
GVARIANT: EFFICIENT

PARTIAL DESERIALISATION

GVARIANT: EFFICIENT

PARTIAL DESERIALISATION

By
RYAN LORTIE

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© 2007-2008 Ryan Lortie

MASTER OF SCIENCE (2008)
(Computer Science)

McMaster University
Hamilton, Ontario

TITLE: GVariant: Efficient Partial Deserialisation
AUTHOR: Ryan Lortie
SUPERVISORS: Alan Wassyng

Wolfram Kahl
PAGE COUNT: viii, 225

ii

Abstract

This work documents the creation of a new serialisation format.
Developed for use in the GNOME platform, the requirements for
this serialisation format are based on the unique needs of the
community, plus some "guiding principles" that have developed
in the community over the years.

The serialisation format is particularly designed to allow for
rapid deserialisation - which is expected to be the most
common use case - with most operations occurring in a small
constant time (regardless of the size of the data).

Finally, a complete implementation of the serialisation format
- called GVariant - is presented. GVariant models each value
as an object with an API that is both convenient for GNOME
programmers and has a flavour that they are familiar with.

iii

Acknowledgements

My sincere thanks go to my supervisors, Dr. Alan Wassyng and
Dr. Wolfram Kahl, for all the support and guidance they provided
and particularly for their graceful handling of the consequences
of my tendency to procrastinate.

iv

This Document
CC 3.0 +BY +SA

You are free:

to Share
to copy, distribute and transmit this document

to Remix
to modify, excerpt or adapt the work

Under the following conditions1
:

Attribution.
You must attribute me in a reasonable manner (but not in any way that suggests that
I endorse you or your use of this document).

Share Alike.
If you alter, transform, or build upon this document, you may distribute the resulting
work only under the same or similar licence to this one.

This notice has no limiting affect on your existing fair dealing rights.

@ ~!L';~~;~t~(~~;L~?d9

GVa riant is free software: you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2 of the licence, or (at your option) any later version.2

GVariant is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

1 detailed licence tenns are available at http: I /creativecommons. org/licenses/by­
sa/3.0/ca/

2 the full text of the GNU Lesser General Public License is available at http://

www.gnu.org/copyleft/lgpl.html or by writing to The Free Software Foundation

v

www.gnu.org/copyleft/lgpl.html

Table of Contents

Preface .. 1

PART 1. Introduction
1. Background... 5

1.1. The GNOME Desktop ... 5

1.2. GConf.. 6

1.3. DBus... 7

2. Community Folk Knowledge .. 9

2.1. Bad File Access Patterns... 10

2.2. Unnecessary System Calls... 11

2.3. Unnecessary Per-Process Memory Use.................................. 12

2.4. Unnecessary Faults.. 14

2.5. Excessive Round Trips ... 15

2.6. Excessive Startup Work... 16

2. 7. Blocking the Mainloop... 17

2.8. Unnecessary Wakeups.. 18

3. GSettings.. 21

3.1. High-Level Interface.. 21

3.2. dconf. .. 23

3.3. GVariant.. 24

4. Requirements... 25

4.1. The Need for GVariant ... 25

4.2. Context Requirements.. 26

4.3. Performance... 27

PART 11. Serialisation Format
5. Types.. 31

5.1. Differences from DBus ... 31

5.2. Enumeration of Types .. 33

5.3. Type Strings... 35

6. Serialisation Format... 39

6.1. Related Work.. 39

6.2. Notation.. 42

6.3. Concepts... 42

6.4. Serialisation of Base Types .. 4 7

6.5. Serialisation of Container Types.. 48

vi

6.6. Examples.. 53

6.7. Non-Normal Serialised Data.. 57

7. Implementing the Format.. .. 69

7.1. Notes on Byteswapping... 69

7.2. Calculating Structure Item Addresses................................... 71

PART Ill. Implementation
8. Programmer Interface.. 83

8.1. Types.. 83

8.2. Values... 85

8.3. Plain C Interfaces...86

8.4. varargs C Interfaces.. 87

8.5. Load and Store... 88

8.6. Markup... 88

9. Clarifying Examples ... 91

9.1. Reading from a mapped file .. 91

9.2. Construction of new values.. 97

10. Implementation Details.. 103

10.1. Internal Modularity.. 103

10.2. Values... 104

10.3. State Transformations.. 105

10.4. Locking... 107

10.5. Type Information .. 108

10.6. Serialisation .. 11 0

11. Testing.. 113

11.1. Identity Operations.. 114

11.2. Random Testing.. 114

11.3. Fuzz Testing ... 115

PART IV. Conclusion
12. Summary... 119

13. Future Work... 121

13.1. GVariant.. 121

13.2. DBus... 122

13.3. GSettings.. 122

13.4. GBus... 123

13.5. GObject Introspection.. 124

13.6. GVariant Hash File... 125

vii

Appendix A. Interface Reference... l29

Appendix B. Synchronisation Primitives... 205

Appendix C. Conditions... 213

viii

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Preface

Introduction

This thesis details the design and development of a high performance
serialisation system for use within the GNOME desktop. The
serialisation system is primarily developed for use in a configuration
settings system which is also targeted at the GNOME community. The
work is, fundamentally. divided into three parts.

The first part is a requirements gathering phase. There are a number
of common "folk knowledge" principles of good programming that have
gained wide acceptance within the GNOME community over the years
but have never been gathered in to one place. The principles, as they
apply to the work here, are documented. These principles, in a large
part, form the definition of "high performance" as used in the previous
paragraph.

Additionally, as with any community, there is a wealth of background
information about the GNOME community and the tools and libraries
that its members are accustomed to that will strongly affect any system
designed to be used within it. This information is also documented.

