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Abstract 


This thesis summarizes theoretical results of two projects on the investigation of 

a novel organometallic polymer, the polyferrocenylsilanes(PFS). The study is carried 

out in collaboration with the experimental groups of Prof. Manners and Prof. Winnik 

at the Department of Chemistry of University of Toronto. 

In the first project, a rotational isomeric state (RIS) model is applied to study the 

configurational statistics of an ideal polyferrocenyldimethylsilane (PFDMS) chain: 

Fc[Fe(CsH4)2SiMe2]nH (Fe= Fe(CsHs)(CsH4)). The necessary conformation ener­

gies are derived from the molecular mechanics study of oligomeric (n=1,2) models 

for PFDMS reported by O'Hare et al.(J. Am. Chem. Soc. 1996, 118, 7578). In 

particular, pseudoatom and pseudobonds are introduced to describe the RIS chain of 

PFDMS, consistent with the special molecular geometry of the repeating ferrocene 

and organosilane units. The mean square unperturbed dimensions ((r2)0 , (R;) ), 

the characteristic ratios Cn(C00 ) and the temperature coefficients dln (r2)0 jdT of 

PFDMS are calculated. The results show that an ideal PFDMS chain has a relatively 

low value of Coo and fast convergence of Cn to Coo with increasing n, indicating a high 

static flexibility of this type of transition metal-containing polymer. The previously 
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unknown Kuhn length of PFDMS is obtained based on the calculated 0 00 • 

In the second project, by taking PFS-b-PDMS/alkane as a model system, general 

phase behaviours of the self-assembled micelles in dilute crystalline-coil copolymer 

solutions (solvents are selective for the coil blocks) are investigated. Three types of 

aggregates - lamellar, rodlike and tubular micelles are studied based on the exist­

ing experimental observations. The computation results reveal three types of phase 

diagrams, namely, lamella-tube-rod phase diagrams with or without a triple point 

and lamella-rod phase diagrams. It is shown that lamella-tube-rod morphological 

transitions can be induced by changing the coil/crystalline block ratio or the tem­

perature. Possible improvement of the theory and the current challenges of studying 

PFS-b-PDMS self-assembly in alkane solvents for both theories and experiments are 

discussed. 
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Chapter 1 

Introduction 

Polyferrocenylsilanes represent a recently established, readily accessible class of 

transition metal-containing polymers consisting of alternating ferrocene and organosi­

lane units. High molecular weight, soluble samples of these materials were first 

prepared in the early 1990's by thermal ring-opening polymerization (ROP) using 

silicon-bridged ferrocenophanes[l]. More recently living anionic and transition metal­

catalyzed ROP methodologies have been developed, which permit unprecedented ac­

cess to controlled polymer architectures (e.g., block copolymers) with transition met­

als in the main chain. Polyferrocenylsilane homopolymers and block copolymers offer 

exciting opportunities in materials and supramolecular science and for nanostructure 

applications[2]. 

As one prototypical example of polymers containing transition metals in the main 

chain, polyferrocenylsilanes are attracting growing attentions as processable materials 

with novel physical (e.g., redox, magnetic, electrical and morphological) and chem­

ical (e.g., catalytic and preceramic) properties[2, 3]. Some interesting properties of 
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polyferrocenylsilanes have been reported. For example, polyferrocenylsilanes possess 

interesting hole transport properties and partial oxidation leads to a 1010 fold increase 

in electrical conductivity up to semiconductor values (ca. 10-3 - w-4 Scm-1)[4]. 

In this thesis, we summarize theoretical results of two projects on the investigation 

of the chain configuration of polyferrocenylsilanes and the solution self-assembly of 

polyferrocenylsilane block copolymers. The study is carried out in collaboration with 

the experimental groups of Prof. Manners and Prof. Winnik at the Department of 

Chemistry of University of Toronto. In previous experiments performed by Manners 

et al., interesting configurational and self-assembly properties of polyferrocenylsilanes 

have been revealed as described below. 

In THF solvents, poly(ferrocenyldimethylsilanes) possess a more compact random­

coil conformation relative to polystyrene, and this accounts for the underestimation 

of molecular weight by conventional gel-permeation chromatograph (GPC) methods 

using polystyrene standards[5]. Although this observation by Manners et al. quali­

tatively shows polyferrocenylsilane chains are flexible, the quantitative results of the 

chain configuration are still unknown. To resolve this problem, we construct a rota­

tional isomeric state model to compute several important configuratioanl parameters 

for polyferrocenylsilanes, such as the radius of gyration and the Kuhn length. The 

results confirm that polyferrocenylsilanes are of high static flexibility at high temper­

ature. This project is summarized in chapter 2. 

For the solution assembly of polyferrocenylsilane block copolymers, Manners et 

al. have observed intriguing micellar morphologies. The organometallic-inorganic di­

block copolymer poly(ferrocenylsilane-b-dimethylsiloxane) (PFS-b-PDMS) with large 
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PDMS/PFS block ratio unexpectedly forms long cylindrical micelles rathen than 

spherical micelles in a variety of PDMS-selective alkane solvents[6, 7, 8, 9]. Since 

in the experiments the temperatures were all below the melting temperature Tm of 

PFS, the crystallinity of PFS has been taken as the driving force of the formation 

of non-spherical micelles[6]. However, theoretical understanding of many aspects of 

the self-assembly in the PFS-b-PDMS/alkane system is still lacking. In chapter 3, 

we summarize the preliminary results on the investigation of the phase behaviours 

of crystalline-coil diblock copolymers in the coil-selective solvents by taking PFS-b­

PDMS/alkane as a model system. 



Chapter 2 

Configurational Statistics of An 

Ideal PFDMS Chain 

2.1 Introduction 

The rotational isomeric state (RIS) model is widely used to study the conforma­

tional properties of real polymer chains[10, 11, 12]. Over the past four decades, RIS 

models for hundreds of polymer structures have been developed and published[12]. 

The general RIS calculation includes the following steps[12]: (1) identify all skeletal 

bonds around which rotation is possible under the chosen conditions; (2) for each 

of these bonds, analyze the interactions of short range that determine its conforma­

tional behaviour. Usually one finds that the torsion angles of the bonds in question 

can assume only relatively narrow domains and one identifies these domains with 

rotational isomeric states. The location of these states determines the geometry of 

those "rotational isomers" selected to represent the totality of conformations avail­
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able to the polymer; (3) determine the energy or free energy of the selected rotational 

isomers and compute the statistical weights to obtain the statistical weight matrices 

(U-matrices); (4) compute the configurational properties of the polymer. Generally 

speaking, it is relatively easy to determine the geometrical parameters (bond lengths 

and angles) of a real chain to high accuracy, thus, the reliability of the RIS calcula­

tion is largely determined by the accuracy of the (local) conformation energies which 

dictate the statistical weight matrices. 

In this chapter, the configurational properties of an ideal polyferrocenyldimethyl­

silane (PFDMS) chain is studied in the framework of the RIS model. The necessary 

local conformation energies (short-range interaction energies) are obtained from the 

extensible systematic forcefield (ESFF) calculations reported by O'Hare et al.[13]. 

Polyferrocenylsilanes represent a recently established, readily accessible class of tran­

sition metal-containing polymers consisting of alternating ferrocene and organosilane 

units. These polymers are differentiated by the two side groups (R,R') covalently 

bonded to the silicon atom, which could be alkyl, aryl, alkoxy, aryloxy and amino 

substitutes[2]. For PFDMS, R = R' = CH3 (Me). The first synthesis of high molecular 

weight polyferrocenylsilanes was performed by thermal ring-opening polymerization 

(ROP) using silicon-bridged ferrocenophanes by Manners and coworkers[!]. In recent 

years, it has been shown that polyferrocenylsilanes have interesting potential in ma­

terials science, self-assembly and nanoscience[2]. 

This chapter is organized as follows: In section 2.2, we analyze the molecular geom­

etry of PFDMS. We show that the introduction of the pseudoatom and pseudobonds 

permits the classical RIS chain description of PFDMS. In section 2.3, we summarize 
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the low-energy conformations of the PFDMS oligomers reported by O'Hare et al.[13] 

and construct the RIS ensemble for PFDMS, where the strong interdependence of 

the torsion angles leads to large-size statistical weight matrices. The main results are 

given in section 2.4. Configurational properties of an ideal polymer chain, includ­

ing the mean square end-to-end distances (r2) 0 , the mean square radiuses of gyration 

(R~)0 , the characteristic ratios Cn(Coo) and the temperature coefficients dln (r2
) 0 jdT 

are calculated. Discussions are given in section 2.5. 

2.2 Molecular Geometry 

2.2.1 Analysis 

Usually, the backbone of a real polymer is a good description of the RIS chain, 

where bond lengths and bond angles of the backbone are taken as constants, leaving 

the torsion angles as the only degrees of freedom responsible for the various chain 

configurations. For example, the RIS chain of polydimethysiloxanes (PDMS) can be 

taken as · · ·- Si- 0- Si- 0- ···,which is the same as the PDMS backbone[10]. 

However, the PFDMS chain is an exception because of the special molecular geom­

etry of the ferrocene and organasilane units. The unconventional chemical bonds of 

PFDMS lead to the following geometrical restrictions: 

(1) The two cyclopentadienyl (Cp) rings within one ferrocene are strictly parallel 

(Figure 2.1). However, relative rotation of the two rings is permitted. Therefore the 

bond angle LC-Fe-C in the backbone (C- Fe- [C- Si -C- Fe]n- C) can not be 
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Ia 

Figure 2.1: Schematic of the pseudobond Pc-Pc. Pc denotes the pseudoatom located 
at the center of the cyclopendadineyl ring. The length of this pseudo bond is denoted 
as la. 

C4 C5 

Pc lSI. 

C2 

C3 Si 

Figure 2.2: Schematic of the pseudobond Pc-Si. The length of this pseudobond is 
denoted as h. 
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bond type Fe-C C-C C-Si Pc-C 
bond length( A) 2.04 1.42 1.85 1.21 

bond type Fe-Pc Pc-Pc Pc-Si 
bond length(A) 1.645 3.29 3.06 

Table 2.1: (Pseudo) bond lengths of PFDMS. Parameters from Manners et al.[14] 

taken as a constant in the RIS model. 

(2) The iron atom is at the middle of the segment connecting the centers of the 

two rings (Figure 2.1). 

