standard definition of a free monoid (E*, o, A) assumes the elements of E

have no internal structure (or their internal structure does not affect any monoidal

properties), and they are often called 'letters', 'symbols', 'names', etc. When we

assume the elements of E have some internal structure, for instance that they are

21 3. Equational Monoids with Compound Generators

sets, this internal structure may be used when defining the set of equations EQ.

..-....
Let E be a finite set and§~ f!lJ(E) be a non-empty set of non-empty subsets of

E satisfying UAE§ A = E. The free monoid (§*, o, A) is called a free monoid of step

sequences over E, with the elements of § called steps and the elements of §* called

step sequences. We assume additionally that the set § is subset closed, i.e. for all

A E §, g(A) ~ §.

Definition 3.2. Let EQ be the following set of equations:

where Ai, Bi, Ci E §, Ci = Ai UBi, Ai n Bi = 0, fori= 1, ... ,n, and let =abs be the

congruence defined by EQ. The equational monoid (§* /=abs, o, [A]) will be called an

absorbing monoid over step sequences.

We will omit the subscript abs from the absorbing monoid congruence and write

- if it causes no ambiguity.

Example 3.2. Let E = {a,b,c}, § = {{a,b,c},{a,b},{b,c},{a,c},{a},{b},{c}},

and EQ be the following set of equations:

{a, b, c} ={a, b}{c} and {a, b, c} = {a}{b, c}.

In this case, for example, {a, b}{c}{a}{b, c} = {a}{b, c}{a, b}{c} (as we have

{a,b}{c}{a}{b,c} ~ {a,b,c}{a}{b,c} ~ {a,b,c}{a,b,c} ~ {a}{b,c}{a,b,c} ~

{a}{b,c}{a,b}{c}), x = [{a,b,c}] andy= [{a,b}{c}{a}{b,c}] belong to§*/=, and

x= {{a,b,c}, {a,b}{c},{a}{b,c}}

y = {{a,b,c}{a,b,c},{a,b,c}{a,b}{c},{a,b,c}{a}{b,c},{a,b}{c}{a,b,c},

{a,b}{c}{a,b}{c},{a,b}{c}{a}{b,c},{a}{b,c}{a,b,c},

{a}{b,c}{a,b}{c},{a}{b,c}{a}{b,c}}

Note that y = xox as {a,b}{c}{a}{b,c} = {a,b,c}{a,b,c}.

Comtraces (combined traces), introduced in [14] as an extension of Mazurkiewicz

traces to distinguish between "earlier than" and "not later than" phenomena, are a

special case of absorbing monoids of step sequences. The equations EQ are in this

case defined implicitly via two relations simultaneity and serialisability.

22 3. Equational Monoids with Compound Generators

Definition 3.3. ([14]) Let E be a finite set (of events) and let ser ~ sim c Ex E

be two relations called serialisability and simultaneity respectively and the relation

sim is irrefiexive and symmetric. Then the triple (E, sim, ser) is called the comtrace

alphabet.

Intuitively, if (a, b) E sim then a and b can occur simultaneously (or be a part

of a synchronous occurrence in the sense of [18]), while (a, b) E ser means that a

and b may occur simultaneously and a may occur before b (and both happenings are

equivalent). We define §, the set of all (potential) steps, as the set of all cliques of

the graph (E, sim), i.e.

§ '!!_ {AIA#0A(Va,bEA.a=bV(a,b)Esim)}.

Definition 3.4. Let (E, sim, ser) be a comtrace alphabet and =ser, called comtrace

congruence, be the EQ-congruence defined by the set of equations

EQ df {A= BC I A= B U C E § 1\ B x C ~ ser}.

Then the absorbing monoid (§* / =ser, o, [>.]) is called a monoid of comtraces over

(E, sim, ser).

In Definition 3.4, since ser is irrefiexive, it follows that for each (A = BC) E EQ

we have B n C = 0. Hence, each comtrace monoid is an absorbing monoid.

By Proposition 3.1, the comtrace congruence relation can also be defined explicitly

in non-equational form as follows.

Definition 3.5 ([14]). Let () = (E, sim, ser) be a comtrace alphabet and let §* the

set of all step sequences defined on B. Let ~ser ~ §* x §* be the relation comprising

all pairs (t, u) of step sequences such that t = wAz and u = wBCz where w, z E §*

and A, B, Care steps satisfying B U C = A and B x C ~ ser. Then we define
df (-1)* . . h fi . . t 't' 1 fser = ~ser U ~ser , l.e. =ser lS t e re eXlVe symmetriC ransl lYe COSUre 0 ~ser·

We will omit the subscript ser from comtrace congruence and ~ser' and only write

= and ~ if it causes no ambiguity.

23 3. Equational Monoids with Compound Generators

Example 3.3. Let E = {a, b, c} where a, b and c are three atomic operations defined

as follows (we assume simultaneous reading is allowed):

a : y +- X+ y, b : X +- y + 2, C : y +- y + 1.

Only b and c can be performed simultaneously, and the simultaneous execution of

b and c gives the same outcome as executing b followed by c. We can then define

sim = {(b,c),(c,b)} and ser = {(b,c)}, and we have§= {{a},{b},{c},{b,c}},

EQ = {{b,c} = {b}{c}}. For example, x = [{a}{b,c}] = {{a}{b,c},{a}{b}{c}} is a

comtrace. Note that {a}{c}{b} ¢:. x.

Even though Mazurkiewicz traces are quotient monoids over sequences and com­

traces are quotient monoids over step sequences (and the fact that steps are sets is used

in the definition of quotient congruence), Mazurkiewicz traces can be regarded as a

special case of comtraces. In principle, each trace commutativity equation ab = ba cor­

responds to two com trace absorbing equations {a, b} = {a}{b} and {a, b} = {b}{a}.

This relationship can formally be formulated as follows.

Proposition 3.2. If ser = sim then for each comtrace t E §*I =ser there is a step

sequence x = {a1} ... {ak} E §*, where ai E E, i = 1, ... , k such that t = [x].

Proof. Let t = [A1... Am], where Ai E §, i = 1, ... , m. Hence t = [A1] ... [Am]· Let

Ai = {ai, ... ,a~J. Since ser = sim, we have [Ai] = [{ai}] ... [{a~J], fori= 1, ... , m,
which ends the proof. D

This means that if ser = sim, then each comtrace t E §*I =ser can be represented

by a Mazurkiewicz trace [a1 ... ak] E E* I -ind, where ind = ser and {a1} ... {ak} is a

step sequence such that t = [{a1} ... {ak}]. Proposition 3.2 guarantees the existence

of a1 ... ak.

While every comtrace monoid is an absorbing monoid, not every absorbing

monoid can be defined as a comtrace. For example the absorbing monoid analysed

in Example 3.2 cannot be represented by any comtrace monoid.

It appears the concept of the comtrace can be very useful to formally define the

concept of synchrony (in the sense of [18]). In principle the events are synchronous if

24 3. Equational Monoids with Compound Generators

they can be executed in one step { a1 , ... , ak} but this execution cannot be modelled

by any sequence of proper subsets of { a1, ... , ak}. In general 'synchrony' is not

necessarily 'simultaneity' as it does not include the concept of time [5]. It appears

however the mathematics used to deal with synchrony is very close to that to deal

with simultaneity.

Definition 3.6. Let (E, sim, ser) be a given comtrace alphabet. We define the

relations ind, syn and the set Ssyn as follows:

• ind ~Ex E, called independency, and defined as ind = ser n ser-1
,

• syn ~ E x E, called synchrony, and defined as:

(a, b) E syn {::::::::? (a, b) E sim 1\ (a, b) ¢:. ser U ser-1
,

• Ssyn ~ §, called synchronous steps, and defined as:

A E Ssyn {::::::::? A=/:- 01\ (Va, bE A. (a, b) E syn).

If (a, b) E ind then a and b are independent, i.e. they may be executed either

simultaneously, or a followed by b, or b followed by a, with exactly the same result.

If (a, b) E syn then a and b are synchronous, which means they might be executed

in one step, either {a, b} or as a part of bigger step, but such an execution is not

equivalent to either a followed by b, or b followed by a. In principle, the relation syn

is a counterpart of 'synchrony' as understood in [18]. If A E §syn then the set of

events A can be executed as one step, but it cannot be simulated by any sequence of

its subsets.

Example 3.4. Let E = {a, b, c, d, e}, sim = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)},

and ser ={(a, b), (b, a), (a, c)}. Hence,

§= {{a,b},{a,c},{a,d},{a},{b},{c},{e}}
ind ={(a, b), (b, a)}

syn ={(a, d), (d, a)}

Ssyn = {{a, d}}

25 3. Equational Monoids with Compound Generators

Since {a, d} E §syn the step {a, d} cannot be split. For example the comtraces XI =

[{a, b}{c}{a}], x2 = [{e }{a, d}{a, c}], and x3 = [{a, b}{c}{a}{e }{a, d}{ a, c}] are the

following sets of step sequences:

XI= {{a,b}{c}{a},{a}{b}{c}{a},{b}{a}{c}{a},{b}{a,c}{a}}

x2 = {{e}{a,d}{a,c},{e}{a,d}{a}{c}}

x3 = {{a,b}{c}{a}{e}{a,d}{a,c},{a}{b}{c}{a}{e}{a,d}{a,c},

{b}{a}{c}{a}{e}{a,d}{a,c},{b}{a,c}{a}{e}{a,d}{a,c},

{a,b}{c}{a}{e}{a,d}{a}{c},{a}{b}{c}{a}{e}{a,d}{a}{c},

{b}{a}{c}{a}{e}{a,d}{a}{c},{b}{a,c}{a}{e}{a,d}{a}{c}}

Notice that we have {a, c} -ser {a}{c} =l=ser {c}{a}, since (c,a) ~ ser. We also

have X3 = XI ox2· D

3.3 	 Partially Commutative Absorbing Monoids

and Generalised Comtraces

There are reasonable concurrent histories that cannot be modelled by any absorbing

monoid. In fact, absorbing monoids can only model concurrent histories conforming

to the paradigm n3 of [13] (see Chapter 7 of this thesis). Let us analyse the following

example.

Example 3.5. Let E = {a, b, c} where a, b and care three atomic operations defined

as follows (we assume simultaneous reading is allowed):

a : X +--- X+ 1, b: X +---X+ 2, C: y +--- y + 1.

It is reasonable to consider them all as 'concurrent' as any order of their executions

yields exactly the same results (see [13, 15] for more motivation and formal consider­

ations). Note that while simultaneous execution of {a, c} and { b, c} are allowed, the

step {a, b} is not, since simultaneous writing on the same variable x is not allowed!

The set of all equivalent executions (or runs) involving one occurrence of the

26 3. Equational Monoids with Compound Generators

operations a, b and c,

x= {{a}{b}{c},{a}{c}{b},{b}{a}{c},{b}{c}{a},{c}{a}{b},{c}{b}{a},
{a,c}{b},{b,c}{a},{b}{a,c},{a}{b,c}},

is a valid concurrent history or behaviour [13, 15].

However x is not a com trace. The problem is that we have here {a}{b} = { b}{a}

but {a, b} is not a valid step, so no absorbing monoid can represent this situation.

The concurrent behaviour described by x from Example 3.5 can easily be

modelled by a generalised order structure of [10] (see Chapter 8 of this thesis). In this

subsection we will introduce the concept of generalised comtraces, quotient monoid

representations of generalised stratified order structures. But we start with a slightly

more general concept of partially commutative absorbing monoid over step sequences.

Definition 3.7. Let E be a finite set and let (§*, o, >.) be a free monoid of step

sequences over E where§ is subset closed. Let EQ1, EQ2 , EQ be the following sets

of equations

where Ei, Fi E §, Ei n Fi = 0, Ei U Fi ¢:. §, for i = 1, ... , k, and

EQ = EQ1U EQ1.

Let =pcabs be the EQ-congruence defined by the set of equations EQ. Then the

equational monoid (§* j-pcabs, o, [>.]) will be called an partially commutative absorbing

monoid over step sequences.

We will omit the subscript pcabs from partially commutative absorbing monoid

congruence and write - if it causes no ambiguity.

Remark 3.1. There is an important difference between the equation ab = ba for

Mazurkiewicz traces, and the equation {a} { b} = { b} {a} for partially commutative

27 3. Equational Monoids with Compound Generators

absorbing monoids. For Mazurkiewicz traces, the equation ab = ba when trans­

lated into step sequences corresponds to {a, b} = {a}{b}, {a, b} = { b}{a}, and im­

plies {a}{ b} - { b}{a}. For partially commutative absorbing monoids, the equation

{a}{b} = {b}{a} implies that {a, b} is not a step, i.e. neither {a, b} = {a}{b} nor

{a, b} = { b} {a} belongs to the set of equations. In other words, for Mazurkiewicz

traces the equation ab = ba means 'independency', i.e. any order or simultaneous exe­

cution are allowed and are equivalent. For partially commutative absorbing monoids,

the equation {a}{ b} = { b}{a} means that both execution orders are equivalent but

simultaneous execution is not allowed. D

We will now extend the concept of a comtrace by adding a relation that generates

the set of equations EQ2•

Definition 3.8. Let E be a finite set (of events). Let ser, sim, inl C Ex E be three

relations called serialisability, simultaneity and interleaving respectively satisfying:

• sim and inl are irrefl.exive and symmetric,

• ser ~ sim, and

• sim n inl = 0.

Then the triple (E, sim, ser, inl) is called a generalised comtrace alphabet.

The interpretation of the relations sim and ser is as in Definition 3.3, and (a, b) E

inl means a and b cannot occur simultaneously, but their occurrence in any order is

equivalent. As for comtraces, we define §, the set of all (potential) steps, as the set

of all cliques of the graph (E, sim).

Definition 3.9. Let (E, sim, ser, inl) be a generalised comtrace alphabet and = 9com,

called generalised comtrace congruence, be the EQ-congruence defined by the set of

equations EQ = EQ 1 U EQ2 , where

EQ 1 df {A= BC IA= B U C E § 1\ B x C ~ ser},

and

EQ2 df { BA = AB I A E § 1\ B E § 1\ A x B ~ inl}.

The equational monoid (§*/=9com, o, [>.]) is called a monoid of generalised comtraces

over (E, sim, ser, inl).

28 3. Equational Monoids with Compound Generators

In Definition 3.9, since ser and inl are irreflexive, we have

• if (A= BC) E EQ1, then B n C = 0, and

• if (AB = BA) E EQ2 , then An B = 0.

Also since inl n sim = 0, we know that (AB = BA) E EQ2 implies that AU B ¢. §.

Hence, each monoid of generalised comtraces is a commutative absorbing monoid.

By Proposition 3.1, the generalised comtrace congruence relation can also be de­

fined explicitly in non-equational form as following.

Definition 3.10. Let () = (E, sim, ser, inl) be a generalised comtrace alphabet and

let §* the set of all step sequences defined on ().

Let ~1 ~ §* x §* be the relation comprising all pairs (t, u) of step sequences

such that t = wAz and u = wBCz where w, z E §*and A, B, Care steps satisfying

B U C = A and B x C ~ ser.

Let ~2 ~ §* x §* be the relation comprising all pairs (t, u) of step sequences

such that t = wABz and u = wBAz where w, z E §* and A, B are steps satisfying

Ax B ~ inl.

""" df """ U d fine L t e """gcom - """1 """ """2· Then we e -=gcom -df (~gcom U ~;!m)*, i.e. gcom is

the reflexive symmetric transitive closure of ~gcom·

The name "generalised comtraces" comes from that fact that when inl = 0, Defini­

tion 3.9 is the same as Definition 3.4 of comtrace monoids. We will omit the subscript

gcom from the generalised comtrace congruence and ~gcom, and only write_ and~

if it causes no ambiguity.

Example 3.6. The set x from Example 3.5 is a generalised comtrace with E ­

{a,b,c}, ser = sim = {(a,c),(c,a),(b,c),(c,b)}, inl = {(a,b),(b,a)}, and§

{{a,c}, {b, c}, {a}, {b}, {c}}. So we write x =[{a, c}{b}].

29 3. Equational Monoids with Compound Generators

3.4 	 Absorbing Monoids with Compound Genera­

tors

One of the concepts that cannot easily be modelled by quotient monoids over step

sequences, is asymmetric synchrony. Consider the following example.

Example 3.7. Let a and b be atomic and potentially simultaneous events, and c1 ,

c2 be two synchronous compound events built entirely from a and b. Assume that c1

is equivalent to the sequence a o b, c2 is equivalent to the sequence bo a, but c1 in not

equivalent to c2 . This situation cannot be modelled by steps as from a and b we can

build only one step {a, b} = {b, a}.

To provide more intuition, consider the following interpretation of a, b, c1 and c2.

Assume we have a buffer of 8 bits. Each event a or b fills consecutively 4 bits. The

buffer is initially empty and whoever starts first fills the bits 1-4 and whoever starts

second fills the bits 5-8. Suppose that a simultaneous start is impossible (beginnings

and endings are instantaneous events after all), filling the buffer takes time, and

simultaneous executions (i.e. time overlaps in this case) are allowed. We clearly have

two synchronous events c1 = 'a starts first but overlaps with b ', and c2 = 'b starts first

but overlaps with a '. We now have c1 = a o b, and c2 = b o a, but obviously c1 =/= c2

and c1 =/= c2.

To model adequately the situations as that in Example 3.7 we will introduce the

concept of absorbing monoid with compound generators.

Let (G*, o, A) be a free monoid generated by G, where G = E U C, En C = 0.
The set E is the set of elementary generators, while the set C is the set of compound

generators. We will call (G*, o, A) a free monoid with compound generators.

Assume we have a function decamp : G ~ .9"(E), called decomposition, that

satisfies for all a E E, decomp(a) ={a} and for all a fj. E, idecomp(a)l ~ 2.

For each a E G, decomp(a) gives the set of all elementary elements from which a

is composed. It may happen that decamp(a) = decamp(b) and a =/= b.

Definition 3.11. The set of absorbing equations is defined as follows:

30 3. Equational Monoids with Compound Generators

where for each i = 1, ... , n, we have:

• decomp(Ci) = decomp(ai) U decomp(bi),

• decomp(ai) n decomp(bi) = 0.

Let =abs&cg be the EQ-congruence defined by the above set of equations EQ. The

equational monoid (G*;-abs&cg, o, [>.]) is called an absorbing monoid with compound

generators.

We will omit the subscript absf3cg from the congruence of absorbing monoid with

compound generators and write _ if it causes no ambiguity.

Example 3.8. Consider the absorbing monoid with compound generators where:

E = {a,b}, G = {a,b,c1,c2}, decomp(c1) = decomp(c2) = {a,b}, decomp(a) ={a},
decomp(b) = {b}, and EQ = { c1 = aob, c2 =boa}. Now we have [c1] = {c1, aob}

and [c2] = {c2 , boa}, which models the case from Example 3.7.

Chapter 4

Canonical Representations

We will show that all kinds of monoids discussed in previous chapter have some kind

of canonical representation, which intuitively corresponds to maximally concurrent

execution of concurrent histories, i.e. "executing as much as possible in parallel".

This kind of semantics is formally defined and analysed in [4].

Let (E, ind) be a concurrent alphabet and (E* / =, o, [>.]) be a monoid of

Mazurkiewicz traces. A sequence x = a1 ... ak E E* is called fully commutative if

(ai, ai) E ind for all i =/= j and i,j E {1, ... , k}.

A sequence x E E* is in the canonical form if x = >. or x = x1 ... Xn such that

• 	 each xi is fully commutative, fori= 1, ... , n,

• 	 for each 1 ::::; i ::::; n - 1 and for each element a of Xi+I there exists an element b

of Xi such that a =/= b and (a, b) rJ. ind.

If x is in the canonical form, then x is a canonical representation of [x].

Theorem 4.1 ([1, 4]). For every trace tEE*/=, there exists x E E* such that t = [x]

and x is in the canonical form. D

With the canonical form as defined above, a trace may have more than one canon­

ical representation. For instance the trace t3 = [abcbca] from Example 3.1 has four

31

32 4. Canonical Representations

canonical representations: abcbca, acbbca, abccba, acbcba. Intuitively, x in the canoni­

cal form represents the maximally concurrent execution of a concurrent history rep­

resented by [x]. In this representation fully commutative sequences built from the

same elements can be considered equivalent (this is better seen when vector firing

sequences of [28] are used to represent Mazurkiewicz traces, see [4] for more details).

To get uniqueness it suffices to order fully commutative sequences. For example we

may introduce an arbitrary total order on E, extend it lexicographically to E* and

add the condition that in the representation x = x1 ... Xn, each Xi is minimal with the

lexicographic ordering. The canonical form with this additional condition is called

Foata canonical form.

Theorem 4.2 ([1]). Every trace has a unique representation in the Foata canonical

~rm. D

A canonical form as defined at the beginning of this chapter can easily be adapted

to step sequences and various equational monoids over step sequences, as well as to

monoids with compound generators. In fact, step sequences represent intuition better

than canonical representation corresponds to the maximally concurrent execution

[4]. An alternative characterisation of Foata normal form introduced in [7] involved

the concept of elementary step, which is very similar to the notion of step sequence,

and will be discussed later in Proposition 5.3.

Definition 4.1. Let (§*, o, .X) be a free monoid of step sequences over E, and let

be an appropriate set of absorbing equations. Let Mabs = (§*/ =, o, [.X]) be the

absorbing monoid determined by EQ. A step sequence t = A1 ... Ak E §*is canonical

(w.r.t. Mabs) if for all i 2: 2 there is no step B ~ Ai satisfying:

(A-1 U B = Ai-lB) E EQ

(Ai = B(Ai- B)) E EQ

It is very important to notice that in the above definition B = Ai is allowed but

B = 0 is not, since B is a step.

