
MUL T/-AGENT SOFTWARE ARCHITECTURES

TOWARDS THE APPLICATION OF SOFTWARE
ARCHITECTURES IN MULTI-AGENT SYSTEMS

By

SALVADOR GARCIA-MARTINEZ

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Science

McMaster University

©Copyright by Salvador Garcia-Martinez, July 2007

MASTER OF SCIENCE (2007) McMaster University

(Compute Science)
TITLE:

AUTHOR:
SUPERVISOR:
NUMBER OF PAGES:

Hamilton, Ontario
Towards the application of Software Architectures
in Multi-Agent Systems.
Salvador Garcia-Martinez (McMaster University)
Professor Thomas Maibaum
vii, 86

11

Abstract

Software Architecture is a concept that arose during the last two decades as a
consequence of the need for a structured design at an early stage. Software
Architecture is defined as a pattern of interconnected components satisfying some
structural rule. Software architectures are widely used in many types of systems;
Multi-Agent Systems should not be an exception. Multi-Agent Systems have
emerged as a design paradigm for large and distributed systems. They are
composed of autonomous elements that work together in order to pursue a
common goal. They are mostly used in Electronic Commerce, Human-Computer
Interfaces, and so on.

In this research, we investigate the state of the art of Software Architectures in the
Multi-Agent Systems field, showing that, generally Multi-Agent Systems do no
use the software architecture concept properly and, when they do, they do not
show specific architectures for Multi-Agent Systems. The approach followed is
based on the analysis of six case studies, which are implemented applications that
have been published in some of the most important conferences in the area.
Additionally we show that, based on the initial design of each case and existing
architectural patterns, it is possible to impose a software architecture on each case.

Furthermore, we analyze the way that the term "software architecture" is used in
the Multi-Agent Systems literature, showing that, usually, it refers to abstract
architectures proposed in standards and frameworks or to an initial design in a
system. In addition we clarify related concepts, such as reference architecture,
reference models, architectural patterns and design patterns. Finally, we do an
exhaustive comparison of the case studies, which aims to highlight commonalities
and differences. The objective of this comparison is to analyze if they share a
similar architecture that can be reused in more cases and to show how specific
properties of Multi-Agent Systems affect in the design of an architecture.

111

Acknowledgment

This thesis is the result of two years of research during which time many people
have supported me. I would like to thank all of these people for their constant
motivation and advise.

I want to give special thanks to my supervisor, Dr. Tom Maibaum, who gave me
the opportunity of studying under him at McMaster University. I really appreciate
his constant support, and all the meetings, discussions and good advice that he
gave me. He always believed in my capabilities and supported me regardless of
the circumstances.

Aside from my supervisor, I would like to thank the rest of my thesis committee:
Dr. Karman Sartipi and Dr. Alan Wassyng, who asked me very good questions,
gave me very helpful comments and reviewed my work in detail.

I am also indebted to many teachers from my undergraduate studies, especially
Dr. Mauricio Osorio and Dr. Antonio Sanchez, who have continued to motivate
me in the field, and provide constant encouragement, recommendation letters and
inspiration.

I want to thank to Lie. Fernando Cabrero, who always encouraged me in the
pursuit of my goals, and whose advice, personal experience and support, has been
an important part of my personal and professional development.

Finally, but no less importantly, I want to thank my family: my parents Emilio
Garcia and Rocio Martinez, who believed on me under all circumstances. I have
no words to thank them; with my achievements is the best way to show them how
grateful I am. My brothers Rocio and Hector Garcia, whose jokes, bizarre stories,
constant communication and their visit to Canada were a crucial part of my
development and motivation. I also want to thank my brother Emilio Garcia, who
constantly provided me his long-distance support and advice.

I wish to thank everyone who helped me, including the McMaster University
community, my friends, and so on, all of whom I cannot list. However, I just want
to say: THANK YOU.

Sincerely,

Salvador Garcia
Hamilton, Canada.
August, 2007

lV

Contents

Abstract .. iii
Acknowledgment .. iv
Contents .. v
List of Illustrations .. vii
1. Introduction .. 1

1.1. Overview ... 1
1.2. Hypothesis ... 1
1.3. Mainobjectives .. 2
1.4. Specific objectives ... 2
1.5. Case Studies ... 2
1.6. Constrains .. 3
1. 7. Organization .. 3

2. Software Architecture ... 4
2.1. Historical Background .. 4
2.2. What is Software Architecture? .. 5
2.3. Example: Multi-Phase Compiler .. 6
2.4. Analogies with different architectures .. 10
2.5. Architectural Patterns, Design Patterns, Reference Model and
Reference Architecture .. 11
2.6. Present and Future of Software Architectures 12

3. Multi-Agent Systems .. 14
3.1. Introduction to the Agent-Oriented Paradigm 14
3.2. Intelligent Agents ... 15
3.3. Multi-Agent Systems ... 16
3.4. Methodologies ... 19
3.5. Multi-Agent Applications ... 20
3.6. Software Architectures and Multi-Agent Systems 22

4. Agents Standards .. 23
4.1. Introduction ... 23
4.2. FIP A Abstract Architecture .. 23
4.3. MASIF Standard .. 26
4.4. Frameworks and Toolkits ... 27
4.5. Relation between Standards, Frameworks and Software Architectures

32
5. Software Architecture Patterns .. 3 3

5.1. Architectural Pattern Classification .. 33
5.2. Layers .. 34
5.3. Broker .. 36
5.4. Blackboard ... 37
5.5. Implicit Invocation ... 39
5.6. Reactor ... 41

v

6. CASE STUDIES ... 44
6.1. Robot Disassembly Process Using a Multi-Agent System 44
6.2. MASACAD: Multi-Agent System for Academic Advising 47
6.2.2. Initial Design .. 4 7

6.3. MASEL: Multi-Agent System for E-Leaming and Skill Management.. 51
6.3 .1. Description .. 51
6.3.2. Initial Design .. 52
6.3.3. Architecture Analysis .. 54

6.4. Telemedicine for Diabetes .. 57
6.4.1. Description .. 57
6.4.2. Initial Design .. 57
6.4.3. Architecture Analysis .. 60
6.5. SIMPLE- A Multi-Agent System for Simultaneous and Related
Auctions .. 64
6.6. Agent Based Simulation Architecture for Evaluating Operational
Policies in Transshipping Containers ... 69

7. Results .. 74
7 .1. Research Results .. 7 4
7.2. Case Studies Comparison ... 77
7.3. Case Studies Summary ... 79

8. Conclusions and Future Work ... 81
8.1. Conclusions ... 81
8.2. Future Work ... 82

9. References .. 83

Vl

List of Illustrations

Figure 1. Processing View of Sequential Compiler Architecture 7
Figure 2. Data View of Sequential Compiler Architecture 8
Figure 3. Parallel Process Architecture .. 9
Figure 4. Relationships between Reference Model, Architectural Pattern,

Reference Architecture and Software Architecture 12
Figure 5. FIP A Abstract Architecture .. 24
Figure 6. Jade Architecture .. 27
Figure 7. Grasshopper Architecture ... 29
Figure 8. Cougaar Architecture .. 31
Figure 9. Layers Pattern ... 34
Figure 1 0. Blackboard Pattern ... 3 8
Figure 11. Class Diagram Representation of the Reactor Pattern 42
Figure 12. Robot Disassembly Process .. 46
Figure 13. MAS A CAD Architecture .. 48
Figure 14. MASACAD Architecture (Broker and Multilayered) 50
Figure 15. MASEL Architecture .. 53
Figure 16. MASEL Architecture (Repository) ... 55
Figure 17. MASEL Architecture (Client- Server) ... 56
Figure 18. Telemedicine for Diabetes (Original Architecture) 58
Figure 19. Telemedicine for Diabetes (Multi-Layered Architecture) 60
Figure 20. Telemedicine for Diabetes (Blackboard Architecture) 62
Figure 21. Interface Knowledge Source ... 63
Figure 22. SIMPLE Architecture ... 65
Figure 23. SIMPLE Reactive Repository Architecture 67
Figure 24. Simport Architecture .. 70
Figure 25. SimPort Multi-Layered Architecture ... 71
Figure 26. SimPort Reactor Architecture ... 72

Vll

Master Thesis- Salvador Garcia McMaster - Computing and Software

1. Introduction

1.1. Overview
Today, the software life cycle is very different from the one used during

the early of computing days. In the 80s and 90s, software design was purely based
on requirement analysis; however, software designers realized that it is not
enough. There were many difficulties in essential parts of the software, the size of
the new application was getting bigger and the complexity was increasing
constantly. As a consequence, new approaches for designing systems at an early
stage began to emerge; therefore, designers began to model systems from more
abstract levels.

Software architecture is a concept that arises as a consequence of the
necessity of a structured design at an early stage. This concept was informally
used for a long time; however, it was formally introduced during the 90's. A
software architecture is a collection of interconnected components satisfying
some structural rules; its importance resides in that it models a system before the
design stage and its applicability can be extended to all kinds of paradigms such
as the object oriented paradigm, event oriented paradigm or agent-based
paradigm.

The agent-oriented paradigm proposes to model an application using
autonomous components named agents. When a distributed system is composed
of many agents that collaborate in order to pursue a common goal, it is called a
Multi-Agent System. The architecture of a Multi-Agent System is modeled based
on the combination of the properties that the agent-oriented approach provides
and the unique characteristics that each system provides.

1.2. Hypothesis
Defining Software Architecture as a pattern of interconnected components and
connectors satisfying some structural rules, our hypothesis is:

Multi-Agent Systems designs are developed using the principles of
Software Architecture and there are some architectural patterns which are
exclusive to Multi-Agent Systems.

This hypothesis will be tested through the study of the use of the term "software
architecture" in Multi-Agent Systems and analyzing six case studies that have
been published in the most important conferences in the field. They cover a wide
range of applications based on Multi-Agent Systems and they already been
implemented.

1

Master Thesis- Salvador Garcia McMaster - Computing and Software

1.3. Main objectives
This thesis focuses on the analysis of two main areas, Software

Architectures and Multi-Agent Systems, analyzing the main concepts and the
existing relation between them. In addition, six case studies will be undertaken in
order to explore their software architecture, analyzing the way they are designed
and comparing their architecture with existing patterns in the literature.
Furthermore, the case studies will be compared with the intention of reviewing
the main characteristics of each one, comparing their commonalities and
differences, and proposing a possible reusability.

1.4. Specific objectives
In a more specific way, the goals of this thesis are to:

• Review the main concepts of software architectures.
• Review the main concepts of Multi-Agent Systems.
• Study the relation between Software Architectures and Multi-Agent

Systems.
• Analyze suggested architectures in Multi-Agent Standards and

frameworks.
• Analyze the initial design of six case studies, and propose a possible

architecture based on existing architectural patterns.
• Compare advantages and disadvantages found.
• Study the possible benefits of applying software architectures in Multi

Agent systems.

1.5. Case Studies
In this work six case studies based on Multi-Agent Systems (MAS) were

analyzed: Robot Disassembly Process using a Multi-Agent System, MASACAD,
MASEL, Telemedicine for Diabetes, SIMPLE, and Agent Based Simulation
Architecture for Evaluating Operational Policies in Transshipping Containers.

All of them are implemented applications that have been published in
some of the most important conferences in the area, such as MALCEB
(International Symposium on Multi-Agent Systems, Large Complex Systems, and
E-Businesses), IAT (International Conference on Agent Technology), CEEMAS
(International Workshop of Central and Eastern Europe on Multi-Agent Systems),
etc.

They cover some of the most important areas where Multi-Agent Systems
are used, such as e-commerce, information retrieval and management, business
process, etc. They are applications developed by research groups and none of

2

Master Thesis - Salvador Garcia McMaster - Computing and Software

them have an official distribution; they are made just for research-academic
purposes.

1.6. Constrains
Even though the cases are documented, in some cases, some interactions

and descriptions are unclear, and there are not more resources for getting related
information. In these cases, some assumptions were made in order to clarify the
problem. If this was the case, during the analysis of the each system the necessary
assumptions and their respective interpretations are clarified.

In addition, all the cases are experimental applications that do not have
official releases; they were developed for research purposes. Moreover, it is not
specified if their functionality is correct; in this work, we assume that all of them
work properly and we just focus on the design. Finally, the resulting architectures
following a pattern are not implemented yet; therefore, it is not possible to
measure their correctness at an implementation level.

1.7. Organization
Chapter 2 presents a review of the literature related with Software

Architectures; it explores the background, the definitions used in this work and an
introduction to architectural patterns. Chapter 3 reviews the literature related with
agent-based systems. It analyzes the main agency concepts and gives an
introduction to Multi-Agent Systems. In addition, it introduces the most used
methodologies and the situations where this paradigm is best suited.

In chapter 4, different standards and frameworks related with Multi-Agent
systems are analyzed, and also it explores the relation between them and the
proposed architectural concepts. In chapter 5, all patterns related with the case
studies are analyzed, and chapter 6 gives an exhaustive description and analysis of
all of them. In chapter 7, the results found are analyzed; and finally, in chapter 8 a
conclusion of the research done is given.

3

Master Thesis - Salvador Garcia McMaster - Computing and Software

2. Software Architecture

2.1. Historical Background
During the early days of computing, the software cycle was completely

different to the one that is used today. Code was written in machine language and
everything was placed directly in the computer's memory. With the introduction
of high-level languages, it was possible to develop more sophisticated
applications and the use of specific data types and structure as a common practice.

In the late 1960s, programmers noticed that if the structures were built in
an optimal way with a good design, the development of the rest of the program
was easier. The development of abstract type proposed a new design level that
helped to understand modules with similar objectives in an easier way. This
development introduced a new understanding of software architecture,
specification, language issues, integrity of the results, rules for combining types
and information hiding [15].

As a consequence, researchers began to show more interest in the software
design. During the 1980s, software design was based on software requirements
analysis; however, the focus was moving towards the integration of designs
before the developing stage. There were great advances to describe and analyze
software systems; there was the introduction of formal description techniques and
the emergence of concepts such as consistency and inconsistency [44].

In the 1990s, software designers realized that a development based just on
requirements analysis was not enough. There were difficulties in essential parts of
the software development, programs were very large and the software reuse began
to be a crucial part for application development. Therefore, the concept of
software architecture emerged. However, even though this concept was not
formally introduced, it was used by programmers for a long time [4].

Software Architecture has emerged as an important practice in the
software design process; in the next section the most important concepts will be
analyzed in detail. In the next one, a compiler, a very well know example, will be
introduced; in the next section an intuition related with different types of
architecture will be developed. After that, different concepts related with patterns
and design will be introduced; finally, the state of the art of software architectures
will be discussed.

4

Master Thesis- Salvador Garcia McMaster - Computing and Software

2.2. What is Software Architecture?
In a traditional way, Software Designers design the components in a

detailed level just based on the requirements. Due to the complexity in the
software design process, this is not enough; requirements describe too many
details and operations for effective engineering. They describe the system and
environment in a very general way and sometimes they generate conflicts
between designer and stakeholders.

A very effective way to describe in an abstract way how the system is
going to be built is through the use of Software Architectures. Through them a
system can be standardized and the communication among stakeholders can be
more transparent. The main goal when using software architectures is to help at an
early decision stage, and to re-use this architecture when possible. In the
literature, some definitions from different points of view of software architectures
had been proposed; some of the most accepted defmitions are:

• "The software architecture of a program or computing system is the
structure of structures of the system, which comprise software elements,
the external visible properties of those elements, and the relationships
among them" [4]

• " ... structural issues include gross organization and global control
structure; protocols for communication, synchronization, and data access;
assignment of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and selection
among design alternatives"[15]

• "The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their design
and evolution over time"[44]

Based on these definitions, in this work, Software Architecture is defined
as a pattern of interconnected components satisfying some structural rules. In this
definition, a component is a unit of structure that encapsulates a set of services
and a connector is a unit of structure defining an interaction protocol for the
components. Examples of components are clients, servers, filters, layers and
databases; examples of connectors are procedure call, event broadcast, database
protocols and pipes [53]. Among others, software architectures provides the
following advantages[4]:

• Stakeholder Communication. An architecture has different stakeholders
(costumers, users, project manager, etc) that are concerned about different
goals in a system. Software Architectures provide a common language that
represents their concerns; therefore, it is for all concerned easier to
understand large systems.

• Early Design Decisions. In a system, the most difficult parts to correct or
modify are the early decisions. They have a strong influence on the future
effects and are the basis for later development. Software architectures

5

Master Thesis- Salvador Garcia McMaster - Computing and Software

•

define implementation constraints, dictate an organizational structure and
help to manage easier changes.
Re-usable Models. Re-use on an architectural level provides good
solutions for similar systems; therefore, all the properties are just
transferred to another system. In addition, systems can be built using
already developed elements; an easy use of design alternatives can be
promoted.

2.3. Example: Multi-Phase Compiler
An architecture can be described from different points of view. Therefore,

they can be constructed following different styles. One of the most popular
examples that has achieved acceptance is the multi-phase compiler which will be
analyzed through this section. A compiler has five phases:

• Lexical analysis. Takes the characters from the source and produce tokens
for the next phase.

• Syntactic analysis. Using the tokens, it forms phrases that can be either
definition phrases or use phrases.

• Semantic analysis. It correlates the phrases with elements that are
associated with specific definitions; as result it produces correlated
phrases.

• Optimization. Produces key phrases for the generation of the object code.
This phase is optional.

• Code Generation. Where code is produced.

A multi-phase compiler can be designed in different ways depending on
its goals. The most common one is sequential compiler, where each phase
transmits data to the next one in a linear way. Another way to design it is in a
parallel style. This is used when one of the mail goals is to optimize processing
time. Although both designs have different goals, they are composed by the same
architectural elements:

•
•

•

Processing Elements: Lexer, parser, semantor, optimizer, code generator .
Data elements: Characters, tokens, correlated phrases, annotated phrases,
and object code.
Application Level Properties: has-all-tokens, has-all-phrases, has-all
correlated-phrases, has-all-optimization-annotations.

