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Abstract 

This work documents the creation of a new serialisation format. 
Developed for use in the GNOME platform, the requirements for 
this serialisation format are based on the unique needs of the 
community, plus some "guiding principles" that have developed 
in the community over the years. 

The serialisation format is particularly designed to allow for 
rapid deserialisation - which is expected to be the most 
common use case - with most operations occurring in a small 
constant time (regardless of the size of the data). 

Finally, a complete implementation of the serialisation format 
- called GVariant - is presented. GVariant models each value 
as an object with an API that is both convenient for GNOME 
programmers and has a flavour that they are familiar with. 
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Preface 

Introduction 

This thesis details the design and development of a high performance 
serialisation system for use within the GNOME desktop. The 
serialisation system is primarily developed for use in a configuration 
settings system which is also targeted at the GNOME community. The 
work is, fundamentally. divided into three parts. 

The first part is a requirements gathering phase. There are a number 
of common "folk knowledge" principles of good programming that have 
gained wide acceptance within the GNOME community over the years 
but have never been gathered in to one place. The principles, as they 
apply to the work here, are documented. These principles, in a large 
part, form the definition of "high performance" as used in the previous 
paragraph. 

Additionally, as with any community, there is a wealth of background 
information about the GNOME community and the tools and libraries 
that its members are accustomed to that will strongly affect any system 
designed to be used within it. This information is also documented. 

These two pieces of information are used to motivate the design of the 
configuration settings system and from there, the requirements placed 
on its value serialisation system. 

1 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

The second part involves the specification of a newly developed 
serialisation format. The primary design criteria of this serialisation 
format is that it can be implemented by a program that adheres to the 
principles presented in the first part. Additionall~ this implementation 
of the format must have the property that it tlfits in nicely" with the 
expectations of the GNOME communi~ as detailed in the background 
information. 

The third part presents a new implementation of the serialisation 
format as specified, presented as a new library. This library adheres to 
the principles outlined in the first part, and perhaps more importantly, 
allows for the development of programs that also adhere to these 
principles. This acts as a demonstration that the design criteria of the 
serialisation format have been met. 

2 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

PART I 


This part contains background information required to 
understand both the motivation behind the creation of 
GVariant and the design decisions made as a result of 
the community by which GVariant will be used. From this 
background information, formal requirements are developed 
and specified. 

3 
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Chapter 1 

Background 

The development of GVariant is in direct response to a need encountered 
while addressing deficiencies in the current GNOME Desktop platform. 

With this in mind, this chapter presents background information about 
the GNOME community and some projects commonly used in the 
development of GNOME applications that are relevant to this work. 

1.1 The GNOME Desktop 

The GNOME project (see [GNOME]) is a Free Software desktop 
environment with the goal of providing an easy-to-use graphical 
interface for no:rmal people, and a rich set of development libraries for 
programmers. 

GVariant fits into the second role. The main influence on the design of 
GVariant is that it should be a joy for GNOME application developers to 
use. For this reason, many of the design requirements directly relate to 
community expectations. The following information led to the "Context 
Requirements" outlined in Section 4.2: 

5 
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• 	 GNOME is programmed primarily in the C programming language. 
The foundation libraries are written entirely in C. 

• 	 GNOME developers are very familiar with object-oriented 
programming using the GObject object system. This object system 
contains many conveniences to overcome limitations of the 
C programming language when used to write object-oriented 
programs. 

• 	 The GObject type system includes a generic value type, GValue. 
GValue is designed to contain dynamic program state - not to 
transmit or store persistent data. It stores, for example, native C 
types (which may be different sizes on different platforms) and 
pointers (which are not easily transmitted in a meaningful way). 

• 	 The DBus message bus enjoys wide popularity among GNOME 
developers and has been very successful in the free desktop world 
in general. It has been designed to allow cross-process and cross­
host communication in a platform-agnostic way. 

• 	 In addition to traditional desktop roles, GNOME is also used on 
embedded and mobile computing platforms where the memory and 
processing resources are often very limited. 

1.2 GConf 

Currently, the GNOME desktop uses the GConf project (see [GConf]) 
for storage of application preferences and settings. GConf - despite 
having introduced some novel features that are widely appreciated ­
is regarded within the community as having some serious design and 
performance issues. 

Among the fundamental problems with GConf, it is particularly worth 
mentioning these two in terms of motivating the content of this work: 

• 	 GConf uses a value system called GConfValue. GConfValue is rather 
limited with respect to the types of values that it can express. 

6 
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Additionally, aside from GConf, GConNalue is used for nothing else 
in the desktop. This means that conversion is always required before 
storing settings in the configuration database. 

GConNalue is capable of expressing strings, integers, floats, and 
booleans. It is also capable of expressing pairs or lists of these 
things, but not in a typesafe way (eg: a list of strings has the same 
type as a list of integers) or in a way that supports recursion ( eg: you 
can not have a list of pairs). The limitations of the expressiveness of 
GConNalue have caused some users to resort to hacks like storing 
an XML blob as a string in GConf. 

• 	 GConf uses a client/server-based architecture wherein all queries 
for settings made by application programs are handled by a single 
server process. During login, when many applications are starting 
at the same time this leads to a flurry of context switches and a 
substantial amount of serialisation (in a process which ought to be 
significantly parallel). 

These issues, along with others, have been identified as being 
so fundamental that to correct them is to practically require the 
replacement of GConf. The desire to do so is what led, indirectly, to the 
work described in this thesis. 

1.3 DBus 

DBus is a message bus system specified in [DBus]. It is the most 
commonly-used mechanism for interprocess communication on the 
GNOME Desktop. 

The name "DBus", strictly speaking, refers to the specification of the 
message bus protocol. In theo~ many implementations of this protocol 
could exist. 

Several independent client side library implementations exist, written 
in high level languages. In practice, however, the name "DBus" has 
become synonymous with the reference implementation of the client 
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side library and bus daemon that were developed in C, in parallel with 
the specification. More specifically, these two pieces of software are 
called dbus-daemon and libdbus. 

As mentioned, DBus enjoys wide popularity among GNOME developers; 
many programs in the GNOME desktop link against libdbus and make 
use of its APis. GNOME developers are familiar with DBus concepts, 
and are particular familiar with its type system. 

One limitation of the DBus API is that the smallest object that can be 
dealt with is a message. A message may contain several arguments, 
but the arguments can not be treated as individual objects. An iterator 
interface is used to construct or deconstruct the message, all at once, 
from base C types (integers, strings, etc.). 

8 
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Chapter 2 

Community Folk Knowledge 

This chapter outlines a number of "best common practice" principles 
that have become popular knowledge in the GNOME community over 
the past years. These principles are not documented anywhere1

, but 
most of them will be familiar to anyone who has been around long 
enough. 

These principles are used as guiding principles because they are 
believed to be sound. The author has personally witnessed the effects 
when these principles have been applied to make modifications to 
modules in the GNOME desktop -better performance, faster startups, 
lower memory consumption and better battery life. The principles also 
have a common sense aspect to them; when you think about it, it is clear 
what should be done. When these principles have not been applied it is 
most often because the programmer simply didn't think about them. 

The GNOME community is the first community to have had a "planet". 
"Planet GNOME" is a website that aggregates the blog entries of 
many individual GNOME developers into a single "river of news". This 

1 A "GNOME Goals" project exists (see http:/!live.gnome.org/GNOMEGoals) to address 
some common issues with GNOME applications but this project focuses on specific 
issues (like ensuring that applications are using specific library features) rather than 
addressing the sorts of problems listed in this chapter. 
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website is frequented by nearly every active GNOME participant and by 
thousands of other readers. 

Every now and then a member of the community notices a particular 
programmer practice that is causing some sort of problem (such as poor 
performance or unnecessary memory consumption) and brings it to the 
attention of the community by posting an entry to their blog (which is 
then picked up and published by Planet). In the case that the practice is 
widely agreed upon to be problematic, a witch-hunt usually ensues. The 
typical process involves a number of interested individuals searching for 
instances of the problem in the various modules that form the GNOME 
desktop. As problems are found, these individuals either write patches 
to address the issue or guilt the maintainer of that module into doing so. 

The GNOME platform libraries are under a strict policy that ensures that 
API-incompatible changes are not made during a major release series 
(eg: 2.x). These long-term stability constraints are in place to make the 
GNOME platform more attractive to application developers who want 
to avoid having to constantly update their application to be compatible 
with "the latest version". Occasionally, solving some newly-discovered 
problems would require making changes to the API of the library in 
question. Since this is not acceptable, some instances of the problem 
cannot be solved. 

For this reason, when developing a new software library for use in the 
GNOME platform it is critically important to ensure that best common 
practices are adhered to during the initial development of the library; it 
might not be possible to solve problems at a later date. 

This list is presented as a list of mistakes that have commonly been 
made when developing programs for GNOME. For each item, the best 
common practice approach for avoiding the problem is given. 

2.1 Bad File Access Patterns 
When Moore's Law still applied to single-core processor development, 
processors and memory buses gained speed at an exponential rate. 

10 
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During the same period of time, however, the speed of a disk seek 
improved very little. 

When a graphical application starts, there are typically many small 
resource files that must be loaded in order for the application to 
function. These resource files are things like fonts, user interface layout 
descriptions and. icons. 

In the case of icons, for example, each icon might be stored in a separate 
. png file. These individual files could be stored in almost any place on 
the disk. If during its startup an application needs to read 100 icons 
from the disk then a huge amount of seeking is going to be required. 

Within GNOME, this problem has generally been dealt with by creating 
"cache files". In the case of icons, a file (named icon- theme. cache) is 
created in the root directory of each icon theme. This file contains a 
copy of every icon in the theme. The file is almost always stored in a 
contiguous (or nearly contiguous) section of the disk, so icon accesses 
are localised, reducing the amount of seeking. 

2.2 Unnecessary System Calls 

Another practice that has been flagged as a problem in the desktop 
is performing storms of unnecessary system calls. This often results 
from a situation such as a programmer of a function thinking that a 
stat () system call (to check for the existence of a file) is probably pretty 
cheap. Taken in isolation, this may be true, but if that function is called 
a thousand times in a rapid succession then the result is a program 
senselessly asking the kernel, a thousand times in a row, if a certain file 
exists. 

As another example, consider a naive implementation of a reader of the 
icon cache file mentioned in the previous section: each time a new icon 
is requested, open the cache file, find the icon, read it, then close the file. 
During startup, when 100 icon are read in a row, this practice of closing 
and immediately reopening the file, when viewed from the outside, looks 
extremely silly. 

11 
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System calls on Linux (which is where GNOME is mainly used) are 
relatively fast compared to other operating systems. They still require an 
lot of work, however - even in the case where the information requested 
is in a warm disk cache. The processor has to save the entire state of 
the running process, context switch into a higher privilege mode, switch 
to a new execution stack, and find and execute a system call handler. 
This is in addition to the actual work that is done (like traversing the 
directory tree to find a file) and when the call is done the entire process 
needs to be reversed. This unnecessary computation is wasteful if it can 
be avoided. 

It is considered best practice to keep an eye on the number of system 
calls that are being issued and to reduce this number where it is possible 
to do so without making additional sacrifices. 

2.3 Unnecessary Per-Process Memory Use 
One observation that was made about GNOME some time ago is that 
when all of the various shared libraries that are used in a typical GNOME 
application are loaded and initialised, the application is already using a 
lot of memory before it has even done anything. This memory is used by 
every process that is running as part of the desktop, so in a desktop with 
n processes the effect is multiplied by n. Since very little has happened 
in each process at the time of initialisation the contents of this memory 
is nearly identical in every single one of these processes. This is- clearly 
very wasteful. 

As is typical, a small crusade was launched to solve this problem. 
The focus at first was to reduce the size of n. Some results came 
of these efforts, such as a focus on making applications "single 
instance" (wherein multiple document windows are displayed by a 
single process) and by the combining of many background services into 
larger common service daemons. 

The problem with this approach, however, is that the memory protection 
facilities of modern operating systems are designed to limit the amount 
of damage that can be caused by a wide range of programming errors 

12 
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to a single process. Increasing the amount of responsibility that each 
process has also increases the damage that can be caused by a single 
failure. Google's new Chrome browser (which is Free Software, but not 
a part of GNOME) makes a point of this issue by running each separate 
tab of the browser in its own separate process. 

As opinion shifts away from the idea that reducing n is a good idea the 
focus shifts to the problem of trying to reduce the per-process memory 
overhead. This is a fascinating field of work. There are a huge number 
of contributors to this problem and a full discussion of it would make a 
very interesting paper, but is far out of context here. One non-obvious 
example is the overhead caused by the dynamic linker when it copy-on­
writes memory pages during relocation of shared libraries. 

Another example that has seen considerable work done in the GNOME 
community are per-process tables and hash tables of information. Two 
examples from font handling are the hash table of which fonts (by name) 
are installed and which files they are contained in and the kerning tables 
used for inter-character spacing when rendering text. 

In the case of the font name table, the old approach (as implemented by 
the fontconfig 2 library) was to scan the system font configuration at 
each startup to get the list of fonts. This information was parsed into a 
hash table to allow for quick lookup of a font when it was required. The 
problem caused by this approach is that each application ends up with 
an identical copy of this hash table in its address space. 

Currently, fontconfig is an awful lot smarter. A master hash table is 
created and stored to a flle. This file is designed so that it can be 
memory-mapped into the address space of a process (consult [ast] for 
an introduction)!. Memory mapping a file allows every process on the 
system to share the copy of the file that is in the kernel's disk cache. 
Even though each process is still using this memory it is now using a 
shared copy of it - the price of having the hash table is amortised across 
all the processes. 

2 http://www.fontconfig .org/ 
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In general, having these sorts of memory-mapped cache files for 
common per-process data is an "in" thing in the GNOME community 
these days. In 2005, an abstract interface for memory-mapped files was 
added to GLib as a new utility class named GMappedFile. 

2.4 Unnecessary Faults 

As more and more things are pushed into large memory-mapped cache 
files, particular care has to be taken to ensure that these files are 
accessed carefully. 

Modern operating systems, when asked to memory map the contents of 
a file, do not normally read that file from disk. Instead, they mark the 
memory region into which the contents of the file were mapped as an 
invalid region and wait to receive a page fault from the processor. At 
this point, the pages are loaded from the disk into memory and made 
available to the process (and the process is resumed and allowed to read 
the memory as if nothing happened). 

When potentially expensive operations occur implicitly as a result of 
something as innocuous as a memory read, care needs to be taken by 
the programmer to ensure that they are not accessing any more memory 
than is necessary. 

Some might warn that this is an implementation problem, and 
attempting to address it at the design stage is a case of inappropriate 
micro-optimisation. Consider, though, that it is possible for a flle format 
(which may become set in stone by compatibility requirements) to 
mandate these bad access patterns. Commonly accessed data may be 
spread across many pages (with less-commonly used data intermixed). 
Simple operations may require chasing a number of pointers (again, 
across several pages). 

A number of tools have been developed by the GNOME community to 
spot exactly these sorts of problems. The most noteworthy of these tools 

14 
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is iog rind3 which is capable of showing the access patterns of a program 
down to page-level granularity. 

2.5 Excessive Round Trips 
Numerous services run as part of the GNOME desktop. An example 
is the GConf configuration server, which is responsible for providing 
access to configuration settings to applications. GConf also consists of 
a client-side library which accepts requests from the programmer and 
communicates with the server to get the work done. 

A simple way of arranging this would be to have the client-side library 
request a configuration key from the server for each request that is 
made against the library. In the case that an application is starting up, 
however, it is probably requesting many settings from the configuration 
server. 

Each request to the configuration server involves a complete context 
switch to another process (which is considerably more expensive than 
merely context switching into the kernel). Many processor caches (such 
as the TLB) must be flushed and others are effectively flushed as a result 
of executing on a totally different working set. 

The problem cannot be avoided in the same ways as avoiding 
unnecessary system calls since each request is for different information. 
Since both sides of the interface are part of the same project, however, 
there is an increase in flexibility. Support for new types of requests can 
be added to the interface. 

The way that GConf has solved this problem is by requesting an entire 
subtree of the configuration settings database at once, in a batch. These 
sorts of "batch access" calls are an effective way of reducing the number 
of round trips. 

3 http://live.gnome.org/iogrind 
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As implemented in GConf, however, this solution has led to another 
problem: each client end up with a second copy of the configuration 
settings in a cache on the client side. Not only does this waste memory, 
but there is a new cache-coherency issue - the local copy must be 
invalidated when the server's copy changes. This has led to considerable 
complication of the design of GConf. 

In general, a better way to avoid this problem is to develop interfaces 
and protocols that completely eliminate the need for round trips. An 
interesting (and somewhat ancient) example of this can be found in 
the Xll protocol. Each window on the screen has a unique identifier. 
After a client creates a new window it is almost certain to immediately 
perform some operation that depends on knowing that identifier. Instead 
of allowing the server to allocate identifiers to new windows, a unique 
range of identifiers is provided to each client so that the client can set 
the identifier as part of the window creation request (and therefore 
know what its value is without waiting for a reply from the X server). 
This allows clients to send whole strings of requests to set up entire 
window hierarchies at once. 

2.6 Excessive Startup Work 

In a typical desktop configuration, the resources of a computer are 
remarkably underutilised most of the time. Even when "using" the 
computer by browsing a web page or writing a document, the user is 
using tiny fractions of the computational, memory and IO resources 
available. 

The performance of a computer under these workloads is not judged 
by how fast the user can accomplish their task, but by how fast the 
computer responds to their requests. The classical example of this is 
how fast the computer starts a program. The classical classical example 
is how fast a computer starts up. 

To a very large extent, the performance of a modern operating system 
is judged by how fast it "boots up" or "logs in". For this reason, a great 
deal of effort goes toward minimising these intervals. 

16 
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One of the easiest ways to do this is simple deferral ofwork. If something 
is not strictly required at startup time then it should be deferred to a 
later time so that more important tasks can occur. 

As a simple example of this practice, consider the applet on Ubuntu 
systems that periodically checks for updates and informs you when they 
are available. When this applet starts, the first thing that it does is to 
sleep. Only after 30 seconds have passed does it initialise itself. This is 
done to "make way" for other more important and user-visible processes 
to start faster. 

In general, if work is not absolutely required during the login process 
then it should not be performed until later. 

2.7 Blocking the Mainloop 

One of the most visible problems when developing applications for 
GNOME (or practically any graphical environment) is blocking the 
mainloop. GNOME applications are implemented using an event-driven 
mainloop that, in a single thread, monitors a number ofdifferent sources 
of events. When a new event occurs it is dispatched to the handler 
function that has been registered with the mainloop. 

One such class of events is user input events. These events are 
dispatched to GTK, which is responsible for refreshing the appearance 
of the UI in response to them. 

The problem comes when an event handler takes too long. This could 
either be because it is performing a lengthly computation or because it is 
blocking while waiting for data (from another application, the network, 
the disk, etc). In either case, this work is said to be "blocking the 
mainloop". The result is that, for the duration of the event handler, the 
application is unresponsive to additional input events. 

Even if the blocking is only for a quarter of a second, it can be enough 
to make the application feel unresponsive. 

17 
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There are many common ways to deal with this problem. Asynchronous 
(non-blocking) 10 operations are used where possible. It is also common 
to place long-running computations into a separate thread so that the 
mainloop can run at the same time as the computation. 

This principle is not directly applicable to the work covered in this 
document (other than maybe to provide additional motivation for 
making things fast). Being a particularly common and visible pitfall, it 
is stated for completeness. 

2.8 Unnecessary Wakeups 

An unnecessary wakeup occurs when the kernel schedules a process to 
run and no real work is done. Running the process was unnecessary and 
time has been wasted. 

There are two main situations in which this occurs. 

The first case is when an application decides that it should wake 
up periodically to "poll" some condition (such as a file having been 
modified) that it needs to take action on. Of course, most of the time the 
file has not been modified, so the process goes directly back to sleep. 
This may seem innocent enough, particularly if these probes only occur 
when the system is otherwise idle, but these wakeups cause serious 
problems. 

Modern processors (particularly the variety used in laptop computers) 
have the ability to go into low power states when they are inactive. 
Longer periods of inactivity permit deeper reductions in power 
consumption. If ten processes on the system are each polling a condition 
ten times a second then the kernel is causing the CPU to wakeup 100 
times per second and the effectiveness of these power saving features 
is greatly diminished. Your laptop battery doesn't last as long. 

The solution to this problem is to find an event-driven interface and use 
it instead of polling; this results in the prpcess only waking up when it 
actually needs to do work. 
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The second case is when an event occurs and a number of processes 
have registered interest in this event. Each process needs to be notified. 
In many cases, however, only a very small subset of the notified 
processes will perform an action in response to the event. 

This is often caused by poor granularity in the interface for registering 
interest in being notified about a particular class of events. As an 
example, say a process is interested in the name displayed on the 
title bar of an application window. It wants to be notified when the 
title changes. The title of the window is stored as a property of the 
window, so it needs to register for property change notifications with 
the X server. Unfortunately, this interface does not allow registration 
of interest in only some properties- it's all or none. The process will 
now be woken up for every property change, including the "most recent 
user interaction timestamp" property which is updated with every single 
keystroke. 

This particular problem has recently been worked around by moving the 
user interaction timestamp property to a separate proxy window that 
exists specifically so that the updating of this property is not broadcast 
to all property notification listeners. In general, these problems are best 
avoided in the first place by providing interfaces that allow for highly 
granular registration of interest in notification events. 
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Chapter 3 

GSettings 

The work described in this thesis - GVariant - is primarily designed 
for use within the larger project that is GSettings. 

For the reasons set out in Section 1.2, GSettings is being developed, by 
the author, as a replacement for GConf. 

In order to better understand some of the decisions that have affected 
the design of GVariant it is worth having a look at the design decisions 
that were made for GSettings. 

This chapter outlines the basic design of GSettings, making reference to 
the background information and best principles that have been outlined 
in the last two chapters. 

3.1 High-Level Interface 

GSettings is a high-level interface for access to a dictionary of strongly­
typed keys. It can have many implementors. 

Every implementor, however, is expected to ensure that all access is 
performed according to a schema. A schema is a finite mapping of key 
names (strings) to types and default values. 
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Any attempt to access a setting using a key name not in the schema 
produces a runtime error. Any attempt to access a key that is specified 
in the schema, however, will always result in a value of the expected 
type being returned. 

In keeping with the "no unnecessary wakeups" principle of Section 2.8, 
GSettings features an API to notify the programmer when a key has 
changed its value. 

GSettings, of course, attempts to correct many shortcomings of the 
design of GConf. 

As mentioned in Section 1.2, GConf features a type system that is not 
used elsewhere in the GNOME Desktop. GContvalue doesn't exist for a 
currene lack of other type systems in the GNOME platform. One goal of 
GSettings has been to reduce the number of type systems in use. 

GSettings tackles this problem by using the type system of DBus. Any 
value that can be sent over DBus is suitable for storage as a value in the 
settings database. This type system is powerful and widely understood 
and used. 

GValue was another contender for use, but its ability to contain pointers 
and its inconsistent representation across multiple platforms prevented 
this possibility. Additionally, the type system of GValue is geared more 
towards object-oriented programs rather than describing the format of 
serialised data. 

The first (and at present, only) implementor of the GSettings interface 
is one which stores settings in a lower-level backend database called 
dconf. 

1 At the time that GConfwas created, Neither GValue nor DBus existed, so GConfValue 
was needed at that time. When GValue and DBus were implemented, GConfValue 
proved to be too limited to base either of these two systems on. 
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3.2 dconf 

dconf is a very simple hierarchy of keys, with each key having a value. 
No type-checking is performed at this level; anything goes. 

A typical dconf configuration will feature a number of separate backend 
databases used to enforce various levels of system policy and default 
settings. Access to each of these backends is performed using a unique 
approach in order to avoid many of the pitfalls listed in Chapter 2. 

All settings are stored in a single file (reducing bad file access patterns 
as described in Section 2.1). This single file is then memory-mapped 
into the address space of every process which wants to read settings. 
For reads, this avoids roundtrips to a settings server (Sections 2.5 and 
2.2). It also means that no process ever has to have its own copy of any 
settings (addressing the problem outlined in Section 2.3). 

In fact, when reading a value such as an array of integers from the 
configuration system, the programmer can obtain a pointer directly to 
that array, as stored in the memory mapped region. There are no copies 
made. 

Access to the configuration database is lockless and safe for concurrent 
access by many readers and one writer. For this reason, all write 
operations must be directed through a settings server. Changing 
settings is a much less common case than reading settings (which is 
something that occurs many times every time a program starts). Also, 
since settings are not changed as part of the login process, the setting 
server doesn't need to be (and isn't) started at this time (addressing 
Section 2.6). 

This arrangement avoids the problems outlined in the second point of 
Section 1.2. 

The safe concurrent lockless access mixed with the fact that the file is 
to be memory mapped and accessed directly as native C data implies 
that the file format used by dconf must have a binary format. It would 
be extremely awkward to attempt the lockless concurrency and by 
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definition impossible to store native C data with a text file. This implies 
that we must have support for serialising values to a binary serialisation 
format. 

3.3 GVariant 

As the author was writing dconf, it quickly became clear that a large 
part of the work was involving the design and implementation of a 
serialisation format that was capable ofbeing implemented in a way that 
would support all of the goals of dconf and not violate the principles 
outlined in Chapter 2. 

For reasons of encouraging loose coupling between the settings system 
and this significantly complicated subproject it was decided to split the 
development of the serialisation format- and the value handling system 
in general- into its own project. This project is what is documented 
in this thesis. 

During the development of this subproject the author was approached 
by several others who were interested in making use of the work for 
things other than settings storage. 

In the interest of encouraging code reuse and allowing even wider use of 
the DBus type system, the work described here is planned for inclusion 
in GLib2 and will thus be available for use by all GNOME applications. 

2 GLib is a general-purpose utility library which provides many useful data types, 
macros, type conversions, string utilities, file utilities, a main loop abstraction, and so 
on. This library is the lowest-level library in the GNOME stack and, as such, as part 
of every GNOME application. 
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Chapter 4 

Requirements 

GVariant was created from requirements that led to some unusual 
design considerations. This section documents these requirements. 

The serialisation format, which is described in Part II, has been designed 
specifically to allow an implementation to conform to the requirements 
listed here. 

4.1 The Need for GVariant 

The need for GVariant has arisen from the lack of a system in the 
GNOME platform for representing and serialising complex strongly­
typed data (such as strings, integers, floating point numbers and arrays 
and tuples of these things). This gap in the platform first became 
apparent while attempting to write a configuration storage system. 
This configuration system requires the storage of user-specified data 
on persistent sto:rage and communication of this data via sockets to a 
configuration server. 

As a result, the primary requirements of GVariant are that it can be used 
in the following ways: 
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Usage Requirement 1 
Construct and deconstruct complex data values. 

Usage Requirement 2 
Construct and deconstruct complex data values. 

Usage Requirement 3 
Save and load these data values to and from disk. 

Usage Requirement 4 
Send and receive these data values over sockets. 