These two pieces of information are used to motivate the design of the
configuration settings system and from there, the requirements placed
on its value serialisation system.

1

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The second part involves the specification of a newly developed
serialisation format. The primary design criteria of this serialisation
format is that it can be implemented by a program that adheres to the
principles presented in the first part. Additionall~ this implementation
of the format must have the property that it tlfits in nicely" with the
expectations of the GNOME communi~ as detailed in the background
information.

The third part presents a new implementation of the serialisation
format as specified, presented as a new library. This library adheres to
the principles outlined in the first part, and perhaps more importantly,
allows for the development of programs that also adhere to these
principles. This acts as a demonstration that the design criteria of the
serialisation format have been met.

2

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

PART I

This part contains background information required to
understand both the motivation behind the creation of
GVariant and the design decisions made as a result of
the community by which GVariant will be used. From this
background information, formal requirements are developed
and specified.

3

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Chapter 1

Background

The development of GVariant is in direct response to a need encountered
while addressing deficiencies in the current GNOME Desktop platform.

With this in mind, this chapter presents background information about
the GNOME community and some projects commonly used in the
development of GNOME applications that are relevant to this work.

1.1 The GNOME Desktop

The GNOME project (see [GNOME]) is a Free Software desktop
environment with the goal of providing an easy-to-use graphical
interface for no:rmal people, and a rich set of development libraries for
programmers.

GVariant fits into the second role. The main influence on the design of
GVariant is that it should be a joy for GNOME application developers to
use. For this reason, many of the design requirements directly relate to
community expectations. The following information led to the "Context
Requirements" outlined in Section 4.2:

5

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

• 	 GNOME is programmed primarily in the C programming language.
The foundation libraries are written entirely in C.

• 	 GNOME developers are very familiar with object-oriented
programming using the GObject object system. This object system
contains many conveniences to overcome limitations of the
C programming language when used to write object-oriented
programs.

• 	 The GObject type system includes a generic value type, GValue.
GValue is designed to contain dynamic program state - not to
transmit or store persistent data. It stores, for example, native C
types (which may be different sizes on different platforms) and
pointers (which are not easily transmitted in a meaningful way).

• 	 The DBus message bus enjoys wide popularity among GNOME
developers and has been very successful in the free desktop world
in general. It has been designed to allow cross-process and cross­
host communication in a platform-agnostic way.

• 	 In addition to traditional desktop roles, GNOME is also used on
embedded and mobile computing platforms where the memory and
processing resources are often very limited.

1.2 GConf

Currently, the GNOME desktop uses the GConf project (see [GConf])
for storage of application preferences and settings. GConf - despite
having introduced some novel features that are widely appreciated ­
is regarded within the community as having some serious design and
performance issues.

Among the fundamental problems with GConf, it is particularly worth
mentioning these two in terms of motivating the content of this work:

• 	 GConf uses a value system called GConfValue. GConfValue is rather
limited with respect to the types of values that it can express.

6

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Additionally, aside from GConf, GConNalue is used for nothing else
in the desktop. This means that conversion is always required before
storing settings in the configuration database.

GConNalue is capable of expressing strings, integers, floats, and
booleans. It is also capable of expressing pairs or lists of these
things, but not in a typesafe way (eg: a list of strings has the same
type as a list of integers) or in a way that supports recursion (eg: you
can not have a list of pairs). The limitations of the expressiveness of
GConNalue have caused some users to resort to hacks like storing
an XML blob as a string in GConf.

• 	 GConf uses a client/server-based architecture wherein all queries
for settings made by application programs are handled by a single
server process. During login, when many applications are starting
at the same time this leads to a flurry of context switches and a
substantial amount of serialisation (in a process which ought to be
significantly parallel).

These issues, along with others, have been identified as being
so fundamental that to correct them is to practically require the
replacement of GConf. The desire to do so is what led, indirectly, to the
work described in this thesis.

1.3 DBus

DBus is a message bus system specified in [DBus]. It is the most
commonly-used mechanism for interprocess communication on the
GNOME Desktop.

The name "DBus", strictly speaking, refers to the specification of the
message bus protocol. In theo~ many implementations of this protocol
could exist.

Several independent client side library implementations exist, written
in high level languages. In practice, however, the name "DBus" has
become synonymous with the reference implementation of the client

7

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

side library and bus daemon that were developed in C, in parallel with
the specification. More specifically, these two pieces of software are
called dbus-daemon and libdbus.

As mentioned, DBus enjoys wide popularity among GNOME developers;
many programs in the GNOME desktop link against libdbus and make
use of its APis. GNOME developers are familiar with DBus concepts,
and are particular familiar with its type system.

One limitation of the DBus API is that the smallest object that can be
dealt with is a message. A message may contain several arguments,
but the arguments can not be treated as individual objects. An iterator
interface is used to construct or deconstruct the message, all at once,
from base C types (integers, strings, etc.).

8

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 2

Community Folk Knowledge

This chapter outlines a number of "best common practice" principles
that have become popular knowledge in the GNOME community over
the past years. These principles are not documented anywhere1

, but
most of them will be familiar to anyone who has been around long
enough.

These principles are used as guiding principles because they are
believed to be sound. The author has personally witnessed the effects
when these principles have been applied to make modifications to
modules in the GNOME desktop -better performance, faster startups,
lower memory consumption and better battery life. The principles also
have a common sense aspect to them; when you think about it, it is clear
what should be done. When these principles have not been applied it is
most often because the programmer simply didn't think about them.