(3) The C-Si bond in the backbone is almost coplanar with the Cp ring (Figure 

2.2). This property is not due to geometrical restrictions. Rather, it is based on ex-

to 360°. 

2.2.2 RIS Chain of PFDMS 

We construct a RIS chain for the PFDMS by introducing the pseudoatom and 

pseudobonds as follows: The pseudoatom is located at the center of the cyclopenta­

dienyl ring, denoted as "Pc". The two associated pseudobonds are Pc-Pc and Pc-Si 

bonds. With these definitions, a configuration of the PFDMS chain can be described 

by the configuration of a RIS chain Pc- [Pc- Si- Pc]n- Pc which is specified by 

3n- 1 torsion angles (Figure 2.3). The validity of this RIS model can be justified 

by the molecular geometrical analysis shown in subsection 2.2.1. The geometrical 

parameters are given in Table 2.1 and 2.2. 
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2 

3n Pc 
Si 

0 

Pc Si 

Figure 2.3: Schematic of the RIS chain of PFDMS. Pc is the pseudoatom. The chain 
configuration is determined by 3n- 1 torsion angles, labeled as <P3 , <P4 , ... , <P3n+b 

where <Pi is the dihedral angle between the two planes defined by bond i-2, i-1 and i­
1, i, respectively. Note that in this paper we determine the values of the torsion angles 
following Flory's rule (right-handed helices are generated by positive rotations)[10], 
e.g., all torsion angles are oo for a perfect trans planar zigzag conformation, which 
is different from the rule (left-handed helices are generated by positive rotations) 
adopted by O'Hare et al[13]. 

angle type Pc-Fe-Pc Pc-Pc-Si Fe-C-Si 
angle (0 

) 180 90 128.5 
angle type Pc-C-Si Pc-Si-Pc 
angle (0 

) 180 107.6 

Table 2.2: (Pseudo) bond angles of PFDMS. Parameters from Manners et al.[14] 

2.3 Short-range Interactions 

In this section, we discuss an important aspect of the RIS calculation for an ideal 

PFDMS chain, namely, the short-range interactions. As reported by O'Hare et al.[13], 

the conformational energies of PFDMS oligomers are almost exclusively determined 

by the non-bonding electrostatic interactions between the positively charged iron 

atoms and negatively charged Cp rings in the ferrocene units. In contrast, the ener­

getic contribution from the organosilane units is much smaller. On the basis of such 
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(a) (b) 

(c) 

Figure 2.4: Schematic of the dimer and trimer conformations. The pictures are taken 
from O'Hare et al.[l3]: (a)the angle¢ in the dimer pair; (b)the angle 'lj; in the dimer 
pair; (c)the trimer angle X· 
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energetic features, the first-order and second-order interactions of PFDMS, which 

constitute the short-range interactions, are defined as the interactions between two 

nearest-neighbour ferrocenes (dictated by two torsion angles) and the interactions 

between two second-nearest-neighbour ferrocenes (dictated by five torsion angles), 

respectively. Details of this approach are given below. 

2.3.1 First-order Interactions 

A dimer(n=1) contains two nearest-neighbour ferrocenes, whose relative positions 

are determined by two torsion angles ¢ and 'lj; (Figure 2.4a and 2.4b). Thus, the 

first-order interaction energy is a function of two torsion angles. Three symmetry­

independent potential minima (Figure 2.5) were found by O'Hare et al.: (145°,20°), 

(110°,110°) and (13°,13°). Because the third minimum is 3.9Kcal/mol ~ 5kT higher 

than the first minimum and 2.9Kcal/mol ~ 3.5kT higher than the second minimum, 

it is excluded from our RIS ensemble. In the framework of the RIS calculation[lO, 

11], the first and second minimum lead to six distinct rotational isomeric states: 

(145°,20°), (20° ,145°), ( -145° ,-20°), (-20°,-145°), (110° ,110°) and ( -110° ,-110°). 

In what follows, when a higher-degree oligomer( n>1) is considered, one unit composed 

of two nearest-neighbour ferrocenes and the bridged organosilane unit is referred as 

a dimer unit. The pair of torsion angles in it is referred as a dimer pair. In the RIS 

calculation, the values of one dimer pair are derived from either the first or the second 

minimum shown above. To facilitate the following discussion, for the former or latter 

case, the dimer pair is referred as a type-I or type-II pair, respectively. For example, 
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illl!i 

·110 

·12U 

·12l! 

-134 

•lSi!> 

. ·11-f, 

;: 

. r ,,,,~"·'--

(} 3D W 110 120 1Sl1100 Z10N23'01300UJ300

• 

Figure 2.5: Plot of the dimer energy (Kcal/mol) as a function of the dimer pair ¢ 
and 7/J. The picture is taken from O'Hare et al.[13]. 

(20°,145°) is a type-I pair and (-110°,-110°) is a type-II pair. 

2.3.2 Second-order Interactions 

A trimer(n=2) contains three ferrocenes and it is the smallest unit containing a 

pair of second-nearest-neighbour ferrocenes. Its conformation is determined by five 

torsion angles. Thus, the second-order interaction energy is a function of five torsion 

angles. Four of these angles are the same as the two dimer pairs of the trimer. The 

last (fifth) angle, x (Figure 2.4c), denotes the angle through which the two C-Si 

bonds connected to the two Cp rings of the central ferrocene are twisted away from 

one another[13]. It is referred as a trimer angle. Analogous to the definition of a 

dimer unit, when a higher-degree oligomer(n>2) is considered, one unit composed 

of three sequential ferrocenes and the two bridged organosilane units is referred as a 

trimer unit. The conformation of a trimer unit is determined by two dimer pairs and 

one trimer angle. 
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The energy of a trimer unit can then be formally expressed as: 

E(trimer) E(dimer1) + E(dimer2) + E'(trimer) 

where, the first two terms represent the first-order interactions and the third (last) 

term represents the second-order interactions. 

For a trimer, there are 10 lowest-energy conformations. The studies of O'Hare et 

al. show that there are two features of these conformations[13]. 

First, as shown in subsection 2.3.1, six rotational isomeric states of the dimer 

pairs are determined based on the first-order interactions. Now, upon adding the 

second-order interactions to determine the low-energy trimers, we would expect that 

some deviation arises for the angle values of the dimer pairs in the low-energy trimers 

compared with the angle values of the dimer pairs included in the six rotational 

isomeric states mentioned above. The results of the ESFF calculation[13] show that 

such deviation is small. The average deviation is 7.2° and the largest deviation is 

32°. Thus, for the RIS calculation performed in the current work, it is reasonable 

to choose six rotational isomeric states in total for the dimer pairs. Their values are 

consistent with those shown in subsection 2.3.1. 

Secondly, the values of the trimer angles of the low-energy trimers are greatly 

affected by the second-order interactions. Two of the 10 lowest-energy conformations 

have C2 symmetry[13]. Thus, in the framework of the RIS calculation, there are 

8 x 4 + 2 x 2 = 36 rotational isomeric states for the five torsion angles of one trimer 

unit. Interestingly, none of the 10 low-energy trimers contains two type-II pairs. Since 
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dimer pairs trimer acr1gle(0 
) E'(trimer) 

(Kcal/mol) 
(D1,D5),(D5,D2) -64 0.0 (c:l) 
(D3,D6),(D6,D4) 64 0.0 
(D1,D6),(D6,D2) 91 0.1 (c:2) 
(D3,D5), (D5,D4) -91 0.1 
(D1,D1),(D2,D2) -73 1.5 (c:3) 
(D4,D4),(D3,D3) 73 1.5 
(D1,D3),(D4,D2) -75 1.5 (c:4) 
(D3,D1),(D2,D4) 75 1.5 
(D1,D1),(D2,D2) 101 1.8 (c:s) 
(D4,D4), (D3,D3) -101 1.8 

(D1,D2) -62 1.8 (c:6) 
(D3,D4) 62 1.8 

(D2,D5),(D5,D1) -80 1.9 (c:7) 
(D4,D6),(D6,D3) 80 1.9 
(D1,D4),(D3,D2) -83 2.3 (c:s) 
(D3,D2),(D1,D4) 83 2.3 

(D2,D1) 88 2.8 (c:g) 
(D4,D3) -88 2.8 

(D2,D3),(D4,D1) 90 3.1 (c:w) 
(D4,D1),(D2,D3) -90 3.1 

Table 2.3: Low energy conformations of a trimer. D1 to D6 respectively denote 
the dimer pairs (20°' 145°), (145°' 20°), ( -20°' -145°), ( -145°' -20°), (110°, 110°) 
and ( -110°, -110°). Parameters from O'Hare et al.[13], where two dimer energies 
are subtracted from the trimer energy to get the second-order interaction energy 
E' (trimer). The c:i denotations are used in Appendix A. 

the energy difference between the lowest-energy trimer acrid the tenth-lowest-energy 

trimer is 2.1Kcaljmol ~ 3kT, it is reasonable to only choose these 36 rotational 

isomeric states in the RIS ensemble (Table 2.3). Based on such construction, there 

are 20 rotational isomeric states in total for the trimer acr1gles. 
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2.3.3 Configurational Energy of An Ideal PFDMS Chain 

The configuration energy of an ideal chain only depends on the short-range in­

teractions [10, 15]. Based on the RIS ensemble constructed for PFDMS, which is 

dictated by the first-order and second-order interactions, the statistical weight matri­

ces (U-matrices) used in this work have large dimensions. They are alternating 6 x 6, 

20 x 6 and 6 x 20 matrices (See details in Appendix A). 

To proceed, we write the configurational energy of an ideal PFDMS chain 

n n-1 

E(chain) - L E(dimer i) +L E'(trimer j) 
i=1 j=1 

n n-1 

- L E(<h 7/Ji) +L E'(cpj, '1/Jj, Xi, ¢Hb '1/Jj+l) (2.2) 
i=1 j=1 

One essential idea of the RIS model is that the statistical integral over all torsion 

angles can be approximated by the sum of finite number -of isomeric states, which 

correspond to the potential minima[10]. The probability assigned to each isomeric 

state, exp(-E/kT), needs to be explained here. Strictly speaking, theE should be 

regarded as free energy. If the shapes of the potential minima in the plot of potential 

energy as a function of the torsion angles are similar, replacing the value of E with 

the energy at the minima does not affect the final statistics[lO]. For the PFDMS 

chain, this condition needs to be carefully examined. As shown in Figure 2.5, the 

shapes of the potential minima at the type-I pair and the type-II pair differ. The 

former is wider, or, the local entropy around the type-I pair is larger, enhancing its 

probability. In order to examine this effect, we use 91 and 92 (91 > 92) to denote the 
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effective degeneracies of energy for the type-I pair and the type-II pair, respectively. 