2.3.1. Sequential Architecture
A classical Multi-Phase Compiler [44] is based on a sequential

architecture, where each phase performs a task before the next phase begins; in
this case the data elements are sent in a direct way through the connecting
elements, which are composed by procedure call and parameters.

6

Master Thesis - Salvador Garcia McMaster - Computing and Software

Figure 1 represents the processing view of the architecture [44]. It shows
the flow of the data through the compiler; Figure 2 shows the architecture from
the data view [44]. This is captured by the notion of application-oriented
properties, which describes the most important states of a data structure.

Tokens

Object Code

Col'l&latad Phralel

Figure 1. Processing View of Sequential Compiler Architecture

7

Master Thesis - Salvador Garcia McMaster - Computing and Software

Semantor

Code Generator

Optimizer

Code Generator

Figure 2. Data View of Sequential Compiler Architecture

In this example the application oriented properties are [44]:
• has-all-tokens. Result of the lexical analysis of the code; necessary for the

parser.
• has-all-phrases. State produced by the parser; necessary for the semantor.
• has-all-correlated-phrases. Produced by the semantor; necessary for the

optimizer and code generator.
• has-all-optimization-annotations. Produced by the optimizer; used by the

code generator to begin processing.

2.3.2. Parallel Architecture
When performance is an important factor in the compiler and the

execution time must be optimized, a possible solution is to adopt an architecture
that treats components in a parallel way. In Figure 3 a parallel version of the

8

Master Thesis - Salvador Garcia McMaster - Computing and Software

compiler is presented [44]; in this case just the lexer, the parser and the semantor
are represented.

Tokens Phrases

~ I

t I
Conalated

PhraleB Phraaes

Internal Reprasentallon

Figure 3. Parallel Process Architecture

As in the sequential case, the notion of application-orientation is used;
moreover, they are more complex and they are used for providing coordination
and synchronization. The basic application-oriented properties, which describe the
states of data structure that are important to the processing elements, are [44]:

• no-tokens
• has-token
• will-be-no-more-tokens
• no-phrase
• will-be-no-more-phrases
• no-correlated-phrases
• have-correlated-phrases
• all-phrases-correlated

The most important points in this architecture are that the processing
elements are very similar to those in the sequential architecture, just with different

9

Master Thesis - Salvador Garcia McMaster - Computing and Software

use of the properties, and that this architecture can be compared with the previous
one. There are related points of processing, which promotes a better
understanding.

2.4. Analogies with different architectures
Software Architectures can be compared with architectures from different

fields; through this analysis, it is possible to develop an intuition through existing
disciplines. The development of this intuition is realized through three disciplines:
Hardware Architecture, Network Architecture and Building Architecture [44].

• Hardware Architecture. They emphasize the configuration of hardware
elements such as CPUs, memory, hard disks, and peripheral devices. Some
examples of hardware architectures are RISC, pipelined and multi
processor machines. Two important things that can be compared with
software architectures are that in hardware architectures there are a small
number of design elements, such as clients, hubs and servers, and scale is
achieved by their repetition.

•

•

In software architecture, there are many design elements and the scale is
achieved through the addition of new ones. However, there is an important
similarity: software architectures are usually organized in an analogous
way to the common hardware architectures.
Network Architecture. They abstract the design elements (node and
connections) of multiple computers connected through a network.. Some
examples of computer networks are bus networks, star networks and ring
networks. Two points related with software architectures are important:
few components and few topologies. In software architecture, there are a
large number of topologies, and it is possible to consider how the
components are organized, for example, in a distributed way.
Building Architecture. Even though classical architectures are not very
related with the field, there are several points that can be considered for
software architectures:

o Multiple Views. Depending on the aspects that need to be
emphasized, a building design plan has different views such as
wiring, plumbing and heating. In an analogous way, software
architectures have different views, for example, implementation,
communication, interaction between the components, etc. The first
one is the most important; it is the detailed view for the architect,
like a building without "skin" that shows all the internal details.

o Architectural Style. It classifies architectures according to the form
of a building, techniques used to build it or the materials used.
From a descriptive point of view, it defines how the design
elements are organized and codified, and the relationships between
them. Analogously, this is a concept widely found to be one of the
most useful in software architectures.

10

Master Thesis - Salvador Garcia McMaster - Computing and Software

o Style and Engineering. This is the relation between engineering
principles and architectural styles. In classical architecture, some
aspects, such as the position and place of the structures, are not just
for aesthetic purposes, they are also functional. In a similar way, in
software architecture the engineering behind the design principles
is fundamental.

o Style and Materials. From a classical point of view, materials have
certain characteristics that provide a unique style and different
properties to the building. Analogously, in software architecture
the properties of distinct components provide different
characteristics to the architecture. This relationship is one of the
most important parts of software architectures.

2.5. Architectural Patterns, Design Patterns, Reference
Model and Reference Architecture

In the context of software design it is usual to find that several problems
share a similar solution that can be reused just recurring to the way that the main
components were design. This reusable solution is a pattern. A pattern is used in
two ways: Architectural and Design Patterns. Even though both are very related,
their purpose and concepts are very different.

A system is composed by a set of components that are interconnected. An
architectural pattern, also named architectural style, is the structure of these
components and the way that they are related. It specifies their responsibilities
and the guidelines to organize them [9, 10, 15]. Some examples of possible
architectural patterns are Layers, Pipes and Filters, Blackboard, Broker, Model
View-Controller, Presentation-Abstraction-Control, Microkernel and Reflection
Pattern [1 0].

A design pattern refines the design and relation of the components that
were specified in the architecture. It specifies their responsibilities and the way
that they are communicated in a more detailed level, for example, they specify the
classes of a system and the way that they are related. A software architecture
specifies the structure of a system with a higher level of abstraction. Examples of
design patterns are Whole-Part, Master-Slave, Proxy, Command Processor, View
Handler, Forwarder-Receiver, Client-Dispatcher-Server and Publisher-Subscriber
pattern [1 0].

Two more concepts that are very related with software architecture are
reference model and reference architecture. A reference model divides the
problem into parts depending on the functionality. It standardizes a problem
(usually situated in a mature field) into parts that together solve the problem. A
compiler is a typical example of a reference model; there are different kinds of

11

Master Thesis - Salvador Garcia McMaster - Computing and Software

compilers, but all of them share the same parts: a lexical analyzer, syntax tree,
symbol table, semantic analyzer and code generator [33, 54].

A Reference Architecture is based on a reference model, but maps it onto
software elements that implements the functionality described in the reference
model. It transforms vague notions into concrete implementations full of details
[48, 38].

All of these concepts are closely related, however, they are not software
architectures; they are just concepts that help to capture the elements of an
architecture. The relation between them is presented in the (Figure 4). The arrows
indicate that the next concepts contain more designs elements. Reference Model is
enclosed in a circle because it really does not represent a direct relation with the
concept of architecture (components and connectors); the rest of the components
are represented as a box because they explicitly use components and connectors
[9].

Architectural
Pattem

Ref•ence Softw ••
Architecture 1----.. Architecture

Figure 4. Relationships between Reference Model, Architectural Pattern,
Reference Architecture and Software Architecture

2.6. Present and Future of Software Architectures
Software Architecture has already been through several phases, such as

Basic Research, Concept Formulation, Development and Extension, and Internal
Enhancement and exploration. Currently the development is in a external
enhancement and exploration, and popularization phase [34].

During the external enhancement and exploration phase, several areas had
reached enough maturity in order to be useful outside of research and
development groups. One example is the Unified Modeling Language (UML) that
currently is integrating a considerable number of new design concepts related

12

Master Thesis - Salvador Garcia McMaster - Computing and Software

with Software Architectures. In addition, the work on general Architecture
Description Languages (ADLs) that are used for describing systems and software
architectures, are increasing constantly and adapted to specific architectures.

Architectural Patterns, specific purpose architectures such as service
oriented and agent-oriented architectures, and different standardizations reflect
the popularization of Software Architectures. In addition, today they are not just
concepts that are taught on a graduate level, now they have been introduced in a
undergraduate level; even in industry, the job title "software architect" is gaining
popularity. The current status reflects to the fact that now Software Architecture is
beginning to be considered as a true engineering discipline.

Trough the integration of Software Architecture into the design process,
several mechanisms are clearer; therefore, software development is more
powerful. Now, researchers have the responsibility to show that their now ideas
are promising and effective and keep doing research in innovative areas. Some of
the areas that should be developed are:

o Finding a proper language for representing architectures.
o Finding ways to assure the relation between architecture and code.
o Re-designing software testing techniques using software architecture

concepts.
o Organizing and standardizing concepts in order to create reference

materials.
o Support for adapting changes in resources related with user's expectations

and preferences.

13

Master Thesis - Salvador Garcia McMaster - Computing and Software

3. Multi-Agent Systems

3.1. Introduction to the Agent-Oriented Paradigm
Through software design history, several engineering paradigms, such as

procedural programming, structured programming, object-oriented programming,
etc., have emerged. All of them claim to be the best option in order to make the
engineering process easier; however, researchers are continuously looking for a
more powerful techniques satisfying more demanding applications.

A system can be designed using different techniques; for example, if
modularity is a main concern, the object-oriented paradigm is a good option. If a
module is based on a specific algorithm, imperative programming is the best
possibility. In a similar way, when the key feature in a system is autonomy, i.e. to
reach a desired goal without the user's interaction; a design possibility is the
agent-oriented paradigm.

When a system is large and complex, software engineers have to develop
several mechanisms for addressing it. Three of the most used are [28]:

• Decomposition: When a system is very large it is very useful to divide it
into smaller parts that can be treated in an isolated way. Therefore, the
designer can focus his attention on a particular part of the problem.

• Abstraction: This technique simplifies the problem emphasizing some
details and properties, and hiding others. Through this technique, the
designer can focus his attention on the most important aspects of the
problem, leaving many details for the next stage.

• Organization. The identification of relations between the components of
the system. Basic components can be grouped at a higher-level and be
treated in the same way by the parent, i.e., in a hierarchical way. In
addition, several components can work together sharing similar
functionalities.

Every emerging paradigm has to manage these strategies; the agent
oriented paradigm integrates them in a very effective way. However, it does not
intend to change the perception of programming; it is a tool that helps with a
particular set of problems. In the Agent Oriented Paradigm, the unit element is
named agent.

An agent is a component of the system that, with the help of other agents,
can solve a problem in an autonomous way. During the past years, there have
been different points of view and discussions about how an agent can be defined;
two of the most accepted are:

• Shoham: "An entity whose state is viewed as consisting of mental

14

Master Thesis - Salvador Garcia McMaster - Computing and Software

components such as beliefs, capabilities, choices and commitments" [45].
In this definition an agent is viewed as a component capable of reacting
according the changes that surround it (beliefs), and depending on that, it
is capable of choosing the best options to pursue a goal.

• Wooldridge: "An encapsulated computer system situated in some
environment and capable of flexible, autonomous action in that
environment in order to meet its design objectives" [59]. Similar to the
previous definition, this one suggests a component with capabilities to
choose an action (depending on the environment) to meet its objectives.

Depending on the situation, autonomy can be defined in different ways. In
this case, it refers to the idea that "agents are able to act without the intervention
of humans or other systems: they have control both over their own internal state,
and over their behavior" [60]. Some examples of agents are:

• Any Control System. A thermostat is a simple agent example. It has a
sensor that detects the room temperature; if the environment temperature
is too low, it will turn on until reaching the desired level. Once the
temperature is ok, the heating will turn off. This system is automatic, it
does not need the interaction of a user for reaching its desired objective,
and therefore, it can be considered as an agent.

• Software Daemons. Programs that run in the background without control
of the user. They are initiated through processes. For example, in X
Windows there is the xbi.lf utility. It checks continuously for incoming
emails; when it receives one, the system notifies it to the user.

3.2. Intelligent Agents
An agent, by definition, is an autonomous process, but, when intelligence

capabilities are added, it can decide which actions to choose in order to pursue its
goals, and how to interact and communicate with the other components.
Wooldridge defines an Intelligent Agent as "an agent that is capable of flexible
autonomous action in order to meet its design objectives; where flexible means
three things: reactivity, pro-activity and sociability" [60]. In this definition, there
are three concepts worth analyzing:

• Reactivity means that the agent can react to the changes occurring in the
environment or to the decisions made by other agents.

• Pro-activity connotes that the agents can decide which actions they are
going to take in order to satisfy them objectives.

• Sociability expresses the capability of an agent to interact with the others
in order to satisfy its goals.

An agent architecture is a structural model of the components that
constitute an agent as well as the interconnections of these components. Together
they compose a computational model that implements the basic capabilities of the

15

Master Thesis - Salvador Garcia McMaster - Computing and Software

agent. Intelligent agents can be formalized from an abstract architecture point of
view, or like a concrete architecture [57]. Due to the scope of this work, internal
architectures will not be analyzed; however, a brief description of them will be
g1.ven.

Abstract architectures are mainly general agent models that do not get into
detail about how they are going to be implemented. The most important ones are:

• Purely Reactive Agents. Agents that take decision without considering
the history; they simply respond to the environment.

• Perceptive Agents. Agents that take decisions through two subsystems:
perception and action. The first one captures observations from the
environment; the second one represents the decision making process.

• Agents with State. They have an internal structure where the history and
the environment state are saved. The decisions are mainly based on the
information acquired from the internal structure.

In contrast with abstract architectures, concrete architectures are more
specific about internal structures and they focus on the operation of agents. They
can be of four types:

• Logic-Based Architectures. They make decisions based on logical
deduction. Agents are viewed as theorem provers and their behaviors are
specified in a formal way. This specification is refmed through several
stages until an implementation is reached.

• Reactive Architectures. Decisions are implemented based on a mapping
from situation to actions. Agents react to an environment without
reasoning; their decisions are realized through a set of behaviors that can be
fired simultaneously.

• BDI agents. They are based un the philosophical concepts of practical
reasoning, where the decisions depend on the manipulation of data
structures that represent the beliefs, desires, and intentions of the agent.
They can decide what goals they want to achieve and how they are going
to be achieved.

• Layered architectures. In this case, different subsystems can be arranged
in a hierarchical way. The decisions are made via software layers that
reason about the environment at different levels of abstraction.

3.3. Multi-Agent Systems
When different intelligent agents collaborate in order to pursue a main

goal, they belong to a society that is named Multi-Agent System. Durfee and
Lesser define a Multi-Agent System as a "loosely coupled network of problem
solvers that work together to solve problems that are beyond the individual

16

Master Thesis - Salvador Garcia McMaster - Computing and Software

capabilities or knowledge of each problem solver" [27]; therefore, a Multi-Agent
System is a distributed and asynchronous set of agents that cannot solve problems
by themselves; they need to cooperate with the others to pursue a common goal.

A multi-agent system is used when a problem is too large for a centralized
system. It allows the communication, interoperability and interconnection
between heterogeneous systems, providing a distributed solution. It also suggests
an infrastructure that enables the interaction between agents at a social level.
Finally, it provides middleware that supports the communication and coordination
of activities [42].

The system can be designed in a centralized and in a distributed way.
Within a centralized approach, the system can be efficient, but sometimes, when
the information is not available at the same location, it is very hard to centralize
the system. With distributed systems it is possible to cover different domains,
locations, and distribute the tasks. They are easy to understand, and also they
provide an infrastructure for specifying communication and interaction protocols.
In addition, they provide a set of agents that are autonomous, distributive and
cooperative [57].

Multi-Agent Systems are a particular type of distributed intelligent system
that are is by many autonomous agents that can interact which each other. They
are placed in an environment surrounded by knowledge that influences the actions
that are based on decisions and goals. They exchange knowledge and negotiate
the necessary information in order to pursue a common goal.

In Multi-Agent Systems, agents work within an environment that provides
the infrastructure for the interaction and communication between agents.
Communication protocols enable agents to exchange and understand messages;
interaction protocols enable agents to have a structured exchange of messages
through conversations.

3.3.1. Communication Protocols
In order to better achieve their goals, agents must communicate in order to

interact successfully; for that, they must satisfy a set of properties [22]:
• Communication. Enable agents to coordinate their actions and behavior in a

coordinated way.
• Coordination. Allow agents to perform different activities in a shared

environment.
•
•

Cooperation. Coordinates non-self interested agents .
Negotiation. Establishes the communications between competitive or self
interested agents.

17

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Coherence. The way that all the agents behave together as an unit

All the agents within a system have communication given by the
combination of syntax (symbols), semantics (what symbols denote) and
pragmatics (symbol's interpretation); this communication is possible through
messages that can be assertions or queries. In addition, the communication is given
by protocols that can be specified at different levels such as:

• Lowest level. Specifies the method of interconnection.
• Middle Level. Specifies the format and syntax of the information.
• Top Level. Specifies the meaning and semantics of the information.

Moreover, the communication protocols can be binary or n-ary and they
are specified by structures composed by the following fields:

• Sender
• Receiver
• Language in the protocol
• Encoding and decoding functions
• Actions to be taken by the receivers

The information and knowledge exchange is specified by the protocol
KQML (Knowledge Query and Manipulation Language). In order to have an
understandable communication between agents, an ontology is created. An
ontology is a common vocabulary of agreed upon definitions and relationships
between those definitions, to describe a particular subject domain. KQML has an
infrastructure that is not part of the specification. It allows the agents to locate
each other; this function is performed by routers and facilitators.

Agents need a description of the environment where they are acting. For
that they use the knowledge that exists within the environment, which is
expressed through a knowledge interchange format. The most common, also used
within expert systems, databases, intelligent agents, etc. is KIF. It is a logic
language that has the main characteristics of First-Order Logic and mediates the
translation between different languages.

