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Abstract 

Mazurkiewicz traces were introduced by A. Mazurkiewicz in 1977 as a language repre­

sentation of partial orders to model "true concurrency". The theory of Mazurkiewicz 

traces has been utilised to tackle not only various aspects of concurrency theory but 

also problems from other areas, including combinatorics, graph theory, algebra, and 

logic. 

However, neither Mazurkiewicz traces nor partial orders can model the "not later 

than" relationship. In 1995, comtraces (combined traces) were introduced by Janicki 

and Koutny as a formal language counterpart to finite stratified order structures. 

They show that each comtrace uniquely determines a finite stratified order structure, 

yet their work contains very little theory of comtraces. 

This thesis aims at enriching the tools and techniques for studying the theory of 

comtraces. 

Our first contribution is to introduce the notions of absorbing monoids, generalised 

comtrace monoids, partially commutative absorbing monoids, and absorbing monoids 

with compound generators, all of which are the generalisations of Mazurkiewicz trace 

and comtrace monoids. We also define and study the canonical representations of 

these monoids. 

Our second contribution is to define the notions of non-serialisable steps and 

utilise them to study the construction which Janicki and Koutny use to build stratified 

order structures from comtraces. Moreover, we show that any finite stratified order 

structure can be represented by a comtrace. 

Our third contribution is to study the relationship between generalised comtraces 

and generalised stratified order structures. We prove that each generalised comtrace 

uniquely determines a finite generalised stratified order structure. 
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Chapter 1 

Introduction 

Mazurkiewicz traces or partially commutative monoids [1, 24, 8] are quotient monoids 

over sequences (or words). The theory of traces has been utilised to tackle problems 

from quite diverse areas including combinatorics, graph theory, algebra, logic and 

especially concurrency theory [8]. 

As a language representation of partial orders, they can sufficiently model "true 

concurrency" in various aspects of concurrency theory. However, the basic monoid 

for Mazurkiewicz traces, whose elements are used in the equations that define the 

trace congruence, is just a free monoid of sequences. It is assumed that generators, 

i.e. elements of trace alphabet, have no visible internal structure, so they could 

be interpreted as just names, symbols, letters, etc. This is a limitation when the 

generators have some internal structure; for instance, when they are sets, their internal 

structure may be used to define the set of equations that generate the quotient monoid. 

In this paper, we assume that the monoid generators have some internal structure. We 

call such generators compound, and then use the properties of that internal structure 

to define an appropriate quotient congruence. 

Another limitation of Mazurkiewicz traces and their generated partial orders is 

that neither Mazurkiewicz traces nor partial orders can model the "not later than" 

relationship [13]. If an event a is performed "not later than" an event b, where 

the step {a, b} model the simultaneous performance of a and b, then this "not later 

than" relationship can be modelled by the following set of two step sequences x = 

{{a}{b}, {a, b}}. But the set x cannot be represented by any trace. The problem 

1 




2 1. Introduction 

is that the trace independency relation is symmetric, while the "not later than" 

relationship is not in general symmetric. 

To overcome those limitations the concept of a comtrace (combined trace) was 

introduced in [14]. Comtraces are finite sets of equivalent step sequences and the 

congruence is determined by a relation ser, which is called serialisability and in general 

is not symmetric. Monoid generators are 'steps', i.e. finite sets, so they have internal 

structure. The set union is used to define comtrace congruence. Comtraces provide a 

formal language counterpart to stratified order structures and were used to provide a 

semantic of Petri nets with inhibitor arcs. However, [14] contains very little theory of 

comtraces, only their relationship to stratified order structures has been considerably 

developed. 

Stratified order structures [9, 12, 14, 15] are triples (X,-<, c), where -< and C are 

binary relations on X. They were invented to model both "earlier than" (the relation 

-<) and "not later than" (the relation c) relationships, under the assumption that all 

system runs are modelled by stratified partial orders, i.e. step sequences. They have 

been successfully applied to model inhibitor and priority systems, asynchronous races, 

synthesis problems, etc. (see for example [14, 18, 20] and others). It was shown in [14] 

that each com trace defines a finite stratified order structure. However, the com traces 

are so far much less often used than stratified order structures, even though in many 

cases they appear to be more natural than stratified order structures. Perhaps this 

is due to the lack of sufficient theory development of quotient monoids different from 

that of Mazurkiewicz traces. 

Both comtraces and stratified order structures can adequately model concurrent 

histories only when the paradigm 1r3 of [13, 15] is satisfied. For the general case, we 

need generalised stratified order structures, introduced and analysed in [10]. Gener­

alised stratified order structures are triples (X,<>, c), where <> and C are binary 

relations on X modelling "earlier than or later than" and "not later than" relation­

ships respectively under the assumption that all system runs are modelled by strat­

ified partial orders. In this thesis, a sequence counterpart of generalised stratified 

order structures, called generalised comtraces, are introduced and their properties are 

discussed. 

It appears comtraces and generalised comtraces are special cases of two more 

general classes of quotient monoids, which we call absorbing monoids and partially 
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commutative absorb1:ng monoids respectively. For these classes of absorbing monoids, 

generators are still steps, i.e. sets. When sets are replaced by arbitrary compound 

generators (together with appropriate rules for the generating equations), a new 

model, called absorbing monoids with compound generators, is created. This model 

allows us to describe formally asymmetric synchrony. 

This thesis is the expansion and revision of our previous work in [17], where [17, 

Theorem 9.1], [17, Theorem 9.2], [17, Theorem 10.1] and some new major properties 

are fully proved and analysed. The content of the thesis is organised as following. 

In the next chapter, we review the basic concepts of order theory, which includes 

the important Szpilrajn Theorem [31], and monoids theory. Chapter 3 introduces 

equational monoids with compound generators and other types of monoids that are 

discussed in this thesis. In Chapter 4 the canonical representations of absorbing 

monoids, partially commutative absorbing monoids and absorbing monoids with com­

pound generators are defined and briefly analysed. In Chapter 5, we introduce some 

basic algebraic operations on step sequences and utilise them to prove some prop­

erties of comtrace congruence and to give a new version of the proof that canonical 

representation for comtraces is unique. Chapter 6 studies some basic properties of 

comtrace languages. Chapter 7 reviews different paradigms of concurrent histories 

and discuss how comtraces and generalised comtraces are classified with respect to 

these paradigms. Chapter 8 surveys some basic background on relational structures 

model of concurrency [9, 12, 14, 15, 10, 11] to prepare the readers for the chapters 

followed. In Chapter 9, we introduce the notions of non-serialisable steps to study 

the construction from com traces to finite stratified order structures by Janicki and 

Koutny in [14]; we then prove that any finite stratified order structure can be rep­

resented by a comtrace. In Chapter 10, analogous to the notion of 0-closure which 

Janicki and Koutny used to construct stratified order structures from comtraces, we 

define the notion of commutative closure and utilise it to construct generalised strat­

ified order structures from comtraces; we prove that each generalised comtrace can 

be represented by a finite generalised stratified order structure. Chapter 11 contains 

some final discussion and comments on our future works. 



Chapter 2 

Background 

2.1 Orders 

In this section, we survey some standard order-theoretic definitions and results which 

are used intensively in this thesis. 

2.1.1 Equivalence Relation 

Let X be a set and I is an index set. The family of sets { Ai I i E I} is called a 

partition of X if and only if 

1. Ai -=} 0 for all i, 

2. Ai n Ai = 0 for all i-=} j, and 

3. x = uiEI Ai. 

We can observe that {{x} I x E X} (the set of all possible singletons of X) is the 

finest partition possible of the set X. 

An equivalence relation R on a set X is reflexive, symmetric and transitive binary 

relation on X. In other words, the following must hold for all a, b, c E X: 

1. a R a, (reflexive) 

2. a R b =? b R a, (symmetric) 

4 




5 2. Background 

3. 	 a R b Rc =? a R c. (transitive) 

For every x E X, the set [x]R = {y I y R x 1\ y E X} is the equivalence class of 

x with respect to R. We drop the subscript and write [x] to denote the equivalence 

class of x when R is clear from the context. The set X equipped with an equivalence 

relation R is called a setoid. 

Proposition 2.1. Let R ~X x X be an equivalence relation on X. If a, bE X, the 

following are equivalent: 

1. 	 aRb 

2. 	 [a] = [b] 

3. 	 [a] n [b] # 0 

Proof. • (1)=?(2): Assume that aRb, since it also implies bRa (by symmetry), 

it suffices to show [a] ~ [b]. For any c E [a] = {x I x Ra 1\ x E X}, it follows 

that c R a. Since aRb, we have c R b (by transitivity). Hence, 

c E [b] ={xI xRbl\x EX}. 

• 	 (2)=?(3): Since [a] = [b], it follows that a E [a] n [b]. Hence, [a] n (b] # 0. 

• 	 (3)=?(1): Since [a] n [b] # 0, there exist some c E [a] n [b]. Since c E [a] and 

c E [b], we have c R a and c R b. By reflexivity we have aRc and by transitivity 

we have a R b as desired. 

D 

Corollary 2.1. If R is an equivalence relation on X and a, bE X, then 

(a, b) ~ R ~ [a] n (b] = 0 

Proof. From Proposition 2.1, we already have 

(a, b) E R ~ [a] n [b] # 0. 
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This is logically equivalent to 

(a, b) rf_ R ~ [a] n [b] = 0. 

0 

For every equivalence relation R ~ X x X, we define X/R df {[a]R I a E X}. 

Clearly X/R is the set of all equivalence classes of Ron X. 

Proposition 2.2. For every equivalence relation R ~X x X, X/R is a partition of 

the set X. 

Proof. From Corollary 2.1 we already know any two distinct equivalence classes are 

disjoint. It suffices to show X= UAEX/R A. But UAEX/R A~ X since A~ X for any 

A E XjR. It remains to show X~ UAEX/RA. But for any x EX, [x] EX/Rand 

hence x E UAEX/R A. 0 

2.1.2 Partial Order 

Let X be a set. A binary relation -< ~ X x X is a (strict) partial order if it is 

irrefiexive and transitive, i.e. for all a, b, c E X, we have: 

1. •(a-< a), (irrefiexive) 

2. a -< b -< c =} a -< c. (transitive) 

The pair (X,-<) in this case is called a partially ordered set (also called a poset), i.e. 

the set X is partially ordered by the relation -<. The pair (X,-<) is called a finite 

partially ordered set (also called a finite poset) if X is finite. 

Given a poset (X,-<), we define the binary relation ~-<~ X x X in a pointfree 

manner as follows: 

In other words, for all a, b E X, a ~-< b if and only if •(a -< b) 1\ •(b -< a), that is 

if and only if a and b are either distinct incomparable with respect to (w.r.t.) -< or 

identical elements of X. 
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Let idx denote the identity relation on X, i.e. idx = {(x, x)ix E X}. We then 

define the distinct incomparability relation as following 

df \....-...-< = ~-< 1,'dX· 

Proposition 2.3. For any poset (X,-<), ~-<=....-...-< U idx. 


Proof. Since~-< df (X x X)\ (-< U -<-1) and idx rl:_ -<, we have idx ~ ~-<· Hence, 


....-...-< U idx = (~-< \ idx) U idx = ~-<. 

D 

For our convenience, from a poset (X,-<) we also define the following binary 

relations-<~~ X x X and ::S~ X x X as 

-<~ df -< u ......... -< 


_J df 'd _, =-<U1-x 

Intuitively, a -<~ b means a is "less than" or incomparable to b and a ::S b means 

a is "less than" or equal to b. 

If the relation ,....__-< of a poset (X,-<) is empty, then the partial order -< is called a 

total (or linear) order, and the pair (X,-<) is called a totally ordered set. 

A binary relation -<~X x X is a stratified (or weak) order if and only if (X,-<) is 

a poset and ~-< is an equivalence relation. 

Proposition 2.4. For any poset (X,-<) the following are equivalent: 

1. ~-< is an equivalence relation 

2. for all x, y, z EX, if (x ....-...-< y 1\ y ....-...-< z) then (x ....-...-< z V x = z) 

Proof. • (1)=>(2): Assume that ~-< is an equivalence relation and x ....-...-< y and 

y ....-...-< z, we want to show that x ....-... z or x = z. Since ...-...-<c~-<, it follows that 

x ~-< y andy~-< z. By the transitivity of the equivalence relation~-<, we have 

x ~-< z. By Proposition 2.3 we have ~-<=....-...-< U idx, so it follows that x ....-... z 

or x = z as desired. 
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• 	 (2)::::?(1): Assume that for all x, y, z EX, if x .....--..-< y andy.....--..-< z then x .....--..-< z 

or x = z. We want to show~-< is indeed an equivalence relation. 

- Reflexivity: Since idx ~ ~-<, the relation ~-< is reflexive 

- Symmetry: If a~-< b, then •(a -< b) 1\ •(b-< a). But this implies b ~-< a. 

Hence, the relation ~-< is symmetric. 

- Transitivity: Assume a ~-< b and b ~-< c, we want to show a ~-< c. Since 

~-<=.....--..~ U idx, there are three possible cases. 

* If a .....--..~ b and b = c, then a .....--..~ c. Hence, a ~~ c. 

* 	If a = b and b .....--..~ c, again we have a ~-< c. 

* 	If a .....--..-< b and b .....--..~ c, it follows that a .....--..~ c or a = c. Hence, a ~~ c. 

As a result of Proposition 2.4, we can alternatively define that a binary relation 

-< ~ X x X is a stratified order if and only if for all x, y, z E X, 

(x .....--..~ y 1\ y .....--..~ z) ::::? (x .....--..~ z V x = z). 

If (X,-<) is a poset and A is a nonempty subset of X, and a EX, then: 

• 	 a is a maximal element of A if a EX and Vx EA. •a-< x. 

• 	 a is a minimal element of A if a E X and Vx E A. •X -< a. 

• 	 a is the greatest element of A if a E A and Vx EA. x ~a. 

• 	 a is the least element of A if a E A and Vx EA. a~ x. 

• 	 a is an upper bound of A if Vx E A. x ~ a. 

• 	 a is a lower bound of A if and only if Vx EA. a~ x. 

• 	 a is the least upper bound (also called supremum) of A, denoted sup(A), if 

- x ~ a for all x E A, 


- for all b E X if b is an upper bound then a ~ b. 


0 
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• a is the greatest lower bound (also called infimum) of A, denoted inf(A), if 

-	 a ~ x for all x E A, 

-	 for all b E X if b is a lower bound then b ~ a. 

• 	 a set A is called a chain if and only if (A, ~IAxA) is a totally ordered set where 

R IBxc df Rn (B x C). 

The greatest element, the least element, upper bound, lower bound, supremum and 

infimum might fail to exist. Note that if X is totally ordered by ~' then a maximal 

element of X is its greatest element (similarly for a minimal element). 

2.1.3 Szpilrajn Theorem 

Let ~ 1 and -<2 be partial orders on a set X. The partial order ~2 is is defined to 

be an extension of ~ 1 if and only if ~ 1~~2 . The goal of this subsection is to review 

the Szpilrajn Theorem [31], which is fundamental in the foundation of concurrency 

theory. Since the original paper is in French, we provide a version of the proof to 

make the theorem more accessible and the thesis self-contained. Furthermore, the 

results in Chapter 9 and Chapter 10 are motivated by the Szpilrajn Theorem and its 

proof. But before doing so, we need some preliminary results. 

Lemma 2.1. Let (X,-<) be a poset, a, b E X such that a ,......,.~ b. The relation ~a,b 

defined as 

x ~a,b y ~ (x-< y V (x ~a 1\ b ~ y)) 

is a partial order on X satisfying 

1. 	 a ~a,b b 

2. 	 ~a,b is an extension of~' i.e. ~ C ~a,b 

Proof. Firstly, we have to show ~a,b is indeed a partial order. 

• 	 Irrefiexivity: for any element x E X, we want to show -.(x -<a,b x). Since ~ 

is irrefiexive, we have -.(x ~ x). It remains to show that -.(x ~ a 1\ b ~ x). 

Suppose for a contradiction that (x ~a 1\ b ~ x). Since ~ is transitive (and so 

is ~), it follows that a= b, but this contradicts that a,......,.~ b. 
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• 	 Transitivity: for any three elements x, y, z E X such that x -<a,b y -<a,b z, we 

want to show x -<a,b z. By the definition of -<a,b, there are three possible cases 

to consider: 

- If x-< y and (y ~a 1\ b ~ z): Since x-< y andy-< a, it follows that x ~a. 

So (x ~ a 1\ b ~ z). 

-If (x ~ al\b ~ y) andy-< z: Since b-< y andy~ z, it follows that b ~ z. 

So ( x ~ a 1\ b ~ z). 

- If (x ~ a 1\ b ~ y) and (y ~ a 1\ b ~ z): Since b ~ y and y -< a, by 

transitivity of ~ we have b ~ a. But this contradicts that a ,......._-< b. 

Secondly, we have to verify that a -<a,b b, which follows from that (a ~ a 1\ b ~ b). 

Finally, we want to show -< C -<a,b but this follows from the definition of -<a,b· 0 

Lemma 2.1 says that for any partial order (X,-<) if there exists a pair of distinct 

incomparable elements a, b then we can add suitable pairs of elements into the 

relation -< (extends the relation -<) to build a relation -<a,b such that a -<a,b b, i.e. a 

is comparable to b. 

Although we are only interested in the case of finite sets, Szpilrajn Theorem is 

proved for the general case of arbitrary posets (X,-<), where X can be infinite. As a 

result, the proof of Szpilrajn Theorem requires the Axiom of Choice (cf. [30, 21, 3]). 
For the sake of completion we include an equivalent form of the Axiom of Choice called 

the Kuratowski-Zorn Lemma. Since the proof of the Kuratowski-Zorn Lemma requires 

introducing prerequisite background on axiomatic set theory up to the concepts of 

ordinal number and transfinite recursion (cf. [30, 21]), we state the result with only 

an informal proof sketch. This proof sketch follows the idea of a very short and 

elegant proof given in [32]. 

Kuratowski-Zorn Lemma. Every partially ordered set (X,-<) in which every chain 

C ~ X has an upper bound contains at least one maximal element. 

Proof. Suppose for a contradiction that the lemma were false. Then there exists a 

poset (X,-<) such that every totally ordered subset has an upper bound, and every 

element x E X has an element y E X such that y > x. For every chain C ~ X 
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we pick an upper bound g(C) fj. C, because C has at least one upper bound, and 

that upper bound has a greater element. However, to actually define the function 

g : f/J X -t X, we need the Axiom of Choice to magically "pick the right elements" 

from the arbitrary large set X. 

Using the function g, starting from an arbitrary element a0 EX, we are going to 

define a sequence of elements a0 < a1 < a2 < a3 < ... in X using transfinite recursion 

by defining ai = g( {ai I j < i} ). We know that every pair of element ai and ai are 

distinct, otherwise we have a cycle which contradicts that (X,-<) is a partial order. 

This sequence is really long: the indices are not just the natural numbers, but 

all ordinals. In other words, we can define an injective map from all the ordinals 

into X. Since there is no set with the "size" of all ordinals, we have the desired 

contradiction. 0 

Note that we do not need the Axiom of Choice for this proof of the Kuratowski­

Zorn Lemma when X is finite. The proof of the Kuratowski-Zorn Lemma for the 

finite case follows. 

Proposition 2.5. Every finite partially ordered set (X,-<) in which every chain C ~ 

X has an upper bound contains at least one maximal element. 

Proof. We proceed similarly to the previous proof by assuming the proposition were 

false. Then there exists a finite poset (X,-<) such that every chain C ~ X has an 

upper bound, and every element has a greater one. For every chain C ~X we find 

an upper bound g(C) fj. C, and this process is exhaustive because we only search 

through the finite search space X. 

Using the function g, starting from an arbitrary element ao E X, we build a 

sequence of distinct elements a0 < a1 < a2 < a3 < ... in X recursively by defining 

ai = g({ai I j < i}). Since X is finite, there is some natural number m such that 

lXI = m. Suppose for some ak where k < m- 1, we cannot find any element in X 

greater than ak, then we have the desired contradiction. Otherwise, considering the 

element am-1, by the assumption, there exist some y E X such that am_1 < y. But 

y can only be one of the a0 , ••• , am_2 , which implies y = ai < ... < am-1 < ai = y. 

This contradicts that (X,-<) is a poset. D 

We now provide a proof of Szpilrajn Theorem using Lemma 2.1 and Kuratowski­

Zorn Lemma. 
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Szpilrajn Theorem ([31]). For every poset (X,-<) there exists a totally ordered set 

(X, T) such that-<~ T. 

Proof. Let us define 

7 ={TIT is a partial order on X and -< ~ T}. 

Since-< ~ -<,we know 7 =10. Consider (7, c). Clearly (7, c) is a poset. Let C ~ 7 

be a chain, i.e. for each Ti, 72 E C, Ti C 72 or 72 C Ti or Ti = 72. Define the binary 

relation Tc on X as 
Tc df uT. 

TEC 

We want to show Tc is a partial order. Clearly Tc is irrefl.exive since each Tin C 

is irrefl.exive. We need to show transitivity. Assume x Tc y Tc z, we want to show 

x Tc z. But it follows that there exist Ti, 72 E C such that x Ti y andy 72 z. There 

are three cases to consider: 

• 	Ti = 72: This means x Ti y andy Ti z. Hence, x Tc z by transitivity of Ti. 

• 	Ti C 72: This means This means x 72 y and y 72 z. Hence, x Tc z by 

transitivity of Ti. 

• 	Ti C 72: We have x Tc z by transitivity of Ti. 

Hence, the relation Tc is a partial order. By the definition, \IT E C. T ~ Tc, so Tc 

is an upper bound of the chain C. 

We want to show that there exist some element T-< E 7 such that T-< is the maximal 

element of 7. From Kuratowski-Zorn Lemma, we can now deduce that there exists 

T-< such that T-< is a maximal element of 7 and -< ~ T-<. 
We want to show that T-< is total. Suppose for a contradiction that T-< is not 

total, i.e. there are some pair of element a, b such that a ,..-..,T-< b. We can then using 

Lemma 2.1 to construct T-<a,b" Clearly since -< ~ T-< ~ T-<a,b' -< ~ T-<a,b" Hence, 

T-<a,b E 7 and T-< ~ T-<a,b, which is a contradiction since T-< is maximal. Hence, 

(X, T-<) is a totally ordered set extending the partial order -< as desired. D 

A total order T which extends the partial order -< on X is called a total (linear) 

order extension of -<. A corollary of Szpilrajn Theorem is that every partial order 
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is uniquely determined by the intersection of all of its total order extensions. In 

other words, a partial order is completely defined by the set of all of its total order 

extensions. 

Lemma 2.2. Let I be an index set and each (X, ~i) be a poset. Then (X,~) where 

df n~ = ~i 

iEI 

is also a poset. 

Proof. We want to check: 

• Irreflexivity: 	 Assume for a contradiction that there exists x E X such that 

X ~ x. Since ~ = niEI ~i' we have X ~i x. But this contradicts that each ~i 

is a partial order. 

• Transitivity: Suppose x ~ y ~ z for some x, y, z E Z, we want to show x ~ z. 

Since it follows that (x, y), (y, z) E niEI ~i' we have 

Vi E /. ((x, y) E~i 1\ (y, z) E~i)· 

Hence, by transitivity of ~i, 

ViE/. (x, z) E~i . 

Thus, (x, z) E niEI ~i, which means X~ z. 

Hence, the relation ~ is a partial order on X. D 

Let (X,~) be a poset, we define 

Totalx (~) df { T I (X, T) is a totally ordered set and ~ ~ T}. 

Corollary 2.2. For every poset (X,~), 

~= T.n 
TETotalx(-<) 
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Proof. The corollary is correctly formulated, i.e. nTETotalx(-<) T is well-defined, be­

cause it follows from Szpilrajn Theorem that Totalx( -<.) =j:. 0. 
(~) Since every T E Totalx( -<.) satisfies -<.~ T, it follows that 

n T. 
TETotalx(-<) 

(:2) Suppose for a contradiction that nTETotalx(-<) T ~-<.. Then there is some pair 

(x, y) satisfying (x, y) E T for all T E Totalx( -<.) but (x, y) ~-<.. Hence, either y -<. x 

or x ,......,.-< y. 

• 	If y -<. x: For any T E Totalx( -<.), since -<.~ T, it follows that (x, y) E T and 

(y, x) E T. This contradicts that Tis a total order. 

• 	 If x ,......,.-< y: We observe that by Lemma 2.1, we can build the extension -<.y,x of 

the partial order -<. where (y, x) E-<.y,x· We then apply the Szpilrajn Theorem 

for (X, -<y,x) to get a total extension Tu,x of -<.y,x, where (y, x) E Ty,x· 

But since -<. ~ -<.y,x, it follows that Ty,x is also a total extension of -<.. Hence, 

Ty,x E Totalx( -<.). Since we assume that (x, y) E T for all T E Totalx( -<.), it 

follows that (x, y) E Tu,x and (y, x) E Ty,x, which contradicts that Ty,x is a total 

order. 

Thus, we conclude -<. = nTETotalx(-<) T as desired. 	 D 

2.2 Monoids 

A triple (X,o, n.), where X is a set, o is a total binary operation on X, and]. EX, 

is called a monoid, if (a o b) o c =a o (b o c) and a o]. =]. o a= a, for all a, b, c EX. 

An equivalence relation rv ~X x X is a congruence in the monoid (X, o, li) if 
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The triple (X/""', o, [li]), where [a]o[b] = [a o b], is called the quotient monoid of 

(X, o, 1) under the congruence""'· The mapping¢: X---+ X/,.._, defined as ¢(a) = [a] 
is called the natural homomorphism generated by the congruence,.._, (for more details 

see for example [2]). The symbols o and oare often omitted if this does not lead to 

any discrepancy. 