33 4. Canonical Representations

For every step sequence x = B1 ... Br, we define

J..L(x) df 1·IBll+ ... +r·IBrl (4.1)

Theorem 4.3. Let Mabs be an absorbing monoid over step sequences, § be its set of

steps, and EQ be its set of absorbing equations. For every step sequence t E §* there

is a canonical step sequence u representing [t].

Proof. We know that there is at least one u E [t] such that J..L(u) ~ J..L(x) for all x E [t].

Suppose u = A1 ... Ak is not canonical. Then there is i ~ 2 and a step B E §

satisfying:
(Ai-l U B = Ai-lB) E EQ
(Ai = B(Ai - B)) E EQ

If B =A then w ~ u and J..L(w) < J..L(u), where

w = A1 ... Ai-2(Ai-l U Ai)Ai+l ... Ak.

If B =/= Ai, then w ~ z and u ~ z and J..L(w) < J..L(u), where

z = A1 ... Ai-2Ai-1B(Ai - B)Ai+l ... Ak,

w = A1 ... A-2(Ai-l U B)(Ai- B)Ai+l ... Ak.

In both cases it contradicts the minimality of J..L(u). Hence u is canonical. D

Corollary 4.1. Let Mabs be an absorbing monoid over step sequences, § be its set of

steps, and EQ be its set of absorbing equations. If a step sequence u E §* satisfying

J..L(u) ~ J..L(x) for all x E [u], then u is canonical w.r.t Mabs· D

When Mabs is a monoid of comtraces, Definition 4.1 is equivalent to the definition

of canonical step sequence proposed in [14] as shown in the following proposition.

Proposition 4.1. If a step sequence u = A1 ..• Ak E §*is canonical w.r.t. a comtrace

monoid(§*/=, o, [.A]) over a comtrace alphabet (E, sim, ser) if and only if for all i ~ 2

there is no step B ~ Ai satisfying Ai-l x B ~ ser and B x (Ai \ B) ~ ser.

Proof. Recall the set of equations for comtrace in Definition 3.4 is defined as:

EQ df { C = AB IC = A U B E § 1\ A x B ~ ser}.

Hence, u is canonical if and only if for all i ~ 2 there is no step B ~ Ai such that

Ai-l x B ~ ser and B x (Ai \B)~ ser as desired. D

34 4. Canonical Representations

Definition 4.2. Let(§*, o, .X) be a free monoid of step sequences over E, and Mpcabs =

(§*I=, o, [.X]) be a partially commutative absorbing monoid. Then a step sequence

t = A1 ... Ak E §* is canonical (w.r.t. Mpcabs) if p,(t) ::; p,(u) for all u E [t].

Since each generalised comtrace monoid is a special case of partially commutative

absorbing monoid, the above definition also applies to generalised comtrace monoids.

Definition 4.3. Let (G*, o, .X) be a free monoid with compound generators, and let

be an appropriate set of absorbing equations. Let Mabs&cg = (G*I=, o, [.X]). A se­

quence t = a1 ... ak E G* is canonical (w.r.t. Mabs&cg) if for all i 2: 2 there is no

b, d E G satisfying:
(c = ai-lb) E EQ

(ai = bd) E EQ

For all above definitions, if x is in the canonical form, then x is a canonical

representation of [x].

Since the proof of Theorem 4.3 can also be applied to the case of a free monoid

with compound generators, we have the following proposition.

Proposition 4.2. Let (X, o, [.X]) be an absorbing monoid over step sequences, or a

partially commutative absorbing monoid over step sequences, or an absorbing monoid

with compound generators. Then for every x E X there is a canonical sequence u

such that x = [u]. 0

Unless additional properties are assumed, the canonical representation is not

unique for all three kinds of monoids mentioned in Proposition 4.2. To prove this lack

of uniqueness, it suffices to show it for the absorbing monoids over step sequences.

Consider the following example.

Example 4.1. Let E ={a, b, c}, §={{a, b}, {a, c}, {b, c}, {a}, {b}, {c}} and EQ be

the following set of equations:

{a,b} = {a}{b}, {a,c} = {a}{c}, {b,c} = {b}{c}, {b,c} = {c}{b}.

35 4. Canonical Representations

Note that {a, b}{c} and {a, c }{b} are canonical step sequences, and {a, b}{c} ~

{a}{b}{c} ~ {a}{c}{b} ~{a, c}{b}, i.e. {a, b}{c} ={a, c}{b}. Hence

[{a, b}{c}] = { {a, b}{c}, {a}{b}{c}, {a}{c}{b}, {a, c}{b}}

has two canonical representations {a, b}{c} and {a, c}{b}. One can easily check that

this absorbing monoid is not a monoid of comtraces.

The canonical representation is also not unique for generalised comtraces

if inl =/= 0. For any generalised comtrace, if {a,b} ~ E, (a,b) E inl, then

x = [{a}{b}] = {{a}{b}, {b}{a}} and x has two canonical representations {a}{b}
and {b}{a}.

All the canonical representations discussed above can be extended to unique

canonical representations by simply introducing some total order on step sequences,

and adding a minimality requirement with respect to this total order to the definition

of a canonical form. The construction which we will give in Definition 10.4 is an

example of how to do so with the assumption that there is a total order on a set of

events E.

However, each comtrace has a unique canonical representation as defined in Defini­

tion 4.1. Although not mentioned in [14], the uniqueness of canonical representation

follows directly from (14, Proposition 3.1] and [14, Proposition 3.1]. However, we will

provide an alternative proof using only the algebraic properties of comtrace congru­

ence in the next chapter.

Chapter 5

Algebraic Properties of Comtrace

Congruence

Analogous to how operations on sequences (words) provide more tools to study their

generated partial orders in the theory of Mazurkiewicz traces, the goal of this chapter

is to provide similar algebraic operations for step sequences which we hope will even­

tually help to analyse stratified order structure [15]. When dealing with Mazurkiewicz

traces, the tools to deal with sequences (words) are simple but powerful operations

like left/right cancellation and projection on sequences, which are well-known and

intuitive (see [25]). However, it is not obvious what operations are needed when

working with step sequences. In the next section, we try to tackle this problem by

introducing similar tools for step sequences and utilise them to analyse some basic

properties of comtrace congruence.

5.1 	 Operations on Step Sequences and Properties

of Comtrace Congruence

Let us consider a comtrace alphabet () = (E, sim, ser) where we reserve§ to denote

the set of all possible steps of() throughout this chapter.

36

37 5. Algebraic Properties of Comtrace Congruence

For each step sequence or enumerated step sequence x = X 1 ... Xk, let

denote the step sequence weight of w, where IXil denotes the cardinality of the set

Xi. We also define

i=l

For any a E E and a step sequence w = A1 ... Ak E §* , we define lwla, the

number of occurrences of a in w, as lwla df I{Aill ::; i < k 1\ a E Ai}l.

Due to the commutativity of the independency relation for Mazurkiewicz traces,

the mirror rule, which says if two sequences are congruent then their reverses are

also congruent, holds for Mazurkiewicz trace congruence [8]. Hence, in trace theory,

we only need a right: cancellation operation to get new congruent sequences from the

old ones, since the left cancellation comes from the right cancellation of the reverses.

However, the mirror rule does not hold for com trace congruence since the relation

ser is usually not commutative. Example 3.3 works as a counter example since

{a}{b, c} = { a}{b}{ c} but {b, c}{a} ¢. {c}{b}{a}. Thus, we define separate left and

right cancellation operators for comtraces.

Let a E E, A E § and w E §*. The operator +R, step sequence right cancellation,

is defined as

if a~ A
ifA={a}
otherwise.

{

Symmetrically, a step sequence left cancellation operator +L is defined as

>..+La
df

>..,

A(w +La) if a~ A
df

Aw+La w if A= {a}

(A\{a})w otherwise.

38 5. Algebraic Properties of Corntrace Congruence

Finally, for each D ~ E, we define the function 7rD : §* - §*, step sequence

projection onto D, as follows:

7rD(A) df A,

7rD(w) ifAnD=0
7rD(wA) df

{ 7rD(w)(A n D) otherwise.

Proposition 5.1.

1. u- v ==::? weight(u) = weight(v). (step sequence weight equality)

2. U- V ==::? Jula = Jvla· 	 (event-preserving)

(right cancellation)

(left cancellation)

5. u = v {=:::} Vs, t E §*. sut = svt. 	 (step subsequence cancellation)

6. u v ==::? 7rD(u) =7rD(v). 	 (projection rule)

Proof Note that for corntraces u ~ v means u = xAy, v = xBCy, where A= B U C,

B n C = 0, B x C ~ ser.

1. It suffices to show that u ~ v ==::? weight(u) = weight(v). Because A= B U C

and B n C = 0, we have weight(A) = JAJ = JBJ + JCJ = weight(BC). Hence,

weight(u) = weight(x)+weight(A)+weight(z) = weight(x)+weight(BC)+weight(z) =

weight(v).

2. It suffices to show that u ~ v ==::? Jula = Jvla· There are two cases:

• 	 a E A: Then it can't be the case that a E B 1\ a E C because B n C = 0.

Since A = B U C, either a E B or a E C. Then JAla = JBCla· Therefore,

JuJa = Jxla + JAJa + Jzla = Jxla + JBCJa + Jzla = Jvla·

39 5. 	Algebraic Properties of Comtrace Congruence

• 	a ¢:. A: Since A = B U C, a (j. B 1\ a (j. C. So IAia = IBCia = 0. Therefore,

lula = lxla + lzla = lvla·

3. 	 It suffices to show that u ~ v ===? u ...;-R a ~ v ...;-R a. There are four cases:

• 	a E I:!:J(y): Let z = y 7R a. Then u 7R a= xAz ~ xBCz = v 7R a.

• 	a¢:. I:!:J(y), a E AnC: Then u-;-Ra= x(A \ {a})y ~ xB(C\ {a})y =V7Ra.

• 	a¢:. I:!:J(y), a E An B: Then u 7R a= x(A \ {a})y ~ x(B \ {a})Cy = v 7R a.

• 	a¢:. I:!:J(Ay): Let z = x 7R a. Then u 7R a= zAy ~ zBCy = v 7R a.

4. 	 Dually to (3).

5. (::::}) It suffices to show that u ~ v ===? \/8, t E §*. 8ut ~ 8Vt. For any two

step sequences 8, t E §*, we have 8ut = 8XAyt and 8Vt = 8XBCyt. But this clearly

implies 8Ut ~ 8Vt by the definition of ~.

({=) For any two step sequences 8, t E §*, since 8Ut _ 8Vt, it follows that

(8ut ...;-R t) ...;-L 8 = u =v = (8Vt ...;-R t) ...;-L 8.

Therefore, u = v.

6. It suffices to show that u ~ v ===? rrv(u) ~ rrv(v). Note that rrv(A) =

rrv(B) U rrv(C) anclrrv(B) x rrv(C) s;;;; 8er, so

rrv(u) = rrv(x)rrv(A)rrv(Y) ~ rrv(x)rrv(B)rrv(C)rrv(Y) = rrv(v).

D

Proposition 5.1 (3), (4) and (6) do not hold for an arbitrary absorbing monoid.

For the absorbing monoid from Example 3.2 we have u = {a, b, c} =v = {a}{b, c},

u +R b = u +L b = 7r{a,c}(u) ={a, c} "¢ {a}{c} = V +R b = v +L b = 7T{a,c}(v).

40 5. Algebraic Properties of Comtrace Congruence

Note that (w +R a) +R b = (w +R b) +R a, so we can define:

w +R {a1, ... , ak} r!1 (... ((w +R a1) +R a2) .. .) +R ak,

and

w+RA1···Ak df (... ((w+RA1)+RA2) ...)+RAk.

We define dually for +L·

Corollary 5 .1. For all u, v, x E §*, we have

Proof. 1. We prove it by induction on k, the number of steps of x. When k = 0, have

x = ..\. Hence, from u = v, it follows that

U +R X= U- V = V +R X.

When k > 0, we assume x = A1... Ak. By the induction hypothesis, we have

Lett= u+RA1... Ak_1and s = v+RA1... Ak-1· It suffices to show t+RAk = s+RAk.
Let Ak = {a1 ... an}· We will prove it by induction on n. When n = 1, by Proposition

5.1(3), we have

When n > 1, by the induction hypothesis, we have

It follows that

t +R Ak = (t +R {a1 ... an-1}) +Ran

= (s+R {a1·· .an-1}) +Ran= s+RAk.

2. Dually to (1). 0

41 5. Algebraic Properties of Comtrace Congruence

To prepare for the proof of uniqueness property of canonical representation for

comtraces, we prove the following technical lemma.

Lemma 5.1. For all step sequences u, w, s E §*, steps A, B, C1, ... , Cn E § and a

symbol a E E, the following hold

1. A C1 ... Ck-1Ck ... Cn :=:::} l±j(C1 ... Ck-1) x I±J(Ck ... Cn) ~ ser

2. (u(AU{a})- wB A a~A A a~B) :=:::} {a}x(B\A)~ ind

3. ((AU{a})u = Bw A a~A A a~B) :=:::} {a}x(B\A)~ ind

4- s(B U {a})= nv A a~ B A a~ I±J(v) :=:::} {a} x (I±J(v) \B)~ ind.

5. (B U {a})s = 'UU A a~ B A a~ I±J(v) :=:::} {a} x (I±J(v) \B)~ ind.

Proof. 1. From the definition of=, we have I±J(C1... Ck-1) ni±J(Ck ... Cn) = 0. Hence,

for all i = 1, ... , k- 1 and all j = k, ... ,n, we have

2. For any symbol a E A, from our assumption u(A U {a}) = wB, we first have

u(A U {a}) +R A= wB +R A

Since wB +R A= (w +R (A\ B))(B +R A), we have

where (B +R A) = >. if (B \A) = 0 and (B +R A) - (B \A) otherwise. Let

x = (w +R (A \ B)) +R a. So we have

u{a} +L x- ((w +R (A\ B))(B +R A)) +L x = {a}(B +R A).

Notice that we right-cancel an instance of a out of (w +R (A \ B)) to have x, so

u{a} +Lx has a form of v{a} where v = u+Lx. Hence, we have v{a} = {a}(B+RA).

42 5. Algebraic Properties of Comtrace Congruence

We consider two possible cases:

Case (i): (B 7R A)= A. We have the trivial case B \A= 0. Hence,

{a}x(B\A)=0~ ind

Case (ii): (B ...;-R A) =f. A. Then (B \A) =f. 0, let C = B \A. We will use

induction on ICI.
For ICI = 1, we have C = {b} where b =f. a and v = {b}. Hence, {b}{a} ={a}{b},

i.e. {b}{a}(~ U ~-1)*{a}{b}. This means there exists a step {a, b} E §such that

{b}{a} ~-1 {a,b} ~ {a}{b}. Thus, (a,b) E serl\(b,a) E ser. But this implies

(a, b) E ind.

Now we need to prove the inductive step, i.e. assuming v{a} = {a}(C U {c})

where c (j. C and c =f. a, we want to show {a} x (C U { c}) ~ ind. Using cancellation

properties again, we have

This together with the induction hypothesis implies {a} x C ~ ind. But

then {a}(C U {c}) 7R C = {a}{c}. This forces (v{a}) ...;-R C = {c}{a}.

Hence, {c}{a} _ {a}{c}. Similar to case (i), we obtain (a, c) E ind. Hence,

{a} x (C U { c}) ~ ind.

3. Dually to (2).

4. We prove this by induction on v. The case of v = A is obvious. When v =
Ak ... A1 (k > 0), by induction hypothesis, we have {a} x (l±J(Ak-1... A1) \B)~ ind.

We want to show that {a} x (Ak \ B) ~ ind.

Let s'(B' U{a})= s(B U{a}) 7R Ak-1 ... A1, we get

s'(B' U {a})- uAk = uv ...;-R Ak-1 ... A1

Applying (2) of this lemma, we get {a} x (Ak \B') ~ ind. But since B' ~ B, it

follows that

{a} x (Ak \B)~ {a} x (Ak \ B') ~ ind.

43 5. Algebraic Properties of Comtrace Congruence

Therefore,

{a}x (t!:J(v)\B) ={a}x ((t!:J(A1 ... Ak-l)UAk)\B) ~ind.

5. Dually to (4). D

It is worth noticing that Lemma 5.1 (4),(5) also implies that comtraces belong to

paradigm ?T3 as classified by Janicki and Koutny in [13) which we will discuss more

carefully in Chapter 7. The paradigm basically says that

{a}{b} ={b}{a} =>{a, b} E §.

The intuition comes from the following more general result which explains what

it means for steps to be independent.

Proposition 5.2. For steps A, BE§, let C =An B. If AB = BA, then (A\ C) x
(B \C)~ ind.

Notice that it immediately follows from this proposition that A ® B E § where

the ® operator denotes the symmetric difference operator on sets.

Proof. When C = 1~, the proposition follows directly from Lemma 5.1 (4) and (5).

When C =/= 0, it follows that

AB = B A <9 (C U (A \ C)) ((B \ C) UC) = (C U (B \ C)) ((A \ C) UC).

By cancelling C from the left and then from the right, we get:

((C U (A \ C)) ((B \ C) U C) 7 L C) 7 R C

=((C U (B \ C))((A \C) U C) 7L C) 7R C.

Hence,

(A \ C) (B \ C) = (B \ C) (A \ C).

Since (A\ C) n (B \C)= 0, by Lemma 5.1 (4) and (5), it follows that

(A\ C) x (B \C) ~ ind

as desired. D

Intuitively, the proposition says that although A and Bare not independent steps

when C =/= 0, (A\ C) and (B \C) are.

44 5. Algebraic Properties of Comtrace Congruence

5.2 	 Uniqueness of Canonical Representation for

Corntraces

As mentioned previously, the uniqueness of canonical representation is a consequence

of [14, Proposition 3.1] and [14, Proposition 3.1], where the proofs use the properties

of stratified order structure. However, the uniqueness of canonical representation can

also be proved using only the algebraic properties of comtrace congruence from the

last section. The uniqueness follows directly from the following result.

Lemma 	5.2. For each canonical step sequence u = A1... Ak, we have

Al ={a I :3w E [u]. w = c1 ... Cm 1\ a E Cl}·

The following proof of Lemma 5.2 uses the technical Lemma 5.1.

Proof. Let A = {a I :3w E [u]. w = c1 ... Cm 1\ a E Cl}· Since u E [u], Al ~ A.

Suppose that A1=I A, i.e. we have a E A\ A1 for some a. Hence, there exists v E [u]
such that v = D1... Dn and a E D1. Let j be the least index such that a E Aj,

which means art l±J(A1 ... Aj_1). Since D1 ... Dn = A1 ... Aj-lAjAj+l ... Ak, we can

right-cancel Ai+1... Ak from both sides of= to get

(5.1)

where D~ ... D~, = D1... Dn +R Ai+1... Ak and a E D~ because we haven't cancelled

the first left a E Aj. We then left-cancel A1... Aj-1 from the equivalence (5.1) to

produce

D' 1 · · · D'n' -. · L A1 · · · Aj-1 = D"1 · · · D"n 11 -= A j 	 (5.2)

where a E D~. There are two cases:

Case (i):

If n" = 1, the equivalence (5.2) becomes D~ - Ai. So nr = Ai. Thus

D~ n l±J(A1 ... Aj_1) = 0, otherwise D~ = Aj was not left out after left-cancelling

A1... Ai_1 from D~ ... D~,. Let B = D~ \ Aj, then by Lemma 5.1(5),

D~ x (ltj(A1 ... Ai_r) \B) = Ai x (ltj(Al ... Ai_r) \ B) ~ ind.

45 5. Algebraic Properties of Comtrace Congruence

Hence,

(5.3)

We next want to show B x Ai ~ ser to conclude that Aj_1 x Ai ~ ser. Observe

that

D~ = D~ ... D~, +L A1 ... Aj-1 = (D~ ... D~, +L D~ ... D~,) +LB.

Hence, ltJ(D~ ... D~,) n nr = ltJ(D~ ... D~,) n Ai = 0. Right-cancelling D~ ... D~,

from both sides of= of the equivalence (5.1) produces

where u = A1... Aj_1+R D~ ... D~,. Since ltJ(u) = D~ \ Ai = B, by Lemma 5.1(1)

we conclude

(5.4)

From the results (5.3) and (5.4), we conclude that Aj-1 x Ai ~ ser. However,

since A1 ... Ak is canonical, A1 ... Aj is also canonical. By Proposition 4.1, it follows

Ai_1 x Ai ~ ser, a contradiction.

Case (ii):

If n" > 1, the equivalence (5.2) becomes D~ ... D~" =Aj. By Lemma 5.1(1), we

obtain D~ x (Ai \Dn = D~ x ltJ(D~ ... D~") ~ ser. We also have D~nltj(A1 ... Aj-1) =
0, otherwise nr was not left out after left-cancelling A1 ... Ai_1 from D~ ... D~,. Let

F = D~ \D~, then by Lemma 5.1(5) D~ x (ltJ(A1... Ai-d \F)~ ind. So we conclude

(Aj-1 \ F) x D~ ~ ser (5.5)

To show Aj-1 x D~ ~ ser, it suffices to show that F x D~ ~ ser. We first show

D~ n ltJ(D~ ... D~,) = 0. For each element e E D~, since D~ n ltJ(A1... Ai_1) = 0, we

have JD~ ... D~,Je = JA1 ... Ajle = IAjle = 1. This shows D~ n ltJ(D~ ... D~,) = 0.
Hence, right-cancelling D~ ... D~, from both sides of = of the equivalence (5.1)

produces

D~ = F U D~ = vD~ = A1 .. • Ai_1Ai +R D~ ... D~,.