3.3.2. Agent Interaction Protocols
Interaction protocols govern the exchange of messages among agents. In

cases where the agents have conflicting goals, the objective of the protocols is to
maximize the use of the agents. In cases where the agents have similar goals, the
objective is to maintain globally coherent performance of the agents without
violating their autonomy.

18

Master Thesis - Salvador Garcia McMaster - Computing and Software

The actions of multiple agents need to be coordinated in order to manage
the dependencies between agents' actions. There is a need to meet global
constraints, and no one agent has sufficient competence, resources or information
to achieve system goals. Interaction protocols realize this coordination; they can
be of five types: Coordination Protocols, Cooperation Protocols, Contract Net,
Blackboard Systems and Societies of agents.

• Coordination Protocols. They assist the agents in order to coordinate
their activities satisfying their interest or the goals of the group. They also
coordinate the dependencies between actions in order to meet global
constrains.

• Cooperation Protocols. They decompose the distributed task. The
system can choose among different decompositions considering the
resources and capabilities of the agents.

• Contract Net. It is an interaction protocol for cooperative problem
solving among agents. It provides a solution in order to find an appropriate
agent to work on a given task.

• Blackboard systems. Everybody posts messages, and there is a control
loop that executes the systems until a decision is taken.

• Societies of agents. Intelligent agents do not function in isolation, they
are at the very least a part of the environment in which they operate, and
the environment typically contains other such intelligent systems. Social
commitments are the commitments of an agent to another agent. These
must be carefully distinguished from internal commitments [22].

3.4. Methodologies
As part of agent-based systems development, different methodologies

have been developed. A methodology is "the set of guidelines for covering the
whole lifecycle of system development both technically and managerially" [8]. A
methodology is intended to help understanding of a system, and as a result, for
designing it. Usually, a methodology begins with a model that has a high level of
abstraction; as the analysis continues, they become more concrete and detailed,
i.e., they become closer to the implementation.

Methodologies help to identify the task of the system, to identify which
components can be represented as agents and to define their interactions and
protocols. In addition, they also define the interaction between the agents, the
environment and their behavior. They help in the software engineering process
providing different tools, notations and languages that enhance the process for the
designers. Three of the most known methodologies are: Gaia, Tropos and MaSE.

• Gaia Methodology [30]. It is mainly based on five models: role,
interaction, agent, services and acquaintance models. It uses standard

19

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

notations like UML and AUML. It also has two phases: analysis and
design. The first one defines the environmental model, and the second
defines the organizational rules and structures.
Tropos Methodology [46]. It is founded on the relation of an agent and
its mentalistic notions in an early requirements analysis. Possible
requirements capture is based on the i* model [62] that specifies how the
system is going to be. The development is based on four phases: early
requirements analysis, late requirement analysis, architectural design and
detailed design.
MaSE Methodology [13]. This methodology is more focused on
heterogenous Multi-Agent Systems. It is a derivation of UML and its
objective is to assist the designer in order to get an initial set of
requirements. It has two different phases:

o Analysis phase. Produce roles and tasks and analyzes the goals.
Goals are what the system is trying to achieve. The roles perform
some function for the system. In this phase, the goals are captured,
use cases are applied and the roles are refined.

o Design Phase. Creates agent classes, constructs conversations,
assembles agents and develops the software design.

Current methodologies try to adapt object-oriented approaches; however,
they have the disadvantage that this decomposition is different from the one in the
agent-oriented paradigm. Good methodologies should encourage the designers to
analyze the system based on agent concepts, not objects. In addition, with the
object oriented methodologies, some agency properties, such as proactivity and
dynamism are hard to analyze. It is difficult to compare objects and agents;
however, one of the main goals in the agent-based paradigm is to reuse and
extend the concept of object in an agency terminology.

3.5. Multi-Agent Applications.
Using agents can be very helpful in different fields and systems. Michael

Wooldridge proposes the following main application fields where agents are
mostly used [61]:

• Agents for Workflow and Business Process Management. The concept
of Business Process is defined as "a set of logically related tasks
performed to achieve a defined business outcome" [1 7]. Workflow
systems try to automate processes of a business; in this case Business
Process Management is the intersection between Informatics and the
Business Process.

ADEPT [39] (Advanced Decision Environment for Process Tasks) is a
project that presents an approach to implement systems for managing the
business process. It consists of several agencies organized in a hierarchical
way that provide services to negotiate agreements in the system. The

20

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

•

•

resulting Systems relate different sections of the organization and define a
structure using all the concepts related with agents.

Agents for Distributed Sensing. Multi-Agent Systems are very helpful
when an application is composed of a network of sensors that must
cooperate in order to get or sense all the information. An example is a
battlefield where the sensor should track all the vehicles that pass in a
determined range. Sensors can exchange predicted information with the
others when a vehicle passes from one region to another.

Agents for Information Retrieval and Management. When in a system
there are distributed information sources, agents are a very good approach.
They must interact with different sources and manipulate the information;
these sources can be databases or more information agents. Some
applications in this category are web agents, personal information agents
and retrieval systems.

Agents for Electronic Commerce. This is one of the main fields where
agents are used. They are promoted in order to help the consumer to find
the best deal during the six main stages in e-commerce: Need
identification, product brokering, merchant brokering, negotiation,
purchase and delivery and product service and evaluation. Some of the
most usual agents in this field are comparison-shopping agents and auction
hots.

Agents for Human-Computer Interfaces. Usually users interact with
systems in a direct way, however, sometimes it is useful if the interface
can take decisions by itself. Multi-Agent Systems are very helpful in these
cases, as they can help the user in an adaptive way to take their own
decisions; these types of agents are known as expert assistants or interface
agents.

Agents for Virtual Environments. Virtual Environments are used to
simulate an artificial world; they are usually used in the cinema and
videogames. Agents help to simulate this world in a realistic way; they
need to show emotions and empathy with the understanding of human
behavior.

Agents for Social Simulations. Agents can be used to simulate human
behaviors in a society. Each agent can represent an individual person and
together will represent a team or an organization. A good example is the
simulation of a soccer game using robots.

21

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Other Agents. In addition, agents have been proposed for many others
areas such as industrial systems management, where they are very useful
during the industrial process. They are also used for spacecraft control and
for air-traffic control, where they assist the coordination and control of the
vehicles and different tasks, depending on the respective case.

3.6. Software Architectures and Multi-Agent Systems
A software architecture is designed as the result of requirements modeling

in early stages, the chosen paradigm, and the specific properties of a particular
system. In case of Multi-Agent Systems, they present properties such as
distributivity and cooperativity that restricts the way in which the architecture is
structured.

In addition, the internal architecture of an agent influences the way that
components communicate within a system. For example, reactive agents add
event-based properties to the system; therefore, the chosen architecture can be
designed using an implicit communication style.

The way that agents communicate (communication protocols) is described
in a more detailed level; therefore, it does not affect the design of the architecture.
However, some interaction protocols, such as blackboard, influences directly the
way that agents interact in the system; as a consequence, it can be an important
factor when designing an architecture.

Finally, methodologies analyze a system using different points of view.
Methodologies specify interaction protocols; the way agents interact with each
other, and how the environment affects the components. Therefore, if a
methodology is followed, it can influence the way a system is designed.
Depending on the methodology followed, an architecture can be structured in
different ways.

22

Master Thesis - Salvador Garcia McMaster - Computing and Software

4. Agents Standards

4.1. Introduction

The current development in agent systems covers a wide range of
technology, paradigms and techniques. The use ofthe Agent-Oriented paradigm is
becoming a common practice for developing applications that require a high
degree of autonomy, and the results are very promising. However, one of the main
problems that are being faced is the heterogeneity of systems. As a consequence,
there are difficulties when systems attempt to communicate and intemperate, and
in some cases, reusability is almost impossible.

As a response, different organizations have recognized different needs,
and currently they are collaborating in a standardization process. Their main goal
is to develop applications using agent technology that can work together. They
have successfully achieved the analysis of different aspects of an agent system
like interoperability, communication and security.

One of the most important achievements in these standards is the proposal
of an Abstract Architecture to support an homogeneous development. Is important
to remark, that in their use of the term of Software Architecture is different to the
one used in this research. From their point of view, a Software Architecture a set
of specifications and guidelines that defines, in an abstract way, elements and
their relationships, communication and interoperability between agents [24]

In this work a Software Architecture is defined as a pattern of
interconnected components satisfying some structural rules. Moreover, there are
many frameworks and toolkits based on these standards. In this work, they are
considered as a middleware to support easier development process.

In this chapter, we are going to analyze the FIP A and MAS IF standards in
order to give a general idea about standardizations and specifications in the field.
Additionally, we are going to analyze four frameworks: JADE, ZEUS,
Grashopper and COUGAAR; the goal is to give a brief introduction to the
development of agent-based systems.

4.2. FIPA Abstract Architecture

The development of an application based on Multi-Agent technology
tends to be complex; different organizations develop agents that, because they are
heterogeneous, become useless when they intemperate. The foundation for

23

Master Thesis - Salvador Garcia McMaster - Computing and Software

Intelligent Physical Agents [25], founded in 1996, is an international organization
promoting the specification and standardization of agent technologies.

The main objective of FIP A is to specify the interoperation between
different agent platforms. Its official mission statement is: "The promotion of
technologies and interoperability specifications that facilitate the end-to-end
interworking of intelligent agent systems in modem commercial and industrial
settings" [4 7]. It covers almost all the areas related with agent technology, such as
architecture, communication, mobility and security [19]. Due to the scope ofthis
work, just the abstract architecture will be analyzed.

The principal goal of abstract architectures is to identify which elements
between different technologies are shared and describe them in an abstract way.
These elements should be the base for concrete architectures, and because
different technologies are sharing the same abstract design, they can interoperate.
The proposed abstract architecture (Figure 5) has four elements: Message
Transport, Agent Directory, Service Directory and an Agent Communication
Language [24].

I I
1~1 ~ ~ Agent

Communication sport
language

,
I Concrete Realization: Corba Element

I Concrete Realization: C++

COncrete Realization: Java

Figure 5. FIP A Abstract Architecture

• Agent Directory. When an agent is created, it is registered in the Agent
Directory Service. If one agent is trying to reach another one, it can find
its location through this service. The agent directory entry is a tuple with

24

Master Thesis - Salvador Garcia McMaster - Computing and Software

two values: agent name and agent locator; the first one is a global and
unique name for the agent; the second one contains the agent's address
and description.

• Service Directory. An agent registers all of its services in the Service
Directory. If an agent wants to use a particular service, it can go to this
component and locate the agent that is providing such a service. This
component can be thought of as an analogy to the Agent Directory, but
instead of being oriented to agent discovery, it is focused on service
discovery. The entry is a tuple composed of three attributes: service name,
service type and service locator. The first one is the unique name for the
service, the second one sets the category for this service and the last one
contains the signature type, service signature and service address.

• Message Transport. The communication between agents is possible
through messages. A message is composed of three parts:

o Message Structure. It is a key value tuple written in an Agent
Communication Language such as FIP A ACL.

o Message Representation. It is represented through a content
language such as KIF (Knowledge Interchange Format); the
expressions of the content are retrieved through ontologies, which
are a common vocabulary of agreed definitions and relationships
between those definitions, to describe a particular subject domain.
A message contains the name of the sender and receiver that are
unique identifiers.

o Message Transport. A message is encoded using the encoding
representation necessary for transport and included in a transport
message. An envelope is added to the message; it has extra
information such as the sender, receiver and additional attributes

• Agent Communication Language. The communication services are used
in order to exchange agents' messages; they are encoded through an Agent
Communication Language (ACL). FIPA proposes FIPA-ACL that is based
on KQML (Knowledge Query and Manipulation Language) that describes
how to encode a message and its semantics; however, it does not specify
anything related with the communication. In addition, FIPA-ACL
eliminates ambiguity and confusion, and supports conversations between
agents through interaction protocols, which are communication patterns
that are followed by every agent.

Finally, it is important to keep in mind that because the architecture is
abstract, it cannot be implemented directly; it must be concretized using different
platforms like Java, C, or CORBA. There are several platforms that are based in
this architecture like Jade, Grasshopper, FIPA-OS, Zeus and Jack. In this work

25

Master Thesis - Salvador Garcia McMaster - Computing and Software

just Jade and Grasshopper will be analyzed. A more exhaustive comparison of
these platforms can be found in [55].

4.3. MASIF Standard

MASIF (Mobile Agents Facility) [35] is a standard based on OMG
(Object Management Group) [41] technology that provides a collection of
definitions and interfaces for the interoperability of mobile agent systems. Besides
the fundamental agency definitions, mobile agents involve additional concepts:

• Mobile Agent. Agents that are not limited just to one system; they have
the ability to move from one network to another.

• Agent State. The execution state of the agent; it is also transported while
the agent travels.

• Agent's Authority. Identifies where the agent is acting.
• Agent System Type. Describes the profile of an agent.
• Place. Where the agent is executing.
• Region. Set of agent systems with the same authority.
• Serialization. Process to store the agent in a way that can be

reconstructed.

Even though MASIF attempts to standardize the main points related with
mobile agents, there are some parts, such as security and communication, which
are in progress or are not addressed in the standard. However, even through the
communication specification is outside the scope of MASIF, it is addressed by
CORBA. In addition, mobile agent systems are usually written in different
languages; the process to convert from one to another is very complex.

One of the goals of MASIF is to format the systems through a similar
serialization. In this way, is possible to build bridges between systems in an easier
way. Additionally, MASIF mainly standardizes four parts in a system:

• Agent management. Specifies standards for the basic agent operations:
create an agent, suspend it, resume it and terminate it. In addition, it
allows the system to control agents from another system in a remote way.

• Agent transfer. Defines the infrastructure to enable agents from different
systems to move freely from one to another.

• Agent and agent system names. Standardizes the syntax and semantics
of the agents' names in the system in order to identify each other. Agent
tracking is achieved through MAFFinder, which is the naming service.

• Agent system type and location syntax. The agents can locate each other
once their location is standardized; therefore, they can communicate and
transfer information can happen without any problem.

26

Master Thesis - Salvador Garcia McMaster - Computing and Software

4.4. Frameworks and Toolkits

4.4.1. JADE

Jade [26] (Java Agent DEvelopment Framework) is a software framework
based on the FIP A standardization that acts as middleware for the development of
agent systems [6]. It is based on the peer-to-peer communication architecture,
where each agent can be viewed as a peer. Among other advantages, Jade
provides good interoperability between agents; it is easy to use, and the users can
choose the services that want to use [7].

A Jade application is composed of a main container that has different
agents and containers. Each container is a Java instantiation that is executed in a
single Java Virtual Machine; the agents are distributed when different agents are
executed in different hosts. They can communicate with each other using a
transportation system based on different technologies such as RMI and CORBA.
The Jade architecture is presented in Figure 6.

Container

Java VII Layer

I CLDC I

Internet Wlnaleu

Figure 6. Jade Architecture

Different containers have the same components, and all of them are
connected to the main one. The main container is composed of three main parts:

• Directory Facilitator. Yellow pages service that supports the registration
and retrieval of all the services.

• Agent Management System. White pages functionality that manages agent
naming services and the agent life cycle management.

27

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Agent Communication Language. Used for communication between all the
agents; in this case, RMI is used.

Jade is the most used framework for building Multi-Agent Systems; it has
the advantages that it is based in JAVA, it is freeware, and its interface is simple.
It is distributed, and it is possible to choose the functionalities that need to be
used. Some disadvantages are that Jade does not have enough security
mechanisms and that it is still in development; therefore it is not much used in
industry. A more exhaustive comparison can be found in [40].

4.4.2. Zeus
Zeus [32] is a tool-kit, based on the FIPA standard, for developing Multi

Agent applications. It emerged as the result of the need of developing
methodologies, frameworks and toolkits using agency concepts. Its main goal is
to facilitate the engineering of agent applications, to speed up the coding process
and to encourage the reuse and standardization of agent technologies.

The environment that Zeus provides helps to configure different agents
according to their behaviors. It organizes the agents depending on their
relationships, which can be of four types: sub-ordinate, superior, peer and co
worker. In addition, the agents are coordinated through protocols like master
salve and contract-net.

Moreover, Zeus follows the FIPA standard; therefore, it provides
predefined services such as name-server agents (white pages), facilitator agents
(yellow pages), a visualizer and a communication language. The first two agents
provide the location of the agents and who provides each service respectively.
The visualizer analyzes and debugs the system; the communication language that
is used is KQML.

In addition, Zeus provides its own type of agent architecture. It is
composed of five layers:

• Definition Layer. The agent is viewed from an intentional point of view,
i.e. through their abilities, goals, resources, beliefs, etc. This layer also
defines how the tasks are performed, how the activities are planned and
what are the initial facts available to the agent.

• Organization Layer. It is viewed in terms of the relationships with other
agents. It permits to know who are the other agents in the community and
to establish the relation between them.

• Coordination Layer. The agent is viewed as a social entity. It defines the
strategies used to coordinate the system.

• Communication Layer. It manages all the details related with
communication issues.

28

Master Thesis - Salvador Garcia McMaster - Computing and Software

• API Layer. Links the agents to the physical components of their
resources.

4.4.3. Grasshopper
Grasshopper is a mobile agent development platform, developed by GMD

FOKUS and IKV++, used for building distributed multi-agent systems. It is based
on the client/server paradigm and mobile agent technology. It is designed
following the Object Management Group's Mobile Agent System Interoperability
Facility (MAS IF) standards and, in its latest version, an extension for the FIP A
standardization was added. The Grasshopper architecture (Figure 7) is based on a
Distributed Agent Environment, which is composed of three main components:
agencies, places and agents. They are grouped by the concept of region, which
facilitates the component management [5].