Then, the probabilities assigned to the two type of rotational isomeric state are equal 

to 91 exp(-ErfkT) and 92 exp(-E2/kT), where E1 and E2 denote the values of the 

energy minima at the type-I pair and the type-II pair, respectively. Below, we in­

troduce !:!,.E = kTln(9I/92). Since the final statistics only depends on the relative 

probability of the two types of rotational isomeric states, we can still use the formula 

exp(-E / kT) to compute probability by assigning the following energy values to each 

rotational isomeric state 

0 type-I pair 
E(dimer) = 

{ 1.0 Kcal/mol + !:!,.E type-II pair 

10 types of energies for 20 types of 

E'(trimer) = trimer angles and 36 types of 

trimer conformations (Table 2.3) 

!:!,.E actually determines the relative probability of type-I pairs and type-II pairs in 

the chain, thus, its influences to the configurational properties can be examined by 

observing the calculation results in a range of /:!,.E, which is performed in next section. 

2.4 Results 

Once the RIS model and its parameters are defined, several physical quantities 

can be calculated. In what follows, the following parameters are considered: 

1. The root-mean-square of the distance between two terminal Cp centroids, 

r0 = (r2)~12 • Details of computing r0 are given in Appendix A. 
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AE[Kcal/mol] 

Figure 2.6: Root-mean-square of the end-to-end distance of a n=100 ideal PFDMS 
chain as the function of !l.E at temperatures 150°C, 180°C and 210°C. 

2. The characteristic ratio [10], defined by Cn = (r2) 0 jN[2, where N is the number 

of bonds in the backbone of PFDMS and [2 is the mean-square bond length. The. 

backbone of the PFDMS chain is C- Fe- [C- Si-C- Fe]n- C, thus, N = 4n+2. 

The asymptotic limit of Cn(n(N)----+ oo) is denoted as C00 • From bond lengths shown 

in Table 2.1, it is determined that z2 = 3.79 A2 . 

3. The root-mean-square distance of all iron atoms in an ideal PFDMS chain from 

their center of gravity, i.e., the radius of gyration, R90 = (R~)~12 . Because of the 

chemical and physical properties of the iron atoms, this definition is more appropri­

ate to experimental researchers. The formulas are given in Appendix B. 

4. The temperature coefficient dln(r2
) 0 /dT[10]. 

The glass transition temperature T9 of PFDMS is 33 oc and the melting temper­

ature Tm is 122 rv 145 °C[2]. Since the RIS model is only valid for the chains in melts 
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Figure 2.7: Root-mean-square of the radius of gyration of all iron atoms for a n=100 
ideal PFDMS chain as the function of f1E at temperatures 150°C, 180°C and 210°C. 

or 8-solvents, our calculations were carried out at 150 oc, 180 oc and 210 oc (above 

and Tm)· The effect of f1E is examined. The results are summarized in Figure T9 

2.6-2.12. 

(1) For given nand T, both r0 and R90 increase with f1E (Figure 2.6 and 2.7). 

The most sensitive range is 0-2 Kcal/mol. On the other hand, the temperature depen­

dence of the unperturbed dimensions is quite weak. For a fixed t1E, the Cn values are 

very close at the three different temperatures. In what follows, we use the calculation 

results at T=180°C to estimate Cn and C00 • 

(2) Cn increases with n and quickly converges to an asymptotic limit Coo (see 

Figure 2.8). It is found that Coo is bounded in the range 3.4-4.8 and increases 

with f1E. To better show the relationship between Cn and C00 , we use the "Cn 

vs 1/n" diagram (see Figure 2.9). It is found that when n ;:::: 10, a linear formula 

http:2.6-2.12
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Figure 2.8: The characteristic ratios of PFDMS at different ~E (T = 180°C). The 
asymptotic limit Coo are shown in the box. 

u~ 4 

3.5 

G--0 Llli=O.OKcallmol 
G-El Llli= l.OKcal/mol 
~ Llli=2.0Kcal/mol 
A-A Llli=6.0Kcallmol 

lin 

Figure 2.9: Cn vs 1/n (T = 180°C). The ten samples are calculated at (from right 
to left) n=10, 15, 20, 25, 35, 50, 100, 180, 250 and 600. C~1 [dCn/d(1/n)h;n=O are 
equal to -0.64, -0.90, -1.02 and -1.09 respectively for the four ~E values from 0.0 to 
6.0 Kcaljmol. 
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6.8 ·­ • • ­ AE=O.OKcal/mol 
---- AE=J.OKcallmol 
• - • ­ · AE=2.0Kcal/mol 
-­ AE=6.0Kcal/mol 

Figure 2.10: (r2) 0 I (R;)
0 

(T = 180°C). The approach of (r2 
) 0 I (R;)

0 
to its limiting 

value of 6 is from above. 

Cr:>o + (1ln) x [dCnld(1ln)h;n=O is an accurate approximation of Cn. Mattice et al. 

have discussed this type of relationship in depth[16], where polymers with similar 

Coo values but obviously different slopes [dCnld(1ln)h;n=O are shown. From our 

calculations, the value of C~1 [dCnld(1ln)h;n=O for PFDMS is around -1.0 (Figure 

2.9), whose magnitude is much smaller than the counterpart of the three common 

polymers polyethylene(PE), polyisobutylene(PIB) and polydimethylsioxane(PDMS) 

considered in ref 16. The relatively low C00 and fast convergence of Cn to C00 with 

increasing n show that PFDMS is of high static flexibility. Therefore, relatively more 

compact random-coil conformations of PFDMS chains are expected in the melts. 

(3) The general relationship (r2 ) 0 I (R;) ---+ 6 for n ---+ oo for flexible ideal 
0 

polymers is confirmed in Figure 2.10. The approach of (r2 I (R;) to 6 is from ) 0 0 

above. As shown in Figure 2.11, When n ;::: 25, a linear formula 6.0 + (1ln) x 
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.........., AE=l.OKcaVmol 
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......_... AE=6.0KcaVmol 
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lin 

Figure 2.11: (r2) 0 I (R~) 0 vs 1ln (T = 180°C). The ten samples are calcu­

lated at (from right to left) n=10, 15, 20, 25, 35, 50, 100, 180, 250 and 600. 

[d( (r2

) 0 I (R~)0)Id(1ln)h;n=O are equal to 2.60, 5.68, 7.30 and 8.26 respectively for 

the four ll.E values from 0.0 to 6.0 Kcallmol. 
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Figure 2.12: Temperature coefficient of n=100 ideal PFDMS chain as the function of 
ll.E at temperatures 150°C, 180°C and 210°C. 
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slope [d( (r2
) 0 / (R~)0)/d(1/n)h;n=O increases with llE. 

(4) The sign of the temperature coefficient changes from + to - with increasing 

llE. The dividing line is around llE = 0.5 Kcal/mol (Figure 2.12). 

In the RIS calculation, the probability that one dimer pair is a type-I(II) pair 

increases( decreases) with llE. Thus, based on the fact that the conformation of one 

dimer unit containing a type-II pair is more compact than the conformation of one 

dimer unit containing a type-I pair (the Fe-Fe distance is 5.61 Afor one dimer unit 

containing a type-II pair and 5.95 Afor one dimer unit containing a type-I pair[13]), 

we would expect the unperturbed dimensions of one PFDMS chain increase with llE. 

The results shown above are consistent with this expectation. 

For the illustative curves shown in Figure 2.6-2.12, values of llE in a big range 

(0-6 Kcaljmol) are considered. However, based on the plot of energy as a function 

of the two torsion angles ( dimer pair) of one dimer shown in Figure 2.5, we estimate 

the real value of llE for PFDMS is in the range of 0.4-2.0 Kcaljmol. This leads to 

our estimation C00 = 4.2 ± 0.4 for PFDMS. 

Finally, we calculate the Kuhn length lK of an ideal PFDMS chain based on the 

calculated C00 • For large n, the relation between (r2) 0 and n, a and lK is 

(2.3) 

where a is the monomer size. Because the effective volume of one monomer is a3
, we 

can estimate a using the relation 

(2.4) 

http:2.6-2.12
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where Mo = 242 g/mol is the molar mass of a PFDMS monomer, Pb ~ 1.26 g/mL 

is the density of bulk PFDMS[17]. Using these parameters we obtain a= 6.8 A. For 

large n, we also have 

(2.5) 

therefore, ZK and Coo satisfy the relation 

(2.6) 

This gives ZK = 9.4 ± 0.8 A. 

To the best of our knowledge, the Kuhn length of an ideal PFDMS chain has not 

been addressed either by experiments or by theoretical calculations. We hope the 

results obtained in this work are helpful to the current research on polyferrocenylsi­

lanes. 

2.5 Discussions 

In conclusion, we have examined the configurational statistics of an ideal PFDMS 

chain using the RIS model in this chapter. The RIS chain and ensemble are con­

structed based on the geometrical and energetic features of PFDMS. Calculated con­

figurational quantities include (r2) 0 , (R~) 0 , Cn(C00 ) and dln (r2) 0 /dT. The results 

show that an ideal PFDMS chain is of high static flexibility. The previously unknown 

Kuhn length of PFDMS is also obtained based on the calculated C00 • 

According to the ESFF calculation carried out by O'Hare et al., replacement of 

the methyl groups in the organosilane unit of PFDMS with longer alkyl chains has 
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very little effect on the relative orientation of the ferrocene units[13]. This is because 

the conformational energies are almost exclusively determined by the non-bonding 

electrostatic interactions between the positively charged iron atoms and negatively 

charged Cp rings in the ferrocene units, while the energetic contribution from the 

organosilane units containing alkyl side groups is much smaller. Thus, the configura­

tional properties of PFDMS should be close to the configutational properties of the 

polyferrocenylsilanes with longer alkyl chains in the organosilane units. 

On the other hand, low-energy conformations of polyferrocenylsilanes with other 

types of side groups might be different from the low-energy conformations of PFDMS. 