The GNOME community is the first community to have had a "planet".
"Planet GNOME" is a website that aggregates the blog entries of
many individual GNOME developers into a single "river of news". This

1 A "GNOME Goals" project exists (see http:/!live.gnome.org/GNOMEGoals) to address
some common issues with GNOME applications but this project focuses on specific
issues (like ensuring that applications are using specific library features) rather than
addressing the sorts of problems listed in this chapter.

9

http:/!live.gnome.org/GNOMEGoals

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

website is frequented by nearly every active GNOME participant and by
thousands of other readers.

Every now and then a member of the community notices a particular
programmer practice that is causing some sort of problem (such as poor
performance or unnecessary memory consumption) and brings it to the
attention of the community by posting an entry to their blog (which is
then picked up and published by Planet). In the case that the practice is
widely agreed upon to be problematic, a witch-hunt usually ensues. The
typical process involves a number of interested individuals searching for
instances of the problem in the various modules that form the GNOME
desktop. As problems are found, these individuals either write patches
to address the issue or guilt the maintainer of that module into doing so.

The GNOME platform libraries are under a strict policy that ensures that
API-incompatible changes are not made during a major release series
(eg: 2.x). These long-term stability constraints are in place to make the
GNOME platform more attractive to application developers who want
to avoid having to constantly update their application to be compatible
with "the latest version". Occasionally, solving some newly-discovered
problems would require making changes to the API of the library in
question. Since this is not acceptable, some instances of the problem
cannot be solved.

For this reason, when developing a new software library for use in the
GNOME platform it is critically important to ensure that best common
practices are adhered to during the initial development of the library; it
might not be possible to solve problems at a later date.

This list is presented as a list of mistakes that have commonly been
made when developing programs for GNOME. For each item, the best
common practice approach for avoiding the problem is given.

2.1 Bad File Access Patterns
When Moore's Law still applied to single-core processor development,
processors and memory buses gained speed at an exponential rate.

10

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

During the same period of time, however, the speed of a disk seek
improved very little.

When a graphical application starts, there are typically many small
resource files that must be loaded in order for the application to
function. These resource files are things like fonts, user interface layout
descriptions and. icons.

In the case of icons, for example, each icon might be stored in a separate
. png file. These individual files could be stored in almost any place on
the disk. If during its startup an application needs to read 100 icons
from the disk then a huge amount of seeking is going to be required.

Within GNOME, this problem has generally been dealt with by creating
"cache files". In the case of icons, a file (named icon- theme. cache) is
created in the root directory of each icon theme. This file contains a
copy of every icon in the theme. The file is almost always stored in a
contiguous (or nearly contiguous) section of the disk, so icon accesses
are localised, reducing the amount of seeking.

2.2 Unnecessary System Calls

Another practice that has been flagged as a problem in the desktop
is performing storms of unnecessary system calls. This often results
from a situation such as a programmer of a function thinking that a
stat () system call (to check for the existence of a file) is probably pretty
cheap. Taken in isolation, this may be true, but if that function is called
a thousand times in a rapid succession then the result is a program
senselessly asking the kernel, a thousand times in a row, if a certain file
exists.

As another example, consider a naive implementation of a reader of the
icon cache file mentioned in the previous section: each time a new icon
is requested, open the cache file, find the icon, read it, then close the file.
During startup, when 100 icon are read in a row, this practice of closing
and immediately reopening the file, when viewed from the outside, looks
extremely silly.

11

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

System calls on Linux (which is where GNOME is mainly used) are
relatively fast compared to other operating systems. They still require an
lot of work, however - even in the case where the information requested
is in a warm disk cache. The processor has to save the entire state of
the running process, context switch into a higher privilege mode, switch
to a new execution stack, and find and execute a system call handler.
This is in addition to the actual work that is done (like traversing the
directory tree to find a file) and when the call is done the entire process
needs to be reversed. This unnecessary computation is wasteful if it can
be avoided.

It is considered best practice to keep an eye on the number of system
calls that are being issued and to reduce this number where it is possible
to do so without making additional sacrifices.

2.3 Unnecessary Per-Process Memory Use
One observation that was made about GNOME some time ago is that
when all of the various shared libraries that are used in a typical GNOME
application are loaded and initialised, the application is already using a
lot of memory before it has even done anything. This memory is used by
every process that is running as part of the desktop, so in a desktop with
n processes the effect is multiplied by n. Since very little has happened
in each process at the time of initialisation the contents of this memory
is nearly identical in every single one of these processes. This is- clearly
very wasteful.

As is typical, a small crusade was launched to solve this problem.
The focus at first was to reduce the size of n. Some results came
of these efforts, such as a focus on making applications "single
instance" (wherein multiple document windows are displayed by a
single process) and by the combining of many background services into
larger common service daemons.

The problem with this approach, however, is that the memory protection
facilities of modern operating systems are designed to limit the amount
of damage that can be caused by a wide range of programming errors

12

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

to a single process. Increasing the amount of responsibility that each
process has also increases the damage that can be caused by a single
failure. Google's new Chrome browser (which is Free Software, but not
a part of GNOME) makes a point of this issue by running each separate
tab of the browser in its own separate process.

As opinion shifts away from the idea that reducing n is a good idea the
focus shifts to the problem of trying to reduce the per-process memory
overhead. This is a fascinating field of work. There are a huge number
of contributors to this problem and a full discussion of it would make a
very interesting paper, but is far out of context here. One non-obvious
example is the overhead caused by the dynamic linker when it copy-on­
writes memory pages during relocation of shared libraries.

Another example that has seen considerable work done in the GNOME
community are per-process tables and hash tables of information. Two
examples from font handling are the hash table of which fonts (by name)
are installed and which files they are contained in and the kerning tables
used for inter-character spacing when rendering text.