Core
Al;lency

I
MAf'

I AgentSystam

1 Communication 1

I Management I
I Persistence

I Reglstnl1lon I
I 5ecurlty I
I Transport

Region Registry

I Management I
I MAf' Finder I I Communication I

I

000
Place

0 s
r-

Figure 7. Grasshopper Architecture

-

• Agencies. Associate agents with services that are provided for agent
interoperability. The communication between agents is provided by the
RMI communication protocol. An agency consists of two parts; the core

29

Master Thesis - Salvador Garcia McMaster - Computing and Software

agency and one or more places. Core Agencies provides the basic
functionality required. The core agency provides the following services:

o Communication Service. Responsible for all the interaction
between the distributed components. All the interactions are
performed via CORBA, Java RMI or plain socket connections.

o Registration Service. Lets the agency know where all agents are
and where places are hosted. It is connected to the region registry
that has information about the agents, their descriptions and the
whole region.

o Management Service. Allows monitoring and executing agents via
operations, such as, start, stopping or removing an agent.

o Security Service. There are two security mechanisms in
Grasshopper: External and Internal; the first one protects remote
interactions between the components; the second one protects
resources from unauthorized access.

• Place. It groups agents according to their functionality.
• Agents. There are two types of agents: mobile agents and stationary

agents. Both of them use different services that are grouped in the core
agency area; these services provide the minimal functionality required in
order to support the execution of the agents.

One of the advantages of Grashopper are that it provides two different
standards: OMG and FIP A. In addition, it provides a friendly interface and it is
well documented. However, its main disadvantages is that it has weak agent
mobility [55].

4.4.4. Cougaar
Cougaar (Cognitive Agent Architecture) [12] is a Multi-Agent

Architecture developed by DARPA (Defense Advanced Research Projects
Agency). It was originally created as a deployment base for large scale, robust
and distributed applications. Cougaar does not follow any particular standard, and
it has its own kind of agents which communicate with each other through
asynchronous message passing [1].

The main components in Cougaar (Figure 8) are [2]:

30

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

Node

Message Transport Service

Figure 8. Cougaar Architecture

YPIWP Dlnlctory
Service

Community Service

Society. Set of agents that interact in order to solve a particular or set of
problems. It can be composed of different communities and independent
agents.
Community. Design concept that groups agents with common
functionality. It is composed of different communities and agents. This
notion helps in designing the society grouping pieces; however, it is not
considered as an architectural concept.
Node. Java Virtual Machine instance that contains multiple agents sharing
the same CPU, memory and so on. Additionally, they can be part of
different societies and communities.
Agent. Principal unit capable of communicating with other agents. They
code and send messages through message transport services or directory
services. Messages can also be sent through community services, where
the agents and their services can be located. An agent is composed of two
parts:

o Plug-ins (binders): Components that add functionalities and
services to the agents; they build a wrap around the agent,
providing and restricting the services that will be shared with other
components.

31

Master Thesis - Salvador Garcia McMaster - Computing and Software

o Blackboard. Establishes the communication between the agent's
components. The plug-ins publish and subscribe their objects in the
blackboard; therefore, the other components can take the required
information from it. The blackboard has three types of objects:
tasks, assets and plan elements. Tasks represent a request from one
agent to another to perform an operation; assets represent the
sources where the tasks are allocated and Plan Elements contain
the elements for the tasks.

In the Cougaar architecture, the communities can interact through a
community service component. If a component wants to be notified of community
changes, it should just register with the community service and receive
notifications when there are changes. The agents and services can be found
through a directory service composed of yellow pages and white pages services.
The yellow pages service enables the discovery of other agents and the white
pages service permits to discover the services. A comparison between Cougaar
with similar architectures is presented in [23].

4.5. Relation between Standards, Frameworks and
Software Architectures

A standard provides a set of guidelines that help in building a better
implementation of a design; however, they do not affect the architecture; they just
act as a middleware between the architecture and the design. A framework is
based on a standard, and provides tools for an easier implementation; therefore
they do not influence in the architectural design too.

For example, MASEL was implemented following the FIPA standard and
it was implemented using JADE as a framework. MASEL follows two main
architectures: repository and layers (three tier); however, they just represent the
structure of the system. They do not specify the way that agents communicate,
where their location is, how it is possible to access to them and how a message
can be specified. For that, it is possible to use the standards. Finally, once that all
these properties are specified, Jade is used for implement the application in Java.

32

Master Thesis - Salvador Garcia McMaster - Computing and Software

5. Software Architecture Patterns.

5.1. Architectural Pattern Classification

During the analysis stage of a system, it is possible to get all the
functional/non-functional requirements and the general properties needed to
design a system. These properties focus a system toward a specific paradigm that
adds more characteristics. The design of a system architecture is mainly
influenced by these properties together; when a system is based on agents, the
main properties that affect the architecture are:

• Multi-Agent System are composed of Intelligent Agents. These types of
agents present properties that add unique characteristics to the system. The
most important are:

o Reactivity. An agent can react when a message is sent directly by
an explicit invocation or when it is sent implicitly, trough events.

o Proactivity. Agents decide by themselves the actions that are going
to be taken.

o Sociability. Depending on the desired objective, agents interact
with the others using different styles. This communication affects
the structure of the system, and depending on the possible options,
an architecture can vary in many ways.

• Distributivity. The location of the agent is one of the properties that
influence the design of an architecture. The way that an agent interacts
with agents from external systems can be very different to the interactions
with the ones that are located in the same system or in local subsystems.

• Cooperativity. Depending on which components cooperate to solve
specific tasks, an architecture can be modeled in different ways; for
example, if every agent provides a partial solution, they can be modeled in
one way; but if the functions are not related, they can be structured in a
very different way.

Within the literature, there are many systems that can follow different
patterns. A system can adopt a pattern according to its properties. A vgeriou
proposes classifying the existing patterns according to their architectural view. An
architectural view is "a representation of a system from the perspective of a
related set of concerns" [3]. A concern describes how software components are
allocated to the nodes in a network; a viewpoint represents a set of elements and
their relationships; and view is an instance of a system where the elements and
relationships correspond to the ones contained in the viewpoint [3].

Based on the Multi-Agent Systems and Intelligent Agents properties,
Multi-Agent System architecture can be classified from four main types of view:

33

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

Layered View. Decompose complex, large, and heterogeneous systems
into interacting parts. The most typical architecture included in this group
is Layers.
Data-Centered View. Appropriate when there is common data that is
shared by several components. Some architectures included in this group
are Active Repository and Blackboard.
Component Interaction View. Focuses on how the components exchange
messages and interact among each other. Examples of architectures
included in this group are Implicit Invocation and Reactor.
Distribution View. Organizes components' interaction when they are in a
networked environment or in different systems. Broker is one the most
common architectures included in this group.

5.2. Layers

The Layers architectural pattern helps to structure systems that can be
decomposed into groups that have elements with a similar level of abstraction
[10]. The layers of the structure are placed on top of each other; the connectors
between them determine how the layers interact, and they are defined by
protocols.

Layered architectures are mainly composed of layers; their responsibilities
are to provide services to the next layer (J+ 1) and delegate subtasks to the
previous one (J-1). The layer J always collaborates with the layer J-1; Figure 9
shows a typical layered architecture.

uses
Client LayerN Highest level of abstraction

Layer1

Figure 9. Layers Pattern

34

Master Thesis - Salvador Garcia McMaster - Computing and Software

The Layer 1, which has the lowest level of abstraction, is considered as the
starting layer that is the base for the other layers. The layer J is placed on top of
the layer J-1, and finally, the layer N has the top level of functionality. In each
layer, all the components must work at the same level of abstraction. Most of the
services that J provides, are composed of services provided by J-1, therefore,
services depend on services provided by other layers.

The OSI-7 model is a network protocol generally used as a typical layered
example. It contains as set of rules that indicates the way that computer programs
should communicate across machine boundaries. The OSI -7 model is composed
of seven layers [1 0]:

• Application. This is the highest level of abstraction; it provides protocols
for different activities.

•

•
•
•
•
•

•

•

•

•

Presentation. Organizes the information in a structured way and attaches
the semantics.
Session. Provides control and synchronization .
Transport. Break the messages into packages .
Network. Selects the optimal route between sender and receiver .
Data Link. Detects and corrects errors in a bit sequence .
Physical. Transmits bits .

Some ofthe advantages that a layered architecture provides are [3, 10, 53]:
Reusability. If the layers are well defined, using a proper abstraction, the
layer can be reused in different contexts.
Support for standardization. If a level of abstraction is well defined and
widely accepted; it is possible to develop standardized interfaces. This
allows using products from third parties in different layers.
Local dependencies. External changes just affect one layer, and It IS
possible to modify the affected layers without changing the others. This
enhances portability, testability and independence for the components of
the system.
Exchangeability. Individual layers can be replaced by different ones in an
easier way. The modifications are minimal, and they are just focused on
the connections between layers.

However, the Layers pattern, has some disadvantages [3, 10, 53]:
• Changes in the behaviors. If the behavior in a layer changes, it can affect

the next ones; therefore lower layers can be shielded from modifications in
higher levels.

• Lower efficiency. If there are several layers, the data transfer from the top
layer to the lowest one can be inefficient.

• Unnecessary work. Extra work in different layers can affect the
consequent ones and generate duplicated work that is not necessary.

35

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Difficulties establishing the correct level of abstraction for each layer. In
some cases, there is not enough clarity in the separation of componepts;
this can generate incorrect levels of abstraction, or force components to be
part of an incorrect layer.

A Multi-Agent System (MAS) is composed of elements that, in contrast
with other types of systems, exhibit autonomy. However, as a derivation of
standard components, agents can be grouped according to the services provided,
the way that they interact, etc. A Layers Patterns helps to structure a MAS
focusing on the services provided by each agent, the components that use these
services and the way that they are sent. However, depending on the system, a
Layered pattern may not be enough to design a Multi-Agent System; usually, it
complements the use of different patterns in the system.

5.3. Broker

A Broker architecture decomposes the system into a set of distributed and
independent elements that can communicate and intemperate between them.
These components can be heterogeneous; however, they should be able to
intemperate through a communication process that is independent of each
component. The communication between components must be in a transparent
way; the exchange, addition and deletion of components may occur in real time
and the details should be hidden from other components and services [10, 3].

This architecture is applicable when, within an application, there are many
clients and many service providers [20]. Moreover, a Broker architecture is based
on a layered architectural style [63]. The layers help to structure an application in
groups with a very well defined abstraction level.

The main elements that compose a broker architecture are [10]:
• Client. Accesses and sends requests to servers and implements user

functionality.
• Server. Implements objects and services, registers itself with the broker

component and sends the responses to the client.
• Broker. Communication between the client and the servers, registers and

un-registers servers, transfers messages, locates servers and interoperates
with other brokers.

• Client-side Proxy. Layer that mediates between clients and the broker,
encapsulating the system functionality related with the client.

• Server-side Proxy. Calls services provided by the server; encapsulates
system functionality related with the server and provides a layer that
mediates between the broker and the server.

36

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Bridge. An optional component that hides the implementation details
when two brokers inter-operate; it encapsulates functionalities of the
network and mediates between the system and the remote brokers.

In general terms, a broker is very helpful when distribution is a key role in
systems. Among others, the main advantages are [10]:

• Location Transparency. Because the components communicate through
the broker, clients do not know the servers' locations in order to request a
service. In a similar way, servers do not have to know the location of the
clients.

• Changeability and extensibility of components. Modifications in
components do not affect the others; changes in the broker component, for
example, do not affect the rest of the system.

• Portability. The broker system hides the details using the proxies and
bridges; the lowest layers hide the details from the rest of the system;
therefore, just these layers must be ported, and not the rest of the system.

• Interoperability. Different broker system can intemperate if they have a
common message-exchange protocol, which is handled by the bridges.

• Reusability. When building a new system, components based on broker
architectures can be reused easily; just slight modifications to the proxies
are needed.

However, a Broker architecture also presents some disadvantages [10]:
• Restricted efficiency. Broker based applications are slower than the ones

with a static distribution.
• Lower fault tolerance. All the components depend on the broker, if it has

any problem, all the system can fail.
• Testing and debugging. Because many components are involved, testing

can be a hard and tedious process.

A Broker architecture is very suitable in a Multi-Agent System when the
structure can be designed from a requester-provider point of view; i.e., an agent
requests a service (client) which is provided by different agents (server). When an
application is composed of several subsystems, a Broker architecture can help to
achieve easier communication and, when concurrency is a main characteristic, the
proxy components and the broker can be modeled using the agency definitions.

5.4. Blackboard

The Blackboard pattern is useful for problems that do not have a
deterministic solution or known strategy for achieving a solution. In this case, the
programs do not interact directly; they are independent and work cooperatively on

37

Master Thesis - Salvador Garcia McMaster - Computing and Software

a common data structure. The system works with partial solutions that are
combined in a solution space; in case that they are incorrect, they are rejected.

This architecture is organized in abstraction levels, which are the
conceptual distance from the input and truth of the hypothesis. The lowest one is
an internal representation of the input; the highest represents the possible
solutions. The system is divided into three components (Figure 10) (10]:

Control "' Blackboard , ..
~, I

~

r
Knowledge
Souroen+1

Figure 10. Blackboard Pattern

4
Knowledge
Souroen

• Blackboard. Where all the data (elements of the solution and control data)
is stored. It is composed of a vocabulary, which represents all the elements
that can appear in the blackboard, and an hypothesis, which is the possible
solution constructed during the solving process.

• Knowledge Sources. Independent components that solve specific aspects
of the problem. The solution is built through the integration of all the
results provided by these components. They communicate through the
blackboard; therefore, they have the same vocabulary. They are split into
two parts:

o Condition part. Evaluates the current state of the general solution
and determines if it is possible to make a contribution.

o Action part. Produces a result that may change the contents of the
blackboard.

• Control Component. Runs a loop that constantly monitors if there is any
change in the blackboard; based on that, it decides the actions that can be
taken. Based on the data, it evaluates when a system should be activated.

38

Master Thesis - Salvador Garcia McMaster - Computing and Software

In addition, there is a knowledge source that does not collaborate directly
with the solution, but performs calculations about the control decisions that
should be made. The results are named control data and are also placed on the
blackboard.

Some ofthe advantages that the blackboard architecture provides are [10]:
• Experimentation. When there is not an exact solution, this pattern enables

experiments with different algorithms and different control methods.
• Changeability and Maintainability. All the components in the system are

strictly separated; therefore, if a component is modified, it does not affect
the rest of the system.

• Reusable Knowledge Sources. Because each component is independent, it
can be reused in another system. However, in order to be understood by
the others, they must use the same protocol.

• Fault Tolerance and Robustness. In this architecture, all the results are
hypotheses; just the strongest survive. This provides tolerance for
uncertain conclusions.

Some ofthe disadvantages are [10]:
• Testing. Because a system based on this architecture does not follow a

particular algorithm, the results are not always reproducible; in addition an
incorrect hypothesis can be part of the final solution.

• Difficulty of establishing the control strategy. There is not a
straightforward way to set the control strategy; it is obtained through
experimentation.

• High development effort. Due to the trial and error programming when
defining the vocabulary and the knowledge sources, the development of
systems can take a long time.

• No support for parallel activation of subsystems. There is not a defined
strategy to activate the execution of knowledge sources at the same time; it
depends on the order given in the control loop.

In a Multi-Agent System, a Blackboard architecture is very helpful when
the components can be grouped in different subsystems that solve specific tasks.
Each subsystem provides a partial solution; all together may provide enough
information for reaching the goal of the application. The subsystems can work
concurrently and submit the results when they are ready; the control loop will be
in charge to activate them when it is necessary and put all the pieces together.

5.5. Implicit Invocation

In a system, components usually interact with the others explicitly
invoking sub-routines; however, as a possible alternative, components can
communicate with the others in an implicit way through events. An event is "a

39

Master Thesis - Salvador Garcia McMaster - Computing and Software

notable thing that happens inside or outside your business. An event may signify a
problem or impending problem, an opportunity, a threshold, or a deviation" [36].
In software applications, when an event happens, it can affect the behavior of the
system.

In an event-driven architecture, procedures are not invoked directly; a
component announces an event, different components register an interest in this
event and associate it with the procedures that will be affected. When an event
occurs, all the related elements are invoked in an implicit way.

In this case, a client is just interested in the invocation result, but it can do
something else in the meantime [3]. In Multi-Agent Systems, agents are always
acting autonomously and when an event occurs, they change their behavior.
Agents that react to external stimuli are known as reactive agents.

An implicit invocation is composed of modules that signal events without
knowing the recipients and procedures that register their interest in specific
events. In addition, it is necessary to have an extra element: the event handler; its
function is to register, to coordinate, and to activate events. When a process sends
an event, it does not know who are the recipients; therefore, there is not a specific
processing order; however, it is possible to use explicit invocation as a
complementary form of invocation [52].

Among many advantages, implicit architectures [15, 53, 52]:
• Provide a strong level of reusability.
• When a component is added to the system, it is simple to register it for the

events in the system.
• It supports for a better system evolution.
• Components can be changed or updated without affecting the interfaces

with the other components in the system.

On the other hand, these architectures also provide some disadvantages,
such as [15, 53, 52]:

• Components cannot completely control the system.
• When a component announces an event, it is not possible to know if the

components will respond to it.
• Exchange of data must be within the events or through repositories; this

can affect the performance of the system.
• It is not easy to prove the correctness of an event-based system.

Implicit architectures are very helpful when the system is based on events;
since reactive agent systems are very common, therefore, these kinds of
architectures are the best option for these cases. This architecture is not very
specific about the components that should be included in the structure; they are

40

Master Thesis - Salvador Garcia McMaster - Computing and Software

just reduced to components and events. However, there are different architectures
that are based in these principles, such as the Reactor architecture, that, even
though gets into a very detailed level, the main components can be implemented
in a straightforward way.

5.6. Reactor

Event based systems can be modeled following different architectures; one
possibility is the use of a Reactor Architecture, which allows the separation of
service request and the sending of them to an application [51]. Even though this
architecture is considered as a pattern, several components are described at a
detailed level; however, it is possible to apply the main elements to implicit
invocation architectures.