Using the RIS model to investigate the configurational properties of such types of PFS 

requires constructing new RIS ensembles rather than what used in this work. 



Chapter 3 

Self-Assembly of PFS-b-PDMS in 

Alkane Solutions 

3.1 Introduction 

Polyferrocene block copolymers are expected to self-assemble to form micellar ag­

gregates in selective solvents for one of the blocks. This would allow the generation 

of unique supermolecular organometallic polymer assemblies[2]. In recent years, Man­

ners et al. have shown that diblock copolymers consisting of a poly(ferrocenyldimethyl­

silane) block connected to a poly( dimethylsiloxane) block (PFS-b-PDMS) self-assemble 

to from interesting and unusual cylindrical structures in alkane solvents with large 

PDMS/PFS block ratios[6, 7, 8, 9]. Simple alkanes are modest to poor solvents for 

PDMS but nonsolvents for PFS[18]. Although we would expect the insolubility of 

PFS drives a self-assembly process, the formation of cylindrical structures is surpris­

ing since most asymmetric diblock copolymers in solvents selective for the longer 

25 
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block form spherical micelles. 

The driving force for the formation of cylindrical micelles was partially clarified by 

Manners et al.[6, 9]. For all experiments in which cylindrical structures were observed, 

the temperatures were below the melting temperature Tm of PFS (ca. 120-145 oc). 

Therefore, the crystallization of the PFS blocks was taken as the main factor which 

rejects the formation of spherical micelles. Two supplemental experiments supported 

this conclusion. Either increasing the temperature above Tm of PFS or replacing the 

crystalline PFS blocks by amorphous polyferrocenylmethylphenylsilane or polyferro­

cenylmethylethylsilane blocks, spherical micelles were formed as expected[6]. 

If the insoluble block is amorphous rather than crystalline, the copolymer is re­

ferred to as a "coil-coil" diblock copolymer. To date, most theoretical studies of the 

self-assembly of diblock copolymers in solutions have discussed this class of polymers. 

In contrast, we have much poorer theoretical understanding of the self-assembly of 

crystalline-coil diblock copolymers in solutions. In this chapter, we present our the­

oretical model to investigate the self-assembly of PFS-b-PDMS in alkanes below Tm 

of PFS. There are two-fold values of this work. On one hand, PFS-b-PDMS copoly­

mers can be taken as crystalline-coil model systems. The experimental observations 

of Manners et al. indicate that apart from the wellknown lamellar micelles, rodlike or 

tubular micelles also could be thermodynamically stable in crystalline-coil systems. 

Thus, studies of these three types of micelles in depth should enable a better under­

standing of the fundamental physics underlying the self-assembly of crystalline-coil 

diblock copolymers in solutions. On the other hand, a better understanding of the 

interplay of factors that affect the aggregate properties of PFS-b-PDMS copolymers 



27 

is desirable for potential applications which take advantage of self-assembly of poly­

ferrocene block copolymers[2]. 

The subsequent contents of this chapter are organized as follows: In section 3.2, we 

propose the theoretical model, in which three types of aggregates - lamellar, rodlike 

and tubular micelles are considered, in accordance with the experimental observations 

of Manners et al. For each morphology, we show the assumed microscopic structure 

and derive the formulas of the free energy per copolymer chain which dictate the 

phase behaviours. Main results are given in section 3.3, where three types of phase 

diagrams are predicted. Finally in section 3.4, we discuss the possible improvement of 

the model and analyze the current challenges of studying PFS-b-PDMS self-assembly 

in alkane solvents for both theories and experiments. 

3.2 Model 

In previous literatures, several features of the self-assembly of crystalline-coil 

copolymers in selective solvents for the coil blocks have been suggested. First, unlike 

the homopolymer crystallization, which is a kinetic process (e.g., the number of folds 

per chain depends on the crystal growth rate[19]), the self-assembled structure of 

the crystalline-coil copolymers is believed to be thermodynamically determined, i.e., 

minimal free energy dictates the micellar morphology[20]. Secondly, crystal packing 

forces play a dominant role in determining the structure of the crystalline core. The 

most common self-assembled structure expected and experimentally verified is a plate 

(lamella), with the corona blocks protruding from both faces. To date, most theoret­
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Figure 3.1: Schematic of two types of lamellar morphologies: the crystalline core is a 
monolayer structure (left) or a bilayer structure (right). In this example, the thickness 
of the core is identical for the two types of lamellar micelles. 

ical works of the self-assembly of crystalline-coil copolymers in selective solvents for 

the coil blocks focused on this morphology. It is clear that the thickness of the plate 

is balanced by two opposite trends: the system can minimize the repulsion between 

adjacent coils of the corona block by increasing the number of folds in the core, lead­

ing to a thinner plate, or it can minimize the corona/core interface free energy by 

decreasing the number of folds in the core, leading to a thicker plate. The fact that 

the crystalline core of the lamellar micelle is a monolayer structure rather than bilayer 

structure has also been theoretically explained[21]. Consider two lamellar micelles, 

one has a monolayer crystalline core and the other has a a bilayer crystalline core. 

The core thickness of the two micelles are identical (Figure 3.1), therefore, the num­

ber of folds per chain for the bilayer one is two times of the number of folds per chain 

for the monolayer one. Because the interface area per chain is identical for the two 

micelles, the corona free energy and the corona/core interface free energy would also 
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Figure 3.2: TEM micrograph of PFS40-b-PDMS480 assemblies formed in n-decane at 
50°C (short dense rods) and 25°C (nanotubes). The picture is taken from Manners 
et al.[9]. 

be identical. However, more number of folds would cost more folding energy. This 

justifies that the total free energy of the monolayer one is lower than the bilayer one. 

Thirdly, non-lamellar structures are possible. Vilgis and Halperin have discussed this 

possibility by a scaling analysis[20]. They postulated the so-called starlike micelles 

formed from crystalline-coil copolymers with a core in the form of a rectangular solid 

and showed that with long enough corona blocks, such micelles would be thermody­

namically more preferred than lamellar micelles. 

The experimental observations in the PFS-b-PDMS/alkane system by Manners et 

al. verified the exis-~ence of non-lamellar structures, although the observed cylindrical 

micelles (Figure 3.2) were not expected in the original work of Vilgis and Halperin 

(VH). However, as shown below, these morphologies are consistent with VH's view­

point that long enough corona blocks would lead to non-lamellar structures. Since 

two types of non-l2.mellar (rodlike and tubular) micelles were observed in the PFS­
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b-PDMS/alkane system, in what follows, we focus the theory and computation on 

three types of morphologies: lamellar, rodlike and tubular morphologies. 

When the copolymer concentration is larger than a critical value <P*, which is 

called the critical micelle concentration (CMC), an aggregation process occurs. In 

the disorder state, the unfavorable interactions between the solvophobic blocks and 

the solvents would cost much energy. Thus, even at very small polymer concentra­

tion, the free energy released by forming micelles encapsulating the solvophobic blocks 

would dominate the loss of the translational entropy. This is why CMC is usually 

very low (typically at volume fraction of 10-4 - 10-8 [22]). There is another critical 

concentration <P**, above which the effect of the interactions between aggregates be­

come important and can not be ignored. In our theory, we assume the copolymer 

concentration <P falls within the range <P* < <P << <P**. The interactions between 

micelles are therefore ignored. 

3.2.1 Morphological Geometry 

We follow the original ideas of VH[20]. The crystalline blocks are assumed to 

undergo chain-fold crystallization and the crystallinity is assumed to be 100%. It is 

also assumed that the chains fold back at adjacent sites (adjacent reentry) and the 

solvents are excluded from the crystalline core. Therefore, the crystalline block can 

be viewed as N1 (number of folds) close-packed rod-like chains. 

In addition, PDMS and PFS are generally incompatible. For the block lengths 

interested in the current work, the strong segregation regime condition xN >> 10[23] 
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is satisfied. In our model, we ignore the thickness of the corona/ core interface and 

assume the junction points between two blocks are uniformly distributed on a planar 

(for lamellar and rodlike micelles) or cylindrical (for tubular micelles) surface. For 

a microscopic theory, the thickness of the interface is important in determining the 

interface free energy. However, in the current work, we assume that the interface free 

energy is characterized by two phenomenological parameters (see details in subsection 

3.2.2). 

We use NA and NB to denote the degrees of polymerization of the PDMS(coil) 

strand and PFS(crystalline) strand, respectively. The monomer size aA and the Kuhn 

length lKA of PDMS blocks are determined to be 5.0 A and 6.9 A based on the same 

computational method described in section 2.4. Other PDMS parameters are the 

density of bulk 0.97 gjmL[24], the Coo value 6.43[10], the Si-0 bond length 1.64 A[lO] 

and the molar mass 74 g/mol. Moreover, we model the segment of the crystalline 

PFS blocks as a aB x aB x lB square cuboid. Because a strong peak at ca. 6.4 A 

was observed in the wide-angle X-ray scattering pattern of crystalline PFS[6], we 

approximate aB as 6.4 A. We also assume the crystalline and amorphous PFS have 

the same density of bulk, which leads to a approximate value of 7.7 A for lB. 

Lamella 

The schematic of the lamellar morphology is shown in Figure 3.3. We assume 

that the PDMS volume fraction c in the coronas is a constant. For the current 

system, where alkanes are modest to poor solvents for PDMS, this type of mean-field 

treatment is acceptable. The thickness of the crystalline PFS core d and the height 
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Figure 3.3: Schematic of the lamellar structure. In this example, the number of folds 
is N1 = 5. 
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.·· : 

Figure 3.4: Schematic of the rodlike structure. In this example, the number of "rib­
bons" is Nr = 8. 

of the PDMS corona H can be expressed as: 

d = NBlB 
Nt 

(3.1) 

H _ NAa~ 
- 2N1a~c 

(3.2) 

where Eq.(3.2) is derived from the volume conservation condition. 

Rod 

The assumed molecular geometry of the rodlike morphology observed in the PDMS­

b-PFS/alkane system is shown in Figure 3.4, where the crystalline orientation of the 

PFS blocks is perpendicular to the long axis of the rodlike micelle. The PFS core can 

be viewed as an assembly of Nr rigid "ribbons". The thickness of a "ribbon" is aB. 
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Figure 3.5: Proposed effective morphology (right) for computing the approximate 
corona free energy. The real rodlike morphology is shown left. 