2.3 Sequences and Step Sequences 

By an alphabet we shall understand any finite set. For an alphabet I::, I::* denotes the 

set of all finite sequences of elements (words) of I::, A denotes the empty sequence, and 

any subset of I::* is called a language. In the scope of this thesis, we only deal with 

finite sequences. Let ·denote the sequence concatenation operator (usually omitted). 

Since the sequence concatenation operator is associative, the triple (I::*, ·,.A) is a 

monoid (of sequences). 

For each set X, let .9(X) denote the set of all subsets of X, i.e. 

&f?J(X) df {Y I y ~X}. 

We also let &i(X) denote the set of all non-empty subsets of X, i.e. 

&i(X) df &f?J(X) \ {0}. 

Let f : A---+ B be a function and Cis a set, then we let f[C] denote the range of 

the restriction of the function f to the set C, i.e. 

f[C] df {f(a) Ia E C}. 

Consider an alphabet § ~ &i(X) for some finite X. The elements of § are 

called steps and the elements of §* are called step sequences. For example if 

§ = {{a}, {a, b}, {c}, {a, b, c}} then {a, b}{c}{a, b, c} E §* is a step sequence. 

The triple (§*, •, .A), where • is the step sequence concatenation operator (usually 

omitted), is a monoid (of step sequences), since the step sequence operator is also 

associative. 
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Let t = A1 ... Ak be a step sequence. We can uniquely construct its event­

enumerated step sequence t as 
- df- ­
t = A1 .. .Ak 

where 

and 
Ai df { e(#evente(Al···Ai-1)+1) : e E Ai}. 

We will call such a= e(i) E Ai an event occurrence of e. For each event occurrence 

a = e(i), let l(a) denote the label of a, i.e. l(a) = l(e(i)) = e. Then from an 

event-enumerated step sequence t = A1 ... Ak, we can also uniquely construct its 

corresponding step sequence 

t = l(A1] . .. l[Ak]· 

For instance if u = {a, b}{b, c}{c, a}{a}, then 

k ­Let :Eu = Ui=l Ai denote the set of all event occurrences in all steps of u. For 

example, when u ={a, b}{b, c}{c, a}{a}, 

For each a E :Eu, let posu(a) denote the consecutive number of a step where a 

belongs, i.e. if a E Aj then posu(a) = j. For our example example posu(a(2
)) = 3, 

posu(b(2)) = 2, etc. 

Given a step sequence u, we define a stratified order <Ju on :Eu by: 

And we define a relation ~u on :Eu by: 


a ~u {3 {=:::} posu (a) = posu ([3). 
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Obviously, we have <1;7 = <luU ~u and <1; = <luU ,....._u· We can also define <1;7 and 

<I; explicitly as follows: 

a <I~ (3 {:::=:} posu (a) :::; posu((3) 


a <I: (3 {:::=:} a# (3 1\ posu(a) :::; posu(f3) 


Proposition 2.6. Given a step sequence u = B1 ... En, the relation ~u is an equiv­

alence relation on Eu. 

Proof. Since a ~u J3 {:::=:} posu(a) = posu(f3), it follows that a, (3 E Bi for some 

1 :::; i :::; n. Hence, ~u is an equivalence relation defined based on the partitions 

B1, ... , En of Eu 0 

Conversely, let <I be a stratified order on a set :E. The set :E can be represented 

as a sequence of equivalence classes n<J = B1 ... Bk (k ~ 0) such that 

<I= U(Bi x Bj) and 
i<j 

The sequence n<J is exactly the event-enumerated step sequence which represents <I. 

The correctness of the existence of n<J is shown the in following proposition. 

Proposition 2. 7. If <I is a stratified order on a set :E and A, B are two distinct 

equivalence classes of ~<J, then either Ax B ~ <I orB x A~ <I. 

Proof. Since both A and B are non-empty equivalence classes of ~<J, we pick a E A 

and b E B. Clearly, a <I b or b <I a, otherwise a ,....._<J b which contradicts that a,b are 

elements from two distinct equivalence classes. There are two cases: 

1. 	 If a <I b: we want to show Ax B ~ <I. Let c E A and dEB, it suffices to show 

c <I d. Assume for contradiction that •(c <I d). Since c 'f.<J d, it follows that 

d <I c. There are three different subcases: 

(a) If a= c, then d <I a and a <I b. Hence, d <I b. This contradicts that d, bE B. 

(b) If b = d, then b<I c and a <I b. Hence, a <I c. This contradicts that a, c E A. 

(c) If a # c and b =f d, then a ,....._<J c and b ,....._<J d and •(a ,....._<J d) and 

•(c ,....._<J b). Since •(a ,....._<J d), either a <I d or d <I a. 
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• If a <l d: since d <l c, it follows a <l c. This contradicts a ,.-.,.<l c. 

• If d <l a: since a <l b, it follows d <l b. This contradicts d ,.-.,.<l b. 

Therefore, we conclude Ax B ~ <J. 

2. 	 If b <l a: using a symmetric argument, it follows that B x A~ <J. 

D 

The idea of Proposition 2.7 is that if we define a relation <J on the set of equivalence 

classes {BI, ... , Bn} of ~<l such that 

then <J is a total order on {BI, ... , Bn}· Hence, Proposition 2.7 is fundamental for 

understanding the equivalence of stratified partial orders and step sequences. 

Since total order is a special case of stratified order (equivalence classes of ~<l 

are singletons), each sequence can be interpreted as a total order, and each finite 

total order can be represented by a sequence. Observe that each 8 = XI ... Xn can 

be seen as the step sequence 8
1 = {xi} ... {xn}· Hence, if 8 1 = {ai} ... {an} is the 

event-enumerated step sequence of 8 
1

, then we can define the enumerated sequence of 

8 to be the sequence 8 = ai ... an. We let :E8 = :E8 ,, <l 8 = <ls' and ,.-.,.s=,.-.,.s'· Since 

,.--.. 8 = 0, it follows that (:E8 , <ls) is a totally ordered set representing the sequence 

8. Conversely, given a finite totally ordered set (:E, <l) (assume :E is a set of event 

occurrences), we let n<l = {aI} ... {an}. Then we apply the label function l to get a 

sequence 8<l = l(ai) .. . l(an), which represents the totally ordered set (:E, <l). 



Chapter 3 

Equational Monoids with 

Compound Generators 

3.1 Equational Monoids and Mazurkiewicz Traces 

Let M = (X, o, ]_)be a monoid and let 

EQ = { Xi = Yi Ii = 1, ... , n } 

be a finite set of eq'uations. Define =EQ (or just _) to be the least congruence on M 

satisfying, xi = Yi ===? Xi -EQ Yi, for each equation Xi = Yi E EQ. We call the 

relation =EQ as the congruence defined by EQ, or EQ-congruence. 

The quotient monoid M==sq = (X/=EQ, a,[].]), where [x]o[y] = [x o y], is called 

an equational monoid (see for example [26]). 

The following folklore result shows that the relation -EQ can also be uniquely 

defined in an explicit way. 

Proposition 3.1. For equational monoids, the EQ-congruence - is the reflexive 

symmetric transitive closure of the relation~, i.e. - (~ U ~-1 )*, where~ ~ 

X x X, and 

19 
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Proof. Define ~ = ~ U ~-I. Clearly (~)* is an equivalence relation. Let XI _ 

YI and x2 - Y2· This means xi(~)kYI and x2 (~) 1y2 for some k, l 2:: 0. Hence, 

XI ox2 (~)k YI ox2 (~) 1 YI oy2, i.e., XI ox2 YI oy2. Thus, -is a congruence. Let r-..J 

be a congruence that satisfies ( u = w) E EQ ==? u r-..J w for each u = w from EQ. 

Clearly x~y ==? x r-..J y. Hence, x = y {=:::::? x(~)my ==? x r-..Jm y::::} x r-..J y. Thus, 

=is the least. D 

Definition 3.1 ([8, 25]). Let M = (E*, o, A) be a free monoid generated by E, the 

relation ind s;;:; E x E be an irrefl.exive and symmetric relation (called independency 

or commutation), and 

EQ df {ab = ba I (a, b) E ind}. 

Let =ind' called trace congruence, be the congruence defined by EQ. Then the equa­

tional monoid M=.ind = (E* / =ind, o, [A]) is a free partially commutative monoid or 

monoid of Mazurkiewicz traces. The pair (E, ind) is called a concurrent alphabet (or 

trace alphabet). 

We will omit the subscript ind from trace congruence and write if it causes no 

ambiguity. 

Example 3.1. Let E = {a, b, c}, ind = {(b, c), (c, b)}, i.e. EQ = { be = cb }. 

For example abcbca accbba (since abcbca ~ acbbca ~ acbcba ~ accbba), ti = 

[abc]= {abc,acb}, t2 = [bca] = {bca,cba} and t3 = [abcbca] = {abcbca,abccba,acbbca, 

acbcba, abbcca, accbba} are Mazurkiewicz traces. Also t3 = ti ot2 (as [abcbca] = 

[abc]o[bca]). 

For more details on Mazurkiewicz traces, the reader is referred to [8, 25]. For the 

equational representations of Mazurkiewicz traces, the reader is referred to [26]. 

3.2 Absorbing Monoids and Comtraces 

The standard definition of a free monoid (E*, o, A) assumes the elements of E 

have no internal structure (or their internal structure does not affect any monoidal 

properties), and they are often called 'letters', 'symbols', 'names', etc. When we 

assume the elements of E have some internal structure, for instance that they are 
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sets, this internal structure may be used when defining the set of equations EQ. 

..-.... 
Let E be a finite set and§~ f!lJ(E) be a non-empty set of non-empty subsets of 

E satisfying UAE§ A = E. The free monoid (§*, o, A) is called a free monoid of step 

sequences over E, with the elements of § called steps and the elements of §* called 

step sequences. We assume additionally that the set § is subset closed, i.e. for all 

A E §, g(A) ~ §. 

Definition 3.2. Let EQ be the following set of equations: 

where Ai, Bi, Ci E §, Ci = Ai UBi, Ai n Bi = 0, fori= 1, ... ,n, and let =abs be the 

congruence defined by EQ. The equational monoid (§* /=abs, o, [A]) will be called an 

absorbing monoid over step sequences. 

We will omit the subscript abs from the absorbing monoid congruence and write 

- if it causes no ambiguity. 

Example 3.2. Let E = {a,b,c}, § = {{a,b,c},{a,b},{b,c},{a,c},{a},{b},{c}}, 

and EQ be the following set of equations: 

{a, b, c} ={a, b}{c} and {a, b, c} = {a}{b, c}. 

In this case, for example, {a, b}{c}{a}{b, c} = {a}{b, c}{a, b}{c} (as we have 

{a,b}{c}{a}{b,c} ~ {a,b,c}{a}{b,c} ~ {a,b,c}{a,b,c} ~ {a}{b,c}{a,b,c} ~ 

{a}{b,c}{a,b}{c}), x = [{a,b,c}] andy= [{a,b}{c}{a}{b,c}] belong to§*/=, and 

x= {{a,b,c}, {a,b}{c},{a}{b,c}} 

y = {{a,b,c}{a,b,c},{a,b,c}{a,b}{c},{a,b,c}{a}{b,c},{a,b}{c}{a,b,c}, 

{a,b}{c}{a,b}{c},{a,b}{c}{a}{b,c},{a}{b,c}{a,b,c}, 

{a}{b,c}{a,b}{c},{a}{b,c}{a}{b,c}} 

Note that y = xox as {a,b}{c}{a}{b,c} = {a,b,c}{a,b,c}. 

Comtraces (combined traces), introduced in [14] as an extension of Mazurkiewicz 

traces to distinguish between "earlier than" and "not later than" phenomena, are a 

special case of absorbing monoids of step sequences. The equations EQ are in this 

case defined implicitly via two relations simultaneity and serialisability. 
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Definition 3.3. ([14]) Let E be a finite set (of events) and let ser ~ sim c Ex E 

be two relations called serialisability and simultaneity respectively and the relation 

sim is irrefiexive and symmetric. Then the triple (E, sim, ser) is called the comtrace 

alphabet. 

Intuitively, if (a, b) E sim then a and b can occur simultaneously (or be a part 

of a synchronous occurrence in the sense of [18]), while (a, b) E ser means that a 

and b may occur simultaneously and a may occur before b (and both happenings are 

equivalent). We define §, the set of all (potential) steps, as the set of all cliques of 

the graph (E, sim), i.e. 

§ '!!_ {AIA#0A(Va,bEA.a=bV(a,b)Esim)}. 

Definition 3.4. Let (E, sim, ser) be a comtrace alphabet and =ser, called comtrace 

congruence, be the EQ-congruence defined by the set of equations 

EQ df {A= BC I A= B U C E § 1\ B x C ~ ser}. 

Then the absorbing monoid (§* / =ser, o, [>.]) is called a monoid of comtraces over 

(E, sim, ser). 

In Definition 3.4, since ser is irrefiexive, it follows that for each (A = BC) E EQ 

we have B n C = 0. Hence, each comtrace monoid is an absorbing monoid. 

By Proposition 3.1, the comtrace congruence relation can also be defined explicitly 

in non-equational form as follows. 

Definition 3.5 ([14]). Let () = (E, sim, ser) be a comtrace alphabet and let §* the 

set of all step sequences defined on B. Let ~ser ~ §* x §* be the relation comprising 

all pairs (t, u) of step sequences such that t = wAz and u = wBCz where w, z E §* 

and A, B, Care steps satisfying B U C = A and B x C ~ ser. Then we define 
df ( -1 )* . . h fi . . t 't' 1 fser = ~ser U ~ser , l.e. =ser lS t e re eXlVe symmetriC ransl lYe COSUre 0 ~ser· 

We will omit the subscript ser from comtrace congruence and ~ser' and only write 

= and ~ if it causes no ambiguity. 
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Example 3.3. Let E = {a, b, c} where a, b and c are three atomic operations defined 

as follows (we assume simultaneous reading is allowed): 

a : y +- X+ y, b : X +- y + 2, C : y +- y + 1. 

Only b and c can be performed simultaneously, and the simultaneous execution of 

b and c gives the same outcome as executing b followed by c. We can then define 

sim = {(b,c),(c,b)} and ser = {(b,c)}, and we have§= {{a},{b},{c},{b,c}}, 

EQ = {{b,c} = {b}{c}}. For example, x = [{a}{b,c}] = {{a}{b,c},{a}{b}{c}} is a 

comtrace. Note that {a}{c}{b} ¢:. x. 

Even though Mazurkiewicz traces are quotient monoids over sequences and com­

traces are quotient monoids over step sequences (and the fact that steps are sets is used 

in the definition of quotient congruence), Mazurkiewicz traces can be regarded as a 

special case of comtraces. In principle, each trace commutativity equation ab = ba cor­

responds to two com trace absorbing equations {a, b} = {a}{b} and {a, b} = {b}{a}. 

This relationship can formally be formulated as follows. 

Proposition 3.2. If ser = sim then for each comtrace t E §*I =ser there is a step 

sequence x = {a1} ... {ak} E §*, where ai E E, i = 1, ... , k such that t = [x]. 

Proof. Let t = [A1... Am], where Ai E §, i = 1, ... , m. Hence t = [A1] ... [Am]· Let 

Ai = {ai, ... ,a~J. Since ser = sim, we have [Ai] = [{ai}] ... [{a~J], fori= 1, ... , m, 
which ends the proof. D 

This means that if ser = sim, then each comtrace t E §*I =ser can be represented 

by a Mazurkiewicz trace [a1 ... ak] E E* I -ind, where ind = ser and {a1} ... {ak} is a 

step sequence such that t = [{a1} ... {ak}]. Proposition 3.2 guarantees the existence 

of a1 ... ak. 

While every comtrace monoid is an absorbing monoid, not every absorbing 

monoid can be defined as a comtrace. For example the absorbing monoid analysed 

in Example 3.2 cannot be represented by any comtrace monoid. 

It appears the concept of the comtrace can be very useful to formally define the 

concept of synchrony (in the sense of [18]). In principle the events are synchronous if 
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they can be executed in one step { a1 , ... , ak} but this execution cannot be modelled 

by any sequence of proper subsets of { a1, ... , ak}. In general 'synchrony' is not 

necessarily 'simultaneity' as it does not include the concept of time [5]. It appears 

however the mathematics used to deal with synchrony is very close to that to deal 

with simultaneity. 

Definition 3.6. Let (E, sim, ser) be a given comtrace alphabet. We define the 

relations ind, syn and the set Ssyn as follows: 

• ind ~Ex E, called independency, and defined as ind = ser n ser-1
, 

• syn ~ E x E, called synchrony, and defined as: 

(a, b) E syn {::::::::? (a, b) E sim 1\ (a, b) ¢:. ser U ser-1
, 

• Ssyn ~ §, called synchronous steps, and defined as: 

A E Ssyn {::::::::? A=/:- 01\ (Va, bE A. (a, b) E syn). 

If (a, b) E ind then a and b are independent, i.e. they may be executed either 

simultaneously, or a followed by b, or b followed by a, with exactly the same result. 

If (a, b) E syn then a and b are synchronous, which means they might be executed 

in one step, either {a, b} or as a part of bigger step, but such an execution is not 

equivalent to either a followed by b, or b followed by a. In principle, the relation syn 

is a counterpart of 'synchrony' as understood in [18]. If A E §syn then the set of 

events A can be executed as one step, but it cannot be simulated by any sequence of 

its subsets. 

Example 3.4. Let E = {a, b, c, d, e}, sim = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)}, 

and ser ={(a, b), (b, a), (a, c)}. Hence, 

§= {{a,b},{a,c},{a,d},{a},{b},{c},{e}} 
ind ={(a, b), (b, a)} 

syn ={(a, d), (d, a)} 

Ssyn = {{a, d}} 
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Since {a, d} E §syn the step {a, d} cannot be split. For example the comtraces XI = 

[{a, b}{c}{a}], x2 = [{e }{a, d}{a, c}], and x3 = [{a, b}{c}{a}{e }{a, d}{ a, c}] are the 

following sets of step sequences: 

XI= {{a,b}{c}{a},{a}{b}{c}{a},{b}{a}{c}{a},{b}{a,c}{a}} 

x2 = {{e}{a,d}{a,c},{e}{a,d}{a}{c}} 

x3 = {{a,b}{c}{a}{e}{a,d}{a,c},{a}{b}{c}{a}{e}{a,d}{a,c}, 

{b}{a}{c}{a}{e}{a,d}{a,c},{b}{a,c}{a}{e}{a,d}{a,c}, 

{a,b}{c}{a}{e}{a,d}{a}{c},{a}{b}{c}{a}{e}{a,d}{a}{c}, 

{b}{a}{c}{a}{e}{a,d}{a}{c},{b}{a,c}{a}{e}{a,d}{a}{c}} 

Notice that we have {a, c} -ser {a}{c} =l=ser {c}{a}, since (c,a) ~ ser. We also 

have X3 = XI ox2· D 

3.3 	 Partially Commutative Absorbing Monoids 

and Generalised Comtraces 

There are reasonable concurrent histories that cannot be modelled by any absorbing 

monoid. In fact, absorbing monoids can only model concurrent histories conforming 

to the paradigm n3 of [13] (see Chapter 7 of this thesis). Let us analyse the following 

example. 

Example 3.5. Let E = {a, b, c} where a, b and care three atomic operations defined 

as follows (we assume simultaneous reading is allowed): 

a : X +--- X+ 1, b: X +---X+ 2, C: y +--- y + 1. 

It is reasonable to consider them all as 'concurrent' as any order of their executions 

yields exactly the same results (see [13, 15] for more motivation and formal consider­

ations). Note that while simultaneous execution of {a, c} and { b, c} are allowed, the 

step {a, b} is not, since simultaneous writing on the same variable x is not allowed! 

The set of all equivalent executions (or runs) involving one occurrence of the 
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operations a, b and c, 

x= {{a}{b}{c},{a}{c}{b},{b}{a}{c},{b}{c}{a},{c}{a}{b},{c}{b}{a}, 
{a,c}{b},{b,c}{a},{b}{a,c},{a}{b,c}}, 

is a valid concurrent history or behaviour [13, 15]. 

However x is not a com trace. The problem is that we have here {a}{b} = { b}{a} 

but {a, b} is not a valid step, so no absorbing monoid can represent this situation. 

The concurrent behaviour described by x from Example 3.5 can easily be 

modelled by a generalised order structure of [10] (see Chapter 8 of this thesis). In this 

subsection we will introduce the concept of generalised comtraces, quotient monoid 

representations of generalised stratified order structures. But we start with a slightly 

more general concept of partially commutative absorbing monoid over step sequences. 

Definition 3.7. Let E be a finite set and let (§*, o, >.) be a free monoid of step 

sequences over E where§ is subset closed. Let EQ1, EQ2 , EQ be the following sets 

of equations 

where Ei, Fi E §, Ei n Fi = 0, Ei U Fi ¢:. §, for i = 1, ... , k, and 

EQ = EQ1U EQ1. 

Let =pcabs be the EQ-congruence defined by the set of equations EQ. Then the 

equational monoid (§* j-pcabs, o, [>.]) will be called an partially commutative absorbing 

monoid over step sequences. 

We will omit the subscript pcabs from partially commutative absorbing monoid 

congruence and write - if it causes no ambiguity. 

Remark 3.1. There is an important difference between the equation ab = ba for 

Mazurkiewicz traces, and the equation {a} { b} = { b} {a} for partially commutative 
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absorbing monoids. For Mazurkiewicz traces, the equation ab = ba when trans­

lated into step sequences corresponds to {a, b} = {a}{b}, {a, b} = { b}{a}, and im­

plies {a}{ b} - { b}{a}. For partially commutative absorbing monoids, the equation 

{a}{b} = {b}{a} implies that {a, b} is not a step, i.e. neither {a, b} = {a}{b} nor 

{a, b} = { b} {a} belongs to the set of equations. In other words, for Mazurkiewicz 

traces the equation ab = ba means 'independency', i.e. any order or simultaneous exe­

cution are allowed and are equivalent. For partially commutative absorbing monoids, 

the equation {a}{ b} = { b}{a} means that both execution orders are equivalent but 

simultaneous execution is not allowed. D 

We will now extend the concept of a comtrace by adding a relation that generates 

the set of equations EQ2• 

Definition 3.8. Let E be a finite set (of events). Let ser, sim, inl C Ex E be three 

relations called serialisability, simultaneity and interleaving respectively satisfying: 

• sim and inl are irrefl.exive and symmetric, 

• ser ~ sim, and 

• sim n inl = 0. 

Then the triple (E, sim, ser, inl) is called a generalised comtrace alphabet. 

The interpretation of the relations sim and ser is as in Definition 3.3, and (a, b) E 

inl means a and b cannot occur simultaneously, but their occurrence in any order is 

equivalent. As for comtraces, we define §, the set of all (potential) steps, as the set 

of all cliques of the graph (E, sim). 

Definition 3.9. Let (E, sim, ser, inl) be a generalised comtrace alphabet and = 9com, 

called generalised comtrace congruence, be the EQ-congruence defined by the set of 

equations EQ = EQ 1 U EQ2 , where 

EQ 1 df {A= BC IA= B U C E § 1\ B x C ~ ser}, 

and 

EQ2 df { BA = AB I A E § 1\ B E § 1\ A x B ~ inl}. 

The equational monoid (§*/=9com, o, [>.]) is called a monoid of generalised comtraces 

over (E, sim, ser, inl). 
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In Definition 3.9, since ser and inl are irreflexive, we have 

• if (A= BC) E EQ1, then B n C = 0, and 

• if (AB = BA) E EQ2 , then An B = 0. 

Also since inl n sim = 0, we know that (AB = BA) E EQ2 implies that AU B ¢. §. 

Hence, each monoid of generalised comtraces is a commutative absorbing monoid. 

By Proposition 3.1, the generalised comtrace congruence relation can also be de­

fined explicitly in non-equational form as following. 

Definition 3.10. Let () = (E, sim, ser, inl) be a generalised comtrace alphabet and 

let §* the set of all step sequences defined on (). 

Let ~1 ~ §* x §* be the relation comprising all pairs (t, u) of step sequences 

such that t = wAz and u = wBCz where w, z E §*and A, B, Care steps satisfying 

B U C = A and B x C ~ ser. 

Let ~2 ~ §* x §* be the relation comprising all pairs (t, u) of step sequences 

such that t = wABz and u = wBAz where w, z E §* and A, B are steps satisfying 

Ax B ~ inl. 

""" df """ U d fine L t e """gcom - """1 """ """2· Then we e -=gcom -df ( ~gcom U ~;!m)*, i.e. gcom is 

the reflexive symmetric transitive closure of ~gcom· 

The name "generalised comtraces" comes from that fact that when inl = 0, Defini­

tion 3.9 is the same as Definition 3.4 of comtrace monoids. We will omit the subscript 

gcom from the generalised comtrace congruence and ~gcom, and only write_ and~ 

if it causes no ambiguity. 

Example 3.6. The set x from Example 3.5 is a generalised comtrace with E ­

{a,b,c}, ser = sim = {(a,c),(c,a),(b,c),(c,b)}, inl = {(a,b),(b,a)}, and§ 

{{a,c}, {b, c}, {a}, {b}, {c}}. So we write x =[{a, c}{b}]. 
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3.4 	 Absorbing Monoids with Compound Genera­

tors 

One of the concepts that cannot easily be modelled by quotient monoids over step 

sequences, is asymmetric synchrony. Consider the following example. 