In the case of the font name table, the old approach (as implemented by
the fontconfig 2 library) was to scan the system font configuration at
each startup to get the list of fonts. This information was parsed into a
hash table to allow for quick lookup of a font when it was required. The
problem caused by this approach is that each application ends up with
an identical copy of this hash table in its address space.

Currently, fontconfig is an awful lot smarter. A master hash table is
created and stored to a flle. This file is designed so that it can be
memory-mapped into the address space of a process (consult [ast] for
an introduction)!. Memory mapping a file allows every process on the
system to share the copy of the file that is in the kernel's disk cache.
Even though each process is still using this memory it is now using a
shared copy of it - the price of having the hash table is amortised across
all the processes.

2 http://www.fontconfig .org/

13

http://www.fontconfig

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

In general, having these sorts of memory-mapped cache files for
common per-process data is an "in" thing in the GNOME community
these days. In 2005, an abstract interface for memory-mapped files was
added to GLib as a new utility class named GMappedFile.

2.4 Unnecessary Faults

As more and more things are pushed into large memory-mapped cache
files, particular care has to be taken to ensure that these files are
accessed carefully.

Modern operating systems, when asked to memory map the contents of
a file, do not normally read that file from disk. Instead, they mark the
memory region into which the contents of the file were mapped as an
invalid region and wait to receive a page fault from the processor. At
this point, the pages are loaded from the disk into memory and made
available to the process (and the process is resumed and allowed to read
the memory as if nothing happened).

When potentially expensive operations occur implicitly as a result of
something as innocuous as a memory read, care needs to be taken by
the programmer to ensure that they are not accessing any more memory
than is necessary.

Some might warn that this is an implementation problem, and
attempting to address it at the design stage is a case of inappropriate
micro-optimisation. Consider, though, that it is possible for a flle format
(which may become set in stone by compatibility requirements) to
mandate these bad access patterns. Commonly accessed data may be
spread across many pages (with less-commonly used data intermixed).
Simple operations may require chasing a number of pointers (again,
across several pages).

A number of tools have been developed by the GNOME community to
spot exactly these sorts of problems. The most noteworthy of these tools

14

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

is iog rind3 which is capable of showing the access patterns of a program
down to page-level granularity.

2.5 Excessive Round Trips
Numerous services run as part of the GNOME desktop. An example
is the GConf configuration server, which is responsible for providing
access to configuration settings to applications. GConf also consists of
a client-side library which accepts requests from the programmer and
communicates with the server to get the work done.

A simple way of arranging this would be to have the client-side library
request a configuration key from the server for each request that is
made against the library. In the case that an application is starting up,
however, it is probably requesting many settings from the configuration
server.

Each request to the configuration server involves a complete context
switch to another process (which is considerably more expensive than
merely context switching into the kernel). Many processor caches (such
as the TLB) must be flushed and others are effectively flushed as a result
of executing on a totally different working set.

The problem cannot be avoided in the same ways as avoiding
unnecessary system calls since each request is for different information.
Since both sides of the interface are part of the same project, however,
there is an increase in flexibility. Support for new types of requests can
be added to the interface.

The way that GConf has solved this problem is by requesting an entire
subtree of the configuration settings database at once, in a batch. These
sorts of "batch access" calls are an effective way of reducing the number
of round trips.

3 http://live.gnome.org/iogrind

15

http://live.gnome.org/iogrind

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

As implemented in GConf, however, this solution has led to another
problem: each client end up with a second copy of the configuration
settings in a cache on the client side. Not only does this waste memory,
but there is a new cache-coherency issue - the local copy must be
invalidated when the server's copy changes. This has led to considerable
complication of the design of GConf.

In general, a better way to avoid this problem is to develop interfaces
and protocols that completely eliminate the need for round trips. An
interesting (and somewhat ancient) example of this can be found in
the Xll protocol. Each window on the screen has a unique identifier.
After a client creates a new window it is almost certain to immediately
perform some operation that depends on knowing that identifier. Instead
of allowing the server to allocate identifiers to new windows, a unique
range of identifiers is provided to each client so that the client can set
the identifier as part of the window creation request (and therefore
know what its value is without waiting for a reply from the X server).
This allows clients to send whole strings of requests to set up entire
window hierarchies at once.

2.6 Excessive Startup Work

In a typical desktop configuration, the resources of a computer are
remarkably underutilised most of the time. Even when "using" the
computer by browsing a web page or writing a document, the user is
using tiny fractions of the computational, memory and IO resources
available.

The performance of a computer under these workloads is not judged
by how fast the user can accomplish their task, but by how fast the
computer responds to their requests. The classical example of this is
how fast the computer starts a program. The classical classical example
is how fast a computer starts up.

To a very large extent, the performance of a modern operating system
is judged by how fast it "boots up" or "logs in". For this reason, a great
deal of effort goes toward minimising these intervals.

16

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

One of the easiest ways to do this is simple deferral ofwork. If something
is not strictly required at startup time then it should be deferred to a
later time so that more important tasks can occur.

As a simple example of this practice, consider the applet on Ubuntu
systems that periodically checks for updates and informs you when they
are available. When this applet starts, the first thing that it does is to
sleep. Only after 30 seconds have passed does it initialise itself. This is
done to "make way" for other more important and user-visible processes
to start faster.

In general, if work is not absolutely required during the login process
then it should not be performed until later.

2.7 Blocking the Mainloop

One of the most visible problems when developing applications for
GNOME (or practically any graphical environment) is blocking the
mainloop. GNOME applications are implemented using an event-driven
mainloop that, in a single thread, monitors a number ofdifferent sources
of events. When a new event occurs it is dispatched to the handler
function that has been registered with the mainloop.

One such class of events is user input events. These events are
dispatched to GTK, which is responsible for refreshing the appearance
of the UI in response to them.