With the original user of GVariant being a configuration system, use of 
GVariant is expected to be very read intensive; configuration settings 
are read each time a program is started, but rarely changed. Other 
planned users of GVariant operate in the same way. This introduces the 
following guiding principle which is not a hard requirement: 

Guideline 1 
GVariant must be optimised for reading and deconstructing values. 
Constructing and writing may be less efficient. 

4.2 Context Requirements 

Since GVariant will be used most extensively by the GNOME 
communi~ the following requirements are made in accordance with the 
background information provided in Section 1.1: 

Context Requirement 1 
GVariant must be written in C. 

Context Requirement 2 
GVariant must be friendly for use by C programmers. 

Context Requirement 3 
GVariant must allow direct access to the serialised data (by exposing 
pointers) in cases where the serialised data can be easily interpreted 
as a native C type (for example, arrays of integers). 
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Context Requirrament 4 
GVariant must use an object-based API. Each value must be presented 
to the programmer as an object. It must be possible to group multiple 
objects into a container object and to extract child objects back out 
again. 

Context Requirtament 5 
GVariant must contain conveniences, where possible, to overcome 
limitations of C. These conveniences should operate in ways that are 
familiar to those who are familiar with GObject. 

Context Requirement 6 
GVariant must use the type system of DBus to facilitate the possibility 
of sending GVariant values over this bus. 

4.3 Performance 

Several requirements have been made to ensure efficient operation of 
GVariant. 

A holistic approach has been taken in gathering and specifying these 
requirements. For example, explicit treatment has often been given to 
the operating system concepts outlined in Chapter 2. As a result of 
this approach, many requirements that would normally be presented as 
"non-functional" are functional requirements. Where possible, we speak 
not of "it must be fast"; rathe~ slow operations are directly forbidden as 
a matter of functionality through use of language such as "must not fault 
in pages from the disk other than when they are absolutely required". 

Performance Requirement 1 
In keeping with the principle of not using unnecessary memory by 
having multiple copies of the same data (Section 2.3) GVariant must 
not make unnecessary copies of data. 
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Performance Requirement 2 
Particularly, GVariant must allow use of shared memory between 
processes (as described in Section 2.3), including sharing memory 
with the operating system page cache when reading from disk. 

Performance Requirement 3 
As per Section 2 .4, GVariant must not fault in pages from the disk other 
than when they are absolutely required. This implies that GVariant 
must access as few bytes of data as is possible when performing any 
operation. 

Performance Requirement 4 
GVariant must perform operations quickly, particularly in its primary 
use case of reading data from a mapped file. Nearly every 
deserialisation operation in this use case must occur in constant time. 
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PART II 


This part specifies the new serialisation format, including 
description of the type system. It also provides notes for 
those who may be interested in implementing this format, 
including some observations about how seemingly linear-time 
operations can be implemented in constant time (along with 
proof ofcorrectness). 
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Chapter 5 

Types 

As per Context Requirement 6, GVariant must be substantially 
compatible with the DBus message bus system (as specified in [DBus]). 

To this end, the type system used in GVariant is almost identical to 
that used by DBus. Some very minimal changes were made, however, 
in order to provide for a better system while still remaining highly 
compatible; specifically, every message that can by sent over DBus can 
be represented as a GVariant. 

Some baggage has been carried in from DBus that would not otherwise 
have been present in the type system if it were designed from scratch. 
The object path and signature types, for example, are highly DEus­
specific and would not be present in a general-purpose type system if it 
were to be created from scratch. 

5.1 Differences from DBus 
In order to increase conceptual clarity some limitations have been lifted, 
allowing calls to "never fail" instead of having to check for these special 
cases. 
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• 	 Whereas DBus limits the maximum depth of container type nesting, 
GVariant makes no such limitations; nesting is supported to 
arbitrary depths. 

• 	 Whereas DBus limits the maximum complexity of its messages by 
imposing a limitation on the "signature string" to be no more than 
255 characters, GVariant makes no such limitation; type strings of 
arbitrary length are supported, allowing for the creation of values 
with arbitrarily complex types. 

• 	 Whereas DBus allows dictionary entry types to appear only as the 
element type of an array type, GVariant makes no such limitation; 
dictionary entry types may exist on their own or as children of any 
other type constructor. 

• 	 Whereas DBus requires structure types to contain at least one child 
type, GVariant makes no such limitation; the unit type is a perfectly 
valid type in GVariant. 

Some of the limitations ofDBus were imposed as security considerations 
(for example, to bound the depth of recursion that may result from 
processing a message from an untrusted sender). If GVariant is used 
in ways that are sensitive to these considerations then programmers 
should employ checks for these cases upon entry of values into the 
program from an untrusted source. 

Additionally. DBus has no type constructor for expressing the concept 
of nullability1 To this end, the Maybe type constructor (represented by• 

min type strings) has been added. 

1 A "nullable type" is a type that, in addition to containing its normal range of values, 
also contains a special value outside of that range, called NULL, Nothing, None or 
similar. In most languages with reference or pointer types, these types are nullable. 
Some languages have the ability to have nullable versions of any type (for example, 
"Maybe Int" in Haskell and "int? i;" inC#). 
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Some of these changes are under consideration for inclusion into DBus2
• 

5.2 Enumeration of Types 

5.2.1 The Basic Types 

Boolean 
A boolean is a value which must be True or False. 

Byte 
A byte is a value, unsigned by convention, which ranges from 0 to 255. 

Integer Types 
There are 6 integer types other than byte - signed and unsigned 
versions of 16, 32 and 64 integers. The signed versions have a range 
of values consistent with a two's complement representation. 

Double Precisian floating Point 
A double precision floating point value is precisely defined by IEEE 
754. 

String 
A string is zero or more bytes. Officially, GVariant is encoding-agnostic 
but the use of UTF-8 is expected and encouraged. 

Object Path 
A DBus object path, exactly as described in the DBus specification. 

2 Considerable discussion has been made in face-to-face meetings and some discussion 
has also occurred on the DBus mailing list: http://lists.freedesktop.org/archives/ 
dbu,s/2007 -August/008290.html 
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Signature String 
A DBus signature string, exactly as described in the DBus 
specification. As this type has been preserved solely for compatibility 
with DBus, all of the DBus restrictions on the range of values of this 
type apply (eg: nesting depth and maximum length restrictions). 

5.2.2 Container Types 

Variant 
The variant type is a dependent pair of a type (any of the types 
described in this chapter, including the variant type itself) and a value 
of that type. You might use this type to overcome the restriction that 
all elements of an array must have the same type. 

Maybe 
The maybe type constructor provides nullability for any other single 
type. The non-null case is distinguished, such that in the event that 
multiple maybe type constructors are applied to a type, different levels 
of null can be detected. 

Array 
The array type constructor allows the creation of array (or list) types 
corresponding to the provided element type. Exactly one element type 
must be provided and all array elements in any instance of the array 
type must have this element type. 

Structure 
The structure type constructor allows the creation of structure types 
corresponding to the provided element types. These "structures" are 
actually closer to tuples in the sense that their fields are not named, 
but ~~structure" is used because that is what the DBus specification 
calls them. 

The structure type constructor is the only type constructor that is 
variadic - any natural number of types may be given (including zero 
to form the unit type, and one). 
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Dictionary entry 
The dictionary entry type constructor allows the creation of a special 
sort of structure which, when used as the element type of an array, 
implies that the content of the array is a list of key/value pairs. For 
compatibility with DBus, this binary type constructor requires a basic 
type as its first argument (which by convention is seen to be the key) 
but any type is acceptable for the second argument (by convention, 
the value). 

Dictionary entries are as such by convention only; this includes when 
they are put in an array to form a "dictionary". GVariant imposes no 
restrictions that might normally be expected of a dictionary (such as 
key uniqueness). The DBus specification specifies that keys should 
be unique, but also declares that - for performance reasons ­
implementations need not enforce this. 

5.3 Type Strings 
Just as with DBus, a concise string representation is used to express 
types. 

In GVariant, which deals directly with values as first order objects, a 
type string (by that name) is a string representing a single type. 

Contrast this with "signature strings"3 in DBus, which apply to 
messages, and contain zero or more types (corresponding to the 
arguments of the message). 

5.3.1 SyntaJ< 

The language of type string is context free. It is also a prefix code, which 
is a property that is used by the recursive structure of the language 
itself. 

3 Compare with the whence parameter to the lseek() system call. 
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Type strings can be described by a non-ambiguous context free 
grammar (in which E represents the empty string). With start symbol 
type: 

type = base_type I container_type 
base_type = blylnlqlilulxltlslolg 
container_type = v I mtype I a type I ( types ) I { base_type .type} 
types = E I type types 

5.3.2 Semantics 

The derivation used to obtain a type string from the given grammar 
creates an abstract syntax tree describing the type. The effect of 
deriving through each right hand side term containing a terminal is 
specified below: 

b 
This derivation corresponds to the boolean type. 

y 
This derivation corresponds to the byte type. 

n 
This derivation corresponds to the signed 16-bit integer type. 

q 
This derivation corresponds to the unsigned 16-bit integer type. 

i 
This derivation corresponds to the signed 32-bit integer type. 

u 
This derivation corresponds to the unsigned 32-bit integer type. 

X 
This derivation corresponds to the signed 64-bit integer type. 
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t 
This derivation corresponds to the unsigned 64-bit integer type. 

d 
This derivation corresponds to the double precision floating point 
number type. 

s 
This derivation corresponds to the string type. 

0 

This derivation corresponds to the object path type. 

g 
This derivation corresponds to the signature type. 

v 
This derivation corresponds to the variant type. 

mtype 
This derivation corresponds to the maybe type which has a value of 
Nothing or Just x for some x in the range of type. 

a type 
This derivation corresponds to the array type in which each element 
has the type type. 

{ types ) 
This derivation corresponds to the structure type that has the types 
expanded by types, in order, as its item types. 

{ base_type type } 
This derivation corresponds to the dictionary entry type that has 
base_type as its key type and type as its value type. 
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Chapter 6 

Serialisation Format 

This chapter describes the serialisation format that is used by GVariant. 
This serialisation format is newly developed and described for the first 
time here. 

6.1 Related Work 

Attempts were made to evaluate candidates for use as the serialisation 
format for GSettings (and therefore the serialisation format that 
GVariant would implement). Special consideration was paid to formats 
that are implemented by software that is already part of the GNOME 
desktop. 

In the end, each format that was considered was found to conflict with 
the requirements given in Chapter 4. 

For this reason, a new serialisation format was created. The 
documentation of this serialisation format is what forms the main body 
of this chapter. 
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6.1.1 DBus 

Since GVariant is largely compatible with DBus, it would make sense 
to use the serialisation format of DBus (plus modifications where 
appropriate) as the serialisation format for GVariant. 

To do so, however, would conflict with a number of requirements that 
were established for GVariant. 

Most fundamentall~ Performance Requirement 4 would be violated. 
DBus messages are encoded in such a way that in order to fetch the 
1DOth item out of an array you first have to iterate over the first 99 
items to discover where the 1DOth item lies. A side effect of this iteration 
would be a violation of Performance Requirement 3. 

Additionall~ using the DBus serialisation format with an API like that 
mandated by Context Requirement 4 would imply a violation of due to 
the fact that subparts of DBus messages can change meaning when 
subjected to different starting alignments. This is discussed in more 
detail in Section 6.3.3. 

6.1.2 XML 

As the current serialisation format of GConf, consideration was given to 
using XML (see [XML]) as the native serialisation format of GVariant. 

Although XML does not implement the type system of DBus, per se, its 
flexibility as a file format provides the possibility of encoding DBus types 
and values. 

As with the DBus serialisation format, however, the two main problems 
with using XML would be a violation of (particularly in the case that 
Context Requirement 3 is satisfied) and of Performance Requirement 4. 

For these reasons, XML can not be used as the primary serialisation 
format of GVariant. GVariant, as implemented, does contain support for 
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storing values in an XML-like format for situations where performance 
is not important (see Section 8.6). 

6.1.3 CORBA 

GNOME currently makes significant (but decreasing) use of CORBA (see 
[CORBA]) as a framework for cross-process communication. 

CORBA is targeted at RPC, and not to serialisation for purposes of 
persistent storage. It also brings its own incompatible type system (in 
violation of Context Requirement 6). 

CORBA is very complicated and this complication is leading to a 
decrease in its usage among GNOME applications (which are rapidly 
switching to DBus for IPC). Even GConf (which was originally based on 
CORBA) has been ported to DBus. 

For these reasons, CORBA is not seen as a viable option. 

6.1.4 Protocol Buffers 

Google has recently developed Protocol Buffers (see [protobuf]) as a 
solution to address some of the performance problems associated with 
XML. The performance is improved by a constant factor; there is no 
improvement in the asymptotic complexity of certain operations, as 
would be required to satisfy Performance Requirement 4. 

When using Protocol Buffers, you specify the format of your data, ahead 
of time, in a . proto file. It takes this file and produces parser/printer 
code for your language of choice (among C++, Java and Python). 

This approach is not suitable for use in a situation where a server 
process has to deal with data of arbitrary structure without knowing 
that structure in advance. This case is exactly the case of a configuration 
settings storage system. 
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6.2 Notation 

Throughout this chapter a number of examples will be provided using a 
common notation for types and values. 

The notation used for types is exactly the type strings described in 
Chapter 5. 

The notation used for values will be familiar to users of either 
Python or Haskell. Arrays (lists) are represented with square brackets 
and structures (tuples) with parentheses. Commas separate elements. 
Strings are single-quoted. Numbers prefixed with ex are taken to be 
hexadecimal. 

The constants True and False represent the boolean constants. The 
nullary data constructor of the maybe type is denoted Nothing and the 
unary one Just. 

6.3 Concepts 

GVariant value serialisation is a total and injective function from values 
to pairs of byte sequences and type strings. Serialisation is deterministic 
in that there is only one acceptable "normal form" that results from 
serialising a given value. Serialisation is non-surjective: non-normal 
forms exist. 

The byte sequence produced by serialisation is useless without also 
having the type string. Put another way, deserialising a byte sequence 
requires knowing this type. 

Naturally, we expect that deserialising the byte sequence resulting from 
serialising a value (using the same type string) will produce the the same 
value. 

Before discussing the specifics of serialisation, there are some concepts 
that are pervasive in the design of the format that should be understood. 

42 



M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

6.3.1 Byte Sequence 

A byte sequence is defined as a sequence of bytes which has a known 
length. In all cases, in GVariant, knowing the length is essential to being 
able to successfully deserialise a value. 

6.3.2 Byte Boundaries 

Starting and ending offsets used in GVariant refer not to byte positions, 
but to byte boundaries. For the same reason that it is possible to have 
n + 1 prefixes of a string of length n, there are n + 1 byte boundaries 
in a byte sequence of size n. 

: Figure 6.1: byte 
L boundaries 

When speaking of the start position of a byte sequence, the index of the 
starting boundary happens to correspond to the index of the first byte. 
When speaking of the end position, however, the index of the ending 
boundary will be the index of the last byte, plus 1. This paradigm is very 
commonly used and allows for specifying zero-length byte sequences. 

6.3.3 Simp~e Containment 

A number of container types exist with the ability to have child values. 
In all cases, the serialised byte sequence of each child value of the 
container will appear as a contiguous sub-sequence of the serialised 
byte sequence of that container - in exactly the same form as it would 
appear if it were on its own. The child byte sequences will appear in 
order of their position in the container. 

It is the responsibility of the container to be able to determine the end 
(or equivalently, length) and start of each child element. 
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This property permits a container to be deconstructed into child values 
simply by referencing a subsequence of the byte sequence of the 
container as the value of the child which is an effective way of satisfying . 

This property is not the case for the DBus serialisation format. In many 
cases (for example, arrays) the encoding of a child value of a DBus 
message will change depending on the context in which that value 
appears. As an example: in the case of an array of doubles, should the 
value immediately preceding the array end on an offset that is an even 
multiple of 8 then the array will contain 4 padding bytes that it would 
not contain in the event that the end offset of the preceding value were 
shifted 4 bytes in either direction. 

6.3.4 Alignment 

In order to satisfy requirement Context Requirement 3, we must provide 
programmers with a pointer that they can comfortably use. On many 
machines, programmers cannot directly dereference unaligned values, 
and even on machines where they can, there is often a performance hit. 

For this reason, all types in the serialisation format have an alignment 
associated with them. For strings or single bytes, this alignment is 
simply L but for 32-bit integers (for example) the alignment is 4. The 
alignment is a property of a type - all instances of a type have the same 
alignment. 

All aligned values must start in memory at an address that is an integer 
multiple of their alignment. 

The alignment of a container type is equal to the largest alignment of 
any potential child of that container. This means that, even if an array of 
32-bit integers is empty, it still must be aligned to the nearest multiple 
of 4 bytes. It also means that the variant type (described below) has an 
alignment of 8 (since it could potentially contain a value of any other 
type and the maximum alignment is 8). 
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6.3.5 Fixed Size 

To avoid a lot of framing overhead, it is possible to take advantage of 
the fact that, for certain types, all instances will have the same size. In 
this case, the type is said to be a fixed-sized type, and all of its values 
are said to be fixed-sized values. Examples are a single integer and a 
tuple of an integer and a floating point number. Counterexamples are a 
string and an array of integers. 

If a type has a fixed size then this fixed size must be an integer multiple 
of the alignment of the type. A type never has a fixed size of zero. 

If a container type always holds a fixed number of fixed-size items (as 
in the case of some structures or dictionary entries) then this container 
type will also be fixed-sized. 

6.3.6 Framung Offsets 

If a container contains non-fixed-size child elements, it is the 
responsibility of the container to be able to determine their sizes. This 
is done using framing offsets. 

A framing offset is an integer of some predetermined size. The size is 
always a power of 2. The size is determined from the overall size of 
the container byte sequence. It is chosen to be just large enough to 
reference each of the byte boundaries in the container. 

As examples, a container of size 0 would have framing offsets of size 0 
(since no bits are required to represent no choice). A container of sizes 
1 through 255 would have framing offsets of size 1 (since 256 choices 
can be represented with a single byte). A container of sizes 256 through 
65535 would have framing offsets of size 2. A container of size 65536 
would have framing offsets of size 4. 

There is no theoretical upper limit in how large a framing offset can be. 
This fact (along with the absence of other limitations in the serialisation 
format) allows for values of arbitrary size. 
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When serialising, the proper framing offset size must be determined 
by "trial and error" - checking each size to determine if it will work. 
It is possible, since the size of the offsets is included in the size of 
the container, that having larger offsets might bump the size of the 
container up into the next catego!J0 which would then require larger 
offsets. Such containers, however, would not be considered to be in 
"normal form". The smallest possible offset size must be used if the 
serialised data is to be in normal form. 

Framing offsets are always stored at the end of containers and are 
unaligned. They are always stored in little-endian byte order. 

Placing the unaligned framing offsets after the possibly-aligned data 
means that no bytes are ever wasted on padding. It also allows data to 
be written to a serialisation buffer "as you go" without first knowing the 
number of items that will be added to a container or the overall size of 
the container (two aspects which affect the amount of space required 
to store the offsets). 

6.3.7 Endianness 

Although the framing offsets of serialised data are always stored in 
little-endian byte order, the data visible to the user (via the interface 
mandated by requirement Context Requirement 3) is allowed to be in 
either big or little-endian byte order. This is referred to as the "encoding 
byte order". When transmitting messages, this byte order should be 
specified if not explicitly agreed upon. 

The encoding byte order affects the representation of only 7 types of 
values: those of the 6 (16, 32 and 64-bit signed and unsigned) integer 
types and those of the double precision floating point type. Conversion 
between different encoding byte orders is a simple operation that can 
usually be performed in-place (but see Section 7.1 for an exception). 
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6.4 Serialisation of Base Types 

Base types are handled as follows: 

6.4.1 Booleans 

A boolean has a fixed size of 1 and an alignment of 1. It has a value of 
1 for True or 0 for False. 

6.4.2 Bytes 

A byte has a fixed size of 1 and an alignment of 1. It may have any valid 
byte value. By convention, bytes are unsigned. 

6.4.3 Integers 

There are 16, 32 and 64-bit signed and unsigned integers. Each integer 
type is fixed-sized (to its natural size). Each integer type has alignment 
equal to its fixed size. Integers are stored in the encoding byte order. 
Signed integers are represented in two's complement. 

6.4.4 Double Precision Floating Point 

Double precision floating point numbers have an alignment and a fixed­
size of 8. Doubles are stored in the encoding byte order. 

6.4.5 Strings 

Including object paths and signature strings, strings are not fixed-sized 
and have an alignment of 1. The size of any given serialised string is 
equal to the length of the string, plus 1, and the final serialised byte is a 
nul (0) terminator. The nul terminator is not strictly required (since the 
size is already known) but is provided as a convenience to C programs 
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that wish to access the string. The character set encoding of the string 
is not specified, but no nul byte is allowed to appear within the content 
of the string. 

6.5 Serialisation of Container Types 

Containers are handled as follows: 

6.5.1 Variants 

Variants are serialised by storing the serialised data of the child, plus a 
zero byte, plus the type string of the child. The reason the type string 
is stored at the end is the same reason framing offsets are stored at the 
end of container types - it ensures that no padding bytes are required. 

The zero byte is required because, although type strings are a prefix 
code, they are not a suffix code. In the absence of this separator, 
consider the case of a variant serialised as two bytes - "ay". Is this a 
single byte, I a I, or an empty array of bytes? 

6.5.2 Maybes 

Maybes are encoded differently depending on whether their element 
type is fixed-sized not. 

The alignment of a maybe type is always equal to the alignment of its 
element type. 

6.5.2.1 Maybe of a Fixed-Sized Element 

For the Nothing case, the serialised data is the empty byte sequence. 
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For the Just case, the serialised data is exactly equal to the serialised 
data of the child. This is always distinguishable from the Nothing case 
because all fixed-sized values have a non-zero size. 

6.5.2.2 Mayb<e of a Non-Fixed-Sized Element 

For the Nothing case, the serialised data is, again, the empty byte 
sequence. 

For the Just case, the serialised form is the serialised data of the child 
element, followed by a single zero byte. This extra byte ensures that the 
Just case is distinguishable from the Nothing case even in the event 
that the child value has a size of zero. 

6.5.3 Arrays 

Arrays are said to be fixed width arrays or variable width arrays based 
on if their element type is a fixed-sized type or not. The encoding of 
these two cases is very different. 

The alignment of an array type is always equal to the alignment of its 
element type. 

6.5.3.1 Fixed Width Arrays 

In this case, the serialised form of each array element is packed 
sequentially, with no extra padding or framing, to obtain the array. Since 
all fixed-sized values have a size that is a multiple of their alignment 
requirement, and since all elements in the array will have the same 
alignment requirements, all elements are automatically aligned. 
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The length of the array can be determined by taking the size of the array 
and dividing by the fixed element size. This will always work since all 
fixed-size values have a non-zero size. 

6.5.3.2 Variable Width Arrays 

In this case, the serialised form of each array element is again packed 
sequentially. Unlike the fixed-width case, though, padding bytes may 
need to be added between the elements for alignment purposes. These 
padding bytes must be zeros. 

After all of the elements have been added, a framing offset is appended 
for each element, in order. The framing offset specifies the end boundary 
of that element. 

. Figure 6.3: an array of strings 

The size of each framing offset is a function of the serialised size of the 
array and the final framing offset, by identifying the end boundary of 
the final element in the array also identifies the start boundary of the 
framing offsets. Since there is one framing offset for each element in 
the array, we can easily determine the length of the array. 

length = (size- last_offset) I offset_size 

To find the start of any element, you simply take the end boundary of the 
previous element and round it up to the nearest integer multiple of the 
array (and therefore element) alignment. The start of the first element 
is the start of the array. 

Since determining the length of the array relies on our ability to count 
the number of framing offsets and since the number of framing offsets 
is determined from how much space they take up, zero byte framing 
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offsets are not permitted in arrays, even in the case where all other 
serialised data has a size of zero. This special exception avoids having 
to divide zero by zero and wonder what the answer is. 

6.5.4 Structures 

As with arrays, structures are serialised by storing each child item, in 
sequence, properly aligned with padding bytes, which must be zero. 

After all of the items have been added, a framing offset is appended, 
in reverse order, for each non-fixed-sized item that is not the last item 
in the structure. The framing offset specifies the end boundary of that 
element. 

The framing offsets are stored in reverse order to allow iterator-based 
interfaces to begin iterating over the items in the structure without first 
measuring the number of items implied by the type string (an operation 
which requires time linear to the size of the string). 

Figure 6.4: a structure containing 
16~bit integers an~ strin[lS 

The reason that no framing offset is stored for the last item in the 
structure is because its end boundary can be determined by subtracting 
the size of the framing offsets from the size of the structure. The number 
of framing offsets present in any instance of a structure of a given 
type can be determined entirely from the type (following the rule given 
above). 

The reason that no framing offset is stored for fixed-sized items is that 
their end boundaries can always be found by adding the fixed size to 
the start boundary. 
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To find the start boundary of any item in the structure, simply start from 
the end boundary of the nearest preceding non-fixed-size item (or from 0 
in the case of no preceding non-fixed-sized items). From there, round up 
for alignment and add the fixed size for each intermediate item. Finally, 
round up to the alignment of the desired item. 

For random access, it seems like this process can take a time linear to 
the number of elements in the structure, but it can actually be performed 
in a very small constant time. See Section 7 .2. 

If all of the items contained in a structure are fixed-size then the 
structure itself is fixed-size. Considerations have to be made to satisfy 
the constraints that are placed on the value of this fixed size. 

First, the fixed size must be non-zero. This case would only occur for 
structures of the unit type or structures containing only such structures 
(recursively). This problem is solved by arbitrary declaring that the 
serialised encoding of an instance of the unit type is a single zero byte 
(size 1). 

Second, the fixed sized must be a multiple of the alignment of the 
structure. This is accomplished by adding zero-filled padding bytes to 
the end of any fixed-width structure until this property becomes true. 
These bytes will never result in confusion with respect to locating 
framing offsets or the end of a variable-sized child because, by 
definition, neither of these things occur inside fixed-sized structures. 

Figure 6.4 depicts a structure of type ( nsns) and value [257, I xx I , 

514, I I ] • One framing offset exists for the one non-fixed-sized item 
that is not the final item (namely, the string I xx I). The process of 
"rounding up" to find the start of the second integer is indicated. 

6.5.5 Dictionary Entries 

Dictionary entries are treated as structures with exactly two items ­
first the ke~ then the value. In the case that the key is fixed-sized, 
there will be no framing offsets, and in the case the key is non-fixed-size 
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there will be exactly one. As the value is treated as the last item in the 
structure, it will never have a framing offset. 

6.6 Examples 
This section contains some clarifying examples to demonstrate the 
serialisation format. All examples are in little endian byte order. 

The example data is given 16 bytes per line, with two characters 
representing the value of each byte. For clarity, a number of different 
notations are used for byte values depending on purpose. 

• 	 'A shows that a byte has the ASCII value of A (65). 

• 	 sp shows that a byte is an ASCII space character (32). 

• 	 \0 shows that a byte is a zero byte used to mark the end of a string. 

• 	 - - shows that the byte is a zero-filled padding byte used as part of 
a structure or dictionary entry. 