Note the assumed chain-fold crystallization does not require that all the N1 folded 

blocks of one chain are in the same "ribbon". Based on these descriptions, We can 

for the PFS core which is in the shape of a long cuboid. 

We now turn to the PDMS corona of this rodlike morphology. For the most com­

mon cylindrical micelles, typically formed in the coil-coil systems, the solvophobic 

core is in the form of a cylinder. Therefore, the grafted ends of the corona blocks 

are uniformly distributed on the cylindrical core surface. In contrast, as shown in 

Figure 3.4, the gafted ends of the corona blocks of the rodlike micelles are only dis­

tributed on two opposite surfaces of the core cuboid. However, since we are only 

interested in long corona blocks, we can expect the outer boundary of the corona is 

approximately a cylindrical surface for both cases. As illustrated in Figure 3.5, the 

outer boundaries of the corona's cross sections in both cases are circular. Although 

the local conformations of the corona blocks near the core are different due to the 

different grafted surface geometry of these two cases, beyond some critical distance 
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from the core center, the average corona conformations would be the same. In Figure 

3.4, the radius of the dashed circle schematically denotes such a distance. 

Based on the analysis above, we propose the following effective model. As for the 

case of lamellar micelles, we assume that the PDMS volume fraction is a constant c 

in the corona. The free energy per corona block of the real rodlike micelle is approx­

imated by the free energy per corona block of the effective morphology, in which the 

core is of a cylindrical structure and of the same volume as the core of the real rodlike 

micelle (Figure 3.5). The geometrical parameters of this effective morphology can be 

determined using volume conservation conditions: 

_ (d 1 )112 _ -1/2N1/2N-1/2N1I2z1/2 112R - X 7r - 7r B f r B aB (3.3) 

(3.4) 

In addition, the interface area per chain a in this effective morphology is 

_ 2 1/2N1/2N1/2N-1/2 3/2z1/2a- 7r B f r aB B (3.5) 

This treatment enables the computation of the conformational free energy of the 

PDMS(coil) blocks in a unified framework for lamellar, rodlike and tubular micelles 

(see details in Appendix C). In the current work, we introduce two phenomenological 

parameters 'Yu and 'Yn to denote the surface free energy per unit area of grafted 

surfaces and non-grafted surfaces in the real rodlike morphology. The error caused 

by ignoring the conformational difference of the corona block segments near the core 

is expected to be partially reduced by including the energy cost of the irregular local 

conformations near the non-grafted surfaces in 'Yn· 
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Figure 3.6: Schematic of the cross section of the tubular structure. In this example, 
the number of folds is Nf = 2. 

Tube 

The tubular morphology is unusual. As shown in Figure 3.6, we model the crys­

talline core as a cylindrical shell with PDMS blocks protruding from both outer and 

inner surfaces. Different from lamellar and rodlike micelles, this core geometry would 

lead to extra deformational energy. We letT denote the number fraction of the PDMS 

in the outer corona. We also assume that the PDMS volume fractions in the outer 

and inner coronas are constants, denoted by C0 and ci, respectively. We take the 

radius of the cylindrical neutral surface R as a thermodynamical variable. Then the 

thickness, outer and inner radiuses of the crystalline shell satisfy: 

(3.6) 
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(3.7) 

(3.8) 

The outer and inner interface areas per chain 0:0 , a:i can be derived based on the 

zero-strain condition of the neutral surface: 

= N1a~ (l !!:...) (3.9)
O:o T + 2R 

a:i = N,a~ (1 -!!:...) (3.10)
1-T 2R 

Volume conservation conditions give: 

Ho = 
Ro 

(2NAa~T + 1) 
112 

_ 

R0 0:0 C0 

1 (3.11) 

Hi 
~ 

= 1 _ [1 ­ 2NAa~(l- r)l 112 

~O:i~ 
(3.12) 

3.2.2 Free Energy Formulas 

In general, we can express the free energy as F = Fcorona + Fcore + Finterface· 

The computation of the conformational free energy of corona blocks is summarized 

in Appendix C. For other terms of the free energy formulas, the main theoretical 

assumptions include: 

(1) The energy cost of one fold is E1[21]. The folding energy per chain is N,E,. 

(2) We let x1 == (E, + 2"(9a~)/kT, x 2 = 2"(na~/kT and by first-order approx­

imation, take them as dimensionless constants for a specific crystalline-coil copoly­

mer/solvent system. 

(3) The deformational energy of the crystalline shell in the tubular morphol­

ogy is estimated by a simple curvature expansion theory[22]. For the crystalline 
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shell discussed, the zero-curvature structure, i.e., planar structure, corresponds to 

the deformational energy minimum. Therefore, by incorporating the curvatures of 

the cylindrical and spherical shells, the deformational energy per unit neutral surface 

area can be expressed as: 

0 Planar shell 

Fd = ~Kdd?IR2 Cylindrical shell 

!Kdd?IR2 Spherical shell 

where Kd is the elastic modulus whose magnitude originates from the molecular 

interactions that constitute the shell. We let x3 = Kda1IkT and, by first-order ap­

proximation, take it as a dimensionless constant for a specific crystalline-coil copoly­

merIsolvent system. 

(4) For a corona with block volume fraction c, we use mean-field theory to es­

timate the translational entropy of the solvents and the effective interaction energy 

between the coil segments and solvent molecules, which lead to: 

FcaronalkT = fc + NA(l- c) [~ ln(l- c)+ XAS] (3.13) 

The formulas of fc are derived in Appendix C. XAS is the Flory-Huggins parameter 

quantifying the coil-solvent interaction. For PDMS coils and alkane solvents, XAs 

decreases with temperature, i.e., higher temperature leads to better solubility. We 

have also assumed the size of the solvent molecule is comparable with the size of the 

coil segment. 

Based on the model described above, we determine the formulas of the free energy 

per copolymer chain as follows: 
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Lamella 

FjkT 

Rod 

F/kT 

(3.14) 

Tube 

(3.15) 

(3.16) 

where the expressions of R0 , R, Ho/R0 , Hi/R and din terms of the thermodynamical 

variables N,, R, c0 , Ci and Tare shown in Eq.(3.6), (3.7), (3.8), (3.11) and (3.12). 

3.3 Results 

Free energy formulas shown in Eq.(3.14), (3.15) and (3.16) dictate the self-assembly 

phase behaviours of PFS-b-PDMS in alkane solvents. If the material parameters x1, 

http:Eq.(3.14
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Lamella N,, c 
Rod N,, Nr, c 
Tube Nt, R, T, C0 , Ci 

Table 3.1: Thermodynamical variables for lamellar, rodlike and tubular micelles. 

x2 and xa are known, the phase diagram which takes NA, NB and XAs as control 

parameters can be predicted. However, the determination of X1, x2 and x3 based on 

first principle computations is not pursued in the current work. Rather, we would 

compute the phase diagrams in terms of qualitatively different (x1, x2 , x3 ) inputs 

and compare the results with experiments. On one hand, a reasonable range of (xb 

x2 , x3) for PFS-b-PDMS/alkanes is suggested. On the other hand, since the model 

is universal for self-assembly of crystalline-coil copolymers in the solvents which are 

modest to poor for the coil blocks but nonsolvents for the crystalline blocks, we can 

classify this type of systems based on the different phase behaviours exhibited in these 

phase diagrams. 

In what follows, we fix NB = 40, which is consistent with the experiments we 

are interested in[9, 18]. We then compute the XAs- NA phase diagrams in terms 

of different (xb x2, xa) inputs. According to Eq.(3.14), (3.15) and (3.16), the ther­

modynamical variables for the three morphologies are not the same (Table 3.1). To 

determine which morphology is thermodynamically stable for a specific phase point 

(XAs, NA), we need to find the equilibrium values of the thermodynamical variables 

(TVs) which lead to the minimal F/kT. Then, we compare the minima of each mor­

phology to determine the global minimum. There are two mathematically equivalent 

http:Eq.(3.14
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methods to determine the equilibrium values of the TVs. Consider a free energy func­

tion in terms of n TVs: F(yl, Y2, ... ,Yn)· The first method is to solve the equilibrium 

equations 8F/ 8yi = 0. Generally, n coupled-equations would be given, where each 

one contains the n TVs. If more than one solution of these equations exist, we need 

further to find the one which gives the minimal free energy. The second method is 

simply to compute the free energies in terms of TVs of all possible values and find 

the minimum by comparison. In this work, the second method is used. The fact that 

physically N1 and Nr must be integers is followed. 

To illustate how to obtain the phase diagram for given (x1, x2 , x3 ), we depict 

typical free energy curves for two types of transition sequences: NA - F curves at 

fixed XAS illustrating NA-controlled transitions and XAs- F curves at fixed NA illus­

trating XAs-controlled transitions. The calculation results show that there exist three 

types of morphological transitions: lamella-to-tube, tube-to-rod and lamella-to-rod 

transitions. Either of them can be induced by changing NA or XAS· Below, we let 

the superscripts "LT", "TR" and "LR" represent the transition type. Four examples 

of free energy curves are shown in Figure 3.7, 3.8, 3.11 and 3.12. 

Note in this chapter, when the value of the free energy in terms of some fixed pa­

rameters for one given morphology is mentioned, we have always performed the free 

energy minimization upon the other unfixed parameters. Since only the free energy 

differences are responsible for the micellar structure and distribution, the relative 

values of the free energies are used in the free energy curves which illustrate the mor­

phological transitions. For each phase point, we take the free energy for the lamellar 

micelle as the zero point and use D..Ftube = Ftube - Flamella and D..Frod = Frod - Flamella. 
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x1=2.0, x
2
=24.0, x

3
=8.0' ' ·, NB=40, XAs=0.64·,
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Figure 3.7: Free energy curves of lamellar, tubular and rodlike micelles illustrating 
NA-controlled lamella-to-tube and tube-to-rod transitions. The intersection of the 
curves for lamellar and tubular micelles determines the crossover value N}f = 412. 
The intersection of the curves for tubular and rodlike micelles determines the crossover 
value NJR = 512. 
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Figure 3.8: Free energy curves of lamellar, tubular and rodlike micelles illustrating 
XAs-controlled lamella-to-tube and tube-to-rod transitions. The intersection of the 
curves for lamellar and tubular micelles determines the crossover value xlfl = 0.624. 
The intersection of the curves for tubular and rodlike micelles determines the crossover 
value Xl'sR = 0.598. 

http:XAs=0.64
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The advantage of this treatment is that the contrast of the free energy curves for dif­

ferent morphologies is much more obvious than directly using the free energy values 

calculated from Eq.(3,14), (3.15) and (3.16). 