The problem comes when an event handler takes too long. This could
either be because it is performing a lengthly computation or because it is
blocking while waiting for data (from another application, the network,
the disk, etc). In either case, this work is said to be "blocking the
mainloop". The result is that, for the duration of the event handler, the
application is unresponsive to additional input events.

Even if the blocking is only for a quarter of a second, it can be enough
to make the application feel unresponsive.

17

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

There are many common ways to deal with this problem. Asynchronous
(non-blocking) 10 operations are used where possible. It is also common
to place long-running computations into a separate thread so that the
mainloop can run at the same time as the computation.

This principle is not directly applicable to the work covered in this
document (other than maybe to provide additional motivation for
making things fast). Being a particularly common and visible pitfall, it
is stated for completeness.

2.8 Unnecessary Wakeups

An unnecessary wakeup occurs when the kernel schedules a process to
run and no real work is done. Running the process was unnecessary and
time has been wasted.

There are two main situations in which this occurs.

The first case is when an application decides that it should wake
up periodically to "poll" some condition (such as a file having been
modified) that it needs to take action on. Of course, most of the time the
file has not been modified, so the process goes directly back to sleep.
This may seem innocent enough, particularly if these probes only occur
when the system is otherwise idle, but these wakeups cause serious
problems.

Modern processors (particularly the variety used in laptop computers)
have the ability to go into low power states when they are inactive.
Longer periods of inactivity permit deeper reductions in power
consumption. If ten processes on the system are each polling a condition
ten times a second then the kernel is causing the CPU to wakeup 100
times per second and the effectiveness of these power saving features
is greatly diminished. Your laptop battery doesn't last as long.

The solution to this problem is to find an event-driven interface and use
it instead of polling; this results in the prpcess only waking up when it
actually needs to do work.

18

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The second case is when an event occurs and a number of processes
have registered interest in this event. Each process needs to be notified.
In many cases, however, only a very small subset of the notified
processes will perform an action in response to the event.

This is often caused by poor granularity in the interface for registering
interest in being notified about a particular class of events. As an
example, say a process is interested in the name displayed on the
title bar of an application window. It wants to be notified when the
title changes. The title of the window is stored as a property of the
window, so it needs to register for property change notifications with
the X server. Unfortunately, this interface does not allow registration
of interest in only some properties- it's all or none. The process will
now be woken up for every property change, including the "most recent
user interaction timestamp" property which is updated with every single
keystroke.

This particular problem has recently been worked around by moving the
user interaction timestamp property to a separate proxy window that
exists specifically so that the updating of this property is not broadcast
to all property notification listeners. In general, these problems are best
avoided in the first place by providing interfaces that allow for highly
granular registration of interest in notification events.

19

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Chapter 3

GSettings

The work described in this thesis - GVariant - is primarily designed
for use within the larger project that is GSettings.

For the reasons set out in Section 1.2, GSettings is being developed, by
the author, as a replacement for GConf.

In order to better understand some of the decisions that have affected
the design of GVariant it is worth having a look at the design decisions
that were made for GSettings.

This chapter outlines the basic design of GSettings, making reference to
the background information and best principles that have been outlined
in the last two chapters.

3.1 High-Level Interface

GSettings is a high-level interface for access to a dictionary of strongly­
typed keys. It can have many implementors.

Every implementor, however, is expected to ensure that all access is
performed according to a schema. A schema is a finite mapping of key
names (strings) to types and default values.

21

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Any attempt to access a setting using a key name not in the schema
produces a runtime error. Any attempt to access a key that is specified
in the schema, however, will always result in a value of the expected
type being returned.

In keeping with the "no unnecessary wakeups" principle of Section 2.8,
GSettings features an API to notify the programmer when a key has
changed its value.

GSettings, of course, attempts to correct many shortcomings of the
design of GConf.

As mentioned in Section 1.2, GConf features a type system that is not
used elsewhere in the GNOME Desktop. GContvalue doesn't exist for a
currene lack of other type systems in the GNOME platform. One goal of
GSettings has been to reduce the number of type systems in use.

GSettings tackles this problem by using the type system of DBus. Any
value that can be sent over DBus is suitable for storage as a value in the
settings database. This type system is powerful and widely understood
and used.

GValue was another contender for use, but its ability to contain pointers
and its inconsistent representation across multiple platforms prevented
this possibility. Additionally, the type system of GValue is geared more
towards object-oriented programs rather than describing the format of
serialised data.

The first (and at present, only) implementor of the GSettings interface
is one which stores settings in a lower-level backend database called
dconf.

1 At the time that GConfwas created, Neither GValue nor DBus existed, so GConfValue
was needed at that time. When GValue and DBus were implemented, GConfValue
proved to be too limited to base either of these two systems on.

22

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

3.2 dconf

dconf is a very simple hierarchy of keys, with each key having a value.
No type-checking is performed at this level; anything goes.

A typical dconf configuration will feature a number of separate backend
databases used to enforce various levels of system policy and default
settings. Access to each of these backends is performed using a unique
approach in order to avoid many of the pitfalls listed in Chapter 2.

All settings are stored in a single file (reducing bad file access patterns
as described in Section 2.1). This single file is then memory-mapped
into the address space of every process which wants to read settings.
For reads, this avoids roundtrips to a settings server (Sections 2.5 and
2.2). It also means that no process ever has to have its own copy of any
settings (addressing the problem outlined in Section 2.3).

In fact, when reading a value such as an array of integers from the
configuration system, the programmer can obtain a pointer directly to
that array, as stored in the memory mapped region. There are no copies
made.