Example 3.7. Let a and b be atomic and potentially simultaneous events, and c1 , 

c2 be two synchronous compound events built entirely from a and b. Assume that c1 

is equivalent to the sequence a o b, c2 is equivalent to the sequence bo a, but c1 in not 

equivalent to c2 . This situation cannot be modelled by steps as from a and b we can 

build only one step {a, b} = {b, a}. 

To provide more intuition, consider the following interpretation of a, b, c1 and c2. 

Assume we have a buffer of 8 bits. Each event a or b fills consecutively 4 bits. The 

buffer is initially empty and whoever starts first fills the bits 1-4 and whoever starts 

second fills the bits 5-8. Suppose that a simultaneous start is impossible (beginnings 

and endings are instantaneous events after all), filling the buffer takes time, and 

simultaneous executions (i.e. time overlaps in this case) are allowed. We clearly have 

two synchronous events c1 = 'a starts first but overlaps with b ', and c2 = 'b starts first 

but overlaps with a '. We now have c1 = a o b, and c2 = b o a, but obviously c1 =/= c2 

and c1 =/= c2. 

To model adequately the situations as that in Example 3.7 we will introduce the 

concept of absorbing monoid with compound generators. 

Let (G*, o, A) be a free monoid generated by G, where G = E U C, En C = 0. 
The set E is the set of elementary generators, while the set C is the set of compound 

generators. We will call ( G*, o, A) a free monoid with compound generators. 

Assume we have a function decamp : G ~ .9"(E), called decomposition, that 

satisfies for all a E E, decomp(a) ={a} and for all a fj. E, idecomp(a)l ~ 2. 

For each a E G, decomp(a) gives the set of all elementary elements from which a 

is composed. It may happen that decamp( a) = decamp(b) and a =/= b. 

Definition 3.11. The set of absorbing equations is defined as follows: 



30 3. Equational Monoids with Compound Generators 

where for each i = 1, ... , n, we have: 

• decomp(Ci) = decomp(ai) U decomp(bi), 

• decomp(ai) n decomp(bi) = 0. 

Let =abs&cg be the EQ-congruence defined by the above set of equations EQ. The 

equational monoid (G*;-abs&cg, o, [>.]) is called an absorbing monoid with compound 

generators. 

We will omit the subscript absf3cg from the congruence of absorbing monoid with 

compound generators and write _ if it causes no ambiguity. 

Example 3.8. Consider the absorbing monoid with compound generators where: 

E = {a,b}, G = {a,b,c1,c2}, decomp(c1 ) = decomp(c2 ) = {a,b}, decomp(a) ={a}, 
decomp(b) = {b}, and EQ = { c1 = aob, c2 =boa}. Now we have [c1] = {c1, aob} 

and [c2] = {c2 , boa}, which models the case from Example 3.7. 



Chapter 4 

Canonical Representations 

We will show that all kinds of monoids discussed in previous chapter have some kind 

of canonical representation, which intuitively corresponds to maximally concurrent 

execution of concurrent histories, i.e. "executing as much as possible in parallel". 

This kind of semantics is formally defined and analysed in [4]. 

Let (E, ind) be a concurrent alphabet and (E* / =, o, [>.]) be a monoid of 

Mazurkiewicz traces. A sequence x = a1 ... ak E E* is called fully commutative if 

(ai, ai) E ind for all i =/= j and i,j E {1, ... , k}. 

A sequence x E E* is in the canonical form if x = >. or x = x1 ... Xn such that 

• 	 each xi is fully commutative, fori= 1, ... , n, 

• 	 for each 1 ::::; i ::::; n - 1 and for each element a of Xi+I there exists an element b 

of Xi such that a =/= b and (a, b) rJ. ind. 

If x is in the canonical form, then x is a canonical representation of [x]. 

Theorem 4.1 ([1, 4]). For every trace tEE*/=, there exists x E E* such that t = [x] 

and x is in the canonical form. D 

With the canonical form as defined above, a trace may have more than one canon­

ical representation. For instance the trace t3 = [abcbca] from Example 3.1 has four 

31 




32 4. Canonical Representations 

canonical representations: abcbca, acbbca, abccba, acbcba. Intuitively, x in the canoni­

cal form represents the maximally concurrent execution of a concurrent history rep­

resented by [x]. In this representation fully commutative sequences built from the 

same elements can be considered equivalent (this is better seen when vector firing 

sequences of [28] are used to represent Mazurkiewicz traces, see [4] for more details). 

To get uniqueness it suffices to order fully commutative sequences. For example we 

may introduce an arbitrary total order on E, extend it lexicographically to E* and 

add the condition that in the representation x = x1 ... Xn, each Xi is minimal with the 

lexicographic ordering. The canonical form with this additional condition is called 

Foata canonical form. 

Theorem 4.2 ([1]). Every trace has a unique representation in the Foata canonical 

~rm. D 

A canonical form as defined at the beginning of this chapter can easily be adapted 

to step sequences and various equational monoids over step sequences, as well as to 

monoids with compound generators. In fact, step sequences represent intuition better 

than canonical representation corresponds to the maximally concurrent execution 

[4]. An alternative characterisation of Foata normal form introduced in [7] involved 

the concept of elementary step, which is very similar to the notion of step sequence, 

and will be discussed later in Proposition 5.3. 

Definition 4.1. Let (§*, o, .X) be a free monoid of step sequences over E, and let 

be an appropriate set of absorbing equations. Let Mabs = (§*/ =, o, [.X]) be the 

absorbing monoid determined by EQ. A step sequence t = A1 ... Ak E §*is canonical 

(w.r.t. Mabs) if for all i 2: 2 there is no step B ~ Ai satisfying: 

( A-1 U B = Ai-lB ) E EQ 

( Ai = B(Ai- B) ) E EQ 

It is very important to notice that in the above definition B = Ai is allowed but 

B = 0 is not, since B is a step. 
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For every step sequence x = B1 ... Br, we define 

J..L(x) df 1·IBll+ ... +r·IBrl (4.1) 

Theorem 4.3. Let Mabs be an absorbing monoid over step sequences, § be its set of 

steps, and EQ be its set of absorbing equations. For every step sequence t E §* there 

is a canonical step sequence u representing [t]. 

Proof. We know that there is at least one u E [t] such that J..L(u) ~ J..L(x) for all x E [t]. 

Suppose u = A1 ... Ak is not canonical. Then there is i ~ 2 and a step B E § 

satisfying: 
( Ai-l U B = Ai-lB ) E EQ 
( Ai = B(Ai - B) ) E EQ 

If B =A then w ~ u and J..L(w) < J..L(u), where 

w = A1 ... Ai-2(Ai-l U Ai)Ai+l ... Ak. 

If B =/= Ai, then w ~ z and u ~ z and J..L(w) < J..L(u), where 

z = A1 ... Ai-2Ai-1B(Ai - B)Ai+l ... Ak, 

w = A1 ... A-2(Ai-l U B)(Ai- B)Ai+l ... Ak. 

In both cases it contradicts the minimality of J..L( u). Hence u is canonical. D 

Corollary 4.1. Let Mabs be an absorbing monoid over step sequences, § be its set of 

steps, and EQ be its set of absorbing equations. If a step sequence u E §* satisfying 

J..L(u) ~ J..L(x) for all x E [u], then u is canonical w.r.t Mabs· D 

When Mabs is a monoid of comtraces, Definition 4.1 is equivalent to the definition 

of canonical step sequence proposed in [14] as shown in the following proposition. 

Proposition 4.1. If a step sequence u = A1 ..• Ak E §*is canonical w.r.t. a comtrace 

monoid(§*/=, o, [.A]) over a comtrace alphabet (E, sim, ser) if and only if for all i ~ 2 

there is no step B ~ Ai satisfying Ai-l x B ~ ser and B x (Ai \ B) ~ ser. 

Proof. Recall the set of equations for comtrace in Definition 3.4 is defined as: 

EQ df { C = AB IC = A U B E § 1\ A x B ~ ser}. 

Hence, u is canonical if and only if for all i ~ 2 there is no step B ~ Ai such that 


Ai-l x B ~ ser and B x (Ai \B)~ ser as desired. D 
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Definition 4.2. Let(§*, o, .X) be a free monoid of step sequences over E, and Mpcabs = 

(§*I=, o, [.X]) be a partially commutative absorbing monoid. Then a step sequence 

t = A1 ... Ak E §* is canonical (w.r.t. Mpcabs) if p,(t) ::; p,(u) for all u E [t]. 

Since each generalised comtrace monoid is a special case of partially commutative 

absorbing monoid, the above definition also applies to generalised comtrace monoids. 

Definition 4.3. Let ( G*, o, .X) be a free monoid with compound generators, and let 

be an appropriate set of absorbing equations. Let Mabs&cg = (G*I=, o, [.X]). A se­

quence t = a1 ... ak E G* is canonical (w.r.t. Mabs&cg) if for all i 2: 2 there is no 

b, d E G satisfying: 
( c = ai-lb) E EQ 

( ai = bd) E EQ 

For all above definitions, if x is in the canonical form, then x is a canonical 

representation of [x]. 

Since the proof of Theorem 4.3 can also be applied to the case of a free monoid 

with compound generators, we have the following proposition. 

Proposition 4.2. Let (X, o, [.X]) be an absorbing monoid over step sequences, or a 

partially commutative absorbing monoid over step sequences, or an absorbing monoid 

with compound generators. Then for every x E X there is a canonical sequence u 

such that x = [u]. 0 

Unless additional properties are assumed, the canonical representation is not 

unique for all three kinds of monoids mentioned in Proposition 4.2. To prove this lack 

of uniqueness, it suffices to show it for the absorbing monoids over step sequences. 

Consider the following example. 

Example 4.1. Let E ={a, b, c}, §={{a, b}, {a, c}, {b, c}, {a}, {b}, {c}} and EQ be 

the following set of equations: 

{a,b} = {a}{b}, {a,c} = {a}{c}, {b,c} = {b}{c}, {b,c} = {c}{b}. 
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Note that {a, b}{c} and {a, c }{b} are canonical step sequences, and {a, b}{c} ~ 

{a}{b}{c} ~ {a}{c}{b} ~{a, c}{b}, i.e. {a, b}{c} ={a, c}{b}. Hence 

[{a, b}{c}] = { {a, b}{c}, {a}{b}{c}, {a}{c}{b}, {a, c}{b}} 

has two canonical representations {a, b}{c} and {a, c}{b}. One can easily check that 

this absorbing monoid is not a monoid of comtraces. 

The canonical representation is also not unique for generalised comtraces 

if inl =/= 0. For any generalised comtrace, if {a,b} ~ E, (a,b) E inl, then 

x = [{a}{b}] = {{a}{b}, {b}{a}} and x has two canonical representations {a}{b} 
and {b}{a}. 

All the canonical representations discussed above can be extended to unique 

canonical representations by simply introducing some total order on step sequences, 

and adding a minimality requirement with respect to this total order to the definition 

of a canonical form. The construction which we will give in Definition 10.4 is an 

example of how to do so with the assumption that there is a total order on a set of 

events E. 

However, each comtrace has a unique canonical representation as defined in Defini­

tion 4.1. Although not mentioned in [14], the uniqueness of canonical representation 

follows directly from (14, Proposition 3.1] and [14, Proposition 3.1]. However, we will 

provide an alternative proof using only the algebraic properties of comtrace congru­

ence in the next chapter. 



Chapter 5 

Algebraic Properties of Comtrace 

Congruence 

Analogous to how operations on sequences (words) provide more tools to study their 

generated partial orders in the theory of Mazurkiewicz traces, the goal of this chapter 

is to provide similar algebraic operations for step sequences which we hope will even­

tually help to analyse stratified order structure [15]. When dealing with Mazurkiewicz 

traces, the tools to deal with sequences (words) are simple but powerful operations 

like left/right cancellation and projection on sequences, which are well-known and 

intuitive (see [25]). However, it is not obvious what operations are needed when 

working with step sequences. In the next section, we try to tackle this problem by 

introducing similar tools for step sequences and utilise them to analyse some basic 

properties of comtrace congruence. 

5.1 	 Operations on Step Sequences and Properties 

of Comtrace Congruence 

Let us consider a comtrace alphabet () = (E, sim, ser) where we reserve§ to denote 

the set of all possible steps of() throughout this chapter. 
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For each step sequence or enumerated step sequence x = X 1 ... Xk, let 

denote the step sequence weight of w, where IXil denotes the cardinality of the set 

Xi. We also define 

i=l 

For any a E E and a step sequence w = A1 ... Ak E §* , we define lwla, the 

number of occurrences of a in w, as lwla df I{Aill ::; i < k 1\ a E Ai}l. 

Due to the commutativity of the independency relation for Mazurkiewicz traces, 

the mirror rule, which says if two sequences are congruent then their reverses are 

also congruent, holds for Mazurkiewicz trace congruence [8]. Hence, in trace theory, 

we only need a right: cancellation operation to get new congruent sequences from the 

old ones, since the left cancellation comes from the right cancellation of the reverses. 

However, the mirror rule does not hold for com trace congruence since the relation 

ser is usually not commutative. Example 3.3 works as a counter example since 

{a}{b, c} = { a}{b}{ c} but {b, c}{a} ¢. {c}{b}{a}. Thus, we define separate left and 

right cancellation operators for comtraces. 

Let a E E, A E § and w E §*. The operator +R, step sequence right cancellation, 

is defined as 

if a~ A 
ifA={a} 
otherwise. 

{ 

Symmetrically, a step sequence left cancellation operator +L is defined as 

>..+La 
df 

>.., 

A(w +La) if a~ A 
df

Aw+La w if A= {a} 

(A\{a})w otherwise. 
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Finally, for each D ~ E, we define the function 7rD : §* - §*, step sequence 

projection onto D, as follows: 

7rD(A) df A, 

7rD(w) ifAnD=0
7rD(wA) df 

{ 7rD(w)(A n D) otherwise. 

Proposition 5.1. 

1. u- v ==::? weight(u) = weight(v). (step sequence weight equality) 

2. U- V ==::? Jula = Jvla· 	 (event-preserving) 

(right cancellation) 

(left cancellation) 

5. u = v {=:::} Vs, t E §*. sut = svt. 	 (step subsequence cancellation) 

6. u v ==::? 7rD(u) =7rD(v). 	 (projection rule) 

Proof Note that for corntraces u ~ v means u = xAy, v = xBCy, where A= B U C, 

B n C = 0, B x C ~ ser. 

1. It suffices to show that u ~ v ==::? weight(u) = weight(v). Because A= B U C 

and B n C = 0, we have weight(A) = JAJ = JBJ + JCJ = weight(BC). Hence, 

weight(u) = weight(x)+weight(A)+weight(z) = weight(x)+weight(BC)+weight(z) = 

weight(v). 

2. It suffices to show that u ~ v ==::? Jula = Jvla· There are two cases: 

• 	 a E A: Then it can't be the case that a E B 1\ a E C because B n C = 0. 

Since A = B U C, either a E B or a E C. Then JAla = JBCla· Therefore, 

JuJa = Jxla + JAJa + Jzla = Jxla + JBCJa + Jzla = Jvla· 
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• 	a ¢:. A: Since A = B U C, a (j. B 1\ a (j. C. So IAia = IBCia = 0. Therefore, 

lula = lxla + lzla = lvla· 

3. 	 It suffices to show that u ~ v ===? u ...;-R a ~ v ...;-R a. There are four cases: 

• 	a E I:!:J(y): Let z = y 7R a. Then u 7R a= xAz ~ xBCz = v 7R a. 

• 	a¢:. I:!:J(y), a E AnC: Then u-;-Ra= x(A \ {a})y ~ xB(C\ {a})y =V7Ra. 

• 	a¢:. I:!:J(y), a E An B: Then u 7R a= x(A \ {a})y ~ x(B \ {a})Cy = v 7R a. 

• 	a¢:. I:!:J(Ay): Let z = x 7R a. Then u 7R a= zAy ~ zBCy = v 7R a. 

4. 	 Dually to (3). 

5. (::::}) It suffices to show that u ~ v ===? \/8, t E §*. 8ut ~ 8Vt. For any two 

step sequences 8, t E §*, we have 8ut = 8XAyt and 8Vt = 8XBCyt. But this clearly 

implies 8Ut ~ 8Vt by the definition of ~. 

({=) For any two step sequences 8, t E §*, since 8Ut _ 8Vt, it follows that 

(8ut ...;-R t) ...;-L 8 = u =v = (8Vt ...;-R t) ...;-L 8. 

Therefore, u = v. 

6. It suffices to show that u ~ v ===? rrv(u) ~ rrv(v). Note that rrv(A) = 

rrv(B) U rrv(C) anclrrv(B) x rrv(C) s;;;; 8er, so 

rrv(u) = rrv(x)rrv(A)rrv(Y) ~ rrv(x)rrv(B)rrv(C)rrv(Y) = rrv(v). 

D 

Proposition 5.1 (3), (4) and (6) do not hold for an arbitrary absorbing monoid. 

For the absorbing monoid from Example 3.2 we have u = {a, b, c} =v = {a}{b, c}, 

u +R b = u +L b = 7r{a,c}(u) ={a, c} "¢ {a}{c} = V +R b = v +L b = 7T{a,c}(v). 
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Note that (w +R a) +R b = (w +R b) +R a, so we can define: 

w +R {a1, ... , ak} r!1 (... ((w +R a1) +R a2) .. . ) +R ak, 

and 

w+RA1···Ak df (... ((w+RA1)+RA2) ... )+RAk. 

We define dually for +L· 


Corollary 5 .1. For all u, v, x E §*, we have 


Proof. 1. We prove it by induction on k, the number of steps of x. When k = 0, have 

x = ..\. Hence, from u = v, it follows that 

U +R X= U- V = V +R X. 

When k > 0, we assume x = A1... Ak. By the induction hypothesis, we have 

Lett= u+RA1... Ak_1and s = v+RA1... Ak-1· It suffices to show t+RAk = s+RAk. 
Let Ak = {a1 ... an}· We will prove it by induction on n. When n = 1, by Proposition 

5.1(3), we have 

When n > 1, by the induction hypothesis, we have 

It follows that 

t +R Ak = (t +R {a1 ... an-1}) +Ran 

= (s+R {a1·· .an-1}) +Ran= s+RAk. 

2. Dually to (1). 0 
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To prepare for the proof of uniqueness property of canonical representation for 

comtraces, we prove the following technical lemma. 

Lemma 5.1. For all step sequences u, w, s E §*, steps A, B, C1, ... , Cn E § and a 

symbol a E E, the following hold 

1. A C1 ... Ck-1Ck ... Cn :=:::} l±j(C1 ... Ck-1) x I±J(Ck ... Cn) ~ ser 

2. (u(AU{a})- wB A a~A A a~B) :=:::} {a}x(B\A)~ ind 

3. ((AU{a})u = Bw A a~A A a~B) :=:::} {a}x(B\A)~ ind 


4- s(B U {a})= nv A a~ B A a~ I±J(v) :=:::} {a} x (I±J(v) \B)~ ind. 


5. (B U {a})s = 'UU A a~ B A a~ I±J(v) :=:::} {a} x (I±J(v) \B)~ ind. 

Proof. 1. From the definition of=, we have I±J(C1... Ck-1) ni±J(Ck ... Cn) = 0. Hence, 

for all i = 1, ... , k- 1 and all j = k, ... ,n, we have 

2. For any symbol a E A, from our assumption u(A U {a}) = wB, we first have 

u(A U {a}) +R A= wB +R A 

Since wB +R A= (w +R (A\ B))(B +R A), we have 

where (B +R A) = >. if (B \A) = 0 and (B +R A) - (B \A) otherwise. Let 

x = (w +R (A \ B)) +R a. So we have 

u{a} +L x- ((w +R (A\ B))(B +R A)) +L x = {a}(B +R A). 

Notice that we right-cancel an instance of a out of ( w +R (A \ B)) to have x, so 

u{a} +Lx has a form of v{a} where v = u+Lx. Hence, we have v{a} = {a}(B+RA). 
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We consider two possible cases: 

Case (i): (B 7R A)= A. We have the trivial case B \A= 0. Hence, 

{a}x(B\A)=0~ ind 

Case (ii): (B ...;-R A) =f. A. Then (B \A) =f. 0, let C = B \A. We will use 

induction on ICI. 
For ICI = 1, we have C = {b} where b =f. a and v = {b}. Hence, {b}{a} ={a}{b}, 

i.e. {b}{a}(~ U ~-1 )*{a}{b}. This means there exists a step {a, b} E §such that 

{b}{a} ~-1 {a,b} ~ {a}{b}. Thus, (a,b) E serl\(b,a) E ser. But this implies 

(a, b) E ind. 

Now we need to prove the inductive step, i.e. assuming v{a} = {a}(C U {c}) 

where c (j. C and c =f. a, we want to show {a} x ( C U { c}) ~ ind. Using cancellation 

properties again, we have 

This together with the induction hypothesis implies {a} x C ~ ind. But 

then {a}(C U {c}) 7R C = {a}{c}. This forces (v{a}) ...;-R C = {c}{a}. 

Hence, {c}{a} _ {a}{c}. Similar to case (i), we obtain (a, c) E ind. Hence, 

{a} x ( C U { c}) ~ ind. 

3. Dually to (2). 

4. We prove this by induction on v. The case of v = A is obvious. When v = 
Ak ... A1 (k > 0), by induction hypothesis, we have {a} x (l±J(Ak-1... A1) \B)~ ind. 

We want to show that {a} x (Ak \ B) ~ ind. 

Let s'(B' U{a})= s(B U{a}) 7R Ak-1 ... A1, we get 

s'(B' U {a})- uAk = uv ...;-R Ak-1 ... A1 

Applying (2) of this lemma, we get {a} x (Ak \B') ~ ind. But since B' ~ B, it 

follows that 

{a} x (Ak \B)~ {a} x (Ak \ B') ~ ind. 
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Therefore, 

{a}x (t!:J(v)\B) ={a}x ((t!:J(A1 ... Ak-l)UAk)\B) ~ind. 

5. Dually to (4). D 

It is worth noticing that Lemma 5.1 (4),(5) also implies that comtraces belong to 

paradigm ?T3 as classified by Janicki and Koutny in [13) which we will discuss more 

carefully in Chapter 7. The paradigm basically says that 

{a}{b} ={b}{a} =>{a, b} E §. 

The intuition comes from the following more general result which explains what 

it means for steps to be independent. 

Proposition 5.2. For steps A, BE§, let C =An B. If AB = BA, then (A\ C) x 
(B \C)~ ind. 

Notice that it immediately follows from this proposition that A ® B E § where 

the ® operator denotes the symmetric difference operator on sets. 

Proof. When C = 1~, the proposition follows directly from Lemma 5.1 (4) and (5). 

When C =/= 0, it follows that 

AB = B A <9 (C U (A \ C)) ( ( B \ C) UC) = (C U ( B \ C)) ( (A \ C) UC). 

By cancelling C from the left and then from the right, we get: 

( ( C U (A \ C)) ( ( B \ C) U C) 7 L C) 7 R C 

=((C U (B \ C))((A \C) U C) 7L C) 7R C. 

Hence, 

(A \ C) ( B \ C) = (B \ C) (A \ C). 

Since (A\ C) n (B \C)= 0, by Lemma 5.1 (4) and (5), it follows that 

(A\ C) x (B \C) ~ ind 

as desired. D 

Intuitively, the proposition says that although A and Bare not independent steps 

when C =/= 0, (A\ C) and (B \C) are. 
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5.2 	 Uniqueness of Canonical Representation for 

Corntraces 

As mentioned previously, the uniqueness of canonical representation is a consequence 

of [14, Proposition 3.1] and [14, Proposition 3.1], where the proofs use the properties 

of stratified order structure. However, the uniqueness of canonical representation can 

also be proved using only the algebraic properties of comtrace congruence from the 

last section. The uniqueness follows directly from the following result. 

Lemma 	5.2. For each canonical step sequence u = A1... Ak, we have 

Al ={a I :3w E [u]. w = c1 ... Cm 1\ a E Cl}· 

The following proof of Lemma 5.2 uses the technical Lemma 5.1. 

Proof. Let A = {a I :3w E [u]. w = c1 ... Cm 1\ a E Cl}· Since u E [u], Al ~ A. 

Suppose that A1=I A, i.e. we have a E A\ A1 for some a. Hence, there exists v E [u] 
such that v = D1... Dn and a E D1. Let j be the least index such that a E Aj, 

which means art l±J(A1 ... Aj_1). Since D1 ... Dn = A1 ... Aj-lAjAj+l ... Ak, we can 

right-cancel Ai+1... Ak from both sides of= to get 

(5.1) 

where D~ ... D~, = D1... Dn +R Ai+1... Ak and a E D~ because we haven't cancelled 

the first left a E Aj. We then left-cancel A1... Aj-1 from the equivalence (5.1) to 

produce 

D' 1 · · · D'n' -. · L A1 · · · Aj-1 = D"1 · · · D"n 11 -= A j 	 (5.2) 

where a E D~. There are two cases: 

Case (i): 

If n" = 1, the equivalence (5.2) becomes D~ - Ai. So nr = Ai. Thus 

D~ n l±J(A1 ... Aj_1) = 0, otherwise D~ = Aj was not left out after left-cancelling 

A1... Ai_1 from D~ ... D~,. Let B = D~ \ Aj, then by Lemma 5.1(5), 

D~ x (ltj(A1 ... Ai_r) \B) = Ai x (ltj(Al ... Ai_r) \ B) ~ ind. 
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Hence, 

(5.3) 


We next want to show B x Ai ~ ser to conclude that Aj_1 x Ai ~ ser. Observe 

that 

D~ = D~ ... D~, +L A1 ... Aj-1 = (D~ ... D~, +L D~ ... D~,) +LB. 