• 	 ## shows that the byte is a zero-filled padding byte used as part of 
an array. 

• 	 @@ shows that the byte is the zero-filled padding byte at the end of 
a just value. 

• 	 any two hexadecimal digits show that a byte has that value. 

Each example specifies a type, a sequence of bytes, and what value this 
byte sequence represents when deserialised with the given type. 
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String Example 
With type string I s I : 


'h 'e 'l 'l 'o sp 'w 'o 'r 'l 'd \0 


has a value of I hello world I. 


Maybe String 
With type string ' ms I : 


'h 'e 'l 'l 'o sp 'w 'o 'r 'l 'd \0@@ 


hasavalueofJust 'hello world'. 


Array of Booleans Example 
With type string 'ab I : 

01 00 00 01 01 

has a value of [True, False, False, True, True]. 

Structure Example 
With type string ' ( s i) I : 

'f 'o 'o \0 ff ff ff ff 04 


has a value of ( 'foo I -1).
, 
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Structure Array Example 
With type string 'a (si} ': 


'h 'i \0 -- fe ff ff ff 03 ## ## ## 'b 'y 'e \0 

ff ff ff ff 04 09 


has a value of [ ( 'hi' I -2) 1 ( 'bye' 1 -1)]. 


String Array Ex:ample 
With type string 'as' : 


'i \0 'c 'a 'n \0 'h 'a 's \0 's 't 'r 'i 'n 'g 

's '? \0 02 06 0a 13 


has a value of ['i' I 'can' I 'has' I 'strings?']. 


Nested Structure Example 
With type string ' ( ( ys) as) ': 


'i 'c 'a 'n \0 'h 'a 's \0 's 't 'r 'i 'n 'g 's 

'? \0 04 05 


has a value of ( ( 'i' I 'can') I ['has' I 'strings?']). 


Simple Structure Example 
With type string ' ( yy) ' : 


70 80 


has a value of ( 0x70 I 0x80). 
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Padded Structure Example 1 
With type string ( iy) I :I 

60 00 00 00 70 


has a value of (96, ex7e). 


Padded Structure Example 2 
With type string I ( yi) I : 

70 -- -- -- 60 00 00 00 


has a value of (ex7e, 96). 


Array of Structures Example 
With type string I a ( iy) 1 

: 


60 00 00 00 70 -- -- -- 88 02 00 00 f7 


has a value of [ ( 96 I ex7e) I ( 648 I exf7) ] . 


Array of Bytes Example 
With type string ay II : 

04 05 06 07 


has a value of [ exe4 1 exes 1 exe6 1 exe7] • 
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Array of lntege[]"s Example 
With type string ' ai ' : 

84 00 00 00 02 01 00 00 

has a value of [4, 258]. 

Dictionary Entry Example 
With type string '{si} ': 

'asp 'k 'e 'y \8 -- 02 02 ee 00 e6 

has a value of { ' a key ' , 514}. 

6.7 Non-N(Qrmal Serialised Data 

Nominall~ deserialisation is the inverse operation of serialisation. This 
would imply that deserialisation should be a bijective partial function. 

If deserialisation is a partial function, something must be done about 
the cases where the serialised data is not in normal form. Normally this 
would result in an error being raised. 

6.7.1 An Argument Against Errors 

Requirement Performance Requirement 3 forbids us from scanning the 
entirety of the serialised byte sequence at load time; we can not check 
for normality and issue errors at this time. This leaves any errors that 
might occur to be raised as exceptions as the values are accessed. 

Faced with the C language's poor (practically non-existent) support for 
exceptions and with the idea that any access to a simple data value might 
possibly fail, this solution also becomes rapidly untenable. 
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The only reasonable solution to deal with errors, given our constraints, 
is to define them out of existence. Accepting serialised data in non­
normal form makes deserialisation a surjective (but non-injective) total 
function. All byte sequences deserialise to some valid value. 

For security purposes, what is done with the non-normal values is 
precisely specified. One can easily imagine a situation where a content 
fllter is acting on the contents of messages, regulating access to a 
security-sensitive component. If one could create a non-normal form 
of a message that is interpreted differently by the deserialiser in the 
filter and the deserialiser in the security-sensitive component, one could 
IIsneak by" the filter. 

6.7.2 Default Values 

When errors are encountered during deserialisation, lacking the ability 
to raise an exception, we are forced into a situation where we must 
return a valid value of the expected type. For this reason, a "default 
value" is defined for each type. This value will often be the result of an 
error encountered during deserialisation. 

One might argue that a reduction in robustness comes from ignoring 
errors and returning arbitrary values to the user. It should be pointed 
out, though, that for most types of serialised data, a random byte error 
is much more likely to cause the data to remain in normal form, but with 
a different value. We cannot capture these cases and these cases might 
result in any possible value of a given type being returned to the user. 
We are forced to resign ourselves to the fact that the best we can do, 
in the presence of corruption, is to ensure that the user receives some 
value of the correct type. 

The default value for each type is: 

Booleans 
The default boolean value is False. 
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Bytes 
The default byte value is nul. 

Integers 
The default value for any size of integer (signed or unsigned) is zero. 

Floats 
The default value for a double precision floating point number is 
positive zero. 

Strings 
The default value for a string is the empty string. 

Object Paths 
The default value for an object path is I I 1 

• 

Signatures 
The default value for a signature is the nullary signature (ie: the empty 
string). 

Arrays 
The default value for an array of any type is the empty array of that 
type. 

Maybes 
The default value for a maybe of any type is the Nothing of that type. 

Structures 
The default value for a structure type is the structure instance that has 
for the values of each item, the default value for the type of that item. 

Dictionary Entries 
Similarly to structures, the default value for a dictionary entry type is 
the dictionary entry instance that has its key and value equal to their 
respective defaults. 

Variants 
The default variant value is the variant holding a child with the unit 
type. 
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It is worth noting that the default value for any fixed-sized type serialises 
to an all-zero byte sequence. This property simplifies the handling of 
these cases. 

6.7.3 Handling Non-Normal Serialised Data 

On a properly functioning system, non-normal values will not regularly 
be encountered, so once a problem has been detected, it is acceptable if 
performance is arbitrarily bad. For security reasons, however, untrusted 
data must always be checked for normality as it is being accessed. Due 
to the frequency of these checks, they must be fast. 

Nearly all rules contained in this section for deserialisation of non­
normal data keep this requirement in mind. Specifically, all rules can be 
decided in a small constant time (with a couple of very small exceptions). 
It would not be permissible, for example, to require that an array with 
an inconsistency anywhere among its framing offsets be treated as an 
empty array since this would require scanning over all of offsets (linear 
in the size of the array) just to determine the array size. 

There are only a small number of different sorts of abnormalities that 
can occur in a serialised byte sequence. Each of them, along with what 
to do, is addressed in this section. 

The following list is meant to be a definitive list. If a serialised byte 
sequence has none of these problems then it is in normal form. If a 
serialised byte sequence has any of these problems then it is not in 
normal form. Examples will be given in Section 6.7.4. 

Wrong Size for Fixed Sized Value 
In the event that the user attempts deserialisation using the type of a 
fixed-width type and a byte sequence of the wrong length, the default 
value for that type will be used. 

60 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Non-zero Padding Bytes 
This abnormality occurs when any padding bytes are non-zero. This 
applies for arrays, maybes, structures and dictionary entries. This 
abnormality is never checked for - child values are deserialised from 
their containers as if the padding was zero-filled. 

Boolean Out of Range 
In the event that a boolean contains a number other than zero or one it 
is treated as if it were true. This is for purpose of consistency with the 
user accessing an array of booleans directly in C. If, for example, one 
of the bytes in the array contained the number 5, this would evaluate 
to True in C. 

Possibly Unterminated String 
If the final byte of the serialised form of a string is not the zero byte 
then the value of the string is taken to be the empty string. 

String with Embedded Nul 
If a string has a nul character as its final byte, but also contains 
another nul character before this final terminator, the value of the 
string is taken to be the part of the string that precedes the embedded 
nul. This means that obtaining a C pointer to a string is still a constant 
time operation. 

Invalid Object Path 
If the serialised form of an object path is not a valid object path 
followed by a zero byte then the default value is used. 

Invalid Signature 
If the serialised form of a signature string is not a valid DBus signature 
followed by a zero byte then the default value is used. 

Wrong Size for Fixed Sized Maybe 
In the event that the size of a maybe instance with a fixed element 
size is not exactly equal to the size of that element, then the value is 
taken to be Nothing. 
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Wrong Size for Fixed Width Array 
In the event that the serialised size of a fixed-width array is not an 
integer multiple of the fixed element size, the value is taken to be the 
empty array. 

Start or End Boundary of a Child Falls Outside the Container 
If the framing offsets (or calculations based on them) indicate that any 
part of the byte sequence of a child value would fall outside of the 
byte sequence of the parent then the child is given the default value 
for its type. 

End Boundary Precedes Start Boundary 
If the framing offsets (or calculations based on them) indicate that the 
end boundary of the byte sequence of a child value precedes its start 
boundary then the child is given the default value for its type. 

The end boundary of a child preceding the start boundary may cause 
the byte sequences of two or more children to overlap. This error is 
ignored for the other children. These children are given values that 
correspond to the normal deserialisation process performed on these 
byte sequences with the type of the child. 

If children in a container are out of sequence then it is the case that 
this abnormality is present. No other specific check is performed for 
children out of sequence. 

Child Values Overlapping Framing Offsets 
If the byte sequence of a child value overlaps the framing offsets of 
the container it resides within then this error is ignored. The child is 
given a value that corresponds to the normal deserialisation process 
performed on this byte sequence (including the bytes from the framing 
offsets) with the type of the child. 

Non-Sense Length for Non-Fixed Width Array 
In the event that the final framing offset of a non-fixed-width array 
points to a boundary outside of the byte sequence of the array, or 
indicates a non-integral number of framing offsets is present in the 
array, the value is taken to be the empty array. 
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Insufficient Space for Structure Framing Offsets 
In the event that a serialised structure contains an insufficient space 
to store the requisite number of framing offsets, the error is silently 
ignored as long as the item that is being accessed has its required 
framing offsets in place. An attempt to access an item that requires 
an offset beyond those available will result in the default value. 

6.7.4 Examples 

This section contains some clarifying examples to demonstrate the 
proper deserialisation of non-normal data. 

The byte sequences are presented in the same form as for the 
normal-form examples. A brief description is provided for why a value 
deserialises to the given value. 

Wrong Size ·ror Fixed Size Value 
With type string IiI: 

07 33 90 

has a value of 0. 

Since any value with a type of I i I should have a serialised size of 
4, and since only 3 bytes are given, the default value of zero is used 
instead. 

Non-zero Pildding Bytes 
1With type string ( yi) I : 

55 66 77 88 02 01 00 00 

has a value of ( 0x55, 258) . 

Non-zero padding bytes (66 77 88) are simply ignored. 

63 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

Boolean Out of Range 
With type string ab I:I 

01 00 03 04 00 01 ff 80 00 

has a value of [True, False, True, True, False, True, True, 
True, False]. 

Any non-zero booleans are treated as True. 

Unterminated String 
With type string I as I : 

1 h 'e 1 l 'l 'o sp 'w 'o 'r 'l 'd \0 0b 0c 

has a value of [ I I , I I 1 (two empty strings). 

The second string deserialises normally as a single nul character, but 
the first string does not contain a nul character. Regardless of the fact 
that a nul character immediately follows it, the first string is replaced 
with the empty string (the default value for strings). 

String with Embedded Nul 
With type string I s I : 

'f 'o 'o \0 'b 'a 'r \0 

has a value of I foo I. 
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String with embedded nul but none at end 
With type string I s I : 

'f 'o 'o \0 'b 'a 'r 

has a value of 1 1 (the empty string). 

The last byte in the string is always checked to determine if there is 
a nul and, if not, the empty string is used as the value. This includes 
the case where a nul is present elsewhere in the string. 

Wrong size for fixed-size maybe 
With type string mi II : 

33 44 55 66 77 88 

has a value of Nothing. 

The only possible way for a value with type I mi 1 to be Just is for its 
serialised form to be exactly 4 bytes. 

Wrong size ·~or fixed-width array 
With type string a ( yy) II : 

03 04 05 06 07 

has a value of [ ] . 

With each array element as a pair of bytes, the serialised size of the 
array should be a multiple of two. Since this is not the case, the value 
of the array is the empty array. 
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Start or end boundary of child falls outside the container 
With type string (as ) II : 

'f 'o 'o \0 'b 'a 'r \0 'b 'a 'z \0 04 10 0c 

has a value of [ I foo I , I , I ] •I I 

No problems are encountered while unpacking the first element in the 
array (which is marked as falling between byte boundaries 0 and 4). 
When unpacking the 2nd element, its end offset (16) is outside of the 
bounds of the array. This offset (16) is also the start of the 3rd array 
element. As a result, both of these elements are given their default 
value (the empty string). 

End boundary precedes start boundary 
With type string 1 (as ) I : 

'f 'o 'o \0 'b 'a 'r \0 'b 'a 'z \0 04 00 0c 

has a value of [ I foo I , I , foo I ] •I I 

Again, no problems are encountered while unpacking the first element 
in the array. When unpacking the second element it is noticed that the 
end boundary precedes the start. Since this is impossible, the default 
value of I is used instead. Unpacking the final element (from 0 to 12)I 

occurs without problem. The final element overlaps the first element, 
however, and when assessing its value, the embedded nul character 
causes it to be cut off at foo II • 
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Insufficient space for structure framing offsets 
With type string (ayayayayay) I:I 

03 02 01 

has a value of ( [ 3] 1 [ 2] 1 [ 1] 1 [ ] 1 [ ] ) • 

Since this is not a fixed-size value, the fact that it has an impossible 
size does not cause it to receive its default value (ie: there is no 
concept of "minimum-size"). Unpacking the first three items in the 
structure occurs without a problem (demonstrating that the content 
of a value can overlap the framing offsets). Attempting to unpack the 
last two items fails, however, since the required framing offsets simply 
do not exist. The default values are used instead. 
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Chapter 7 

Implementing the Format 

This chapter contains information about the serialisation format that is 
not part of its specification. 

This information discusses issues that will arise during implementation 
of the serialisation format. Certainly, the issues discussed in this chapter 
have had an impact on the GVariant implementation discussed in 
Chapter 10. 

An unfortunate observation is made about the safety of byteswapping 
operations and a method is given (along with proof of correctness) that 
random accesses to the contents of a structure can be made in constant 
time, despite the fact that framing offset are omitted for fixed-sized 
values. 

7.1 Notes on Byteswapping 

Implementors may wish to perform in-place byteswapping of serialised 
GVariant data. There are a couple of things to consider in this case. 

The primary concern arises from the fact that if non-normal serialised 
data is present then byteswapping may not be possible. 
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With a type string of ( ssn) consider the following non-normal serialised 
data in little-endian byte order: 

78 ee ee e2 

The first string has a length of 2 (including the nul terminator) and a 
value of 1 The second string is given its default value of I 

1 as a resultxI • 

of its end offset of 0 preceding its start offset of 2. Finally, the 16-bit 
integer, with a start offset of 0 (thus overlapping the first string) has a 
value of ex78. The value of the entire structure is ( IxI 1 I I 120).1 

To change this serialised data to be in big-endian byte order requires 
the swapping of the bytes of the 16-bit value. To do so, however, would 
also modify the value of the string which these bytes overlap. In this 
case (and in general) there is no way to avoid this problem. 

Because of this problem, any implementation wishing to perform in­
place byteswapping of serialised data must first ensure that the data is 
in normal form. 

There are a couple of cases where this requirement for normal form does 
not exist. In the case of any fixed-sized value or variable sized array, no 
framing offsets are present. This effectively eliminates the possibility 
of overlapping data and means that this cases can be byteswapped in­
place without first checking for normality. 

Through a fortunate alignment of circumstances, these types (together 
with strings, which need not be byteswapped at all) are exactly the sorts 
of data that an implementation may wish to make available to the user 
via a pointer. As a result it is easy to imagine that an implementation 
may end up not requiring the ability to in-place byteswap serialised data 
except in cases where it is always safe. 
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7.2 Calculating Structure Item Addresses 

In the C language, structures exist in much the same way as they exist 
in the serialisation format. Each item in the structure follows the one 
preceding it as closely as possible, subject to alignment constraints. 

No matter what is done, it is impossible to determine the address of 
an item in a structure in C in a constant amount of time. The sizes and 
alignments of the items preceding it each need to be considered - a 
process which can not occur in less than linear time. The algorithm 
for doing this is to start at the starting address of the structure and 
then for each preceding item in the structure, round up to its alignment 
requirement and add its size. Finally, round up to the alignment 
requirement of the item to be accessed. 

This process can be described with a simple algebra containing two 
types of operations: 

• 	 (+c): add to a natural number, some constant, c. 

• 	 ( i c): "align" (round up) a natural number up to the nearest multiple 
of some constant power of two, 2c. 

Assume that the compiler aligns integer values to their size. To find the 
address of a 32-bit integer following a 16-bit integer following an array 
of three 64-bit integers, for example, the following computation must be 
performed, given the address of the start of the structure, s: 

((i3); (+24); (fl); (+2); (t2))s 

in which (a; b) denotes reverse function composition: "a then b". 

Of course, no sane C compiler saves this computation to be performed 
at each access. Instead, the compiler performs the computation at the 
time of the structure definition and builds a table containing the starting 
offset and size of each item in the structure. Because every item in the 
structure is of a fixed size and because the start address of the structure 
is always appropriately aligned, the address of an item in a structure 
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can always be specified as a constant relative to the address of the start 
of that structure. 

For our example: 

(+28) s 

Admitting non-fixed-sized items to structures very obviously prevents 
the starting offset of items following any non-fixed-sized item from being 
a constant relative to the start of the structure. The start address of 
any item will clearly depend on the end address of the non-fixed-sized 
item that most immediately precedes it. Worse than this though, due to 
the fact that this end address has no particular alignment, the starting 
offset of each item cannot be expressed as a constant offset, even to the 
end of the non-fixed-sized item preceding it. 

Without discovering another method to build a table, the address 
computation would have to be performed, in fulL at each access - in 
linear time. Fortunately, another method exists, permitting constant­
time access to structure members. It is possible to build a table 
with each row containing four integers such that this table permits 
calculating the start address of any structure item to be performed in 
only four operations: 

((+a); ( i b); (+c)) offsets[i] 

Where offsets is the array of framing offsets for the structure and i, a, b 
and care the four integers from the table. By definition, offsets[-1] = 0. 

7 .2.1 Performing the Reduction 

In this and the following sections, (x i y) is the result of applying ( i y) to 
x. If x andy are constants then (x i y) will also be a constant - allowing 
us to compute its value ahead of time. 

Essentially, we are interested in a process by which we can reduce any 
length of sequence of constant adding and alignment operations to a 
sequence of length 3, with the form shown above. We can then perform 
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this small constant number of operations at each access instead of the 
full computation. 

This reduction process occurs according to the following reduction rules 
(which are proven in Section 7.2.5): 

Addition rule 
(+a); (+b)= (+(a+ b)) 

Greater alignment rule 
(T a); (+b); ( t c)= (+(b t a)); (T c), if c ~a 

Lesser alignment rule 
(ta); (+b); (tc) = (ta); (+(b t c)), ifc sa 

We can prove that, using these rules, any sequence of operations can be 
reduced to have no more than one alignment operation. If there exist 
two alignment operations in the sequence, one of these cases must be 
true: 

• two alignment operations separated by exactly one addition 

• two adjacent alignment operations 

• two alignment operations separated by more than one addition 

In the case that there is exactly one addition separating our two 
alignment operations then the greater or the lesser alignment rule may 
be immediately applied to reduce the number of alignment operations 
by one. 

In the case that there are more than one additions, they can be 
merged down to a single addition by application of the addition rule 
before applying one of the alignment rules. In the case of two adjacent 
alignment operations, a ( +0) operation can be introduced between then 
before applying one of the alignment rules. 

Since we can reduce any sequence of operations to a sequence 
containing only one alignment operation, we can further reduce it to 
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the form (+a); ( l b); (+c) by using the addition rule to merge all of the 
additions that occur before and after this single alignment operation. 

7 .2.2 Computing the Table 

Based on the reduction rules above, an efficient (but still linear time) 
algorithm for computing the entire table at once can be developed. 

At all times, the "state so far" is kept as the four variables: Ca, band c 
such that getting to the current location is possible by computing ((+a); 
( l b); (+c)) relative to the offset[i]. i is kept equal to the index of the 
framing offset which specifies the end of the most recently encountered 
non-fixed-sized item in the structure (or -1 in the case that no such item 
has been encountered). a, b, c start at 0. 

Three merge rules are defined to allow any additional operation to be 
appended to this sequence without changing the size of the form of the 
sequence; the merge rules effect only the integer values of a, band c. 

1. 	 appending an alignment d less than or equal to the current 
alignment: (a, b, c) := (a, b, c l d) as a direct result of the lesser 
alignment rule application (+a); (l b); (+c); (l d) = (+a); (l b) (+c 
l d). 

2. 	 appending an alignment d greater than the current alignment: 
(a, b, c) := (a + (c l b), d, 0) by the greater alignment rule 
application (+a); (l b); (+c); (l d) = (+a); ( +c f b); (l d), addition 
rule application to (+a + (c f b)); ( l d) and harmless appending of 
(+0) to give (+a + (c f b)); (l d); (+0). 

3. 	 appending an addition e: (a, b, c) := (a, b, c + e) by obvious use of 
the addition rule (+a); ( l b); (+c); (+e)= (+a); ( l b); (+(c +e)). 

Each time a non-fixed-sized item is encountered, i is incremented and 
a, b, care set back to zero. 
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The algorithm is implemented by the following Python function which 
takes a list of (alignment, fixed size) pairs as input, representing the 
structure items. Its output is the table, given as an array of 4-tuples. 

def generate_table (items): 
(i, a, b, c)= (-1, 0, 0, 0) 
table= [] 
for (d, e) in items: 

if d <= b: 
(a, b, c) = (a, b, align(c, d)) #merge rule #1 

else: 
(a, b, c) = (a+ align(c, b), d, 0) #merge rule #2 

table.append ((i, a, b, c)) 
if e == -1: # item is not fixed-sized 

(i, a, b, c) = (i + 1, 0, 0, 0) 
else: 

(a, b, c) = (a, b, c + e) # merge rule #3 
return table 

It is assumed that align(a, b) computes (a l b). 

7 .2.3 Further Reduction 

The reductions described above are non-confluent. An equivalence on 
the final sequence of operations exists. Specifically, if d is a multiple of 
2b, then: 

(+a); ( T b); (+(c +d))= (+(a+ d)); ( T b); (+c) 

This is because, being a multiple of 2b, d can 11pass through" the 
alignment operation without change. 

Consider, for example, the following: 

(n + 16) l 3 

It is clear that this is equivalent to 
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(n i 3) + 16 

since there are no low order bits in the binary representation of 16 to 
be affected by a rounding operation that clears only the bottom 3 bits. 

In the case where only small alignment constraints are encountered (no 
larger than 8) it is possible (by shifting multiples of 256 out of c into a) 
to ensure that c fits into no more than a single byte. This applies to the 
serialisation format as specified, considering that the largest alignment 
constraint ever encountered is 3. 

7 .2.4 Plus/And/Or Representation 

As a micro-optimisation, after performing the reduction in the previous 
section, the resulting values of a, b, c can be transformed such that 
the calculation can be performed in only 3 commonly-available machine 
instructions. 

This transformation takes advantage of three simple facts about 
rounding. 

First note that rounding up to the nearest multiple of any number is 
the same as adding that number, minus 1, then rounding down to the 
nearest multiple of that number. 

Second, note that rounding down to the nearest multiple of a number 
that is a power of two is the same as taking the bitwise and with the 
bitwise complement of that number minus 1. 

Third, note that the result of rounding to a multiple of a power of 2 
results in the low order bits of the result being cleared. Adding a number 
less than that multiple to the result of the rounding can't possibly result 
in carrying, so using bitwise or is an equivalent operation. 

Keeping in mind that after the reduction in the last section, c < 2b: 

((+a); ( i b); (+c) s) =((+(a+ 2b- 1)); (& -(2b- 1)); (!c)) s) 
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where I denotes bitwise or, & denotes bitwise and, and - denotes bitwise 
complement. 

We can therefore choose to store the following into the table: 

(a + 2b - 1, -(2b- 1), c) 

and for each address we calculate, we are only required to perform an 
addition, a bitwise and and a bitwise or. 

7.2.5 Proof of Reduction Rules 

Given a few "intuitive" lemmas, we can prove that the reduction rules 
are sound. 

Lemma 1 
Va, b: ( t a); ( t b)= ( t (max(a, b))) 

since alignment is always to powers of two, two successive alignment 
operations are equivalent to the "most powerful" of the two. 

Lemma 2 
Va, b, c, r: r = ( t c) = r(a) + r(b) = r(a + r(b)) 

since r(b) is already a multiple of 2c it can "pass through" the second 
application of r without change. 

Lemma 3 
Vc, (0 t c) = 0 

7.2.5.1 Addition Rule 

Associativity of addition: 

Va, b, n: (n + a) + b = n + (a + b) 

which is just the same as: 
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"'a, b, n: ((+a); (+b)) n = (+(a + b)) n 

By partial instantiation: 

'Vn: ((+a); (+b)) n =(+(a+ b)) n 

and then by extensionality: 

(+a); (+b)= (+(a+ b)) 

7 .2.5.2 Greater Alignment Rule 

Let r = (Tc) and s = (T a). 

Lemma 2: 

Vm, n : s(n) + s(m) = s(s(n) + m) 

Lemma 3 allows: 

'Vm, n : s(n) + s(m) + s(O) = s(s(n) + m) 

Repeated application of lemma 2 to the above: 

'Vm, n : s(n) + s(s(m) + 0) = s(s(n) + m) 

'Vm, n : s(s(n) + s(m) + 0) = s(s(n) + m) 

Which of course is equivalent to: 

Vm, n : s(s(n) + s(m)) = s(s(n) + m) 

Since addition commutes and we universally quantify over both m and 
n, there is no reason that what works for one won't work equally well 
for the other: 

'Vm, n: s(s(n) + s(m)) = s(n + s(m)) 

so, clearly: 
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Vm, n: s(s(n) + m) = s(n + s(m)) 

Which we can partially instantiate as: 

Vn: s(s(n) + b) = s(n + s(b)) 

It must be true, then, that: 

Vn: r(s(s(n) +b)) = r(s(n + s(b))) 

Remembering that r = (Tc) and s = (Ta): 

Vn: ((l a); ( T c)) ((n T a) + b) = (( T a); ( T c)) (n + (b T a)) 

And lemma 1 (since as c) merges this into: 

Vn: ( T c) ((n T a) + b) = ( Tc) (n + (b T a)) 

Vn: (( Ta); (+b); (T c)) n = ((+(b T a)); ( Tc)) n 

By extensionality: 

(Ta); (+b); (Tc) = (+(b T a}}; (Tc) 

7 .2.5.3 Lesser Alignment Rule 

Let r = ( Ta) and s = ( Tc). 