In a distributed environment, different clients send many requests at the
same time. These requests are identified by indication events, which are the ones
that activate different processes in the system. The application should be able to
recognize the source of these events and dispatch them to the corresponding
service implementation.

[51]:

use

As shown in Figure 11, a Reactor Pattern is composed of five participants

' • • • • I

• I
I
I
I
I
I
I

Handle Set

L------------

41

Concrate Event
Handlers

Master Thesis - Salvador Garcia McMaster - Computing and Software

Figure 11. Class Diagram Representation of the Reactor Pattern

• Handles. Elements provided by the operating system to identify event
sources. Each indication event has an associated handle; when an event
occurs, it is queued on its handle and it is marked as ready. Handles can be
grouped in handles sets.

• Synchronous event demultiplexer. Function that is called for waiting for
occurrences of indication events on a set of handles. It blocks operations
until an event occurs (set as ready in the handle set).

• Event handler. Interface that consist of hook methods that represent the
operations to process indication events that occur on handles.

• Concrete event handlers. Implement the services that an application
offers. They implement the hook methods that process the events.

• Reactor. Allows applications to register or remove event handlers and
their associated handles. It manages handle sets, and runs the application's
event loop. When an event occurs, the reactor recognizes who is the
requester and dispatches the event to the appropriate hook method.

Among the benefits that the Reactor pattern offers, the most important are
[51]:

• Through this architecture, it is possible to separate the events and the
modules that will be affected. Therefore, components can be highly
decoupled, making them independent and reusable.

• The application can be decoupled into several components, promoting a
high modularity. This helps for achieve better reusability, and an easier
way to organize the elements.

• Because of the decoupling of the reactor's interface from the operating
system, it is possible to reuse this pattern in different platforms.

• It coordinates concurrency control, eliminating complicated
synchronization in the application's processes.

However, it also has some disadvantages [51]:
• This architecture does not follow totally the software architecture concepts

proposed in this thesis; therefore, depending on the system, its
interpretation can lead to some misconceptions.

• Since it is based on events, it is hard to check the correctness of the
system, to debug, and to test.

Following the proposed architectural concepts, a Reactor pattern contains
two main components: event handlers and a reactor. The way that an event is
controlled and represented (handles, demultiplexer and concrete handlers) is
implemented in a more concrete level. The way that a method reacts is detailed in

42

Master Thesis - Salvador Garcia McMaster - Computing and Software

the design of the reactive components, which have the methods that activate the
component.

A reactive Multi-Agent system can be viewed as an event-driven
application; the Reactor pattern is very helpful for the design of all types of
reactive systems. It is more detailed than an implicit architecture; however, it is
less flexible. The main advantage provided for Multi-Agent Systems is that this
architecture helps to separate the way that the agents send messages or provide
services (interpreted as events) and the way that they affect the agents that receive
them. In this case an agent provides services without knowing who will use them,
and the agents that want to utilize them can register an interest for them, viewing
them as events.

43

Master Thesis - Salvador Garcia McMaster - Computing and Software

6. CASE STUDIES

6.1. Robot Disassembly Process Using a Multi-Agent
System

6.1.1. Description:
A traditional manufacturing system usually is designed in a centralized

way. Centralized systems present problems when there are failures; they cannot
recover from them, or they just simply shut down. These problems are overcome
when a system is designed in a distributed way. A good way to model a
distributed system is using an intelligent manufacturing environment based on
Multi-Agent Systems. This project proposes a design for a disassembly process,
which is a special case in manufacturing systems [43].

The disassembly system is divided in three parts:
• CAD Model. Analyzes the parts of the model, processes data and sends the

results as input for the Supervising Cell.
• Supervising Cell (3/DS). Analyzes the information from the input and

sends a possible disassembly plan to the Disassembly Cell.
• Disassembly Cell. Contains robots that execute the operations; in this case

this part is simulated.

This project just analyzes the 3IDS part, where the Multi-Agent System is
designed to work on a predicted scenario. The system is composed of two main
areas:

• Sequence Analysis. Searches for the best disassembling sequence.
• Disassembly Process. Simulates the proposed disassembly process.

6.1.2. Initial Design
The architecture is divided in three logical units: data structures, decision

making unit and control unit.
• Data Structures. It does not contain agents, but, has all the set of

structures that work as inputs for the other logical units. It has the
information obtained from the CAD model, such as the set of possible
sequences for disassembly.

• Decision Making Unit. Using the data structures, it chooses the set of best
sequences to perform the necessary operations. If an operation fails, it
chooses another one or calls for the intervention of the supervisor. This
unit is composed of three different agents:

o Decision Agent. Based on the information acquired from the
operation agents, it decides which one is the best one. It is based

44

Master Thesis - Salvador Garcia McMaster - Computing and Software

on states; the initial state is the dismantling sequence. In each step,
the agent tries different operations; depending on the obtained
results, it changes its state. On a collision, the decision agent
analyzes different alternatives and creates different agents for the
possible operations that can be executed.

o Operation Agent. Agent created for each possible operation. It
contains the method negotiate, which returns the first potential
operation that will be executed by the agent.

o Action Agent. Agent created after a decision for performing the
chosen operation is taken. It travels between the decision-making
and the controllers unit; if the controller has a problem when
executing an operation, this agent goes to the decision unit where
another decision is made or cancels the agent. These agents are
placed in an agent container.

• Control Unit. Unit composed of a set of agents that execute the
operations chosen in the decision unit. Two objects are contained in this
unit: the robot and the operator, which are controlled and executed by the
controller agents. Each agent searches for an action agent in the agent
container; if the action is executed, then the action agent is disposed of and
the decision unit creates the next action agent. Three types of agents are
included in this unit: Station Controller Agent, Supervisor Agent and
Operator Agent. They assist persons who interact with the system.

6.1.3. Architecture Analysis
The designers do not clearly state the architecture that is used. They

describe the components and their relationships, but do not present any graphical
representation of the initial design being followed. However, through the provided
description, it is possible to get this representation.

Moreover, as shown in Figure 12, it is possible to design the system
following a classical multi-layered architecture. In this case, each component is
represented as a box and each connector as an arrow. The robot and operator,
even though they are not agents, are considered as part of the architecture. The
layers that comprise the architecture are:

45

Master Thesis - Salvador Garcia

Layer 4: U8er8

Layer 3: Control

statlcn Controller
Agent

Layer 2: Decision

Layer 1: Environment

McMaster - Computing and Software

Figure 12. Robot Disassembly Process

• Layer 1: Environment. Includes the information received from the CAD
model and the operation agents, which represent all the possible operations
from the data structures.

• Layer 2: Decision. This layer includes the decision and action agents; in this
level, the strategy to follow is planned. Decision agents are a subset of the
most suitable operations, and the action agents perform the chosen operations.

• Layer 3: Control. Composed of the controller agent, supervisor agent and
operator agent; they communicate with the actions agents that are in the
repository and execute the operations. These agents provide services and
suggest a disassembly plan that the users, who are in the next layer, can use.

• Layer 4: Users. This layer is composed of robots and operators that, even
though they are no humans, are considered as users because they request and
receive services from the next layers.

46

Master Thesis - Salvador Garcia McMaster - Computing and Software

The initial design of this system was not structured using the proposed
architectural concepts. However, through the analysis of its different components,
it was possible to model the system as a multi-layered architecture. A
multilayered architecture helps to decompose the system according to the
functionality of its components. Each group can be decoupled from the others and
can be organized into groups that can provide services to the others in a
hierarchical way.

6.2. MASACAD: Multi-Agent System for Academic
Advising

6.2.1. Description
MASACAD (Multi-Agent System for Academic Advising) [18] is a

Multi-Agent System that advises students using a machine-learning paradigm.
Internally, it uses different techniques for user modeling, such as e-learning,
information customization, agent systems, machine learning and web mining.

Currently, just the course registration advisor has been implemented;
depending on the students' profiles and external factors, such as room capacity,
pre-requisites, extra courses, etc., the system advises courses that fit the students'
requirements for the term. In the current version, students give the information to
the system; therefore it does not attempt to learn from their desires. This version
just focuses on learning how to perform the advising process.

The application is mainly composed of three components:
• User System. It is in charge ofthe interaction with the students; it presents

the graphical interface, receives the queries from the students and retrieves
the required information.

• Course Announcement System. Interacts with the course server through
the Internet in order to notify any changes and requests related with the
courses.

• Grading System. Receives queries related to the student and retrieves the
requested information.

6.2.2. Initial Design
This case follows the architecture proposed in the Bee-gent (Bonding and

Encapsulation Enhancement Agent) framework [29]. It is focused on distributed
systems providing coordination and obtaining consistency in the behavior
between different systems, software packages and so on. Bee-gent is composed of
two types of agents that are coordinated through Internet Protocol messaging:

• Agent wrappers. Provide an agent interface for existing applications,
wrapping sub-systems and connecting to the network.

47

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Mediation agents. Implement the interaction between agents, as well as
mediating, coordinating and managing the communication and
interoperability between applications.

In this application, each system has its own agent wrapper that coordinates
the communication with the other systems; agents as represented as black circles
and the external systems as boxes. Figure 13 shows the original architecture.

Grading System
Agent Wrapper

Mediation
Agent

Col.l88 Announcement
System

URl

Figure 13. MASACAD Architecture

All the agent wrappers are coordinated through the mediation agent. The
following agents comprise the system:

• Mediation Agent. It travels between the three systems in order to request
and retrieve information. The systems do not send the information directly
to the others; everything is coordinated through this agent.

• User System Agent Wrapper. It communicates with the user through a
graphical interface, and allows him to express what he wants or to modify

48

Master Thesis - Salvador Garcia McMaster - Computing and Software

something. Finally, it returns the results to the user. In addition, it creates a
mediation agent in order to interact with the other agents.

• Grading System Agent Wrapper. It is in charge of the information
management, information access and information retrieval related to the
students. It receives a request from the mediation agent, and gives back the
results.

• Course Announcement Agent Wrapper. It interacts with the web-server.
It receives a request from the mediation agent and then establishes
communication with the system at the address specified by the URL,
extracts the information and finally sends back the results.

6.2.3. Architecture Analysis
Even though MASACAD follows an architecture based on a proposed

framework, it can be modeled and enhanced using well known patterns. The
system architecture can be modeled from three different points of view: user
interaction view, which analyzes the way that a user interacts with the system;
layered view that organizes components in a hierarchical way according to the
services provided; and distribution view because there are subsystems. However,
the interaction view involves the User System component that is considered as an
external system; therefore, that view will not be considered in this analysis.

From a distributed view, the component does not have direct
communication; they are intercommunicated through the wrapper and mediation
agents. In addition, the subsystems are highly decoupled and located in different
networks; therefore, in this case, the broker pattern is well suited. This
architecture is used to structure distributed components that interact through
remote interactions. These components are independent and coordinated by the
broker component.

In addition, a broker architecture is based on layers. The Layers
Architectural Pattern helps to structure an application, decomposing it in sub
groups that execute similar tasks having a particular level of abstraction. The
functionality of this structure depends on the way that the layers communicate
with each other. In this case clients request services to a server; however this
communication is not direct. A broker can be viewed as a layered client-server,
where the communication is not direct.

In this case, the communication is clearly separated from the application
functionality. All communication in the system is hidden through the mediation
agent (broker) that has a client side to construct the invocations and a server side
that invokes the operations. The communication between the broker and the
systems is done through the wrapper agents, which in the terminology of this
architecture, are named proxies. The proposed architecture is shown in (Figure
14).

49

Master Thesis - Salvador Garcia

Layer 7: users

Layer 6: Client

Layer 5: Client Side Proxies

Layer 4: Broker

Layer 3: Server Side
Proxies

Layer 2: Servers

Layer 1: Hardware Database

McMaster - Computing and Software

URI..

Figure 14. MASACAD Architecture (Broker and Multilayered)

In this case, the components of the broker architecture, also represented as
a layered architecture, are:

• Layer 1: Hardware Devices. It presents the lowest level of abstraction; in
this case it is comprised of the database corresponding to the grading
system and the URL database. The next layer requests information, and it
just sends back the results. This component is not included in a broker
architecture; however, it can be part of a system.

• Layer 2: Servers. They implement specific services, receive the requests
from the clients, get the information from the corresponding databases and
send responses through the Grading and Course Wrappers. In this case this
layer is comprised of the Grading System and the Course Announcement
System.

• Layer 3: Server Side Proxies. They request information from the
Grading and Course Systems and encapsulate their functionalities. They
act as mediators between the Grading and Course Systems and the
Mediation Agent.

50

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Layer 4: Broker. It is the coordination layer; the main function is to
coordinate the systems establishing a communication between the client
(User System) and the Servers (Grading and Course Announcement
System). The broker component in this case is the mediator agent.

• Layer 5: Client Side Proxies. They encapsulate User System
functionalities and mediate between the User System and the Grading and
Course System. They mediate between the broker and the client
components.

• Layer 6: Client. The component that mediates between the users and the
system; it sends requests through the User Wrapper. In this case, it is
comprised of the User System.

• Layer 7: Users. The highest level of abstraction in the architecture; they
are the students who use the system.

This case is based on the Bee-gent framework, which provides a broker
based architecture; therefore, MASACAD was designed following the proposed
architectural concepts. The main difference between the original and broker
architecture is that Bee-gent proposed an agent wrapper for each subsystem that is
a variation of the client/server side proxies in a broker architecture.

MASACAD was very well suited for the broker architecture, which is
very helpful when different systems are added. It also decouples components and
provides a high degree of reusability. A broker-based system can also be
decomposed in different layers; this provides a clear communication between
components that are organized in a hierarchical level.

6.3. MASEL: Multi-Agent System for E-Learning and
Skill Management.

6.3.1. Description
MASEL [16] is an e-learning system used in the industry. It creates

personalized training paths for each employee, measures each worker's
information, and tries to reduce learning gaps between users. The system assigns
individual objectives, controls the knowledge acquisition in an adaptive way and
manages a skill map for the organization. A skill map stores employee data such
as information about their roles in the organization, their current knowledge level,
and the knowledge level relative to other workers.

Educational contents are represented as learning objects, which are
independent units that can be combined for creating personalized learning paths.

51

Master Thesis - Salvador Garcia McMaster - Computing and Software

Some examples of learning objects are documents, slides, pre-recorded lessons,
and so on. They can be related through Learning Object Metadata, which
classifies them with respect to their objective, topic, media used, etc. This data is
modeled using XML, a meta-language that facilitates the sharing of data from
different systems that are usually Internet based.

Within the skill-managing context, it is important to individualize learning
objectives and evaluate them in order to determine knowledge gaps. These gaps
are filled by proposing different courseware based on the information acquired
from the database that is composed of the learning objects. The courseware is
adapted according to student improvement, and consequentially, a bridge between
individual and organizational goals is created. All the student's improvements are
managed and updated through the skill map.

The main goals proposed in the MASEL e-learning system are to:
• Help Chief Learning Officers define the learning strategy based on the

roles and competencies required for the organization.
• Manage the organization's skill map.
• Measure competency gaps.
• Support employees in filling their learning gaps.
• Enrich courseware through personalized learning paths.
• Assist Chief Learning Officers in choosing the best employee for a given

role.

6.3.2. Initial Design
MASEL is implemented using JADE, which follows the FIP A standard,

and the information is modeled using XML. It does not follow any particular
architectural pattern, and the interoperability between agents is direct. The
architecture is shown in Figure 15. In this case all agents are represented as
boxes, their connectors and arrows and the information sources as databases.

52

Master Thesis - Salvador Garcia McMaster - Computing and Software

Figure 15. MASEL Architecture

The system is composed of seven agents:
• Chief Learning Officer Assistant Agent (CLO). Helps the Chief

Learning Officer to define roles, to associate competences, and to specify
the level of knowledge required for each role. It requests of the Skill
Manager Agent (SMA) the most suitable employee for a role; solicits the
learning activities history to the Content Officer Assistant (COA); and
presents the received information from the Chief Learning Officer. Its
main function is to be an interface between the officer and the system.

• Student Assistant Agent (SSA). Assists each student in order to fill
his/her gaps. It requests a learning path to the Learning Path Agent (LPA)
and presents it to the student; sends the assessment feedback to the LP A;
with the help of the Skill Management Agent (SMA), shows information
about competence gaps; and with the help of the User Profile Agent
(UP A), it manages the learning activities history.

• Learning Paths Agent (LP A). Creates learning paths for each student;
provides pre-assessment tests for evaluating gaps; selects learning objects
for building the path; and modifies the courseware based on the feedback
received from the student. It gets the information related with the skill
map from the SSA and the one related with the learning objects from the
Content Agent (COA).

53

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

Chief Content Officer Assistant Agent (CCO). Supports the content
agent in order to manage the database. It shows the learning history in
collaboration with the User Profiles Agents and executes operations in the
Learning Objects Database with the help of the Content Agent.

Skill Manager Agent (SMA). Stores and retrieves information, executes
operations, and manages all the things related with the Skills Map
Database.

Content Agent (COA). Manages the Learning Objects Database; inserts,
updates and deletes learning objects; and executes queries related to
Learning Objects.

User Profile Agent (UPA). Stores the information about users, such as
personal data, learning activities and log-in information; updates
competence levels according to the learning activities with the help of the
Student Assistant Agents and the Skill Manager Agent; and acts as the
log-in interface for the users.

6.3.3. Architecture Analysis
From a data point of view, the system is divided in two parts: database and

components. A database is a centralized structure that stores information related
with the system that can be used to make decisions. A database system is a typical
example of a Repository Pattern, which is a variation of the Blackboard Pattern.
In contrast with the blackboard style, the central architecture is not a control
system; it is the repository, which is controlled by users or external systems [10].