From F U D~ =vD~, it follows that ltJ(v) =F. By Lemma 5.1(1), we then conclude

E x D~ = lti(v) x D~ ~ ser (5.6)

46 5. Algebraic Properties of Comtrace Congruence

From the results (5.5) and (5.6), we have Aj-1 X nr ~ ser. However, by

Proposition 4.1, this contradicts that A1 ..• Ai is canonical, since nr ~ Ai and

nr X (Aj \ nn ~ ser.

Since both cases lead to contradiction, we conclude A1 = A. D

The above lemma does not hold for an arbitrary absorbing monoid. For both

two canonical representations of [{a, b}{c}] from Example 4.1, namely {a, b}{c} and

{a, c}{b}, we have A = {a I :3w E [u]. w = cl ... Cm 1\ a E CI} = {a, b, c} rj. §.

Adding A to the set of possible steps § does not help as we still have A =I {a, b} and

A =I {a, c}.

Theorem 5.1. For every comtrace t E §* / there exists exactly one canonical step

sequence u representing t.

Proof. The existence follows from Theorem 4.3. We only need to show uniqueness.

Suppose that u = A 1 •.• Ak and v = E1 .•• Em are both canonical step sequences

and u = v. By induction on k = lui we will show that u = v. By Lemma 5.2, we

have E 1 = A1. If k = 1, this ends the proof. Otherwise, let u' = A2 ... Ak and

w' = E2 ... Em and u', v' are both canonical step sequences of [u']. Since iu'l < lui,
by induction hypothesis, we obtain Ai = Ei for i = 2, ... , k and k = m. D

When ind = ser = sim, Theorem 5.1 corresponds to the Foata normal form

theorem, which we survey in Theorems 4.1 and 4.2 of this thesis. To clarify this

point, we analyse the following form of Foata normal theorem, characterised by Volker

Diekert in [7], where Diekert provides a proof based on complete semi-Thue systems.

A step FE§ is defined to be elementary if (a, b) E ind for all a, bE F, a =I b. Notice

that each elementary step Ai can be seen as a partial ordered set (Ai, 0). Thus, by

the Szpilrajn Theorem, we can construct the Mazurkiewicz trace [Ai] to be the set

of all sequences which represent all total order extension of (Ai, 0) (see Section 9.1

for more discussion on relationship between partial orders and Mazurkiewicz traces).

The Foata normal form theorem can then be stated as follows.

Proposition 5.3 ([7]). Let [s] be a Mazurkiewicz trace over a concurrent alphabet

(X, ind). There exists exactly one sequence of elementary steps (A1, ... , Ak) such that

47 5. Algebraic Properties of Comtrace Congruence

[s] = [A1]o ... o[Ak] and for all i ~ 2, for all b E Ai, there is some a E Ai-l with

(a, b)~ ser.

Proof. Assume that s = x1 ... Xn· By Theorem 5.1, there exists a step sequence

u = A1 ... Ak defined as the canonical step sequence of the comtrace [{x1} ... {xn}]ser
over the concurrent alphabet (X, sim, ser) as in Theorem 5.1, where sim = ser = ind.

We observe that all steps Ai are elementary since ind = sim. So for each bE Ai,

{b} x (Ai \ {b}) ~ sim = ser.

Hence, by Proposition 4.1, Ai-l x {b} ~ ser. So there is some (a, b) E Ai-l x {b}
such that (a, b) ~ ser.

By Proposition 3.2, the comtrace [{x1} ... {xn}]ser can be represented by the

Mazurkiewicz trace [s] = [xl ... Xn] = [Al]o ... o[Ak] as required. 0

Notice that Theorems 4.1 and 4.2 are direct consequences of Proposition 5.3.

Although a sequence of elementary steps A1 ... Ak is not an element of the trace [s],

it is the canonical step sequence of the comtrace representing the trace [s]. This is

another reason suggesting that the notion of comtraces is a convenient and intuitive

generalisation of Mazurkiewicz traces.

Chapter 6

Comtrace Languages

Let B = (E, 8im, 8er) be a comtrace alphabet and§ be the set of all possible steps

over B. Any subset L of§* is a step sequence language over B, while any subset .C of

§*/ -ser is a comtrace language over B.

For any step sequence language L, we define a comtrace language [L]o (or just [L])
as:

[L] df {[u]luEL} (6.1)

The comtrace language [L] is called generated by L.

For any comtrace language .C, we define

U.C df { u I [u] E .C} (6.2)

Given step sequence languages L1, L 2 and comtrace languages £ 1, £ 2 over the

alphabet B, the composition of languages are defined as following:

L 1L 2 df { 81 o 82 I 81 E L1 1\ 82 E L2} (6.3)

£1£2 df { t1 0 t2 I t1 E £1 1\ t2 E £2} (6.4)

(Recall o and o denote the operators for step sequence monoids and trace monoids

respectively.)

48

49 6. Comtrace Languages

We let L* and £* denote the iteration of the step sequence language L and the

trace language .C where

00

L* df ULn where £ 0 df {).} and Ln+l df LnL (6.5)
0

00

.C* df U_cn where _cO df {[.A]} and _cn+1 df ,en.C (6.6)
0

Since comtrace languages are sets, the standard set operations as union, intersec­

tion, difference, etc. can be used. The following result is a direct consequence of the

comtrace language definition and the properties of comtrace composition "8".

Proposition 6.1. Let L, £ 11 £ 2 and Li fori E I be step sequence languages, and let

.C be a comtrace language. Then :

1. [0] = 0 s . .c = [U .c]
2. [£1][£2] = [£1£2] 6. [£1] U [£2] = [£1 U £2]
3. £1 ~ £2 ::::} [£1] ~ [£2] 1. uiEI[Li] = [UiEI Li]
4. L ~ U[L] 8. [L]* = [L*].

Proof. 1. From (6.1), it follows that [0] = {[u] Iu E 0} = 0.

2.
[£1][£2]

(From (6.4))

{[u1] 8 [v2] I [ui] E [£1] 1\ [u2] E [£2]}

(From definition of 8)

{[u1u2] I [u1] E [£1] 1\ [u2] E [£2]}

(From (6.1))

{[u1u2] I ·u1 E £1 1\ u2 E £2}

(From (6.3))

{[u1u2] I u1u2 E £1£2}

(From (6.1))

50 6. 	Comtrace Languages

3. 	 Assuming that L1 ~ L2 , we want to show [L1] ~ [L2]. Assume [t] E [L1]. It

suffices to show [t] E [L 2].

[t] E (LI]

==} (By (6.1))

t E L1

==} (Since L1 ~ L2)

t E L2

==} (By (6.1))

[t] 	E [L2]

4. 	 Assuming t E L, we want to show t E U[L].

tEL
==} (By the definition of comtraces)

tEL 1\ t E [t]
==} (By the definition of set-theoretical union)

t E U{ [u] Iu E L}
==} (By (6.1))

tE U[L]

5. 	 We want to show that for any comtrace [t], [t] E .C if and only if [t] E [U .C].

[t] E .C

¢:::=:? (By the definition of comtraces)

t E (t] E .C

¢:::=:? (By the definition of set-theoretical union)

t E U.C

¢:::=:? (From (6.2))

[t] E {[u] Iu E U.C}

¢:::=:? (From (6.1))

[t] 	E [U .C]

6.

51 6. 	Comtrace Languages

[£1] U [£2]

(From (6.1))

{[u] Iu E £1} U {[u] Iu E £2}

(By definition of set-theoretical union)

{[u] Iu E £1 V u E £2}

(From definition of set-theoretical union)

{[u] Iu E £1 U £2}

(From (6.1))

[£1 u £2]

7. 	 Notice I is the index set, so it has the form I= {i 11::::; i::::; n}. Hence, we will

prove (7) by induction on n. When n = 0, it follows that I= 0. Hence,

UiE0[£i]

(By definition of set-theoretical union)

0
(From (6.1))

[UiE0 Li]

When n > o, we want to show that U~=1 [Li] = [U~=1 Li].

(By definition of set-theoretical union)

[(U~11 Li) u Ln]
(From (6.1))

1{[u] Iu E (U~1 Li) U Ln}

(By the properties of set-theoretical union)

{[u] Iu E u~:11 Li} u {[u] Iu E Ln}
(From (6.1))

[U~:11 Li] u [Ln]
(By induction hypothesis)

(U~:/[Li]) u [Ln]
(From (6))

u~=l[Li]

8. 	 Observe that [£]* = U:0 [£]i and [£*] = [U:o £i]. Since we only deal with

finite step sequences, it suffices to show that [L]i = [Li] for every i. We proceed

52 6. Comtrace Languages

by induction on i. When i = 0, it follows that

[L]o
(By (6.6))

{[-\]}

(By (6.1))

{[u]Ju E {-\}}

(By (6.1))
[{-\}]

(By (6.5))
[Lo]

When i > 0, we want to show [L]i = [Li].

[L]i
(By (6.6))

[L]i-l[L]
(By induction hypothesis)

[Li-l][L]
(By (2))

(By (6.5))

D

Comtrace languages provide a bridge between operational and structural, i.e.

comtrace, semantics. In other words, if a step sequence language L describes

an operational semantics of a given concurrent system, we only need to derive

(E, sim, ser) from the system, and [L] defines the structural semantics of the system.

Example 6.1. Consider the following simple concurrent system Priority, which com­

prises two sequential subsystems such that

• the first subsystem can cyclically engage in event a followed by event b,

• the second subsystem can cyclically engage in event b or in event c,

• the two systems synchronise by means of handshake communication,

53 6. Comtrace Languages

• there is a priority constraint stating that if it is possible to execute event b then

c must not be executed.

This example has often been analysed in the literature (cf. [16]), usually un­

der the interpretation that a = 'Error Message', b = 'Stop And Restart', and

c = 'Some Action'. It can be formally specified in various notations including Prior­

ity and Inhibitor Nets (cf. [12, 15]). Its operational semantics (easily found in any

model) can be defined by the following language of step sequences

LPriority df Pref(({c}*U{a}{b}U{a,c}{b})*),

where Pref(L) denotes the prefix closure of the language L, i.e.,

Pref(L) df U{u E L l3v. uv = w}.
wEL

The rules for deriving the concurrent alphabet (E, sim, ser) depend on the model,

and for Priority, the set of possible steps is

§= {{a},{b},{c},{a,c}},

and ser = { (c, a)} and ser = { (a, c), (c, a)}. Then, · [LPriority] defines the structural

comtrace semantics of Priority. For instance,

[{a, c}{b}] = { {c}{a}{b}, {a, c}{b}} E [LPriority]·

Chapter 7

Paradigms of Concurrency

The general theory of concurrency developed in [13] provides a hierarchy of models

of concurrency, where each model corresponds to a so-called "paradigm", or a gen­

eral rule about the structure of concurrent histories, where concurrent histories are

defined as sets of equivalent partial orders representing particular system runs. In

principle, a paradigm describes how simultaneity is handled in concurrent histories.

The paradigms are denoted by 1r1 through 1r8 . It appears that only paradigms 1r1 ,

1r3 , 1r6 and 1r8 are interesting from the point of view of concurrency theory. The

paradigms were formulated in terms of partial orders. Comtraces are sets of step se­

quences, and each step sequence uniquely defines a stratified order, so the comtraces

can be interpreted as sets of equivalent partial orders, i.e. concurrent histories (see

[14] for details). The most general paradigm, 1r1, assumes no additional restrictions

for concurrent histories, so each comtrace conforms trivially to 1r1. The paradigms

1r3 , 1r6 and 1r8 , when translated into the comtrace formalism, impose the following

restrictions:

Definition 7.1. Let (E, sim, ser, inl) be a generalised comtrace alphabet. The

monoid of generalised comtraces (or comtraces when inl = 0) (§* / , 6, [.\])conforms

to paradigm 1r3 if and only if

Va,b E E. ({a}{b} {b}{a}:::? {a,b} E §),

conforms to paradigm 1r6 if and only if

Va,b E E. ({a,b} E §:::? {a}{b} = {b}{a}),

54

55 7. Paradigms of Concurrency

and conforms to paradigm 1r8 if and only if

'Va,b E E. ({a}{b} = {b}{a} <=? {a,b} E §).

Proposition 7.1. Let M = (§* / =, o, [.A]) be a comtrace monoid over a comtrace

alphabet (E, sim, ser). Then

1. M conforms to 1r3 .

2. If 1r8 is satisfied, then ind = ser = sim.

Proof 1. Assume {a}{b} - {b}{a} for some a,b E E. Hence, by Definition 3.5,

{a}{b} ~-1 {a,b} ~ {b}{a}, i.e. {a,b} E §.

2. Clearly ind ~ ser ~ sim. Let (a, b) E sim. This means {a, b} E §, which, by

1r8 , implies {a}{b} = {b}{a}. Hence, by Lemma 5.1(2), (a, b) E ind. D

From Proposition 7.1(1), it follows that comtraces cannot model any concurrent

behaviour (history) that does not conform to the paradigm 1r3 . Since any monoid of

comtraces conforms to 1r3 , we know that if a monoid of comtraces conforms to 11"6, then

it also conforms to 1r8 . It also follows from Proposition 3.2 and Proposition 7.1(2) that

all comtraces conforming to 1r8 can be reduced to equivalent Mazurkiewicz traces.

Generalised comtraces does not conform to 1r3 . Example 3.5 works as a counter­

example, since {a}{b} ={b}{a} but {a, b} ¢:. §. In fact, as a language representation

of generalised stratified order structures, generalised comtraces conform only to 1r1 ,

so they can model any concurrent history that is represented by a set of equivalent

step sequences.

Chapter 8

Relational Structures Model of

Concurrency

In this chapter, we review the theory of relational structures proposed by Janicki

and Koutny [11, 14, 10, 15, 12] to specify concurrent behaviours by using a pair of

relations instead of a single causality relation. The motivation is that partial orders

can sufficiently model the "earlier than" relationship but cannot model the "not

later than" relationship. We will give the definitions of stratified order structure and

generalised stratified order structure, and then introduce the intuition and motivation

behind these order structures using a detailed example.

8.1 Stratified Order Structure

By a relational structure we will mean a tripleT= (X, R 1, R 2), where X is a set and

R1 and R2 are binary relations on X. A relational structure T' = (X', R~, R~) is an

extension ofT, denoted as T ~ T', if and only if X= X', R 1 ~ R~ and R 2 ~ ~·

Definition 8.1 ([15]). A stratified order structure is a relational structure

s = (X,-<, c),

such that for all a, b, c E X, the following hold:

C1: art a C3: a C b C c 1\ a =/:. c ==> a C c

C2: a -< b ==> a C b C4: a C b -< c V a -< b C c ==> a -< c

56

57 8. Relational Structures Model of Concurrency

When X is finite, S is called a finite stratified order structure.

Remark 8.1. The axioms C1-C4 imply that (X,-<) is a poset and a-< b =} b l;t a.

The relation -< is called causality and represents the "earlier than" relationship

while C is called weak causality and represents the "not later than" relationship. The

axioms C1-C4 model the mutual relationship between "earlier than" and "not later

than" relations, provided that the system runs are defined as stratified orders (step

sequences).

Stratified order structures were independently introduced in [9] and [12] (the ax­

ioms are slightly different from C1-C4, although equivalent). Their comprehensive

theory has been presented in [15]. They have been successfully applied to model

inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for

example [14, 18, 19, 20, 27] and others).

8.2 Generalised Stratified Order Structure

Stratified order structures can adequately model concurrent histories only when the

paradigm 1r3 of [13, 15] is satisfied. For the general case, we need generalised stratified

order structures introduced by Guo and Janicki in [10] also under the assumption

that the system runs are defined as stratified orders (step sequences).

Definition 8.2 ([10, 14]). A generalised stratified order structure is a relational struc­

ture

G = (X,<>, c),

such that C is irreflexive, <> is symmetric and irreflexive, and the triple

Sa= (X, -<a, c),

where -<a = <> n c, is a stratified order structure.

Such relational structure Sa is called the stratified order structure induced by G.

When X is finite, G is called a finite generalised stratified order structure.

The relation <> is called commutativity and represents the "earlier than or later

than" relationship, while the relation C is called weak causality and represents the

"not later than" relationship.

58 8. Relational Structures Model of Concurrency

8.3 Motivating Example

To understand the main motivation and intuition behind the use of stratified order

structures and generalised stratified order structures, we will consider the four simple

programs in the following example taken from (11].

Example 8.1 ([11]). The programs are written using a mixture of cobegin, coend

and a version of concurrent guarded commands.

Pl:
begin

int x,y;

a: begin x:=O; y:=O end;

cobegin

b: x:=x+1, c: y:=y+1

coend

end.

P2:

begin

int x,y;

a: begin x:=O; y:=O end;

cobegin

b: x=O -+ y:=y+1, c: x:=x+1

coend

end.

P3:

begin

int x,y;

a: begin x:=O; y:=O end;

cobegin

b: y=O-+ x:=x+1, c: x=O-+ y:=y+1

coend

59 8. Relational Structures Model of Concurrency

end.

P4:

begin

int x;

a: x:=O;

cobegin

b: x:=x+l, c: x:=x+2

coend

end.

Each program is a different composition of three events (actions) called a, b, and

c (ai, bi, ci, i = 1, ... , 4, to be exact, but a restriction to a, b, c, does not change the

validity of the analysis below, while simplifying the notation). Alternative models of

these programs are shown Figure 8.1.

Let obs(Pi) denote the set of all program runs involving the actions a, b, c that can

be observed. Assume that simultaneous executions can be observed. In this simple

case all runs (or observations) can be modelled by step sequences with simultaneous

execution of a1,. .. ,an denoted by the step { a1, ... , an}. Let us denote 01 = {a}{b}{c},

o2 = {a} { c}{b}, o3 = {a} { b, c}. Each Oi can be equivalently seen as a stratified partial

order oi = ({a, b, c}, ~) (see Section 9.2 for formal discussion of the relationship

between step sequences and stratified orders) where:

b
03/cb

01 ,(02/ ""'02""'01 a/
a c a

02 b
01 03""

c

We can now write obs(P1) {o1, 02, o3}, obs(P2) = {o1, o3}, obs(P3) = {o3},

obs(P4) = {o1, o2 }. Note that for every i = 1, ... , 4, all runs from the set obs(Pi) yield

exactly the same outcome. Hence, each obs(Pi) is called the concurrent history of Pi.

An abstract model of such an outcome is called a concurrent behaviour, and now

we will discuss how causality, weak causality and commutativity relations are used to

construct concurrent behaviour.

60 8. Relational Structures Model of Concurrency

Program P1 :

In the set obs(PI), for each run, a always precedes both band c, and there is no causal

relationship between b and c. This causality relation, --<, is the partial order defined

as--<= {(a, b), (a, c)}. In general--< is defined by: x--< y if and only if for each run o

we have x ~ y. Hence for H, --< is the intersection of o1 , o2 and o3 , and {o1 , o2 , o3}

is the set of all stratified extensions of the relation --<.

Thus in this case the causality relation --< models the concurrent behaviour

corresponding to the set of (equivalent) runs obs(P1). We will say that obs(PI) and--<

are tantamount and write obs(P1) :::=::{--<}or obs(P1) :::=:: ({a,b,c},--<). Having obs(P1)

one may construct --< (as an intersection), and hence construct obs(P4) (as the set of

all stratified extensions). This is a classical case of the "true" concurrency approach,

where concurrent behaviour is modelled by a causality relation.

Before considering the remaining cases, note that the causality relation --< is ex­

actly the same in all four cases, i.e. --<i = {(a, b), (a, c)}, fori = 1, ... , 4, so we may

omit the index i.

To deal with obs(P2) and obs(P3), --<is insufficient because o2 ¢:. obs(P2) and o1 , o2 ¢:.
obs(P2). Thus, we need another relation, c, called weak causality, defined in this

context as x C y if and only if for each run o we have •(Y ~ x) (x is never executed

aftery). For our four cases we have C 2= {(a,b),(a,c),(b,c)}, C 1=C4=--<, and C3=

{(a, b), (a, c), (b, c), (c, b)}. Notice again that fori= 2, 3, the pair of relations { --<, ci}

and the set obs(Pi) are equivalent in the sense that each is definable from the other.

(The set obs(~) can be defined as the greatest set PO of partial orders built from a,

band c satisfying x--< y::::? Vo E PO. x ~ y and x Ci y::::? Vo E PO. •(Y ~ x).)

Hence again in these cases (i = 2, 3) obs(Pi) and {-<, ci} are tantamount,

obs(Pi) :::=:: {--<, ci}, and so the pair { --<, ci}, i = 2, 3, models the concurrent be­

haviour described by obs(Pi)· Note that Li alone is not sufficient, since (for instance)

obs(P2) and obs(P2) U {{a, b, c}} define the same C.

61 8. 	Relational Structures Model of Concurrency

Program P4:

The causality relation -< does not model the concurrent behaviour of P4 correctly1

since o3 does not belong to obs(PI). Let <> be a symmetric relation, called commu­

tativity, defined as x <> y if and only if for each run o either x ~ y or y ~ x. For the

set obs(P4), the relation <>4 looks like <>4= {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.

The pair of relations { <>4 , -<} and the set obs(P4) are equivalent in the sense that

each is definable from the other. (The set obs(P4) is the greatest set PO of partial

orders built from a, b and c satisfying x <>4 y =? Vo E PO. x ~ y V y ~ x and

x < y =? Vo E PO. x ~ y .) In other words, obs(P4) and {<>4 , -<} are tantamount,

obs(P4) ::::::: { <>4, -<}, so we may say that in this case the relations { <>4, <}model the

concurrent behaviour described by obs(P4).

Note also that <> 1 = -< U -<-1 and the pair { <> 1, -<} also models the concurrent

behaviour described by obs(H).