Trivially: 

Vn: s(r(n) + b) = s(r(n) + b) 

From lemma 1, since c sa: 

Vn: s(s(r(n)) + b) = s(r(n) + b) 

Then lemma 2 allows: 

Vn: s(r(n)) + s(b) = s(r(n) + b) 
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Effectively reversing the first application of lemma 1: 

Vn: r(n) + s(b) = s(r(n) + b) 

Remembering r = ( i a) and s = ( i c): 

Vn: ((+(b f c)); (fa)) n = (( i a); (+b); ( i c)) n 

By extensionality: 

(+(b i c)); (ia) = (ia); (+b); (fc) 
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PART III 


This part documents the implementation of GVariant that 
was developed for inclusion in the GNOME platform. The 
application programmer interface is introduced and some 
examples are given ofcommon use cases to illustrate the basic 
functioning of this implementation. Some noteworthy internal 
implementation details are described. 
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Chapter 8 

Programmer Interface 

As a first step to understanding the implementation of GVariant, this 
chapter gives an overview of its interfaces. 

The chapter is split into a number of sections such that each major "part" 
of the interface is briefly described in its own section. 

Detailed API reference documentation, on a call-by-call basis is provided 
as Appendix A. 

8.1 Types 

As GVariant has been developed in, and for, the C programming 
language, the possibility of performing any sort of compiler supported 
static type checking of programs using GVariant is practically non­
existent. 

For this and other reasons, GVariant must feature some notion of 
representing types, on its interfaces, as runtime objects. The name of 
the type of this runtime object is GVa riantType. 

The range of GVa riantType includes all of the types described in 
Chapter 5. GVariantType also includes "wildcard types". 
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8.1.1 Wildcard Types 

GVa riantType supports the concept of "matching" and "wildcard types". 
Any type matches itself, but a wildcard type matches other types as well. 
A wildcard type can never be the type of an instance (but an instance, 
of course, may match a wildcard type). 

Matching can be used to support a degree of polymorphism while 
enforcing runtime type assertions. 

There are three base wildcard types which each match a number of 
other types. An infinite number of wildcard types can be formed by 
applying the other type constructors, in the usual way, to other wildcard 
types. 

All wildcard 
The all wildcard type matches any type. This wildcard is represented 
by the * ' character.I 

Basic wildcard 
The basic wildcard type matches any one of the basic types. It is itself 
considered to be a basic type. This wildcard is represented by the I? 1 

character. 

Structure wildcard 
The structure wildcard type matches any structure type. This wildcard 
is represented by the I r I character. 

The grammar of type strings is expanded to support wildcard types in 
the following manner. At any position in the derivation of a type string 
where a valid type string could appear then any of the new terminal 
characters (I* I, I? I or I r I) can now appear. At any position of a type 
string where only a base type could appear (ie: as the key of a dictionary 
entry type) the terminal character 1 ?' can now appear. 

The reason that a base wildcard type exists to match any structure type, 
but not for any of the other type constructors, is because structures 
are the only variadic type constructor. Equivalent wildcard types may 
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be formed for the other type constructors by providing the other base 
wildcard types as arguments for those constructors (consider type string 
I a* I and I{?*} I, for example). 

8.1.2 Type Classes 

A user of GVariant may be interested in handling GVariant instances of 
arbitrary types. This can be done by recursing and iterating over the 
structure of the instance in a generic way. 

In order for the user to be able to unwind the structure of the type of 
a value, they need the ability to categorise many different types into 
classes. One step of a recursive algorithm can then perform its local task 
based on which class it is dealing with. 

To this end, a small finite number of "type classes" exist as an 
enumerated a type called GVa riantTypeClass. 

Querying the type class of a GVa riantType effectively gives all of the 
information about the "top layer" of the type. In terms of type strings, 
the type class can always be determined by looking only at the first 
character. 

Some examples of type classes are "array", "structure" and "32 bit 
signed integer". 

8.2 VallJ1es 

The most central part of the interface, of course, is the type that 
represents a single value. This type is, accordingly, given the name 
GVariant. 

A GVa riant is essentially a dependent pair of one of the types described 
in Chapter 5 and a value of that type. It is no accident that this definition 
bears close resemblance to the definition given for the "variant" type in 
the same chapter - these two things serve the same purpose and can 
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contain exactly the same range of values. The only difference is that one 
exists within the type system of GVariant and the other exists within C. 

A GVa riant has its type and value when it is constructed and these two 
things never change. A GVa riant is a value, not a variable. The only way 
to "change" the value is to destroy the instance create a new one in its 
place. 

Each GVa riant is reference counted. This allows a number of users to 
"share" a value. So long as a particular user holds on to their reference 
they can ensure that the value will continue to exist. Coupled with the 
statement in the previous paragraph, this enables a given user to be 
certain that the value that they have a reference to will never change. 

Floating reference counts are supported. This concept is very familiar 
to GNOME programmers, as the GObject type system features it. In 
essence, in addition to a reference count, each instance has a "floating" 
flag. A new "sink" operation is defined as follows: if the floating flag is 
set then unset it and do nothing else; if the floating flag is unset then 
increase the reference count. 

When any GVa riant instance is added to a container, the sink operation 
is performed on that instance. In the case that the floating flag was 
not set, this causes the container to acquire a new reference to the 
instance. New instances are created with the floating flag set however. 
This allows for the programmer to skip the step of explicitly releasing 
their reference to an instance in the very common case that it is created 
only to be added directly to a container (since at the point of adding 
to the container the sink operation effectively transfers the reference 
from the caller to the container). This feature is a nice convenience in a 
language that lacks automatic reference counting. 

8.3 Plain C Interfaces 
Creating new instances or gaining access to the value of an existing 
instance is accomplished by a range of calls that are detailed in the 
appendix. 
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For each base type x there is a g_variant_new_x(} function and a 
g_va riant_get_x () function. 

For each container type class there is a function to allow construction 
of a GVa riant instance with a type of that class, given existing child 
instances. 

There are also g_variant_n_children(} and g_variant_get_child() 
calls which may be applied to children in obvious ways to loop over their 
contents. 

As an added convenience there are iterator and builder interfaces that 
allow for step-by-step construction and deconstruction of containers. 

Finally, there are calls to allow direct pointer access to serialised 
data that can be directly understood by C. The functions 
g_variant_get_fixed() and g_variant_get_fixed_array() can be 
applied to fixed-sized values and arrays thereof. 

8.4 varargs C Interfaces 

Even with the convenience functions provided as part of the builder 
and iterator interfaces, constructing and deconstructing complex 
hierarchies of values (particularly complex structure types) can be 
particularly frustrating. For this reason, a printf ()-style interface has 
been introduced. 

The functions g_variant_new() and g_variant_get(} each accept 
a special format string. This format string describes the types of 
arguments that will be collected and the final (or initial) type of the value 
being constructed (or deconstructed). 

Any type string (including those containing wildcards) is a valid format 
string. Additionally any type string appearing within the format string 
may have I@' prepended to it. Any type string corresponding to a fixed­
type that appears within the format string may have I & 1 prepended to it. 
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These two modifiers don't change the type involved in the construction 
or deconstruction but change how the arguments are collected. 

More detail about format strings is provided in the appendix. 

As with all varargs functions, this interface is slightly evil. This evilness, 
however, provides for significantly less typing. 

Versions of these functions that take a pointer to a va list (similar to 
vp rintf ())also exist. They are denoted with the suffix va. 

8.5 Load and Store 

Contained in a separate header file and not intended for use by "normal 
users" is support for interfacing with GVariant on the level of serialised 
data. 

Calls exist for writing serialised data out to a buffer, or for requesting 
the serialised data stored internally within a GVariant (in the case that 
this does not yet exist, it will be created). 

Calls also exist for creating new GVariant instances from serialised data 
- either by taking a copy of the data, or in the most efficient case using 
the data in-place. 

8.6 Markup 

Facilities are provided for pretty-printing GVa riant instances to and 
parsing them from a GMarkup1-based format. 

1 GMarkup is a substantial subset of XML designed for simplicity. It has all of the 
basic features which one would normally recognise as being XML. Some missing 
features include user-defined entities, DTD validation and character encodings other 
than UTF-8. 
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Any value is representable in the markup language, so parsing 
composed with printing is an identity operation. One current exception 
(which may be addressed in future work) is a loss of floating point 
precision. 

Support has been added2 to GLib to support "subparsing" of GMarkup 
documents whereby a subparser can be invoked to handle a segment 
of a larger document. It is in this context, as a subparser, that GVariant 
markup parsing is expected to be most commonly used. 

An example document in this markup language is given below. The type 
string of the type of the value that results from parsing the document 
is ( yasabaq). 

<struct> 

<byte>42</byte> 


<array> 

<string>hello</string> 

<string>world</string> 


</array> 

<array> 

<true/> 

<true/> 
<false/> 


</array> 


<!-- GVariant is unable to infer the type 

so it must be explicitly specified 


- -> 
<array type='aq'/> 


</struct> 


2 http://bugzilla.gnome.org/show_bug.cgi?id=337518#c24 
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Chapter 9 

Clarifying Examples 

Before describing the implementation of GVariant in more detail, this 
chapter provides some insight into what occurs, internally, in response 
to some common usage scenarios. 

9.1 Readling from a mapped file 

The first example demonstrates how GVariant can be used to access a 
single string within a memory mapped file containing an array of strings. 

First, we assume that a GMappedFi le named mapped exists . 
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The mapped file contains, among its data, the serialised form of an array 
of strings. We can tell GVariant to create an instance representing the 
value of this array by calling g_variant_from_data (). 

GVariant *array; 

array= g_variant_from_data (G_VARIANT_TYPE ("as"), 

mapped_data + offset, 

size, 

G_VARIANT_TRUSTED, 

g_mapped_file_free, 

mapped); 


This function call causes a number of things to happen. 

Figure 9.2 : a GVariant using memory-mapped data 

Most obviously, a new instance will be created to represent the array. 
This instance contains a pointer to the serialised data of the array 
(including its size). At this point there has been no access to the 
contents of the mapped file - merely an exchange of pointers. 

Of course, since GVariant didn't take its own copy of the data, 
GMappedFile must continue to exist for the duration of the life 
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of array. This is the purpose of the last two arguments to 
g_variant_from_data ().This is where the notify instance comes in. 

notify is internal to GVariant and is never made accessible to the 
programmer. Its purpose is to exist for as long as the data provided by 
the user is needed. When it stops existing, it calls a notification function. 
In this case, the notification function is the freeing of the mapped file 
and its data. 

There are two reasons that this indirect approach has been used instead 
of embedding the notify closure directly into the array itself. The first 
is that there simply wasn't enough room to store two extra pointers 
into a GVa riant instance. The second is that having the notify instance 
provides for more flexibility. 

Imagine now that we want to actually obtain one of the strings from 
inside the string array, the one with an index of 2. 

GVariant *string; 

string= g_variant_get_child (array, 2); 

Strings are variable-sized, so in order to determine where our string lies 
among the serialised data we have to read the framing offsets associated 
with it. We read two (consecutive) integers telling us the start and the 
end of the string's data and use these offsets as the pointers for a new 
instance. No other data is read at this point. 
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Figure 9.3: a GVariant shares thf!memory of its parent 

Notice that string directly references the notify instance now. This 
means that if we were to drop our reference to the array it could be 
freed. 

g_variant_unref (array); 
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Fi{Jure 9.4: S()Urce data kep~ ali'l,le_as lonfl a~ it. i~ in use 

At this point, we might want to actually access the string data. This is 
a very simple proposition. 

canst gchar *ptr; 

gsize len; 


ptr = g_variant_get_string (string, &len); 

Because we provided the G_VARIANT_TRUSTED flag when loading the 
data we know that the string is properly formatted and of the right 
length. This allows GVariant to provide the length of the string to the 
programmer for free. We're also confident that the string is properly 
nul-terminated, so we don't have to access the string's data at all at this 
point - only return a pointer. 
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ptr 

.Figure 9.5: a pointer is provided directly to memory-mapped data 

At this point, the user is able to use the string directly as if it were a 
native C string. This will cause the data associated with the string to be 
paged in (unless it had happened to share a page with its own offsets 
which we read earlier). 

The pointer remains valid for the life of string. When string is 
released then it drops its reference on notify which will, in turn, call 
g_mapped_file_free () on mapped. 

g_variant_unref (string); 
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Figl.!re 9.~: the pointer is inva.lid (lfie~ the reference is released 

Of course/ at this point/ ptris no longer valid (since string has been freed 
and its serialised data is gone). 

9.2 Construction of new values 
The second example demonstrates what happens when GVariant is used 
to construct new values. 

Imagine we want to create an array of integers. 

GVariantBuilder *builder; 

GVariant *array; 


builder= g variant builder new (G VARIANT TYPE CLASS ARRAY, NULL);
g_variant_builder_add (builder, "[", 42);- - ­
g_variant_builder_add (builder/ "i", 28); 
g_variant_builder_add (builder, "i", 84); 
array= g_variant_builder_end (builder); 

In this case/ a separate GVariant instance has been created for each 
integer. Integer and floating point data is small enough that it can 
fit inside the GVa riant structure and need not refer to an external 
serialised data buffer. 
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A GVa riant instance has also been created to represent the array. This 
instance contains references to the integers. 

Figure 9.7: a tree ofGVariant instances 

It may seem wasteful to create an array of integers in this way, but 
consider the case that we were adding more complicated values to the 
array. In this case, the cost of copying the data of those values into a 
separate serialised buffer may outweigh the benefit. 

Next, perhaps want to have the array as one of the child items of a 
structure type. This is easy enough to do. 

GVariant *structure; 

structure= g_variant_new ("(s@ai)", "hello world", array); 

Note that due to the floating reference counts of GVa riant instances the 
reference held by array has been assumed by structure. 
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Nesting can continue in this way to arbitrary depths. 

Eventually it may be desirable to access the serialised representation 
of the value of structure. Two different methods are provided for 
accomplishing this. 

First is an API to store the serialised data into a buffer provided by the 
caller. A call is provided to determine how large this buffer must be. 

gpointer *data; 

gsize size; 


size= g_variant_get_size (structure); 

data= g_malloc (size); 

g_variant_store (structure, data, G_LITTLE_ENDIAN); 


Each leaf node writes its own data into the buffer and the intermediate 
container nodes write only the framing information and padding bytes 
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where appropriate. This means that any given piece of data is written 
only once and not copied several times as it moves through each layer. 

There is also an API to allow access directly to the serialised data of a 
value. 

gconstpointer data; 

gsize size; 


data= g_variant_get_data (structure, &size); 

This call presents a problem for the case where the value is stored in 
tree format (as is the case with structure). There is no serialised data 
to return a pointer to. 

In order to satisfy the request, a new memory buffer is allocated. 

Figure 9.9: implicit serialisation occurs 
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The serialisation process then occurs with this new buffer as the 
destination. The process is very similar to the one that occurs when 
using the first API (specifically, each value stores its own contents 
directly into the top level buffer). 

Once the serialisation is complete, the top level value drops any 
references it holds on the child values. The instance is no longer in tree 
form; it has been serialised. 

Fiqure 9.10: after serialisation, _the children are released 

Any future calls to g_va riant_get_data () will be able to return 
immediately. The return value of g variant get data () is valid for the 
life of the instance. 

Any future calls to g variant get child () will deserialise the child 
from the serialised data (similar to what occurred in Section 9.1. 
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Chapter 10 

Implementation Details 

This chapter presents information about the implementation of 
GVariant. 

10.1 Internal Modularity 

Internally, GVariant is separated into a number of separate source 
files. These separate flies are used to separate functionality into logical 
groupings and to increase modularity by enforcing the principle of loose 
coupling. 

As an example of how loose coupling is forced by this arrangement, all 
non-trivial structure types in GVariant are declared within a C source 
file (not a header) and are accessible to only the functions contained in 
that file. This limits the amount of code that can be affected by a change 
to one of these structures. 

One particular division is worth mentioning because it is not made along 
boundaries that are implied by logical grouping of functionality. This 
is the separation between the files gva riant- util. c and gva riant­
core. c. 
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These files both contain functions that are used for creating and 
accessing GVa riant instances. The simple rule for which file a particular 
function goes in is determined by the fact that the GVa riant structure 
is declared in gva riant- core. c. If a function requires direct access to 
the GVa riant structure then it goes in this file. Everything else goes into 
gva riant- util. c. During development, effort has been made to keep 
the number of functions in gva riant- core. cas small as possible. 

10.2 Values 

A GVa riant instance is a small structure type (24 bytes on 32 bit 
systems) allocated on creation and freed when the last reference to it 
drops. 

Each GVariant instance contains a reference count encoded as an 
integer. The high bit of this integer is used as the floating reference flag 
(in order to implement the floating reference behaviour described in 
Chapter 8.) All reference counting operations are performed using the 
glib atomic functions and are therefore thread-safe without locking. 

Each instance also contains a pointer to a type information structure 
(described below). The type of the instance never changes, so accessing 
it is always safe, so long as the instance continues to exist. 

Each instance contains a state register, encoded as an integer. The 
individual bits in this integer value represent various conditions that 
may or may not be true about the instance. This is explained in 
considerable detail in Section 1 0. 3 .1. 

The remainder of the content of the instance is determined by the state 
that the instance is in (as determined from the state register). 
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10.3 Sta'fte Transformations 
Initially, the implicit state transitions that a GVariant instance needed to 
undergo were handled in an ad hoc manner in response to programmer 
calls. 

For example, g_ va riant_get_size () (which reports the byte size of the 
serialised form of a value) would check if the size was already known 
(internally: the size field contains a value other than -1) and, if so, report 
this value directly. Otherwise, if the value was in tree form and, it would 
call the serialiser to determine the number of bytes that would result 
from serialising that tree, caching the result. 

If another function needed to know this size then, out of interest of 
avoiding code duplication, it would call g_variant_get_size() which 
would perform the work if necessary (or simply return the cached value 
if it was available). 

With the wide range of state transitions that a GVa riant instance 
can undergo, the web of function calls that occurred between these 
functions was getting difficult to keep track of. Keeping track of when 
locks needed to be held or not was also becoming difficult. Changes to 
GVariant would often have unintended side-effects that would only be 
discovered through unit test failures and a bit of head-scratching. 

10.3.1 The Condition Machine 

As a method of dealing with this increasingly unmanageable complexity 
the level of formalism was increased - "conditions" were introduced as 
the method of dealing with the state of each instance. 

Astate register was added to the GVa riant structure. This state register 
is an integer, that when viewed in binary, has each bit corresponding 
to a particular condition (for example "size is known"). All hacks about 
checking if a value was equal to -1 or a pointer was equal to NULL were 
removed. 
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For any given instance, a condition bit may only ever transition from 
zero to one; conditions may be false, but they can never change from 
true to false. 

For every defined condition, a transition function was defined to 
transition the condition from false to true. In the case of the "size known" 
condition this is the function that would invoke the serialiser and record 
the result. Each transition function was given a precondition (in terms 
of other conditions) that had to be satisfied before it could run. 

The "condition machine" was developed. Its responsibility is to satisfy 
requests for certain conditions by executing transition functions to 
enable them. If the transition function has a precondition then it invokes 
itself recursively to satisfy that precondition. 

Excepting reference counting, only transition functions are allowed to 
make any change to the state of a GVa riant instance. Concurrency 
considerations are greatly simplified; a lock is held whenever the 
condition machine is operating (including when transition functions are 
operating), ensuring that no two threads are trying to modify a given 
instance at a time. 

Of course, concurrent read accesses are safe, but we are left to consider 
the case of concurrent read and write access. This is dealt with by 
seeing each condition as a sort of promise - if a condition is true then 
some operation is safe. Because conditions can never be disabled, it is 
sufficient simply to check that a condition is true before proceeding ­
no lock required. 

There are a small number of operations (all relating to dealing with 
tree form GVariant instances) that are not safe to perform unless locked 
(essentially because we need to prevent the tree from disappearing from 
under us in the case that the value is serialised). The instance is locked 
in these cases, but the lock is only ever held briefly (typically only for 
the duration of reading the value of a pointer and increasing a reference 
count). 
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Details about the operation of the condition machine and the list of 
conditions that GVariant uses are given in Appendix C. 

10.3.1.1 Comments on the Change 

Moving to using the condition machine represented a near-complete 
redefinition of the GVa riant structure type. Considerable work was to 
be expected and significant breakage would be understood. 

Due to the separation between gva riant- core. c and gva riant- util. c, 
however, the amount of rewriting was kept to a minimum - about 
two days of work, including development of ideas. This provides some 
anecdotal evidence for the soundness of the division between these two 
files. 

Providing some evidence for the soundness of giving such explicit 
treatment to the concept of conditions is the fact that GVariant had a 
large suite of unit tests that were developed against (and found many 
bugs in) the old implementation. When the new implementation based 
on the condition machinery was first written, with the exception of some 
trivial mistakes, these unit tests all passed right away. 

Perhaps a more significant (although somewhat less quantitative) 
endorsement comes in form of the fact that the author's "clarity" about 
what's going on has increased considerably. It no longer feels like one 
wrong move could bring down an entire house of cards. 

10.4 Locking 

GVariant uses per-instance locking; contention can only occur when 
separate threads are making use of the same GVa riant instance. 

Plain (non-recursive, no distinction between reader and writer) mutual 
exclusion locks are used. Since the lock primitives available as part of 
GLib (GMutex, GStaticMutex) and POSIX (pth read_mutex_t) are all very 
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large with respect to the size of the GVariant structure, a new mutex 
lock implementation was developed that requires only a single bit. 

This implementation is described in Appendix B. 

The highest bit of the state register is used for the lock. 

10.5 Type Information 

GVariantTypeinfo is an opaque structure type that is for internal use 
only. It is a private implementation detail not exposed to the user. 

The purpose of GVa riantTypeinfo is to act as a cache of information 
associated with a given GVa riantType. 

10.5.1 Life Cycle 

GVa riantTypeinfo structures come and go as needed, but no more than 
one exists for a given type. Reference counts are used. 

When the type information structure for a given type is required a 
lookup in a hash table of existing type information is performed. If 
the type already has an information structure, then that structure has 
its reference count increased. If the type does not already have an 
information structure then one is created on the fly and added to the 
hash table. 

When a particular user of the type information is done with the 
information, they unreference it. If they held the last reference, then 
currently the type information is destroyed and removed from the table. 
Future implementation tweaks may involve keeping data cached for a 
while after it is no longer used. 
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10.5.2 ln1Formation Contained 

All type information structures contain some basic information: 

Type 
the GVa riantType corresponding to this type information. 

Alignment 
the alignment requirement for values of this type. Stored as the value 
that the starting address must be a multiple of, minus 1. 

Fixed size 
the serialised size that all values of this type share. If the type is not 
a fixed-size type then 0 is stored (note that all fixed-size types have 
a non-zero fixed size). 

The type is stored as part of the type information structure for two 
reasons. First, it allows the type to be determined from the type 
information. This allows GVariant instances to store only a pointer to 
the type information (and not also to the type). Secondly, the type itself 
is needed as a key into the hash table when an entry has to be removed. 

A couple of derived properties are available from those listed above. 

Always native byte order 
values of some type are always. in native byte order and never 
need to be byteswapped (strings, for example). Naturally, the items 
that never need to be byteswapped are exactly those that have no 
alignment constraints (since they do not contain multi-byte integer 
values). Knowing this allows for pruning the tree while byteswapping 
complicated values. 

Is container 
many operations on GVa riant instances are only applicable if the 
value has a container type. This can be easily determined from the 
type stored here. 

For container types, extra type information is stored. 
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For maybe and array types, only one additional piece of information is 
stored: a pointer to the element type's GVa riantTypeinfo. This direct 
reference means that no string manipulation need be performed to 
determine this type and no hash table lookup need be performed to find 
its information structure. 

For structure and dictionary entry types as well, the GVariantTypeinfo 
pointers for each item type are stored. Additionally, for each item, 
information is stored in order to allow constant time lookup of that item 
within the structure. This information is generated according to the 
algorithm described in Section 7.2.2 and stored in normalised plus/and/ 
or format (described in Section 7.2.4). 

10.6 Serialisation 

The serialiser and deserialiser are implemented as three privates 
interfaces that are used internally by GVariant. 

The serialiser only operates on container types. Non-container types 
have very simple formats and they are accessed directly without 
additional abstraction. 

Determine Size 
This call is used to determine the number of bytes that would be 
required for a buffer to store the serialised form of a GVa riant 
instance into. This function is called before serialisation of an instance 
occurs in order to know how large to make the buffer. 

Serialise 
This call is used to serialise the value into an existing buffer. The 
buffer must have already been allocated (using the size returned by 
the previous operation). 
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Deserialise 
When given a GVa riant instance, and an index n, this call is 
responsible for determining the sub-sequence of the serialised data of 
the instance that corresponds to the nth child. 

This call also consults the GVa riantTypeinfo structure to determine 
the type information for the new child instance. 

Because all deserialisation operations on the serialisation format 
can occur in constant time, since the GVa riantTypeinfo structure 
contains a direct pointer to all the necessary, and because no data is 
copied, the deserialisation operation occurs in constant time. 

There is one exception (the source of the claim that only "nearly 
all" deserialisation operations are constant time): when extracting 
the value from a variant, the type string of the variant must parsed 
and looked up in the hash table of GVa riantTypeinfo instances. This 
operation is linear in the size of the type string. 
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Chapter 11 

Testing 

The requirements listed in Chapter 4 are the sorts of requirements that 
don't easily lend themselves to verification by automated testing. The 
body of this thesis has been dedicated to providing evidence that these 
requirements have been satisfied. 

There are a whole other class of "obvious" implicit requirements, 
however, that lend themselves nicely to automated testing. 

These requirements are things like "does not crash" and "gives me back 
the same value I put in". Validation of these requirements has mostly 
been performed by development of test cases and through early use of 
GVariant in other projects (see Chapter 13 for more information about 
these). 

This chapter discusses a number of methodologies that were used 
during the development of the automated tests. 

Automated tests were used in two separate ways. Some tests were 
written after the features that they were meant to test were in place 
with the intention of finding bugs in the existing software. Other tests 
were written before the features (with the intention that the tests would 
immediately fail) in order to drive development. For this reason, it is 
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hard to make clear statements about exactly how many bugs particular 
test cases have caught. 

11.1 Identity Operations 

Looked at from a certain angle, GVariant can be seen as a translation 
system. It can store data in its native serialisation format, but also allows 
for the data to be pretty-printed to or parsed from XML. There are also 
several programmer interfaces to GVariant. 

Moving data into GVariant through one of these interfaces and out 
through another is effectively a translation process. We expect that, over 
the course of any number of translations, if the value is translated back 
to its original representation it will be exactly the same as the value that 
was given in the first place. 

Testing this simple property has revealed a number of bugs. 

11.2 Random Testing 

The number of ways in which different types of GVariant containers 
can be stacked together is essentially limitless. It can be quite difficult 
to guess which particular combination might expose flaws in the 
implementation. Coming up with imaginative test cases is a tiring 
exercise. 

An alternative to manual development of test cases is to write code to 
produce test cases for you. 