In this case, the repository architecture is composed of the following
elements:

• Repository. In this case the database is distributed in three parts: user
profile, learning objects and skill map; however, they can be viewed as a
single unit. In this case, the database is comprised of the three databases
from the initial design: User Profile, Learning Objects and Skill Maps
Each database has its own manager, which is also considered as part of the
repository. Therefore, in this case, the User Profile Agent, Skill Manager
Agent and Content agent are also part of the repository

• User System. This system is a client that gets all the information relevant
to the employees; it includes the Student Assistant Agents and the
Learning Path Agent.

• Chief System. This system interacts with all the information related with
the chief officer; it is composed of the Chief Content Officer and the Chief
Learning Agents

54

Master Thesis - Salvador Garcia McMaster - Computing and Software

In the initial design, the Chief System communicates with the user system
for accessing the database. This communication is redundant, because each
system has direct interaction with the database; therefore the intercommunication
between systems can be eliminated. In Figure 16, this possible communication is
presented as a dashed arrow.

1:~1 ~~~I

1 User Pmfilo 1 Apnt(UPA) I~= I
EJ EJ
u- P:mfilo EJ SldllMap

l..eamina Ob,jec(s

Reposltoly I=A)I

1~1 ~~~I
Figure 16. MASEL Architecture (Repository)

r-

..

-I
I
I
I
I
I
I
I
I

' ' I
I
I
I
I
I
I
I

' I
I
I
I
I
I

' I
' I
I
I
I
I
I
I

' I
I
I
I
I

' I
I
I
I
I

' I
I

' I
I

' I
.)

Moreover, from a multilayered architecture point of view, the system can
be structured as a three-tier client-server architecture (Figure 17). In a client
server architecture, two independent components need to communicate: client and
server. One or more clients ask for services that the server provides; a three-tier
architecture is a special case of multi-layered architectures that focus on a client
server architecture. The layers that compose a three-tier architecture are:

55

Master Thesis - Salvador Garcia McMaster - Computing and Software

User System
Interface

•

•

•

Figure 17. MASEL Architecture (Client- Server)

User System Interface. Layer that acts as an interface with the users. The
agents that provide services to the users are: Agent Assistant Agents and
Chief Learning Officer. These agents do not interact directly with the
database; they establish communication with the next layer, which queries
information from the databases.
Process Management. Executes all the operations related with the users
and interacts with the databases retrieving the necessary information. It is
composed of the User Profile Agent, Learning Paths Agent, Skill Manager
Agent, Chief Content Officer and Content Agent. All of them provide
services to the User System Interface and get the information from the
Database Management Layer. All of these agents interact with the next
layer and provide all the services that the users interface need.
Database Management. Where all the information is placed; it is
comprised of the User Profile, Learning Objects and Skill map and has the
lowest level of abstraction.

The original design of MASEL does not follow any specific architecture;
however, through this analysis, two architectures can be implemented. The
architecture was obtained from a data point of view and the client-server
architecture from a multilayered point of view. In addition, the multilayered
architecture complements the repository providing an easier understanding and a
reusable architectural design.

56

Master Thesis - Salvador Garcia McMaster - Computing and Software

Through this case, it is possible to conclude that, even though originally
the application was not based on the proposed architectural concepts, using them
simplify things considerably. Through these patterns, it was possible to discover
some redundant communication between some agents; the communication with
the database was defined in a clearer way, therefore the system has a stronger
structure that can be used in cases where there is an interaction between clients
and servers that share information through a common database.

6.4. Telemedicine for Diabetes

6.4.1. Description
E-medicine is a field of Information Technology applied to medicine that

has become very popular in the past few years. It integrates information,
communication, and human-interface technologies with those related with health
and medicine. E-medicine is usually used in four areas: lifetime health and
medicine, personalized health information, teleconsultation and continuing
medical education.

Among other services, e-medicine remote distant medical services and
clinical practice. Additionally, it establishes medical databases, exchanges
medical information, and provides security, privacy, efficiency, convenience and
reusability. A very common practice in the e-medicine field is the use of diagnosis
tools that are used to help physicians to analyze patients. They guide them with
the therapies that should be followed and the medicines that should be taken; they
are connected with different resources and they help physicians to acquire new
knowledge. They also provide information for the patient explaining the treatment
that should be followed.

This system presents a special case study "Telemedicine for Diabetes" that
shows an e-medicine system using the multi-agent paradigm. Telemedicine uses
communication technology in the provision of healthcare; in this case it helps to
manage the healthcare process for diabetic patients; provides real time monitoring
and contacts immediate resources for therapy. The system is implemented by the
diabetes department in hospitals, and it provides immediate medical services,
therapy and consultation. Additionally, it integrates other systems for education,
training, management, security and databases [56].

6.4.2. Initial Design
The proposed architecture (Figure 18) does not follow any particular

pattern; however, it groups all the components into sub-categories according to
their functionality. In this way, the architecture is similar to a relaxed
multilayered architecture. The components are grouped in four categories:
Control, Implementation, Interface and Environment groups; the communication

57

Master Thesis - Salvador Garcia McMaster - Computing and Software

between the first three groups is internal and for the last one, it is external. In this
case all components are represented as boxes and their connectors as arrows;
however, it is important to notice that not all boxes are agents. In case they are
agents, the name of the component has the word "agent" explicitly .

. ---·
I I
I

i ~~~IIEd:ll=ll~~l
I
I
I
I
I
I

' I
' ' ' I
' I
' I
' I
' ' ' I
' ' ' ' ' ' ' ' I
' ' I
I
I

' I
I
I
I

I I
: I

~--------------------------- ----------------------- ---1

.----------------------------,

i j.:mll:vl!•
I I
I I

! ,~ •. ~, i
I I
I I

~-------en~ronm&nr----------·

------------- -------------, I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L--------------------------J
Control

Figure 18. Telemedicine for Diabetes (Original Architecture)

6.4.2.1. Environment Group

----------------· I
I
I
I
I
I
I
I
I
I
I ,...........__...,:
I
I
I

1....--=...J I

This group is composed of the external departments, such as medical
instruments, medical psychology, medical University & Institute, and
telecommunications. They interact with the system through the department agent
that is part of the control group. These departments are not considered as systems,
they are just external resources. The interface agent is located in the interface
group, it coordinates the external systems which are considered as an external
group.

58

Master Thesis - Salvador Garcia McMaster - Computing and Software

6.4.2.2. Control Group
The agents that are part of this group are the ones that control the system,

handle conflicts between agent communications, manage decisions and assign
work to other agents. They coordinate the implementation group and also interact
with the environment. The agents that comprise this group are:

• Department Agent. Controls the local information acquired from the
environment for specific departments and sends it to the administration
agent.

• Administration Agent. Using the information received from the
department agent, it assigns tasks to the agents.

• Controller Agent. Controls the system, coordinates the agents and
mediates conflicts among them.

6.4.2.3. Interface Group
This group includes all the components that link the users and other

systems. Users are not defined in the system; however, they are implicit as part of
the environment. Agents included in this group are:

• Doctor Agent. Manages schedules and appointments.
• Interface Agent. Mediator between the e-medicine system and other

sources. It links the patient with other systems, provides search and
information systems and provides interaction with the doctor, personal and
security agents.

• Personal Agent. GUI between the users and the system.

6.4.2.4. Implementation Group
This is the core part of the system; agents included in this group have

particular tasks and execute internal operations that will help in order to reach a
common goal. Agents included in this group are:

• Monitoring Agent. Monitors agents and transmits information to the data
processing agent.

• Data Processing Agent. Integrates and processes the monitored data.
• Diagnosis Agent. Analyzes the situation with the information available

and makes a decision/suggestion for the patient.
• Consultation Agent. Consults the enquiry of patients and contacts with

the diagnosis agents.
• Education Agent. Provides e-learning and introduces new information for

physicians.
• Decision Support Agent. Integrates knowledge and provides decision

approaches to the diagnosis agent.
• Therapy Agent. Defines a proper therapy.
• Training Agent. Explains to patients how to follow the therapies and how

to take medicines.

59

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Record (Archival) Agent. Archives patient records and updates patients'
databases.

6.4.3. Architecture Analysis
Even though the original architecture was designed without a particular

style, it can be viewed as a relaxed variation of a multi-layered architecture. A
relaxed layered system is less restrictive about the relation between layers,
therefore each layer can use services of all layers below it [1 0]. In this case, each
group in the system can be represented as a layer. However it is not clear their
abstraction level.

Following a layered architecture (Figure 19), elements in this system can
be grouped in a hierarchical way according to services provided. In this case, the
components that comprise the layers are:

Layer 5: Users

Layer 4: Interface

Layer 3: Implementation

Administration
Agent

Layer 1 : Data
' ' ' '

l_~ou,~~nel

' ' '
' ' ' ' '

'

Decision Support
Agent

Consultation
Agent

Figure 19. Telemedicine for Diabetes (Multi-Layered Architecture)

60

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

•

Layer 1: Data. The first layer, which has the less abstract level, contains all
information sources: environment, other medicine systems, the database and
the URL' s. They provide the information services to the control layer.
Layer 2: Control. This layer uses services provided by the information layer
and sends the information to the next layer. It is composed of the
Administration Agent, Department Agent, which gets the information from
the Environment, Control Agent, Archival Agent, which interacts with the
database, and the Education Agent, which communicates with e-learning
resources.
Layer 3: Implementation. It comprises the main operations of the system .
Agents included in this layer receive requests from the users, execute some
operations and returns a solution. The agents that compose this layer are the
Data Processing Agent, Monitoring Agent, Therapy Agent, Training Agent,
Diagnosis Agent, Decision Support Agent, Consultation Agent and Clinic
Agent. All of them provide services to the users, who interact using the
interface services provided in the next layer.
Layer 4: Interface. This layer is composed of the interface agent that
communicates the users with the systems.
Layer 5: Users. This layer presents the most level of abstraction and it is
composed of the users, which are Patients and Doctors.

It is important to remark that the interface agent uses services from layers
that are placed different levels below. In a strict way, this is not possible.
However, there is a variation of this architecture, called flexible layered
architecture, which permits this interaction. Another possibility is to use new
components and placed them in the next layers in order to realize all the
intermediate operations.

The system has two types of users: patients and the doctor. A patient
expects to be diagnosticated presenting a set of symptoms or characteristics, and
to receive a therapy as a result of this consultation. In addition, the patient expects
to receive training about how to follow the therapy. On the other hand, a doctor
expects to monitor and consult the information related with the patient and to
communicate with external systems and resources.

From a data-centered view, it is possible to use a Blackboard Architecture
[3, 10, 53]. This architecture has three components: knowledge sources, control
system and blackboard. The system can be decomposed into many subsystems
that provide partial solutions; however, they differ from the groups proposed in
the original architecture. Moreover, it is possible to use the control component
proposed and add an extra component, the blackboard, which communicates with
all the sub-systems (Figure 20).

61

Master Thesis - Salvador Garcia McMaster - Computing and Software

Figure 20. Telemedicine for Diabetes (Blackboard Architecture)

The system is decomposed into the following knowledge sources:
• Interface. Interacts with users and external systems through the interface

agent. Patients communicate with the system through the personal agents,
which provide the graphical interface. In contrast with the original
architecture, this sub-system also includes the Education Agent, which
communicates with external references. Additionally, it includes the
security agent and doctor agent, which execute specific tasks that are not
related with the rest of the system. Figure 21 shows the structure of the
interface knowledge source. The blackboard component is represented as a
box with double-lined border. Agents are represented as a non-colored
single lined box; external information sources are represented in grey, and
all the subsystem is grouped in a dashed box.

62

Master Thesis- Salvador Garcia McMaster - Computing and Software

--- -- ------- -,

LACKBOARD n....-----!----•1

Olher E-Medlclne
~------~ S~Umw

I
I
I
I
I
I

: Interface Subsystem
I

~----- -- - - -- - - -- - ---- -- - --- -- - -- - --- - ------ ------ --- - -----
Figure 21. Interface Knowledge Source

• Diagnostic. It includes all the elements from the implementation group
proposed in the original architecture, excluding the training, education and
record agents. The goal of this knowledge source is to propose a therapy
based on the information acquired from the blackboard through the
monitoring, data processing, consultation and decision support agents.
Once the information is processed, the results are sent to the diagnosis
agents that make a suggestion for the patient specifying a therapy through
the therapy agent.

• Training. This knowledge source just includes the training agent, which is
based on the information from the diagnosis knowledge source. Its main
function is to build a training program for the patient.

• Database. It has the database that stores all the information related with
the patients. It is proposed as a different knowledge source because it
manages all the information and the operations related with the database.

• Control. Composed of the Department, Administration and Controller
Agents. Depending on the requests of the user, the department agents get
information from external departments and send it to the administration
agent, which assigns the tasks to the rest of the system. On the other hand,
the controller manages the different knowledge sources and agents. All the
elements of this group interact directly with the blackboard.

This system was clearly designed without using any architectural pattern;
however, it was possible to analyze it from a layered and a data oriented point of
view using a multi-layered and a blackboard architectural pattern, respectively. A

63

Master Thesis- Salvador Garcia McMaster - Computing and Software

multi-layered style is less flexible; therefore, adaptation of new components its
harder. However, if a correct abstraction level is used, it provides strong
reusability and can be used as a base for further architecture.

The blackboard architecture is more flexible, and can be extended easily;
if more systems are needed, they just need to be added to the blackboard and form
part of the result. If another system must use this information, it just has to be
connected to the blackboard. Both architectures are very helpful and, compared
with the original design, they are clearer.

6.5. SIMPLE - A Multi-Agent System for Simultaneous
and Related Auctions

6.5.1. Description
In Electronic Commerce, auctions are a way of negotiation that is getting a

lot of attention. Compared with the traditional way of buying, they provide two
main advantages: through them it is possible to achieve better prices supported by
effective transactions and they integrate sellers and buyers from different parts of
the world.

In ordinary auctions, items are sold in an isolated way. However, in order
to satisfy customers' needs, a good idea is to sell related items at the same time
and pack them together. A common example is a vacation package where it is
possible to find optimal deals through the correct combination of flights and hotel
nights.

The SIMPLE [37] agency is a trading Multi-Agent System using
simultaneous auctions. It is based on the Trading Agent Competition (T AC) [58],
which is an international forum that promotes research for the construction of
trading agents. TAC's main objective is to minimize the cost of the packages in
an electronic travel agency.

Travel packages contain three elements: a round-trip flight, a hotel
reservation, and tickets for entertainment events. The traveler can choose the days
for the trip or suggest a set of dates within a range of days. Additionally, they can
have individual preferences, such as hotel type, flight class, kind of entertainment,
and so on. Auctions are traded with different rules (a total of 28), prices can
increase or decrease during the process, and auctions are updated every minute
[49].

64

Master Thesis - Salvador Garcia McMaster - Computing and Software

6.5.2. Initial Design
This system does not follow a specific architecture; the communication

between the agents is direct. However, there is an agent managing each database
and, according to the events in the environment and the databases, the agents react
and execute different operations. The initial design is shows in Figure 22. The
Market, Market KB and Solver are represented as a double lined box; the rest of
the components are agents and are represented as a box. The agents that comprise
the architecture are:

Figure 22. SIMPLE Architecture

• Sensor Agents. Responsible for collecting the data from the environment;
they decide what data is relevant to the agents. They are reactive agents
that just respond to events in the market; when some information on the
auctions is generated, they transfer this information to the Market
Knowledge Base.

• Demand Segmenter. Classifies the clients according to their
characteristics and preferences. There are three types of costumers: easy,
medium and hard; they are classified according to the flexibility on
traveling dates. For example, if a costumer is flexible in his dates, or he is
not going on critical nights, he is considered as easy.

65

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•
•
•

•
•

•

Allocator. Reactive agent that perceives changes from the Market
Knowledge Base and performs communication with the Solver, which
returns a set with the optimal set of goods that can be purchased.
Package Segmenter. Separates the allocations depending on the score .
This separation helps to identify goods that are common to the highest
allocations.
Effector. Calculates costs and sends them to the negotiator agents .
Supervisor. Starts the system and initializes agents .
Negotiators. Based on the information given by the effectors, they
negotiate the costs trying to maximize performance and minimize cost.
There are two types of negotiators: reactive and adaptive. The reactive
ones start the game by bidding the minimum values; if it is necessary, they
increment the bids and this process is repeated until the bid is accepted or
the maximum value is reached. The adaptive ones increase the value
following mathematical formulae and continue this process until the bid is
accepted.

In addition, there are three components:
Market. Environment that has all the information for the system .
Market Knowledge Base. Internal representation of the data of the
auctions. It stores the price quotes of each auction, goods already acquired
by the system, client's preferences, closed auctions and information
related with the agent's strategies.
Solver. Module that assigns the possible costs to the packages. It receives
data related with the clients from the Allocator, decides the number of
goods that will be bought in the auction, and calculates the score for the
optimal set of goods that will be purchased

6.5.3. Architecture Analysis
SIMPLE has two fundamental characteristics in its architectural design:

• Components react when new information arrives or changes happen in the
Market Environment.

• All the received data and processed information is saved in a knowledge
database, which is the central component.

When reactivity is added to components (in this case agents), it is possible
to talk about an event-driven architecture. An event can be announced explicitly
or implicitly. Explicitly means when a component needs to invoke a service
defined in another component, it must initiate the invocation and wait for the
result. Implicitly means when, instead of invoking a component directly, it can
announce one or more events. The other components in the system register an
interest for particular events; when they occur, they invoke the associated
procedures. Depending on the information in the environment, an event is
generated implicitly causing the invocation of procedures in other modules [15].

66

Master Thesis - Salvador Garcia McMaster - Computing and Software

The implicit invocation pattern is a decentralized architecture that has
components that signal events without a particular recipient. Elements
communicate with each other when a registered process is triggered by an event
[53]. In this case, sensors perceive all the changes occurring in the environment
and send them to the database; however, they do not know directly which
components will be affected by these events.