The state transition model Ai of each Pi and their respective concurrent histories

and concurrent behaviours are summarised in Figure 8.1. Thus, we can make the

following observations:

1. 	 obs(P1) can be modelled by the relation -< alone, and obs(P1) ::::::: { -<}.

2. 	 obs(Pi), for i = 1, 2, 3 can also be modelled by appropriate pairs of relations

{-<, Li}, and obs(Pi) ::::::: {-<, ci}.

3. 	 all sets of observations obs(Pi), for i = 1, 2, 3, 4 are modelled by appropriate

pairs of relations { <>i, Li}, and obs(Pi) ::::::: {<>i, Li}·

Note that the relations -<, <>, C are not independent, since it can be proved (see

[13]) that < = <> n c. The underlying idea is very intuitive. Since the relation

<> means "earlier than or later than" and the relation C means "not later than", it

follows the intersection means the "earlier than" relation -<.

1Unless we assume that simultaneity is not allowed, or not observed, in which case obs(PI) =
obs(P4) = {o1,o2}, obs(P2) = {oi}, obs(P3) = 0.

62 8. Relational Structures Model of Concurrency

0 0 0 0
.fa -}a -}a

0 0 al 0
y0 ~

0 yj
0 0{b,c} {b,c}00 yl"

{b,o} l
~ ~~ ~ ~

@ @ @ @

A1 A2 A3 A4

-<1= {(a, b), (a, c)} -<2= {(a, b), (a, c)} -<3= {(a, b), (a, c)} -<4= {(a, b), (a, c)}
C1= {(a,b),(a,c)} C2= {(a,b),(a,c),(b,c)} C3= {(a,b),(a,c), C4= {(a, b), (a, c)}

-1 -1<>1=C1 U c1 <>2=C2 U (b, c), (c, b)} <>4= {(a, b), (b,a),c 2
obs(P1) x obs(A1) obs(P2) x obs(A2) <>3=C3 u c 3

-1 (a,c),(c,a),(b,c),(c,b)}
X {-<1} X {-<1,C1} X { -<2, C2} obs(P3) x obs(A3) obs(P4) x obs(A4)

x {<>1, cl} X { <>2, C2} X { -<3, C3} X {<>4, C4}
X {<>3, C3}

Figure 8.1: Examples of causality, weak causality, and commutativity. Each program
Pi can be modelled by a labelled transition system (automaton) Ai. We use the step
{b, c} to denote simultaneous execution of a and b.

Chapter 9

Relational Representation of

Mazurkiewicz Traces and

Comtraces

It is well known that Mazurkiewicz traces can be interpreted as a formal language

representation of partial orders. In fact, each comtrace uniquely determines a finite

stratified order structure and each finite stratified order structure can be represented

by a comtrace. In this chapter, we will study this relationship in more detail.

9.1 Partiali Orders and Mazurkiewicz Traces

Each trace can be interpreted as a finite partial order. Let t = {XI, ... , xk} be a

trace, and let -<xi be a total order defined by a sequence Xi, i = 1, ... , k then the

set { -<x1 , ••• , -<xn} is the set of all total order extensions of -<t· By the Szpilrajn

Theorem, we know that the partial order generated by the trace t can then be defined

as -<t= n~=I -<xi.
Conversely, each finite partial order uniquely determines a trace. Let X be a finite

set, -< C X x X be a partial order, {-<I, ... , -<k} be the set of all total order extensions

of -<, and let x-<i E X* be a sequence that represents -<i, for i = 1, ... , k. The set

{x-<I' ... , x-<k} is a trace over the concurrent alphabet (X,~-<)·

Example 9.1. Let E = {a, b, c, d} where a, b, c and d are four atomic operations

63

64 9. Relational Representation of Mazurkiewicz Traces and Comtraces

defined as follows:

a: X+-- X+ y, b: y +--X+ W, C: y +-- y + Z, d: W +-- 2y + Z.

Assuming simultaneous reading and exclusive writing, then a and d can be executed

simultaneously, and so can the pair of actions b and c. The independency relation

can be expressed as the following undirected graph:

a b

I
d c

Given a sequence of operations s = dabcc, we can enumerate the operations of

s to get the enumerated sequences= d(1)a(1)b(1)c(l)c(2). By interpreting the lack of

order as independency, we can build a causality partial order -<[s] for s (for simplicity,

we do not draw arrows resulting from transitivity):

For example, we have a(l) ,.....,_--<t d(l) because a and dare independent operations.

The trace

[s] = { dabcc, adbcc, dacbc, adcbc}

defines· all the total order extensions of the partial order -<[s] because each sequence

in [s] induces a total order on the set of event occurrences { a(l), b(l), c(l), c(2), d(1)}:

• dabcc induces -<ctabcc: d(l) -4 a(l) -4 b(l) -4 c(l) -4 c(2)

9. Relational Representation of Mazurkiewicz Traces and Comtraces 65

and we can verify that

9.2 	 Stratified Order Structure Representation of

Comtraces

Analogous to the relationship between Mazurkiewicz traces and partial orders, com­

traces can be seen as a formal language representation of finite stratified order struc­

tures. In [14], Janicki and Koutny showed that each comtrace uniquely determines

a finite stratified order structure; however, it is not intuitive why their construc­

tion from comtraces to stratified order structures works. Hence, we will introduce

more techniques to analyse this construction where the keys are the three notions of

non-serialisable steps and the utilisation of the induction proof techniques.

Definition 9.1 ([15]). Let S = (X,-<, c) be a stratified order structure. A stratified

order <l on X is a stratified order extension of S if for all a, {3 E X,

a -< {3 ===} a <l {3

a C {3 ===} a <l~ {3

The set of all stratified order extensions of S is denoted as ext(S).

Proposition 9.1. Let u, v be two step sequences over a comtrace alphabet

(E, sim, ser) and u v. Then ~u = ~v·

Proof. From Proposition 5.1(2), we know that= is event-preserving, i.e. for all e E E,

we have lule = lvle· Since the enumeration of events in u and v depends on the

multiplicity of event occurrences in u and v, it follows that ~u = ~v· D

Thus, for a comtrace t = [u] we can define ~t = ~u·

The intuition of how a unique stratified order structure is constructed from a

comtrace is provided in the following example which is analogous to the Example 9.1

for Mazurkiewicz traces.

66 9. Relational Representation of Mazurkiewicz Traces and Comtraces

Example 9.2. Consider a comtrace alphabet C = ({a, b, c}, 8im, 8er) where

• 8im ={(a, b), (b, a), (a, c), (c, a)}

• 8er = {(a, b), (b, a), (a, c)}

The set of all possible steps is {{a, b}, {a, c }, {a}, {b}, { c}}.

Consider a step sequence 8 1 = {a, b}{c}{a}. With respect to the concurrent

alphabet C, we have:

t = [81] = {{a, b}{ c}{ a}, { a}{b}{c}{a}, {b}{ a}{ c}{a}, {b}{ a, c}{a}}.

Since 1::t = {a(I), a(2), b(l), c(l)}, we can construct the corresponding stratified order

for each of the element in t as following (the edges resulting from transitivity are

omitted):

• 8 1 = {a,b}{c}{a} induces <ls1 :

• 82 = {a}{b}{c}{a} induces <ls2 :

• 83 = {b}{a}{c}{a} induces <ls3 :

a(I)

/ ~
• 84 = {b}{a,c}{a} induces <ls4 : b(l) a(2)

~ /
c(l)

By observing all of the possible Mazurkiewicz traces and the order of event oc­

currences, we can build the following stratified order structure

(9.1)

9. Relational Representation of Mazurkiewicz Traces and Comtraces 67

which can be graphically represented as follows (note that the directed edges labelled

by -<t also denote the Ct relation since -<t ~ Ct):

We can also check that ext(St) = { <J 8 IsEt}.

In [14], Janicki and Koutny proposed the notion of <>-closure and used it to

construct finite stratified order structures from comtraces. For a relation structure

S = (X, R1 , R2), its <>-closure is defined as

where (R1U R2)* denotes the reflexive transitive closure of (R1 U R2).

Definition 9.2 ([14]). Let t = [s] be a comtrace over a comtrace alphabet

(E, sim, ser). Foro., /3 E L:8 , we can define

a -<s /3 {:::=::} (l(a), l(/3)) ¢:. ser 1\ pos8 (a) < poss(/3),

a C 8 (3 {:::=::} (l(/3), l(a)) ¢:. ser 1\ pos8 (a) '5:. pos8 (/3).

We let <p8 df (L:s, -<s, C 8)
0 , then the stratified order structure induced by the trace

t = [s] is

The fact that 'Pt is defined to be <p8 for any s E t makes sense because of the

following results:

Proposition 9.2 (Proposition 4.4 of [14]). Lets be step sequences over a comtrace

alphabet (E, ser, sim). Then I.{Js is a stratified order structure. D

68 9. Relational Representation of Mazurkiewicz Traces and Comtraces

Theorem 9.1 ([14, Theorem 4.10]). Let r and s be step sequences over a comtrace

alphabet (E, ser, sim). Then 'Pr = 'Ps if and only if r = s. 0

We also know the following invariant properties of the step sequences that belong

to the same comtrace:

Proposition 9.3 ([14, Proposition 4.2]). Lett = [s] be a comtrace over a comtrace

alphabet (E, sim, ser). If a, {3 E L:t, then

1. a -<s {3 ==} VuE t. posu(a) < posu(f3)

2. 	 a Cs {3 ==} VuE t. posu(a)::; posu(f3).

0

Proposition 9.4. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser)

and let 'Pt = (L:t, -<t, Ct) be the stratified order structure induced by t. If a, {3 E I:t,

then

1. a -<t {3 ==} VuE t. posu(a) < posu(f3)

2. aCt {3 ==} (a =I {3 1\ VuE t. posu(a) ::; posu(f3)).

Proof 1. Assume a -<t {3 and let R = (-<s U C 8), then by definition of <>-closure, we

have

a R a1 R . . . R am -<s f3t R . . . R f3n R {3

for some m, n ~ 0.

By Proposition 9.3, we know that if 'Y R 5 then for all u E t, we have posu('Y) ::;

posu(5) and if am -<s f3t then posu(am) < posu(f3t). Hence, for all u E t, we have

Hence, for all u E t we have posu (a) < posu ({3) as desired.

2. Assume aCt {3, then by the definition of <>-closure, we have a =I {3 and

a R a1 R ... R am R {3

Similarly to (1), we can conclude that for all u E t, we have posu(a) ::; posu(f3)

as desired. 0

9. Relational RepiLesentation of Mazurkiewicz Traces and Comtraces 69

Although the implications of Proposition 9.4 are straightforward consequences

of how 'Pt is defined, the converses are non-trivial results, which we prove in

Proposition 9.8. Before doing so, we need some new definitions and preliminary

results.

Let A be a step over a comtrace alphabet (E, sim, ser) and let a E A then:

• 	 The step A is called serialisable if and only if

~B, C E 8jA. (B U C = A 1\ B x C ~ ser) .

The step A is called non-serialisable if and only if A is not serialisable, i.e.

VB, C E .¥A. (B U C = A => B x C Cf:. ser) .

Obviously for a non-serialisable step, we have [A] = {A}. (Note that every

non-serialisable step is a synchronous step as defined in Definition 3.6.)

• 	 The step A is called serialisable to the left of a if and only if

~B, C E 8jA. (B U C = A 1\ a E B 1\ B x C ~ ser) .

The step A is called non-serialisable to the left of a if and only if A is not

serialisable to the left of a, i.e.

VB, C E .¥A. ((B U C =A 1\ a E B) => B x C Cf:. ser).

• 	 The step A is called serialisable to the right of a if and only if

~B, C E 8jA. (B U C = A 1\ a E C 1\ B x C ~ ser) .

The step A is called non-serialisable to the right of a if and only if A is not

serialisable to the right of a, i.e.

VB, C E 8jA. ((B U C = A 1\ a E C) ==> B x C Cf:. ser) .

For a step A, we know that 'PA = (I:A, -<A, C:A)0 is the stratified order structure

induced by the comtrace [A]. Then we can relate the non-serialisable step definitions

to the relation C:A in the following proposition.

70 9. Relational Representation of Mazurkiewicz Traces and Comtraces

Proposition 9.5. Let A be a step over a comtrace alphabet (E, sim, ser) then

1. If A is non-serialisable to the left of l(a) for some a E A then 't/[3 EA. a CA. {3.

2. If A is non-serialisable to the right of l(f3) for some {3 E A then 't/a EA. a CA. [3.

3. If A is non-serialisable then 't/a,{3 EA. a cA. {3.

Proof. 1. For any {3 E A, we have to show that a CA. [3. We define the CA-right

closure set of a inductively as follows:

RC0 (a) df {a}

RCn(a) df {8 E A/ :31 E Rcn-1(a) 1\ 1 CA 8}

We want to prove that if A\ RCn(a) =J 0 then /RCn+l(a)/ > /RCn(a)/. Assume

that A\ RCn(a) =J 0, and let us consider the set A\ RCn(a) and RCn(a). Since A
is non-serialisable to the left of l(a) and a E A, we know that

Thus there exists some 1 E A\ RCn (a) such that there is some 8 E RCn (a) satisfying

(l(r), l(8)) ~ ser. Hence, by Definition 9.2, we know that 8 CA I· Thus, 1 E

RCn+l(a) where 1 ~ RCn(a). So /RCn+l(a)/ > /RCn(a)/ as desired.

Since A is finite and if A\ RCn(a) =J 0 then /RCn+l(a)/ > /RCn(a)/, for some

n < /A/, we must have RCn(a) =A. Thus, {3 E RCn(a). By the way the RCn(a) is

defined, it follows that a CA. {3.

2. The proof is dual to (1) by defining the CKlejt closure set of {3 inductively as

follows:

LCO(f3) df {!3}

LCn(f3) df {8 E A/ ::J1 E Lcn-1([3) 1\ 8 CA 1}

We then prove that if A\ LCn(f3) =J 0 then /LCn+1(f3)/ > /LCn(f3)/. Thus, for

some n < /A/, we must have LCn(f3) =A and hence a E LCn(f3). By the way the

0

9. Relational Representation of Mazurkiewicz Traces and Comtraces 71

LCn(f3) is defined, we conclude that a CA {3.

3. Since A is non-serialisable, it follows that A is non-serialisable to the left of l(a)

for every a EA. Hence, for every a E A, we have \:1{3 EA. a CA {3 as desired.

The existence of a non-serialisable sub-step of a step A to the left/right of an

element a E A can be explained by the following proposition.

Proposition 9.6. Let A be a step over a comtrace alphabet (E, sim, ser) and a EA.

Then

1. There exists a unique B ~ A such that a E B, B is non-serialisable to the left

of a, and

A =I B ~ A = (A\ B)B.

2. There exists a unique C ~ A such that a E B, C is non-serialisable to the right

of a, and

A =I C ~ A= C(A \C).

Proof. 1. If A is non-serialisable to the left of a, then B = A. If A is serialisable to

the left of a, then the following set is not empty:

(df { D E ~ I :JC E ffi"'A. (C U D = A 1\ a E D 1\ C x D ~ ser)}

Let B E (such that B is a minimal element of the poset ((, c). We claim that B

is non-serialisable to the left of a. Suppose for a contradiction that B is serialisable

to the left of a, then there are some sets E, F E ffi"'B such that

E U F = B 1\ a E F 1\ E x F ~ ser.

Since B E x, there is some set G E ffi"'A such that

G U B = A 1\ a E B 1\ G x B ~ ser.

Since G x B ~ ser and F C B, it follows that G x F ~ ser. But since Ex F ~ ser,

we have (G U E) x F ~ ser. Hence,

(G U E) U F = A 1\ a E F 1\ (G U E) x F ~ ser.

72 9. Relational Representation of Mazurkiewicz Traces and Comtraces

So E E (and E C B. This contradicts that B is minimal. Hence, B is non-serialisable

to the left of a.

By the way the set (is defined, A= (A \B)B. It remains to prove the uniqueness

of B. Let B' E (such that B' is a minimal element of the poset ((,c). We want to

show that B = B'.

We first show that B ~ B'. Suppose for a contradiction that there is some b E B
such that b =/= a and b rJ. B'. Let a and (3 denote the event occurrences a(l) and b(l)

in I;A respectively. Since a E B and B is non-serialisable to the left of a, it follows

from Proposition 9.5(1) that a C:4 (3. But since a =/= b, a (C:4 \idEA) (3. From the

definition of <>-closure, it follows that a C[A] (3. Hence, by Proposition 9.4(2), we

have

VuE [A]. posu(a) ::; posu(f3) (9.2)

By the way B' is chosen, we know A =(A\ B')B' and b 1- B'. So it follows that

b E (A\ B'). Hence, we have (A\ B')B' E [A] and pos(A\B')B'(/3) < pos(A\B')B'(a),

which contradicts (9.2). Thus, B ~ B'.

By reversing the role of Band B', we can prove that B :2 B'. Hence B = B'.

2. The proof is dual to (1) by considering the set

'1/J df {C E &lJA I3D E &lJA. (CUD= A 1\ a E C 1\ C x D ~ ser)}.

0

Proposition 9. 7. Lets = A1 ... An, where n ~ 2, be a canonical step sequence over a

comtrace alphabet (E, sim, ser) and let 8 = A1 ... An be the enumerated step sequence

of s. Then for every a E An there exist a 1 E A1, ... , an-1 E An-1 such that

Proof. We proceed by induction on n, the number of steps of s.

When n = 2, we have s = A1A2. Let C ~ A2 be non-serialisable to the right

of l(a) as constructed in Proposition 9.6(2). Since s is canonical, by Corollary 4.1,

A1 x C ~ ser. Hence, there is a 1 E A1 and a~ E A2 such that l(a2) E C and

9. Relational Representation of Mazurkiewicz Traces and Comtraces 73

(l(a1), l(a2)) ¢:. ser. So it follows from Definition 9.2 that a1 -<s a2. Since C is non­

serialisable to the right of l(a), by Proposition 9.5(2), a2 c; a. Hence, a1 -<s a2 c; a,

which implies a 1 (-< 5 o c;) a.

When n > 2, we proceed similarly to the case of n = 2 to show that there is some

an-I E An-I satisfying an-1 (-<s o c;) a. By applying the induction hypothesis on

an-1, there exist a1 E A1, ... ,an-1 E An-1 such that a1(-<s o c;) ... (-<so c;)an-1·
Hence, a1(-<s o c;) ... (-<s o c;)an-1(-<s o c;)a. D

Proposition 9.8. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser)

and let 'Pt = (:Et, -<t, Ct) be the stratified order structure induced by t. Then for any

two event occurrences a, {3 E Et:

1. (VuE t. posu(a) < posu(f3)) ==> a -<t {3,

2. (a =I {3 1\ Vu ~~ t. posu(a) ~ posu(f3)) ==> aCt {3.

Proof. 1. Let w = A1 ... An be the canonical representation oft, then by Theorem 9.1

we have

'Pt = (Et, -<t, Ct) = (~w, -<w, Cw)0
.

We will prove using induction on n (the number of steps of w) that for all a, {3 E

~[A1 ...An]

(VuE t. posu(a) < posu(f3)) ==> a -<t {3.

When n = 0, we have the canonical step is Aand hence the implication is trivially

true. When n > 0, we observe that w' = A1 ... An_1 is the canonical step sequence

of the comtrace t' = [s -7-R An]· For all a, {3 E ~t'' since VuE t. posu(a) < posu(f3), it
follows that

VuE {vAn \ v = A1 ... An-1}· posu(a) < posu(f3).

Thus, VuE t'. posu(a) < posu(f3). By induction hypothesis, we have a -<t' {3. Hence,

from Definition 9.2 and <>-closure definition, a(-<w' U Lw')*o -<w' o(-<w' U Cw')*{3.

But since w' = w -7-R An, it follows that a(-<w U Cw)"'o -<w o(-<w U Cw)"'{3. Thus,

a -<t {3. We have just shown that:

Va, {3 E E[A1...An-I]· ((VuE t. posu(a) < posu(f3)) ==> a -<t {3)

74 9. Relational Representation of Mazurkiewicz Traces and Comtraces

It remains to show that for all a E I:[A1 ...An-d and f3 E (I:[A1 .•• An] \ I:[A1 ...An_!]), the
following implication holds

(VuE t. posu(a) < posu(f3)) => a -<t f3

We observe that for any a E I:[A1 ...An-1] and (3 E (I:[A1 ... An] \ I:[A1 ... An- 1J) satisfying

VuE t. posu(a) < posu(/3),

by Proposition 9.6, there must be some v E t of the form v = ... B C1 ... Ck D ...

where:

• a E B and B is non-serialisable to the left of l (a),

• (3 E D and D is non-serialisable to the right of l ((3).

Let V be a set containing all such v. Recall that for a step sequence x = E 1 ... Er,

we define

J..L(x) '!!._ 1 · /E1/ + ... + r ·/Er/·

We let Vo = X B 0 cp ... czo D0 y in v such that J..L(C? ... C2o) is the least among

all vi E V, i.e.

Then there are two cases to consider:

Case (i):

If J..L(Cp ... C2) = 0, then we have v0 = x B 0 D 0 y. Since VuE t. posu(a) < posu(/3),

0

B 0 D 0we know B 0 x D 0 ~ ser. Hence, there is some a 1 E and (31 E such that

(l (a 1), l ((31)) ¢:_ ser. But since posv0 (a1) < posv0 ((31), it follows that

(9.3)

Since B 0 is non-serialisable to the left of l (a) and D 0 is non-serialisable to the

right of l(/3), it follows from Proposition 9.5(1, 2) that

(9.4)

9. Relational Representation of Mazurkiewicz Traces and Comtraces 75

From (9.3) and (9.4), we conclude that

Hence,

(9.5)

0By Theorem 9.1, 'Pt = (Et, -<t, Ct) = (Ev0 , -<v0 , Cv0) . Thus, it follows from Defini­

tion 9.2 and (9.5) that a -<t (3.