In Figure 3.7 and 3.8, the free energy curves are partially the same for tubu­

lar and lamellar micelles due to an interesting relation between them. If we review 

the description of the tubular structure in subsection 3.2.1, lamellar micelles can be 

viewed as a limiting case (R ---t oo) of tubular micelles. From Figure 3.9 and 3.10, 

which show the tubular free energy in terms of 1 IR, we can find when N A or XAs are 

close to the critical points NX_T or xfl, there are two local free energy minima. One 

corresponds to 1IR = 0 ( R ---t oo) and the other corresponds to one finite R (around 

10nm). However, for small enough NA or large enough XAs, the minimum at R ---too 

is unique and metastable finite-R tubes are not predicted. So, if the minimum at 

R ---t oo is the global minimum, the free energy curves of lamellar and tubular mi­

celles are the same. For the other case, i.e., a local minimum at a finite R is the global 

minimum, the free energy curves of tubular and lamellar micelles are different. The 

crossover point indicates the onset of the lamella-to-tube(finite R) transition, which 

is first-order. 

In principle, lamellar micelles can also be viewed as a limiting case of rodlike 

micelles with Nr ---t oo (of course, the word "rod" is not accurate any more if Nr is 

too large). However, restricted by the model, free energy curves of rodlike micelles 

in terms of 1INr can not be completely obtained. The effective model proposed in 

subsection 3.2.1 implicitly assumed that Nr is not too large. Eq.(3.3) shows that the 

effective core radius R ex: N;/2
• Thus, for large enough Nr, the result would contradict 
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Figure 3.9: Free energy curves of tubular micelles in terms of 1/R illustrating 
NA-control1ed first-order lamella-to-tube(finite R) transition: (a)metastable finite-R 
tubes do not exist; (b)metastable finite-R tubes exist; (c)the local minima at R--+ oo 
and at one finite R are equal, indicating the onset of the transition; ( d)tubes are 
thermodynamically stable at one finite R. 
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Figure 3.10: Free energy curves of tubular micelles in terms of 1/R illustrating 
XAs-controlled first-order lamella-to-tube(finite R) transition: (a)metastable finite-R 
tubes do not exist; (b)metastable finite-R tubes exist; (c)the local minima at R--+ oo 
and at one finite R are equal, indicating the onset of the transition; ( d)tubes are 
thermodynamically stable at one finite R. 
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Figure 3.11: Free energy curves of lamellar, tubular and rodlike micelles illustrating 
NA-control1ed direct lamella-to-rod transition. The intersection of the curves for 
lamellar and rodlike micelles determines the crossover value NX_R = 167. 

the precondition of the effective model in which the size of the long corona blocks 

dominates the core size so that the outer boundary of the corona is approximately a 

cylindrical surface. A more general theoretical model which is applicable for all values 

of Nr is desirable in this case. In section 3.4, where we discuss possible improvements 

of our theory, this issue will be analyzed. 

For the current work, in most cases, the resulting effective radius R is smaller 

than the corona height H, which is consistent with the precondition of the effective 

model. The computation results show that a (local) free energy minimum at some 

finite Nr can always be found. Thus, at least in the framework of the effective model, 

a direct lamella-to-rod(finite Nr) transition, if existed, is also first-order. Besides, 

when lamellae are thermodynamically stable, metastable finite-Nr rods constantly 

exist. Note that when we depict the free energy curves, the lamellae are not treated 

http:XA8=0.64


47 

2 I I I I I 

x1=4.0, x2=12.0, x
3
=6.0 

1­ NB=40, NA=150 -

I Lamella' 
·-·-Ro~ 

-

/
-2­ . -,., 
-t.4 I I 

0.45 0.5 
I 

0.6 
I 

0.65 0.7 

Figure 3.12: Free energy curves of lamellar, tubular and rodlike micelles illustrating 
XAs-controlled direct lamella-to-rod transition. The intersection of the curves for 
lamellar and rodlike micelles determines the crossover value xlsR = 0.574. In this 
example, free energies of lamellar micelles (R----+ oo) are always lower than finite-R 
tubular micelles. Therefore, only two curves are seen. 

as special rodlike micelles. We always use the data of the finite-Nr local minima to 

determine the curves. Therefore, except for the intersection, free energy curves of 

lamellar and rodlike micelles differ everywhere. 

The free energy curves shown in figure 3.11 and 3.12 illustrate how direct lamella­

to-rod transitions occur. The free energies of finite-R tubular micelles are larger than 

the free energies of either lamellar or rodlike micelles for all considered values of the 

control parameter NA or XAs. In this case, the intersection of the free energy curves 

of lamellar and rodlike micelles determines the transition point. 

One interesting feature of the free energy curves shown in Figure 3.7-3.12 is that 

the curves are not globally smooth. The underlying factor is the "jump" of the num­

ber of folds N 1. We explain in details below. The equlibrium value Nf,eq for one 

http:3.7-3.12
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Figure 3.13: Free energy curves of lamellar, tubular and rodlike micelles at fixed N1 
illustrating NA-controlled lamella-to-tube, tube-to-rod transitions and the "jump" of 
the values of Nf,eq· The parameter input is the same as Figure 3.7. The Nf,eq values 
for lamellar micelles change from 4 to 7 and for rodlike micelles change from 4 to 5 
with increasing NA. Therefore there are four "jump" points in this example (labeled 
in the diagram). The lamellar micelles with Nf,eq = 6 transit to tubular micelles with 
Nf,eq = 5 and the crossover value N!4_T = 412. The tubular micelles with Nf,eq = 5 
transit to rodlike micelles with Nf,eq = 5 and the crossover value NJ..R = 512. 
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morphology is determined by minimizing the free energy. On one hand, larger NA or 

smaller XAs would induce stronger swelling force of the corona blocks; on the other 

hand, larger N1 would lead to larger interface area per chain and make the unfavor­

able repulsion between adjacent coils of the corona blocks smaller. Therefore, NJ,eq 

would increase when NA is beyond some critical value or when XAs is lower than some 

critical value. In Figure 3.13, we depict the free energy curves at fixed N1 for each 

morphology to illustate this effect. The parameter input is the same as Figure 3.7. 

The lamellar free energy at N1 = 4 is taken as the zero point. For the whole range 

of NA considered (160-640), the NJ,eq values for lamellar micelles change from 4 to 

7 and for rodlike micelles change from 4 to 5 with increasing NA. Only for tubular 

micelles the value of NJ,eq (=5) is not changed in the NA range considered. The 

"jump" of the number of folds for lamellar and rodlike micelles are labeled in Figure 

3.13. For the lamella-to-tube transition, it is that lamellar micelles with NJ,eq = 6 

transit to tubular micelles with NJ,eq = 5 and the crossover value Ni_T = 412. For 

the tube-to-rod transition, it is that tubular micelles with NJ,eq = 5 transit to rodlike 

micelles with NJ,eq = 5 and the crossover value NJ.R = 512. In general, if we depict 

the free energy curves of the three morphologies based on the minimization upon all 

thermodynamical variables including N,, as shown in Figure 3.7, 3.8, 3.11 and 3.12, 

the curves would not be globally smooth in the whole N A or XAs range considered. 

Instead, they would be connected by several smooth segments, each of which corre­

sponds to one value of NJ,eq· The values of NJ,eq for each segment are different. 

Above, we have shown how to determine the transition values Ni_T, NJ.R, Ni_R, 

xil, xfsR and x1fl on the basis of free energy curves. This enables the deter­
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mination of phase diagrams. Our calculations results suggest three types of phase 

diagrams. Examples for each are shown in Figure 3.14-3.16. The XAs range is chosen 

to be between 0.4 and 0.7. At 25°C, XAs has value of 0.64 for PDMS/decane[9]. 

At higher temperature, XAs would be smaller. So this range is appropriate for our 

interested systems. The main results are as follows: 

(1) The two fundamental phases are lamellar and rodlike phases. For any (x1, x2 , 

x3 ) input and given XAs, if NA is larger than one critical value NA_, rods are formed; 

if NA is lower than another critical value N1, lamellae are formed. In another word, 

it is predicted that universally in this type of systems, rods are thermodynamically 

stable in the large block ratio (NA/NB) limit while lamellae are thermodynamically 

stable in the low block ratio limit. 

(2) The tubular phase is an intermediate phase and not predicted for all (x1, x2, x3) 

inputs. For those phase diagrams in which the tubular phase exists (Figure 3.14 and 

3.15), NA. is larger than N1 and tubular micelles are formed when N1 < NA < NA_. 

In other words, N1 and NA. indicate the crossover from lamellar to tubular and tubu­

lar to rodlike micelles. Then in this case, we have Nff = N1 and NJ.R = NA_. If 

N1 = NA_, i.e., tubular micelles are not formed (Figure 3.16), a direct lamella-to-rod 

transition is predicted. We then have NftR = N1 = NA_. 

(3) The phase behaviours are also greatly affected by the solvent property. For the 

XAs range in which lamella-to-tube, tube-to-rod or lamella-to-rod transitions exist, 

it is universal that the critical values NftT, NJ.R or NftR shift to smaller values with 

better solvent property, i.e., smaller XAS· Moreover, for appropriate NA, thermotropic 

lamella-to-tube, tube-to-rod or lamella-to-rod transitions are possible, which lead to 

http:3.14-3.16
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Figure 3.14: An example of the first-type of phase diagram: lamella-tube-rod phase 
diagram with a triple point. 
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Figure 3.15: An example of the second-type of phase diagram: lamella-tube-rod phase 
diagram without a triple point. 
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Figure 3.16: An example of the third-type of phase diagram: lamella-rod phase 
diagram. 
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(4) It is confirmed that large enough block ratios would lead to non-lamellar mor­

phologies. Moreover, it has been found that in some cases non-lamellar morphologies 

can be induced by simply improving the solvent property, with the polymerization 

degrees unchanged. The influence of the solvent property on crystalline-coil self-

assembly was not discussed in the original work of VH. 