From another point of view, an important issue in this application is the
understanding of the data in the system. For systems where data has a high degree
of structure and where the execution order is determined by the incoming
requests, [11] suggests using a database management system, which is considered
as a repository. When systems react according to operations and changes
occurring in a database, it is possible to talk about an Active Repository
architectural pattern [3], which is an extension of a Repository Architecture.

In an Active Repository, clients are immediately notified of events in the
database, such as changes or access to data. Notification mechanisms are realized
in most cases by implicit invocations; however, it is possible to use explicit
invocations. In SIMPLE, it is possible to identify an Active Repository pattern
(Figure 23).

,---------- --------------------------~ I I
I t ------------------------------------, 1 1 I l
I I I I

! Negotiator 14----i Elfector 1---+; -1 Market KB 1!141•--+-i -ll Alooator I· ~ SOlVer I l
: l t

t L-----------------------------------' I

L------------------------------------~

Figure 23. SIMPLE Reactive Repository Architecture

In simple, the components that compose the repository architecture are:
• Repository. Where all the information is saved. In SIMPLE, the Market

Knowledge Database acts as a repository that is accessed by the effector,

67

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

sensors, demand segmenter, package segmenter and allocator agents. As part
of the implicit invocation architecture, the component is also in charge of
controlling events.
Negotiator and Effector Agent. These agents can be grouped as a subsystem,
the one that access directly to the repository is the effector; however, the
negotiator is the one that interacts with the environment when there are
changes on the database.
Allocator and Solver. These agents are also grouped as a subsystem. The
allocator interacts with the database and the solver supports for the execution
of some operations.
Supervisor. It is an independent agent that does not interact with the system
during its execution; it just activates the subsystems. It can be connected with
all the subsystems; however, in this case, it can activate the sensors, and
depending on the changes that have occurred, sensors send events that activate
the subsystems. This agent is extra to the reactive repository pattern.

In this case some agents were grouped in order to compose a subsystem;
these groups are represented as a dashed box. The environment, which is
represented as a double lined box, is not considered as an agent or subsystem, it is
an information source.

Operations related with an user, like modifications in his/her profile and
queries, generate events that activate the demand segmenter. Changes in the
market knowledge database activate the allocator agent, which communicates
with the solver; operations executed by the allocator, activate the package
segmenter. Once a package is ready, the effector is activated and sends the
information to the negotiator. This information is sent to the user and market,
generating changes that are detected by the sensors; the process is repeated as
necessary.

Even though SIMPLE was not originally designed using any architectural
pattern, it was possible to identify a Reactive Repository Architecture, which has
two main elements: events and a database. This architecture supports
extendibility, when new subsystems are added and it is necessary to integrate new
procedures in the subsystems that react to the new events. It also provides
reusability; databases are one of the most used architectures, there is a lot of
technology and references focused on them; therefore, all the advantages related
with them can be applied.

68

Master Thesis - Salvador Garcia McMaster - Computing and Software

6.6. Agent Based Simulation Architecture for Evaluating
Operational Policies in Transshipping Containers.

6.6.1. Description
SimPort (Simulated container Port) is an Intelligent Decision Support

System (IDSS) based on multi-agent technology that simulates the main
transshipping operations in a container terminal and that assists the terminal
managers to take decisions in the transshipping process. [21]. A container
terminal is used to control operations for transporting goods. Its main functions
are: to provide an optimal way to control the cargo, to enable ways to increase the
transportation capacities, and to minimize the number of operations.

The transshipping operations in moving containers are divided into four
processes:

• Ship Arrival. Allocates a berth position for the arriving ships and decides
when it is possible to place them. This decision is based on sequence and
positioning policies and acts as a main influence for the other operations.

• Loading and Unloading Goods. Allocates quay cranes and straddle
carriers for each ship. It runs in parallel to the ship arrival process.

• Horizontal Transport. Sets the transportation in a continuous way
reducing waiting time as much as possible. Additionally, it manages the
load sequence, routing, pick up and coordination of quay cranes.

• Yard Stack I Stack on Quay. It stacks goods following stacking policies
and properties such as stacking density, yard stack configuration,
container allocation and dwell times.

6.6.2. Initial Design
The simulation technique used in SimPort is called MABS (Multi-Agent

Based Simulation). It is applicable in distributed domains and it is used to study
the interaction between the components that are part of a complex system. In this
case, the following managers are modeled as agents: port captain, ship agent,
stevedore and terminal manager. In addition, quay cranes and straddle carriers
are also modeled as agents.

The system uses reactive agents, which make decisions based on the
messages received. The behavior of the system depends on the behavior of each
component when is placed in it is environment [21]. The architecture used in
SimPort is presented in (Figure 24), and the agents that compose it are:

69

Master Thesis - Salvador Garcia McMaster - Computing and Software

Figure 24. Simport Architecture

• Port Captain Agent. Sensor that is waiting all the time for arriving ships.
Once a ship arrives, it creates a ship slot with information related with the
ship's serving order and the sequence policies.

• Ship Agent. Each ship agent represents an arriving ship; they have
information about the desired service time, length of the ship, position in
the ship line, operating cost, etc.

• Stevedore Agent. Satisfies requests of the shipping agents such as more
quay cranes. It also allocates the cranes provided by the terminal manager
agent.

• Terminal Manager Agent. Allocates the berth position for a ship and
allocates the cranes that will service a ship.

• Quay Crane Agents. Represents each quay crane that is coordinated by a
stevedore agent during the execution of different operations. It loads and
unloads containers as fast as possible and uses the straddle carrier agents
to move the containers.

• Straddle Carrier Agents. Represents each straddle carrier and reacts to
the requests from the Quay Crane Agents.

When a ship is arriving, it initiates communication with the port captain
agent, which assigns a ship agent to it. When is necessary, a ship agent contacts
the stevedore agent. This agent communicates with the terminal agent in order to

70

Master Thesis - Salvador Garcia McMaster - Computing and Software

request a crane. Once that the assignment is done, the stevedore agent
communicates with the crane agent that will make a request for straddle carrier
agents. After that, the stevedore notifies to the terminal manager that the ship
unloading is complete, so the ship can depart.

6.6.3. Architecture Analysis
SimPort does not follow any specific pattern, however, it can be structured

from a multi-layered point of view into four layers (Figure 25):

Layer 5: Environment

•

•

•

Layer 3: Implementation

Layer 2: Control

Layer 1: Phyllical
Straddle Camera

Figure 25. SimPort Multi-Layered Architecture

Layer 1: Physical. Composed of Cranes and Straddle Carriers that are an
agent representation of physical devices. They satisfy requests from the
control layer.
Layer 2: Control. This layer is in charge of coordinating and to satisfy the
requests from the previous layers. It is composed of the Stevedore Agents and
Terminal Managers that satisfy the requests of the next layer.
Layer 3: Implementation. It is composed of agents that represent arriving
ships. These agents use services from the previous layers and executed the
necessary operations.

71

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

Layer 4: Sensors. Composed of the Port Captain Agent, which acts as a
sensor getting all the new arriving ships from the environment. Once the Port
Captain detects an arriving ship, it creates a ship agent that will execute all the
ship's requests.
Layer 5: Environment. At the most abstract level, there are the arriving
ships, which are detected by the Port Captain agent, which is placed at the
previous level.

Moreover, the main characteristic of SimPort is that it is mainly based on
reactive components and events. Agents request a service as an event and wait
until it is satisfied. The events considered in the system are:

• A ship indicates that it is arriving.
• A ship agent requests a service.
• A stevedore agent requests a crane.
• A terminal manager agent requests a berth position.
• A quay crane requests a straddle carrier.

The reactor architectural pattern (31] permits event-based applications to
separate services and to send them to the client that requested them. The
architecture includes three main components: event sources, reactor and
destination components. In a more detailed level, this pattern also proposes to
include Handles, Synchronous Event Demultiplexer and Event Handlers;
however, they are part of a more detailed level, that is, a design pattern. This
system can be represented in terms of this architecture as follows (Figure 26):

Ships

Stevedores

Figure 26. SimPort Reactor Architecture

72

Port
captain

Straddle
canters

Master Thesis - Salvador Garcia McMaster - Computing and Software

• Event Sources. It is comprised of the ships, ship agents and stevedores.
When it is necessary, they request for services notifying their events to the
reactor.

• Destination Components. When an event occurs, these components are
activated satisfying requests or executing operations as need. In this case,
the destination components are the Port Captain, Terminal Agent, and
Straddle Carrier.

• Quay Cranes. These agents generate events and also react with some of
them. For a better design, it is better to split this component in two parts.
One should correspond to the event sources, and the other one to the
destination components. However, it is acceptable to have both situations
in the same component.

• Reactor. Registers and controls event handlers. Once they are satisfied, it
removes them from the list. When a service is available, and an event can
be satisfied, the request is executed; therefore the event is committed. This
component is an addition to the initial design.

73

Master Thesis - Salvador Garcia McMaster - Computing and Software

7. Results

•

7 .1. Research Results

There is an absence of software architectures for Multi-Agent Systems .
During the course of this research, six case studies were analyzed. We found
that almost all of them have an initial design; however, these designs, even
though they are composed of interconnected components, do not follow any
pattern and they do not satisfy any structural rule. The only exception was
MASACAD, which explicitly uses an architecture that is based on a variation
of the broker pattern; however, this pattern is not exclusive to Multi-Agent
Systems.

In the T elemedicine for Diabetes case, they propose an "architecture"
exclusively used for e-medicine; they present an initial design, which is
extended when used for telemedicine in diabetes. However, aside from the
fact that telemedicine is not a specific type of system, such as reactive
systems, runtime system, and so on, it is not clear what are the components
that compose the architecture and how it is structured; therefore, the proposed
design it just a reduced version of a detailed design used for telemedicine.

• It is possible to use existing patterns for building software architectures
in Multi-Agent Systems. In the literature, there are authors, such as Sylvain
[50] and Hayden [20], who propose the use of existing patterns in Multi
Agent Systems. Following this idea, in many case studies, it was possible to
restructure the initial design using existing patterns. In some cases, such as the
Robot Disassembly Process, following the initial design, it was possible to
find an implicit architecture based on existing patterns.

Other cases, such as MASACAD, showed an explicit architecture based on
existing patterns; however these patterns are not used exclusively in Multi
Agent Systems. Therefore, we can conclude that, in order to design the
architecture of a Multi-Agent System, existing patterns can be used. In this
thesis, the following patterns were used: Layers, Broker, Blackboard,
Repository, Implicit Invocation, Reactive Repository and Reactor.

• The properties of Multi-Agent Systems affect the way that an
architecture is designed. During the analysis stage of a system, we try to get
all the functional/non-functional requirements and the general properties
needed to design the system. These properties focus a system toward a
specific paradigm that adds more characteristics to it. The design of a system
architecture is mainly influenced by all of these properties together; when a
system is based on agents, the main properties that affect the architecture are:

74

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

distributivity, cooperativity, and the properties related with Intelligent agents
(reactivity, pro-activity, sociability).

Within the literature, there are many systems that can follow different
patterns. According to the required properties of a system, a pattern can be
imposed and design an architecture based on it. Avgeriou[3] proposes
classifying the existing patterns according to their architectural view. Based
on the Multi-Agent Systems and Intelligent Agents properties, Multi-Agent
System architecture can be classified following four points of view: layered
view, data-centered view, component interaction view and distribution view.

Because Multi-Agent Systems are distributed, according to the functionally of
the agents, it is possible to group the agents into subsystems. According to the
services that they provide, the components can also be grouped into layers.
Therefore, architectures such as Layers and Broker, are very well suited for
Multi-Agent Systems.

In addition, the way that agents communicate between each other is another
important property that affects the way that an architecture is designed. In
Multi-Agent Systems, agents can communicate through a central component
that provides services and coordinates the subsystems. They also can
communicate through a shared component where the components save the
information. Therefore, according to the communication between agents, a
broker, blackboard, and repository architectures are very well suited for Multi
Agent Systems.

Finally, in a Multi-Agent System, the agents react according to the changes
that occur in the environment; this property implies the use of events. When a
system is based on events, it is possible to use architectures such as implicit
invocation, active repository, and reactor. An architecture can be designed
using different points of view; therefore, a system is not restricted to follow
architectures based just on one pattern.

The initial design of many systems can be reengineered, and as a result,
propose architectures based on existing patterns. As we stated before, even
though there are not specific architectures for Multi-Agent Systems, some
systems show explicit architectures based on existing patterns. Although most
of the analyzed systems did not show a software architecture; it was possible
to re-design the initial design and propose an architecture following an
existing pattern.

In this research, all of the re-engineered architectures followed an existing
pattern; however, we cannot discard the possibility of finding architectures
unique to MASs through the analysis of more systems. As another result we

75

Master Thesis - Salvador Garcia McMaster - Computing and Software

can conclude that, even though usually Multi-Agent Systems do not use the
software architecture concept, designers use it without knowing; therefore, a
software architecture can be found in an implicit way.

• There are different uses of the "software architecture" term. In the
literature, many authors, for example Flores-Mendez [14], use the term
architecture referring to abstract architectures proposed in standards, such as
FIPA and OMG. Abstract architectures define the elements of a system and
their organization in an abstract way. For example, FIPA defines that a Multi
Agent System must have an agent server, a services server, yellow pages and
a communication language; in order to find and agent or a service, the yellow
pages and white pages must be accessed. However, it does not specify which
agents are indispensable, how they communicate with each other, and so on.

Additionally, usually an initial design for a system is presented; in almost all
cases, authors refer to this design using the "software architecture" term. The
way that it is used does not correspond to the definition used in this research
and in the general literature on Software Architectures. Although initial
designs present interconnected components, they do not follow a pattern and
they do not satisfy explicit structuring rules.

• Standards and Frameworks do not affect an architecture design. A
standard provides a set of guidelines that help build a better implementation of
a design; however, they do not affect the architecture; they just act as a
reference for how components must be composed in a system at an
implementation level. For example, MASEL was implemented following the
FIP A standard, which provides an abstract architecture that indicates the
components that the application must have at an implementation level.
MASEL was developed using JADE, which is a framework that provides a set
of tools for an easier implementation. MASEL follows two main
architectures: repository and layers (three tier); however, both architectures
just represent the structure of the system. Both architectures do not specify the
communication language that is used, their location, how they can be
accessed, and how a message can be specified. For these purposes, it is
possible to use the standards. Finally, once all these properties are specified,
JADE is used to implement the application in Java.

• Methodologies influence the way that an architecture can be designed.
Because the scope of this research, methodologies in Multi-Agent Systems
were not analyzed in detail. However, through the given overview we noticed
that methodologies do not affect the design of an architecture; however, they
help to analyze the system at an early stage.

76

Master Thesis - Salvador Garcia McMaster - Computing and Software

Methodologies provide guidelines for modeling the requirements and
components in a way that allows an architectural pattern to be chosen
intuitively. As a result of the use of methodologies, an architecture can be
designed from different points of view, and as a consequence, the design can
take different directions and can be based on different patterns.

7.2. Case Studies Comparison
During this research, different case studies were analyzed in order to study

their software architecture. As was discussed in the previous section, we found
that in all the cases, there was not an explicit architecture for Multi-Agent System.
However, most of them showed an architecture specifically designed for each
system.

As a commonality, it was possible to redesign all architectures using existing
architectural patterns. Analyzing all the systems, we found that, according to their
properties, it is possible to reuse the same pattern in different cases. As a result of
the similarities found and the redesign using existing patterns, it was possible to
compare similar cases and get some conclusions. This comparison is detailed in
the following points:

• MASEL, Telemedicine for Diabetes and SIMPLE. All share a main
characteristic: they are data-centered. MASEL and SIMPLE have a central
component, a database; however, in the first one, clients do not access it
directly. In addition, there is an intermediate layer that controls processes and
data; therefore, as a consequence, it follows a three-tier architecture.

•

In SIMPLE, components are grouped in subsystems that access the database
directly; therefore, it is not necessary to use a layered style. Additionally, the
system is based on events, which suggests adding reactivity properties to the
database, i.e., an event can be triggered whenever information is updated,
inserted, or deleted.

Even though Telemedicine for Diabetes has a data-oriented view, it does not
use a database. It has subsystems that solve a part of the problem and that are
coordinated by a control component. The partial solutions are stored in a
blackboard component and all together compose the solution for the problem.
Because of the complexity of the application, and the way that the data is
modeled; this system can also be modeled according to the components that
communicate through a layered architecture that is structured in a hierarchical
way.

Robot Disassembly Unit and MASACAD. Both are systems with distributed
components; however, the design style of each one is distinct. In the first one,

77

Master Thesis - Salvador Garcia McMaster - Computing and Software

one system executes operations that produce results that are sent to the next
system. These results are processed and the resulting information acts as an
input to the third system, which is composed of physical robots. In this case, it
is possible to decompose the system according to the tasks assigned to each
agent, and structure it in a hierarchical way using layers.

MASACAD can also be modeled in a distributed way; however, in contrast
with the previous case, the communication between them is not sequential. In
this case, the broker architecture is the best-suited architecture; therefore, all
the subsystems are controlled by a common component. The broker
architecture is also based on a multi-layered style that decomposes the system
in a natural way. It is important to remark that in this case the system does not
share a common data repository. In addition, there is not a control component
that decides the activation and execution of the system and the components
are independent; therefore, it is not possible to follow a blackboard
architecture.

• SIMPLE and the Transshipping Containers System. They share something
in common: both are event-based systems; therefore, both are based on an
implicit invocation architecture. This type of architecture does not have a
complex structure, it is mainly composed of components and events; however,
if these components are added to a repository, it is possible to use an active
repository pattern. On the other hand, the Transshipping Containers System
presents a more specific type of event-based architecture: the reactor. This one
is more detailed and provides more control for the system. In this case, it is
possible to control all the events in a centralized way through the reactor,
which is the main component.