Case (ii):

If IL(cp ... C2o) =1- 0, then Vo = X E 0 cp ... czo no y where ko > 0. We know

that C2
0

x n° Cf:. ser, otherwise fl(Cp ... C2
0

) is not the least. Hence, there is some

'Yko E czo and (31 E D 0 such that (l ('Y)' l ((31)) tJ. ser. Since posvo ('Y) < pOSvo ((3)' from
Definition 9.2, it follows that

(9.6)

Since !L(cp ... C1~0) is the least, by Corollary 4.1, cp ... CZo is canonical. Hence,

by Proposition 9.7, there exist a sequence /1 E C1, ... ,/ko E Cko (ko 2: 1) such that

(9.7)

Let C~ ~ C1 be non-serialisable to the right of l(TI) as given in Proposition 9.6(2).
Clearly, since fl(Cp ... CZ) is the least, E0 x C~ C£. ser. Similarly to case (i), we can

0

show that

(}; -<t /1 (9.8)

Since n° is non-serialisable to the right of l((3), by Proposition 9.5(2), (31 c~o (3.

So it follows from (9.6) that 'Yko -<vo (31 C~0 (3. Thus, together with (9.7), we get

Hence, it follows from Definition 9.2 that

/1 -<t (3 (9.9)

From (9.8) and (9.9), it follows that a -<t 11 -<t (3. Hence, a -<t (3 by transitivity

of -<t·

76 9. Relational Representation of Mazurkiewicz Traces and Comtraces

2. For any a, f3 E Et, if a f= f3 and VuE t. posu(a) < posu(/3), then by (1) we have

a -<t /3. Thus, aCt /3. Otherwise, there are some u E t such that posu(a) = posu(f3).

Hence, there is some step sequence u such that u = r B s and a, f3 E B. If B is

non-serialisable to the left of l(a), by Proposition 9.5(1),

(9.10)

Otherwise, by Proposition 9.6(1), there are some steps C, D c B such that B =
CD, l (a) E D, and D is non-serialisable to the left of l (a). Hence, there is some

step sequence v E t such that v = r CD s. Since Vu E t. posu(a) :::; posu(f3)) and

a E D, it follows that f3 E D. Since D is non-serialisable to the left of l (a), by

Proposition 9.5(1),

(9.11)

Since a f= /3, from (9.10) and (9.11), we have a (c~ \id~v) /3. By 0-closure definition,

we conclude that aCt f3 as desired. 0

Proposition 9.9. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser)

and let 'Pt = (Et, -<t, Ct) be the stratified order structure induced by t. Then for any

two event occurrences a, f3 E Et:

1. (VuE t. posu(a) < posu(f3)) ~ a -<t /3,

2. (a f= f3 1\ VuE t. posu(a):::; posu(f3)) ~ aCt /3.

Proof. Follows directly from Propositions 9.4 and 9.8. 0

According to the Szpilrajn Theorem, every poset can be reconstructed by taking

the intersection of its total order extensions. A similar result holds for stratified order

structures and stratified order extensions.

Theorem 9.2 ([15, Theorem 2.9]). LetS= (X,-<, c) be a stratified order structure.

Then

s = (x, n <1, n <l~) .
<l E ext(S) <l E ext(S)

0

9. Relational Representation of Mazurkiewicz Traces and Comtraces 77

In the context of comtraces, the following theorem from [14] says that the stratified

order extensions of ~:Jt are exactly those generated by the step sequences in [t].

Theorem 9.3 ([14, Theorem 4.12]). Lett= [s] be a comtrace over a comtrace alphabet

(E, sim, ser). Then ext(<pt) = {<luI u E t}. D

Corollary 9.1. Lett be a comtrace over a comtrace alphabet (E, sim, ser). Then

'Pt = (I;t.n<lu, n<l:) .
uEt uEt

Proof. By Theorem 9.3, ext(<pt) = {<luI u E t}. Hence, by Theorem 9.2, we have

D

Although Corollary 9.1 is equivalent to Proposition 9.9, we provided the alterna­

tive proofs of Propositions 9.4 and 9.8 without using Theorems 9.2 and 9.3. Firstly,

it shows that Propositions 9.4 and 9.8 can be proved based on the construction from

Definition 9.2 without using the sophisticated generalisation of the Szpilrajn Theo­

rem for stratified order structures. Secondly, the proofs of Propositions 9.4 and 9.8

provide more intuition why any two event occurrences in a comtrace t cannot violate

the invariants imposed by the generated stratified order structure 'Pt· Moreover, we

invented three different notions of non-serialisable steps, which are the key to explain

how the causality and weak causality relations can be derived from the relationships

among the steps1 (sets of event occurrences) on a step sequence.

Even though Corollary 9.1 makes it simpler to construct a stratified order struc­

ture from a comtrace, the construction from Definition 9.2 has its own advantages.

From a single step sequence s and a comtrace concurrent alphabet, the <>-closure

construction can be used to construct the stratified order structure 'P[s] without the

need to construct all step sequences in [s] and their generated stratified orders. Also

1This is different from the construction using <>-closure, which derives a stratified order structure
by looking at the relationship of every pair of event-occurrences on a step sequence.

78 9. Relational Representation of Mazurkiewicz Traces and Comtraces

the 0-closure construction builds the relations -<[s] and C:[s] from the relations -<s and

C 8 , which are often much simpler and easier to handle. The proof of Theorem 9.5 is

one such example.

9.3 	 Comtrace Representation of Finite Stratified

Order Structures

Although was shown in [14] that each finite stratified order structure can be repre­

sented by a comtrace, the converse which says each finite stratified order structure can

be represented by a comtrace was not shown. The intuition of how to construct a fi­

nite stratified order structure from a comtrace can be shown in the following example,

which is the converse of Example 9.2.

Example 9.3. Starting from the stratified order structure S = (~,-<,c):

We can check that

~ 	= {u I <Ju E ext(S)}

= {{a,b}{c}{a},{a}{b}{c}{a},{b}{a}{c}{a},{b}{a,c}{a}}

From~' 	we can build a comtrace alphabet()= (E, sim, ser) where

• 	E = l(~) = {a, b, c}

• 	 We define the relation sim such that

(a, b) E 	sim -¢::::::? ::I<J E ext(S). (l(a) =a 1\ l(/3) = b1\ a,......_"' /3)

Hence, 	sim ={(a, b), (b, a), (a, c), (c, a)}

9. 	Relational Repiresentation of Mazurkiewicz Traces and Comtraces 79

• 	 We define the relation ser such that

(a, b) E ser ~ (a, b) E sim 1\ 3<J E ext(S). (l(a:) =a 1\ l((3) = b 1\ a: <J (3)

Thus, ser = {(a, b), (b, a), (a, c)}

Clearly, ~ is a comtrace over (). 0

Before proving the main theorem of this chapter, we need several results from

[15, 14] and their corollaries. The first result comes from the fact that stratified order

structures conform to paradigm 1r3 .

Theorem 9.4 ([15, Theorem 3.6]). LetS= (X,-<, c) be a stratified order structure.

Then

((3<J E ext(S). oc <J (3) 1\ (3<J E ext(S). (3 <J a:)) ==> (3<J E ext(S). (3 ,......._<J a:).

0

Corollary 9. 2. Let S = (X, -<, C) be a stratified order structure. Then

(V<J E ext(S). a: <J ;3 V (3 <J a:) ==> ((V<J E ext(S). a: <J (3) V (V<J E ext(S). (3 <J a:)).

Proof. Assume

V<J E ext(S). a: <J (3 V (3 <J a: (9.12)

and suppose for a contradiction that

•(V<J E ext(S). a: <J (3) 1\ •(\f<J E ext(S). (3 <J a:).

Hence, it follows that

(3<J E ext(S). a: <J~ (3) 1\ (3<J E ext(S). (3 <J~ a:) (9.13)

If 3<J E ext(S). (3 ,......._<J a:, then we get a contradiction with the assumption (9.12).

Otherwise, suppose that •(3<J E ext(S). (3 ,......._<J a:). Then it follows from (9.13) that

(3<J E ext(S). a: <J (3) 1\ (3<1 E ext(S). (3 <J a:).

But this implies :l<J E ext(S). (3 ,......._<J a: by Theorem 9.4, which again contradicts the

assumption (9.12). 0

80 9. Relational Representation of Mazurkiewicz Traces and Comtraces

Proposition 9.10 (Propositions 3.4 and 3.5 of [14]). If S = (X,-<, c) is a stratified

order structure, and S0 = (X, -<0, Co) is a relational structure such that S0 ~ S, then

sg is a stratified order structure satisfying sg ~ S. D

Before proving the next lemma, we need a standard set-theoretic result.

Proposition 9.11. If X= nA andY= nB and A~ B, then Y ~X.

Proof. Suppose that X E y = nB. Hence, vc E B. X E c. But since A ~ B, it

follows that for all vc EA. X E C. Thus, X EX= nA. Hence, y ~X. D

Lemma 9.1. Let So= (X, -<0, Co) and S1 =(X, -<1, ci) be stratified order structures

such that ext(So) ~ ext(S1). Then S1 ~Sa.

Proof. By Theorem 9.2, we know -<o= n<l Eext(So) <J and -<1 = n<l Eext(Sr) <J. But
since ext(So) ~ ext(S1), it follows from Proposition 9.11 that

-<1 ~ -<o (9.14)

By Theorem 9.2, we know Co= n<l Eext(So) <J,....._ and c1= n<l Eext(Sl) <J,.....,, Since
ext(S0) ~ ext(S1), we have

{ <J,....., I <J E ext(So)} ~ {<J,....., I <J E ext(S1) }.

Thus, it follows from Proposition 9.11 that

(9.15)

From (9.14) and (9.15), we conclude S1 ~ S0 . D

We will now show that we can build a comtrace from a finite stratified order

structure using the construction from Example 9.3, where sim and ser are binary

relations defined on the labels of the event occurrences. Although this method allows

us to represent a labelled finite stratified order structure using a comtrace defined

over a more concise comtrace alphabet, it does not work for every finite stratified

order structure. For example, in the following stratified order structure

c ~ ~
a(l):.- b(1) -- a(2) -- b(2)

9. 	Relational Representation of Mazurkiewicz Traces and Comtraces 81

we cannot define (a, b) E ser since a(2) -< b(2). Also since sim is irrefiexive, in the

following stratified order structure, we cannot say that (a, a) E sim.

ca(l):.- a(2)

However, the construction works for a special kind of finite stratified order structures

which we define next.

Definition 9.3. A finite stratified order structure S = (:E, -<,c) is a proper stratified

order structure if it satisfies the following three conditions:

1. 	 L: is the set of event occurrences.

2. 	 If a,{3 E I:, a -=J {3, and l(a) = l([3), then (l(a),l(f3)) E-< U -<-1.

3. 	 Let <]J, <J4 be stratified orders on L: where n<la = X 1 ... Xm(X U Y)Y1 ... Yn

and n<la = X 1 ... XmXYYl ... Yn and

l(a) = l(a')

A l([3) = l(f3')
\Ia EX. \1(3 E Y. :3<J 1 , <J 2 E ext(S). :3a', (3' E I:.

A a' <li {3'

A a' r--.<!2 {3'

Then <J3 E ext(S) if and only if <J4 E ext(S).

Theorem 9.5. Let: S = (I:,-<, c) be a proper stratified order structure, .6. = {u I
<lu E ext(S)}, and E = l(L:). Let relations sim, ser ~ Ex E be defined as follows:

(l(a), l(f3)) E sim {=::} :3<J E ext(S). a r--.<l {3 (9.16)

(l(a), l(f3)) E ser {=::} (l(a), l([3)) E sim A 3<J E ext(S). a <J {3 (9.17)

Then we have:

1. 	 (} = (E, sim, ser) is a comtrace alphabet,

2. 	 .6. is a com trace over (}.

82 9. Relational Representation of Mazurkiewicz Traces and Comtraces

Proof. 1. For any two labels a, bE l(:E) we have (a, b) E sim. Because Sis a proper

stratified order structure, by Condition (2) of Definition 9.3 we know that for all

a,/3 E E,
l(a) = l(/3) :=::} (l(a), l(/3)) E-< U -<-1

.

This mean for all a, j3 E E,

l(a) = l(/3) ==? 'v'<J E ext(S). •(a ,......_<l {3).

But since ,......_<l is irrefiexive and symmetric, it follows that the relation sim is irrefiexive

and symmetric.

From (9.17), (a, b) E ser implies that (a, b) E sim. So ser ~ sim.

It remains to show that for any pair of distinct element a, j3 satisfying posu(a) =

posu ({3) for some u E .6. (a and j3 are in the same step of u), we have (l(a), l({3)) E sim.

But posu(a) = posu(f3) implies a ,......_<l j3 for some <1 E ext(S). Hence, from (9.16),

(l(a), l(f3)) E sim.
Hence, (E, sim, ser) is a comtrace alphabet as desired.

2. We first need to check that all u E .6. are step sequences over the alphabet ().

Let u = A1 ... An E .6. and u = A1 ... An be the enumerated step sequence of u. We

want to show for any a, j3 E Ai for any i, (l(a), l(/3)) E sim. But since

and <lu E ext(S), it follows from (9.16) that (l(a), l(/3)) E sim.

Next we let u be a step sequence in .6. and Su = (I:, -<u, Cu) as from Definition 9.2.

We want to show that that 'Pu = S~ ~ S. By Proposition 9.10, it suffices to show

that Su ~ S.
Assume a -<u {3, then from Definition 9.2, a <lu {31\ (l(a), l({3)) ¢:. ser. From (9.16)

and (9.17), it follows that

a <lu j3 1\ (•(3<1 E ext(S). a <1 /3) V •(3<1 E ext(S). a ,......_<l {3)).

Since •(3<1 E ext(S). a <1 {3) contradicts that a <lu {3, we have

a <lu f3 1\ •(3<1 E ext(S). a ,......_<l {3).

9. Relational Representation of Mazurkiewicz Traces and Comtraces 83

Hence,

0'. <Ju {3 !\ ('v'<J E ext(S). 0'. <J {3 V {3 <J 0'.).

Then, by Corollary 9.2,

a <Ju fJ !\ (('v'<J E ext(S). a <J {3) V ('v'<J E ext(S). {3 <J a)).

Since a <Ju {3 contradicts that 'v'<J E ext(S). {3 <J a, it follows that

'v'<J E ext(S). a <J {3 (9.18)

By Theorem 9.2, -<= n<lEext(S) <J. Hence, (9.18) implies 0'.-<({3.

Assume a Cu {3, then by Definition 9.2, a <J;:' {3 !\ (l(/3), l(a)) ¢; ser. From (9.16)

and (9.17), it follows that

a <J;; {3 /\ (•(::l<J E ext(S). {3 <J a) V -.(:3<J E ext(S). {3 ,.....,.<l a)).

Hence,

a <J;; {3 !\ (('v'<J E ext(S). a <J;; {3) V ('v'<J E ext(S). a <J {3 V {3 <J a)).

If 'v'<J E ext(S). a <J {3 V {3 <J a, then it must follow that a <Ju {3. This is the same to

the case of a -<u {3. Hence, a -< {3, which implies a C::: {3. Otherwise, we have

a <J;; {3 !\ ('v'<J E ext(S). a <J;:' (3).

Thus,

'v'<J E ext(S). a <J;:' {3 (9.19)

By Theorem 9.2, C:::= n<lEext(S) <J~. Hence, (9.19) implies 0'. c::: {3.

Thus, we have shown

<{Ju C S (9.20)

Our next goal is to prove S C <fJu· By Lemma 9.1, it suffices to show that

ext(<pu) ~ ext(S).

84 9. Relational Representation of Mazurkiewicz Traces and Comtraces

We observe that from a step sequence u E .6.., by Definition 3.5, we can build the

comtrace [u] over the alphabet () using the following inductive derivation sets:

Do(u) df {u}

Dn(u) df {w IwE nn-1(u) v 3v E nn-1(u). (v ~ w v v ~-1 w)}

Since u has finite event occurrences, [u] is finite. Hence, [u] = Dn(u) for some

n 2: 0. We will prove by induction on n that if w E Dn(u) then <lw E ext(S). When

n = 0, D 0 (u) = {u}. Since u E .6.., <lu E ext(S). When n > 0, let w be an element of

Dn(u). Then either wE nn-1(u) or wE (Dn(u) \ nn-1(u)). For the former case, by

induction hypothesis, <lw E ext(S). For the later case, there must be some element

v E nn-1(u) such that v ~ w or v ~-1 w. By induction hypothesis, <lv E ext(S).

We want to show that <lw E ext(S).

Case (i): When v ~ w, by Definition 3.5, v = yAz and w = yBCz where A, B,

C are steps satisfying B nC = 0 and B U C = A and B x C ~ ser. Let v = yAz and

w = yB CZ be enumerated step sequences of v and w respectively. Since B x C ~ ser,

it follows from (9.17) that

l(a) = l(a')

1\ l(/3) = l(/3')
Va E B. V/3 E C. 3<11, <1 2 E ext(S). 3a', /3' E I::.

1\ a' <11 !3'
1\ a' "' <l2 /3'

Hence, by Condition (3) of Definition 9.3 and <lv E ext(S), <lw E ext(S).

Case (ii): When v ~-1 w, by Definition 3.5, w = yAz and v = yBCz where

A, B, Care steps satisfying B n C = 0 and B U C = A and B x C ~ ser. Let

w = yAz and v = yB CZ be enumerated step sequences of w and v respectively.

Again similarly to the previous case, since B x C ~ ser and <lv E ext(S), it follows

from Condition (3) of Definition 9.3 that <lw E ext(S).

Hence, we have shown that for all n 2: 0, if wE Dn(u) then <lw E ext(S). Thus,

{ <lw IwE Dn(u)} ~ ext(S) for every n 2: 0. But since Theorem 9.3 implies that

ext(cpu)= {<lw IwE [u]} = { <lw I WE Dn(u)}

9. Relational Representation of Mazurkiewicz Traces and Comtraces 85

for some n ~ 0, we conclude ext(cpu) ~ ext(S). Thus, by Lemma 9.1, we have also

shown

(9.21)

From (9.20) and (9.21), we conclude that 'Pu = S for any u E .6.. Thus, for any

u E .6., it follows from Theorem 9.3 that

ext(S) = ext(cpu) = {<lw IwE [u]},

which means [u] = { w I <lw E ext(S)}. So we conclude .6. = { w I <lw E ext(S)} = [u]

is a comtrace over (} as desired. D

Although Theorem 9.5 only shows how proper stratified order structures can be

represented using comtraces, any stratified order structure (I:, C, -<) can be repre­

sented by a comtrace by redefining the labelling function as

df 'dl = ~ E·

In other words, we treat two occurrences of the same event as if they are two distinct

events. The construction of Theorem 9.5 works because of the following proposition.

Proposition 9.12. Let S = (I:, c, -<) be a finite stratified order structure and l df

idr;. Then S is a proper stratified order structure.

Proof. Since we redefine l = idr;, the Conditions (1) and (2) of Definition 9.3 are

trivially satisfied since no "event" occurs more than once. To verify Condition (3),

let <13 and <14 be stratified orders on I: where O<J3 = X 1 ... Xm(X U Y)Yi. ... Yn and

O<J3 = X1 ... XmXYYl ... Yn and

Va EX. \;/{3 E Y. :l<J1, <l2 E ext(S). :Ja', {3' E I:.
1\

1\

1\

l(a) = l(a')
l(f3) = l(f3')
a' <h {3'

a' ,...-..._<J2 {3'

But since l = idr;, it follows that

Va EX. \;/{3 E Y. :l<J~, <l2 E ext(S). (a <l1 {3 1\ a ,.....,.<J2 {3) (9.22)

86 9. Relational Representation of Mazurkiewicz Traces and Comtraces

We want to show that <1 3 E ext(S) if and only if <14 E ext(S).

(=?) Suppose for a contradiction that <1 3 E ext (S) and <14 tf. ext (S). Hence, by

Definition 9.1, there are some a, f3 E ~ such that one of the following holds

a-< f3 1\ •(a <14 /3) (9.23)

a C::: f3 1\ •(a <14 /3) (9.24)

Since <14 = <13 U X x Y and <13 E ext(S), (9.23) cannot be satisfied. Hence, (9.24)

must hold. Since •(a <14 /3), we know f3 <14 a. Because <14 = <1 3 U X x Y, we must

have f3 EX and a E Y. By (9.22), it follows that

:3<1 E ext(S). f3 <I a

Thus, :3<1 E ext(S). •(a <I~ /3). But by Theorem 9.2, C:::= n<1Eext(S) <1~. Hence, it

follows that •(a c::: /3), , which contradicts (9.24).

(-<=) Suppose for a contradiction that <14 E ext(S) and <1 3 tf. ext(S). Hence, by

Definition 9.1, there are some a, f3 E ~ such that one of the following holds

a-< (31\ •(a <13 /3) (9.25)

a C::: f3 1\ •(a <13 !3) (9.26)

Since <1 3 = <14\X x Y, we know that if a <14 f3 then a <13 (3. But since <14 E ext(S),

(9.26) cannot be satisfied. Hence, (9.25) must hold. Because <13 = <14 \X x Y, we

must have a, f3 EX UY. By (9.22), it follows that

:3<1 E ext(S). f3 ~<1 a

But by Theorem 9.2, -<= n<1Eext(S) <J. Hence, •(a -< /3), which contradicts (9.25). D

Chapter 10

Relational Representation of

Generalised Comtraces

In this chapter, we analyse the relationship between generalised com traces and gen­

eralised stratified order structures with the main result showing that each generalised

comtrace uniquely defines a finite generalised stratified order structure.