Hence, ltJ(D~ ... D~,) n nr = ltJ(D~ ... D~,) n Ai = 0. Right-cancelling D~ ... D~, 

from both sides of= of the equivalence (5.1) produces 

where u = A1... Aj_1+R D~ ... D~,. Since ltJ(u) = D~ \ Ai = B, by Lemma 5.1(1) 

we conclude 

(5.4) 


From the results (5.3) and (5.4), we conclude that Aj-1 x Ai ~ ser. However, 

since A1 ... Ak is canonical, A1 ... Aj is also canonical. By Proposition 4.1, it follows 

Ai_1 x Ai ~ ser, a contradiction. 

Case (ii): 

If n" > 1, the equivalence (5.2) becomes D~ ... D~" =Aj. By Lemma 5.1(1), we 

obtain D~ x (Ai \Dn = D~ x ltJ(D~ ... D~") ~ ser. We also have D~nltj(A1 ... Aj-1) = 
0, otherwise nr was not left out after left-cancelling A1 ... Ai_1 from D~ ... D~,. Let 

F = D~ \D~, then by Lemma 5.1(5) D~ x (ltJ(A1... Ai-d \F)~ ind. So we conclude 

(Aj-1 \ F) x D~ ~ ser (5.5) 

To show Aj-1 x D~ ~ ser, it suffices to show that F x D~ ~ ser. We first show 

D~ n ltJ(D~ ... D~,) = 0. For each element e E D~, since D~ n ltJ(A1... Ai_1) = 0, we 

have JD~ ... D~,Je = JA1 ... Ajle = IAjle = 1. This shows D~ n ltJ(D~ ... D~,) = 0. 
Hence, right-cancelling D~ ... D~, from both sides of = of the equivalence (5.1) 

produces 

D~ = F U D~ = vD~ = A1 .. • Ai_1Ai +R D~ ... D~,. 

From F U D~ =vD~, it follows that ltJ(v) =F. By Lemma 5.1(1), we then conclude 

E x D~ = lti(v) x D~ ~ ser (5.6) 
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From the results (5.5) and (5.6), we have Aj-1 X nr ~ ser. However, by 

Proposition 4.1, this contradicts that A1 ..• Ai is canonical, since nr ~ Ai and 

nr X (Aj \ nn ~ ser. 

Since both cases lead to contradiction, we conclude A1 = A. D 

The above lemma does not hold for an arbitrary absorbing monoid. For both 

two canonical representations of [ {a, b}{c}] from Example 4.1, namely {a, b}{c} and 

{a, c}{b}, we have A = {a I :3w E [u]. w = cl ... Cm 1\ a E CI} = {a, b, c} rj. §. 

Adding A to the set of possible steps § does not help as we still have A =I {a, b} and 

A =I {a, c}. 

Theorem 5.1. For every comtrace t E §* / there exists exactly one canonical step 

sequence u representing t. 

Proof. The existence follows from Theorem 4.3. We only need to show uniqueness. 

Suppose that u = A 1 •.• Ak and v = E1 .•• Em are both canonical step sequences 

and u = v. By induction on k = lui we will show that u = v. By Lemma 5.2, we 

have E 1 = A1. If k = 1, this ends the proof. Otherwise, let u' = A2 ... Ak and 

w' = E2 ... Em and u', v' are both canonical step sequences of [u']. Since iu'l < lui, 
by induction hypothesis, we obtain Ai = Ei for i = 2, ... , k and k = m. D 

When ind = ser = sim, Theorem 5.1 corresponds to the Foata normal form 

theorem, which we survey in Theorems 4.1 and 4.2 of this thesis. To clarify this 

point, we analyse the following form of Foata normal theorem, characterised by Volker 

Diekert in [7], where Diekert provides a proof based on complete semi-Thue systems. 

A step FE§ is defined to be elementary if (a, b) E ind for all a, bE F, a =I b. Notice 

that each elementary step Ai can be seen as a partial ordered set (Ai, 0). Thus, by 

the Szpilrajn Theorem, we can construct the Mazurkiewicz trace [Ai] to be the set 

of all sequences which represent all total order extension of (Ai, 0) (see Section 9.1 

for more discussion on relationship between partial orders and Mazurkiewicz traces). 

The Foata normal form theorem can then be stated as follows. 

Proposition 5.3 ([7]). Let [s] be a Mazurkiewicz trace over a concurrent alphabet 

(X, ind). There exists exactly one sequence of elementary steps (A1, ... , Ak) such that 
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[s] = [A1]o ... o[Ak] and for all i ~ 2, for all b E Ai, there is some a E Ai-l with 

(a, b)~ ser. 

Proof. Assume that s = x1 ... Xn· By Theorem 5.1, there exists a step sequence 

u = A1 ... Ak defined as the canonical step sequence of the comtrace [{x1} ... {xn}]ser 
over the concurrent alphabet (X, sim, ser) as in Theorem 5.1, where sim = ser = ind. 

We observe that all steps Ai are elementary since ind = sim. So for each bE Ai, 

{b} x (Ai \ {b}) ~ sim = ser. 

Hence, by Proposition 4.1, Ai-l x {b} ~ ser. So there is some (a, b) E Ai-l x {b} 
such that (a, b) ~ ser. 

By Proposition 3.2, the comtrace [{x1} ... {xn}]ser can be represented by the 

Mazurkiewicz trace [s] = [xl ... Xn] = [Al]o ... o[Ak] as required. 0 

Notice that Theorems 4.1 and 4.2 are direct consequences of Proposition 5.3. 

Although a sequence of elementary steps A1 ... Ak is not an element of the trace [s], 

it is the canonical step sequence of the comtrace representing the trace [s]. This is 

another reason suggesting that the notion of comtraces is a convenient and intuitive 

generalisation of Mazurkiewicz traces. 



Chapter 6 

Comtrace Languages 

Let B = (E, 8im, 8er) be a comtrace alphabet and§ be the set of all possible steps 

over B. Any subset L of§* is a step sequence language over B, while any subset .C of 

§*/ -ser is a comtrace language over B. 

For any step sequence language L, we define a comtrace language [L]o (or just [L]) 
as: 

[L] df {[u]luEL} (6.1) 

The comtrace language [L] is called generated by L. 


For any comtrace language .C, we define 


U.C df { u I [u] E .C} (6.2) 

Given step sequence languages L1, L 2 and comtrace languages £ 1, £ 2 over the 

alphabet B, the composition of languages are defined as following: 

L 1L 2 df { 81 o 82 I 81 E L1 1\ 82 E L2} (6.3) 

£1£2 df { t1 0 t2 I t1 E £1 1\ t2 E £2} (6.4) 

(Recall o and o denote the operators for step sequence monoids and trace monoids 

respectively.) 
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We let L* and £* denote the iteration of the step sequence language L and the 

trace language .C where 

00 

L* df ULn where £ 0 df {).} and Ln+l df LnL (6.5) 
0 

00 

.C* df U_cn where _cO df {[.A]} and _cn+1 df ,en.C (6.6) 
0 

Since comtrace languages are sets, the standard set operations as union, intersec­

tion, difference, etc. can be used. The following result is a direct consequence of the 

comtrace language definition and the properties of comtrace composition "8". 

Proposition 6.1. Let L, £ 11 £ 2 and Li fori E I be step sequence languages, and let 

.C be a comtrace language. Then : 

1. [0] = 0 s . .c = [U .c] 
2. [£1][£2] = [£1£2] 6. [£1] U [£2] = [£1 U £2] 
3. £1 ~ £2 ::::} [£1] ~ [£2] 1. uiEI[Li] = [UiEI Li] 
4. L ~ U[L] 8. [L]* = [L*]. 

Proof. 1. From (6.1), it follows that [0] = {[u] Iu E 0} = 0. 

2. 
[£1][£2] 


( From (6.4) ) 


{[u1] 8 [v2] I [ui] E [£1] 1\ [u2] E [£2]} 

( From definition of 8 ) 


{[u1u2] I [u1] E [£1] 1\ [u2] E [£2]} 

( From (6.1) ) 


{[u1u2] I ·u1 E £1 1\ u2 E £2} 

( From (6.3) ) 


{[u1u2] I u1u2 E £1£2} 

( From (6.1) ) 




50 6. 	Comtrace Languages 

3. 	 Assuming that L1 ~ L2 , we want to show [L1] ~ [L2]. Assume [t] E [L1]. It 

suffices to show [ t] E [ L 2]. 

[t] E (LI] 

==} ( By (6.1) ) 


t E L1 

==} ( Since L1 ~ L2 ) 


t E L2 

==} ( By (6.1) ) 

[t] 	E [L2] 

4. 	 Assuming t E L, we want to show t E U[L]. 

tEL 
==} ( By the definition of comtraces ) 

tEL 1\ t E [t] 
==} ( By the definition of set-theoretical union ) 

t E U{ [u] Iu E L} 
==} ( By (6.1) ) 


tE U[L] 


5. 	 We want to show that for any comtrace [t], [t] E .C if and only if [t] E [U .C]. 

[t] E .C 

¢:::=:? ( By the definition of comtraces ) 


t E (t] E .C 

¢:::=:? ( By the definition of set-theoretical union ) 


t E U.C 

¢:::=:? ( From (6.2) ) 


[t] E {[u] Iu E U.C} 

¢:::=:? ( From (6.1) ) 


[t] 	E [U .C] 

6. 
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[£1] U [£2] 

( From (6.1) ) 


{[u] Iu E £1} U {[u] Iu E £2} 

( By definition of set-theoretical union ) 


{[u] Iu E £1 V u E £2} 

( From definition of set-theoretical union ) 


{[u] Iu E £1 U £2} 

( From (6.1) ) 


[£1 u £2] 


7. 	 Notice I is the index set, so it has the form I= {i 11::::; i::::; n}. Hence, we will 

prove (7) by induction on n. When n = 0, it follows that I= 0. Hence, 

UiE0[£i] 

( By definition of set-theoretical union ) 


0 
(From (6.1) ) 

[UiE0 Li] 

When n > o, we want to show that U~=1 [Li] = [U~=1 Li]. 


( By definition of set-theoretical union ) 

[(U~11 Li) u Ln] 
( From (6.1) ) 

1{[u] Iu E (U~1 Li) U Ln} 

( By the properties of set-theoretical union ) 


{[u] Iu E u~:11 Li} u {[u] Iu E Ln} 
( From (6.1) ) 

[U~:11 Li] u [ Ln] 
( By induction hypothesis ) 

(U~:/[Li]) u [Ln] 
( From (6) ) 

u~=l[Li] 

8. 	 Observe that [£]* = U:0 [£]i and [£*] = [U:o £i]. Since we only deal with 

finite step sequences, it suffices to show that [L]i = [Li] for every i. We proceed 
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by induction on i. When i = 0, it follows that 

[L]o 
( By (6.6) ) 


{[-\]} 

( By (6.1) ) 


{[u]Ju E {-\}} 

( By (6.1) ) 
[{-\}] 

( By (6.5) ) 
[Lo] 

When i > 0, we want to show [L]i = [Li]. 

[L]i 
( By (6.6) ) 

[L]i-l[L] 
( By induction hypothesis ) 

[Li-l][L] 
( By (2) ) 

( By (6.5) ) 

D 

Comtrace languages provide a bridge between operational and structural, i.e. 

comtrace, semantics. In other words, if a step sequence language L describes 

an operational semantics of a given concurrent system, we only need to derive 

(E, sim, ser) from the system, and [L] defines the structural semantics of the system. 

Example 6.1. Consider the following simple concurrent system Priority, which com­

prises two sequential subsystems such that 

• the first subsystem can cyclically engage in event a followed by event b, 

• the second subsystem can cyclically engage in event b or in event c, 

• the two systems synchronise by means of handshake communication, 
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• there is a priority constraint stating that if it is possible to execute event b then 

c must not be executed. 

This example has often been analysed in the literature (cf. [16]), usually un­

der the interpretation that a = 'Error Message', b = 'Stop And Restart', and 

c = 'Some Action'. It can be formally specified in various notations including Prior­

ity and Inhibitor Nets (cf. [12, 15]). Its operational semantics (easily found in any 

model) can be defined by the following language of step sequences 

LPriority df Pref(({c}*U{a}{b}U{a,c}{b})*), 

where Pref(L) denotes the prefix closure of the language L, i.e., 

Pref(L) df U{u E L l3v. uv = w}. 
wEL 

The rules for deriving the concurrent alphabet (E, sim, ser) depend on the model, 

and for Priority, the set of possible steps is 

§= {{a},{b},{c},{a,c}}, 

and ser = { ( c, a)} and ser = { (a, c), ( c, a)}. Then, · [LPriority] defines the structural 

comtrace semantics of Priority. For instance, 

[{a, c}{b}] = { {c}{a}{b}, {a, c}{b}} E [LPriority]· 



Chapter 7 

Paradigms of Concurrency 

The general theory of concurrency developed in [13] provides a hierarchy of models 

of concurrency, where each model corresponds to a so-called "paradigm", or a gen­

eral rule about the structure of concurrent histories, where concurrent histories are 

defined as sets of equivalent partial orders representing particular system runs. In 

principle, a paradigm describes how simultaneity is handled in concurrent histories. 

The paradigms are denoted by 1r1 through 1r8 . It appears that only paradigms 1r1 , 

1r3 , 1r6 and 1r8 are interesting from the point of view of concurrency theory. The 

paradigms were formulated in terms of partial orders. Comtraces are sets of step se­

quences, and each step sequence uniquely defines a stratified order, so the comtraces 

can be interpreted as sets of equivalent partial orders, i.e. concurrent histories (see 

[14] for details). The most general paradigm, 1r1, assumes no additional restrictions 

for concurrent histories, so each comtrace conforms trivially to 1r1. The paradigms 

1r3 , 1r6 and 1r8 , when translated into the comtrace formalism, impose the following 

restrictions: 

Definition 7.1. Let (E, sim, ser, inl) be a generalised comtrace alphabet. The 

monoid of generalised comtraces (or comtraces when inl = 0) (§* / , 6, [.\])conforms 

to paradigm 1r3 if and only if 

Va,b E E. ({a}{b} {b}{a}:::? {a,b} E §), 

conforms to paradigm 1r6 if and only if 

Va,b E E. ({a,b} E §:::? {a}{b} = {b}{a}), 
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and conforms to paradigm 1r8 if and only if 

'Va,b E E. ({a}{b} = {b}{a} <=? {a,b} E §). 

Proposition 7.1. Let M = (§* / =, o, [.A]) be a comtrace monoid over a comtrace 

alphabet (E, sim, ser). Then 

1. M conforms to 1r3 . 

2. If 1r8 is satisfied, then ind = ser = sim. 

Proof 1. Assume {a}{b} - {b}{a} for some a,b E E. Hence, by Definition 3.5, 

{a}{b} ~-1 {a,b} ~ {b}{a}, i.e. {a,b} E §. 

2. Clearly ind ~ ser ~ sim. Let (a, b) E sim. This means {a, b} E §, which, by 

1r8 , implies {a}{b} = {b}{a}. Hence, by Lemma 5.1(2), (a, b) E ind. D 

From Proposition 7.1(1), it follows that comtraces cannot model any concurrent 

behaviour (history) that does not conform to the paradigm 1r3 . Since any monoid of 

comtraces conforms to 1r3 , we know that if a monoid of comtraces conforms to 11"6, then 

it also conforms to 1r8 . It also follows from Proposition 3.2 and Proposition 7.1(2) that 

all comtraces conforming to 1r8 can be reduced to equivalent Mazurkiewicz traces. 

Generalised comtraces does not conform to 1r3 . Example 3.5 works as a counter­

example, since {a}{b} ={b}{a} but {a, b} ¢:. §. In fact, as a language representation 

of generalised stratified order structures, generalised comtraces conform only to 1r1 , 

so they can model any concurrent history that is represented by a set of equivalent 

step sequences. 



Chapter 8 

Relational Structures Model of 

Concurrency 

In this chapter, we review the theory of relational structures proposed by Janicki 

and Koutny [11, 14, 10, 15, 12] to specify concurrent behaviours by using a pair of 

relations instead of a single causality relation. The motivation is that partial orders 

can sufficiently model the "earlier than" relationship but cannot model the "not 

later than" relationship. We will give the definitions of stratified order structure and 

generalised stratified order structure, and then introduce the intuition and motivation 

behind these order structures using a detailed example. 

8.1 Stratified Order Structure 

By a relational structure we will mean a tripleT= (X, R 1, R 2 ), where X is a set and 

R1 and R2 are binary relations on X. A relational structure T' = (X', R~, R~) is an 

extension ofT, denoted as T ~ T', if and only if X= X', R 1 ~ R~ and R 2 ~ ~· 

Definition 8.1 ([15]). A stratified order structure is a relational structure 

s = (X,-<, c), 

such that for all a, b, c E X, the following hold: 

C1: art a C3: a C b C c 1\ a =/:. c ==> a C c 

C2: a -< b ==> a C b C4: a C b -< c V a -< b C c ==> a -< c 
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When X is finite, S is called a finite stratified order structure. 

Remark 8.1. The axioms C1-C4 imply that (X,-<) is a poset and a-< b =} b l;t a. 

The relation -< is called causality and represents the "earlier than" relationship 

while C is called weak causality and represents the "not later than" relationship. The 

axioms C1-C4 model the mutual relationship between "earlier than" and "not later 

than" relations, provided that the system runs are defined as stratified orders (step 

sequences). 

Stratified order structures were independently introduced in [9] and [12] (the ax­

ioms are slightly different from C1-C4, although equivalent). Their comprehensive 

theory has been presented in [15]. They have been successfully applied to model 

inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for 

example [14, 18, 19, 20, 27] and others). 

8.2 Generalised Stratified Order Structure 

Stratified order structures can adequately model concurrent histories only when the 

paradigm 1r3 of [13, 15] is satisfied. For the general case, we need generalised stratified 

order structures introduced by Guo and Janicki in [10] also under the assumption 

that the system runs are defined as stratified orders (step sequences). 

Definition 8.2 ([10, 14]). A generalised stratified order structure is a relational struc­

ture 

G = (X,<>, c), 

such that C is irreflexive, <> is symmetric and irreflexive, and the triple 

Sa= (X, -<a, c), 

where -<a = <> n c, is a stratified order structure. 

Such relational structure Sa is called the stratified order structure induced by G. 

When X is finite, G is called a finite generalised stratified order structure. 

The relation <> is called commutativity and represents the "earlier than or later 

than" relationship, while the relation C is called weak causality and represents the 

"not later than" relationship. 
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8.3 Motivating Example 

To understand the main motivation and intuition behind the use of stratified order 

structures and generalised stratified order structures, we will consider the four simple 

programs in the following example taken from (11]. 

Example 8.1 ([11]). The programs are written using a mixture of cobegin, coend 

and a version of concurrent guarded commands. 

Pl: 
begin 


int x,y; 


a: begin x:=O; y:=O end; 


cobegin 


b: x:=x+1, c: y:=y+1 

coend 


end. 


P2: 

begin 


int x,y; 


a: begin x:=O; y:=O end; 


cobegin 


b: x=O -+ y:=y+1, c: x:=x+1 

coend 


end. 


P3: 

begin 


int x,y; 


a: begin x:=O; y:=O end; 


cobegin 


b: y=O-+ x:=x+1, c: x=O-+ y:=y+1 


coend 




59 8. Relational Structures Model of Concurrency 

end. 

P4: 

begin 


int x; 


a: x:=O; 


cobegin 


b: x:=x+l, c: x:=x+2 

coend 


end. 


Each program is a different composition of three events (actions) called a, b, and 

c (ai, bi, ci, i = 1, ... , 4, to be exact, but a restriction to a, b, c, does not change the 

validity of the analysis below, while simplifying the notation). Alternative models of 

these programs are shown Figure 8.1. 

Let obs(Pi) denote the set of all program runs involving the actions a, b, c that can 

be observed. Assume that simultaneous executions can be observed. In this simple 

case all runs (or observations) can be modelled by step sequences with simultaneous 

execution of a1,. .. ,an denoted by the step { a1, ... , an}. Let us denote 01 = {a}{b}{c}, 

o2 = {a} { c}{b}, o3 = {a} { b, c}. Each Oi can be equivalently seen as a stratified partial 

order oi = ({a, b, c}, ~) (see Section 9.2 for formal discussion of the relationship 

between step sequences and stratified orders) where: 

b 
03/cb 

01 ,( 02/ ""'02""'01 a/ 
a c a 

02 b 
01 03"" 

c 

We can now write obs(P1) {o1, 02, o3}, obs(P2 ) = {o1, o3}, obs(P3 ) = {o3}, 

obs(P4) = {o1, o2 }. Note that for every i = 1, ... , 4, all runs from the set obs(Pi) yield 

exactly the same outcome. Hence, each obs(Pi) is called the concurrent history of Pi. 

An abstract model of such an outcome is called a concurrent behaviour, and now 

we will discuss how causality, weak causality and commutativity relations are used to 

construct concurrent behaviour. 
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Program P1 : 

In the set obs(PI), for each run, a always precedes both band c, and there is no causal 

relationship between b and c. This causality relation, --<, is the partial order defined 

as--<= {(a, b), (a, c)}. In general--< is defined by: x--< y if and only if for each run o 

we have x ~ y. Hence for H, --< is the intersection of o1 , o2 and o3 , and {o1 , o2 , o3} 

is the set of all stratified extensions of the relation --<. 

Thus in this case the causality relation --< models the concurrent behaviour 

corresponding to the set of (equivalent) runs obs(P1). We will say that obs(PI) and--< 

are tantamount and write obs(P1 ) :::=::{--<}or obs(P1 ) :::=:: ({a,b,c},--<). Having obs(P1 ) 

one may construct --< (as an intersection), and hence construct obs(P4 ) (as the set of 

all stratified extensions). This is a classical case of the "true" concurrency approach, 

where concurrent behaviour is modelled by a causality relation. 

Before considering the remaining cases, note that the causality relation --< is ex­

actly the same in all four cases, i.e. --<i = {(a, b), (a, c)}, fori = 1, ... , 4, so we may 

omit the index i. 

To deal with obs(P2 ) and obs(P3 ), --<is insufficient because o2 ¢:. obs(P2 ) and o1 , o2 ¢:. 
obs(P2 ). Thus, we need another relation, c, called weak causality, defined in this 

context as x C y if and only if for each run o we have •(Y ~ x) (x is never executed 

aftery). For our four cases we have C 2= {(a,b),(a,c),(b,c)}, C 1=C4=--<, and C3= 

{(a, b), (a, c), (b, c), (c, b)}. Notice again that fori= 2, 3, the pair of relations { --<, ci} 

and the set obs(Pi) are equivalent in the sense that each is definable from the other. 

(The set obs(~) can be defined as the greatest set PO of partial orders built from a, 

band c satisfying x--< y::::? Vo E PO. x ~ y and x Ci y::::? Vo E PO. •(Y ~ x).) 

Hence again in these cases (i = 2, 3) obs(Pi) and {-<, ci} are tantamount, 

obs(Pi) :::=:: {--<, ci}, and so the pair { --<, ci}, i = 2, 3, models the concurrent be­

haviour described by obs(Pi)· Note that Li alone is not sufficient, since (for instance) 

obs(P2 ) and obs(P2 ) U {{a, b, c}} define the same C. 
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Program P4: 

The causality relation -< does not model the concurrent behaviour of P4 correctly1 

since o3 does not belong to obs(PI). Let <> be a symmetric relation, called commu­

tativity, defined as x <> y if and only if for each run o either x ~ y or y ~ x. For the 

set obs(P4 ), the relation <>4 looks like <>4= {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}. 

The pair of relations { <>4 , -<} and the set obs(P4 ) are equivalent in the sense that 

each is definable from the other. (The set obs(P4 ) is the greatest set PO of partial 

orders built from a, b and c satisfying x <>4 y =? Vo E PO. x ~ y V y ~ x and 

x < y =? Vo E PO. x ~ y .) In other words, obs(P4 ) and {<>4 , -<} are tantamount, 

obs(P4 ) ::::::: { <>4, -<}, so we may say that in this case the relations { <>4, <}model the 

concurrent behaviour described by obs(P4 ). 

Note also that <> 1 = -< U -<-1 and the pair { <> 1, -<} also models the concurrent 

behaviour described by obs(H). 

The state transition model Ai of each Pi and their respective concurrent histories 

and concurrent behaviours are summarised in Figure 8.1. Thus, we can make the 

following observations: 

1. 	 obs(P1 ) can be modelled by the relation -< alone, and obs(P1 ) ::::::: { -<}. 

2. 	 obs(Pi), for i = 1, 2, 3 can also be modelled by appropriate pairs of relations 

{-<, Li}, and obs(Pi) ::::::: {-<, ci}. 

3. 	 all sets of observations obs(Pi), for i = 1, 2, 3, 4 are modelled by appropriate 

pairs of relations { <>i, Li}, and obs(Pi) ::::::: {<>i, Li}· 

Note that the relations -<, <>, C are not independent, since it can be proved (see 

[13]) that < = <> n c. The underlying idea is very intuitive. Since the relation 

<> means "earlier than or later than" and the relation C means "not later than", it 

follows the intersection means the "earlier than" relation -<. 