For GVariant, such a framework was developed by William Hua. A 
random well-formed and semantically valid XML document is produced 
and loaded into GVariant, put through a number of transformations and 
then printed out again and compared to the original. 

Random testing has proven to be extremely successful in discovering a 
large number of bugs in GVariant. 
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11.3 Fuzz Testing 

Another sort of testing performed is to check how GVariant responds to 
non-normal serialised data. 

This test process is driven by producing a valid serialised byte sequence 
for a given (randomly generated) value. Random errors are then 
introduced to this byte sequence such that it is no longer exactly equal 
to the original. The number of random errors that are introduced is a 
variable of the test, and several different levels are tried, ranging from 
1-bit errors to substantial damage (20% of the bytes randomly replaced). 

The "fuzzed" data is then loaded back into GVariant. The introduction 
of errors could have three possible effects: 

• 	 GVariant interprets the serialised data as having the same value as 
the original, but notices that it is no longer in normal form. 

GVariant interprets the serialised data as having a different value 
but accepts the data as being in normal form. 

GVariant interprets the serialised data as having a different value 
and notices that it is no longer in normal form. 

Note that it is not possible for the new byte sequence to have the same 
value while still remaining in normal form because there is only one 
normal form per value. 

In the case that GVariant reports the data to be in normal form, we check 
to ensure that the value of the data is different than the original value. 
This testing offers assurance that GVariant will not accept two different 
serialised byte sequences as normal forms of the same value. 

In the case that GVariant reports that the data is not in normal form, 
the data is normalised and checked to ensure that it differs from the 
fuzzed data. 
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This testing method has revealed several bugs, mainly in the validation 
code. Surprisingly, it also unearthed a couple of bugs in the serialiser. 
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PART IV 


This part contains a summary of the contributions of this work 
and discusses future work in terms of changes to GVariant 
itself and projects that intend to use GVariant in substantial 
ways. 
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Chapter 12 

Summary 

In short: it works. 

The tests are passing, and people are making use of the work for 
development of new projects. 

GVariant is slated to be included in the next release of GLib which will 
expose it to a wider range of hackers and more use. Development will 
continue. 

The contributions of this work are the following: 

• 	 Collection and description of the best common practices that form 
the Itfolk knowledge" of the GNOME community. 

• 	 Development of a new serialisation format adhering to these 
principles. 

• 	 Development of a number of techniques to allow constant-time 
access to data stored in the new serialisation format, including 
a technique for compiling a table allowing constant-time random 
access to members of a structure containing variable-width data. 
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• 	 Development of a working software library allowing creation of and 
access to data stored in the new serialisation format. 
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Chapter 13 

Future Work 

As always, there is still work to be done. This work has been divided 
into two categories - work on GVariant itself and work on new projects 
based on GVariant. 

13.1 GVariant 

Looking forward, the next hurdle for GVariant is to have its API reviewed 
by the maintainers of GLib and to merge it into this library. 

Work is currently underway by Diego Escalante Urrelo to create Python 
bindings for GVariant. As it turns out, GVariant's type system of arrays 
and structures maps rather nicely onto Python's type system of lists and 
tuples. 

A number of features have been suggested by users of GVariant. One 
such feature makes note of the fact that deserialisation of a GVariant 
instance can occur without having the entire instance in memory, but 
that this is not true for serialisation. A new builder interface would be 
added that could stream out to a file or network socket "on the fly" as 
values are added to it (removing the need to store all of the values in 
memory at once). 
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13.2 DBus 

Many of the ideas developed for GVariant may eventually find their way 
into DBus itself. 

Considerable discussion has been made about extending DBus's type 
system in ways described here (and also in ways described by others, 
such as the addition of a single precision floating point type). 

There is also some discussion about changing DBus to use the 
serialisation format of GVariant in order to avoid having to translate 
between the two formats. 

Work on these ideas is currently blocked only by a shortage of willing 
contributors. 

13.3 GSettings 

As the motivating project for this work, GSettings will be one of the first 
projects to take advantage of GVariant. 

Most obviously, GSettings will make use of the serialisation format 
described here to store values in its settings database. 

GSettings will have GVariant as part of its API. Any GVariant value can 
be provided as the value of a setting to store in the configuration system. 

GSettings is a strongly type configuration system based on the concept 
of schemas. This fits in nicely with GVariant's strong typing. When 
coupled with GVariant's lack of deserialisation errors and with the 
g_ va riant_new_va {) and g_ va riant_get_va {) functions, this allows 
for a powerful programmer interface. 

As a simple example, if a settings schema specifies that the size property 
in the settings database has the type { ii) then the following code can 
be used: 
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int width, height; 

g_settings_get (settings, "size", &width, &height); 

The user can always be sure that they will be left with valid integer 
values for width and height. 

The current status of the GSettings project is somewhat disrupted due to 
significant changes that have occurred in GVariant over the past several 
months. GSettings needs to be brought up to date with these changes 
before work can continue. 

13.4 GBus 

Many ideas are planned for a new project - GBus. 

The current DBus library was designed as a reference implementation 
and to allow ease of binding for higher level programming languages. 
As such, it contains very few facilities that make it convenient to use 
directly from C. A number of attempts have been made to correct for 
these shortcomings - such as by the dbus-glib and dbind projects - by 
binding additional code to the low-levellibdbus library. 

These projects have had limited success, and still use the libdbus library. 
Concerns have been raised about the libdbus library in terms of license 
compatibility with some GNOME projects and attempts to solve these 
problems have failed due to uncertainty about the ownership of large 
parts of the DBus code base. 

Another problem with the DBus library is that it implements its own 
linked lists, dynamic strings, hash tables, memory allocation, and many 
other facilities that are already available in GLib. 

GBus is a complete implementation of a new DBus client built using 
GLib and GVariant. It will consist of a lower level interface (which 
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will "borrow" some API ideas from dbind) and a higher level interface 
allowing direct interaction with the GObject object system. 

At present, the low level interfaces are partially complete (having been 
written by the author and by William Hua). It is possible to connect to 
the bus and send messages, giving GVariant instances as the values for 
those messages. The API is currently cumbersome and will change. A 
great deal of work remains. 

The high level interfaces are currently in the idea-gathering phase. 

13.5 GObject Introspection 

The GObject Introspection project plans to provide runtime and 
statically-accessible information about the functions available on a given 
GObject. This project is being undertaken by a number of developers ­
mainly the ones involved in writing language bindings for GNOME. 

The introspection information will greatly simplify creating language 
bindings for new types of GObjects and will also facilitate publishing 
objects on the message bus for remote procedure calls. 

The database containing the lists of functions defined for each object 
is expected to be collected at compile-time using one of a variety of 
techniques (code scanning, or by specification in an additional IDL file). 

The database will be serialised using the GVariant serialisation format 
and stored either as a binary blob within the shared library that 
implements the object or in an additional file accompanying that library. 

GVariant will be used to query and access information about particular 
functions, properties and signals associated with a specific object type. 

The main ideas for the GObject Introspection project were gathered this 
past March. The project is currently under way and making significant 
progress. 
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13.6 GVariant Hash File 
One particularly simple and useful use of GVariant is to implement a 
write-once/read-many hash file. These sorts of files are often used to 
allow fast and memory-efficient access to many smaller files that are 
often spread out over a number of subdirectories. 

Examples in the current desktop include the font and icon caches. 
GSettings will also have a similar cache for storing schemas. 

The use of one large file what can be memory mapped is driven by the 
desire to have high performance access to these objects and being able 
to share the memory overhead associated with using them (since the 
cache file is mapped into dozens of processes as shared memory, the 
cost to each individual process is low). 

Building this type of file using GVariant is a simple exercise. The file is 
stored as a serialised GVariant value with a type matching (a*aa(si)) 
where * matches the type of data to be stored. 

Given a list of pairs of key strings and values, a table can be built as 
follows. Assign each value a number, in sequence. Store those values in 
an array, in sequence. This forms the a* part of the file. Then, choose 
a prime number to use as the size of the hash table. This becomes the 
length of the a a ( s i) array. Hash each key string and reduce the result, 
modulo the prime. Pair each key string with the integer corresponding 
to its value and store it in the sub-array indexed by the reduced result 
of the hash. 

Lookup is done by hashing the search string with the same hash 
algorithm and using the reduced result to index into the hash array. Each 
item in the sub-array is then checked for string equality with the search 
string. When the correct string is found, the paired integer is used as 
an index into the first array. 

This indirection (not storing the strings and values directly together) is 
used to keep the number of memory pages used by the hash table as 
small as possible. The table will be accessed for every single lookup and 
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mixing the value data in with the table would result in this data being 
unnecessarily faulted in during table lookups (particularly in the case of 
traversing highly populated hash chains). 

The hash table functionality is generally useful and simple in its 
implementation so it is likely that it will eventually be included as a core 
part of GVariant. 
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Appendix A 

Interface Reference 

This appendix contains a copy of the API reference documentation of 
GVariant. 

The documentation is current and mostly complete at the time of 
printing. Like any software, however, GVariant is likely to evolve to 
address future needs and these improvements will cause changes in the 
interface documented here. As such, this documentation may be out of 
date. 

Updated documentation can be found online. 
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GVariantTypeCiass 

Synopsis 

enurn GVariantTypeClass; 

gboolean 
gboolean 

g_variant_type_class_is_basic 
g_variant_type_class_is_container 

(GVariantTypeClass class); 
(GVariantTypeClass class); 

Description 

Details 

enum GVariantTypeCtass 

typedef enum 
{ 

G VARIANT TYPE CLASS INVALID : '\0' 1 

G-VARIANT-TYPE-CLASS-BOOLEAN = 'b' I 

G=VARIANT=TYPE=CLASS=BYTE = tyt I 

G VARIANT TYPE CLASS INT16 = 'n' I 

G-VARIANT-TYPE-CLASS-UINT16 = 'q' I 

G-VARIANT-TYPE-CLASS-INT32 = I' ~ I , 
G=VARIANT=TYPE=CLASS=UINT32 = 'u' 1 

G VARIANT TYPE CLASS INT64 = 'x' I 

G=VARIANT=TYPE=CLASS=UINT64 = 't' I 

G_VARIANT_TYPE_CLASS_DOUBLE = 'd' I 

IG VARIANT TYPE CLASS STRING = I 5 I 

G-VARIANT-TYPE-CLASS-OBJECT PATH = 'o', 
G=VARIANT=TYPE=CLASS=SIGNATURE = tgt I 

G_VARIANT_TYPE_CLASS_VARIANT = 'v' I 

G VARIANT TYPE CLASS MAYBE = 'm', 
G-VARIANT-TYPE-CLASS-ARRAY = 'a' 1 

G-VARIANT-TYPE-CLASS-STRUCT = I r' I 

G=VARIANT=TYPE=CLASS=DICT_ENTRY = 'e', 

G_VARIANT_TYPE_CLASS_ALL = '*I 
IG VARIANT TYPE CLASS BASIC = 7' 

} GVariantTypeClass; ­
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A enumerated type to group GVa riantType instances into classes. 

If you ever want to perform some sort of recursive operation on 
the contents of a GVa riantType you will probably end up using a 
switch statement over the GVa riantTypeClass of the type and its 
component sub-types. 

A GVariantType is said to "be in" a given GVariantTypeClass. The 
type classes are overlapping, so a given GVa riantType may have 
more than one type class. For example, G_VARIANT_TYPE_BOOLEAN 
is of the following classes: G_VARIANT_TYPE_CLASS_BOOLEAN, 
G_VARIANT_TVPE_CLASS_BASIC,G_VARIANT_TYPE_CLASS_ALL. 

G_VARIANT_TVPE_CLASS_INVALID 
the class of no type 

G_VARIANT_TYPE_CLASS_BOOLEAN 
the class containing the type G_VARIANT_TYPE_BOOLEAN 

G_VARIANT_TYPE_CLASS_BYTE 
the class containing the type G_VARIANT_TYPE_BYTE 

G_VARIANT_TYPE_CLASS_INT16 
the class containing the type G_VARIANT_TYPE_INT16 

G_VARIANT_TYPE_CLASS_UINT16 
the class containing the type G_VARIANT_TYPE_UINT16 

G_VARIANT_TYPE_CLASS_INT32 
the class containing the type G_VARIANT_TYPE_INT32 

G_VARIANT_TYPE_CLASS_UINT32 
the class containing the type G_VARIANT_TYPE_UINT32 

G_VARIANT_TYPE_CLASS_INT64 
the class containing the type G_VARIANT_TYPE_INT64 

131 



- - - -
- - -

- - - -

- - - -

- - - - -

- - - -

- - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

G VARIANT TYPE CLASS UINT64 
the class containing the type G VARIANT TYPE UINT64 

G_VARIANT_TYPE_CLASS_DOUBLE 
the class containing the type G_VARIANT_TYPE_DOUBLE 

G_VARIANT_TYPE_CLASS_STRING 
the class containing the type G_VARIANT_TYPE_STRING 

G_VARIANT_TYPE_CLASS_OBJECT_PATH 
the class containing the type G_VARIANT_TYPE_OBJECT_PATH 

G_VARIANT_TYPE_CLASS_SIGNATURE 
the class containing the type G_VARIANT_TYPE_SIGNATURE 

G_VARIANT_TYPE_CLASS_VARIANT 
the class containing the type G_VARIANT_TYPE_VARIANT 

G_VARIANT_TYPE_CLASS_MAYBE 
the class containing all maybe types 

G VARIANT TYPE CLASS ARRAY 
the class containing all array types 

G VARIANT TYPE CLASS STRUCT 
the class containing all structure types 

G VARIANT TYPE CLASS DICT ENTRY 
the class containing all dictionary entry types 

G VARIANT TYPE CLASS ALL 
the class containing all types (including G_VARIANT_TYPE_ANY and 
anything that matches it). 

G_VARIANT_TYPE_CLASS_BASIC 
the class containing all of the basic types (including 
G VARIANT TYPE ANY BASIC and anything that matches it). 
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g_variant_type_class_is_basic ()
-,n 

i: gboolean 

.:(: g_variant_type_class_is_basic (GVariantTypeClass class); 


Determines if class is a basic class. 

The following are considered to be basic classes: boolean, byte, the 
signed and unsigned integer classes, double, string, object path and 
signature. Additionally, the 'basic' type class is also considered to be 
basic. 

class: 
a GVariantTypeClass 

Returns: 
TRUE if class is a basic class 

riant_type_class_is_container () 

gboolean 
g_variant_type_class_is_container (GVariantTypeClass class); 

Determines if class is a container class. 

The following are considered to be container classes: maybe, array, 
struct, dict_entry and variant. 

class: 
a GVa riantTypeClass 

Returns: 
TRUE if class is a container class 
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GVariantType 


Synopsis 
typedef 


#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 


gboolean 

gboolean 


#define 

void 

GVariantType* 

GVariantType* 


gsize 

const gchar* 

gchar* 


GVariantTypeClass 

gboolean 


gboolean 
gboolean
gboolean 

guint 
gboolean 

gboolean 

GVariantType; 

G VARIANT TYPE BOOLEAN 
G-VARIANT-TYPE-BYTE 
G-VARIANT-TYPE-INT16 
G-VARIANT-TYPE-UINT16 
G-VARIANT-TYPE-INT32 
G-VARIANT-TYPE-UINT32 
G-VARIANT-TYPE-INT64 
G-VARIANT-TYPE-UINT64 
G-VARIANT-TYPE-DOUBLE 
G-VARIANT-TYPE-STRING 
G-VARIANT-TYPE-OBJECT PATH 
G-VARIANT-TYPE-SIGNATURE 
G-VARIANT-TYPE-VARIANT 
G-VARIANT-TYPE-ANY 
G-VARIANT-TYPE-ANY BASIC 
G-VARIANT-TYPE-ANY-ARRAY 
G-VARIANT-TYPE-ANY-DICTIONARY 
G-VARIANT-TYPE-ANY-DICT ENTRY 
G-VARIANT-TYPE-ANY-MAYBE 
G-VARIANT-TYPE-ANY-STRUCT 
G=VARIANT=TYPE=UNIT 

g_variant_type_string_is_valid 
g_variant_type_string_scan 

G VARIANT TYPE 
g=variant=type_free
g_variant_type_copy 
g_variant_type_new 

g_variant_type_get_string_length 
g_variant_type_peek_string 
g_variant_type_dup_string 

g_variant_type_get_class 
g_variant_type_is_in_class 

g_variant_type_is_concrete 
g_variant_type_is_container
g_variant_type_is_basic 

g_variant_type_hash 
g_variant_type_equal 

g_variant_type_matches 

(const gchar *type_string); 
(const gchar **type_string, 
const gchar *limit); 

(type string) 

(GVariantType *type); 

(const GVariantType *type); 

(const gchar *type_string); 


(const GVariantType *type); 
(const GVariantType *type); 
(const GVariantType *type); 

(const GVariantType *type); 
(const GVariantType *type, 
GVariantTypeClass class); 

(const GVariantType *type); 
(const GVariantType *type); 
(const GVariantType *type); 

(gconstpointer type}; 
(gconstpointer typel, 
gconstpointer type2}; 

(canst GVariantType *type, 
const GVariantType *pattern); 

134 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

canst GVariantType* g_variant_type_element (canst GVariantType *type); 

canst GVariantType* g_variant_type_first (canst GVariantType *type); 

canst GVariantType* g_variant_type_next (canst GVariantType *type); 

gsize g_variant_type_n_items (canst GVariantType *type); 

canst GVariantType* g_variant_type_key (canst GVariantType *type); 

canst GVariantType* g_variant_type_value {canst GVariantType *type); 


GVariantType* g_variant_type_new_maybe (canst GVariantType *element); 

GVariantType* g_variant_type_new_array (canst GVariantType *element); 

canst GVariantType* (*GVariantTypeGetter) (gpainter data); 

GVariantType* g_variant_type_new_struct (gcanstpainter *items, 


GVariantTypeGetter func, 
gsize length); 

GVariantType* g_variant_type_new_dict_entry (canst GVariantType *key, 
const GVariantType *value); 

Description 

Details 

GVariantType 

typedef struct OPAQUE_TYPE_GVariantType GVariantType; 

An opaque type representing either the type of a GVa riant instance 
or a pattern that could match other types. 

Each GVariantType has a corresponding type string. The grammar 
generating all valid type strings is: 

type = base I 'a' type 1 'm I type 1 1 I* II vI 

1 1 1 1 1 1 1 
lrl I { +base+ type+ } I ( +types+ ) I 

lyl I nl lql IiI lui I X Ibase = 'b 1 

It' dl Is I lg I I? II lol 

types = 'I type + types 

The types that have single character type strings are all defined with 
their own constants (for example, G_VARIANT_TYPE_BOOLEAN). 

The types that have type strings starting with 'a' are array types, 
where the characters after the 'a' are the type string of the array 
element type. 
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The types that have type strings starting with 'm' are maybe types, 
where the characters after the 'm' are the type string of the maybe 
element type. 

The types that start with '{' and end with '}' are dictionary entry 
types, where the first contained type string is the one corresponding 

· to the type of the ke~ and the second is the one corresponding to 
the type of the value. 

The types that start with '(' and end with ')' are structure types, 
where each type string contained between the brackets corresponds 
to an item type of that structure type. 

Any type that has a type string that can be generated from 'base' is 
in the GVariantTypeClass G_VARIANT_TYPE_CLASS_BASIC. 

Any type that has a type string that can be generated from 'type' is 
in the class G_VARIANT_TYPE_CLASS_ALL. This is all types. 

Each type is a member of exactly one other GVariantTypeClass. 

Note that, in reality, a GVa riantType is just a string pointer cast to an 
opaque type. It is only valid to have a pointer of this type, however, 
if you are sure that it is a valid type string. Functions that take 
GVa riantType as parameters assume that the string is well-formed. 
Also note that a GVa riantType is not necessarily nul-terminated. 

G_VARIANT_TYPE_BOOLEAN 

#define G_VARIANT_TYPE_BOOLEAN ((canst GVariantType *} "b") 

The type of a value that can be either TRUE or FALSE. 

G~VARIANT_TYPE_BYTE 

#define G_VARIANT_TYPE_BYTE ((canst GVariantType *) "y") 

The type of an integer value that can range from 0 to 255. 
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G_VARIANT_TYPE_INT16 

,, #define G_VARIANT_TYPE_INT16 ((canst GVariantType *) "n") 

The type of an integer value that can range from -32768 to 32767. 

G~VARIANT_TYPE_UINT16 

..~) #define G_VARIANT_TYPE_UINT16 ((const GVariantType *) "q") 
:\i.

JThe type of an integer value that can range from 0 to 65535. There 
,:') were about this many people living in Toronto In the 1870s. 
,:,;.: 
·i.,l

?: ;·~ 

G_VARIANT_TYPE_INT32 
"{",~ 

·:;; #define G_VARIANT_TYPE_INT32 ((canst GVariantType *) "i") 
., 

;.;: The type of an integer value that can range from -2147483648 to 
;:: 2147483647. 

G VARIANT TYPE UINT32 
~ 

.... #define G_VARIANT_TYPE_UINT32 ((canst GVariantType *) "u") 

The type of an integer value that can range from 0 to 4294967295. 
That's one number for everyone who was around in the late 1970s. 

G_VARIANT_TYPE_INT64 

:,; #define G_VARIANT_TYPE_INT64 ( (const GVariantType *) "x") 
;:i 
· • The type of an integer value that can range from 
<:; -9223372036854775808 to 9223372036854775807. 

G~VARIANT_TYP~_UINT64 

\ #define G_VARIANT_TYPE_UINT64 ((canst GVariantType *) "t") 
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The type of an integer value that can range from 0 to 
18446744073709551616. That's a really big number, but a Rubik's 
cube can have a bit more than twice as many possible positions. 

G VARIANT TYPE DOUBLE 

') #define G_VARIANT_TYPE_DOUBLE ( ( const GVariantType *) "d") 

·~~,~ The type of a double precision IEEE754 floating point number. These 
.;t guys go up to about 1.80e308 (plus and minus) but miss out on 
':;; some numbers in between. In any case, that's far greater than 
{~! the estimated number of fundamental particles in the observable 
f~;f: universe. 
;·~·<) 

G_VARIANT_TYPE_STRING 

#define G_VARIANT_TYPE_STRING ((const GVariantType *) "s")
r\ 
;·; The type of a string. 1111 is a string. NULL is not a string. 

G_VARIANT_TYPE_OBJECT_PATH 
;;t1 

'c;' #define G VARIANT TYPE OBJECT PATH ( (const GVariantType *) "o") 

":.;.' - ­

.:;; The type of a DBus object reference. These are strings of a specific 
··· format used to identify objects at a given destination on the bus.

/;;;: 

G_VARIANT_TYPE_SIGNATURE 

P: #define G_VARIANT_TYPE_SIGNATURE ( (const GVariantType *) "g") 
jJi, 
··.: The type of a DBus type signature. These are strings of a specific 
'}·: format used as type signatures for DBus methods and messages. 

Any valid GVa riantType signature string is a valid DBus type 
signature. In addition, a concatenation of any number of valid 
GVa riantType signature strings is also a valid DBus type signature. 
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G~VARIANT_TYPE_VARIANT 

.· 	 #define G_VARIANT_TYPE_VARIANT {(canst GVariantType *) "v") 

The type of a box that contains any other value (including another 
variant). 

G_VARIANT_TYPE_ANY 
·/~·

::.#define G_VARIANT_TYPE_ANY ((const GVariantType *) "*") 


The wildcard type. Matches any type. 


G~VARIANT_TYPE_ANY_BASIC 
i\{ 	

#define G_VARIANT_TYPE_ANY_BASIC ((canst GVariantType *) "7") 


A wildcard type matching any basic type. 


G_VARIANT_TYPE_ANY_ARRAY 
. ' 

:: #define G VARIANT TYPE ANY ARRAY ((canst GVariantType *) "a*")
':) - - - ­
~·,;; A wildcard type matching any array type. 


G VARIANT_TYPE_ANY_DICTIONARY 
0 

'#define G_VARIANT_TYPE_ANY_DICTIONARY ((canst GVariantType *) "ae") 

·.•·• A wildcard type matching any dictionary type. 

G_VARIANT_TYPE_ANY_DICT_ENTRY 
•'-.< 

? 	 #define G_VARIANT_TYPE_ANY_DICT_ENTRY ((canst GVariantType *) "{?*}") 

A wildcard type matching any dictionary entry type. 
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G_VARIANT_TYPE_ANY_MAYBE 

#define G_VARIANT_TYPE_ANY_MAYBE ((canst GVariantType *) "m*") 

A wildcard type matching any maybe type. 

G_VARIANT_TYPE_ANY_STRUCT 
,,., 

:. #define G_VARIANT_TYPE_ANY_STRUCT ((canst GVariantType *) "r'1 
) 


. A wildcard type matching any structure type. 


G_VARIANT_TYPE_UNIT 
·,.,! 

#define G_VARIANT_TYPE_UNIT ((canst GVariantType *) "()") 


The empty structure type. Has only one valid instance. 


g_variant_type_string_is_valid () 
;.:i 
') 	

gbaolean 

g_variant_type_string_is_valid (canst gchar *type_string); 


Checks if type_string is a valid GVariantType type string. This 
call is equivalent to calling g_variant_type_string_scan() and 

, confirming that the following character is a nul terminator. 

type_string: 
a pointer to any string 

Returns: 
TRUE if type_string is exactly one valid type string 

g_variant_type_string_scan () 

gboolean

g_variant_type_string_scan (canst gchar **type_string, 


canst gchar *limit); 
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Scan for a single complete and valid GVa riantType type string in 
type_string. The memory pointed to by limit (or bytes beyond it) is 
never accessed. 

If a valid type string is found, type_string is updated to point to the 
first character past the end of the string that was found and TRUE 
is returned. 

If there is no valid type string starting at type_string, or if the type 
string does not end before limit then FALSE is returned and the state 
of the type_string pointer is undefined. 

For the simple case of checking if a string is a valid type string, see 
g_variant_type_string_is_valid(). 

type_string ~ 
a pointer to any string 

limit: 
the end of string, or NULL 

Returns: 
TRUE if a valid type string was found 

G_VARIANT_TYPE~) 

\~: #define G_VARIANT_TYPE(type_string) 

Converts a string to a const GVa riantType. Depending on the current 
debugging level, this function may perform a runtime check to 
ensure that string is valid. 

It is always a programmer error to use this macro with an invalid 
,, , type string. 

type_string ~ 

a well-formed GVa riantType type string 
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g_variant_type_free () 

void 

g_variant_type_free (GVariantType *type); 


Frees a GVa riantType that was allocated with 
g_variant_type_copy{), g_variant_type_new{) or one of the 
container type constructor functions. 

type: 
a GVa riantType 

g_variant_type_copy () 

:i; GVa riantType * 

({ g_variant_type_copy (const GVariantType *type); 


1 

:;.,: Makes a copy of a GVariantType. This copy must be freed using 
f:: g_variant_type_free{). 

type: 
a GVa riantType 

Returns: 
a new GVariantType 

g_variant_type_new () 

GVariantType * 

g_variant_type_new (const gchar *type_string); 


Creates a new GVa riantType corresponding to the type string 
given by type_string. This new type must be freed using 
g_variant_type_free{). 