10.1 	 Properties of Generalised Comtrace Congru­

ence

In this section, we prove some basic properties of generalised comtrace congruence.

Proposition 10.1. Let§ be the set of all steps over a generalised comtrace alphabet

(E, sim, ser, inl) and u, v E §*. Then

1. u v 	 ===> weight(u) = weight(v). (step sequence weight equality)

2. u-v 	===> iula = lvla· (event-preserving)

3. u=v 	===> u+Ra v+Ra. (right cancellation)

4. u v 	 ===> u +La= v +La. (left cancellation)

5. u = v 	¢::::::} Vs, t E §*. sut svt. (step subsequence cancellation)

87

88 10. Relational Representation of Generalised Comtraces

6. u- v ===? nn(u) =nn(v). (projection rule)

Proof For all except (5), it suffices to show that u ~ v implies that the right hand

side of (1)-(6) holds. Notice that when u ~ v, the case u = xAy ~ v = xECy

follows from Proposition 5.1. So we only need to consider the case u = xAEy and

v = xEAy, where A x E ~ inl and An E = 0.

1. We have:

weight(u) = weight(x) + weight(A) + weight(E) + weight(z)

= weight(x) + weight(E) + weight(A) + weight(z) = weight(v).

2. lula = lxla + IAia +lEla+ lzla = lxla +lEla+ IAia + lzla = lvla·

3. We want to show that u --;-R a~ v --;-R a. There are four cases:

• a E l±J(y): Let z = y 7R a. Then u 7R a= xAEz ~ xBAz = v 7R a.

• a fj.l±J(y), a E E: Then u 7R a= xA(E \{a})y ~ x(B \{a})Ay = v 7R a.

• a fj.l±J(Ey), a E A: Then u--;-R a= x(A \ {a})Ey ~ xE(A \ {a})Cy = v 7R a.

• a fj.l±J(AEy): Let z = x 7R a. Then u 7R a= zAEy ~ zEAy = v 7R a.

4. Dually to (3).

5. (::::}) We want to show that u ~ v ===? Vs, t E §*. sut ~ svt. For any two

step sequences s, t E §*, we have sut = sxAByt and svt = sxEAyt. But this clearly

implies sut ~ svt by how ~ is defined in Definition 3.10.

(¢:) For any two step sequences s, t E §*, since sut _ svt, it follows that

Therefore, u - v.

89 10. Relational Representation of Generalised Comtraces

6. 	 We want to show that 7rv(u) ~ 7rv(v). Note that 7rv(A) x 7rv(B) ~ inl, so

7rv(u) = 7rv(x)7rv(A)7rv(B)7rv(Y) =7rv(x)7rv(B)7rv(A)7rv(C)7rv(Y) = 7rv(v).

D

Proposition 10.2. If u and w are two step sequences over a generalised comtrace

alphabet (E, sim, ser, inl) satisfying u = v then :Eu = :Ev.

Proof. From Proposition 10.1(2), we know that = is event-preserving, i.e. for all

e E E, we have iule = lvle· Since the enumeration of events in u and v depends only

on the multiplicity of event occurrences in u and v, it follows that :Eu = :Ev. D

Thus, for a generalised comtrace t = [u], we can define :Et = :Eu. Furthermore,

each enumeration of events specifies an invariant on the positions of any two event

occurrences as shown in the next proposition.

Proposition 10.30 Let u be a step sequence on a generalised comtrace alphabet

(E,sim,ser,inl) and a,{J E :Eu such that l(a) = l({J). Then

1. 	 posu(a)-=} posu(f3)

2. 	 If posu(a) < posu(f3) and there is a step sequence v satisfying v =u, then

posv (a) < posv ({3).

Proof. 1. Follows from the fact that sim is irreflexive.

2. 	 It suffices to show that if posu(a) < posu(f3) and v ~ u, then posv(a) < posv(f3).

But this is clear from Definition 3.10 and the fact that ser and inl are irreflexive.

D

The following proposition ensures that if an invariant between the positions of

two event occurrences is satisfied by the cancellation or projection of a generalised

comtrace [u], then it is also satisfied by [u].

Proposition 10.4" Let u be an enumerated step sequence on a generalised comtrace

alphabet (E, sim, ser, inl) and a, {3, 1 E :Eu such that 1 ¢:.{a, {3}. Then

1. 	 (VV E [u + L 1]. posv(a) R posv(f3)) ===} ('VW E [u]. posw(a) R posw(f3))

90 10. Relational Representation of Generalised Comtraces

2. (VV E 	[u +R 1]. posv(a) R posv(f3)) ~ (VW E (u]. posw(a) R posw(f3))

3. If S ~ 	Eu such that {a,(3} ~ S, then

(VV E [7rs(u)]. posv(a) R posv(f3)) ~ (VW E [u]. posw(a) R posw(f3))

where R 	E {::;, ~' <, >, =, :f':}.

Proof 1. 	Assume that

Vv E (v +L I]. posv(a) R posv(f3) 	 (10.1)

Suppose for a contradiction there is some w E [v] such that -, (posw(a) R posw(f3))).

Since I f}. {a,(3}, we have •(posw+L"((a) n posw+L'Y(f3)). But w E [v] implies

w +L I= u +L I· Hence, w +LIE [u -TL I] and •(posw+L'Y(a) n posw+L'Y(f3)), which
contradicts the assumption (10.1).

2. Dually to (1).

3. Assume that

Vv E [1rs(u)]. posv(a) R posv(f3) (10.2)

Suppose for a contradiction there is some wE [v] such that •(posw(a) R posw(f3))).

Since {a, (3} ~ S, we have •(pos11"s(w)(a) R pos11"s(w)(f3)). But wE [v] implies 1rs(w)
1rs(u). Hence, 1rs(w) E [7rs(u)] and •(pos11"s(w)(a) R pos11"s(w)(f3)), which contradicts

the assumption (10.2).

10.2 	 Commutative Closure of Relational Struc­

tures

In this section, we develop the notion of commutative closure of a relational structure.

It roughly corresponds to the notion of <>-closure which is used to construct stratified

order structure in Definition 9.2.

For a binary relation Ron X, we let R~ denote the symmetric closure of R, i.e.,

R~ df RU R-1 .

0

91 10. Relational Representation of Generalised Comtraces

Definition 10.1. Let G = (X,<>, c) be a relational structure and-< =<> n c* . Let

(X, -<0 , Co)= (X,-<, c)<>. Then the commutative closure of the relational structure

G is defined as

G !XI df (X !::+)= ,-<o U <>,Co .

0

In the rest of this section, we will prove some useful properties of the commutative

closure.

Proposition 10.5. Let G = (X,<>, c) be a relational structure and -< =<> n c*.

If (X, -<o, Co) = (X,-<, c)<> is a stratified order structure then

-<a = (-<o!::+ U <>)n Co .

Proof. (~) Since (X, -<0 , Co) = (X,-<, c)<>, by definition of 0-closure, -<o ~ Co.

Since we also have -<o ~ (-<o U <>), it follows that -<o ~ (-<a!:+ U <>)nCo .

(2) Suppose for a contradiction that (x, y) E (-<a!:+ U <>)n Co and •(x -<o y).
There are two cases to consider:

• 	If x -<01 y and x Co y: Since (X, -<0 , c 0) is a stratified order structure, it

follows from Remark 8.1 that y -<ox ===> •(x Coy), a contradiction .

• 	If (x, y) E<> and X Coy: Since (X, -<o, Co) = (X,-<, c)<>' -<o = (-< u c)*o -<

o(-< U c)* and Co= (-< U c)*\ idx. Since x Coy and •(x -<o y), it follows that

(x, y) E (c* \idx). Since (x, y) E (c* \idx) and (x, y) E<>, we have x -< y.

Hence, x -<o y, a contradiction.

Since either case leads to a contradiction, we get -<o 2 (-<o!::+ U <>)n Co . 0

Proposition 10.6 ([14, Proposition 3.3]). Let S be a relational structure and

(X,-<, c) = s<>. Then s<> is a stratified order structure if and only if-< is irrefiex­

~. 	 0

Proposition 10.7 ([14, Proposition 3.4]). If S is a stratified order structure then

s = s<>. 	 o

92 10. Relational Representation of Generalised Comtraces

Proposition 10.8. If G = (X,<>, c:::) is a generalised stratified order structure then

G=GrxJ.

Proof. Since G is a generalised stratified order structure, by Definition 8.2, Sa =

(X, -<a, c:::) is a stratified order structure. Hence, by Proposition 10.7, Sa = sg,
which implies C:::= (-<a U c:::)* \ idx. But since Sa is a stratified order structure,

-<a~ c:::. So C:::=C:::* \idx. Let -<=<> n c:::*. Then since<> is irreflexive,

-<=<> n c:::*=<> n (c:::* \idx) =<> n C:::=-<a .

Hence, (X,-<, c:::) = (X, -<a, c:::) is a stratified order structure. By Proposi­

tion 10.7, (X,-<,C:::) = (X,-<,C:::) 0 . So from Definition 10.1, it follows that GrxJ =

(X, -<t::> U <>, c:::). Since -< ~ <> and (by Definition 8.2) <> is symmetric, we have

-<t::> u <>=<> . Thus, G = G rxJ. D

Proposition 10.9. If G1 = (X, <>1, c::: 1) and G2 = (X, <>2, C:::2) are two relational

structure such that G1 ~ G2 then G1rxJ ~ G:f.

Proof.

G1 ~ G2

===> (By definition of relational structure extension)

<>1 ~ <>2 1\ C:::1 ~ C:::2

===> (By properties of set-theoretical intersection)

(<>1 n c:::!) ~ (<>2 n c:::;) 1\ c:::1 ~ c:::2

===> (By definition of <>-closure)

(X, <>1 n c:::t, c:::I) 0 ~ (X, <>2 n C:::2, C:::2) 0

===> (Let (X,-<~, c:::~) =(X, <>1 n C:::i, c:::I) 0 and

(X,-<~, c:::~) = (X, <>2 n C:::2, C:::2) 0
)

(X,-<~,c:::~) ~ (X,-<~,c:::~)

===> (By properties of U and inverse operations and <> 1 ~ <>2)

(X,-<~ t::> U <>1, c:::~) ~ (X,-<~ t::> U <>2, c:::~)

===> (By definition of commutative closure)

cr~cr
D

93 10. Relational Representation of Generalised Comtraces

10.3 	 Generalised Stratified Order Structures Gen­

erated by Step Sequences

We have seen how we can construct a stratified order structure from a step sequence

over a comtrace alphabet in Definition 9.2. We will now introduce an analogous

construction from a step sequence over a generalised comtrace alphabet to a

generalised stratified order structure.

Let R be a binary relation on X. Then the symmetric intersection of R is defined

as

si(R) df R n R-1

And we define the complement of R to be

R 0 df (X x X)\ R

Definition 10.2. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl). For a, /3 E ~s

a <>s /3 ¢::::::? (l(a), l(/3)) E inl (10.3)

a Cs /3 ¢::::::? (poss(a) :::; pass(/3) 1\ (l(/3), l(a)) t/: ser U inl) (10.4)

a -<s /3 ¢::::::? pass(a) < pass(/3)

(l(a), l(B)) tf. ser U inl

V (a, /3) E <>s n (si(c:) o <>~ o si(c:))

1\
 (l(a), l(/3)) E ser)

V
(

1\ 38, 'Y E ~s· (pass(8) < pass('Y) 1\ (l(8), l(r)) tf. ser)
1\ a c*s 8 c*s /3 1\ a c*s 'Y c*s /3

(10.5)

We define the relational structure induced by s as

94 10. Relational Representation of Generalised Comtraces

Proposition 10.10. Let u, w are step sequences over a generalised comtrace alphabet

(E,sim,ser,inl) suchthatu(~u~-1)w. Then

1. 	 Ifposu(a) < posu({J) and posw(a) > posw(/3) then there are x, y, A, B such that
u = xA By(~ U ~-l)xB Ay = w and a E A, /3 E B.

2. 	 If posu(a) = posu(/3) and posw(a) > posw(/3) then there are x, y, A, B, C such

that u = xAy ~ xB Cy = w and f3 E B and a E C.

Proof. 1. Assume posu(a) < posu(/3) and posw(a) > posw(/3). Since u(~ U ~-1)w,

we observe that

• 	 If u = sDt ~ sE Ft = w, then Va, f3 E l-tj(u),

posu (a) < posu (/3) ===? posw (a) < posw (!3).

• 	 If u = sD Et ~ sFt = w, then Va, f3 E l-tj(u),

posu (a) < posu (!3) ===? posw (a) ~ posw (/3).

Either case contradicts the assumption that posw(a) > posw(/3). Hence, it must be

the case that
u = xA By(~ U ~-1)xB Ay = w

for some x, y, A, B. We will show that a E A and f3 E B. Suppose for a contradiction

that a ¢:. A or f3 ¢:. B. Then

• 	If a¢:. A, then Va, f3 E l-tj(x) U B U l-tj(y),

posu (a) < posu (/3) ===? posw (a) < posw (/3),

a contradiction.

• 	If f3 ¢:. B, then Va, f3 E l-tj(x) U AU l-tj(y),

posu (a) < posu (/3) ===? posw (a) < posw (/3),

a contradiction.

95 10. Relational Representation of Generalised Comtraces

Hence, u = xA By(-;:::, U -;:::,- 1)xB Ay = w where a E A and f3 E Bas desired.

2. 	 Can be shown in a similar way to (1). D

Proposition 10.11. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl). !fa, f3 E ~8 , then

1. 	 a <>s f3 ==> 'v'u E [s]. posu(a) =J posu(f3)

2. 	 a C 8 f3 ==> VuE [s]. posu(a) ~ posu(f3)

3. 	 a -<s f3 ==> VuE [s]. posu(a) < posu(f3)

Proof. 1. Assume that a <>s {3. Then, by (10.3), (l(a), l(/3)) E inl. This implies

that l(a) =J l(/3), so a f {3. Also since inl n sim = 0, there is no step A where

{l(a), l(/3)} EA. Hence, VuE [s]. posu(a) =J posu(/3).

2. Assume that o: C 8 {3. Suppose for a contradiction that :3u E [s]. posu(a) ~

posu(f3). Then must be some u1, u1 E [s] such that u1(:::::: U ::::::::- 1)u2 and posu1 (a) ~

poSu1 (/3) and posu2 (a:) > posu2 (/3). There are two cases:

• 	If posu1 (a) < posu1 ({3) and posu2 (a) > posu2 (/3), then it follows from Proposi­

tion 10.10(1) that there are x,y,A,B such that u1 = xA By(::::: U ::::::-1)xB Ay =

u2 and a E A,,B E B. Hence, (l(a),l(/3)) E inl. By (10.4), this contradicts that

a Cs /3.

• 	If posu1 (a) = posu1 (/3) and posu2 (a) > posu2 (/3), then it follows from Proposi­

tion 10.10(2) that there are x, y, A, B, C such that u1 = xAy-::.:::, xB Gy = u2 and

f3 E B and a E C. Thus, (l(/3), l(a)) E ser. By (10.4), this again contradicts

that a Cs {3.

Since either case leads to a contradiction, we conclude VuE [s]. posu(a) ~ posu(/3).

3. Assume that a -<s {3. Suppose for a contradiction that :3u E [s]. posu(a) 2:
posu(f3). Then must be some u1,u1 E [s] such that u1(-;:::, U -;:::,-1)u2 and posu1 (a) <
poSu1 (/3) and posu2 (a) 2: posu2 (/3). There are two cases:

96 10. Relational Representation of Generalised Comtraces

• 	If posu1 (a) < posu1 ((3) and posu2 (a) = posu2 (/3), then it follows from Proposi­

tion 10.10(2) that there are x, y, A, B, C such that u2 = xAy ~ xB Cy = u1

and a E B and (3 E C. Thus, (l(a), l(f3)) E ser and •(a <>8 (3). Hence, it

follows from (10.5) that

:38, 'Y E I: . (pos8(8) < pos8('Y) 1\ (l(8), l('Y)) ¢:. ser)
8

1\ a c:::* 8 c:::* (3 1\ a c:::* c:::* (3'V8 8 8 I 8

By (2) and transitivity of ~' we have

'Y =1- 8 1\ (l(8), l('Y)) ¢:. ser)
1\ (VuE [s]. posu(a) ~ posu(8) ~ posu(f3))

(
1\ (VuE [s]. posu(a) ~ posu('Y) ~ posu(f3)

But since a, (3 E B U C = A, it follows that {"(, b} ~ A, which implies

posu2 ('Y) = posu2 (8). Since we also have pos8(8) < pos8('Y), it follows from

Proposition 10.10(2) that there are z, w, D, E, F such that zDw ~ zE FW and

8 E E and 'Y E F. Thus, (l(8), l('Y)) E ser, a contradiction.

• 	If posu1 (a) < posu1 ((3) and posu2 (a) > posu2 ((3), then it follows from Proposi­

tion 10.10(1) that there are x, y, A, B such that u1 = xA By(~ U ~-1)xB Ay =
u2 and a E A, (3 E B. Hence, (l(a), l(f3)) E inl. Since we assume a -< 8 (3, by

(10.5), it follows that (a, (3) E<> 8 n (si(c;) o <>: o si(c;)). Hence, there must

be some"(, 8 such that a si(c;) 'Y <>: 8 si(c;) (3. Observe that

a si(c;) 'Y

===> (By definition of si)

a (c:::;) 'Y 1\ 'Y (c;) a

===> (By (2) and transitivity of~)

(VuE [s]. posu(a) ~ posu('Y)) 1\ (VuE [s]. posu('Y) ~ posu(a))

===> (By logic)

(VuE [s]. posu(a) = posu('Y))

===> (Since a E A)

{a,'Y} ~A

Similarly, since 8 si(c;) (3, we can show that {8,(3} ~B. Hence, since

xA By(~ U ~-I) xB .Ay, we get A x B ~ inl. So (l('Y), l(8)) E inl. But

'Y <>8c 8 implies that (l('Y), l(8)) ¢:. inl, a contradiction.

97

0

10. Relational Representation of Generalised Comtraces

Since either case leads to a contradiction, we conclude \fu E [s]. posu(a) < posu(f3).

Proposition 10.12:. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl) and ~s = (~8 , <>, C::). If a, j3 E ~8 , then

1. a<> j3 ==} 'v'u E [s]. posu(a) =f. posu(f3)

2. a C:: j3 ==} \fu E [s]. posu(a) :::=; posu(f3)

Proof. 1. Let C::o=-<s U C::s, <>o=-<s U <>s and -<o=<>o n C::~. We then let -<I=

(-<o U C::o)* o -<o o (-<0 U C::o)*. By Definitions 10.2 and 10.1, we have

By Proposition 10.11, for a, j3 E ~8 , we have

a C::o j3 ==} \fu E [s]. posu(a) :::=; posu(f3) (10.6)

a <>o j3 ==} \fu E [s]. posu(a) =f. posu(f3) (10.7)

Hence, by transitivity of:::=;, we have

a -<o j3 ==} \fu E [s]. posu(a) < posu(f3) (10.8)

But since -<I= (-<o U C::o)* o -<o o (-<o U C::o)*, by transitivity of < and :::=;, we have

a -<I j3 ==} \fu E [s]. posu(a) < posu(f3) (10.9)

Since<>= (-< 1 U <>o) U (-<I U <>o)-I, from (10.7) and (10.9), it follows that

a<> j3 ==} \fu E [s]. posu(a) =f. posu(f3).

2. By Definitions 10.2 and 10.1, we have C::= (-<0 U C:: 0)* \idEs· Hence, it follows

from (10.7), (10.8) and transitivity of< and :::=; that

a C:: j3 ==} VuE [s]. posu(a) ~ posu(f3).

0

98 10. Relational Representation of Generalised Comtraces

Note that the definitions of non-serialisable steps, defined using only the relation

ser, are still valid for the case of generalised comtraces. Moreover, the following

results still hold.

Proposition 10.13. Let A be a step over a generalised comtrace alphabet

(E, sim, ser, inl), then

1. If A 	is non-serialisable to the left of l(a) for some a E A, then

2. If A 	is non-serialisable to the right of l((3) for some (3 E A, then

'Va E A. a cA. (3.

3. If A 	is non-serialisable, then 'Va, (3 EA. a CA. (3.

Proof. For all a, (3 E A, (l(a), l(f3)) ¢:. inl. Hence, by (10.4),

a LA (3 	 {::::::::} posA(a) ::; posA(f3) 1\ (l((3), l(a)) ¢:. ser U inl

{::::::::} posA(a)::; posA(f3) 1\ (l((3), l(a)) ¢:. ser

This is exactly the same to Definition 9.2. Hence, the proof is exactly the same to

that of Proposition 9.5. D

Proposition 10.14. Let A be a step over a generalised comtrace alphabet

(E, sim, ser, inl) and a EA. Then

1. There exists a unique B ~ A such that a E B, B is non-serialisable to the left

of a, and

A =f B ===} A- (A\ B)B.

2. There exists a unique C ~ A such that a E B, C is non-serialisable to the right

of a, and

A =f C ===} A C (A \ C).