1Unless we assume that simultaneity is not allowed, or not observed, in which case obs(PI) = 
obs(P4) = {o1,o2}, obs(P2) = {oi}, obs(P3) = 0. 
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0 0 0 0 
.fa -}a -}a 

0 0 al 0 
y0 ~ 

0 yj 
0 0{b,c} {b,c}00 yl" 

{b,o} l 
~ ~~ ~ ~ 

@ @ @ @ 

A1 A2 A3 A4 

-<1= {(a, b), (a, c)} -<2= {(a, b), (a, c)} -<3= {(a, b), (a, c)} -<4= {(a, b), (a, c)} 
C1= {(a,b),(a,c)} C2= {(a,b),(a,c),(b,c)} C3= {(a,b),(a,c), C4= {(a, b), (a, c)} 

-1 -1<>1=C1 U c1 <>2=C2 U (b, c), (c, b)} <>4= {(a, b), (b,a),c 2 
obs(P1) x obs(A1) obs(P2) x obs(A2) <>3=C3 u c 3

-1 (a,c),(c,a),(b,c),(c,b)} 
X {-<1} X {-<1,C1} X { -<2, C2} obs(P3) x obs(A3) obs(P4) x obs(A4) 

x {<>1, cl} X { <>2, C2} X { -<3, C3} X {<>4, C4} 
X {<>3, C3} 

Figure 8.1: Examples of causality, weak causality, and commutativity. Each program 
Pi can be modelled by a labelled transition system (automaton) Ai. We use the step 
{b, c} to denote simultaneous execution of a and b. 



Chapter 9 

Relational Representation of 

Mazurkiewicz Traces and 

Comtraces 

It is well known that Mazurkiewicz traces can be interpreted as a formal language 

representation of partial orders. In fact, each comtrace uniquely determines a finite 

stratified order structure and each finite stratified order structure can be represented 

by a comtrace. In this chapter, we will study this relationship in more detail. 

9.1 Partiali Orders and Mazurkiewicz Traces 

Each trace can be interpreted as a finite partial order. Let t = {XI, ... , xk} be a 

trace, and let -<xi be a total order defined by a sequence Xi, i = 1, ... , k then the 

set { -<x1 , ••• , -<xn} is the set of all total order extensions of -<t· By the Szpilrajn 

Theorem, we know that the partial order generated by the trace t can then be defined 

as -<t= n~=I -<xi. 
Conversely, each finite partial order uniquely determines a trace. Let X be a finite 

set, -< C X x X be a partial order, {-<I, ... , -<k} be the set of all total order extensions 

of -<, and let x-<i E X* be a sequence that represents -<i, for i = 1, ... , k. The set 

{x-<I' ... , x-<k} is a trace over the concurrent alphabet (X,~-<)· 

Example 9.1. Let E = {a, b, c, d} where a, b, c and d are four atomic operations 
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defined as follows: 

a: X+-- X+ y, b: y +--X+ W, C: y +-- y + Z, d: W +-- 2y + Z. 

Assuming simultaneous reading and exclusive writing, then a and d can be executed 

simultaneously, and so can the pair of actions b and c. The independency relation 

can be expressed as the following undirected graph: 

a b 

I 
d c 

Given a sequence of operations s = dabcc, we can enumerate the operations of 

s to get the enumerated sequences= d(1)a(1)b(1)c(l)c(2). By interpreting the lack of 

order as independency, we can build a causality partial order -<[s] for s (for simplicity, 

we do not draw arrows resulting from transitivity): 

For example, we have a(l) ,.....,_--<t d(l) because a and dare independent operations. 

The trace 

[s] = { dabcc, adbcc, dacbc, adcbc} 

defines· all the total order extensions of the partial order -<[s] because each sequence 

in [s] induces a total order on the set of event occurrences { a(l), b(l), c(l), c(2), d(1)}: 

• dabcc induces -<ctabcc: d(l) -4 a(l) -4 b(l) -4 c(l) -4 c(2) 
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and we can verify that 

9.2 	 Stratified Order Structure Representation of 

Comtraces 

Analogous to the relationship between Mazurkiewicz traces and partial orders, com­

traces can be seen as a formal language representation of finite stratified order struc­

tures. In [14], Janicki and Koutny showed that each comtrace uniquely determines 

a finite stratified order structure; however, it is not intuitive why their construc­

tion from comtraces to stratified order structures works. Hence, we will introduce 

more techniques to analyse this construction where the keys are the three notions of 

non-serialisable steps and the utilisation of the induction proof techniques. 

Definition 9.1 ([15]). Let S = (X,-<, c) be a stratified order structure. A stratified 

order <l on X is a stratified order extension of S if for all a, {3 E X, 

a -< {3 ===} a <l {3 

a C {3 ===} a <l~ {3 

The set of all stratified order extensions of S is denoted as ext(S). 

Proposition 9.1. Let u, v be two step sequences over a comtrace alphabet 

(E, sim, ser) and u v. Then ~u = ~v· 

Proof. From Proposition 5.1(2), we know that= is event-preserving, i.e. for all e E E, 

we have lule = lvle· Since the enumeration of events in u and v depends on the 

multiplicity of event occurrences in u and v, it follows that ~u = ~v· D 

Thus, for a comtrace t = [u] we can define ~t = ~u· 

The intuition of how a unique stratified order structure is constructed from a 

comtrace is provided in the following example which is analogous to the Example 9.1 

for Mazurkiewicz traces. 
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Example 9.2. Consider a comtrace alphabet C = ({a, b, c}, 8im, 8er) where 

• 8im ={(a, b), (b, a), (a, c), (c, a)} 

• 8er = {(a, b), (b, a), (a, c)} 

The set of all possible steps is {{a, b}, {a, c }, {a}, {b}, { c}}. 

Consider a step sequence 8 1 = {a, b}{c}{a}. With respect to the concurrent 

alphabet C, we have: 

t = [81] = {{a, b}{ c}{ a}, { a}{b}{c}{a}, {b}{ a}{ c}{a}, {b}{ a, c}{a}}. 

Since 1::t = {a(I), a(2), b(l), c(l)}, we can construct the corresponding stratified order 

for each of the element in t as following (the edges resulting from transitivity are 

omitted): 

• 8 1 = {a,b}{c}{a} induces <ls1 : 

• 82 = {a}{b}{c}{a} induces <ls2 : 

• 83 = {b}{a}{c}{a} induces <ls3 : 

a(I) 

/ ~ 
• 84 = {b}{a,c}{a} induces <ls4 : b(l) a(2) 

~ /
c(l) 

By observing all of the possible Mazurkiewicz traces and the order of event oc­

currences, we can build the following stratified order structure 

(9.1) 
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which can be graphically represented as follows (note that the directed edges labelled 

by -<t also denote the Ct relation since -<t ~ Ct): 

We can also check that ext(St) = { <J 8 IsEt}. 

In [14], Janicki and Koutny proposed the notion of <>-closure and used it to 

construct finite stratified order structures from comtraces. For a relation structure 

S = (X, R1 , R2), its <>-closure is defined as 

where (R1U R2 )* denotes the reflexive transitive closure of (R1 U R2 ). 

Definition 9.2 ([14]). Let t = [s] be a comtrace over a comtrace alphabet 

(E, sim, ser). Foro., /3 E L:8 , we can define 

a -<s /3 {:::=::} (l(a), l(/3)) ¢:. ser 1\ pos8 (a) < poss(/3), 

a C 8 (3 {:::=::} (l(/3), l(a)) ¢:. ser 1\ pos8 (a) '5:. pos8 (/3). 

We let <p8 df (L:s, -<s, C 8 )
0 , then the stratified order structure induced by the trace 

t = [s] is 

The fact that 'Pt is defined to be <p8 for any s E t makes sense because of the 

following results: 

Proposition 9.2 (Proposition 4.4 of [14]). Lets be step sequences over a comtrace 

alphabet (E, ser, sim). Then I.{Js is a stratified order structure. D 
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Theorem 9.1 ([14, Theorem 4.10]). Let r and s be step sequences over a comtrace 

alphabet (E, ser, sim). Then 'Pr = 'Ps if and only if r = s. 0 

We also know the following invariant properties of the step sequences that belong 

to the same comtrace: 

Proposition 9.3 ([14, Proposition 4.2]). Lett = [s] be a comtrace over a comtrace 

alphabet (E, sim, ser). If a, {3 E L:t, then 

1. a -<s {3 ==} VuE t. posu(a) < posu(f3) 

2. 	 a Cs {3 ==} VuE t. posu(a)::; posu(f3). 

0 

Proposition 9.4. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser) 

and let 'Pt = (L:t, -<t, Ct) be the stratified order structure induced by t. If a, {3 E I:t, 

then 

1. a -<t {3 ==} VuE t. posu(a) < posu(f3) 

2. aCt {3 ==} (a =I {3 1\ VuE t. posu(a) ::; posu(f3)). 

Proof 1. Assume a -<t {3 and let R = ( -<s U C 8 ), then by definition of <>-closure, we 

have 

a R a1 R . . . R am -<s f3t R . . . R f3n R {3 

for some m, n ~ 0. 

By Proposition 9.3, we know that if 'Y R 5 then for all u E t, we have posu('Y) ::; 

posu(5) and if am -<s f3t then posu(am) < posu(f3t). Hence, for all u E t, we have 

Hence, for all u E t we have posu (a) < posu ({3) as desired. 

2. Assume aCt {3, then by the definition of <>-closure, we have a =I {3 and 

a R a1 R ... R am R {3 

Similarly to (1), we can conclude that for all u E t, we have posu(a) ::; posu(f3) 

as desired. 0 



9. Relational RepiLesentation of Mazurkiewicz Traces and Comtraces 69 

Although the implications of Proposition 9.4 are straightforward consequences 

of how 'Pt is defined, the converses are non-trivial results, which we prove in 

Proposition 9.8. Before doing so, we need some new definitions and preliminary 

results. 

Let A be a step over a comtrace alphabet (E, sim, ser) and let a E A then: 

• 	 The step A is called serialisable if and only if 

~B, C E 8jA. (B U C = A 1\ B x C ~ ser) . 

The step A is called non-serialisable if and only if A is not serialisable, i.e. 

VB, C E .¥A. (B U C = A => B x C Cf:. ser) . 

Obviously for a non-serialisable step, we have [A] = {A}. (Note that every 

non-serialisable step is a synchronous step as defined in Definition 3.6.) 

• 	 The step A is called serialisable to the left of a if and only if 

~B, C E 8jA. (B U C = A 1\ a E B 1\ B x C ~ ser) . 

The step A is called non-serialisable to the left of a if and only if A is not 

serialisable to the left of a, i.e. 

VB, C E .¥A. ((B U C =A 1\ a E B) => B x C Cf:. ser). 

• 	 The step A is called serialisable to the right of a if and only if 

~B, C E 8jA. (B U C = A 1\ a E C 1\ B x C ~ ser) . 

The step A is called non-serialisable to the right of a if and only if A is not 

serialisable to the right of a, i.e. 

VB, C E 8jA. ( ( B U C = A 1\ a E C) ==> B x C Cf:. ser) . 

For a step A, we know that 'PA = (I:A, -<A, C:A)0 is the stratified order structure 

induced by the comtrace [A]. Then we can relate the non-serialisable step definitions 

to the relation C:A in the following proposition. 
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Proposition 9.5. Let A be a step over a comtrace alphabet (E, sim, ser) then 

1. If A is non-serialisable to the left of l(a) for some a E A then 't/[3 EA. a CA. {3. 

2. If A is non-serialisable to the right of l(f3) for some {3 E A then 't/a EA. a CA. [3. 

3. If A is non-serialisable then 't/a,{3 EA. a cA. {3. 

Proof. 1. For any {3 E A, we have to show that a CA. [3. We define the CA-right 

closure set of a inductively as follows: 

RC0 (a) df {a} 

RCn(a) df {8 E A/ :31 E Rcn-1(a) 1\ 1 CA 8} 

We want to prove that if A\ RCn(a) =J 0 then /RCn+l(a)/ > /RCn(a)/. Assume 

that A\ RCn(a) =J 0, and let us consider the set A\ RCn(a) and RCn(a). Since A 
is non-serialisable to the left of l(a) and a E A, we know that 

Thus there exists some 1 E A\ RCn (a) such that there is some 8 E RCn (a) satisfying 

(l(r), l(8)) ~ ser. Hence, by Definition 9.2, we know that 8 CA I· Thus, 1 E 

RCn+l(a) where 1 ~ RCn(a). So /RCn+l(a)/ > /RCn(a)/ as desired. 

Since A is finite and if A\ RCn(a) =J 0 then /RCn+l(a)/ > /RCn(a)/, for some 

n < /A/, we must have RCn(a) =A. Thus, {3 E RCn(a). By the way the RCn(a) is 

defined, it follows that a CA. {3. 

2. The proof is dual to (1) by defining the CKlejt closure set of {3 inductively as 

follows: 

LCO(f3) df {!3} 

LCn(f3) df {8 E A/ ::J1 E Lcn-1([3) 1\ 8 CA 1} 

We then prove that if A\ LCn(f3) =J 0 then /LCn+1(f3)/ > /LCn(f3)/. Thus, for 

some n < /A/, we must have LCn(f3) =A and hence a E LCn(f3). By the way the 
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LCn(f3) is defined, we conclude that a CA {3. 

3. Since A is non-serialisable, it follows that A is non-serialisable to the left of l(a) 

for every a EA. Hence, for every a E A, we have \:1{3 EA. a CA {3 as desired. 

The existence of a non-serialisable sub-step of a step A to the left/right of an 

element a E A can be explained by the following proposition. 

Proposition 9.6. Let A be a step over a comtrace alphabet (E, sim, ser) and a EA. 

Then 

1. There exists a unique B ~ A such that a E B, B is non-serialisable to the left 

of a, and 


A =I B ~ A = (A\ B)B. 


2. There exists a unique C ~ A such that a E B, C is non-serialisable to the right 

of a, and 


A =I C ~ A= C(A \C). 


Proof. 1. If A is non-serialisable to the left of a, then B = A. If A is serialisable to 

the left of a, then the following set is not empty: 

( df { D E ~ I :JC E ffi"'A. (C U D = A 1\ a E D 1\ C x D ~ ser)} 

Let B E ( such that B is a minimal element of the poset ( (, c). We claim that B 

is non-serialisable to the left of a. Suppose for a contradiction that B is serialisable 

to the left of a, then there are some sets E, F E ffi"'B such that 

E U F = B 1\ a E F 1\ E x F ~ ser. 

Since B E x, there is some set G E ffi"'A such that 

G U B = A 1\ a E B 1\ G x B ~ ser. 

Since G x B ~ ser and F C B, it follows that G x F ~ ser. But since Ex F ~ ser, 

we have (G U E) x F ~ ser. Hence, 

(G U E) U F = A 1\ a E F 1\ (G U E) x F ~ ser. 
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So E E ( and E C B. This contradicts that B is minimal. Hence, B is non-serialisable 

to the left of a. 

By the way the set (is defined, A= (A \B)B. It remains to prove the uniqueness 

of B. Let B' E ( such that B' is a minimal element of the poset ((,c). We want to 

show that B = B'. 

We first show that B ~ B'. Suppose for a contradiction that there is some b E B 
such that b =/= a and b rJ. B'. Let a and (3 denote the event occurrences a(l) and b(l) 

in I;A respectively. Since a E B and B is non-serialisable to the left of a, it follows 

from Proposition 9.5(1) that a C:4 (3. But since a =/= b, a (C:4 \idEA) (3. From the 

definition of <>-closure, it follows that a C[A] (3. Hence, by Proposition 9.4(2), we 

have 

VuE [A]. posu(a) ::; posu(f3) (9.2) 

By the way B' is chosen, we know A =(A\ B')B' and b 1- B'. So it follows that 

b E (A\ B'). Hence, we have (A\ B')B' E [A] and pos(A\B')B'(/3) < pos(A\B')B'(a), 

which contradicts (9.2). Thus, B ~ B'. 

By reversing the role of Band B', we can prove that B :2 B'. Hence B = B'. 

2. The proof is dual to (1) by considering the set 

'1/J df {C E &lJA I3D E &lJA. (CUD= A 1\ a E C 1\ C x D ~ ser)}. 

0 

Proposition 9. 7. Lets = A1 ... An, where n ~ 2, be a canonical step sequence over a 

comtrace alphabet (E, sim, ser) and let 8 = A1 ... An be the enumerated step sequence 

of s. Then for every a E An there exist a 1 E A1, ... , an-1 E An-1 such that 

Proof. We proceed by induction on n, the number of steps of s. 

When n = 2, we have s = A1A2. Let C ~ A2 be non-serialisable to the right 

of l(a) as constructed in Proposition 9.6(2). Since s is canonical, by Corollary 4.1, 

A1 x C ~ ser. Hence, there is a 1 E A1 and a~ E A2 such that l(a2) E C and 
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(l(a1), l(a2)) ¢:. ser. So it follows from Definition 9.2 that a1 -<s a2. Since C is non­

serialisable to the right of l(a), by Proposition 9.5(2), a2 c; a. Hence, a1 -<s a2 c; a, 

which implies a 1 ( -< 5 o c;) a. 

When n > 2, we proceed similarly to the case of n = 2 to show that there is some 

an-I E An-I satisfying an-1 (-<s o c;) a. By applying the induction hypothesis on 

an-1, there exist a1 E A1, ... ,an-1 E An-1 such that a1(-<s o c;) ... (-<so c;)an-1· 
Hence, a1(-<s o c;) ... (-<s o c;)an-1(-<s o c;)a. D 

Proposition 9.8. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser) 

and let 'Pt = (:Et, -<t, Ct) be the stratified order structure induced by t. Then for any 

two event occurrences a, {3 E Et: 

1. (VuE t. posu(a) < posu(f3)) ==> a -<t {3, 

2. (a =I {3 1\ Vu ~~ t. posu(a) ~ posu(f3)) ==> aCt {3. 

Proof. 1. Let w = A1 ... An be the canonical representation oft, then by Theorem 9.1 

we have 

'Pt = (Et, -<t, Ct) = (~w, -<w, Cw)0 
. 

We will prove using induction on n (the number of steps of w) that for all a, {3 E 

~[A1 ...An] 

(VuE t. posu(a) < posu(f3)) ==> a -<t {3. 

When n = 0, we have the canonical step is Aand hence the implication is trivially 

true. When n > 0, we observe that w' = A1 ... An_1 is the canonical step sequence 

of the comtrace t' = [s -7-R An]· For all a, {3 E ~t'' since VuE t. posu(a) < posu(f3), it 
follows that 

VuE {vAn \ v = A1 ... An-1}· posu(a) < posu(f3). 

Thus, VuE t'. posu(a) < posu(f3). By induction hypothesis, we have a -<t' {3. Hence, 

from Definition 9.2 and <>-closure definition, a( -<w' U Lw' )*o -<w' o( -<w' U Cw' )*{3. 

But since w' = w -7-R An, it follows that a(-<w U Cw)"'o -<w o(-<w U Cw)"'{3. Thus, 

a -<t {3. We have just shown that: 

Va, {3 E E[A1...An-I]· ((VuE t. posu(a) < posu(f3)) ==> a -<t {3) 
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It remains to show that for all a E I:[A1 ...An-d and f3 E (I:[A1 .•• An] \ I:[A1 ...An_!]), the 
following implication holds 

(VuE t. posu(a) < posu(f3)) => a -<t f3 

We observe that for any a E I:[A1 ...An-1] and (3 E (I:[A1 ... An] \ I:[A1 ... An- 1J) satisfying 

VuE t. posu(a) < posu(/3), 

by Proposition 9.6, there must be some v E t of the form v = ... B C1 ... Ck D ... 

where: 

• a E B and B is non-serialisable to the left of l (a), 

• (3 E D and D is non-serialisable to the right of l ((3). 

Let V be a set containing all such v. Recall that for a step sequence x = E 1 ... Er, 

we define 

J..L(x) '!!._ 1 · /E1/ + ... + r ·/Er/· 

We let Vo = X B 0 cp ... czo D0 y in v such that J..L( C? ... C2o) is the least among 

all vi E V, i.e. 

Then there are two cases to consider: 

Case (i): 


If J..L(Cp ... C2 ) = 0, then we have v0 = x B 0 D 0 y. Since VuE t. posu(a) < posu(/3),

0 

B 0 D 0we know B 0 x D 0 ~ ser. Hence, there is some a 1 E and (31 E such that 

(l (a 1), l ((31)) ¢:_ ser. But since posv0 ( a1) < posv0 ((31), it follows that 

(9.3) 

Since B 0 is non-serialisable to the left of l (a) and D 0 is non-serialisable to the 

right of l(/3), it follows from Proposition 9.5(1, 2) that 

(9.4) 
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From (9.3) and (9.4), we conclude that 

Hence, 

(9.5) 

0By Theorem 9.1, 'Pt = (Et, -<t, Ct) = (Ev0 , -<v0 , Cv0 ) . Thus, it follows from Defini­

tion 9.2 and (9.5) that a -<t (3. 

Case (ii): 

If IL(cp ... C2o) =1- 0, then Vo = X E 0 cp ... czo no y where ko > 0. We know 

that C2
0 

x n° Cf:. ser, otherwise fl(Cp ... C2 
0 

) is not the least. Hence, there is some 

'Yko E czo and (31 E D 0 such that (l ('Y)' l ((31)) tJ. ser. Since posvo ('Y) < pOSvo ((3)' from 
Definition 9.2, it follows that 

(9.6) 

Since !L( cp ... C1~0 ) is the least, by Corollary 4.1, cp ... CZo is canonical. Hence, 

by Proposition 9.7, there exist a sequence /1 E C1, ... ,/ko E Cko (ko 2: 1) such that 

(9.7) 

Let C~ ~ C1 be non-serialisable to the right of l(TI) as given in Proposition 9.6(2). 
Clearly, since fl(Cp ... CZ ) is the least, E0 x C~ C£. ser. Similarly to case (i), we can 

0 

show that 

(}; -<t /1 (9.8) 

Since n° is non-serialisable to the right of l((3), by Proposition 9.5(2), (31 c~o (3. 

So it follows from (9.6) that 'Yko -<vo (31 C~0 (3. Thus, together with (9.7), we get 

Hence, it follows from Definition 9.2 that 

/1 -<t (3 (9.9) 

From (9.8) and (9.9), it follows that a -<t 11 -<t (3. Hence, a -<t (3 by transitivity 

of -<t· 
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2. For any a, f3 E Et, if a f= f3 and VuE t. posu(a) < posu(/3), then by (1) we have 

a -<t /3. Thus, aCt /3. Otherwise, there are some u E t such that posu(a) = posu(f3). 

Hence, there is some step sequence u such that u = r B s and a, f3 E B. If B is 

non-serialisable to the left of l(a), by Proposition 9.5(1), 

(9.10) 


Otherwise, by Proposition 9.6(1), there are some steps C, D c B such that B = 
CD, l (a) E D, and D is non-serialisable to the left of l (a). Hence, there is some 

step sequence v E t such that v = r CD s. Since Vu E t. posu(a) :::; posu(f3)) and 

a E D, it follows that f3 E D. Since D is non-serialisable to the left of l (a), by 

Proposition 9.5(1), 

(9.11) 


Since a f= /3, from (9.10) and (9.11), we have a (c~ \id~v) /3. By 0-closure definition, 

we conclude that aCt f3 as desired. 0 

Proposition 9.9. Lett = [s] be a comtrace over a comtrace alphabet (E, sim, ser) 

and let 'Pt = (Et, -<t, Ct) be the stratified order structure induced by t. Then for any 

two event occurrences a, f3 E Et: 

1. (VuE t. posu(a) < posu(f3)) ~ a -<t /3, 

2. (a f= f3 1\ VuE t. posu(a):::; posu(f3)) ~ aCt /3. 

Proof. Follows directly from Propositions 9.4 and 9.8. 0 

According to the Szpilrajn Theorem, every poset can be reconstructed by taking 

the intersection of its total order extensions. A similar result holds for stratified order 

structures and stratified order extensions. 

Theorem 9.2 ([15, Theorem 2.9]). LetS= (X,-<, c) be a stratified order structure. 

Then 

s = (x, n <1, n <l~) . 
<l E ext(S) <l E ext(S) 

0 
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In the context of comtraces, the following theorem from [14] says that the stratified 

order extensions of ~:Jt are exactly those generated by the step sequences in [t]. 

Theorem 9.3 ([14, Theorem 4.12]). Lett= [s] be a comtrace over a comtrace alphabet 

(E, sim, ser). Then ext(<pt) = {<luI u E t}. D 

Corollary 9.1. Lett be a comtrace over a comtrace alphabet (E, sim, ser). Then 

'Pt = (I;t.n<lu, n<l:) . 
uEt uEt 

Proof. By Theorem 9.3, ext(<pt) = {<luI u E t}. Hence, by Theorem 9.2, we have 

D 

Although Corollary 9.1 is equivalent to Proposition 9.9, we provided the alterna­

tive proofs of Propositions 9.4 and 9.8 without using Theorems 9.2 and 9.3. Firstly, 

it shows that Propositions 9.4 and 9.8 can be proved based on the construction from 

Definition 9.2 without using the sophisticated generalisation of the Szpilrajn Theo­

rem for stratified order structures. Secondly, the proofs of Propositions 9.4 and 9.8 

provide more intuition why any two event occurrences in a comtrace t cannot violate 

the invariants imposed by the generated stratified order structure 'Pt· Moreover, we 

invented three different notions of non-serialisable steps, which are the key to explain 

how the causality and weak causality relations can be derived from the relationships 

among the steps1 (sets of event occurrences) on a step sequence. 

Even though Corollary 9.1 makes it simpler to construct a stratified order struc­

ture from a comtrace, the construction from Definition 9.2 has its own advantages. 

From a single step sequence s and a comtrace concurrent alphabet, the <>-closure 

construction can be used to construct the stratified order structure 'P[s] without the 

need to construct all step sequences in [s] and their generated stratified orders. Also 

1This is different from the construction using <>-closure, which derives a stratified order structure 
by looking at the relationship of every pair of event-occurrences on a step sequence. 
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the 0-closure construction builds the relations -<[s] and C:[s] from the relations -<s and 

C 8 , which are often much simpler and easier to handle. The proof of Theorem 9.5 is 

one such example. 