(5) For some (xb x2, x 3) inputs, an interesting triple point is predicted (Figure 

3.14). Not all phase diagrams which include three phases have a triple point. For 

example, in the phase diagram shown in Figure 3.15, the lamella-to-tube and tube­

to-rod transition lines do not intersect in the considered range of XAs. Note that 

although it seems the two lines would intersect at some XAs smaller than 0.4, the pre­

condition of the existence of the crystalline-coil copolymer solutions should be kept 
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in mind. XAs is determined by the temperature for specific copolymer/solvent. Since 

the temperature must be below the melting temperature of the crystalline blocks and 

above some critical temperature below which the solutes or coil blocks become glassy, 

a bound of XAs is expected. Therefore, lamella-tube-rod phase diagrams without a 

triple point are possible. 

In summary, the computation results show three types of phase diagrams, namely, 

lamella-tube-rod phase diagrams with or without a triple point and lamella-rod phase 

diagrams. For the first two, there exist remarkable lamella-tube-rod morphological 

transitions which can be induced by solely increasing the coil/ crystalline block ratio 

or decreasing XAs. 

The goal of the project presented in this chapter is to investigate the phase be­

haviours of the self-assembly of crystalline-coil copolymers in selective solvents for the 

coil blocks by taking PFS-b-PDMS/alkane as a model system. Although the theory 

enables quantitative investigations of the properties of aggregates (dictated by the 

equilibrium values of the TVs), such as the folding number, the solvent concentration 

of the corona, the distribution of the free ends of the corona blocks, the core size of 

the cylindrical micelles, and many others, a comprehensive study is still underway. A 

systematic summary of these properties is expected to be done in near future. Here, 

we briefly remark several intriguing features of tubular micelles: 

(1) At a given phase point (XAs, NA) in a tubular phase region, the equlibrium 

tube radius Req is determined by minimizing the free energy shown in Eq.(3.16). The 

computation results show that the values of Req at all phase points in a tubular phase 

region are in a narrow range. For most (x1, x2 , x3) inputs, the values of Req are in 

http:Eq.(3.16
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the range of 5-15 nm. 

(2) The asymmetric distribution of the corona blocks inside and outside the tubu­

lar micelle is another interesting feature. The equlibrium value of the number fraction 

of the coil blocks in the outer corona Teq is determined by minimizing the free en­

ergy shown in Eq.(3.16). For tubular micelles in the thermodynamical equlibrium, 

the number fraction of the coil blocks inside the tubes is therefore equal to 1- Teq· 

The computation results show that in most cases, only 1-4% of the corona blocks are 

inside, indicating a remarkable asymmetry. The inner grafting density is thus much 

lower than the outer grafting density. In this work, we assume both the outer and 

inner corona blocks are strongly stretched to derive the conformational free energy 

(Appendix C). In the derivation, each coil block is characterized by a definite trajec­

tory and the :fluctuations of the coil blocks along these trajectories are ignored(23]. 

Strictly speaking, the strongly stretched condition for the inner corona block seg­

ments near the grafting interface is not satisfied. Upon making corrections of the 

conformational free energy by considering the :fluctuation effect, the number fraction 

of the coil blocks in the inner corona should be larger than the results obtained in 

the current theoretical framework. 

3.4 Discussions 

In conclusion, our theory predicts three types of phase diagrams for the crystalline­

coil copolymer self-assembly in selective solvents for the coil blocks. The results show 

that the intriguing tubular phase ( nanotubes) is only an intermediate phase, while 

http:Eq.(3.16
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lamellar and rodlike phases are respectively thermodynamically stable in the low and 

high coil/ crystalline block ratio limits. To obtain quantitatively accurate phase dia­

gram for a specific system (e.g., PFS-b-PDMS/alkanes), material parameters x1, x2 

and Xg need to be given. Below, we analyze the microscopic origins of these phe­

nomenological parameters and suggest possible improvements of the current model. 

The parameter x1 is determined by two factors. The first is the energy per fold 

E,. To compute its value, microscopic model incorporating energetic parameters at 

molecular level is required. In particular, accurate information of the conformations 

of the monomers around the fold is necessary. Such computation is therefore very 

challenging. The second is the crystalline/ ( coil+solvent) interface free energy. Even 

for the strong segregation system, the interface is still of finite width and can be 

viewed as an crossover layer dividing the pure crystalline-block region and the pure 

wet-brush(strongly stretched coil blocks immersed in solvents) region. The width of 

such a layer is balanced by two opposite trends: On one hand, the conformational 

entropy of the block segments confined in the layer would increase with the width; on 

the other hand, the unfavorable interactions between the crystalline segments and the 

solvents would also increase with the width. The value of the interface free energy is 

thus determined by the minimal free energy in terms of the optimal layer width. To 

quantify the interactions in the interface layer, two other Flory-Huggins parameters 

XBs and XAB are needed. However, since the history of PFS is very short, many 

parameters related to PFS are still lacking. To our knowledge, the Flory-Huggins 

parameters for PFS/PDMS and PFS/alkane are unknown. 

The introduction of the parameter x2 is due to the special morphological geom­
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etry of the rodlike micelles. For the crystalline core which is in the shape of a long 

cuboid, there are two non-grafted lateral surfaces. The grafted coil blocks near the 

edges would extend away from the radial direction and are effectively "absorbed" by 

the non-grafted surfaces to reduce the unfavorable contacts between the crystalline 

blocks and the solvents (Figure 3.4). This costs the conformational free energy of the 

corona blocks and leads to large x2 based on the effective model. An improved theory 

which enables accurate description of the block conformations throughout the corona 

is desirable. Let the axis of the rod be along the z-direction, we suggest the following 

approach. Assume the free-end positions (x0 , y0 ) of the corona blocks satisfy a distri­

bution function g(xo, Yo) and the trajectory of each chain is expressed as r(x, y; xo, y0 ). 

More generally, we consider the possible nonuniformity of the concentration of the 

block segments and let <P(x, y) denote the distribution. Then in principle, computa­

tion based on the self-consistent field theory[25, 26] enables the derivation of g*, r* 

and <I>* which minimize the free energy. Many one-dimensional cases, e.g., polymer 

brushes tethered on planar surfaces, have been treated in previous literatures. The 

suggested approach now is a two-dimensional case, which may demand additional 

computational techniques. Another advantage of this improved approach is that it 

enables the investigation of the intermediate corona profile between the two limits: 

cylindrical (Nr ~ 0) and planar (Nr ~ oo). As discussed in section 3.3, the effective 

model fails to study such an intermediate case. The conclusion that a local minimum 

at some finite Nr always exists as the effective model predicted can be reliably tested 

by this new approach. 

If the packing of the crystalline blocks are affected by the deformation of the core, 
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extra deformational energy would be induced, whose strength is characterized by the 

parameter xa. The value of xa can be either measured by experiments or computed 

based on appropriate molecular model. Recently, a work combining experiments and 

computations to study the mechanical properties of PFS has been reported[27], which 

may benefit the estimation of the value of x3 for PFS. 

One of the most remarkable findings of Manners et al. was the thermotropic 

tube-to-rod transition[9]. For PFS4o-b-PDMS48o in decane solvents, the TEM im­

ages showed that tubes are formed at 25°C and rods are formed at 50°C (Figure 

3.2). Moreover, the transition between these two phases is reversible, indicating both 

phases are thermodynamically equilibrium phases. If the copolymer concentration <I> 

satisfies the relation <I>* < <I> ~ <I>** for the solution used in the TEM experiment, 

which is one precondition of our theory (see section 3.2), the XAs-NA phase diagram 

of PFS40-b-PDMSNA in decane are then either of first-type or second-type. As shown 

in Figure 3.14 and 3.15, both phase diagrams predict the tube-to-rod transition ob­

served in the system mentioned above. However, the "concentration problem" may 

really exist. According to the most recent work of Manners et al.[18], the tubular 

micelles shown in the TEM image are suspected to be a structural rearrangement 

or higher level of hierarchical self-assembly that takes place in concentrated solution. 

This suspicion is consistent with two facts. First, the data of the light-scattering mea­

surements of dilute PFS40-b-PDMS480 at 25°C in decane indicate the self-assembled 

micelles are thin, rigid, rodlike structures rather than tubular structures. Secondly, 

solvent evaporation is indeed allowed when the TEM experiment is performed. 

We end this chapter by discussions on the future research directions and chal­
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lenges of studying PFS-b-PDMS self-assembly in alkane solvents. First, to best com­

pare theories, information at more phase points are desirable. Since a theory which 

is completely constructed from first-principle computation is very challenging, intro­

ducing some phenomenological parameters, e.g., x1, x2 and X3 in the current work, 

is more realistic. Comprehensive experimental information of the phase behaviours 

would help estimate the values of these parameters and in turn refine the predicted 

phase diagram. Secondly, these parameters can also be directly estimated based on 

complemental experiments and microscopic models. We have demonstrated the ap­

proaches of this type in the analysis of the origins of x1, x2 and x3 shown above. 

Thirdly, the conditions of the experiments and the assumptions of the theories need 

to be consistent. Our theory would fail to predict the phase behaviours if the in­

teractions between micelles become significant (concentrated solution). It seems the 

phase diagrams of PFS-b-PDMS/alkane at dilute and concentrated conditions are 

qualitatively different [18]. Thus, a new model is necessary for theoretically studying 

the concentrated regime. For experiments, since TEM images can directly show the 

morphology of the micelles, efforts are expected to be made by experimentalists to 

make sure the solution satisfies the dilute condition. Alternatively, if at the dilute 

condition doing other types of experiments in which the micellar morphology is not 

directly visible, reliable indirect methods are needed to determine the micellar mor­

phology. Finally, there still remains many interesting subjects in this system which 

are beyond the scope of the current theoretical framework. For example, our models 

implicitly assumed an infinite length for both rodlike and tubular micelles. Although 

ignoring the block profile at two ends of the "cylinder" is appropriate to derive the 
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free energy per chain and analyze the phase behaviours, by a qualitative aggregation 

theory[19], such a profile is an important factor determining the distribution of the 

cylindrical lengths, while the polymer concentration <I> is another important factor. 

To give quantitative results of the subjects like this, new models are needed. 