99 10. Relational Representation of Generalised Comtraces

Proof. Again since Vb, c E A. (b, c) tJ. inl, CA is defined in exactly the same way to

Definition 9.2. Hence, the proof is the same to that of Proposition 9.6. D

Proposition 10.15. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl) and ~s = (1:: 8 , <>,c). Let -<=C U <>. If a, {3 E 1::8 , then

(VuE [s]. posu(a) =/= posu(f3)))
1. A (::Ju E [s]. posu(a) < posu(f3)) ==> a<> {3

(
A (::Ju E [s]. posu(a) > posu(f3))

2. (VuE [s]. posu(a) < posu(f3)) ==> a-< {3

3. (a=/= {3 A VuE [s]. posu(a)::; posu(f3)) ==> a C {3

(VuE [s]. posu(a) =/= posu(f3)))
Proof. 1. If A (:3u E [s]. posu(a) < posu(f3)) , then it follows from Proposi­

(
A (:3u E [s]. posu(a) > posu(f3))

tion 10.10(1) that there are u1, u2 E [s] and x, y, A, B such that

u1 = xA By(~ u ~-1)xB Ay = u2

and a E A,{J E B. Hence, (l(a), l(f3)) E inl, which by (10.3) implies that a <>s {3.

It then follows from Definitions 10.1 and 10.2 that a<> {3.

2, 3. Assume Vu E [s]. posu(a) ::; posu(f3) and a =/= {3. Hence, we can choose

uo E [s] where uo = xo E 1 ... Ek Yo (k ~ 1), E1, Ek are non-serialisable, a E E1,

f3 E Ek, and

1 (~ = x~ E~ ... E~, y~ A a E E~ A {3 E E~,))Vu
0

E [s]. _ _ (10.10)
==> weight(E1 ..• Ek) ~ weight(E~ ... E~,)

We will prove by induction on weight(E1 •.• Ek) that

(VuE [s]. posu(a) < posu(f3)) ===> a-< {3 (10.11)

(a=/= f3 A VuE [s]. posu(a) ~ posu(f3)) ===> a C {3 (10.12)

100 10. Relational Representation of Generalised Comtraces

Base Case:

When weight(E1... Ek) = 2, then we consider two cases:

• 	If a=/= {3, VuE [s]. posu(a) ~ posu(f3) and :lu E [s]. posu(a) = posu(f3), then it

follows that

-	 uo = xo{a, {3}yo, or

-	 uo = xo{ a }{{3}yo - xo{ a, f3}Yo

But since VuE [s]. posu(a) ~ posu(f3), in either case, we must have {Z(a), l({3)}

is not serialisable to the right of l({3). Hence, by Proposition 10.13(2), a c: {3.

This by Definitions 10.1 and 10.2 implies that a C {3.

• 	If VuE [s]. posu(a) < posu(f3), then it follows u0 = x0 {a}{{3}y0 . Since Vu E

[s]. posu(a) < posu(f3), we must have (Z(a), l({3)) ¢:. ser U inl. This, by (10.3),

implies that a -<s {3. Hence, from Definitions 10.1 and 10.2, we get a-< {3.

From these two cases, since -< ~ C, it follows that (10.11) and (10.12) hold.

Inductive Step:

When weight(E1 ... Ek) > 2, then u0 = x0 E1 ... Ek y0 where k ~ 1. We need to

consider two cases:

Case (i): If a=/= {3, VuE [s]. posu(a) ~ posu(f3) and :lu E [s]. posu(a) = posu(f3),

then there is some v0 v0 = w0 E z0 and a, {3 E E. Either E is non-serialisable to

the right of l({3), or by Proposition 10.13(2) v0 = w0 E z0 = w~ E' z~ where E' is

non-serialisable to the right of l({3). In either case, by Proposition 10.13(2), we have

a c: {3. So it follows from Definitions 10.1 and 10.2 that a C {3.

Case (ii): If Vu E [s]. posu(a) < posu(f3), then it follows uo = x0 E1 ... Ek Yo

where k ~ 2 and a E E1 , {3 E Ek. We also know from the way we choose Uo that E 1

is non-serialisable to the left of l(a) and E2 is non-serialisable to the right of l({3),

otherwise condition (10.10) is not satisfied. If (l(a), l(f3)) ¢:. ser U inl, then by (10.3),

a -<s {3. Hence, from Definitions 10.1 and 10.2, we get a -< {3. Thus, we need to

101 10. Relational Representation of Generalised Comtraces

consider only when (l(a), l(f3)) E ser or (l(a), l(f3)) E inl. There are three cases to

consider:

• 	If uo = x0 E1 E2 Yo where E1 and E2 are non-serialisable, then since we assume

Vu E [s]. posu(a) < posu(f3), it follows that E1 x E 2 ~ ser and E1 x E 2 ~ inl.

Hence, there are a 1, a 2 E E1 and f3I. {32 E E2 such that (l(a1), l({31)) ¢:. inl

and (l(a2), l(/:12)) ¢:. ser. Since E 1 and E2 are non-serialisable, by Proposi­

tion 10.13(3), a 1 c:; a 2 and {32 c:; {31. Also by 10.2, we know that a 1 <>s {32
and a2<>~{31. Thus, by 10.2, we have a 1 -<s {32. Since E1 and E2 are non­

serialisable, by Proposition 10.13(3), a c:; a 1 -<s {32 c:; {3. Hence, by Definitions

10.1 and 10.2, a-< {3.

• 	 If uo = x0 E 1 ... Ek y0 where k 2: 3 and (l(a), l(f3)) E inl, then let "f E E2 .

Observe that we have

such that F is non-serialisable and weight(E1 w1 F), weight(F z2 Ek) satisfy the

minimal condition similarly to (10.10). Since from the way u0 is chosen, we

know that Vu E [s]. posu(a) :::; posu('Y) and Vu E [s]. posu('Y) :::; posu(f3), by

applying the induction hypothesis, we can conclude that

(10.13)

So by transitivity of C:, we get a C: {3. But since we assume (l(a), l(f3)) E inl,

it follows that a<> {3. Hence, (a, {3) E C: n <> = -<.

• 	 If uo = Xo E1 ... Ek Yo where k 2: 3 and (l(a), l(f3)) E ser, then we observe from

how u0 is chosen that

Similarly to how we show (10.13), we can prove that

\!"(E ~(E1 ... Ek) \{a, {3}. a C: 'Y c: {3 (10.14)

We next want to show that

38, "(E l±J(EI ... Ek)· (posu0 (8) < pOSu0 ('Y) 1\ (l(8), l('Y)) ¢:. ser) (10.15)

102 10. Relational Representation of Generalised Comtraces

Suppose for a contradiction that (10.15) does not hold, then

\:18, "/ E l±J(EI ... Ek)· (posu0 (8) < poSu0 ("!) ==? (l(8), l('Y)) E ser) (10.16)

It follows that u0 = x0 E 1 ... Ek y0 - x0 E y0 , which contradicts that

VuE [s]. posu(a) < posu(f3)

Hence, we have shown (10.15). Let 8,"' E ~(E1 ... Ek) be event occurrences

satisfying posu0 (8) < posu0 ("!) and (l(8), l('Y)) fj. ser. By (10.14), we also have

that a(c U idE.)8(c U idE.)/3 and a(c U idE.)'Y(c U idE.)/3. If a -< 8 or

8 -< f3 or a -< "' or "' -< f3, then by (C4) of Definition 8.1, a -< f3. Otherwise, by

Definitions 10.1 and 10.2, we have a c; 8 c; f3 and a c; "f c; {3. But since

posu0 (8) < pOSu0 ("!) and (l(8), l('Y)) fj. ser, by 10.2, a -<s {3. So it follows from

Definitions 10.1 and 10.2 that a-< {3.

Thus, we have shown (10.11) and (10.12) as desired. D

Proposition 10.16. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl), ~s = (~s, <>,c), and-<=<> n c. If a, f3 E ~SI then

1. a<> f3 ~ VuE [s]. posu(a) =J posu(f3)

2. a C f3 ~ VuE [s]. posu(a) ~ posu(f3)

3. a-< f3 ~ VuE [s]. posu(a) < posu(f3)

4. If l(a) = l(/3) and pos8 (a) < pos8 (/3), then a-< f3

Proof. 1. Follows directly from Proposition 10.12(1) and Proposition 10.15(1, 2).

2. Follows directly from Proposition 10.12(2) and Proposition 10.15(3).

3.
a-</3

~ (Since -<s=<>s n Cs)

a <>s {31\ a Cs f3

~ (From (1) and (2))

VuE [s]. (posu(a) =J posu(f3) 1\posu(a) ~ posu(f3))

~ (By logic)

VuE [s]. posu(a) < posu(f3)

103 10. Relational Representation of Generalised Comtraces

4. Assume that l(a) = l(/3) and pos8 (a) < pos8 ({3). Then, by Proposition 10.3(2),

we know VuE [s]. posu(a) < posu(/3). Hence, it follows from (3) that a-< {3.
D

Theorem 10.1. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl). Then

Es = (~Sl n <Ju~ ' n <J;;) .
u E [s] u E [s]

(10.17)

Proof. Let Es = (~s' <>,c) and a, /3 E ~s· We have

a<>/3
{::==} (By Proposition 10.16(1))

VuE [s]. posu(a) =/= posu(!)

{::==} (By logic)

VuE [s]. (posu(a) < posu(/3) V posu(a) > posu(/3))

{::==} (By definition of <Ju)

(a, {3) E nu E [s] <Ju ~

We also have

ac{J

{::==} (By Proposition 10.16(2))

VuE [s]. posu(a) ~ posu(!)

{::==} (By definition of <J;;)
(a,/3) E nuE[s] <J;;~

Hence, we conclude that

D

Proposition 10.17. Let s be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl). Then Es = (~8 , <>,c) is a generalised stratified order structure.

104 10. Relational Representation of Generalised Comtraces

Proof. Since <>= nu E [s] <lu~ and <lu~ is irrefiexive and symmetric, <> is irrefiexive

and symmetric. Since C= nu E [s] <J; and <J; is irrefiexive, c is irrefiexive.

Let -<=<> n c, it remains to show that S = (1::, -<,c) is a stratified order

structure, i.e., S satisfies the conditions C1-C4 of Definition 8.1. Since C is irrefiexive,

C1 is satisfied. Since -<=<> n c implies -< ~ c, C2 is satisfied. Assume a c {3 c r
and a =1- r. Then

aC{JC[

=* (By (10.17))

(a, {3) E nu E [s] <J; 1\ ({3, r) E nu E [s] <J;

==} (By definition of <lu)

(VuE [s]. posu(a) ~ posu(f3)) 1\ (VuE [s]. posu(a) ~ posu(r))

==} (By transitivity of ~ and the assumption that a =1- r)

VuE [s]. posu(a) ~ posu(r) 1\ a =1- r

==} (By definition of <lu)

(a,[) E nuE [s] <l;

=* (By (10.17))

aC[

Hence, C3 is satisfied. Next we assume that a-< {3 C8 r· Then

a-<f3Cr
=* (By (10.17) and -<=<> n c)

(a, {3) E nu E [s](<l; n <lu~) 1\ ({3, r) E nu E [s](<J; n <lu~)

==} (By definition of <lu)

(Vu E [s]. (posu (a) ~ posu ({3) 1\ posu (a) =1- posu ({3)))

1\ (VuE [s]. (posu(a) ~ posu(r) 1\posu(a) =1- posu(r)))

==} (By logic)

(VuE [s]. posu(a) < posu(f3)) 1\ (VuE [s]. posu(a) < posu(r))

==} (By transitivity of <)

VuE [s]. posu(a) < posu(r)

==} (By definition of <lu and logic)

(a, r) E nu E [s](<l;;,' n <lu~)

=* (By (10.17))

a-<r

105 10. Relational Representation of Generalised Comtraces

Similarly, 	we can show a c (3 -< 'Y ==> a -< 'Y. Thus, C4 is satisfied. D

By Proposition 10.3, for each step sequences over a generalised comtrace alphabet

(E, sim, ser, inl), we will call ~s the generalised stratified order structure induced by

the step sequences.

10.4 	 Generalised Stratified Order Structures Gen­

erated by Generalised Comtraces

In this section, we want to show that the construction from Definition 10.2 indeed

yields a generalised stratified order structure representation of comtraces. But before

doing so, we need some preliminary definitions and results.

Definition 10.3 ([10, 11]). Let G = (X,<>, c) be a generalised stratified order

structure. A stratified order <I on X is an stratified order extension of G if for all

a, (3 EX, the following hold

a <> (3 ==> a<lt:> (3

a C (3 ==> a <I~ (3

The set of all stratified order extensions of G is denoted as ext(G).

Proposition 10.18. Let s be a step sequence over a generalised comtrace alphabet

(E,sim,ser,inl). Then <Is E ext(~s).

Proof. Let ~s = (~,<>,c). By Proposition 10.16, for all a, (3 E ~,

a<> (3 ==> poss(a) =/= poss(f3) ==> a <Is (3 V (3 <Is a ==> a<ls to+ f3

a C (3 ==> poss(a) :::; poss(f3) ==> a <1:;' (3

Hence, by Definition 10.3, we get <Is E ext(~s)· 	 D

Proposition 10.19. Let s be a step sequence over a generalised comtrace alphabet

(} = (E, sim, ser, inl). If <IE ext(~s), then there is a step sequence u over(} such that

<I= <lu·

106 10. Relational Representation of Generalised Comtraces

Proof. Let ~8 = (~8, <>, c::) and n<t = B1 ... Bk. We will show that u = l(Br) ... l(Bk)
is a step sequence such that <l = <lu·

Suppose a,{3 E Bi are two distinct event occurrences such that (l(a),l(f3)) r;J:. sim.

Then pos8 (a) =/= pos8 ({3), which by Proposition 10.16 implies that a <> {3. Since

<l E ext(~8), by Definition 10.3, a <l {3 or {3 <l a contradicting a, {3 E Bi. Thus, we

have shown' for all Bi (1 :::; i :::; k),

a, {3 E Bi 1\ a=/= {3 ===? (l(a), l(f3)) r;J:. sim (10.18)

By Proposition 10.3(2), if e(i), e0) E ~8 and i =/= j then Vu E [s]. posu(e(i)) =/=

posu(e0)). So it follows from Proposition 10.16(1) that e(i) <> e(j). Since <l E ext(~8),
by Definition 10.3,

If e(ko) E Bk and e(mo) E Bm then ko =/= mo <===? k =/= m (10.19)

From (10.18) it follows that u is a step sequence over e. Also by (10.19), pos:;; 1(i) = Bi

and IZ(Bi)l = IBil for all i. Hence, n<l = n<lul which implies <l = <lu· D

We next want to show that two step sequences over the same generalised comtrace

alphabet induce the same generalised stratified order structure if and only if they

belong to the same generalised comtrace (Theorem 10.2 below). The proof of an

analogous result for comtraces from [14] is simpler because every comtrace has a

unique canonical representation that can be easily constructed. Since generalised

comtraces do not have a unique canonical representation as defined in Definition 4.2,

to simplify our proofs, we have to find another unique representation of generalised

comtraces which can be easily constructed.

Let R be a binary relation on a set X. We says R is a well-ordering on a set S if

R is a total order on Sand every non-empty subset of S has a least element in this

ordering. When R is a well-ordering on X, we say that X is well-ordered by R or R

well-orders X.

Proposition 10.20. If R is a total order on a finite set X, then R is a well-ordering.

Proof. We prove this by induction on lXI. If lXI = 0 then by definition R well-orders

X. Now we want to show that it also holds for lXI > 0. For any non-empty S C X,

107 10. Relational Representation of Generalised Comtraces

we have RIYxY is a total order on f?. Hence, by induction hypothesis, Sis well-ordered

and hence it has a least element. It remains to show that X also has a least element.

We pick an arbitrary element x EX and consider the set Y =X\ {x}. Since RIYxY

is a total order on Y, by induction hypothesis, Y is well-ordered and hence has a least

element y. Since R is a total order on X, x and y are comparable. If xRy then x is

the least element of X. Otherwise, y is the least element of X. D

Definition 10.4. Let § be the set of all possible steps of a generalised comtrace

concurrent alphabet () = (E, ser, sim, inl) and assume that we have a well-ordering

<Eon E. Then we can define a step order <st on§ as following:

A <st B <===} IAI > IBI V (IAI =lElA A =I B 1\ min<E(A \B) <E min<E(B \A))

(10.20)

where min<E (X) denotes the least element of the set X ~ E with respect to <E·

Let A1 ... An and B1 ... Em be two sequences in §*. We define a lexicographic

order <lex on step sequences as following:

A1 ... An <lex B1 ... Em <===} :3k > 0. ((Vi< k. Ai = Bi) 1\ (Ak <st Bk V k > n))

(10.21)

Proposition 10.21. Let§ be the set of all possible steps of a generalised comtrace

concurrent alphabet()= (E, ser, sim, inl) and <E be a well-ordering on E. Then

1. <st well-orders§

2. <lex well-orders §*

Proof. 1. Since § is finite, by Proposition 10.20, we only need to show that if

A, B E § then A <st B or B <st A or A = B. Assume A =I B. If IAI < IBI
or IAI > lEI then it follows from (10.20) that A <st B or B <st A. Otherwise,

IAI = IBI and A =I B. Hence, A ~ B and B ~ A, which implies A\ B =I 0 and

B \A =I 0 and (A\ B) n (B \A) = 0. Hence, min<E(A \B) and min<E(B \A)

are comparable with respect to <E· Since (A\ B) n (B \A) = 0, we also knows

that min<E(A \B) =I min<E(B \A). Thus, min<E(A \B) <E min<E(B \A) or

108 10. Relational Representation of Generalised Comtraces

min<E(B \A) <E min<E(A \B), which by (10.20) implies A <st B orB <st A.

2. Since §* is finite, by Proposition 10.20, we only need to show that if u, v E §

then u <1exv or v <1exu or u = v. Assume u =f:. v, u = A1 ... An and v = B1 ... Bm.

Without loss of generality we can assume that n ~ m. We will prove the result

by induction on n. When n = .A, then by (10.21) we have u <lexv. When n > 0,

by induction hypothesis, u' = A1 ... An and v are comparable. If v <lexu', then by

(10.21) v <1exu. Otherwise, u' <lexv, which implies that there is some k such that

0 < k ~ nand (Vi < k. Ai = Bi) 1\ (Ak <st Bk V k > (n- 1)). If k < n, then by

(10.21) we have u <lexv. Otherwise, k = n, which implies Vi < n. Ai = Bi. Since

u =f:. v, we have An <E Bn or Bn <E An· Hence, it follows from (10.21) that u <lexv

or v <1exu. D

Lemma 10.1. Let s be a step sequence over a generalised comtrace alphabet () =

(E, ser, sim, inl) and <E be a well-ordering on E. Let u = A1 ... An be the least

element of the generalised comtrace [s] with respect to the well-ordering <lex. Let

~s = (~,<>,c) and-<=<> n c. Let mins-<(X) denote the set of all minimal elements

of X with respect to -< and define

Z(X) df {Y I Y ~ mins-< (X) 1\ (\:Ia, {3 E Y. a =f:. {3 ===} •(a <> [3))

1\ \:Ia E Y. \:1[3 EX\ Y. •([3 C a)} (10.22)

Let u = A1 ... An be the enumerated step sequence of u. Then Ai is the least element

of the set {l[Y]I Y E Z(~ \ l±J(A1 ... Ai_I))} with respect to the well-ordering <st.

Proof. We first notice that by Proposition 10.16(4), if e(i),e(j) E ~and i < j then

e(i) -< e(j). Hence, for all a, {3 E mins-<(X), where X~~' we have l(a) =f:. l(f3). This

ensures that if Y E Z(X) and X~~ then IYI = ll(Y)I.
For all a E A1 and {3 E ~' pos8 ([3) ;::: pos8 (a). Hence, by Proposition 10.16(3),

•(!3 -< a). Thus,

A1 ~ mins-<(X) (10.23)

For all a, {3 E A1 , since pos8 ({3) = pos8 (a), by Proposition 10.16(1), we have

•(a <> [3) (10.24)

109 10. Relational Representation of Generalised Comtraces

For any a E AI and (3 E ~\AI, since pos8 ((3) < pos8 (a), by Proposition 10.16(2),

•(f3c a) (10.25)

From (10.23), (10.24) and (10.25), we know that AI E Z(~). Hence, Z(E) # 0. This

ensures the least element of {l[Y] IY E Z(E)} with respect to <st is well-defined.

Let Y0 E Z(~) such that B0 = l(Y0) be the least element of {l[Y] I Y E Z(~)}

with respect to <st. We want to show that AI = B0 . Since <st is a well-ordering,

we know that AI <at B0 or B0 <st AI or AI = B0 • But since AI E Z(E) and Bo be

the least element of the set {l[B] I B E Z(~)}, •(AI <st B0). Hence, to show that

AI = B0 , it only remains to show that •(Eo <st AI)·
Suppose for a contradiction that B0 <st AI. We first want to show that for every

W ~ Y0 there is an enumerated step sequence v such that

v = Wovo = AI ... An and W ~ Wo ~ Yo (10.26)

We will prove this by induction on IWI.

Base Case:

When IWI = 1, we let { ao} = W. We choose VI = Eo .. . EkYI - AI ... An and

a0 E Ek (k 2: 0) such that for all v' = Eb ... E£, y~ =AI ... An and a0 E E£,, we have

(i) weight(Eo ... Ek) :::; weight(Eb ... E£,), and

(ii) weight(Ek-I Ek) :::; weight(E£,_1 E£,).

We then consider only w = E0 ••• Ek. We observe that because of the way we chose

v1 , we have

\:1(3 E l±J(w). f3 # ao ==> Vt E [w]. post(f3):::; post(ao)

Hence, since w = u -7-R v0 , it follows from Proposition 10.4(1, 2) that

Then it follows from Proposition 10.16(2) that

\:1(3 E l±J(w). f3 # ao ==> f3 C ao (10.27)

110 10. Relational Representation of Generalised Comtraces

By the way Yo was chosen, we know that

Vo: E Yo. 'V(J E ~\Yo. •(fJ Co:).