Access to the configuration database is lockless and safe for concurrent
access by many readers and one writer. For this reason, all write
operations must be directed through a settings server. Changing
settings is a much less common case than reading settings (which is
something that occurs many times every time a program starts). Also,
since settings are not changed as part of the login process, the setting
server doesn't need to be (and isn't) started at this time (addressing
Section 2.6).

This arrangement avoids the problems outlined in the second point of
Section 1.2.

The safe concurrent lockless access mixed with the fact that the file is
to be memory mapped and accessed directly as native C data implies
that the file format used by dconf must have a binary format. It would
be extremely awkward to attempt the lockless concurrency and by

23

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

definition impossible to store native C data with a text file. This implies
that we must have support for serialising values to a binary serialisation
format.

3.3 GVariant

As the author was writing dconf, it quickly became clear that a large
part of the work was involving the design and implementation of a
serialisation format that was capable ofbeing implemented in a way that
would support all of the goals of dconf and not violate the principles
outlined in Chapter 2.

For reasons of encouraging loose coupling between the settings system
and this significantly complicated subproject it was decided to split the
development of the serialisation format- and the value handling system
in general- into its own project. This project is what is documented
in this thesis.

During the development of this subproject the author was approached
by several others who were interested in making use of the work for
things other than settings storage.

In the interest of encouraging code reuse and allowing even wider use of
the DBus type system, the work described here is planned for inclusion
in GLib2 and will thus be available for use by all GNOME applications.

2 GLib is a general-purpose utility library which provides many useful data types,
macros, type conversions, string utilities, file utilities, a main loop abstraction, and so
on. This library is the lowest-level library in the GNOME stack and, as such, as part
of every GNOME application.

24

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Chapter 4

Requirements

GVariant was created from requirements that led to some unusual
design considerations. This section documents these requirements.

The serialisation format, which is described in Part II, has been designed
specifically to allow an implementation to conform to the requirements
listed here.

4.1 The Need for GVariant

The need for GVariant has arisen from the lack of a system in the
GNOME platform for representing and serialising complex strongly­
typed data (such as strings, integers, floating point numbers and arrays
and tuples of these things). This gap in the platform first became
apparent while attempting to write a configuration storage system.
This configuration system requires the storage of user-specified data
on persistent sto:rage and communication of this data via sockets to a
configuration server.

As a result, the primary requirements of GVariant are that it can be used
in the following ways:

25

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

Usage Requirement 1
Construct and deconstruct complex data values.

Usage Requirement 2
Construct and deconstruct complex data values.

Usage Requirement 3
Save and load these data values to and from disk.

Usage Requirement 4
Send and receive these data values over sockets.

With the original user of GVariant being a configuration system, use of
GVariant is expected to be very read intensive; configuration settings
are read each time a program is started, but rarely changed. Other
planned users of GVariant operate in the same way. This introduces the
following guiding principle which is not a hard requirement:

Guideline 1
GVariant must be optimised for reading and deconstructing values.
Constructing and writing may be less efficient.

4.2 Context Requirements

Since GVariant will be used most extensively by the GNOME
communi~ the following requirements are made in accordance with the
background information provided in Section 1.1:

Context Requirement 1
GVariant must be written in C.

Context Requirement 2
GVariant must be friendly for use by C programmers.

Context Requirement 3
GVariant must allow direct access to the serialised data (by exposing
pointers) in cases where the serialised data can be easily interpreted
as a native C type (for example, arrays of integers).

26

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Context Requirrament 4
GVariant must use an object-based API. Each value must be presented
to the programmer as an object. It must be possible to group multiple
objects into a container object and to extract child objects back out
again.

Context Requirtament 5
GVariant must contain conveniences, where possible, to overcome
limitations of C. These conveniences should operate in ways that are
familiar to those who are familiar with GObject.

Context Requirement 6
GVariant must use the type system of DBus to facilitate the possibility
of sending GVariant values over this bus.

4.3 Performance

Several requirements have been made to ensure efficient operation of
GVariant.

A holistic approach has been taken in gathering and specifying these
requirements. For example, explicit treatment has often been given to
the operating system concepts outlined in Chapter 2. As a result of
this approach, many requirements that would normally be presented as
"non-functional" are functional requirements. Where possible, we speak
not of "it must be fast"; rathe~ slow operations are directly forbidden as
a matter of functionality through use of language such as "must not fault
in pages from the disk other than when they are absolutely required".

Performance Requirement 1
In keeping with the principle of not using unnecessary memory by
having multiple copies of the same data (Section 2.3) GVariant must
not make unnecessary copies of data.

27

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Performance Requirement 2
Particularly, GVariant must allow use of shared memory between
processes (as described in Section 2.3), including sharing memory
with the operating system page cache when reading from disk.

Performance Requirement 3
As per Section 2 .4, GVariant must not fault in pages from the disk other
than when they are absolutely required. This implies that GVariant
must access as few bytes of data as is possible when performing any
operation.

Performance Requirement 4
GVariant must perform operations quickly, particularly in its primary
use case of reading data from a mapped file. Nearly every
deserialisation operation in this use case must occur in constant time.

28

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

PART II

This part specifies the new serialisation format, including
description of the type system. It also provides notes for
those who may be interested in implementing this format,
including some observations about how seemingly linear-time
operations can be implemented in constant time (along with
proof ofcorrectness).

29

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 5

Types

As per Context Requirement 6, GVariant must be substantially
compatible with the DBus message bus system (as specified in [DBus]).

To this end, the type system used in GVariant is almost identical to
that used by DBus. Some very minimal changes were made, however,
in order to provide for a better system while still remaining highly
compatible; specifically, every message that can by sent over DBus can
be represented as a GVariant.