As a result of the analysis of these systems, we can conclude that:
• Data-repositories are very helpful when it is necessary to store common

information in a shared component, such as a database.
• If the communication consists of several intermediate steps, a good option

is to use a layered architecture.
• If the system can be decomposed in subsystems that can solve a part of the

problem, blackboard architectures present an optimal approach.
• When data changes affect the behavior of the system, an active repository

can be used.
• Layers can be used to model the communication between components

when they can be modeled in a hierarchical way.
• A distributed design that is composed of many subsystems can be modeled

using a broker architecture; the interaction between the components will
be coordinated by the central component: the broker.

78

Master Thesis - Salvador Garcia McMaster - Computing and Software

• When the application is event-oriented, an implicit event architecture can
be used, but it does not specify exactly the components that must be
included in the design.

• If in an event-based architecture, all the events can be controlled by a
central component, and each component has a method that reacts
according to the trigged action, it is possible to use a reactor architecture.

7 .3. Case Studies Summary
Table 1 and 2 summarizes the main properties of each case study, and also

it presents the patterns used and the results obtained:

Robot MAS A CAD MASEL
Disassembly Process

Original -- Bee-gent --
Architecture
Main Distributed, Distributed, composed of Data-centered,
Properties decomposed into subsystems, uses two composed of three

subsystems, interacts data-bases, meditation databases, clients ask for
with physical agents agent services, semi-

distributed
Views Layered Layered, distribution Data-centered/layers
Proposed Layers Layers, Broker Layers (3-their),
Pattern repository
Problems Unclear design, no Redundant interaction
Found explanation about between components,

external systems, many intermediate
confusing separation components for
between subsystems accessing the database,

databases managers
provides services
unrelated with the
database, unclear
separation between the
distribution of
components

Benefits Graphical architectural Clear distinction between Integration of all
representation, clients and servers, easy databases in one
hierarchical interaction integration of systems, component, simplified
of components, easier control of the distribution of
separation of physical system, clear separation of components, elimination
elements, easy to see the tasks. of redundant
functions in each layer, communication, easy to
easy to add new systems add new systems,

separation client-
server, database
managers can be
incorporated to the
database component.

Table 1

79

Master Thesis - Salvador Garcia McMaster - Computing and Software

TELEMEDICINE SIMPLE Transshipping
Containers

Original -- -- --
Architecture
Main Subgroups of Data centered, event- It includes physical
Properties components, partial based, reactive agents, devices, system

solutions elements are executed controlled by a
implicitly supervisor, event-based,

events are coordinated
in common components

Views Data-centered, layered Data/centered, Component interaction
component interaction

Proposed Layers, broker Reactive repository Layers, reactor
Pattern
Problems Unclear description of Supervisor interacts with Unclear control system,
Found many components, all the agents, besides the architecture can be

groups not very well interaction with the confused with a
defined, unorganized and database, subgroups blackboard, not clear
unclear interactions, interact with each other, the focus of the
complex communications not all components are application.

modeled as agents
Benefits Integration of all the Simplification of Clearer interaction

databases in the same communication between between components,
component, simplified components, it possible agents of the same type
distributivity, elimination to group components and can be considered as a
of redundant interactions, model them as a unit, events are
system can be added subsystem, easy addition controlled in one
easily, agents can be of systems, events can be component, and the
grouped according to coordinated in the abstraction level is
their function, each database, each subsystem smooth between
subsystem can be is independent. components.
designed in a different
way.

Table 2

80

Master Thesis - Salvador Garcia McMaster - Computing and Software

8. Conclusions and Future Work

8.1. Conclusions
One of the main goals of this thesis was to analyze different case studies in

order to see if they make explicit use of software architectures and whether these
software architectures are specific for Multi-Agent Systems. After analyzing a
number of Multi-Agent Systems applications and researching the literature, we
found that there do not exist architectures that are exclusive to Multi-Agent
Systems.

Furthermore, we found that, within the literature, the term software
architecture is used in many ways. One of them refers to reference architectures
proposed in standards, such as FIPA and OMG. In other cases, such as Cougaar,
authors refer to frameworks as a software architecture; however, they are just a set
of tools that help for an easier deployment of software architectures; that is they
are examples of middleware.

Additionally, analyzing the case studies, we could see that they never use
explicit architectures for Multi-Agent Systems; however, they use an initial
design for each case. In many cases, this design is called "architecture"; however,
it does not correspond to the software architecture used in this thesis. Moreover,
based on the requirements of each case and the properties provided by Multi
Agent System, it was possible use existing patterns for re-designing the original
architecture.

It was also possible to compare the cases searching for similarities.
According to their commonalities, we found that it is possible to use similar
architectures in different cases. Finally, summarizing the results found, we have
that:

• There is an absence of software architectures for Multi-Agent Systems.
• It is possible to use existing patterns for building software architectures in

Multi-Agent Systems.
• According to the properties of Multi-Agent Systems, such as distributibity,

cooperativy and reactivity, it is possible to design architectures following
existing patterns, such as broker, blackboard, layers and implicit
invocation, which are very well suited for Multi-Agent Systems.

• Many applications have an initial design, which is composed of
components and connectors. However, it does not follow any pattern;
therefore, it cannot be considered as a software architecture.

• In many systems it was possible to recognize existing patterns and propose
software architectures that are based on them.

• Methodologies suggest the way that an architecture can be used.

81

Master Thesis - Salvador Garcia McMaster - Computing and Software

•

•

•

•

•

• Different applications share many characteristics; based on them, it is
possible to reuse existing patterns for similar cases.

8.2. Future Work
Software Architecture for Multi-Agent Systems. Currently there are no
software architectures that are specific for Multi-Agent Systems; within this
kind of system, there is a big variety of applications, therefore, it is hard to
suggest one architecture for all the Multi-Agent Systems. However, there is
the possibility to propose software architectures for different subsets of Multi
Agent Systems.

Use of more architectural patterns. The patterns analyzed in this research,
are based on some case studies; however, there are more systems with
different properties that can use patterns that were not studied in this thesis.

System implementation using proposed architectural designs. All the
systems were implemented using an initial design; however, none of them
have been implemented using the proposed architectures based on existing
patterns. A very interesting idea is to implement them, and compare them
analyzing the differences.

Use of architecture of other type of systems. Multi-Agent System have
some similarities with different types of systems, such as reactive systems,
real time systems, and so on. Another interesting research topic is to see if it is
possible to borrow styles from different domains and apply them to Multi
Agent Systems.

Design patterns for Multi-Agent Systems. This work is focused on software
architectures; however, in a more detailed level, there are existing designs
patterns that can be used for Multi-Agents Systems at an implementation
level. This thesis does not address anything related with design patterns.

82

Master Thesis- Salvador Garcia McMaster - Computing and Software

9. References
[1] M. T. a. T. W. Aaron Helsginer, Cougaar: A scalable, distributed multi

agent architecture, International Conference on Systems, Man and
Cybernetics, 7 (2004), pp. 123-134.

[2] ALPINE, Cougaar Architecture Document, BBN Technologies, 2004.
[3] P. Avgeriou, Architectural patterns revisited - a pattern language,

Proceedings of 1Oth European Conference on Pattern Languages of
Programs (EuroPlop 2005) (2005), pp. 1 -- 39.

[4] L. Bass, P. Clements and R. Kazman, Software Engineering in Practice,
Addison-Wesley, Boston, MA, 2003.

[5] C. Baumer, M. Breugst, S. Choy and T. Magedanz, Grasshopper: a
universal agent platform based on OMG MASIF and FIP A standards,
2000.

[6] F. Bellifemine, A. Poggi and G. Rimassa, Developing Multi-agent Systems
with JADE, ATAL '00: Proceedings of the 7th International Workshop on
Intelligent Agents VII Agent Theories Architectures and Languages,
Springer-Verlag, London, UK, 2001, pp. 89--103.

[7] F. Bellifemine, A. Poggi and G. Rimassa, JADE- A White Paper, EXP In
search of innovation, 3 (2003).

[8] F. Bergenti, M.-P. Gleizes and F. Zambonelli, Methodologies and
software engineering for agent systems : the agent-oriented software
engineering handbook, Kluwer Academic, Boston [Mass.] ; London,
2004.

[9] L. Blass, P. Clements and R. Kazman, Software Engineering in Practice,
Addison-Wesley, Boston, MA, 2003.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal,
Pattern-Oriented Software Architecture, A system of Patterns, John Wiley
& Sons Ltd., West sussex, England, 1996.

[11] M. S. a. P. Clements, A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems, Proc.
COMPSAC97, 21st Int'l Computer Software and Applications Conference
(1996), pp. 6-13.

[12] CougaarForge, Cougaar Website, http://www.cougaar.org/, 2007.
[13] M. F. W. a. S. DeLoach, An Overview of the Multiagent Systems

Engineering Methodology, First international workshop, AOSE 2000 on
Agent-oriented software engineering (2000), pp. 207-221.

[14] R. Flores-Mendez, Towards the Standardization of Multi Agent Systems
Architectures: An Overview, 1999.

[15] D. Garlan and M. Shaw, An Introduction to Software Architecture, in V.
Ambriola and G. Tortora, eds., Advances in Software Engineering and
Knowledge Engineering, World Scientific Publishing Company,
Singapore, 1993, pp. 1-39.

83

Master Thesis - Salvador Garcia McMaster - Computing and Software

[16] A. Garro and L. Palopoli, An XML Multi-Agent System for e-Learning and
Skill Management, (2002).

[17] A. R. Hajo, Design and Control of Worliflow Processes, Springer-Verlag
New York, Inc., 2003.

[18] M. S. Hamdi, MASACAD: A Multiagent-Based Approach to Information
Customization, IEEE Computer Society, Los Alamitos, CA, USA, 2006,
pp. 60-67.

[19] Q. Hao and W. S. Z. Zhang, An autonomous agent development
environment for engineering applications, Advanced Engineering
Informatics, 19 (2005), pp. 123-134.

[20] S. Hayden, C. Carrick and Q. Yang, Architectural Design Patterns for
Multi-Agent Coordination, 1999.

[21] L. Henesey, P. Davidsson and J. A. Persson, Agent Based Simulation
Architecture for Evaluating Operational Policies in Transshipping
Containers, MATES, 2006, pp. 73-85.

[22] M. N. Huhns and L. M. Stephens, Multiagent Systems and Societies of
Agents, in G. Weiss, ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, The MIT Press, Cambridge, MA, USA,
1999, pp. 80--120.

[23] J. H. Ian Gorton, David McGee, Andrew Cowell, Olga Kuchar and Judi
Thomson, Evaluating Agent Architectures: Cougaar, Aglets and AAA,
Software Engineering for Multi-Agent Systems II, Springer Link, W A,
USA, 2004, pp. 264--278.

[24] IEEE-Computer-Society, FIP A Abstract Architecture Specification, 2001.
[25] IEEE-Computer-Society, The Foundation for Intelligent Physical Agents

Website, http://www.fipa.org/, 2007.
[26] Jade-Project-Team, Java Agent DEvelopment Framework Website,

http://jade.cselt.it/, 2007.
[27] N. R. Jennings, K. Sycara and M. Wooldridge, A Roadmap of Agent

Research and Development, Journal of Autonomous Agents and Multi
Agent Systems, 1 (1998), pp. 7--38.

[28] N. R. a. W. Jennings, Michael, Agent-Oriented Software Engineering, in
F. J. Garijo and M. Boman, eds., Proceedings of the 9th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World :
Multi-Agent System Engineering ({MAAMAW}-99), Springer-Verlag:
Heidelberg, Germany, 1999, pp. 1--7.

[29] T. Kawamura, T. Hasegawa, A. Ohsuga and S. Honiden, Bee-gent:
Bonding and Encapsulation Enhancement Agent framework
fordevelopment of distributed systems, Software Engineering Conference,
1999. (APSEC '99) Proceedings. Asia Pacific, 6 (1999), pp. 260-267.

[30] M. W. a. N. R. J. a. D. Kinny, The Gaia Methodology for Agent-Oriented
Analysis and Design, Autonomous Agents and Multi-Agent Systems, 3
(2000), pp. 285--312.

[31] M. Kirchner and P. Jain, Pattern-oriented software architecture. Volume 3

84

Master Thesis - Salvador Garcia McMaster - Computing and Software

patterns for resource management, Wiley, West Sussex, Eng. ; Hoboken, N.J.,
2004.

[32] H. N. a. D. N. a. L. Lee, ZEUS: An Advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems, In Proceedings of the Practical
Application of Intelligent Agents and Multi-Agent Systems (1998), pp.
377-392.

[33] M. MacKenzie, K. Laskey, F. McCabe, F. Limited, P. Brown, R. Metz and
B. A. Hamilton, Reference model for service oriented architectures,
OASIS SOA Reference Model, OASIS OPEN, 2006, pp. 1-28.

[34] P. C. Mary Shaw, The Golden Age of Software Architecture, IEEE
Software, 23 (2006), pp. 31-39.

[35] 0. MASIF, Mobile Agent Facility specification, (2000).
[36] B. M. Michelson, Event-Driven Architecture Overview, Patricia Seybold

Group (2006).
[37] R. L. Milidiu, T. Melcop, F. dosS. Liporace and C. J.P. de Lu, SIMPLE

A Multi-Agent System for Simultaneous and Related Auctions, !AT '03:
Proceedings of the IEEEIWIC International Conference on Intelligent
Agent Technology, IEEE Computer Society, Washington, DC, USA, 2003,
pp. 511.

[38] P. J. Modi, S. Mancoridis, W. M. Mongan, W. Regli and I. Mayk,
Towards a reference model for agent-based systems, AA.MAS '06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, ACM Press, New York, NY, USA, 2006,
pp. 1475--1482.

[39] T. Norman, N. Jennings, P. Faratin and A. Mamdani, Designing and
Implementing a Multi-Agent Architecture for Business Process
Management, in 1. J. o. r. P. M\"u, M. J. Wooldridge and N. R. Jennings,
eds., Proceedings of the {ECA/}'96 Workshop on Agent Theories,
Architectures, and Languages: Intelligent Agents {III}, Springer-Verlag:
Heidelberg, Germany, 1997, pp. 261--276.

[40] M. Nowostawski, G. Bush, M. Purvis and S. Cranefield, Platforms for
agent-oriented software engineering, apsec, 00 (2000), pp. 480.

[41] OMG, Object Management Group Website, (2007).
[42] M. Oprea, Applications of Multi-Agent Systems, IFIP International

Federation for Information Processing, 1 (2004), pp. 239--270.
[43] A. Pavliska and V. Srovnal, Robot Disassembly Process Using Multi

agent System, CEE.MAS '01: Revised Papers from the Second
International Workshop of Central and Eastern Europe on Multi-Agent
Systems, Springer-Verlag, London, UK, 2002, pp. 227--233.

[44] D. E. Perry and A. L. Wolf, Foundations for the Study of Software
Architecture, ACM SIGSOFT Software Engineering Notes, 17 (1992), pp.
40--52.

[45] C. J. Petrie, Agent-Based Software Engineering, in J. Bradshaw and G.
Arnold, eds., Proceedings of the 5th International Conference on the

85

Master Thesis- Salvador Garcia McMaster - Computing and Software

Practical Application of Intelligent Agents and Multi-Agent Technology
({PAAM} 2000), The Practical Application Company Ltd., Manchester,
UK, 2000.

[46] P. G. a. M. K. a. J. M. a. M. Pistore, The Tropos Methodology: an
overview, Methodologies And Software Engineering For Agent Systems
(2004).

[47] S. Poslad and P. Charlton, Standardizing agent interoperability: the FIPA
approach, (2001), pp. 98--117.

[48] P. Reed, Refernce Architecture: The best of best practices.,
DeveloperWorks- Rational, 2002.

[49] Ruy L. Milidiu, Taciana Melcop, Frederico dos S. Liporace and C. J. P. d.
Lucena, Multi-Agent Strategy for simultaneous and Related Auctions,
Scientia, 14 (2003), pp. 155-170.

[50] S. Sauvage, MAS Oriented Patterns, Lecture Notes In Computer Science;,
2296 (2001), pp. 283-292.

[51] D. C. Schmidt, Pattern-oriented software architecture: Patterns for
concurrent and networked objects, volume 2, Wiley, New York, 2000.

[52] M. Shaw, Some patterns for software architectures, In Proceedings of the
Second Pattern Languages of Program Design Workshop (1996).

[53] M. Shaw and D. Garlan, Software architecture : perspectives on an
emerging discipline, Prentice Hall, Upper Saddle River, N.J., 1996.

[54] I. Sommerville, Software Engineering, Addison-Wesley, 2001.
[55] N. G. T. and et al., Agent Platform Evaluation and Comparison, Pellucid,

Bratislava, Slovakia, 2002.
[56] J. Tian and H. Tianfield, A Multi-agent Approach to the Design of an E

medicine System, MATES, 2003, pp. 85-94.
[57] G. Weiss, Multiagent systems: a modern approach to distributed artificial

intelligence, MIT Press, 2000.
[58] M. Wellman, Trading Agent Competition, 2007.
[59] M. Wooldridge, Agents and software engineering, AI*IA Notizie, XI

(1998), pp. 31--37.
[60] M. Wooldridge, Intelligent Agents, in G. Weiss, ed., Multiagent Systems:

A Modern Approach to Distributed Artificial Intelligence, The MIT Press,
Cambridge, MA, USA, 1999, pp. 27--78.

[61] M. J. Wooldridge, An introduction to multiagent systems, J. Wiley, New
York, 2002.

[62] E. Yu, Agent Orientation as a Modelling Paradigm,
Wirtschaftsinformatik, 43 (2002), pp. 123--132.

[63] U. Zdun, M. Kircher and M. Volter, Remoting patterns: design reuse of
distributed object middleware solutions, Internet Computing, IEEE, 8
(2004), pp. 60--68.

86