It is an error to call this function with an invalid type string. 

type_string: 
a valid GVa riantType type string 
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Returns: 
a new GVariantType 

g_variant_type_get_string_tength () 
i/i 

gsize 

g_variant_type_get_string_length (const GVariantType *type); 


Returns the length of the type string corresponding to the given 
type. This function must be used to determine the valid extent of the 
memory region returned by g_variant_type_peek_string( ). 

type: 
a GVa riantType 

Returns: 
the length of the corresponding type string 

g=variant_type_peek_string () 
'·_::;­

,;' 	 canst gcha r * 

g_variant_type_peek_string (canst GVariantType *type); 


Returns the type string corresponding to the given type. The result 
is not nul-terminated; in order to determine its length you must call 
g_variant_type_get_string_length(). 

To get a nul-terminated string, see g_variant_type_dup_string (). 

type: 
a GVa riantType 

Returns: 
the corresponding type string (non-terminated) 

g_variant_type_dup_string () 

gchar * 

g_variant_type_dup_string (const GVariantType *type); 
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Returns a newly-allocated copy of the type string corresponding to 
type. The return result must be freed using g_free ( ) . 

type: 
a GVa riantType 

Returns: 
the corresponding type string (must be freed) 

g_variant_type_get_class {) 
,. ~ \ 

:' 	 GVa riantTypeClass 

g_variant_type_get_class (const GVariantType *type); 


Determines the smallest type class containing type. 

For example, although G_VARIANT_TYPE_CLASS_ALL matches all 
types, it will never be returned by this function except for the type 
G 

-
VARIANT- TYPE 

-
ANY. 

type: 
a GVa riantType 

Returns: 
the smallest class containing type 

g_variant_type_is_in_class () 

,:., gboolean 

g_variant_type_is_in_class (const GVariantType *type, 


GVariantTypeClass class); 


Determines if type is contained within class. 

Note that the class G_VARIANT_TYPE_CLASS_ALL contains every type 
and the class G_VARIANT_TYPE_CLASS_BASIC contains every basic 
type. 
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type: 
a GVa riantType 

class: 
a GVa riantTypeClass 

Returns: 
TRUE if type is in the given class 

riant_type_is_concrete () 

gboolean 
g_variant_type_is_cancrete (canst GVariantType *type); 

Determines if the given type is a concrete (ie: non-wildcard) type. A 
GVariant instance may only have a concrete type. 

A type is concrete if its type string does not contain any wildcard 
characters('*', '?'or 'r'). 

type: 
a GVa riantType 

Returns: 
TRUE if type is concrete 

g_variant_type_is_container () 
,·,; 

i: 
h, 

gbaalean 

{,; g_variant_type_is_cantainer (canst GVariantType *type); 


',':) Determines if the given type is a container type. 

Container types are any array, maybe, structure, or dictionary entry 
types plus the variant type. 

This function returns TRUE for any wildcard type for which every 
matching concrete type is a container. This does not include 
G VARIANT TYPE ANY. 

145 



- -

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

type: 
a 	GVa riantType 

Returns: 
TRUE if type is a container type 

g~variant_type_is_basic () 

:'k 	 gboolean 

g_variant_type_is_basic (const GVariantType *type); 


Determines if the given type is a basic type. 

Basic types are booleans, bytes, integers, doubles, strings, object 
paths and signatures. 

Only a basic type may be used as the key of a dictionary entry. 

This function returns FALSE for all wildcard types except 
G VARIANT TYPE ANY BASIC. 

type: 
a 	GVa riantType 

Returns: 
TRUE if type is a basic type 

g_variant_type_hash () 
::.'.' 

:~: 	 guint 

g_variant_type_hash (gconstpointer type); 


Hashes type. 

The argument type of type is only gconstpointer to allow use with 
GHashTable without function pointer casting. A valid GVariantType 
must be provided. 
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type: 
a GVa riantType 

Returns: 
the hash value 

g~variant_type_equat () 
··,\ 

i·;i gboolean 

g_variant_type_equal (gconstpainter typel, 


gcanstpainter type2); 


Compares type1 and type2 for equality. 

Only returns TRUE if the types are exactly equal. Even if one type is 
a wildcard type and the other matches it, false will be returned if 
they are not exactly equal. If you want to check for matching, use 
g_variant_type_matches(). 

The argument types of typel and type2 are only gconstpointer to 
allow use with GHashTable without function pointer casting. For both 
arguments, a valid GVa riantType must be provided. 

typel: 
a GVa riantType 

type2: 
a GVa riantType 

Returns: 
TRUE if type1 and type2 are exactly equal 

g_variant_type_matches () 

gboalean 

g_variant_type_matches (canst GVariantType *type, 


canst GVariantType *pattern); 


Performs a pattern match between type and pattern. 
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This function returns TRUE if type can be reached by making pattern 
less general (ie: by replacing zero or more wildcard characters in 
the type string of pattern with matching type strings that possibly 
contain wildcards themselves). 

This function defines a bounded join-semilattice over GVa riantType 
for which G_VARIANT_TYPE_ANY is top. 

type: 
a 	GVa riantType 

pattern: 
a 	GVa riantType 

Returns: 
TRUE if type matches pattern 

g_variant_type_element () 

;, 	 const GVariantType * 

g_variant_type_element (const GVariantType *type); 


Determines the element type of an array or maybe type. 

This function must be called with a type in one of the classes 
G VARIANT TYPE CLASS MAYBE or G VARIANT TYPE CLASS ARRAY. 

type: 
a GVa riantType of class array or maybe 

Returns: 
the element type of type 

g_variant_type_first () 

const GVariantType * 

g_variant_type_first {const GVariantType *type); 


Determines the first item type of a structure or dictionary entry type. 
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This function must be called with a type in 
one of the classes G VARIANT TYPE CLASS STRUCT or 
G VARIANT n'PE CLASS DICT ENTRY but must not be called on the 
generic structure type G_VARIANT_TYPE_ANY_STRUCT. 

In the case of a dictionary entry type, this returns the type of the key. 

NULL is returned in case of type being G_VARIANT_TYPE_UNIT. 

This call, together with g_variant_type_next() provides an 
iterator interface over structure and dictionary entry types. 

type: 
a GVa riantType of class struct or diet entry 

Returns: 
the first item type of type, or NULL 

g_variant_type_next () 
~i> 

;,:: 	 const GVariantType * 
;,il 	 g_variant_type_next (const GVariantType *type); 
r: 
,~") 	 Determines the next item type of a structure or dictionary entry type . 
.:\:: 

;; 	 type must be the result of a previous call to 
g_variant_type_first( ). Together, these two functions provide an 
iterator interface over structure and dictioanry entry types. 

If called on the key type of a dictionary entry then this call returns 
the value type. 

NULL is returned when type is the last item in a structure or the value 
type of a dictionary entry. 

type: 
a GVa riantType 
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Returns: 
the next GVariantType after type, or NULL 

g_variant_type_n_items {) 

gsize 

g_variant_type_n_items (canst GVariantType *type); 


Determines the number of items contained in a structure or 
dictionary entry type. 

This function must be called with a type in 
one of the classes G VARIANT TYPE CLASS STRUCT or - - - -
G VARIANT TYPE CLASS DICT ENTRY but must not be called on the 
generic structure type G_VARIANT_TYPE_ANY_STRUCT. 

In the case of a dictionary entry type, this function will always return 
2. 

type: 
a GVa riantType of class struct or diet entry 

Returns: 
the number of items in type 

g_variant_type_key {) 

canst GVariantType * 

g_variant_type_key (canst GVariantType *type); 


Determines the key type of a dictionary entry type. 

This function must be called with a type in the class 
G_VARIANT_TYPE_CLASS_DICT_ENTRY. Other than that, this call is 
exactly equivalent to g_variant_type_first (). 

type: 
a GVa riantType of class diet entry 
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Returns: 
the key type of the dictionary entry 

g_variant_type_value () 

const GVariantType * 

g_variant_type_value (const GVariantType *type); 


Determines the value type of a dictionary entry type. 

This function must be called with a type in the class 
G VARIANT TYPE CLASS DICT ENTRY. 

type: 
a GVa riantType of class diet entry 

Returns: 
the value type of the dictionary entry 

g_variant_type_new_maybe () 
~:~ 
,1,>. 	 GVariantType * 
iL: 	 g_variant_type_new_maybe {canst GVariantType *element);
)i:>i
t:;:: 
' ,, 	 Constructs the type corresponding to a maybe instance containing 

type type. 

The result of this function must be freed with a call to 
g_variant_type_free(). 

element: 
a GVa riantType 

Returns: 
a new maybe GVa riantType 

g_variant_type_new_array () 

GVariantType * 

g_variant_type_new_array (const GVariantType *element); 
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Constructs the type corresponding to an array of elements of the 
type type. 

The result of this function must be freed with a call to 
g_variant_type_free(). 

element: 
a GVa riantType 

Returns: 
a new array GVa riantType 

GVariantTypeGetter () 

constGVariantType* (*GVariantTypeGetter) (gpointer data); 

A callback function intended for use with 
g_variant_type_new_struct(). This function's purpose is to 
extract a GVa riantType from some pointer type. The returned type 
should be owned by whatever is at the end of the pointer because 
it won't be freed. 

data: 
a pointer 

Returns: 
a canst GVa riantType 

g_variant_type_new_struct () 

~ GVariantType * 
g_variant_type_new_struct (gconstpointer *items, 


GVariantTypeGetter func, 

gsize length); 


Constructs a new structure type. 
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The item types for the structure type may be provided directly (as 
an array of GVa riantType), in which case func should be NULL. 

The item types can also be provided indirectly. In this case, items 
should be an array of pointers which are passed one at a time to 
tunc to determine the corresponding GVa riantType. For example, 
you might provide an array of GVa riant pointers for items and 
g_ va riant_get_type () for func. 

The result of this function must be freed with a call to 
g_variant_type_free(). 

items: 
an array of items, one for each item 

func: 
a function to determine each item type 

length: 
the length of items 

Returns: 
a new GVa riantType 

g_variant_type_new_dict_entry () 
·;~· 
·.:' 

' GVariantType * 

g_variant_type_new_dict_entry (const GVariantType *key, 


const GVariantType *value); 


Constructs the type corresponding to a dictionary entry with a key 
of type key and a value of type value. 

The result of this function must be freed with a call to 
g_variant_type_free(). 

key: 
a basic GVa riantType 
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value: 
a GVa riantType 

Returns: 
a new dictionary entry GVa riantType 
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GVariant 

Synopsis 
typedef GVariant; 
GVariant* g_variant_new 

void g_variant_get 

GVariant* g_variant_ref 
GVariant* g_variant_ref_sink
void g_variant_unref
void g_variant_flatten 

GVariantTypeClass g_variant_get_type_class 
canst GVariantType* g_variant_get_type
canst gchar* g_variant_get_type_string
gboolean g_variant__:is_basic 
gboolean g_variant_is_container
gboolean g_variant_matches 

gboolean g_variant_format_string_scan 
GVariant* g_variant_new_va 

void g_variant_get_va 

GVariant* g_variant_new_boolean
GVariant* g_variant_new_byte
GVariant* g_variant_new_uint16
GVariant* g_variant_new_int16 
GVariant* g_variant_new_uint32
GVariant* g_variant_new_int32
GVariant* g_variant_new_uint64 
GVariant* g_variant_new_int64
GVariant* g_variant_new_double
GVariant* g_variant_new_string
GVariant* g_variant_new_object_path
gboolean g_variant_is_object_path 
GVariant* g_variant_new_signature
gboolean g_variant_is_signature
GVariant* g_variant_new_variant 

gboolean g_variant_get_boolean
guint8 g_variant_get_byte
guint16 g_variant_get_uint16
gint16 g_variant_get_int16
guint32 g_variant_get_uint32
gint32 g_variant_get_int32 

(canst gchar *format_string, 
... >: 

(GVariant *value, 
const gchar *format_string, ... ) : 

(GVariant *value); 
(GVariant *value); 
(GVariant *value); 
(GVariant *value); 

(GVariant *value); 
(GVariant *value); 
(GVariant *value); 
(GVariant *value); 
(GVariant *value); 
(GVariant *value, 
canst GVariantType *pattern); 

(canst gchar **format_string); 
(canst gchar **format_string, 
va_list *app}; 

(GVariant *value, 
canst gchar **format_string, 
va_list •app); 

(gboolean boolean); 
(guintS byte); 
(guirit16 uint16); 
(gintl6 int16); 
(guint32 uint32); 
(gint32 int32); 
(guint64 uint64); 
(gint64 int64); 
(gdouble floating);
(const gchar •string);
(canst gchar •string);
(canst gchar *string); 
(canst gchar *string);
(canst gchar *string);
(GVariant *value); 

(GVariant *value); 

(GVariant *value); 

(GVariant *value); 

(GVariant *value); 

(GVariant *value); 

(GVariant *value); 
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guint64 
gint64
gdouble 
canst gchar* 

gchar* 

GVariant* 

gsize
GVariant* 

gconstpointer 

gconstpointer 

typedef 
gsize 

GVariant* 
void 
gboolean 
gboolean 

typedef 
#define 
enurn 
void 
void 

void 

gboolean 

gboolean 

GVariantBuilder* 
GVariant* 
GVariantBuilder* 

GVariantBuilder* 

GString* 

g_variant_get_uint64 
g variant get int64 
g-variant-get-double 
g=variant=get=string 

g_variant_dup_string 

g_variant_get_variant 

g_variant_n_children
g_variant_get_child 

g_variant_get_fixed 

g_variant_get_fixed_array 

GVariantiter; 
g variant iter init 

g variant iter next 
g=variant=iter=cancel
g_variant_iter_was_cancelled 
g_variant_iterate 

GVariantBuilder; 
G VARIANT BUILDER ERROR 
GVariantBuilderError; 
g_variant_builder_cancel 
g variant builder add- . - ­

g_variant_builder_add_value 

g_variant_builder_check_add 

g_variant_builder_check_end 

g_variant_builder_close 
g variant builder end 
g=variant=builder=new 

g_variant_builder_open 

g_variant_markup_print 

(GVariant *value); 
(GVariant *value}: 
(GVariant *value); 
(GVariant *value, 
gsize *length); 

(GVariant *value, 
gsize *length); 

(GVariant *value); 

(GVariant *value}; 
(GVariant *value, 
gsize index); 

(GVariant *value, 
gsize size); 

{GVariant *value, 
gsize elem_size, 
gsize *length); 

(GVariantiter *iter, 
GVariant *value); 

(GVariantiter *iter); 
{GVariantiter *iter);
(GVariantiter *iter); 
(GVariantiter *iter, 
const gchar *format_string, 
... ) ; 

(GVariantBuilder *builder); 
{GVariantBuilder *builder, 
const gchar *format_string, ... ); 

{GVariantBuilder *builder, 
GVariant *value); 

(GVariantBuilder *builder, 
GVariantTypeClass class, 
const GVariantType *type, 
GError **error); 

(GVariantBuilder *builder, 
GError **error); 

(GVariantBuilder *child); 
(GVariantBuilder *builder); 
(GVariantTypeClass class, 
const GVariantType *type); 

{GVariantBuilder *parent, 
GVariantTypeClass class, 
canst GVariantType *type); 

(GVariant *value, 
GString *string, 
gboolean newlines, 
gint indentation, 
gint tabstop); 
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GVariant* g_variant_markup_parse (canst gchar *text, 
gssize text_len, 
canst GVariantType *type,
Gi:rror **error); 

void g_variant_markup_subparser_start (GMarkupParseContext *context, 
canst GVariantType *type);

GVariant* g_variant_markup_subparser_end (GMarkupParseContext *context, 
GError **error); 

GMarkupParseContext* g_variant_markup_parse_context_new (GMarkupParseFtags flags, 
canst GVariantType *type);

GVariant* g_variant_markup_parse_context_end (GMarkupParseContext *context, 
GError **error); 

Description 

Details 

GVariant 

typedef struct OPAQUE_TYPE__GVariant GVariant; 

GVa riant is an opaque data structure and can only be accessed using 
the following functions. 

g_variant_new () 
'::;, 

~~ GVa riant * 

;;: g_variant_new (canst gchar *format_string; 

i -'; 	 ••• ) ; 

i;!~i 
',~·~ 

'''; 	 Creates a new GVariant instance. 
{~; 

:;; 
,, 	

Think of this function as an analogue to g_strdup_printf ().
~l~ 

; ; 	The type of the created instance and the arguments that are 
:;'j 	 expected by this function are determined by format_string. In the 

most simple case, format_string is exactly equal to a concrete 
GVa riantType type string and the result is of that type. All exceptions 
to this case are explicitly mentioned below. 

The arguments that this function collects are determined by 
scanning format_string from start to end. Brackets do not impact the 
collection of arguments. Each other character that is encountered 
will result in an argument being collected. 
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Arguments for the base types are expected as follows: 

If a 'v' character is encountered in format string then a (GVa riant 
*) is collected which must be non-NULL and must point to a valid 
GVa riant instance. 

If an array type is encountered informat_string, a GVariantBuilder 
is collected and has g_variant_builder_end () called on it. The type 
of the array has no impact on argument collection but is checked 
against the type of the array and can be used to infer the type of an 
empty array. 

If a maybe type is encountered in format_string, then the expected 
arguments vary depending on the type. 

If a '*' character is encountered in format_string then a (GVa riant 
*) is collected which must be non-NULL and must point to a valid 
GVariant instance. This GVariant is inserted directly at the given 
position. 

Please note that the syntax of the format string is very likely to be 
extended in the future. 

format_string : 
a GVa riant format string 

... .. 
arguments, as per format_string 

Returns: 
a new floating GVa riant instance 

g_variant_get () 

void 

g_variant_get (GVariant *value, 


const gchar *format_string, 

... ) ; 
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value: 

format_string : 

... .. 
g_variant_ref () 

GVariant * 
g variant ref (GVariant *value); 

Increases the reference count of variant. 

value: 
a GVariant 

Returns: 
the same variant 

g_variant_ref_sink () 

GVariant * 
g_variant_ref_sink (GVariant *value); 

If value is floating, mark it as no longer floating. If it is not floating, 
increase its reference count. 

value: 
a 	GVariant 

Returns: 
the same variant 

g~variant_unr~f () 

' 	void 

g_variant_unref (GVariant *value); 
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Decreases the reference count of variant. When its reference count 
drops to 0, the memory used by the variant is freed. 

value: 
a GVariant 

g_variant_flatten {) 

void 
g_variant_flatten (GVariant *value); 

Flattens value. 

This is a strange function with no direct effects but some noteworthy 
side-effects. Essentially, it ensures that value is in its most favourable 
form. This involves ensuring that the value is serialised and in 
machine byte order. The investment of time now can pay off by 
allowing shorter access times for future calls and typically results in 
a reduction of memory consumption. 

A value received over the network or read from the disk in machine 
byte order is already flattened. 

Some of the effects of this call are that any future accesses to the 
data of value (or children taken from it after flattening) will occur 
in 0(1) time. Also, any data accessed from such a child value will 
continue to be valid even after the child has been destroyed, as 
long as value still exists (since the contents of the children are now 
serialised as part of the parent). 

value: 
a GVa riant instance 

g_variant_get_type_class () 

GVariantTypeClass
g_variant_get_type_class (GVariant *value); 
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Returns the type class of value. This function is equivalent to calling 
g_variant_get_type () followed by g_variant_type_get_class (). 

value: 
a GVariant 

Returns: 
the GVa riantTypeClass of value 

g_variant_get_type () 
:; ~': 

canst GVariantType * 
g_variant_get_type (GVariant *value); 

·I·' 

'.' Determines the type of value. 

The return value is valid for the lifetime of value and must not be 
freed. 

value: 
a GVariant 

Returns: 
a GVa riantType 

g~variant_get_type_string () 
{·· 

:, : canst gcha r * 

g_variant_get_type_string (GVariant *value); 


~ ':t 

;::(( 


Returns the type string of value. Unlike the result of calling 
,,; g_variant_type_peek_string(), this string is nul-terminated. This 
' string belongs to GVa riant and must not be freed. 

value: 
a GVariant 
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Returns: 
the type string for the type of value 

g_variant_is_basic () 

gboolean 

g_variant_is_basic (GVariant *value); 


Determines if value has a basic type. Values with basic types may be 
used as the keys of dictionary entries. 

This function is the exact opposite of g_variant_is_container(). 

value: 
a GVariant 

Returns: 
TRUE if value has a basic type 

g_variant_is_container () 

~;! gboolean 

,:;! g_variant_is_container (GVariant *value); 


::\:i Determines if value has a container type. Values with container 
';\types maybe used with the functions g_variant_n_children() and 

g_variant_get_child(). 
,, 

;;,: This function is the exact opposite of g_ va riant_is_basic (). 
;.>, 

,,, value: 
\<: 

a GVariant 

Returns: 
TRUE if value has a basic type 
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riant_matches () 

gboolean 

g_variant_matches (GVariant *value, 


const GVariantType *pattern); 


Checks if a value has a type matching the provided pattern. 
This call is equivalent to calling g_variant_get_type() then 
g_variant_type_matches(). 

value: 
a GVa riant instance 

pattern: 
a GVa riantType 

Returns: 
TRUE if the type of value matches pattern 

g~variant_format_string_scan () 

!1; gboolean

jii g_variant_format_string_scan (const gchar **format_string); 


~:l Checks the string pointed to by format_string for starting with a 
);:, properly formed GVariant varargs format string. If a format string 
'(; is fount, format_string is updated to point to the first character 
','',1 following the format string and TRUE is returned. 

;' 	If no valid format string is found, FALSE is returned and the state of 
the {ormat_string pointer is undefined. 

All valid GVa riantType strings are also valid format strings. See 
g_variant_type_string_is_valid(). 

Additionall~ any type string contained in the format string may be 
prefixed with a'@' character. Nested'@' characters may not appear. 
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Additionally, any fixed-width type may be prefixed with a '&' 
character. No wildcard type is a fixed-width type. Like '@', '&' 
characters may not be nested. 

No'@' or'&' character, however, may appear as part of an array type. 

Currently, there are no other permissible format strings. Others may 
be added in the future. 

For an explanation ofwhat these strings mean, see g_variant_new() 
and g_ va riant_get (). 

format_string : 
a pass-by-reference pointer to the start of a possible format string 

Returns: 
TRUE if a format string was scanned 

g_variant_new_va {) 

':':, GVa riant * 
,-', g_variant_new_va (const gchar **format_string, 
';: va_list *app); 

) This function is intended to be used by libraries based on GVa riant 
ii that want to provide g_variant_new( )-like functionality to their 
F; users. 

, The API is more general than g_variant_new() to allow a wider 
,,, range of possible uses. 

format_string must still point to a valid format string, but it need not 
be nul-terminated. Instead, format_string is updated to point to the 
first character past the end of the given format string. 

. . app is a pointer to a va list. The arguments, according to 
, format_string, are collected-from this va_list and the list is left 
· pointing to the argument following the last. 
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·'' These two generalisations allow mixing of multiple calls to 
"g_variant_new_va() and g_variant_get_va() 

actual varargs call by the user. 

format_string : 
a pointer to a format string 

app: 
a pointer to a va list 

Returns: 
a new, floating, GVa riant 

g~variant_get_va () 

v: void 
,., g_variant_get_va (GVariant *value, 

~ const gcha~ **format_string, 

\ .. ; va_list *app); 

within a single 

-~:' This function is intended to be used by libraries based on GVa riant 
that want to provide g_variant_new( )-like functionality to their 

\<:' users. ,. 
.\) 

~:i The API is more general than g variant get () to allow a wider 
;;.; range of possible uses. - ­

format_string must still point to a valid format string, but it need not 
be nul-terminated. Instead, format_string is updated to point to the 
first character past the end of the given format string. 

app is a pointer to a va_list. The arguments, according to 
format_string, are collected from this va_list and the list is left 

··· pointing to the argument following the last. 

These two generalisations allow mixing of multiple calls to 
g_variant_new_va() and g_variant_get_va() within a single 
actual varargs call by the user. 
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value: 
a GVariant 

format_string: 
a pointer to a format string 

app: 
a pointer to a va_list 

g_variant_new_boolean {) 

's GVa riant * !'·,i 
g_variant_new_boolean (gboolean boolean); 

" 

Creates a new boolean GVa riant instance -- either TRUE or FALSE. 

boolean: 
a gboolean value 

Returns: 
a new boolean GVa riant instance 

g_variant_new_byte () 
~;11: 

~,~) GVa riant * 
\:jI' 

g_variant_new_byte (guint8 byte); 
!·:::; 

:;:d
, Creates a new byte GVa riant instance. 