This and (10.27) imply that

l±J(w) =(Eo U ... U Ek) ~Yo (10.28)

We claim that for every o: E Ei and (3 E Ei (0 ~ i < j ~ k),

{ 0: }{(3} = {o:, (3} (10.29)

Suppose not. Then either [{ o:}{(3}] = { { o:}{(3}} or [{ o: }{(3}] = {{o:}{(3}, {(3}{o:}}.

In either case, we have Vt E [{Z(o:)}{Z((J)}]. post(o:) =/:. post(f3). Since {o:}{(J} =
7r{a,,a}(u), by Proposition 10.4(3), Vt E [u]. post(o:) =/:. post(f3), which by Proposi­

tion 10.16 implies o: <> (3. This contradicts that Yo E Z(~) and o:, (3 E ~(w) ~ Yo.
Thus, we have shown (10.29), which implies that for all o: E Ei and (3 E Ei

(0 ~ i < j ~ k), (l(o:), l((J)) E ser. Then Eo ... Ek - E0 U ... U Ek. Hence,

there exists a step sequence v~ such that

v~ = (Eo U ... U Ek)vl A1 ... An,

where {o:o} ~(Eo U ... U Ek) ~Yo.

Inductive Step:

When IWI > 1, we pick an element (30 E W. By applying the induction hypothesis

on W \ {{30 }, we get a step sequence v2 such that

where W \ {(30 } ~ F0 ~ Y0 . If W ~ F0 , we are done. Otherwise, proceeding like the

base case, we construct a step sequence v3 such that

and {(30 } ~ F1 ~ Yo. Since Fo ~ Yo, W ~ Fo U F1 ~ Yo.

111 10. Relational Representation of Generalised Comtraces

Similarly to how we proved (10.29), we can show that

Va E Fa. 'r/{3 E F1. {a}{{3} = {a,{3}

This means that a E F0 and {3 E F1 , (l(a), l({3)) E ser. Hence, F0F1 F0 U F1.
Hence, there is a step sequence v4 such that

V4 =(Fa U F1) Y4 =A1 ... An,

and W ~(Fa U F1) ~Yo.

We have shown (10.26), which implies that when we choose W =Yo, we will get

a step sequence v such that

v = Wovo = A1 ... An (10.30)

where Y0 ~ W0 ~ Y0 . Since Y0 ~ Wo ~ Yo implies that Yo = Wo, from

(10.30), we have v is the step sequence such that v = Y0v0 =A1 ... An. Thus,

v = B0v0 - A1... An But since B0 <st A1 , this contradicts the fact that A1 ... An is

the least element of [s] with respect to <lex. Hence, we have shown that A1 is the

least element of {l(Y) IY E Z(I;)} with respect to <st.

We now prove that Ai is the least element of {l[Y] I Y E Z(I; \ ltj(A1 ... Ai-l))}
with respect to <st by using induction on n, the number of steps of A1 ... An- If

n = 0, we are done. If n > 0, then we have just shown that A1 is the least element

of {l[Y] IY E Z(I;)} with respect to <st. By applying the induction hypothesis on

p = A2 ... An, I;P = I;\A1 , and its stratified order structure (I;p, <> IEpxEp' C IEpxEp),
we get Ai is the least element of { l [Y] I Y E Z (I; \ ltJ (A1 ... Ai-l))} with respect

to <st for all i ;::: 2. Thus, we conclude Ai is the least element of {l[Y] I Y E

Z(I; \ ltj(A1 ... Ai_1))} with respect to <st for 1 :::; i:::; n.
D

Theorem 10.2. Lets, t be step sequences over a generalised comtrace alphabet() =

(E, sim, ser, inl). Then s- t if and only if ~s = ~t·

Proof. (=>)If s t, then [s] = [t]. Hence, by (10.17),

~8 = (I;s, n <Ju ~' n<J;;:) (I;s, n <Ju~' n<J;;:) = ~t·
uE~ ue~ ueW ueW

112 10. Relational Representation of Generalised Comtraces

(~)By Lemma 10.1, we can use ~s to construct a unique element WI such that

WI is the least element of both [s] with respect to <lex, and then use ~t to construct

a unique element w 2 that is the least element of [t] with respect to <lex. But since

~s = ~t and the construction is unique, we get WI = w2 . Hence, s = t. D

By Theorem 10.2, for each step sequence s over a generalised comtrace alphabet

() = (E, sim, ser, inl), we will define the generalised stratified order structure induced

by the generalised com trace [s] to be ~s.

To end this section, we prove two major results. Theorem 10.3 says that the

stratified order extensions of the generalised stratified order structure induced by a

generalised comtrace [t] are exactly those generated by the step sequences in [t]. The­

orem 10.4 says that the stratified order structure induced by a comtrace is uniquely

identified by any of its extensions.

Lemma 10.2. Let s, t be step sequences over a generalised comtrace alphabet () =

(E, sim, ser, inl) and <Is E ext(~t)· Then ~s = ~t·

Proof. Let ~t = (:E, <>, c:::), ~s = (:E, <>', c:::'), -<=<> n c::: and -<'=<>' n c:::'. We first

want to show that ~t ~ ~s·

(<>t = <>s) We have a <>t {3 if and only if by Definition 10.2 (l(a), l(f3)) E inl,

which by Definition 10.2 means a <>s {3. Hence,

<>t = <>s (10.31)

(C:::t = C:::s) If a C:::t {3, then by Definitions 10.1 and 10.2, a C::: {3. But since

<Is E ext(~t), we have a <I;' {3, which implies

(10.32)

Since a C:::t {3, by Definition 10.2,

(l({3), l(a)) ¢:. ser U inl (10.33)

Hence, it follows from (10.32) and Definition 10.2 that a C:::s /3. Thus,

(10.34)

113 10. Relational Representation of Generalised Comtraces

It remains to show that C:: 8 ~ Ct. Let a Cs {3, and we suppose for a contradiction

that •(a C::t {3). Since a Cs {3, by Definition 10.2, pos8 (a) ~ pos8 ({3) and (l({3), l(a)) ¢:.
ser U inl. Since we assume •(a C::t {3), by Definition 10.2, we must have post(f3) <
post(a). But this by Definitions 10.1 and 10.2 implies that {3 -<t a and {3 -< a. But

since <J 8 E ext(~t), we have {3 <J 8 a, which implies pos8 ({3) < pos8 (a), a contradiction.

Hence, C::s ~ Ct. Thus together with (10.34), we get

(10.35)

(-<t = -<s) If a -<t {3, then by Definitions 10.1 and 10.2, a -< {3. But since

<J 8 E ext(~t), we have a <J 8 {3, which implies

poss(a) < poss(f3) 	 (10.36)

Since a -<t {3, by Definition 10.2,

(l(a), l(f3)) ¢:. ser U inl

V (a, {3) E <>t n (si(c::;) o<>tc osi(c::;))
(l(a), l({3)) E ser)

V 1\ E L:t. (post(6) < post('y) 1\ (l(6), l(l)) ¢:. ser)36,
(1

1\ a c::; 6 c::; {3 1\ a c::; 1 c::; {3 .

We want to show that a -<s {3.

• 	 When (l(a), l(f3)) ¢:. ser U inl, it follows from (10.36) and Definition 10.2 that

a -<s {3.

• 	 When (a, {3) E <>t n (si(c::;) o <>t0 o si(c::;)), then a <>t {3 and there are

6,1 E L: such that a si(c::;) 6 <>F 1 si(c::;) {3. Since C::t = Cs and <>t = <>s,
we also have a <>s {3 and a si(c:::) 6 <>~ 1 si(c:::) {3. Thus, it follows from

(10.36) and Definition 10.2 that a -<s {3.

• 	 There remains only the case when (l(a), l(f3)) E ser and there are 6,1 E L:t such

that

post (6) < post (1) 1\ (l(6), l(1)) ¢:. ser) .

(1\ a c::; 6 c::; {3 1\ a c::; 1 c::; {3

Since C::t = c::~, we also have a c::: 6 c::: {31\ a c::: 1 c::: {3. Since (l(6), l(l)) ¢:.
ser, we either have (l(6), l('y)) E inl or (l(6), l('y)) ¢:. ser U inl.

114 10. Relational Representation of Generalised Comtraces

- If (l(8), l('y)) E inl, then pos8(8) =J pos8('y). This implies (pos8(8) <
pos8('y) A (l(8), l('y)) rJ_ ser) or (pos8('y) < pos8(8) A (l('y), l(8)) rJ_ ser). So

it follows from (10.36) and Definition 10.2 that a -< 8 {3.

- If (l(8), l('y)) rJ_ inl, then (l(8), l('y)) rJ_ ser Uinl. Hence, by Definition 10.2,

8 -<t "(, which by Definitions 10.1 and 10.2, 8 -< 'Y· But since <J 8 E ext(~t),

we have 8 <J 8"(, which implies pos8(8) < pos8('y). Since pos8(8) < pos8('y)

and (l(8), l('y)) rJ_ ser, it follows from (10.36) and Definition 10.2 that

a -<8 {3.

Thus, we have shown that a -< 8 {3. Hence,

(10.37)

It remains to show that -<8 ~ -<t· Let a -<8 {3, and we suppose for a contradiction

that •(a -<t {3). Since a -<8 {3, by Definition 10.2, we have pos8(a) < pos8({3) and

(l(a), l({3)) rJ_ ser U inl

V (a,{3) E <>8 n (si(c:) o <>8 ° o si(c:))

(l(a), l({3)) E ser)

V A E E . (pos8(8) < pos8('y) A (l(8), l('y)) rJ_ ser)
38

,
(8

'Y A a c* 8 c* {3 A a c*
I

c* {3"V8 8 8 8

We want to show that a -<t {3.

• 	 When (l(a), l(f3)) rJ_ ser U inl, we suppose for a contradiction that •(a -<t {3).

This by Definition 10.2 implies that post(f3) ~post(a). By Definitions 10.1 and

10.2, it follows that {3 Ct a and {3 C a. But since <J 8 E ext(~t), we have {3 <J;' a,

which implies pos8({3) ~ pos8(a), a contradiction.

• 	 If (a,{3) E <>8 n (si(c:) o <>8° o si(c:)), then since <>8=<>t and C8=Ct,

we have (a,{3) E <>t n(si(c;)o<>t0 osi(c;)). Since a <>t {3, we have

post(a) < post(f3) or post(f3) < post(a). We want to show that post(a) <
post(f3). Suppose for a contradiction that post(f3) < post(a). But since

(a,{3) E <>t n (si(c;) o <>t0 o si(c;)) and <>tis symmetric, we have ({3,a) E

<>t n (si(c;) 0 <>P 0 si(c;)). Hence, it follows from Definitions 10.1 and 10.2

that {3 -<t a and {3-< a. But since <J 8 E ext(~t), we have {3 <J 8a, which implies

115 10. Relational Representation of Generalised Comtraces

pos8 (/3) < pos8 (a), a contradiction. We have just shown that post(a) < post(/3).
Since (a, /3) E <>t n (si(c;) o <>tc o si(c;)), we get a -<t f3

• 	 There remains only the case when (l(a), l(/3)) E ser and there are 8, 'Y E ~s

such that
pos8 (8) < pos8 (r) 1\ (l(8), l(r)) (j. ser) .

(1\ a c*s 8 c*s f3 1\ a c*s 'Y c*s /3

Since C8 =Ct, we have a c; 8 c; /3 and a c; 'Y c; /3, which by Def­

inition 10.2 and transitivity of ~ implies that post(a) ~ post(8) ~ post(f3)

and post(a) ~ pOSt (r) ~ post (/3). Since (l(8), l('Y)) (j. ser, we either have

(l(8), l(r)) E inl or (l(8), l(r)) (j. ser U inl.

- If (l(8), l(r)) E inl, then post(8) =1- post(r). This implies (post(8) <
post ('Y) /\ (l(8), l('Y)) (j. ser) or (post ('Y) < post (8) 1\ (l(r), l(8)) (j. ser).

Since post(8) =1- post(r) and post(a) ~ post(8) ~ post(/3) and post(a) ~
post(r) ~ post(/3), we also have post(a) < post(f3). So it follows from

Definition 10.2 that a -<t /3.

- If (l(8), l(r)) (j. inl, then (l(8), l(r)) (j. ser U inl. We want to show that

post(8) < post(r). Suppose for a contradiction that pos8 (8) ~ pos8 ("f),
then since (l(8), l(r)) (j. ser U inl, by Definitions 10.1 and 10.2, we have

'Y Ct 8 and 'Y C 6. But since <ls E ext(~t), we have 'Y <J:; 6, which

implies poss('Y) ~ pos8 (6), a contradiction. Since post(6) < post(r) and

post(a) :=:; post(6) ~ post(f3) and post(a) ~ post(r) ~ post(/3), we have

post(a) < post(f3). Hence, we have post(a) < post(/3) and

post(6) <post("f) 1\ (l(8), l(r)) (j. ser U inl) .
(1\ a c; 6 c; f3 1\ a c; 'Y c; /3

Thus, it follows from Definition 10.2 that a -<t /3.

Thus, we have shown that a -<t /3, which implies Ct~C8 • Hence, by (10.37),

-<t = -<s 	 (10.38)

From (10.31), (10.35) and (10.38), we have

116 10. Relational Representation of Generalised Comtraces

Thus, we conclude

0

Theorem 10.3. Let t be a step sequence over a generalised comtrace alphabet

(E, sim, ser, inl). Then ext(~t) = {<luI u E [t]}.

Proof. (~) Suppose <J E ext(~t)· By Proposition 10.19, there is a step sequence u

such that <lu = <J. Hence, by Lemma 10.2, we have ~u = 6, which by Theorem 10.2

implies that u- t. Hence, ext(~t) 2 { <lu I u E [t]}.

(2) If u E [t], then it follows from Theorem 10.2 that ~u = ~t· This and Proposi­

tion 10.18 imply <lu E ext(~t)· Hence, ext(~t) 2 { <lu I u E [t]}. 0

Theorem 10.4. Let s and t be step sequences over a generalised comtrace alphabet

(E, sim, ser, inl) such that ext(~s) n ext(~t) =I 0. Then s = t.

Proof. Let <J E ext(~s) n ext(~t)· By Proposition 10.19, there is a step sequence u

such that <lu = <J. By Lemma 10.2, we have ~s = ~u = ~t· This and Theorem 10.2

yields s _ t. 0

Chapter 11

Conclusion and Future Works

The concepts of absorbing monoids over step sequences, partially commutative ab­

sorbing monoids over step sequences, absorbing monoids with compound generators,

monoids of generalised comtraces and their canonical representations have been in­

troduced and analysed. All of these quotient monoids are the generalisations of

Mazurkiewicz trace and comtrace monoids. We have shown some algebraic and for­

mal language properties of comtraces, and provided a new version of the proof of the

existence of a unique canonical representation for comtraces. We then prove Theo­

rem 9.5, which states that any finite stratified order structure can be represented by

a comtrace.

One interesting observation is that the notions of non-serialisable steps are con­

venient for capturing the weak causality relationship induced not only by a comtrace

but also by a generalised comtrace. The uses of non-serialisable steps for generalised

comtraces were shown in Proposition 10.15, which was absolutely required for our

proof of Theorem 10.1.

It is worth notieing that Theorems 9.3 and 10.3 can be seen as the generalisa­

tions of the Szpilraj n Theorem in the context of com traces and generalised comtraces

respectively. In other words, the (generalised) stratified order structure induced by

a (generalised) comtrace [t] can be uniquely reconstructed from the stratified orders

generated by the step sequences in [t].

Despite some obvious advantages, for instance very handy composition and no

need to use labels, quotient monoids (perhaps with some exception of Mazurkiewicz

117

118 11. Conclusion and Future Works

traces) are much less popular for analysing issues of concurrency than their relational

counterparts as partial orders, stratified order structures, occurrence graphs, etc. We

believe that in many cases, quotient monoids could provide simpler and more adequate

models of concurrent histories than their relational equivalences.

An immediate task is to prove the analogue of Theorem 9.5 for generalised com­

traces which says that each generalised stratified order structure can be represented

by a generalised comtrace. This should not be difficult, thanks to the results from

Chapter 10 and the analogy to the proof of Theorem 9.5.

Another interesting task is to study our novel notion of absorbing monoids with

compound generators, which can model asymmetric synchrony. We believe the con­

cept of compound generators might relate to another line of our research on the theory

of part-whole relations in [22] which utilises the ideas from both mereology [29] and

category theory [23, 6].
Much harder future tasks are in the area of comtrace and generalised comtrace

languages with such major problems as recognisability [26], where the equivalences of

Zielonka's Theorem1 [33] for comtraces and generalised comtraces, etc., are still open.

1Zielonka's Theorem states that a trace language is recognisable if and only if it is accepted by
some finite asynchronous automaton.

Bibliography

[1) 	 P. Cartier and D. Foata, Problemes combinatoires de commutation et re­
arrangements, Lecture Notes in Mathematics 85, Springer 1969.

[2) 	 P. M. Cohn, Universal Algebra, D. Reidel 1981.

[3) 	 B.A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge
University Press 2002.

[4) 	 R. Davillers, R. Janicki, M. Koutny, P. E. Lauer, Concurrent and Maximally
Concurrent Evolution of Non-sequential Systems, Theoretical Computer Science
43:213-238, 1986.

[5) 	 J. Desel, Private Information, Communicated to Ryszard Janicki by G. Juhas,
2007.

[6) 	 J. L. Fiadeiro. Categories for Software Engineering. Springer, 2004.

[7) 	 V. Diekert, Combinatorics on Traces, Springer 1990.

[8) 	 V. Diekert and G. Rozenberg (eds.), The Book of Traces. World Scientific 1995.

[9) 	 H. Gaifman and V. Pratt, Partial Order Models of Concurrency and the Com­
putation of Function, Proc. of LICS'87, pp. 72-85.

[10) 	 G. Guo and R. Janicki, Modelling Concurrent Behaviours by Commutativity
and Weak Causality Relations, Proc. of AMAST'02, Lecture Notes in Computer
Science 2422 (2002), 178-191.

[11) 	 R. Janicki. Relational Structures Model of Concurrency. Acta Informatica, 45(4):
279-320, 2008.

[12) R. Janicki and M. Koutny, Invariants and Paradigms of Concurrency Theory,
Lecture Notes in Computer Science 506, Springer 1991, pp. 59-74.

119

120 BIBLIOGRAPHY

[13] 	 R. Janicki and M. Koutny, Structure of Concurrency, Theoretical Compututer
Science, 112(1):5-52, 1993.

[14] 	 R. Janicki and M. Koutny, Semantics of Inhibitor Nets, Information and Com­
putation, 123(1):1-16, 1995.

[15] 	 R. Janicki and M. Koutny, Fundamentals of Modelling Concurrency Using Dis­
crete Relational Structures, Acta Informatica, 34:367-388, 1997.

[16] 	 R. Janicki and M. Koutny, On Causality Semantics of Nets with Priorities, Fun­
damenta Informaticae 34:222-255, 1999.

[17] 	 R. Janicki and D. T. M. Le, Modelling Concurrency with Quotient Monoids,
Proc of PETRI NETS 2008, Lecture Notes in Computer Science 5062, Springer
2008, pp. 251-269.

[18] 	 G. Juhas, R. Lorenz, S. Mauser, Synchronous + Concurrent + Sequential =

Earlier Than+ Not Later Than, Proc. of ACSD'06 (Application of Concurrency
to System Design), Turku, Finland 2006, pp. 261-272, IEEE Press.

[19] 	 G. Juhas, R. Lorenz, C. Neumair, Synthesis of Controlled Behavious with Mod­
ules of Signal Nets, Lecture Notes in Camp. Science 3099, Springer 2004, pp.
233-257.

[20] 	 H. C. M. Kleijn and M. Koutny, Process Semantics of General Inhibitor Nets,
Information and Computation, 190:18-69, 2004.

[21] 	 K. Kunen. Set Theory: An Introduction to Independence Proofs. Elsevier Science
Ltd, 1980.

[22] 	 D. T. M. Le and R. Janicki, A Categorical Approach to Mereology and Its
Application to Modelling Software Components, Transactions on Rough Sets
VIII, LNCS 5084, pp. 146-174, 2008.

[23] 	 S. MacLane. Categories for the Working Mathematician. Springer, 1998.

[24] 	 A. Mazurkiewicz, Concurrent Program Schemes and Their Interpretation, TR
DAIMI PB-78, Comp. Science Depart., Aarhus University, 1977.

[25] 	 A. Mazurkiewicz, Introduction to Trace Theory, in [8], pp. 3-42.

[26] 	 E. Ochma:riski, Recognizable Trace Languages, in [8], pp. 167-204.

[27] 	 M. Pietkiewicz-Koutny, The Synthesis Problem for Elementary Net Systems,
Fundamenta Informaticae 40(2,3):310-327, 1999.

121 BIBLIOGRAPHY

[28] 	 M. W. Shields, Adequate Path Expressions, Lecture Notes in Computer Science
70, Springer 1979, pp. 249-265.

[29] 	 P. Simons. Parts: A Study in Ontology. Oxford University Press, Oxford, 1987.

[30] 	 P. Suppes, Axiomatic Set Theory, Dover, 1972.

[31] 	 E. Szpilrajn, Sur !'extension de l'ordre partiel, Fundamenta Mathematicae 16
(1930), 386-389.

[32] 	 J. D. Weston, A short proof of Zorn's lemma. Arch. Math., 8:279, 1957.

[33] 	 W. Zielonka, Notes on Finite Asynchronous Automata, RAIRO Inform. The or.
Appl. 21:99-135, 1987.

7349 62

	Structure Bookmarks
	Contents