9.3 	 Comtrace Representation of Finite Stratified 

Order Structures 

Although was shown in [14] that each finite stratified order structure can be repre­

sented by a comtrace, the converse which says each finite stratified order structure can 

be represented by a comtrace was not shown. The intuition of how to construct a fi­

nite stratified order structure from a comtrace can be shown in the following example, 

which is the converse of Example 9.2. 

Example 9.3. Starting from the stratified order structure S = (~,-<,c): 

We can check that 

~ 	= {u I <Ju E ext(S)} 

= {{a,b}{c}{a},{a}{b}{c}{a},{b}{a}{c}{a},{b}{a,c}{a}} 

From~' 	we can build a comtrace alphabet()= (E, sim, ser) where 

• 	E = l(~) = {a, b, c} 

• 	 We define the relation sim such that 

(a, b) E 	sim -¢::::::? ::I<J E ext(S). (l(a) =a 1\ l(/3) = b1\ a,......_"' /3) 

Hence, 	sim ={(a, b), (b, a), (a, c), (c, a)} 
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• 	 We define the relation ser such that 

(a, b) E ser ~ (a, b) E sim 1\ 3<J E ext(S). (l(a:) =a 1\ l((3) = b 1\ a: <J (3) 

Thus, ser = {(a, b), (b, a), (a, c)} 

Clearly, ~ is a comtrace over (). 0 

Before proving the main theorem of this chapter, we need several results from 

[15, 14] and their corollaries. The first result comes from the fact that stratified order 


structures conform to paradigm 1r3 . 


Theorem 9.4 ([15, Theorem 3.6]). LetS= (X,-<, c) be a stratified order structure. 

Then 

((3<J E ext(S). oc <J (3) 1\ (3<J E ext(S). (3 <J a:)) ==> (3<J E ext(S). (3 ,......._<J a:). 

0 

Corollary 9. 2. Let S = (X, -<, C) be a stratified order structure. Then 

(V<J E ext(S). a: <J ;3 V (3 <J a:) ==> ((V<J E ext(S). a: <J (3) V (V<J E ext(S). (3 <J a:)). 

Proof. Assume 

V<J E ext(S). a: <J (3 V (3 <J a: (9.12) 

and suppose for a contradiction that 

•(V<J E ext(S). a: <J (3) 1\ •(\f<J E ext(S). (3 <J a:). 

Hence, it follows that 

(3<J E ext(S). a: <J~ (3) 1\ (3<J E ext(S). (3 <J~ a:) (9.13) 

If 3<J E ext(S). (3 ,......._<J a:, then we get a contradiction with the assumption (9.12). 


Otherwise, suppose that •(3<J E ext(S). (3 ,......._<J a:). Then it follows from (9.13) that 


(3<J E ext(S). a: <J (3) 1\ (3<1 E ext(S). (3 <J a:). 

But this implies :l<J E ext(S). (3 ,......._<J a: by Theorem 9.4, which again contradicts the 

assumption (9.12). 0 
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Proposition 9.10 (Propositions 3.4 and 3.5 of [14]). If S = (X,-<, c) is a stratified 

order structure, and S0 = (X, -<0, Co) is a relational structure such that S0 ~ S, then 

sg is a stratified order structure satisfying sg ~ S. D 

Before proving the next lemma, we need a standard set-theoretic result. 

Proposition 9.11. If X= nA andY= nB and A~ B, then Y ~X. 

Proof. Suppose that X E y = nB. Hence, vc E B. X E c. But since A ~ B, it 

follows that for all vc EA. X E C. Thus, X EX= nA. Hence, y ~X. D 

Lemma 9.1. Let So= (X, -<0, Co) and S1 =(X, -<1, ci) be stratified order structures 

such that ext(So) ~ ext(S1). Then S1 ~Sa. 

Proof. By Theorem 9.2, we know -<o= n<l Eext(So) <J and -<1 = n<l Eext(Sr) <J. But 
since ext(So) ~ ext(S1), it follows from Proposition 9.11 that 

-<1 ~ -<o (9.14) 

By Theorem 9.2, we know Co= n<l Eext(So) <J,....._ and c1= n<l Eext(Sl) <J,.....,, Since 
ext(S0 ) ~ ext(S1), we have 

{ <J,....., I <J E ext(So)} ~ {<J,....., I <J E ext(S1) }. 

Thus, it follows from Proposition 9.11 that 

(9.15) 

From (9.14) and (9.15), we conclude S1 ~ S0 . D 

We will now show that we can build a comtrace from a finite stratified order 

structure using the construction from Example 9.3, where sim and ser are binary 

relations defined on the labels of the event occurrences. Although this method allows 

us to represent a labelled finite stratified order structure using a comtrace defined 

over a more concise comtrace alphabet, it does not work for every finite stratified 

order structure. For example, in the following stratified order structure 

c ~ ~ 
a(l) .............:.- b(1) -- a(2) -- b(2) 




9. 	Relational Representation of Mazurkiewicz Traces and Comtraces 81 

we cannot define (a, b) E ser since a(2) -< b(2). Also since sim is irrefiexive, in the 

following stratified order structure, we cannot say that (a, a) E sim. 

ca(l) .............:.- a(2) 


However, the construction works for a special kind of finite stratified order structures 

which we define next. 

Definition 9.3. A finite stratified order structure S = (:E, -<,c) is a proper stratified 

order structure if it satisfies the following three conditions: 

1. 	 L: is the set of event occurrences. 

2. 	 If a,{3 E I:, a -=J {3, and l(a) = l([3), then (l(a),l(f3)) E-< U -<-1. 

3. 	 Let <]J, <J4 be stratified orders on L: where n<la = X 1 ... Xm(X U Y)Y1 ... Yn 

and n<la = X 1 ... XmXYYl ... Yn and 

l(a) = l(a') 

A l([3) = l(f3')
\Ia EX. \1(3 E Y. :3<J 1 , <J 2 E ext(S). :3a', (3' E I:. 

A a' <li {3' 


A a' r--.<!2 {3' 


Then <J3 E ext(S) if and only if <J4 E ext(S). 

Theorem 9.5. Let: S = (I:,-<, c) be a proper stratified order structure, .6. = {u I 
<lu E ext(S)}, and E = l(L:). Let relations sim, ser ~ Ex E be defined as follows: 

(l(a), l(f3)) E sim {=::} :3<J E ext(S). a r--.<l {3 (9.16) 

(l(a), l(f3)) E ser {=::} (l(a), l([3)) E sim A 3<J E ext(S). a <J {3 (9.17) 

Then we have: 

1. 	 (} = (E, sim, ser) is a comtrace alphabet, 

2. 	 .6. is a com trace over (}. 
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Proof. 1. For any two labels a, bE l(:E) we have (a, b) E sim. Because Sis a proper 

stratified order structure, by Condition (2) of Definition 9.3 we know that for all 

a,/3 E E, 
l(a) = l(/3) :=::} (l(a), l(/3)) E-< U -<-1 

. 

This mean for all a, j3 E E, 

l(a) = l(/3) ==? 'v'<J E ext(S). •(a ,......_<l {3). 

But since ,......_<l is irrefiexive and symmetric, it follows that the relation sim is irrefiexive 

and symmetric. 

From (9.17), (a, b) E ser implies that (a, b) E sim. So ser ~ sim. 

It remains to show that for any pair of distinct element a, j3 satisfying posu(a) = 

posu ({3) for some u E .6. (a and j3 are in the same step of u), we have ( l(a), l({3)) E sim. 

But posu(a) = posu(f3) implies a ,......_<l j3 for some <1 E ext(S). Hence, from (9.16), 

(l(a), l(f3)) E sim. 
Hence, (E, sim, ser) is a comtrace alphabet as desired. 

2. We first need to check that all u E .6. are step sequences over the alphabet (). 

Let u = A1 ... An E .6. and u = A1 ... An be the enumerated step sequence of u. We 

want to show for any a, j3 E Ai for any i, (l(a), l(/3)) E sim. But since 

and <lu E ext(S), it follows from (9.16) that (l(a), l(/3)) E sim. 

Next we let u be a step sequence in .6. and Su = (I:, -<u, Cu) as from Definition 9.2. 

We want to show that that 'Pu = S~ ~ S. By Proposition 9.10, it suffices to show 

that Su ~ S. 
Assume a -<u {3, then from Definition 9.2, a <lu {31\ (l(a), l({3)) ¢:. ser. From (9.16) 

and (9.17), it follows that 

a <lu j3 1\ (•(3<1 E ext(S). a <1 /3) V •(3<1 E ext(S). a ,......_<l {3)). 

Since •(3<1 E ext(S). a <1 {3) contradicts that a <lu {3, we have 

a <lu f3 1\ •(3<1 E ext(S). a ,......_<l {3). 
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Hence, 

0'. <Ju {3 !\ ('v'<J E ext(S). 0'. <J {3 V {3 <J 0'.). 

Then, by Corollary 9.2, 

a <Ju fJ !\ (('v'<J E ext(S). a <J {3) V ('v'<J E ext(S). {3 <J a)). 

Since a <Ju {3 contradicts that 'v'<J E ext(S). {3 <J a, it follows that 

'v'<J E ext(S). a <J {3 (9.18) 

By Theorem 9.2, -<= n<lEext(S) <J. Hence, (9.18) implies 0'.-<( {3. 

Assume a Cu {3, then by Definition 9.2, a <J;:' {3 !\ (l(/3), l(a)) ¢; ser. From (9.16) 

and (9.17), it follows that 

a <J;; {3 /\ ( •(::l<J E ext( S). {3 <J a) V -.(:3<J E ext(S). {3 ,.....,.<l a)). 

Hence, 

a <J;; {3 !\ ( ('v'<J E ext(S). a <J;; {3) V ('v'<J E ext(S). a <J {3 V {3 <J a)). 

If 'v'<J E ext(S). a <J {3 V {3 <J a, then it must follow that a <Ju {3. This is the same to 

the case of a -<u {3. Hence, a -< {3, which implies a C::: {3. Otherwise, we have 

a <J;; {3 !\ ('v'<J E ext( S). a <J;:' (3). 

Thus, 

'v'<J E ext( S). a <J;:' {3 (9.19) 

By Theorem 9.2, C:::= n<lEext(S) <J~. Hence, (9.19) implies 0'. c::: {3. 

Thus, we have shown 

<{Ju C S (9.20) 

Our next goal is to prove S C <fJu· By Lemma 9.1, it suffices to show that 

ext(<pu) ~ ext(S). 
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We observe that from a step sequence u E .6.., by Definition 3.5, we can build the 

comtrace [u] over the alphabet () using the following inductive derivation sets: 

Do(u) df {u} 

Dn(u) df {w IwE nn-1(u) v 3v E nn-1(u). ( v ~ w v v ~-1 w)} 

Since u has finite event occurrences, [u] is finite. Hence, [u] = Dn(u) for some 

n 2: 0. We will prove by induction on n that if w E Dn(u) then <lw E ext(S). When 

n = 0, D 0 (u) = {u}. Since u E .6.., <lu E ext(S). When n > 0, let w be an element of 

Dn(u). Then either wE nn-1(u) or wE (Dn(u) \ nn-1(u)). For the former case, by 

induction hypothesis, <lw E ext(S). For the later case, there must be some element 

v E nn-1(u) such that v ~ w or v ~-1 w. By induction hypothesis, <lv E ext(S). 

We want to show that <lw E ext(S). 

Case (i): When v ~ w, by Definition 3.5, v = yAz and w = yBCz where A, B, 

C are steps satisfying B nC = 0 and B U C = A and B x C ~ ser. Let v = yAz and 

w = yB CZ be enumerated step sequences of v and w respectively. Since B x C ~ ser, 

it follows from (9.17) that 

l(a) = l(a') 

1\ l(/3) = l(/3')
Va E B. V/3 E C. 3<11, <1 2 E ext(S). 3a', /3' E I::. 

1\ a' <11 !3' 
1\ a' "' <l2 /3' 

Hence, by Condition (3) of Definition 9.3 and <lv E ext(S), <lw E ext(S). 

Case (ii): When v ~-1 w, by Definition 3.5, w = yAz and v = yBCz where 

A, B, Care steps satisfying B n C = 0 and B U C = A and B x C ~ ser. Let 

w = yAz and v = yB CZ be enumerated step sequences of w and v respectively. 

Again similarly to the previous case, since B x C ~ ser and <lv E ext(S), it follows 

from Condition (3) of Definition 9.3 that <lw E ext(S). 

Hence, we have shown that for all n 2: 0, if wE Dn(u) then <lw E ext(S). Thus, 

{ <lw IwE Dn(u)} ~ ext(S) for every n 2: 0. But since Theorem 9.3 implies that 

ext(cpu)= {<lw IwE [u]} = { <lw I WE Dn(u)} 
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for some n ~ 0, we conclude ext(cpu) ~ ext(S). Thus, by Lemma 9.1, we have also 

shown 

(9.21) 

From (9.20) and (9.21), we conclude that 'Pu = S for any u E .6.. Thus, for any 

u E .6., it follows from Theorem 9.3 that 

ext(S) = ext(cpu) = {<lw IwE [u]}, 

which means [u] = { w I <lw E ext(S)}. So we conclude .6. = { w I <lw E ext(S)} = [u] 

is a comtrace over (} as desired. D 

Although Theorem 9.5 only shows how proper stratified order structures can be 

represented using comtraces, any stratified order structure (I:, C, -<) can be repre­

sented by a comtrace by redefining the labelling function as 

df 'dl = ~ E· 

In other words, we treat two occurrences of the same event as if they are two distinct 

events. The construction of Theorem 9.5 works because of the following proposition. 

Proposition 9.12. Let S = (I:, c, -<) be a finite stratified order structure and l df 

idr;. Then S is a proper stratified order structure. 

Proof. Since we redefine l = idr;, the Conditions (1) and (2) of Definition 9.3 are 

trivially satisfied since no "event" occurs more than once. To verify Condition (3), 

let <13 and <14 be stratified orders on I: where O<J3 = X 1 ... Xm(X U Y)Yi. ... Yn and 

O<J3 = X1 ... XmXYYl ... Yn and 

Va EX. \;/{3 E Y. :l<J1, <l2 E ext(S). :Ja', {3' E I:. 
1\ 

1\ 

1\ 

l(a) = l(a') 
l(f3) = l(f3') 
a' <h {3' 

a' ,...-..._<J2 {3' 

But since l = idr;, it follows that 

Va EX. \;/{3 E Y. :l<J~, <l2 E ext(S). (a <l1 {3 1\ a ,.....,.<J2 {3) (9.22) 
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We want to show that <1 3 E ext(S) if and only if <14 E ext(S). 

(=?) Suppose for a contradiction that <1 3 E ext (S) and <14 tf. ext (S). Hence, by 

Definition 9.1, there are some a, f3 E ~ such that one of the following holds 

a-< f3 1\ •(a <14 /3) (9.23) 

a C::: f3 1\ •(a <14 /3) (9.24) 

Since <14 = <13 U X x Y and <13 E ext(S), (9.23) cannot be satisfied. Hence, (9.24) 

must hold. Since •(a <14 /3), we know f3 <14 a. Because <14 = <1 3 U X x Y, we must 

have f3 EX and a E Y. By (9.22), it follows that 

:3<1 E ext(S). f3 <I a 

Thus, :3<1 E ext(S). •(a <I~ /3). But by Theorem 9.2, C:::= n<1Eext(S) <1~. Hence, it 

follows that •(a c::: /3), , which contradicts (9.24). 

(-<=) Suppose for a contradiction that <14 E ext(S) and <1 3 tf. ext(S). Hence, by 

Definition 9.1, there are some a, f3 E ~ such that one of the following holds 

a-< (31\ •(a <13 /3) (9.25) 

a C::: f3 1\ •(a <13 !3) (9.26) 

Since <1 3 = <14\X x Y, we know that if a <14 f3 then a <13 (3. But since <14 E ext(S), 

(9.26) cannot be satisfied. Hence, (9.25) must hold. Because <13 = <14 \X x Y, we 

must have a, f3 EX UY. By (9.22), it follows that 

:3<1 E ext(S). f3 ~<1 a 

But by Theorem 9.2, -<= n<1Eext(S) <J. Hence, •(a -< /3), which contradicts (9.25). D 



Chapter 10 

Relational Representation of 

Generalised Comtraces 

In this chapter, we analyse the relationship between generalised com traces and gen­

eralised stratified order structures with the main result showing that each generalised 

comtrace uniquely defines a finite generalised stratified order structure. 

10.1 	 Properties of Generalised Comtrace Congru­

ence 

In this section, we prove some basic properties of generalised comtrace congruence. 

Proposition 10.1. Let§ be the set of all steps over a generalised comtrace alphabet 

(E, sim, ser, inl) and u, v E §*. Then 

1. u v 	 ===> weight( u) = weight(v). (step sequence weight equality) 

2. u-v 	===> iula = lvla· (event-preserving) 

3. u=v 	===> u+Ra v+Ra. (right cancellation) 

4. u v 	 ===> u +La= v +La. (left cancellation) 

5. u = v 	¢::::::} Vs, t E §*. sut svt. (step subsequence cancellation) 

87 
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6. u- v ===? nn(u) =nn(v). (projection rule) 

Proof For all except (5), it suffices to show that u ~ v implies that the right hand 

side of (1)-(6) holds. Notice that when u ~ v, the case u = xAy ~ v = xECy 

follows from Proposition 5.1. So we only need to consider the case u = xAEy and 

v = xEAy, where A x E ~ inl and An E = 0. 

1. We have: 

weight(u) = weight(x) + weight(A) + weight(E) + weight(z) 

= weight(x) + weight(E) + weight(A) + weight(z) = weight(v). 

2. lula = lxla + IAia +lEla+ lzla = lxla +lEla+ IAia + lzla = lvla· 

3. We want to show that u --;-R a~ v --;-R a. There are four cases: 

• a E l±J(y): Let z = y 7R a. Then u 7R a= xAEz ~ xBAz = v 7R a. 

• a fj.l±J(y), a E E: Then u 7R a= xA(E \{a} )y ~ x(B \{a} )Ay = v 7R a. 

• a fj.l±J(Ey), a E A: Then u--;-R a= x(A \ {a})Ey ~ xE(A \ {a})Cy = v 7R a. 

• a fj.l±J(AEy): Let z = x 7R a. Then u 7R a= zAEy ~ zEAy = v 7R a. 

4. Dually to (3). 

5. (::::}) We want to show that u ~ v ===? Vs, t E §*. sut ~ svt. For any two 

step sequences s, t E §*, we have sut = sxAByt and svt = sxEAyt. But this clearly 

implies sut ~ svt by how ~ is defined in Definition 3.10. 

( ¢:) For any two step sequences s, t E §*, since sut _ svt, it follows that 

Therefore, u - v. 
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6. 	 We want to show that 7rv(u) ~ 7rv(v). Note that 7rv(A) x 7rv(B) ~ inl, so 

7rv(u) = 7rv(x)7rv(A)7rv(B)7rv(Y) =7rv(x)7rv(B)7rv(A)7rv(C)7rv(Y) = 7rv(v). 

D 

Proposition 10.2. If u and w are two step sequences over a generalised comtrace 

alphabet (E, sim, ser, inl) satisfying u = v then :Eu = :Ev. 

Proof. From Proposition 10.1(2), we know that = is event-preserving, i.e. for all 

e E E, we have iule = lvle· Since the enumeration of events in u and v depends only 

on the multiplicity of event occurrences in u and v, it follows that :Eu = :Ev. D 

Thus, for a generalised comtrace t = [u], we can define :Et = :Eu. Furthermore, 

each enumeration of events specifies an invariant on the positions of any two event 

occurrences as shown in the next proposition. 

Proposition 10.30 Let u be a step sequence on a generalised comtrace alphabet 

(E,sim,ser,inl) and a,{J E :Eu such that l(a) = l({J). Then 

1. 	 posu(a)-=} posu(f3) 

2. 	 If posu(a) < posu(f3) and there is a step sequence v satisfying v =u, then 

posv (a) < posv ({3). 

Proof. 1. Follows from the fact that sim is irreflexive. 

2. 	 It suffices to show that if posu(a) < posu(f3) and v ~ u, then posv(a) < posv(f3). 

But this is clear from Definition 3.10 and the fact that ser and inl are irreflexive. 

D 

The following proposition ensures that if an invariant between the positions of 

two event occurrences is satisfied by the cancellation or projection of a generalised 

comtrace [u], then it is also satisfied by [u]. 

Proposition 10.4" Let u be an enumerated step sequence on a generalised comtrace 

alphabet (E, sim, ser, inl) and a, {3, 1 E :Eu such that 1 ¢:.{a, {3}. Then 

1. 	 (VV E [u + L 1]. posv(a) R posv(f3)) ===} ('VW E [u]. posw(a) R posw(f3)) 
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2. (VV E 	[u +R 1]. posv(a) R posv(f3)) ~ (VW E (u]. posw(a) R posw(f3)) 

3. If S ~ 	Eu such that {a,(3} ~ S, then 

(VV E [7rs(u)]. posv(a) R posv(f3)) ~ (VW E [u]. posw(a) R posw(f3)) 

where R 	E {::;, ~' <, >, =, :f':}. 

Proof 1. 	Assume that 

Vv E (v +L I]. posv( a) R posv(f3) 	 (10.1) 

Suppose for a contradiction there is some w E [v] such that -, (posw( a) R posw(f3))). 

Since I f}. {a,(3}, we have •(posw+L"((a) n posw+L'Y(f3)). But w E [v] implies 

w +L I= u +L I· Hence, w +LIE [u -TL I] and •(posw+L'Y(a) n posw+L'Y(f3)), which 
contradicts the assumption (10.1). 

2. Dually to (1). 

3. Assume that 

Vv E [1rs(u)]. posv(a) R posv(f3) (10.2) 

Suppose for a contradiction there is some wE [v] such that •(posw(a) R posw(f3))). 

Since {a, (3} ~ S, we have •(pos11"s(w)(a) R pos11"s(w)(f3)). But wE [v] implies 1rs(w) 
1rs(u). Hence, 1rs(w) E [7rs(u)] and •(pos11"s(w)(a) R pos11"s(w)(f3)), which contradicts 

the assumption (10.2). 

10.2 	 Commutative Closure of Relational Struc­

tures 

In this section, we develop the notion of commutative closure of a relational structure. 

It roughly corresponds to the notion of <>-closure which is used to construct stratified 

order structure in Definition 9.2. 

For a binary relation Ron X, we let R~ denote the symmetric closure of R, i.e., 

R~ df RU R-1 . 

0 
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Definition 10.1. Let G = (X,<>, c) be a relational structure and-< =<> n c* . Let 

(X, -<0 , Co)= (X,-<, c)<>. Then the commutative closure of the relational structure 

G is defined as 

G !XI df (X !::+ )= ,-<o U <>,Co . 

0 

In the rest of this section, we will prove some useful properties of the commutative 

closure. 

Proposition 10.5. Let G = (X,<>, c) be a relational structure and -< =<> n c*. 

If (X, -<o, Co) = (X,-<, c)<> is a stratified order structure then 

-<a = (-<o!::+ U <> )n Co . 

Proof. (~) Since (X, -<0 , Co) = (X,-<, c)<>, by definition of 0-closure, -<o ~ Co. 

Since we also have -<o ~ (-<o U <>), it follows that -<o ~ (-<a!:+ U <>)nCo . 

(2) Suppose for a contradiction that (x, y) E (-<a!:+ U <>)n Co and •(x -<o y). 
There are two cases to consider: 

• 	If x -<01 y and x Co y: Since (X, -<0 , c 0 ) is a stratified order structure, it 

follows from Remark 8.1 that y -<ox ===> •(x Coy), a contradiction . 

• 	If (x, y) E<> and X Coy: Since (X, -<o, Co) = (X,-<, c)<>' -<o = (-< u c)*o -< 

o(-< U c)* and Co= (-< U c)*\ idx. Since x Coy and •(x -<o y), it follows that 

(x, y) E (c* \idx ). Since (x, y) E (c* \idx) and (x, y) E<>, we have x -< y. 

Hence, x -<o y, a contradiction. 

Since either case leads to a contradiction, we get -<o 2 ( -<o!::+ U <>)n Co . 0 

Proposition 10.6 ([14, Proposition 3.3]). Let S be a relational structure and 

(X,-<, c) = s<>. Then s<> is a stratified order structure if and only if-< is irrefiex­

~. 	 0 

Proposition 10.7 ([14, Proposition 3.4]). If S is a stratified order structure then 

s = s<>. 	 o 
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Proposition 10.8. If G = (X,<>, c:::) is a generalised stratified order structure then 

G=GrxJ. 

Proof. Since G is a generalised stratified order structure, by Definition 8.2, Sa = 

(X, -<a, c:::) is a stratified order structure. Hence, by Proposition 10.7, Sa = sg, 
which implies C:::= (-<a U c:::)* \ idx. But since Sa is a stratified order structure, 

-<a~ c:::. So C:::=C:::* \idx. Let -<=<> n c:::*. Then since<> is irreflexive, 

-<=<> n c:::*=<> n (c:::* \idx) =<> n C:::=-<a . 

Hence, (X,-<, c:::) = (X, -<a, c:::) is a stratified order structure. By Proposi­

tion 10.7, (X,-<,C:::) = (X,-<,C:::) 0 . So from Definition 10.1, it follows that GrxJ = 

(X, -<t::> U <>, c:::). Since -< ~ <> and (by Definition 8.2) <> is symmetric, we have 

-<t::> u <>=<> . Thus, G = G rxJ. D 

Proposition 10.9. If G1 = (X, <>1, c::: 1) and G2 = (X, <>2, C:::2) are two relational 

structure such that G1 ~ G2 then G1rxJ ~ G:f. 