{:~~ 
,; byte: 
;', a guint8 value 

', Returns: 
>J 

' a new byte GVa riant instance 

g_variant_new_uint16 () 

GVariant * 
g_variant_new_uint16 (guint16 uint16); 
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Creates a new uint16 GVa riant instance. 

uint16: 
a guint16 value 

Returns: 
a new byte GVa riant instance 

g~variant_new_int16 () 

'''" 	 GVa riant * 

g_variant_new_int16 (gint16 int16); 


Creates a new int16 GVariant instance. 

int16: 
a 	gint16 value 

Returns: 
a new byte GVa riant instance 

g~variant_new_uint32 () 

n1 	 GVa riant * 
~ ') 	

g_variant_new_uint32 (guint32 uint32); 
>'J 
,, 	 Creates a new uint32 GVa riant instance. 

uint32: 
a 	guint32 value 

Returns: 
a new uint32 GVa riant instance 

g_variant_new_int32 () 

.;: 	 GVa riant * 

g_variant_new_int32 (gint32 int32); 
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Creates a new int32 GVa riant instance. 

int32: 
a gint32 value 

Returns: 
a new byte GVariant instance 

g_variant_new_uint64 () 

GVariant * 
g_variant_new_uint64 (guint64 uint64); 

Creates a new uint64 GVa riant instance. 

uint64: 
a guint64 value 

Returns: 
a new uint64 GVa riant instance 

g_variant_new_int64 () 
·>ii·' 

·,<
:\; 	 GVa riant * 


g_variant_new_int64 (gint64 int64); 


Creates a new int64 GVa riant instance. 

int64: 
a gint64 value 

Returns: 
a new byte GVa riant instance 

g_variant_new_double () 

GVariant * 
g_variant_new_double (gdouble floating); 
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Creates a new double GVa riant instance. 