Appendix A 

Calculation of (r2) 0 

Based on the constructed RIS ensemble, we can decompose the energy of an ideal 

PFDMS chain expressed in Eq.(2.2) as follows: 

3n+l 

E(chain) L Ei(4>i-I, 4>i) 
i=4 

(A.1) 

where, 

i = 1, 2, ... , n; j = 1, 2, ... , n- 1 

(A.2) 
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Within the RIS model[10], the partition function is written as 

V3 V3n+1 

Z - L · · · L exp(-E(chain)/kT) 
a3=l a3n+1=l 

V3 V3n+l 

- L · · · L U3(a3, a4) · .. U3n(a3n, a3n+l) 
a3=l a3n+1=l 

(A.3) 

where, 

(A.4) 

if the combination (<I>i(ai), <I>H1(ai+I)) are included in the ensemble. Otherwise, 

In Eq.(A.3), the values of v3, v4, ... , v3n+l are determined as follows: vi= 6 if the 

associated angle <I>i is in a dimer pair or vi = 20 if the associated angle is a trimer 

angle. For the former case, <I>i(1) to <I>i(6) = 20, -20, 145, -145, 110 and -110 (unit: 

0 
), respectively; for the latter case, <I>i(1) to <I>i(20) = 62, -62, 64, 64, 73, -73, 75, -75, 

80, -80, 83, -83, 88, -88, 90, -90, 91, -91, 101 and -101 (unit: 0 
), respectively. 

In general, the thermal average of any geometrical quantity A of an ideal PFS 

chain can be written as 

V3 V3n+1 

(A)o = z-l L ... L A({<I>i(ai)}) 

(A.5) 
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It is convenient to transform the summations into matrix multiplications. The 

statistical weight matrices (U-matrices) are 

Ua = Ua = · · · = Uan = Ua 
0 0 0 0 0 

0 0 0 0 0 

-
0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 
(A.6) 

0 0 0 0 "' 0 

0 0 0 0 0 "' 

U4 = U1 = · · · = Uan-2 = Ub 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

-
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 

0 

1 
(A.7) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Us= Us=···= Uan-1 = Uc 
0 0 0 Y6 0 0 


0 0 Ya 0 0 0 


0 0 0 0
Yl Yl 


0 0 0 0
Yl Yl 


0 Ya 0 Ya 0 0 


Ya 0 Ya 0 0 0 


Y4 Y4
0 0 0 0 


0 Y4 Y4 0 0 0 


0 0 0 0
Y9 Y9 


yg 0 0 0 Y9 0 
 (A.8)-
0 0 0 0Y7 Y7 

0 0 0 0Y7 Y7 


YB 
 0 0 0 0 0 

0 0 0 0 0Ys 

0 0 0 0 

YlO YlO 0 0 0 0 


0 0 Y2 0 0 Y2 


0 0 0 Y2 Y2 0 


YlO YlO 

0 0 0 0 


0 0 0 0 


Y5 Y5 

Y5 Y5 
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where, x = exp(-(l.OKcal/mol + D.E)/kT) and Yi = exp(-E:dkT). E:i are shown in 

Table 2.3. For convenience, we let 

u1 = [1], u2 = Jr = [ 1 1 1 1 1 1 J (A.9) 

The partition function is then written as a matrix multiplication 

(A.lO) 

and 

(r2)o 

= ( ~ l;•l;) 
l::=;i::;j::;3n+l 0 

(3n) 

u (U®LT)JJTII (l2/2)U (l~/2)16 

= 2z-1 J16®La0 (U ® 1a) IITII U®L 

0 0 u 16 
1 

(A.ll) 

Eq.(A.ll) is obtained by the standard approach presented in details in Flory's 

monograph[10]. The pseudo bond angles needed in determining the coordinate trans­

form matrices {li} are shown in Table 2.2 (boldface fonts). 

http:Eq.(A.ll


Appendix B 

Calculation of (R~)0 

By the definition given in section 2.4, we label the iron atoms as iron 0, iron 1, 

... , iron n following the chain sequence and let ~j denotes the distance between iron 

i and iron j. Then 

3j+l 3j+l 

Rfi - (L lk). ( 2: lp) 

k=3i+l p=3i+l 

3j+l 

- 2: I~ +2 lk •lp (B.1)2: 
k=3i+l 3i<k<p::;3j+l 

Note that the length of l3i+l and Z3H 1 is assigned as la/2 in Eq.(B.1) because the 

iron atom is at the middle of the Pc-Pc bond. All other notations are the same with 

Eq.(A.ll). Use Lagrange's theorem 

n; = (n +1)-2 2: n;j (B.2) 
O~i<j~n 

by incorporating the the expressions of ( Rlj) in terms of matrix computations, which 
0 

are analogous to (r2) 0 , we can express (R~)0 by performing computation of larger size 
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matrices. 
n-1 

U I:F 0 0 

g J (B.3) 

where, 

I= [ 16 0 

and 

F2 = 

Fa= 

0 l ' g = 


(l~/8)16 

(1/2)16 ®La 

1 L~IITIJr l~/2 

Fl= 0 IITII1 La 

0 0 1 

u2 (U2 ® Lf) IITIIc (ZU2)U2 

0 (U2 ® 1g) IITIIc U2®Lb 

0 0 u2 

Ua (Ua ® Lf) IITIIa (ZU2)Ua 

0 (Ua ®]g) IITIIa Ua®Lb 

0 0 Ua 

(B.4) 

(B.5) 

(B.6) 

(B.7) 
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Ub (Ub ® L~)I!TIIb (l~/2)Ub 

Fb = 0 (Ub ® Ia) IITIIb ub ®La 


0 0 


(B.8) 

Ue (Ue ® Lf) !!Tile (ZU2)Ue 

Fe = 0 (Ue ®Ia) !!Tile Ue ® Lb 


0 0 


(B.9) 



Appendix C 

Conformational Free Energy of 

Corona Blocks 

Common examples of strongly segregated systems are seen in block-copolymer 

microdomains and micelles and also end-grafted polymer layers (polymer brushes), 

where the amorphous polymer blocks are highly extended (strongly-stretched). In 

1985, Semenov formulated an analytical theory to compute the conformational free en­

ergy of strongly-stretched amorphous polymer blocks, originally in discussing diblock­

copolymer melts[23]. Compared with the earlier works of Alexander[28] and de 

Gennes[29], where all corona blocks were assumed to be stretched to the same degree, 

Semenov's approach gives a more realistic picture that the free ends are broadly dis­

tributed across the corona layer. In this appendix, we generalize Semenov's approach 

to the corona blocks of the self-assembled diblock-copolymer micelles, where solvents 

and amorphous blocks coexsit. Since by mean-field theory, we have assumed the block 

volume fraction throughout the corona is a constant cas stated in subsection 3.2.1, 
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this generalization is straightforward. 

In what follows, we consider five types of corona geometries: 

(1) Planar grafted surface with two coronas of the height H. 

(2,3) Cylindrical grafted surface with radius R. The corona blocks protrude out­

ward or inward. The corona height is H. For the latter case, H ~ R is physically 

required. The interface area per chain is a. 

( 4,5) Spherical grafted surface with radius R. The corona blocks protrude outward 

or inward. The corona height is H. For the latter case, H ~ R is physically required. 

The interface area per chain is a. 

We only meet (1), (2) and (3) in current work. However, since (4,5) correspond 

to another two common types of micelles: spheres and vesicles, we would expect the 

related results are useful elsewhere. Again, although not all geometries described 

above were discussed by Semenov, the generalization is straightforward. 

In what follows, corona blocks are referrd as A-blocks. By the "strongly-stretched" 

condition (SSC), we assume the line connecting the grafted and free ends of one A-

block is along the radius of the grafted surface and let r0 denote the distance between 

the free end and the surface. We also let g(r0)dr0 be the number of blocks whose free 

ends lie in the interval dr0• By the Gaussian chain model, the conformational free 

energy Fe of the corona blocks can be expressed as: 

( 1 2
3 {H [8r(s,ro)l (C.1)Fc/kT = 2 (R2) Jo drog(ro) Jo ds as 

0 

where, (R2 ) 0 is the mean-square ene-to-end distance of the ideal block, which equals 

to NAlKAaA. r(s, r0) describes the three-dimensional trajactory of the block whose 
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free end is ro from the surface, where s is an arc length variable running from 0 to 1 

along the block contour[30]. 

Eq.(C.1) can be simplified by an approximation based on SSC. Since the contour of 

the stretched block is mainly along the raduis, we only retain the radial component of 

rand by a variable transformation, denote it as r(n, r0 ), where n runs from 0 (grafted 

end) to NA (free end). This leads to: 

3 {H drog(ro) rNA dn [Or(n, ro)l2 
2lKAaA lo lo On 

3
2l {H drog(ro) ro drE(r, ro) (C.2) 

1

KAaA Jo Jo 

where we have used E(r, r0 ) to denote the local extension ar(n, r0 )/8n in Eq.(C.2). 

For g(ro) and E(r, r0 ), 0 ~ r ~ r0 ~His required. 

Two additional conditions are imposed on the unknown functions g(r0 ) and 

E(r, ro): 

ro dr 
-=-:----:- = NA (C.3) 

l
o E(r, ro) 

H g(r0 )dr0 _ Scr)c 
(C.4) 

r E(r, ro) - a~ 

where, 

2 for (1), unit-area planar surface 

S(r) = 2rr(R ± r) for (2) and (3), unit-length cylindrical surface 

4rr(R ± r) 2 for (4) and (5) 

The minimization of Eq.(C.2) under the additional conditions Eq.(C.3) and (C.4) 

lead to the solution: 

7r ( 2 2) 1/2E (r, r0 ) = 2NA r0 - r (C.5) 
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Substitute Eq.(C.5) into Eq.(C.4) and lett= r5/H2, u = r2fH2, 

(C.6) 


where d = 1, 2 and 3 respectively correspond to (1), (2,3) and (4,5), we get: 

(C.7) 


where, 

S2(u) = 21rR ± 21rHu1l2 

S3(u) = 47rR2 ± 81rRHu1l2+ 47rH2u 

The solutions of the integral equation Eq.(C.7) are: 

h1(t) = 
2~ (1- t)-1/2 (C.8) 
aA 

(C.10) 

The forms of g(ro) are easily obtained by substituting hd(t) in Eq.(C.6). 

Finally, upon substituting solved g(ro) and E(r, r0 ) into Eq.(C.2) and using simple 

volume conservation conditions, we can determine the conformational free energy fc 

per corona block. Expressed in the unit of kT, for (1), (2,3) and (4,5) respectively, 

we have: 

(C.ll) 
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(C.12) 

(C.13) 
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