Proof. 

G1 ~ G2 

===> ( By definition of relational structure extension ) 


<>1 ~ <>2 1\ C:::1 ~ C:::2 

===> ( By properties of set-theoretical intersection ) 


(<>1 n c:::!) ~ (<>2 n c:::;) 1\ c:::1 ~ c:::2 

===> ( By definition of <>-closure ) 


(X, <>1 n c:::t, c:::I) 0 ~ (X, <>2 n C:::2, C:::2) 0 


===> (Let (X,-<~, c:::~) =(X, <>1 n C:::i, c:::I) 0 and 


(X,-<~, c:::~) = (X, <>2 n C:::2, C:::2) 0 
) 


(X,-<~,c:::~) ~ (X,-<~,c:::~) 


===> ( By properties of U and inverse operations and <> 1 ~ <>2 ) 


(X,-<~ t::> U <>1, c:::~) ~ (X,-<~ t::> U <>2, c:::~) 


===> ( By definition of commutative closure ) 


cr~cr 
D 
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10.3 	 Generalised Stratified Order Structures Gen­

erated by Step Sequences 

We have seen how we can construct a stratified order structure from a step sequence 

over a comtrace alphabet in Definition 9.2. We will now introduce an analogous 

construction from a step sequence over a generalised comtrace alphabet to a 

generalised stratified order structure. 

Let R be a binary relation on X. Then the symmetric intersection of R is defined 

as 

si(R) df R n R-1 

And we define the complement of R to be 

R 0 df (X x X)\ R 

Definition 10.2. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl). For a, /3 E ~s 

a <>s /3 ¢::::::? (l(a), l(/3)) E inl (10.3) 

a Cs /3 ¢::::::? (poss(a) :::; pass(/3) 1\ (l(/3), l(a)) t/: ser U inl) (10.4) 

a -<s /3 ¢::::::? pass(a) < pass(/3) 

(l(a), l(B)) tf. ser U inl 


V (a, /3) E <>s n (si(c:) o <>~ o si(c:)) 

1\ 
 (l(a), l(/3)) E ser ) 

V 
( 

1\ 38, 'Y E ~s· ( pass(8) < pass( 'Y) 1\ (l(8), l(r)) tf. ser ) 
1\ a c*s 8 c*s /3 1\ a c*s 'Y c*s /3 

(10.5) 

We define the relational structure induced by s as 
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Proposition 10.10. Let u, w are step sequences over a generalised comtrace alphabet 

(E,sim,ser,inl) suchthatu(~u~-1)w. Then 

1. 	 Ifposu(a) < posu({J) and posw(a) > posw(/3) then there are x, y, A, B such that 
u = xA By(~ U ~-l )xB Ay = w and a E A, /3 E B. 

2. 	 If posu(a) = posu(/3) and posw(a) > posw(/3) then there are x, y, A, B, C such 

that u = xAy ~ xB Cy = w and f3 E B and a E C. 

Proof. 1. Assume posu(a) < posu(/3) and posw(a) > posw(/3). Since u(~ U ~-1 )w, 

we observe that 

• 	 If u = sDt ~ sE Ft = w, then Va, f3 E l-tj(u), 


posu (a) < posu (/3) ===? posw (a) < posw (!3). 


• 	 If u = sD Et ~ sFt = w, then Va, f3 E l-tj(u), 


posu (a) < posu (!3) ===? posw (a) ~ posw (/3). 


Either case contradicts the assumption that posw(a) > posw(/3). Hence, it must be 

the case that 
u = xA By(~ U ~-1)xB Ay = w 

for some x, y, A, B. We will show that a E A and f3 E B. Suppose for a contradiction 

that a ¢:. A or f3 ¢:. B. Then 

• 	If a¢:. A, then Va, f3 E l-tj(x) U B U l-tj(y), 

posu (a) < posu (/3) ===? posw (a) < posw (/3), 


a contradiction. 


• 	If f3 ¢:. B, then Va, f3 E l-tj(x) U AU l-tj(y), 

posu (a) < posu (/3) ===? posw (a) < posw (/3), 


a contradiction. 
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Hence, u = xA By(-;:::, U -;:::,- 1)xB Ay = w where a E A and f3 E Bas desired. 

2. 	 Can be shown in a similar way to (1). D 

Proposition 10.11. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl). !fa, f3 E ~8 , then 

1. 	 a <>s f3 ==> 'v'u E [s]. posu(a) =J posu(f3) 

2. 	 a C 8 f3 ==> VuE [s]. posu(a) ~ posu(f3) 

3. 	 a -<s f3 ==> VuE [s]. posu(a) < posu(f3) 

Proof. 1. Assume that a <>s {3. Then, by (10.3), (l(a), l(/3)) E inl. This implies 

that l(a) =J l(/3), so a f {3. Also since inl n sim = 0, there is no step A where 

{l(a), l(/3)} EA. Hence, VuE [s]. posu(a) =J posu(/3). 

2. Assume that o: C 8 {3. Suppose for a contradiction that :3u E [s]. posu(a) ~ 

posu(f3). Then must be some u1, u1 E [s] such that u1(:::::: U ::::::::- 1)u2 and posu1 (a) ~ 

poSu1 (/3) and posu2 (a:) > posu2 (/3). There are two cases: 

• 	If posu1 (a) < posu1 ({3) and posu2 (a) > posu2 (/3), then it follows from Proposi­

tion 10.10(1) that there are x,y,A,B such that u1 = xA By(::::: U ::::::-1)xB Ay = 

u2 and a E A,,B E B. Hence, (l(a),l(/3)) E inl. By (10.4), this contradicts that 

a Cs /3. 

• 	If posu1 (a) = posu1 (/3) and posu2 (a) > posu2 (/3), then it follows from Proposi­

tion 10.10(2) that there are x, y, A, B, C such that u1 = xAy-::.:::, xB Gy = u2 and 

f3 E B and a E C. Thus, (l(/3), l(a)) E ser. By (10.4), this again contradicts 

that a Cs {3. 

Since either case leads to a contradiction, we conclude VuE [s]. posu(a) ~ posu(/3). 

3. Assume that a -<s {3. Suppose for a contradiction that :3u E [s]. posu(a) 2: 
posu(f3). Then must be some u1,u1 E [s] such that u1(-;:::, U -;:::,-1)u2 and posu1 (a) < 
poSu1 (/3) and posu2 (a) 2: posu2 (/3). There are two cases: 
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• 	If posu1 (a) < posu1 ((3) and posu2 (a) = posu2 (/3), then it follows from Proposi­

tion 10.10(2) that there are x, y, A, B, C such that u2 = xAy ~ xB Cy = u1 

and a E B and (3 E C. Thus, (l(a), l(f3)) E ser and •(a <>8 (3). Hence, it 

follows from (10.5) that 

:38, 'Y E I: . ( pos8(8) < pos8('Y) 1\ (l(8), l('Y)) ¢:. ser )
8

1\ a c:::* 8 c:::* (3 1\ a c:::* c:::* (3'V8 8 8 I 8 

By (2) and transitivity of ~' we have 

'Y =1- 8 1\ (l(8), l('Y)) ¢:. ser ) 
1\ (VuE [s]. posu(a) ~ posu(8) ~ posu(f3))

( 
1\ (VuE [s]. posu(a) ~ posu('Y) ~ posu(f3) 

But since a, (3 E B U C = A, it follows that {"(, b} ~ A, which implies 

posu2 ('Y) = posu2 ( 8). Since we also have pos8(8) < pos8('Y), it follows from 

Proposition 10.10(2) that there are z, w, D, E, F such that zDw ~ zE FW and 

8 E E and 'Y E F. Thus, (l(8), l('Y)) E ser, a contradiction. 

• 	If posu1 (a) < posu1 ((3) and posu2 (a) > posu2 ((3), then it follows from Proposi­

tion 10.10(1) that there are x, y, A, B such that u1 = xA By(~ U ~-1)xB Ay = 
u2 and a E A, (3 E B. Hence, (l(a), l(f3)) E inl. Since we assume a -< 8 (3, by 

(10.5), it follows that (a, (3) E<> 8 n (si(c;) o <>: o si(c;)). Hence, there must 

be some"(, 8 such that a si(c;) 'Y <>: 8 si(c;) (3. Observe that 

a si(c;) 'Y 


===> ( By definition of si ) 


a (c:::;) 'Y 1\ 'Y (c;) a 

===> ( By (2) and transitivity of~ ) 


(VuE [s]. posu(a) ~ posu('Y)) 1\ (VuE [s]. posu('Y) ~ posu(a)) 


===> ( By logic ) 


(VuE [s]. posu(a) = posu('Y)) 


===> ( Since a E A ) 


{a,'Y} ~A 


Similarly, since 8 si(c;) (3, we can show that {8,(3} ~B. Hence, since 

xA By(~ U ~-I) xB .Ay, we get A x B ~ inl. So (l('Y), l(8)) E inl. But 

'Y <>8c 8 implies that (l('Y), l(8)) ¢:. inl, a contradiction. 
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Since either case leads to a contradiction, we conclude \fu E [s]. posu(a) < posu(f3). 

Proposition 10.12:. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl) and ~s = (~8 , <>, C::). If a, j3 E ~8 , then 

1. a<> j3 ==} 'v'u E [s]. posu(a) =f. posu(f3) 

2. a C:: j3 ==} \fu E [s]. posu(a) :::=; posu(f3) 

Proof. 1. Let C::o=-<s U C::s, <>o=-<s U <>s and -<o=<>o n C::~. We then let -<I= 

(-<o U C::o)* o -<o o ( -<0 U C::o)*. By Definitions 10.2 and 10.1, we have 

By Proposition 10.11, for a, j3 E ~8 , we have 

a C::o j3 ==} \fu E [s]. posu(a) :::=; posu(f3) (10.6) 

a <>o j3 ==} \fu E [s]. posu(a) =f. posu(f3) (10.7) 

Hence, by transitivity of:::=;, we have 

a -<o j3 ==} \fu E [s]. posu(a) < posu(f3) (10.8) 

But since -<I= (-<o U C::o)* o -<o o ( -<o U C::o)*, by transitivity of < and :::=;, we have 

a -<I j3 ==} \fu E [s]. posu(a) < posu(f3) (10.9) 

Since<>= (-< 1 U <>o) U (-<I U <>o)-I, from (10.7) and (10.9), it follows that 

a<> j3 ==} \fu E [s]. posu(a) =f. posu(f3). 

2. By Definitions 10.2 and 10.1, we have C::= (-<0 U C:: 0 )* \idEs· Hence, it follows 

from (10.7), (10.8) and transitivity of< and :::=; that 

a C:: j3 ==} VuE [s]. posu(a) ~ posu(f3). 

0 
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Note that the definitions of non-serialisable steps, defined using only the relation 

ser, are still valid for the case of generalised comtraces. Moreover, the following 

results still hold. 

Proposition 10.13. Let A be a step over a generalised comtrace alphabet 

(E, sim, ser, inl), then 

1. If A 	is non-serialisable to the left of l(a) for some a E A, then 

2. If A 	is non-serialisable to the right of l((3) for some (3 E A, then 

'Va E A. a cA. (3. 

3. If A 	is non-serialisable, then 'Va, (3 EA. a CA. (3. 

Proof. For all a, (3 E A, (l(a), l(f3)) ¢:. inl. Hence, by (10.4), 

a LA (3 	 {::::::::} posA(a) ::; posA(f3) 1\ (l((3), l(a)) ¢:. ser U inl 

{::::::::} posA(a)::; posA(f3) 1\ (l((3), l(a)) ¢:. ser 

This is exactly the same to Definition 9.2. Hence, the proof is exactly the same to 

that of Proposition 9.5. D 

Proposition 10.14. Let A be a step over a generalised comtrace alphabet 

(E, sim, ser, inl) and a EA. Then 

1. There exists a unique B ~ A such that a E B, B is non-serialisable to the left 

of a, and 


A =f B ===} A- (A\ B)B. 


2. There exists a unique C ~ A such that a E B, C is non-serialisable to the right 

of a, and 


A =f C ===} A C (A \ C). 
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Proof. Again since Vb, c E A. (b, c) tJ. inl, CA is defined in exactly the same way to 

Definition 9.2. Hence, the proof is the same to that of Proposition 9.6. D 

Proposition 10.15. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl) and ~s = (1:: 8 , <>,c). Let -<=C U <>. If a, {3 E 1::8 , then 

(VuE [s]. posu(a) =/= posu(f3)) ) 
1. A (::Ju E [s]. posu(a) < posu(f3)) ==> a<> {3

( 
A (::Ju E [s]. posu(a) > posu(f3)) 

2. (VuE [s]. posu(a) < posu(f3)) ==> a-< {3 

3. (a=/= {3 A VuE [s]. posu(a)::; posu(f3)) ==> a C {3 

(VuE [s]. posu(a) =/= posu(f3)) ) 
Proof. 1. If A (:3u E [s]. posu(a) < posu(f3)) , then it follows from Proposi­

( 
A (:3u E [s]. posu(a) > posu(f3)) 

tion 10.10(1) that there are u1, u2 E [s] and x, y, A, B such that 

u1 = xA By(~ u ~-1 )xB Ay = u2 

and a E A,{J E B. Hence, (l(a), l(f3)) E inl, which by (10.3) implies that a <>s {3. 

It then follows from Definitions 10.1 and 10.2 that a<> {3. 

2, 3. Assume Vu E [s]. posu(a) ::; posu(f3) and a =/= {3. Hence, we can choose 

uo E [s] where uo = xo E 1 ... Ek Yo (k ~ 1), E1, Ek are non-serialisable, a E E1, 

f3 E Ek, and 

1 ( ~ = x~ E~ ... E~, y~ A a E E~ A {3 E E~,) )Vu
0 

E [s]. _ _ (10.10)
==> weight(E1 ..• Ek) ~ weight(E~ ... E~,) 

We will prove by induction on weight(E1 •.• Ek) that 

(VuE [s]. posu(a) < posu(f3)) ===> a-< {3 (10.11) 

(a=/= f3 A VuE [s]. posu(a) ~ posu(f3)) ===> a C {3 (10.12) 
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Base Case: 

When weight(E1... Ek) = 2, then we consider two cases: 

• 	If a=/= {3, VuE [s]. posu(a) ~ posu(f3) and :lu E [s]. posu(a) = posu(f3), then it 

follows that 

-	 uo = xo{a, {3}yo, or 

-	 uo = xo{ a }{{3}yo - xo{ a, f3}Yo 

But since VuE [s]. posu(a) ~ posu(f3), in either case, we must have {Z(a), l({3)} 

is not serialisable to the right of l({3). Hence, by Proposition 10.13(2), a c: {3. 

This by Definitions 10.1 and 10.2 implies that a C {3. 

• 	If VuE [s]. posu(a) < posu(f3), then it follows u0 = x0 {a}{{3}y0 . Since Vu E 

[s]. posu(a) < posu(f3), we must have (Z(a), l({3)) ¢:. ser U inl. This, by (10.3), 

implies that a -<s {3. Hence, from Definitions 10.1 and 10.2, we get a-< {3. 

From these two cases, since -< ~ C, it follows that (10.11) and (10.12) hold. 

Inductive Step: 

When weight(E1 ... Ek) > 2, then u0 = x0 E1 ... Ek y0 where k ~ 1. We need to 

consider two cases: 

Case (i): If a=/= {3, VuE [s]. posu(a) ~ posu(f3) and :lu E [s]. posu(a) = posu(f3), 

then there is some v0 v0 = w0 E z0 and a, {3 E E. Either E is non-serialisable to 

the right of l({3), or by Proposition 10.13(2) v0 = w0 E z0 = w~ E' z~ where E' is 

non-serialisable to the right of l({3). In either case, by Proposition 10.13(2), we have 

a c: {3. So it follows from Definitions 10.1 and 10.2 that a C {3. 

Case (ii): If Vu E [s]. posu(a) < posu(f3), then it follows uo = x0 E1 ... Ek Yo 

where k ~ 2 and a E E1 , {3 E Ek. We also know from the way we choose Uo that E 1 

is non-serialisable to the left of l(a) and E2 is non-serialisable to the right of l({3), 

otherwise condition (10.10) is not satisfied. If (l(a), l(f3)) ¢:. ser U inl, then by (10.3), 

a -<s {3. Hence, from Definitions 10.1 and 10.2, we get a -< {3. Thus, we need to 
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consider only when (l(a), l(f3)) E ser or (l(a), l(f3)) E inl. There are three cases to 

consider: 

• 	If uo = x0 E1 E2 Yo where E1 and E2 are non-serialisable, then since we assume 

Vu E [s]. posu(a) < posu(f3), it follows that E1 x E 2 ~ ser and E1 x E 2 ~ inl. 

Hence, there are a 1, a 2 E E1 and f3I. {32 E E2 such that (l(a1), l({31)) ¢:. inl 

and (l(a2), l(/:12)) ¢:. ser. Since E 1 and E2 are non-serialisable, by Proposi­

tion 10.13(3), a 1 c:; a 2 and {32 c:; {31. Also by 10.2, we know that a 1 <>s {32 
and a2<>~{31. Thus, by 10.2, we have a 1 -<s {32. Since E1 and E2 are non­

serialisable, by Proposition 10.13(3), a c:; a 1 -<s {32 c:; {3. Hence, by Definitions 

10.1 and 10.2, a-< {3. 

• 	 If uo = x0 E 1 ... Ek y0 where k 2: 3 and (l(a), l(f3)) E inl, then let "f E E2 . 

Observe that we have 

such that F is non-serialisable and weight(E1 w1 F), weight(F z2 Ek) satisfy the 

minimal condition similarly to (10.10). Since from the way u0 is chosen, we 

know that Vu E [s]. posu(a) :::; posu('Y) and Vu E [s]. posu('Y) :::; posu(f3), by 

applying the induction hypothesis, we can conclude that 

(10.13) 

So by transitivity of C:, we get a C: {3. But since we assume (l(a), l(f3)) E inl, 

it follows that a<> {3. Hence, (a, {3) E C: n <> = -<. 

• 	 If uo = Xo E1 ... Ek Yo where k 2: 3 and (l(a), l(f3)) E ser, then we observe from 

how u0 is chosen that 

Similarly to how we show (10.13), we can prove that 

\!"( E ~(E1 ... Ek) \{a, {3}. a C: 'Y c: {3 (10.14) 

We next want to show that 

38, "( E l±J(EI ... Ek)· (posu0 (8) < pOSu0 ('Y) 1\ (l(8), l('Y)) ¢:. ser) (10.15) 
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Suppose for a contradiction that (10.15) does not hold, then 

\:18, "/ E l±J(EI ... Ek)· (posu0 (8) < poSu0 ("!) ==? (l(8), l('Y)) E ser) (10.16) 

It follows that u0 = x0 E 1 ... Ek y0 - x0 E y0 , which contradicts that 

VuE [s]. posu(a) < posu(f3) 

Hence, we have shown (10.15). Let 8,"' E ~(E1 ... Ek) be event occurrences 

satisfying posu0 (8) < posu0 ("!) and (l(8), l('Y)) fj. ser. By (10.14), we also have 

that a(c U idE.)8(c U idE.)/3 and a(c U idE.)'Y(c U idE.)/3. If a -< 8 or 

8 -< f3 or a -< "' or "' -< f3, then by ( C4) of Definition 8.1, a -< f3. Otherwise, by 

Definitions 10.1 and 10.2, we have a c; 8 c; f3 and a c; "f c; {3. But since 

posu0 (8) < pOSu0 ("!) and (l(8), l('Y)) fj. ser, by 10.2, a -<s {3. So it follows from 

Definitions 10.1 and 10.2 that a-< {3. 

Thus, we have shown (10.11) and (10.12) as desired. D 

Proposition 10.16. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl), ~s = (~s, <>,c), and-<=<> n c. If a, f3 E ~SI then 

1. a<> f3 ~ VuE [s]. posu(a) =J posu(f3) 

2. a C f3 ~ VuE [s]. posu(a) ~ posu(f3) 

3. a-< f3 ~ VuE [s]. posu(a) < posu(f3) 

4. If l(a) = l(/3) and pos8 (a) < pos8 (/3), then a-< f3 

Proof. 1. Follows directly from Proposition 10.12(1) and Proposition 10.15(1, 2). 

2. Follows directly from Proposition 10.12(2) and Proposition 10.15(3). 

3. 
a-</3 


~ (Since -<s=<>s n Cs ) 


a <>s {31\ a Cs f3 


~ ( From (1) and (2) ) 


VuE [s]. (posu(a) =J posu(f3) 1\posu(a) ~ posu(f3)) 


~ (By logic) 


VuE [s]. posu(a) < posu(f3) 
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4. Assume that l(a) = l(/3) and pos8 (a) < pos8 ({3). Then, by Proposition 10.3(2), 

we know VuE [s]. posu(a) < posu(/3). Hence, it follows from (3) that a-< {3. 
D 

Theorem 10.1. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl). Then 

Es = (~Sl n <Ju~ ' n <J;;) . 
u E [s] u E [s] 

(10.17) 

Proof. Let Es = (~s' <>,c) and a, /3 E ~s· We have 

a<>/3 
{::==} ( By Proposition 10.16(1) ) 

VuE [s]. posu(a) =/= posu(!) 

{::==} ( By logic ) 

VuE [s]. (posu(a) < posu(/3) V posu(a) > posu(/3)) 

{::==} ( By definition of <Ju ) 

(a, {3) E nu E [s] <Ju ~ 

We also have 

ac{J 

{::==} ( By Proposition 10.16(2) ) 

VuE [s]. posu(a) ~ posu(!) 

{::==} ( By definition of <J;; ) 
(a,/3) E nuE[s] <J;;~ 

Hence, we conclude that 

D 

Proposition 10.17. Let s be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl). Then Es = (~8 , <>,c) is a generalised stratified order structure. 
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Proof. Since <>= nu E [s] <lu~ and <lu~ is irrefiexive and symmetric, <> is irrefiexive 

and symmetric. Since C= nu E [s] <J; and <J; is irrefiexive, c is irrefiexive. 

Let -<=<> n c, it remains to show that S = (1::, -<,c) is a stratified order 

structure, i.e., S satisfies the conditions C1-C4 of Definition 8.1. Since C is irrefiexive, 

C1 is satisfied. Since -<=<> n c implies -< ~ c, C2 is satisfied. Assume a c {3 c r 
and a =1- r. Then 

aC{JC[ 

=* ( By (10.17) ) 


(a, {3) E nu E [s] <J; 1\ ({3, r) E nu E [s] <J; 

==} ( By definition of <lu ) 


(VuE [s]. posu(a) ~ posu(f3)) 1\ (VuE [s]. posu(a) ~ posu(r)) 


==} ( By transitivity of ~ and the assumption that a =1- r ) 

VuE [s]. posu(a) ~ posu(r) 1\ a =1- r 


==} ( By definition of <lu ) 


(a,[) E nuE [s] <l; 

=* ( By (10.17) ) 


aC[ 

Hence, C3 is satisfied. Next we assume that a-< {3 C8 r· Then 

a-<f3Cr 
=* ( By (10.17) and -<=<> n c ) 


(a, {3) E nu E [s]( <l; n <lu~) 1\ ({3, r) E nu E [s]( <J; n <lu~) 


==} ( By definition of <lu ) 

(Vu E [ s]. (posu (a) ~ posu ({3) 1\ posu (a) =1- posu ({3))) 


1\ (VuE [s]. (posu(a) ~ posu(r) 1\posu(a) =1- posu(r))) 

==} ( By logic ) 


(VuE [s]. posu(a) < posu(f3)) 1\ (VuE [s]. posu(a) < posu(r)) 

==} ( By transitivity of < ) 


VuE [s]. posu(a) < posu(r) 

==} ( By definition of <lu and logic ) 


(a, r) E nu E [s]( <l;;,' n <lu~) 


=* ( By (10.17) ) 


a-<r 
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Similarly, 	we can show a c (3 -< 'Y ==> a -< 'Y. Thus, C4 is satisfied. D 

By Proposition 10.3, for each step sequences over a generalised comtrace alphabet 

(E, sim, ser, inl), we will call ~s the generalised stratified order structure induced by 

the step sequences. 

10.4 	 Generalised Stratified Order Structures Gen­

erated by Generalised Comtraces 

In this section, we want to show that the construction from Definition 10.2 indeed 

yields a generalised stratified order structure representation of comtraces. But before 

doing so, we need some preliminary definitions and results. 

Definition 10.3 ([10, 11]). Let G = (X,<>, c) be a generalised stratified order 

structure. A stratified order <I on X is an stratified order extension of G if for all 

a, (3 EX, the following hold 

a <> (3 ==> a<lt:> (3 

a C (3 ==> a <I~ (3 

The set of all stratified order extensions of G is denoted as ext(G). 

Proposition 10.18. Let s be a step sequence over a generalised comtrace alphabet 

(E,sim,ser,inl). Then <Is E ext(~s). 

Proof. Let ~s = (~,<>,c). By Proposition 10.16, for all a, (3 E ~, 

a<> (3 ==> poss(a) =/= poss(f3) ==> a <Is (3 V (3 <Is a ==> a<ls to+ f3 

a C (3 ==> poss(a) :::; poss(f3) ==> a <1:;' (3 

Hence, by Definition 10.3, we get <Is E ext(~s)· 	 D 

Proposition 10.19. Let s be a step sequence over a generalised comtrace alphabet 

(} = (E, sim, ser, inl). If <IE ext(~s), then there is a step sequence u over(} such that 

<I= <lu· 
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Proof. Let ~8 = (~8, <>, c::) and n<t = B1 ... Bk. We will show that u = l(Br) ... l(Bk) 
is a step sequence such that <l = <lu· 

Suppose a,{3 E Bi are two distinct event occurrences such that (l(a),l(f3)) r;J:. sim. 