Some baggage has been carried in from DBus that would not otherwise
have been present in the type system if it were designed from scratch.
The object path and signature types, for example, are highly DEus­
specific and would not be present in a general-purpose type system if it
were to be created from scratch.

5.1 Differences from DBus
In order to increase conceptual clarity some limitations have been lifted,
allowing calls to "never fail" instead of having to check for these special
cases.

31

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

• 	 Whereas DBus limits the maximum depth of container type nesting,
GVariant makes no such limitations; nesting is supported to
arbitrary depths.

• 	 Whereas DBus limits the maximum complexity of its messages by
imposing a limitation on the "signature string" to be no more than
255 characters, GVariant makes no such limitation; type strings of
arbitrary length are supported, allowing for the creation of values
with arbitrarily complex types.

• 	 Whereas DBus allows dictionary entry types to appear only as the
element type of an array type, GVariant makes no such limitation;
dictionary entry types may exist on their own or as children of any
other type constructor.

• 	 Whereas DBus requires structure types to contain at least one child
type, GVariant makes no such limitation; the unit type is a perfectly
valid type in GVariant.

Some of the limitations ofDBus were imposed as security considerations
(for example, to bound the depth of recursion that may result from
processing a message from an untrusted sender). If GVariant is used
in ways that are sensitive to these considerations then programmers
should employ checks for these cases upon entry of values into the
program from an untrusted source.

Additionally. DBus has no type constructor for expressing the concept
of nullability1 To this end, the Maybe type constructor (represented by•

min type strings) has been added.

1 A "nullable type" is a type that, in addition to containing its normal range of values,
also contains a special value outside of that range, called NULL, Nothing, None or
similar. In most languages with reference or pointer types, these types are nullable.
Some languages have the ability to have nullable versions of any type (for example,
"Maybe Int" in Haskell and "int? i;" inC#).

32

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Some of these changes are under consideration for inclusion into DBus2
•

5.2 Enumeration of Types

5.2.1 The Basic Types

Boolean
A boolean is a value which must be True or False.

Byte
A byte is a value, unsigned by convention, which ranges from 0 to 255.

Integer Types
There are 6 integer types other than byte - signed and unsigned
versions of 16, 32 and 64 integers. The signed versions have a range
of values consistent with a two's complement representation.

Double Precisian floating Point
A double precision floating point value is precisely defined by IEEE
754.

String
A string is zero or more bytes. Officially, GVariant is encoding-agnostic
but the use of UTF-8 is expected and encouraged.

Object Path
A DBus object path, exactly as described in the DBus specification.

2 Considerable discussion has been made in face-to-face meetings and some discussion
has also occurred on the DBus mailing list: http://lists.freedesktop.org/archives/
dbu,s/2007 -August/008290.html

33

http://lists.freedesktop.org/archives

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Signature String
A DBus signature string, exactly as described in the DBus
specification. As this type has been preserved solely for compatibility
with DBus, all of the DBus restrictions on the range of values of this
type apply (eg: nesting depth and maximum length restrictions).

5.2.2 Container Types

Variant
The variant type is a dependent pair of a type (any of the types
described in this chapter, including the variant type itself) and a value
of that type. You might use this type to overcome the restriction that
all elements of an array must have the same type.

Maybe
The maybe type constructor provides nullability for any other single
type. The non-null case is distinguished, such that in the event that
multiple maybe type constructors are applied to a type, different levels
of null can be detected.

Array
The array type constructor allows the creation of array (or list) types
corresponding to the provided element type. Exactly one element type
must be provided and all array elements in any instance of the array
type must have this element type.

Structure
The structure type constructor allows the creation of structure types
corresponding to the provided element types. These "structures" are
actually closer to tuples in the sense that their fields are not named,
but ~~structure" is used because that is what the DBus specification
calls them.

The structure type constructor is the only type constructor that is
variadic - any natural number of types may be given (including zero
to form the unit type, and one).

34

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Dictionary entry
The dictionary entry type constructor allows the creation of a special
sort of structure which, when used as the element type of an array,
implies that the content of the array is a list of key/value pairs. For
compatibility with DBus, this binary type constructor requires a basic
type as its first argument (which by convention is seen to be the key)
but any type is acceptable for the second argument (by convention,
the value).

Dictionary entries are as such by convention only; this includes when
they are put in an array to form a "dictionary". GVariant imposes no
restrictions that might normally be expected of a dictionary (such as
key uniqueness). The DBus specification specifies that keys should
be unique, but also declares that - for performance reasons ­
implementations need not enforce this.

5.3 Type Strings
Just as with DBus, a concise string representation is used to express
types.

In GVariant, which deals directly with values as first order objects, a
type string (by that name) is a string representing a single type.

Contrast this with "signature strings"3 in DBus, which apply to
messages, and contain zero or more types (corresponding to the
arguments of the message).

5.3.1 SyntaJ<

The language of type string is context free. It is also a prefix code, which
is a property that is used by the recursive structure of the language
itself.

3 Compare with the whence parameter to the lseek() system call.

35

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Type strings can be described by a non-ambiguous context free
grammar (in which E represents the empty string). With start symbol
type:

type = base_type I container_type
base_type = blylnlqlilulxltlslolg
container_type = v I mtype I a type I (types) I { base_type .type}
types = E I type types

5.3.2 Semantics

The derivation used to obtain a type string from the given grammar
creates an abstract syntax tree describing the type. The effect of
deriving through each right hand side term containing a terminal is
specified below:

b
This derivation corresponds to the boolean type.

y
This derivation corresponds to the byte type.

n
This derivation corresponds to the signed 16-bit integer type.

q
This derivation corresponds to the unsigned 16-bit integer type.

i
This derivation corresponds to the signed 32-bit integer type.

u
This derivation corresponds to the unsigned 32-bit integer type.