floating: 
a gdouble floating point value 

Returns: 
a new double GVa riant instance 

g~variant_new_string () 
\;~;:' 

~~~- GVa riant * 
g_variant_new_string (canst gchar *string); 

Creates a string GVa riant with the contents of string. 

string: 
a normal C nul-terminated string 

Returns: 
a new string GVa riant instance 

g_variant_new_object_path () 
!';:,"'; 

'i:J GVa riant * 
;/'-\

.. , g_variant_new_object_path (const gchar *string): 

Creates a DBus object path GVa riant with the contents 
of string. string must be a valid DBus object path. Use 
g_variant_is_object_path() if you're not sure. 

string: 
a normal C nul-terminated string 

Returns: 
a new object path GVa riant instance 
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g_variant_is_object_path () 

gboolean 

. g_variant_is_object_path (const gchar *string); 


Determines if a given string is a valid DBus object path. You should 
ensure that a string is a valid DBus object path before passing it to 
g_variant_new_object_path{). 

A valid object path starts with '/' followed by zero or more 
sequences of characters separated by'/' characters. Each sequence 
must contain only the characters "[A-Z][a-z][0-9]_". No sequence 
(including the one following the final'/' character) may be empty. 

string: 
a normal C nul-terminated string 

Returns: 
TRUE if string is a DBus object path 

g~variant_new_signature () 

GVariant * 

:;;} g_variant_new_signature (const gchar *string); 


'', 	 Creates a DBus type signature GVa riant with the contents
~~N ,, 	 of string. string must be a valid DBus type signature. Use 

g_variant_is_signature{) if you're not sure. 

string: 
a normal C nul-terminated string 

Returns: 
a new signature GVa riant instance 

g_variant_is_signature () 

gboolean 

·, g_variant_is_signature (const gchar *string); 
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Determines if a given string is a valid DBus type signature. You 
should ensure that a string is a valid DBus object path before passing 
it to g_variant_new_signature(). 

DBus type signatures consist of zero or more concrete GVa riantType 
strings in sequence. 

string: 
a normal C nul-terminated string 

Returns: 
TRUE if string is a DBus type signature 

g_variant_new_variant () 
:·,,· 

": GVariant * 
~~:~; 

g~variant_new_variant (GVariant *value); 
')' 
i'· 

:,,:; Boxes value. The result is a GVa riant instance representing a variant 
::,' containing the original value. 
~··., 

value: 
a GVariance instance 

Returns: 
a new variant GVa riant instance 

g_variant_get_bootean () 
:. "l 
,'~! gboolean 

, g_variant_get_boolean (GVariant *value); 


Returns the boolean value of value. 

It is an error to call this function with a value of any type other than 
' G VARIANT TYPE BOOLEAN. 

171 



- - -

- - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

value: 
a boolean GVa riant instance 

Returns: 
TRUE or FALSE 

g_variant_get_byte () 

guint8 

g_variant_get_byte (GVariant *value); 


Returns the byte value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE BYTE. 

value: 
a byte GVa riant instance 

Returns: 
a guchar 

g_variant_get_uintl6 () 

;,: guintl6 

',: g_variant_get_uintl6 (GVariant *value);

):ji 

Returns the 16-bit unsigned integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT16. 

value: 
a uint16 GVa riant instance 

Returns: 
a guint16 
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gTvariant_get_int16 () 

gintl6 

g_variant_get_int16 (GVariant *value); 


Returns the 16-bit signed integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE INT16. 

value: 
a int16 GVariant instance 

Returns: 
a gint16 

g_variant_get_uint32 () 
::\! 

i. guint32 

;,.' g_variant_get_uint32 (GVariant *value); 


}r! 	 Returns the 32-bit unsigned integer value of value. 
,,~ ,, 

'\ 	It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT32. 

value: 
a uint32 GVa riant instance 

Returns: 
a guint32 

g~variant_get_int32 () 

l·f: gint32 

,, g_variant_get_int32 (GVariant *value); 


Returns the 32-bit signed integer value of value. 
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It is an error to call this function with a value of any type other than 
G - VARIANT - TYPE- INT32. 

value: 
a int32 GVa riant instance 

Returns: 
a gint32 

riant_get_uint64 () 

guint64 

g_variant_get_uint64 (GVariant *value); 


Returns the 64-bit unsigned integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT64. 

value: 
a uint64 GVa riant instance 

Returns: 
a guint64 

g_variant_get_int64 () 

gint64 

g_variant_get_int64 (GVariant *value); 


Returns the 64-bit signed integer value of value. 

It is an error to call this function with a value of any type other than 
G- VARIANT 

-
TYPE 

-
INT64. 

value: 
a int64 GVa riant instance 
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Returns: 
a gint64 

g~variant_get_double () 

: gdouble 

g_variant_get_double (GVariant *value); 


Returns the double precision floating point value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE DOUBLE. 

value: 
a double GVariant instance 

Returns: 
a gdouble 

g_variant_get_string () 
;,'·~~ 

;-,., 

,c.; const gcha r * 

g variant get string (GVariant *value, 


1 ~, - - - gsize *length); 

:;:::, 

Returns the string value of a GVa riant instance with a 
string type. This includes the types G_VARIANT_TYPE_STRING, 
G VARIANT TYPE OBJECT PATH and G VARIANT TYPE SIGNATURE. 

If length is non-NULL then the length of the string (in bytes) is 
returned there. For trusted values, this information is already 
known. For untrusted values, a st rlen () will be performed. 

It is an error to call this function with a value of any type other than 
those three. 

The return value remains valid as long as value exists. 
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value: 
a string GVa riant instance 

length: 
a pointer to a gsize, to store the length 

Returns: 
the constant string 

g_variant_dup_string () 

gchar * 

g_variant_dup_string (GVariant *value, 


gsize *length); 


Similar tog_va riant_get_st ring () except that instead of returning 
a constant string, the string is duplicated. 

The return value must be freed using g_free ( ) . 

value: 
a string GVa riant instance 

length: 
a pointer to a gsize, to store the length 

Returns: 
a newly allocated string 

g_variant_get_variant () 

GVariant * 
g_variant_get_variant (GVariant *value); 

Unboxes value. The result is the GVa riant instance that was 
contained in value. 

value: 
a variant GVariance instance 
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Returns: 
the item contained in the variant 

g~variant_n_chitdren () 

;:;,\ 	 gsize 
:1'1 	 g_variant_n_children (GVariant *value); 

?\' 	 Determines the number of children in a container GVa riant instance. 
,; 	 This includes variants, maybes, arrays, structures and dictionary 

entries. It is an error to call this function on any other type of 
GVariant. 

For variants, the return value is always 1. For maybes, it is always 
zero or one. For arrays, it is the length of the array. For structures it 
is the number of structure items (which depends only on the type). 
For dictionary entries, it is always 2. 

This function never fails. TS 

value: 
a container GVa riant 

Returns: 
the number of children in the container 

g_variant_get_chitd () 
;·\;; 
' ~: 

;(~.j 	 GVa riant * 
:: ~~ 
.. g_variant_get_child (GVariant *value, 

' gsize index); 


Reads a child item out of a container GVa riant instance. This 
includes variants, maybes, arrays, structures and dictionary entries. 
It is an error to call this function on any other type of GVa riant. 

It is an error if index is greater than the number of child items in the 
container. See g_variant_n_children(}. 

;: This function never fails. 
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value: 
a container GVa riant 

index: 
the index of the child to fetch 

Returns: 
the child at the specified index 

riant_get_fixed () 

gconstpointer 

g_variant_get_fixed (GVariant *value, 


gsize size); 


Gets a pointer to the data of a fixed sized GVa riant instance. This 
pointer can be treated as a pointer to the equivalent C stucture type 
and accessed directly. The data is in machine byte order. 

size must be equal to the fixed size of the type of value. It isn't used 
for anything, but serves as a sanity check to ensure the user of this 
function will be able to make sense of the data they receive a pointer 
to. 

This function may return NULL if size is zero. 

value: 
a GVariant 

size: 
the size of value 

Returns: 
a pointer to the fixed-sized data 
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g_variant_get_·Hxed_array () 
:-·LI 

gconstpointer 
g_variant_get_fixed_array (GVariant *value, 


gsize elem~size, 

gsize *length); 


Gets a pointer to the data of an array of fixed sized GVa riant 
instances. This pointer can be treated as a pointer to an array of 
the equivalent C structure type and accessed directly. The data is in 
machine byte order. 

elem_size must be equal to the fixed size of the element type of value. 
It isn't used for anything, but sexves as a sanity check to ensure 
the user of this function will be able to make sense of the data they 
receive a pointer to. 

length is set equal to the number of items in the array, so that the 
size of the memory region returned is elem size times length. 

This function may return NULL if either elem size or length is zero. 

value: 
an array GVa riant 

elem_size: 
the size of one array element 

length: 
a pointer to the length of the array, or NULL 

Returns: 
a pointer to the array data 

GVariantiter 

typedef struct OPAQUE_TYPE__GVariantiter GVariantiter; 

An opaque structure type used to iterate over a container GVa riant 
instance. 
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The iter must be initialised with a call to g variant iter init ( ) 
before using it. Mer that g

-
variant- iter-- next ( ) will return the 

child values, in order. 

The iter may maintain a reference to the container GVa riant 
until g- variant 

-
iter 

-
next ( ) returns NULL. For this reason, it 

is essential that you call g variant iter next ( ) until NULL is 
returned. If you want to abort iterating part way through then use 
g variant iter cancel(). 

g_variant_iter_init () 

:;,; gsize

Ug_variant_iter_init (GVariantiter *iter, 

' GVariant *value); 

:~,~ 
?' 	 Initialises the fields of a GVa riant!ter and perpare to iterate over 

the contents of value. 

iter is allowed to be completely uninitialised prior to this call; it 
does not, for example, have to be cleared to zeros. For this reason, 
if iter was already being used, you should first cancel it with 
g

-
variant- iter 

-
cancel(). 

Mer this call, iter holds a reference to value. The reference will be 
automatically dropped once all values have been iterated over or 
manually by calling g_va riant_iter_cancel (). 

This function returns the number of times that 
g_variant_iter_next() will return non-NULL. You're not expected 
to use this value, but it's there incase you wanted to know. 

iter: 
a GVariantiter 

value: 
a container GVa riant instance 
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Returns: 
the number of items in the container 

g_variant_iter_next ()
;-,., 
·;.;·

·ri GVa riant * 

':0 g_variant_iter_next (GVariantiter *iter); 


Retreives the next child value from iter. In the event that no more 
child values exist, NULL is returned and iter drops its reference to 
the value that it was created with. 

· The return value of this function is internally cached by the iter, so 
you don't have to unrefit when you're done. For this reason, thought, 
it is important to ensure that you call g_variant_iter_next() one 
last time, even if you know the number of items in the container. 

It is permissable to call this function on a cancelled iter, in which 
case NULL is returned and nothing else happens. 

iter: 
a GVariantlter 

Returns: 
a GVa riant for the next child 

~' .·
" 

g_variant_iter_cance\ () 
!.;·; 

\'-~-i . void 

.;:· g_variant_iter_cancel (GVariantiter *iter); 

'\ <"~ 

Causes iter to drop its reference to the container that it was created 
with. You need to call this on an iter if, for some reason, you stopped 
iterating before reading the end. 

You do not need to call this in the normal case of visiting all of the 
elements. In this case, the reference will be automatically dropped 
by g_variant_iter_next ()just before it returns NULL. 
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It is permissable to call this function more than once on the same 
iter. It is permissable to call this function after the last value. 

iter: 
a GVariantiter 

g_variant_iter_was_cancelled () 

gboolean 

g_variant_iter_was_cancelled (GVariantiter *iter); 


Determines if g_variant_iter_cancel {) was called on iter. 

iter: 
a GVariantiter 

Returns: 
TRUE if g variant iter cancel {) was called 

g~variant_iterate () 

gboolean 

g_variant_iterate (GVariantiter *iter, 


canst gchar *format_string, 

... ) ; 

Retreives the next child value from iter and deconstructs it 
according to format string. This call is sort of like calling 
g_variant_iter_next{) and g_variant_get{). 

This function does something else, though: on all but the first call 
(including on the last call, which returns FALSE) the values allocated 
by the previous call will be freed. This allows you to iterate without 
ever freeing anything yourself. In the case of GVa riant * arguments, 
they are unref'd and in the case of GVa riantiter arguments, they 
are cancelled. 

Note that strings are not freed since (as with g_ va riant_get {))they 
are constant pointers to internal GVa riant data. 
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This function might be used as follows: 

{ 
const gchar *key, *value; 
GVariantiter iter; 

while (g_variant_i terate (iter, "{ss}", &key, &value)) 

printf ("dict['%s'] = '%s'\n", key, value); 


} 


iter: 
a GVariantiter 

format_string: 
a format string 

... .. 
arguments, as per {ormat_string 

Returns: 
TRUE if a child was fetched or FALSE if not 

GVariantBuilder 
'. 

typedef struct OPAQUE_TYPE__GVariantBuilder GVariantBuilder; 

An opaque type used to build container GVa riant instances one child 
value at a time. 

G~VARIANT_BUI~DER_ERROR 

#define G_VARIANT_BUILDER_ERROR 

Error domain for GVa riantBuilde r. Errors in this domain will 
be from the GVariantBuilderError enumeration. See GError for 
information on error domains. 
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enum GVariantBuitderError 

typedef enum 
{ 

G VARIANT BUILDER ERROR TOO MANY, 
G-VARIANT-BUILDER-ERROR-TOO-FEW, 
G-VARIANT-BUILDER-ERROR-INFER, 
G-VARIANT-BUILDER-ERROR-TYPE 

} GVariantBuilderError; ­

Errors codes returned by g_variant_builder_check_add{} and 
g_variant_builder_check_end{). 

G_VARIANT_BUILDER_ERROR_TOO_MANY 
too many items have been 
g_variant_builder_check_add{}) 

added (returned by 

G_VARIANT_BUILDER_ERROR_TOO_FEW 
too few items have been 
g_variant_builder_check_end{}) 

added (returned by 

G_VARIANT_BUILDER_ERROR_INFER 
unable to infer the type of an array or maybe (returned by 
g_variant_builder_check_end{}) 

G_VARIANT_BUILDER_ERROR_TYPE 
the value is of the incorrect type (returned by 
g_variant_builder_check_add{}) 

g~variant_builder_cancel () 

····• void 
g_variant_builder_cancel (GVariantBuilder *builder); 

Cancels the build process. All memory associated with builder is 
freed. If the builder was created with g_ variant_builder_open (} 
then all ancestors are also freed. 
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builder: 
a GVa riantBuilde r 

g_variant_builder_add () 

\i void 
" g_variant_builder_add ( GVa riantBuilde r *builder,
f; canst gchar *format_string, 

... ) i 
·~~~: 

!:<' Adds to a GVariantBuilder. 
::t;~ 

This call is a convenience wrapper that is exactly 
i: equivalent to calling g_variant_new() followed by 
;; g_variant_builder_add_value( ). 
J~ 
,,, This function might be used as follows: 

GVariant * 
make_pointless_dictionary (void) 
{ 

GVariantBuilder *builder; 
int i; 

builder= g_variant_builder_new (G_VARIANT_TYPE_CLASS_ARRAY, 
NULL); 


for (i = 0; i < 16; i++) 

{ 


char buf[3); 

sprintf (buf, "%d", i); 
g_variant_builder_add (builder, "{is}", i, buf); 

} 

return g_variant_builder_end (builder); 
} 

builder: 
a GVariantBui lder 
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format_string : 
a GVariant varargs format string 

... .. 
arguments, as per format_string 

g_variant_builder_add_value () 
·;-) 

" void 
g_variant_builder_add_value (GVariantBuilder *builder, 


GVariant *value); 


Adds value to builder. 

It is an error to call this function if builder has an outstanding 
child. It is an error to call this function in any case that 
g variant builder check add() would return FALSE. 

builder: 
a GVa riantBuilde r 

value: 
a GVariant 

g_variant_builder_check_add () 

gboolean 
g_variant_builder_check_add {GVariantBuilder *builder, 


GVariantTypeClass class, 

const GVariantType *type, 

GError **error); 


Does all sorts of checks to ensure that it is safe to call 
g_variant_builder_add() org_variant_builder_open(). 

It is an error to call this function if builder has a child 
(ie: g_variant_builder_open() has been used on builder and 
g_variant_builder_close() has not yet been called). 
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It is an error to call this function with an invalid class 
(including G_VARIANT_TYPE_CLASS_INVALID) or a class that's 
not the smallest class for some concrete type (for example, 
G_VARIANT_TYPE_CLASS_ALL). 

If type is non-NULL this function first checks that it is a member 
of class (except, as with g_variant_builder_new(), if class is 
G_VARIANT_TfPE_CLASS_VARIANT then any type is OK). 

The function then checks if any child of class class (and type type, if 
given) would be suitable for adding to the builder. If type is non-NULL 
and is non-concrete then all concrete types matching type must be 
suitable for adding (ie: type must be equal to or less general than 

· the type expected by the builder). 

In the case of an array that already has at least one item in it, this 
function performs an additional check to ensure that class and type 
match the items already in the array. type, if given, need not be 
concrete in order for this check to pass. 

Errors are flagged in the event that the builder contains too many 
items or the addition would cause a type error. 

If class is specified and is a container type and type is not given then 
there is no guarantee that adding a value of that class would not 
fail. Calling g_variant_builder_open() with that class (and type as 
NULL) would succeed, though. 

In the case that any error is detected error is set and FALSE is 
returned. 

builder: 
a GVariantBui lder 

class: 
a GVa riantTypeClass 
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type: 
a GVa riantType, or NULL 

error: 
a GError 

Returns: 
TRUE if adding is safe 

g_variant_builder_check_end () 

gboolean 

g_variant_builder_check_end (GVariantBuilder *builder, 


GError **error); 


Checks if a call to g_variant_builder_end{) or 
g_variant_builder_close{) would succeed. 

It is an error to call this function if builder has a child 
(ie: g_variant_builder_open{) has been used on builder and 
g_variant_builder_close ( ) has not yet been called). 

This function checks that a sufficient number of items have been 
added to the builder. For dictionary entries, for example, it ensures 
that 2 items were added. 

This function also checks that array and maybe builders that were 
created without concrete type information contain at least one item 
(without which it would be impossible to infer the concrete type). 

If some sort of error (either too few items were added or type 
inference is not possible) prevents the builder from being ended then 
FALSE is returned and error is set. 

builder: 
a GVa riantBui lde r 

error: 
aGError 
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Returns: 
TRUE if ending is safe 

g_variant_buitder_ctose () 

~j 	 GVariantBuilder * 
;:; 	 g_variant_builder_close (GVariantBuilder *child); 

','~, 

}: This function closes a builder that was created with a call to 
,: g_variant_builder_open(). 
:;f:: 

f., 	 It is an error to call this function on a builder that was created using 
" 	 g_variant_builder_new(). It is an error to call this function if child 

has an outstanding child. It is an error to call this function in any 
case that g_variant_builder_check_end() would return FALSE. 

child: 
a GVa riantBuilder 

Returns: 
the original parent of child 

g_variant_builder_end () 
~~ ': 

~~; 	 GVa riant * 
'~ 	 g variant builder end {GVariantBuilder *builder); 
~-~: - - ­
;\ ·j 

.,, 	 Ends the builder process and returns the constructed value. 
i;({ 

It is an error to call this function on a GVariantBuilder created 
by a call to g_variant_builder_open(). It is an error to call this 
function if builder has an outstanding child. It is an error to call this 
function in any case that g_variant_builder_check_end() would 
return FALSE. 

builder: 
a GVa riantBuilde r 
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· Returns: 
a new, floating, GVariant 

g_variant_builder_new {) 

GVariantBuilder * 

g_variant_builder_new (GVariantTypeClass class, 


canst GVariantType *type); 


Creates a new GVa riantBuilde r. 

class must be specified and must be a container type. 

If type is given, it constrains the child values that it is permissible to 
add. If class is not G_VARIANT_TYPE_CLASS_VARIANT then type must 
be contained in class and will match the type of the final value. If 
class is G_VARIANT_TYPE_CLASS_VARIANT then type must match the 
value that must be added to the variant. 

Mter the builder is created, values are added using 
g_variant_builder_add_value(). 

Mter all the child values are added, g_va riant_bui lder_end () ends 
the process. 

class: 
a container GVa riantTypeClass 

type: 
a type contained in class, or NULL 

Returns: 
a GVa riantBuilder 

g_variant_builder_open () 

GVariantBuilder * 
g_variant_builder_apen (GVariantBuilder *parent, 


GVariantTypeClass class, 

canst GVariantType *type); 
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Opens a subcontainer inside the given parent. 

It is not permissible to use any other builder calls with parent until 
@g_variant_builder_close() is called on the return value of this 
function. 

It is an error to call this function if parent has an outstanding 
child. It is an error to call this function in any case that 
g_variant_builder_check_add() would return FALSE. It is an 
error to call this function in any case that it's an error to call 
g_variant_builder_new(). 

If type is NULL and parent was given type information, that 
information is passed down to the subcontainer and constrains what 
values may be added to it. 

parent: 
a GVa riantBuilder 

class: 
a GVa riantTypeClass 

type: 
a GVa riantType, or NULL 

Returns: 
a new (child) GVa riantBuilder 

g~variant_mark~p_print () 

~; GString * 

'''; g_variant_markup_print (GVariant *value, 

~:?: GString *string, 


gboolean newlines, 

'; gint indentation, 


gint tabstop); 


:i'' 

Pretty-prints value as an XML document fragment. 
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If string is non-NULL then it is appended to and returned. Else, a new 
empty GSt ring is allocated and it is returned. 

The newlines, indentation and tabstop parameters control the 
whitespace that is emitted as part of the document. 

If newlines is TRUE, then newline characters will be printed where 
appropriate. 

If indentation is non-zero then this is the number of spaces that are 
printed before the first and last tag. If tabstop is non-zero then this 
is the number of additional spaces that are added for each level of 
nesting. 

value: 
a GVariant 

string: 
a GSt ring, or NULL 

newlines: 
TRUE if newlines should be printed 

indentation : 
the current indentation level 

tabstop: 
the number of spaces per indentation level 

Returns: 
a GString containing the XML fragment 

g_variant_markup_parse () 

GVariant * 
g_variant_markup_parse (canst gchar *text, 


gssize text_len, 

canst GVariantType *type, 

GError **error); 
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One of the three interfaces to the GVa riant 
markup parser. For information about the 
others, see g_variant_markup_subparser_start() and 
g_variant_markup_parse_context_new(). 

You should use this interface if you have an XML document 
representing a GVa riant value entirely contained within a single 
string. 

text should be the full text of the document. If text len 
is not -1 then it gives the length of text (similar to 
g_markup_parse_context_parse( )). 

If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

In the case of an error then NULL is returned and error is set to a 
description of the error condition. This function is robust against 
arbitrary input; all error conditions are reported via error -- your 
program will never abort. 

text: 
the self-contained document to parse 

text_len: 
the length of text, or -1 

type: 
a GVa riantType constraining the type of the root element 

error: 
a GError 

Returns: 
a new GVa riant, or NULL in case of an error 
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g_variant_markup_subparser_start () 

··· void 

·< g_variant_markup_subparser_start (GMarkupParseContext *context, 


const GVariantType *type); 


, One of the three interfaces to the GVa riant markup parser. For 
;;\ information about the others, see g_variant_markup_parse() and 
· g_variant_markup_parse_context_new(). 
·;!>'. 
: -~f 

' You should use this interface if you are parsing an XML document 
using GMa rkupPa rse r and that document contains an embedded 
GVa riant among the markup. 

You should call this function from the start_element handler of your 
parser for the element containing the markup for the GVa riant 
and then return immediately. The next call to your parser will 
either be an error condition or a call to the end element handler 
for the tag matching the start tag. From here, you should call 
g_variant_markup_parser_pop to collect the result. 

For example, if your document contained sections like this: 

<my-value> 

<int32>42</int32> 


</my-value> 


Then your handlers might contain code like: 

start_element() 
{ 

if (strcmp (element_name, "my-value") == 0) 


g_variant_markup_subparser_start (context, NULL); 

else 


{ 

} 

} 
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end_element() 

{ 


if (strcmp (element name, "my-value") == 0)

{ -


GVariant *value; 


if (!(value= g_variant_markup_subparser_pop (context, error))) 
return; 

} 

else 


{ 


} 

} 


If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

This call never fails, but it is possible that the call to 
g_variant_markup_subpa rser_end () will. 

context: 
a GMa rkupPa rseContext 

type: 
a GVa riantType constraining the type of the root element 

g~variant_markup_subparser_end () 

.j GVariant * 
•. j g_variant_rna rkup_ subpa rse r _end (GMa rkupPa rseContext *context, 

.:·: GError **error); 


Ends the subparser started by 
g_variant_markup_subparser_start() and collects the results. 
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You must call this function from the end element handler invocation 
corresponding to the start_element handler invocation from which 
g_variant_markup_subparser_start{) was called. This will be 
the first end_handler invocation that is received after calling 
g

-
variant 

-
markup- subparser

-
start(). 

If an error occured while processing tags in the subparser then your 
end_element handler will not be invoked at all and you should not 
call this function. 

· The only time this function will fail is if no value was contained 
between the start and ending tags. 

context: 
a GMa rkupPa rseContext 

error: 
the end_ element handler error, passed through 

Returns: 
a GVa riant or NULL. 

g_variant_markup_parse_context_new () 
::~~i? 

~ GMarkupParseContext * 

·i{ g_variant_markup_parse_context_new (GMarkupParseFlags flags, 

~ const GVariantType *type); 

~·.~~ 

One of the three interfaces to the GVa riant markup parser. For 
,. information about the others, see g_va riant_ma rkup_pa rse () and 

g_variant_markup_subparser_start() . 

. You should use this interface if you have an XML document that you 
· want to feed to the parser in chunks. 

This call creates a GMarkupPa rseContext setup for parsing 
a GVa riant XML document. You feed the document to 
the parser one chunk at a time using the normal 
g_markup_parse_context_parse() call. After the entire document 
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is fed, you call g_variant_markup_parse_context_end ()to free the 
context and retreive the value. 

If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

If you want to abort parsing, you should free the context using 
g_markup_parse_context_free(). 

flags: 
GMarkupParseFlags 

type: 
a GVa riantType constraining the type of the root element 

Returns: 
a new GMa rkupPa rseContext 

riant_markup_parse_context_end () 

GVariant * 
g_variant_markup_parse_context_end (GMarkupParseContext *context, 

GError **error); 

Ends the parsing started with 
g_variant_markup_parse_context_new(). 

context must have been the result of a previous call to 
g_variant_markup_parse_context_new(). 

This function calls g_markup_parse_context_end_parse() and 
g_markup_parse_context_free() foryou. 

If the parsing was successful, a GVa riant is returned. Otherwise, 
NULL is returned and error is set accordingly. 
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context: 
a GMa rkupPa rseContext 

error: 
a GError 

Returns: 
a GVa riant, or NULL 
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GVariant-loadstore 

Synopsis 

enurn 
void 

gconstpointer
gsize
GVariant* 

GVariant* 

GVariant* 

Description 

Details 

GVariantFlags;
g_variant_store 

g_variant_get_data
g_variant_get_size
g_variant_load 

g_variant_from_slice 

g_variant_from_data 

enum GVariantFtags 

typedef enum 
{ 

G_VARIANT_TRUSTED 
G VARIANT LAZY BYTESWAP 

} GVariantFlags;­

g_variant_store () 

void 

(GVariant *value, 
gpointer data); 

(GVariant *value); 
(GVariant *value); 
(canst GVariantType *type,
gconstpointer data, 
gsize size, 
GVariantFlags flags); 

(const GVariantType *type,
gpointer slice, 
gsize size, 
GVariantFlags flags);

(const GVariantType *type,
gconstpointer data, 
gsize size, 
GVariantFlags flags,
GDestroyNotify notify, 
gpointer user_data); 

= exeee1eeee, 
=ex00020009, 

g_variant_store (GVariant *value, 
gpointer data); 

Stores the serialised form of variant at data. data should be serialised 
enough. See g_variant_get_size(). 
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The stored data is in machine native byte order but may not be in 
fully-normalised form if read from an untrusted source. 

This function is approximately O(n) in the size of data. 

This function never fails. 

value: 
the GVa riant to store 

data: 
the location to store the serialised data at 

g_variant_get_data {) 

;f ~~~~~i~~~:~~~_data (GVariant *value); 

Returns a pointer to the serialised form of a GVa riant instance. The 
returned data is in machine native byte order but may not be in fully­
normalised form if read from an untrusted source. The returned data 
must not be freed; it remains valid for as long as value exists. 

In the case that value is already in serialised form, this function 
is 0(1). If the value is not already in serialised form, serialisation 
occurs implicitly and is approximately O(n) in the size of the result. 

This function never fails. 

value: 
a GVa riant instance 

Returns: 
the serialised form of value 

g_variant_get_size () 

gsize 
g_variant_get_size (GVariant *value); 
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Determines the number of bytes that would be required to store 
value with g_variant_store(). 

In the case that value is already in serialised form or the size has 
already been calculated (ie: this function has been called before) 
then this function is 0(1 ). Otherwise, the size is calculated, an 
operation which is approximately O(n) in the number of values 
involved. 

. This function never fails. 

value: 
a GVa riant instance 

Returns: 
the serialised size of value 

g_variant_toad () 
~',: -i 

.,·: GVa riant * 
<~: g_variant_load (canst GVariantType *type, 
~ gconstpointer data, 

gsize size, 
GVariantFlags flags); 

Creates a new GVa riant instance. data is copied. For a more efficient 
way to create GVariant instances, see g_variant_from_slice () or 
g_variant_from_data(). 

·.. This function is O(n) in the size of data. 

This function never fails. 

type: 
the GVa riantType of the new variant 

data: 
the serialised GVa riant data to load 
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size: 
the size of data 

flags: 
zero or more GVa riantFlags 

Returns: 
a new GVa riant instance 

g_variant_from_stice () 
"·' ·~~j

"'' 	 GVa riant * 

g_variant_from_slice (canst GVariantType *type, 


:,:;· 

:;·~~~ gpointer slice, 

i~\~i 
 gsize size, 

GVariantFlags flags); 

:,t Creates a GVa riant instance from a memory slice. Ownership of the 
,;, memory slice is assumed. This function allows efficiently creating 
:;'1 GVa riant instances with data that is, for example, read over a socket. 

If type is NULL then data is assumed to have the type 
G VARIANT TYPE VARIANT and the return value is the value 
extracted from that variant. 

This function never fails. 

type: 
the GVa riantType of the new variant 

slice : 
a pointer to a GSlice-allocated region 

size: 
the size of slice 

flags: 
zero or more GVariantFlags 
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Returns: 
a new GVa riant instance 

g~variant_from_data () 

':{ GVa riant * 
'~?
, g_variant_from_data (canst GVariantType *type, 


gconstpointer data, 

gsize size, 

GVariantFlags flags, 

GDestroyNotify notify, 

gpointer user_data); 


,, Creates a GVariant instance from serialised data. The data is not 
;i,l copied. When the data is no longer required (which may be before 
,, or after the return value is freed) notify is called. notify may even be 

'!~ ~\ 

.~~~·,1 called before this function returns. 

If type is NULL then data is assumed to have the type 
G VARIANT TYPE VARIANT and the return value is the value 
extracted from that variant. 

This function never fails. 

type: 
the GVa riantType of the new variant 

data: 
a pointer to the serialised data 

size: 
the size of data 

flags: 
zero or more GVa riantflags 

notify: 
a function to call when data is no longer needed 
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user data: 
a gpointer to pass to notify 

Returns: 
a new GVa riant instance 
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Appendix B 

Synchronisation Primitives 

A GVariant instance is a very small structure. It uses only 24 bytes of 
memory on 32-bit systems. 

On 32-bit systems, a GStaticMutex lock, as made available in GLib 
is 28 bytes. A GMutex is also 24 bytes (being implemented as 
a POSIX pthread_mutex_t which is the same size) and it also 
requires allocation of a separate memory region (increasing memory 
management overhead) and would also necessitate adding another 
pointer to the GVariant structure (which would increase the size of a 
GVariant instance to 32 bytes)1

• 

Associating one of these existing primitives with each GVariant instance 
would more than double the amount of memory used as overhead by 
GVariant. There are several places in GVariant, however, where access 
to a given instance must be limited to a single thread. For this reason, 
alternative solutions were sought out. 

One potential solution that was considered for this problem was to 
use code locks. A single lock would be allocated and used to ensure 

1 Memory in GLib is allocated via the slice allocator, which allocates memory regions 
with a size granularity of 2 pointer sizes. On 32-bit machines this is 8 bytes. 
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that sensitive GVariant code is executing in no more than one thread. 
This solution would result in an excessive amount of lock contention, 
however, since even if threads were accessing totally separate instances 
they will still block on each other. 

Some form of finer-grained locking is required. A number of alternative 
solutions were evaluated and finally one was settled one: a 1-bit mutex 
lock. 

The 1-bit mutex has been proposed for2 (and is likely to be included 
in) the next version of GLib as a general purpose interface. It will be 
available as the functions g_bit_lock() and g_bit_unlock( ). 

Implementation of this lock is described here. 

8.1 Atomic integer operations 

GLib contains a small library of atomic integer access functions. These 
functions can be used to perform a small range of memory operations 
(such as adding to an integer) atomically. Since there is no portable way 
to perform atomic integer access inC, these functions are implemented 
in assembly language for each of the machines on which GLib runs. 

The implementation of the 1-bit mutex relies on two of these operations. 

g_atomic_int_get() 
reads the value of the integer. This function also acts as a memory 
barrier on platforms that require it for cross-processor consistency. 

g_atomic_int_compare_and_exchange() 
first ensures that the value of the integer has a certain expected value, 
then sets it equal to a new value. A boolean is returned to indicate if 
the operation succeeded. This function also acts as a memory barrier. 

2 
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8.2 Futex 

In order to implement the 1-bit mutex, a lower level synchronisation 
primitive was required. This primitive is the futex(2) system call 
provided by the Linux kernel. 

The name "futex" originated from the phrase "fast userspace mutex". 
This name is misleading, however, since a futex is not a mutex at all­
it is merely a useful tool for implementing one. 

A futex is actually a sort of wait queue. Threads register an interest 
in receiving wake-up signals at a given virtual memory address. The 
thread blocks until another thread sends a wake-up message for the 
same address (at which point only one waiting thread wakes up). Before 
the thread blocks, the given memory address is atomically checked to 
ensure that it contains a value specified by the user. 

The futex ( 2) system call is only available on Linux systems and 
isn't portable at all. Linux is the primary operating system on which 
GNOME is used, however, so most users will have this efficient native 
implementation available to them. 

8.2.1 Emulating futex 

On Linux, we are able to use the futex ( 2) system call to get the desired 
functionality. GLib is intended to be portable to a wide range of systems, 
however. On other systems, we must use other existing synchronisation 
primitives to implement futex-like functionality for ourselves. 

GLib contains the GCond data type- a message queue that supports 
blocking and wake-up notification much like a futex. GCond, however, 
must be allocated before it can be used. 

The futex emulation code simply maintains a linked list mapping 
addresses that are being waited on to GCond queues. The futex wait and 
wake operations on a given address and then implemented using the 
GCond wait and wake operations on the appropriate condition queue. 
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All of the operations on the linked list mapping are performed while 
holding a traditional mutex lock. 

This may sound very complicated and time consuming, but it is 
important to understand that futex calls are actually very rare -they 
are only used to resolve the contended case of lock acquisition and 
release. 

8.3 The 1-bit mutex 
The 1-bit mutex implements a mutex lock using only a single bit in 
an integer value. This bit is (easily) available in the state register of a 
GVariant instance, allowing for per-instance locking. 

The process of acquiring the lock uses the GLib atomic integer 
operations. First, the value of the entire integer is atomically read. If 
the bit used to represent the lock is unset then the old value is compare­
and-exchanged with a new value which has the bit set. If another thread 
were attempting to acquire the lock at the same time, this operation 
would fail (since the memory address would not compare equal to the 
old value). If this operation succeeds then the lock has been acquired 
and the function returns. 

If the lock bit was set then we are dealing with the contended case. We 
use a futex wait operation to sleep on the address (while checking that 
the value at the address is still what we expect - and therefore has not 
been unlocked in the meantime). 

To unlock, the same read/compare-and-exchange sequence is used to 
unset the lock bit. A futex wake operation is invoked on the address of 
the integer to wake any threads that might be waiting to acquire the 
lock. 
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8.3.1 An optimisation: contention counters 

The 1-bit mutex lock implementation described above suffers from a 
small wart: the futex wake operation is invoked even in the case where 
nobody is waiting. This call is harmless, but takes time to execute. On 
Linux this implies a (fast) system call on each unlock. On other systems 
it implies a search through a (probably empty) linked list. 

A simple optimisation has been implemented to avoid this extra call in 
the vast majority of cases. 

The 1-bit mutex keeps an internal static array of "contention counters". 
The length of this array is a prime number (currently 11). The address 
of the integer being used for the lock is divided by this prime number 
and the remainder is taken as an index into the array. This provides a 
constant factor reduction in the number of instances that are sharing a 
single contention counter. 

Before waiting on a futex the contention counter associated with the 
wait address is incremented. After returning from a wait, the contention 
counter is decremented. Before the unlock code executes a wake 
operation, the contention counter for the address is checked. 

Excepting the case of sharing a contention counter with another 
contended instance, this means that futex wake calls are only ever 
executed when another thread is actually waiting for the lock. This 
exceptional case is expected to be hilariously rare and even if it occurs, 
the extra futex call is harmless. 

8.4 Future work: better bit operations 
The use of the read/compare-and-exchange sequences in the described 
implementation are necessitated by the lack of atomic bit test-and-set 
or test-and-clear functions in GLib. On Intel systems (on which GNOME 
runs most commonly) these operations can be implemented with single 
hardware instructions. 
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At this time, these operations haven't been implemented. To do so 
properly would require knowledge of the assembly languages for every 
machine on which GLib runs- 32 and 64-bit version ofx86, ARM, spare, 
PowerPC and S390. 

8.5 Other approaches 

Some of the other approaches that were considered are detailed here. 

8.5.1 "Friendly" spinning 

A very simple variation on using a single bit for locking is to attempt to 
acquire the lock and yield to the scheduler if that fails. This is done in 
a loop until the lock is acquired. 

The idea is that yielding to the scheduler will allow the thread holding 
the lock to run to completion. This is only slightly bette~ however, than 
an unmodified spinlock and is definitely to be considered "evil". 

8.5.2 An array of mutexes 

This alternate approach takes a cue from how a number of different 
condition counters are used to lower the chance of contended instances 
causing emission of extra futex wake calls in the 1-bit mutex. 

Instead of a mutex being associated with each instance, an internal 
static array of mutexes would be used. The length of the array would be 
a prime number, and the address of the GVariant instance would decide 
which lock is acquired to protect that instance. This would provide a 
constant factor reduction in contention while still ensuring that only 
one thread could access a particular instance (at the cost of preventing 
access to some others). 

In some cases, however (for example, when serialising an entire tree) 
several GVariant instances need to be locked at the same time (with 
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the same thread holding all locks). If two of these instances aliased in 
the mutex array, the program would deadlock. Contrast this with the 
contention counter array in the 1-bit mutex implementation where a 
conflict merely results in a small amount of unnecessary work being 
done. 

This could be resolved by using recursive mutexes. Unfortunatel~ this 
approach conceals an even more insidious problem. If in one thread an 
operation involved locking two instances in order and in another thread 
another operation involved locking two other instances in order, and the 
instances aliased in the mutex array such that the locks were acquired 
in reverse order with respect to each other, the program would deadlock 
due to a lock order inversion. 

Without making any statement about whether a workaround could be 
developed to deal with this situation, the entire approach has ultimately 
been abandoned. as fundamentally inelegant. 

8.5.3 The 2-bit mutex 

Instead of using only a single bit plus contention counters a more 
direct approach could have been taken: use a second bit to indicate the 
contended case. 

The second thread to attempt to acquire the lock would set the 
"contended" bit before going to sleep waiting for notification. Then 
notification would only be sent if the contended bit was set. 

One problem with this approach is in knowing how many threads are 
currently blocked. The contended bit can never be safely unset without 
knowing this. The futex wake call returns the number of processes 
that were woken but in order to discover that zero processes were 
sleeping, one extra unnecessary futex call needs to be issued. This 
would definitely cause extra calls compared to the contention counter 
approach since an extra call would occur in every case of contention. 
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Also, since the 1-bit mutex has been included as an external API in 
GLib, having it use only 1-bit makes it more appealing and easier to 
understand to other library users. 

Finally, when holding the 1-bit mutex, it is safe to perform non-atomic 
bit operations on the same integer that contains the bit (for example, to 
set other flags). This is because, if the lock bit is held by the executing 
thread, it can be sure that no other bits will be modified until the lock is 
released. Bringing a contention bit into the situation complicates things 
- the integer can be modified by another thread at any time by the 
adding of the contention bit. Atomic integer operations would have to 
be used throughout. 
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Appendix C 

Conditions 

This appendix offers details on the implementation of the condition 
machinery that lies at the core of the implementation of GVariant. A list 
of all of the conditions is also provided. 

For a description of conditions, see Section 10.3.1. 

C.l List of conditions 

The following list represents all of the conditions that are currently 
defined in the implementation of GVariant. 

For each condition, the enabling precondition predicate is given 
(as described in Section 10.3.1). Each condition also has a list of 
other conditions that it implies, that it forbids, and that its absence 
implies. This list is used only for runtime assertion checking. Due to 
logical equivalences, forbids and absence-implies are symmetric: if one 
condition forbids a condition or implies it with its absence then the 
reverse must be true. 
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C.l.l CONDITION_SERIALISED (ser) 

• enabling precondition: sk 

• implies: sk 

• forbids: not 

• absence implies: nat 1\ ind 

There are two main types of instances: serialised form and tree form. 

Instances that are serialised have all of the data associated with their 
value encoded as a single array of bytes at one location in memory. Non­
container values are always serialised. 

Container values, if not serialised, are stored in tree form; the instance 
is an array of values pointing to the child values of the container. 

The enabling function involves creating a memory region of the 
appropriate size and serialising the children into that memory region. 
The memory region is then set as the serialised data of the instance. 

sk is an enabling precondition because the amount of memory to allocate 
for the new buffer must be known. 

nat 1\ ind are implied by the absence ofser since an instance in tree form 
will always be in native byte order once serialised and doesn't depend 
on serialised data from any "source instance". 

C.1.2 CONDITION_SIZE_KNOWN (sk) 

• enabling precondition: T 

• implies: T 

• forbids: ...., 
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• absence implies: T 

The size of an instance is known if the size of the data, if it were to 
be serialised, is known. Implicitly, serialised instances are always size­
known (since the serialised data is at hand}, so this condition is only 
interesting for instances in tree form. 

The enabling function involves invoking the serialiser on the child values 
in the tree to predetermine the amount of memory that would be 
required to seriaHse them. 

Note that it is possible, even if the size is known, that the size may 
change. CONDITION_SIZE_VALID is the condition that the size will never 
change. 

C.1.3 CONDITION_INDEPENDENT (ind) 

• enabling precondition: ...,nat 

• implies: T 

• forbids: l. 

• absence implies: ser 

An instance is independent if any serialised data that the instance is 
using belongs to that instance. An instance that is not independent is 
using data that belongs to another (parent) instance or to the user. 

The enabling function involves allocating a new memory region, making 
a copy of the buffer (from the source), and using that new buffer. If it 
was discovered that the source data was byteswapped during the copy 
then the function fails . 

...,nat as an enabling precondition has a number of effects. First, it 
implies that the instance is serialised and has its size known (since these 
states are implied by ...,nat). 
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Second, nat is a precondition to exposing the serialised data to the 
user. If the user has seen the data then we cannot run the enabling 
function since the address at which the data resides will change (thus 
invalidating the pointer that was given to the user). The only way to be 
sure that the user has not seen the data is if nat is not set. 

Absence of ind implies ser since if serialised data from another instance 
is being used then the instance is obviously in serialised form. 

C.1.4 CONDITION_FIXED_SIZE (fix) 

• enabling precondition: T 

• implies: T 

• forbids: -, 

• absence implies: T 

An instance is known fixed-sized if the type of the instance is recognised 
as being a type where all values have the same size (for example: floating 
point values, but not strings). 

The enabling function involves checking the type of the instance. The 
transition function will fail if the type is not a fixed-size type. For 
simplicity of implementation, this condition has been kept separate from 
CONDITION_SIZE_KNOWN. No size information is actually collected or 
stored by this enabling function. 

Fixed sized values are interesting because, as mentioned in Section 7. L 
they can always be safely byteswapped, even when not in normal form. 

C.l.S CONDITION_SIZE_VALID (sv) 

• enabling precondition: (sk A fix) v (sk A tru) v (sk A nat) 

• implies: sk 
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• forbids: ..L 

• absence implies: T 

The size of an instance can be known to be valid if the size is known and 
it is certain that the size will never change. The only thing that might 
potentially change the size is reconstruction, which doesn•t happen to 
instances that are native trusted or fixed-sized. In any of these cases, 
the size of the instance will never change in the future. 

This condition must be enabled before the serialised size of the instance 
is reported to the user since once the size is reported it must not change. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 
being certain that the size of the serialised data of the instance will not 
change The clauses are ordered from least to most expensive to satisfy. 

C.1.6 CONDITION_NATIVE (nat) 

• enabling precondition: sn v bn v rec 

• implies: T 

• forbids: not 

• absence implies: ser 

An instance is native if it is known to be in the byte order of the host 
machine. 

This condition must be enabled before a pointer to the serialised data 
is given to the user since the user will expect the data to be in native 
byte order. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 
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the serialised data being known to be in native byte order. The clauses 
are ordered from least to most expensive to satisfy. 

C.1.7 CONDITION_SOURCE_NATIVE (sn) 

• enabling precondition: -tind 1\ -.nat 

• implies: nat 1\ ser 

• forbids: ind v bn v rec v not 

• absence implies: T 

An instance is source-native if it is known that its source instance has 
been byteswapped to native byte order since the instance was created. 
If the data of the source (which is shared by this instance) is now in 
native byte order then this instance is as well. 

The enabling function involves checking the bn condition on the source 
instance to see if it has been enabled. The function fails if the source 
instance does not have the bn condition enabled. 

-.ind is a precondition since independent values have no source to 
check. -.nat, because if the value is already in native byte order then it 
makes no sense to be performing this check. 

C.l.B CONDITION_BECAME_NATIVE (bn) 

• enabling precondition: (fix 1\ ind 1\ -.nat) v (tru 1\ ind 1\ --, nat) 

• implies: nat 1\ ser 1\ ind 

• forbids: sn v rec v not 

• absence implies: T 
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An instance became native if it has converted itself to native byte order 
since it was created. 

The enabling function involves byteswapping the serialised 
representation from non-native to native byte order. 

ind is a precondition because we can only byteswap data that we "own" . 
...,nat because it makes no sense to byteswap data that is already in 
native byte order. fix v tru is required because, as mentioned in Section 
7 .1, byte swapping serialised data is only safe if it is fixed-sized or in 
normal form. 

C.1.9 CONDITION_TRUSTED (tru) 

• enabling precondition: st v bt v rec 

• implies: tru 1\ ser 

• forbids: bn v rec v not 

• absence implies: T 

An instance is trusted if its serialised data is known to be in normal form. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 
the serialised data being known to be in normal form. The clauses are 
ordered from least to most expensive to satisfy. 

C.l.lO CONDITION_SOURCE_TRUSTED (st) 

• enabling precondition: ....,tru 1\ ....,fnd 

• implies: tru 1\ ser 

• forbids: ind v bt v rec v not 
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• absence implies: T 

An instance is source-trusted if it is known that its source instance has 
been scanned and found to be in normal form since the instance was 
created. If the data of the source (which is shared by this instance) is 
now trusted then the instance (which is contained in that data) must 
also be trusted. 

The enabling function involves checking the bt condition on the source 
instance to see if it has been enabled. The function fails if the source 
instance does not have the bt condition enabled. 

-.tnd is a precondition since independent values have no source to 
check. -.tru, because it makes no sense to perform this operation if the 
data is already trusted. 

C.l.ll CONDITION_BECAME_TRUSTED (bt) 

• enabling precondition: ser 1\ -.tru 

• implies: tru 1\ ser 

• forbids: bn v rec v not 

• absence implies: T 

An instance has become trusted if it has scanned itself and verified its 
data to be in normal form since it was created. 

The enabling function involves scanning the serialised data of the 
instance to determine if it is in normal form. The function fails if an 
abnormality is found. 

ser is a precondition since we must have serialised data to scan. -.tru is 
a precondition since it makes no sense to perform this operation if the 
serialised data is already trusted. 
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C.1.12 CONDITION_RECONSTRUCTED (rec) 

• enabling precondition: ser 1\ ind 1\ -,nat 1\ -,tru 1\ _,fix 

• implies: tru 1\ nat 1\ ind 

• forbids: sn v bn v st v bt v not 

• absence implies: T 

Reconstruction is a gigantic hack to work around the fact that it's not 
possible to safely byteswap values that are not trusted and not fixed­
size. 

There is practically no reason for serialised data not to be in normal form 
unless "bad things" (eg: attacks on the system, etc.) are happening. For 
this reason, this case "should never happen" but is dealt with anyway to 
produce a friendlier API that is guaranteed never to fail. 

Instead of byteswapping, the value is reconstructed using a slow deep 
copy method that essentially iterates and recurses over the structure of 
the value making a new, trusted, native copy of it. 

Even though it is not possible that the data has been exposed to the 
user (since it's not in native endian) there exists the possibility that 
the instance is acting as source to other instances. For this reason, the 
original serialised data must be saved. 

The instance is required to be independent because the pointer at which 
the old data is stored uses the same memory location usually used by 
the pointer to the source instance data in dependent instances. This 
implementation hack prevents increasing the GVariant structure size by 
33% in order to deal with this "should never happen" case. 

C.1.13 CONDITION_NOTIFY (not) 

• enabling precondition: .l.. 
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• implies: T 

• forbids: everything else 

• absence implies: T 

A notify instance does not represent a value. It is used, instead, as the 
source of a dependent instance that is using data provided by the user. 
When the notify instance is freed (indicating that the source data is no 
longer required) it dispatches a callback to the user to notify them that 
the data may be freed. 

The notify condition is never enabled. It is set at creation time. 

C.2 Condition machinery 

The main entry point to the condition machinery is the call 
g_variant_require_conditions (). This function takes a set of 
conditions and instructs the machine to ensure that they are all satisfied. 

In the most simple case, if the condition is already satisfied, the function 
immediately returns. 

Next, if the condition's enabling prerequisite is currently satisfied, the 
enabling function of the condition (if any) is run, and the transition is 
enabled if it succeeds. 

Failing that, the condition machinery searches for clauses in the 
enabling prerequisite with one false term. If it finds such a term then it 
invokes itself recursively, attempting to satisfy the missing prerequisites 
on the first such term that it finds. 

If this fails, the condition machinery searches for clauses with two 
false terms, and so on. This heuristic typically results in a smaller 
amount of work being done. Also, since the disjunctive clauses in the 
enabling prerequisite are attempted in order the condition machine can 
additionally be tweaked to favour "less expensive" enabling functions. 
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If none of these attempts succeed, we restart the process because it will 
succeed a second time (see below). 

C.2.1 Attempting to enable 
CONDITION_INDEPENDENT during a byteswap 

The one case where the required condition may not be satisfied is 
when requiring CONDITION_NATIVE on a non-independent instance that 
was created with a non-native source. If the source instance is being 
byteswapped during the process of the condition machinery running 
then it can cause a failure. This will only occur if values are being 
simultaneously accessed from different threads. 

When CONDITION NATIVE is requested, it will attempt to 
satisfy the enabling precondition. The first clause includes 
CONDITION SOURCE NATIVE. This will fail if the source is not yet native. 
Meanwhile~ the source byteswaps itself and is now in native byte order. 

The next clause in the precondition for CONDITION_NATIVE 
includes CONDITION_BECAME_NATIVE which in turn requires 
CONDITION_INDEPENDENT. Since the source value is now in native byte 
order, however, the enabling function for CONDITION_INDEPENDENT will 
fail. This will cause the entire request to fail (since the only other clause 
also, transitively, requires independence). 

Of course, retrying the transition will succeed since, this time, the 
CONDITION_SOURCE_NATIVE clause of the precondition will succeed 
(since conditions are never disabled). 

C.3 Notes on thread safety 

There are two fundamental problems with concurrent access to data 
structures: 

• ensuring no two threads are making modifications at once 
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• ensuring no thread is making modifications during a read 

The first issue is dealt with in a very simple way. The only functions 
that ever make modifications to a GVariant instance are the enabling 
functions for conditions. These functions are only ever invoked from the 
condition machine. The condition machine holds a per-instance mutex 
lock at all times that it is running. This effectively prevents any problems 
associated with concurrent modifications. 

The second issue is somewhat more complicated. The simple way to 
solving this problem is by taking the mutex during all read accesses. This 
results in high lock contention. This problem can be partially alleviated 
through use of a reader-writer lock. 

Still, with GVariant it's not possible to hold locks in all cases of access. 
Many of the API return pointers to the internal state of instances. This 
state will continue to be accessed after the calls return and locks can 
no longer be held. 

The condition machine helps to solve these problems. 

In the case that a function requires that a condition be 
disabled in order for an access to succeed, it uses the call 
g_variant_forbid_condition ().This call ensures that the condition is 
disabled and prevents it from becoming enabled. In the case that the 
condition is already enabled, the call fails (since conditions may not be 
disabled). 

The way that the condition machine ensures that the condition will not 
become enabled is simply by locking the machine. The caller must call 
the unlock function when they are done performing their access. For this 
reason, all accesses under this function must be very short and passing 
instance data back to the user is precluded. 

The other case, of course, is when a function requires that a condition 
be enabled in order for an access to succeed. It uses the call 
g_va riant_requi re_condition(). The call ensures that the condition 
is enabled (taking steps to enable it, if necessary). 
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In this case, no locks are used. The one-way nature of conditions 
provides a guarantee that accesses requiring the condition to be true 
will now be safe for as long as the life of the instance. 

The conditions (and their directions) were chosen with this in mind. 
When the condition machinery is not running, the places where a 
condition is forbidden are few in number (three) and extremely short in 
running time (never more than one or two dereferences plus associated 
refcounting). 

For this reason, contention is very low during read accesses. 

The fact that there are a small finite number of conditions that can be 
enabled and that all access is lock-free once they are enabled also means 
that the total amount of contention is kept quite low. 
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