Then pos8 (a) =/= pos8 ({3), which by Proposition 10.16 implies that a <> {3. Since 

<l E ext(~8 ), by Definition 10.3, a <l {3 or {3 <l a contradicting a, {3 E Bi. Thus, we 

have shown' for all Bi (1 :::; i :::; k), 

a, {3 E Bi 1\ a=/= {3 ===? (l(a), l(f3)) r;J:. sim (10.18) 

By Proposition 10.3(2), if e(i), e0) E ~8 and i =/= j then Vu E [s]. posu(e(i)) =/= 

posu(e0)). So it follows from Proposition 10.16(1) that e(i) <> e(j). Since <l E ext(~8 ), 
by Definition 10.3, 

If e(ko) E Bk and e(mo) E Bm then ko =/= mo <===? k =/= m (10.19) 

From (10.18) it follows that u is a step sequence over e. Also by (10.19), pos:;; 1(i) = Bi 

and IZ(Bi)l = IBil for all i. Hence, n<l = n<lul which implies <l = <lu· D 

We next want to show that two step sequences over the same generalised comtrace 

alphabet induce the same generalised stratified order structure if and only if they 

belong to the same generalised comtrace (Theorem 10.2 below). The proof of an 

analogous result for comtraces from [14] is simpler because every comtrace has a 

unique canonical representation that can be easily constructed. Since generalised 

comtraces do not have a unique canonical representation as defined in Definition 4.2, 

to simplify our proofs, we have to find another unique representation of generalised 

comtraces which can be easily constructed. 

Let R be a binary relation on a set X. We says R is a well-ordering on a set S if 

R is a total order on Sand every non-empty subset of S has a least element in this 

ordering. When R is a well-ordering on X, we say that X is well-ordered by R or R 

well-orders X. 

Proposition 10.20. If R is a total order on a finite set X, then R is a well-ordering. 

Proof. We prove this by induction on lXI. If lXI = 0 then by definition R well-orders 

X. Now we want to show that it also holds for lXI > 0. For any non-empty S C X, 
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we have RIYxY is a total order on f?. Hence, by induction hypothesis, Sis well-ordered 

and hence it has a least element. It remains to show that X also has a least element. 

We pick an arbitrary element x EX and consider the set Y =X\ {x}. Since RIYxY 

is a total order on Y, by induction hypothesis, Y is well-ordered and hence has a least 

element y. Since R is a total order on X, x and y are comparable. If xRy then x is 

the least element of X. Otherwise, y is the least element of X. D 

Definition 10.4. Let § be the set of all possible steps of a generalised comtrace 

concurrent alphabet () = (E, ser, sim, inl) and assume that we have a well-ordering 

<Eon E. Then we can define a step order <st on§ as following: 

A <st B <===} IAI > IBI V (IAI =lElA A =I B 1\ min<E(A \B) <E min<E(B \A)) 

(10.20) 

where min<E (X) denotes the least element of the set X ~ E with respect to <E· 

Let A1 ... An and B1 ... Em be two sequences in §*. We define a lexicographic 

order <lex on step sequences as following: 

A1 ... An <lex B1 ... Em <===} :3k > 0. ((Vi< k. Ai = Bi) 1\ (Ak <st Bk V k > n)) 

(10.21) 

Proposition 10.21. Let§ be the set of all possible steps of a generalised comtrace 

concurrent alphabet()= (E, ser, sim, inl) and <E be a well-ordering on E. Then 

1. <st well-orders§ 

2. <lex well-orders §* 

Proof. 1. Since § is finite, by Proposition 10.20, we only need to show that if 

A, B E § then A <st B or B <st A or A = B. Assume A =I B. If IAI < IBI 
or IAI > lEI then it follows from (10.20) that A <st B or B <st A. Otherwise, 

IAI = IBI and A =I B. Hence, A ~ B and B ~ A, which implies A\ B =I 0 and 

B \A =I 0 and (A\ B) n (B \A) = 0. Hence, min<E(A \B) and min<E(B \A) 

are comparable with respect to <E· Since (A\ B) n (B \A) = 0, we also knows 

that min<E(A \B) =I min<E(B \A). Thus, min<E(A \B) <E min<E(B \A) or 
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min<E(B \A) <E min<E(A \B), which by (10.20) implies A <st B orB <st A. 

2. Since §* is finite, by Proposition 10.20, we only need to show that if u, v E § 

then u <1exv or v <1exu or u = v. Assume u =f:. v, u = A1 ... An and v = B1 ... Bm. 

Without loss of generality we can assume that n ~ m. We will prove the result 

by induction on n. When n = .A, then by (10.21) we have u <lexv. When n > 0, 

by induction hypothesis, u' = A1 ... An and v are comparable. If v <lexu', then by 

(10.21) v <1exu. Otherwise, u' <lexv, which implies that there is some k such that 

0 < k ~ nand (Vi < k. Ai = Bi) 1\ (Ak <st Bk V k > (n- 1)). If k < n, then by 

(10.21) we have u <lexv. Otherwise, k = n, which implies Vi < n. Ai = Bi. Since 

u =f:. v, we have An <E Bn or Bn <E An· Hence, it follows from (10.21) that u <lexv 

or v <1exu. D 

Lemma 10.1. Let s be a step sequence over a generalised comtrace alphabet () = 

(E, ser, sim, inl) and <E be a well-ordering on E. Let u = A1 ... An be the least 

element of the generalised comtrace [s] with respect to the well-ordering <lex. Let 

~s = (~,<>,c) and-<=<> n c. Let mins-<(X) denote the set of all minimal elements 

of X with respect to -< and define 

Z(X) df {Y I Y ~ mins-< (X) 1\ (\:Ia, {3 E Y. a =f:. {3 ===} •(a <> [3)) 

1\ \:Ia E Y. \:1[3 EX\ Y. •([3 C a)} (10.22) 

Let u = A1 ... An be the enumerated step sequence of u. Then Ai is the least element 

of the set {l[Y]I Y E Z(~ \ l±J(A1 ... Ai_I))} with respect to the well-ordering <st. 

Proof. We first notice that by Proposition 10.16(4), if e(i),e(j) E ~and i < j then 

e(i) -< e(j). Hence, for all a, {3 E mins-<(X), where X~~' we have l(a) =f:. l(f3). This 

ensures that if Y E Z(X) and X~~ then IYI = ll(Y)I. 
For all a E A1 and {3 E ~' pos8 ([3) ;::: pos8 (a). Hence, by Proposition 10.16(3), 

•(!3 -< a). Thus, 

A1 ~ mins-<(X) (10.23) 

For all a, {3 E A1 , since pos8 ({3) = pos8 (a), by Proposition 10.16(1), we have 

•(a <> [3) (10.24) 
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For any a E AI and (3 E ~\AI, since pos8 ((3) < pos8 (a), by Proposition 10.16(2), 

•(f3c a) (10.25) 

From (10.23), (10.24) and (10.25), we know that AI E Z(~). Hence, Z(E) # 0. This 

ensures the least element of {l[Y] IY E Z(E)} with respect to <st is well-defined. 

Let Y0 E Z(~) such that B0 = l(Y0 ) be the least element of {l[Y] I Y E Z(~)} 

with respect to <st. We want to show that AI = B0 . Since <st is a well-ordering, 

we know that AI <at B0 or B0 <st AI or AI = B0 • But since AI E Z(E) and Bo be 

the least element of the set {l[B] I B E Z(~)}, •(AI <st B0 ). Hence, to show that 

AI = B0 , it only remains to show that •(Eo <st AI)· 
Suppose for a contradiction that B0 <st AI. We first want to show that for every 

W ~ Y0 there is an enumerated step sequence v such that 

v = Wovo = AI ... An and W ~ Wo ~ Yo (10.26) 

We will prove this by induction on IWI. 

Base Case: 

When IWI = 1, we let { ao} = W. We choose VI = Eo .. . EkYI - AI ... An and 

a0 E Ek (k 2: 0) such that for all v' = Eb ... E£, y~ =AI ... An and a0 E E£,, we have 

(i) weight( Eo ... Ek) :::; weight(Eb ... E£, ), and 

(ii) weight(Ek-I Ek) :::; weight(E£,_1 E£, ). 

We then consider only w = E0 ••• Ek. We observe that because of the way we chose 

v1 , we have 

\:1(3 E l±J(w). f3 # ao ==> Vt E [w]. post(f3):::; post(ao) 

Hence, since w = u -7-R v0 , it follows from Proposition 10.4(1, 2) that 

Then it follows from Proposition 10.16(2) that 


\:1(3 E l±J(w). f3 # ao ==> f3 C ao (10.27) 
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By the way Yo was chosen, we know that 

Vo: E Yo. 'V(J E ~\Yo. •(fJ Co:). 

This and (10.27) imply that 

l±J(w) =(Eo U ... U Ek) ~Yo (10.28) 

We claim that for every o: E Ei and (3 E Ei (0 ~ i < j ~ k), 

{ 0: }{(3} = {o:, (3} (10.29) 

Suppose not. Then either [ { o:}{(3}] = { { o:}{(3}} or [ { o: }{(3}] = {{o:}{(3}, {(3}{o:}}. 

In either case, we have Vt E [{Z(o:)}{Z((J)}]. post(o:) =/:. post(f3). Since {o:}{(J} = 
7r{a,,a}(u), by Proposition 10.4(3), Vt E [u]. post(o:) =/:. post(f3), which by Proposi­

tion 10.16 implies o: <> (3. This contradicts that Yo E Z(~) and o:, (3 E ~(w) ~ Yo. 
Thus, we have shown (10.29), which implies that for all o: E Ei and (3 E Ei 

(0 ~ i < j ~ k), (l(o:), l((J)) E ser. Then Eo ... Ek - E0 U ... U Ek. Hence, 

there exists a step sequence v~ such that 

v~ = (Eo U ... U Ek)vl A1 ... An, 

where {o:o} ~(Eo U ... U Ek) ~Yo. 

Inductive Step: 

When IWI > 1, we pick an element (30 E W. By applying the induction hypothesis 

on W \ {{30 }, we get a step sequence v2 such that 

where W \ {(30 } ~ F0 ~ Y0 . If W ~ F0 , we are done. Otherwise, proceeding like the 

base case, we construct a step sequence v3 such that 

and {(30 } ~ F1 ~ Yo. Since Fo ~ Yo, W ~ Fo U F1 ~ Yo. 
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Similarly to how we proved (10.29), we can show that 

Va E Fa. 'r/{3 E F1. {a}{{3} = {a,{3} 

This means that a E F0 and {3 E F1 , (l(a), l({3)) E ser. Hence, F0F1 F0 U F1. 
Hence, there is a step sequence v4 such that 

V4 =(Fa U F1) Y4 =A1 ... An, 

and W ~(Fa U F1) ~Yo. 

We have shown (10.26), which implies that when we choose W =Yo, we will get 

a step sequence v such that 

v = Wovo = A1 ... An (10.30) 

where Y0 ~ W0 ~ Y0 . Since Y0 ~ Wo ~ Yo implies that Yo = Wo, from 

(10.30), we have v is the step sequence such that v = Y0v0 =A1 ... An. Thus, 

v = B0v0 - A1... An But since B0 <st A1 , this contradicts the fact that A1 ... An is 

the least element of [s] with respect to <lex. Hence, we have shown that A1 is the 

least element of {l(Y) IY E Z(I;)} with respect to <st. 

We now prove that Ai is the least element of {l[Y] I Y E Z(I; \ ltj(A1 ... Ai-l))} 
with respect to <st by using induction on n, the number of steps of A1 ... An- If 

n = 0, we are done. If n > 0, then we have just shown that A1 is the least element 

of {l[Y] IY E Z(I;)} with respect to <st. By applying the induction hypothesis on 

p = A2 ... An, I;P = I;\A1 , and its stratified order structure (I;p, <> IEpxEp' C IEpxEp), 
we get Ai is the least element of { l [Y] I Y E Z (I; \ ltJ (A1 ... Ai-l))} with respect 

to <st for all i ;::: 2. Thus, we conclude Ai is the least element of {l[Y] I Y E 

Z(I; \ ltj(A1 ... Ai_1))} with respect to <st for 1 :::; i:::; n. 
D 

Theorem 10.2. Lets, t be step sequences over a generalised comtrace alphabet() = 

(E, sim, ser, inl). Then s- t if and only if ~s = ~t· 

Proof. (=>)If s t, then [s] = [t]. Hence, by (10.17), 

~8 = (I;s, n <Ju ~' n<J;;:) (I;s, n <Ju~' n<J;;:) = ~t· 
uE~ ue~ ueW ueW 
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(~)By Lemma 10.1, we can use ~s to construct a unique element WI such that 

WI is the least element of both [s] with respect to <lex, and then use ~t to construct 

a unique element w 2 that is the least element of [t] with respect to <lex. But since 

~s = ~t and the construction is unique, we get WI = w2 . Hence, s = t. D 

By Theorem 10.2, for each step sequence s over a generalised comtrace alphabet 

() = (E, sim, ser, inl), we will define the generalised stratified order structure induced 

by the generalised com trace [ s] to be ~s. 

To end this section, we prove two major results. Theorem 10.3 says that the 

stratified order extensions of the generalised stratified order structure induced by a 

generalised comtrace [t] are exactly those generated by the step sequences in [t]. The­

orem 10.4 says that the stratified order structure induced by a comtrace is uniquely 

identified by any of its extensions. 

Lemma 10.2. Let s, t be step sequences over a generalised comtrace alphabet () = 

(E, sim, ser, inl) and <Is E ext(~t)· Then ~s = ~t· 

Proof. Let ~t = (:E, <>, c:::), ~s = (:E, <>', c:::'), -<=<> n c::: and -<'=<>' n c:::'. We first 

want to show that ~t ~ ~s· 

(<>t = <>s) We have a <>t {3 if and only if by Definition 10.2 (l(a), l(f3)) E inl, 

which by Definition 10.2 means a <>s {3. Hence, 

<>t = <>s (10.31) 

(C:::t = C:::s) If a C:::t {3, then by Definitions 10.1 and 10.2, a C::: {3. But since 

<Is E ext(~t), we have a <I;' {3, which implies 

(10.32) 


Since a C:::t {3, by Definition 10.2, 

(l({3), l(a)) ¢:. ser U inl (10.33) 

Hence, it follows from (10.32) and Definition 10.2 that a C:::s /3. Thus, 

(10.34) 
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It remains to show that C:: 8 ~ Ct. Let a Cs {3, and we suppose for a contradiction 

that •(a C::t {3). Since a Cs {3, by Definition 10.2, pos8 (a) ~ pos8 ({3) and (l({3), l(a)) ¢:. 
ser U inl. Since we assume •(a C::t {3), by Definition 10.2, we must have post(f3) < 
post(a). But this by Definitions 10.1 and 10.2 implies that {3 -<t a and {3 -< a. But 

since <J 8 E ext(~t), we have {3 <J 8 a, which implies pos8 ({3) < pos8 (a), a contradiction. 

Hence, C::s ~ Ct. Thus together with (10.34), we get 

(10.35) 

(-<t = -<s) If a -<t {3, then by Definitions 10.1 and 10.2, a -< {3. But since 

<J 8 E ext(~t), we have a <J 8 {3, which implies 

poss(a) < poss(f3) 	 (10.36) 

Since a -<t {3, by Definition 10.2, 

(l(a), l(f3)) ¢:. ser U inl 

V (a, {3) E <>t n (si(c::;) o<>tc osi(c::;)) 
(l(a), l({3)) E ser ) 

V 1\ E L:t. ( post(6) < post('y) 1\ (l(6), l(l)) ¢:. ser )36,
( 1 

1\ a c::; 6 c::; {3 1\ a c::; 1 c::; {3 . 

We want to show that a -<s {3. 

• 	 When (l(a), l(f3)) ¢:. ser U inl, it follows from (10.36) and Definition 10.2 that 

a -<s {3. 

• 	 When (a, {3) E <>t n (si(c::;) o <>t0 o si(c::;)), then a <>t {3 and there are 

6,1 E L: such that a si(c::;) 6 <>F 1 si(c::;) {3. Since C::t = Cs and <>t = <>s, 
we also have a <>s {3 and a si(c:::) 6 <>~ 1 si(c:::) {3. Thus, it follows from 

(10.36) and Definition 10.2 that a -<s {3. 

• 	 There remains only the case when (l(a), l(f3)) E ser and there are 6,1 E L:t such 

that 

post (6) < post (1) 1\ (l(6), l(1)) ¢:. ser ) . 


( 1\ a c::; 6 c::; {3 1\ a c::; 1 c::; {3 

Since C::t = c::~, we also have a c::: 6 c::: {31\ a c::: 1 c::: {3. Since (l(6), l(l)) ¢:. 
ser, we either have (l(6), l('y)) E inl or (l(6), l('y)) ¢:. ser U inl. 
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- If (l(8), l('y)) E inl, then pos8(8) =J pos8('y). This implies (pos8(8) < 
pos8('y) A (l(8), l('y)) rJ_ ser) or (pos8('y) < pos8(8) A (l('y), l(8)) rJ_ ser). So 

it follows from (10.36) and Definition 10.2 that a -< 8 {3. 

- If (l(8), l('y)) rJ_ inl, then (l(8), l('y)) rJ_ ser Uinl. Hence, by Definition 10.2, 

8 -<t "(, which by Definitions 10.1 and 10.2, 8 -< 'Y· But since <J 8 E ext(~t), 

we have 8 <J 8"(, which implies pos8(8) < pos8('y). Since pos8(8) < pos8('y) 

and (l(8), l('y)) rJ_ ser, it follows from (10.36) and Definition 10.2 that 

a -<8 {3. 

Thus, we have shown that a -< 8 {3. Hence, 

(10.37) 

It remains to show that -<8 ~ -<t· Let a -<8 {3, and we suppose for a contradiction 

that •(a -<t {3). Since a -<8 {3, by Definition 10.2, we have pos8(a) < pos8({3) and 

(l(a), l({3)) rJ_ ser U inl 

V (a,{3) E <>8 n (si(c:) o <>8 ° o si(c:)) 

(l(a), l({3)) E ser ) 

V A E E . ( pos8(8) < pos8('y) A (l(8), l('y)) rJ_ ser )
38

,
( 	 8

'Y A a c* 8 c* {3 A a c* 
I 

c* {3"V8 8 8 8 

We want to show that a -<t {3. 

• 	 When (l(a), l(f3)) rJ_ ser U inl, we suppose for a contradiction that •(a -<t {3). 

This by Definition 10.2 implies that post(f3) ~post(a). By Definitions 10.1 and 

10.2, it follows that {3 Ct a and {3 C a. But since <J 8 E ext(~t), we have {3 <J;' a, 

which implies pos8({3) ~ pos8(a), a contradiction. 

• 	 If (a,{3) E <>8 n (si(c:) o <>8° o si(c:)), then since <>8=<>t and C8=Ct, 

we have (a,{3) E <>t n(si(c;)o<>t0 osi(c;)). Since a <>t {3, we have 

post(a) < post(f3) or post(f3) < post(a). We want to show that post(a) < 
post(f3). Suppose for a contradiction that post(f3) < post(a). But since 

(a,{3) E <>t n (si(c;) o <>t0 o si(c;)) and <>tis symmetric, we have ({3,a) E 

<>t n (si(c;) 0 <>P 0 si(c;)). Hence, it follows from Definitions 10.1 and 10.2 

that {3 -<t a and {3-< a. But since <J 8 E ext(~t), we have {3 <J 8a, which implies 
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pos8 (/3) < pos8 (a), a contradiction. We have just shown that post(a) < post(/3). 
Since (a, /3) E <>t n (si(c;) o <>tc o si(c;)), we get a -<t f3 

• 	 There remains only the case when (l(a), l(/3)) E ser and there are 8, 'Y E ~s 

such that 
pos8 (8) < pos8 (r) 1\ (l(8), l(r)) (j. ser ) . 

( 1\ a c*s 8 c*s f3 1\ a c*s 'Y c*s /3 

Since C8 =Ct, we have a c; 8 c; /3 and a c; 'Y c; /3, which by Def­

inition 10.2 and transitivity of ~ implies that post(a) ~ post(8) ~ post(f3) 

and post(a) ~ pOSt (r) ~ post (/3). Since ( l(8), l('Y)) (j. ser, we either have 

(l(8), l(r)) E inl or (l(8), l(r)) (j. ser U inl. 

- If (l(8), l(r)) E inl, then post(8) =1- post(r). This implies (post(8) < 
post ('Y) /\ ( l(8), l('Y)) (j. ser) or (post ('Y) < post (8) 1\ (l(r), l(8)) (j. ser). 

Since post(8) =1- post(r) and post(a) ~ post(8) ~ post(/3) and post(a) ~ 
post(r) ~ post(/3), we also have post(a) < post(f3). So it follows from 

Definition 10.2 that a -<t /3. 

- If (l(8), l(r)) (j. inl, then (l(8), l(r)) (j. ser U inl. We want to show that 

post(8) < post(r). Suppose for a contradiction that pos8 (8) ~ pos8 ("f), 
then since (l(8), l(r)) (j. ser U inl, by Definitions 10.1 and 10.2, we have 

'Y Ct 8 and 'Y C 6. But since <ls E ext(~t), we have 'Y <J:; 6, which 

implies poss('Y) ~ pos8 (6), a contradiction. Since post(6) < post(r) and 

post(a) :=:; post(6) ~ post(f3) and post(a) ~ post(r) ~ post(/3), we have 

post(a) < post(f3). Hence, we have post(a) < post(/3) and 

post(6) <post( "f) 1\ (l(8), l(r)) (j. ser U inl ) . 
( 1\ a c; 6 c; f3 1\ a c; 'Y c; /3 

Thus, it follows from Definition 10.2 that a -<t /3. 

Thus, we have shown that a -<t /3, which implies Ct~C8 • Hence, by (10.37), 

-<t = -<s 	 (10.38) 

From (10.31), (10.35) and (10.38), we have 
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Thus, we conclude 

0 

Theorem 10.3. Let t be a step sequence over a generalised comtrace alphabet 

(E, sim, ser, inl). Then ext(~t) = {<luI u E [t]}. 

Proof. (~) Suppose <J E ext(~t)· By Proposition 10.19, there is a step sequence u 

such that <lu = <J. Hence, by Lemma 10.2, we have ~u = 6, which by Theorem 10.2 

implies that u- t. Hence, ext(~t) 2 { <lu I u E [t]}. 

(2) If u E [t], then it follows from Theorem 10.2 that ~u = ~t· This and Proposi­

tion 10.18 imply <lu E ext(~t)· Hence, ext(~t) 2 { <lu I u E [t]}. 0 

Theorem 10.4. Let s and t be step sequences over a generalised comtrace alphabet 

(E, sim, ser, inl) such that ext(~s) n ext(~t) =I 0. Then s = t. 

Proof. Let <J E ext(~s) n ext(~t)· By Proposition 10.19, there is a step sequence u 

such that <lu = <J. By Lemma 10.2, we have ~s = ~u = ~t· This and Theorem 10.2 

yields s _ t. 0 



Chapter 11 

Conclusion and Future Works 

The concepts of absorbing monoids over step sequences, partially commutative ab­

sorbing monoids over step sequences, absorbing monoids with compound generators, 

monoids of generalised comtraces and their canonical representations have been in­

troduced and analysed. All of these quotient monoids are the generalisations of 

Mazurkiewicz trace and comtrace monoids. We have shown some algebraic and for­

mal language properties of comtraces, and provided a new version of the proof of the 

existence of a unique canonical representation for comtraces. We then prove Theo­

rem 9.5, which states that any finite stratified order structure can be represented by 

a comtrace. 

One interesting observation is that the notions of non-serialisable steps are con­

venient for capturing the weak causality relationship induced not only by a comtrace 

but also by a generalised comtrace. The uses of non-serialisable steps for generalised 

comtraces were shown in Proposition 10.15, which was absolutely required for our 

proof of Theorem 10.1. 

It is worth notieing that Theorems 9.3 and 10.3 can be seen as the generalisa­

tions of the Szpilraj n Theorem in the context of com traces and generalised comtraces 

respectively. In other words, the (generalised) stratified order structure induced by 

a (generalised) comtrace [t] can be uniquely reconstructed from the stratified orders 

generated by the step sequences in [t]. 

Despite some obvious advantages, for instance very handy composition and no 

need to use labels, quotient monoids (perhaps with some exception of Mazurkiewicz 
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traces) are much less popular for analysing issues of concurrency than their relational 

counterparts as partial orders, stratified order structures, occurrence graphs, etc. We 

believe that in many cases, quotient monoids could provide simpler and more adequate 

models of concurrent histories than their relational equivalences. 

An immediate task is to prove the analogue of Theorem 9.5 for generalised com­

traces which says that each generalised stratified order structure can be represented 

by a generalised comtrace. This should not be difficult, thanks to the results from 

Chapter 10 and the analogy to the proof of Theorem 9.5. 

Another interesting task is to study our novel notion of absorbing monoids with 

compound generators, which can model asymmetric synchrony. We believe the con­

cept of compound generators might relate to another line of our research on the theory 

of part-whole relations in [22] which utilises the ideas from both mereology [29] and 

category theory [23, 6]. 
Much harder future tasks are in the area of comtrace and generalised comtrace 

languages with such major problems as recognisability [26], where the equivalences of 

Zielonka's Theorem1 [33] for comtraces and generalised comtraces, etc., are still open. 

1Zielonka's Theorem states that a trace language is recognisable if and only if it is accepted by 
some finite asynchronous automaton. 
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