X
This derivation corresponds to the signed 64-bit integer type.

36

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

t
This derivation corresponds to the unsigned 64-bit integer type.

d
This derivation corresponds to the double precision floating point
number type.

s
This derivation corresponds to the string type.

0

This derivation corresponds to the object path type.

g
This derivation corresponds to the signature type.

v
This derivation corresponds to the variant type.

mtype
This derivation corresponds to the maybe type which has a value of
Nothing or Just x for some x in the range of type.

a type
This derivation corresponds to the array type in which each element
has the type type.

{ types)
This derivation corresponds to the structure type that has the types
expanded by types, in order, as its item types.

{ base_type type }
This derivation corresponds to the dictionary entry type that has
base_type as its key type and type as its value type.

37

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

Chapter 6

Serialisation Format

This chapter describes the serialisation format that is used by GVariant.
This serialisation format is newly developed and described for the first
time here.

6.1 Related Work

Attempts were made to evaluate candidates for use as the serialisation
format for GSettings (and therefore the serialisation format that
GVariant would implement). Special consideration was paid to formats
that are implemented by software that is already part of the GNOME
desktop.

In the end, each format that was considered was found to conflict with
the requirements given in Chapter 4.

For this reason, a new serialisation format was created. The
documentation of this serialisation format is what forms the main body
of this chapter.

39

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

6.1.1 DBus

Since GVariant is largely compatible with DBus, it would make sense
to use the serialisation format of DBus (plus modifications where
appropriate) as the serialisation format for GVariant.

To do so, however, would conflict with a number of requirements that
were established for GVariant.

Most fundamentall~ Performance Requirement 4 would be violated.
DBus messages are encoded in such a way that in order to fetch the
1DOth item out of an array you first have to iterate over the first 99
items to discover where the 1DOth item lies. A side effect of this iteration
would be a violation of Performance Requirement 3.

Additionall~ using the DBus serialisation format with an API like that
mandated by Context Requirement 4 would imply a violation of due to
the fact that subparts of DBus messages can change meaning when
subjected to different starting alignments. This is discussed in more
detail in Section 6.3.3.

6.1.2 XML

As the current serialisation format of GConf, consideration was given to
using XML (see [XML]) as the native serialisation format of GVariant.

Although XML does not implement the type system of DBus, per se, its
flexibility as a file format provides the possibility of encoding DBus types
and values.

As with the DBus serialisation format, however, the two main problems
with using XML would be a violation of (particularly in the case that
Context Requirement 3 is satisfied) and of Performance Requirement 4.

For these reasons, XML can not be used as the primary serialisation
format of GVariant. GVariant, as implemented, does contain support for

40

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

storing values in an XML-like format for situations where performance
is not important (see Section 8.6).

6.1.3 CORBA

GNOME currently makes significant (but decreasing) use of CORBA (see
[CORBA]) as a framework for cross-process communication.

CORBA is targeted at RPC, and not to serialisation for purposes of
persistent storage. It also brings its own incompatible type system (in
violation of Context Requirement 6).

CORBA is very complicated and this complication is leading to a
decrease in its usage among GNOME applications (which are rapidly
switching to DBus for IPC). Even GConf (which was originally based on
CORBA) has been ported to DBus.

For these reasons, CORBA is not seen as a viable option.

6.1.4 Protocol Buffers

Google has recently developed Protocol Buffers (see [protobuf]) as a
solution to address some of the performance problems associated with
XML. The performance is improved by a constant factor; there is no
improvement in the asymptotic complexity of certain operations, as
would be required to satisfy Performance Requirement 4.

When using Protocol Buffers, you specify the format of your data, ahead
of time, in a . proto file. It takes this file and produces parser/printer
code for your language of choice (among C++, Java and Python).

This approach is not suitable for use in a situation where a server
process has to deal with data of arbitrary structure without knowing
that structure in advance. This case is exactly the case of a configuration
settings storage system.

41

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

6.2 Notation

Throughout this chapter a number of examples will be provided using a
common notation for types and values.

The notation used for types is exactly the type strings described in
Chapter 5.

The notation used for values will be familiar to users of either
Python or Haskell. Arrays (lists) are represented with square brackets
and structures (tuples) with parentheses. Commas separate elements.
Strings are single-quoted. Numbers prefixed with ex are taken to be
hexadecimal.

The constants True and False represent the boolean constants. The
nullary data constructor of the maybe type is denoted Nothing and the
unary one Just.

6.3 Concepts

GVariant value serialisation is a total and injective function from values
to pairs of byte sequences and type strings. Serialisation is deterministic
in that there is only one acceptable "normal form" that results from
serialising a given value. Serialisation is non-surjective: non-normal
forms exist.

The byte sequence produced by serialisation is useless without also
having the type string. Put another way, deserialising a byte sequence
requires knowing this type.

Naturally, we expect that deserialising the byte sequence resulting from
serialising a value (using the same type string) will produce the the same
value.

Before discussing the specifics of serialisation, there are some concepts
that are pervasive in the design of the format that should be understood.

42

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

6.3.1 Byte Sequence

A byte sequence is defined as a sequence of bytes which has a known
length. In all cases, in GVariant, knowing the length is essential to being
able to successfully deserialise a value.

6.3.2 Byte Boundaries

Starting and ending offsets used in GVariant refer not to byte positions,
but to byte boundaries. For the same reason that it is possible to have
n + 1 prefixes of a string of length n, there are n + 1 byte boundaries
in a byte sequence of size n.

: Figure 6.1: byte
L boundaries

When speaking of the start position of a byte sequence, the index of the
starting boundary happens to correspond to the index of the first byte.
When speaking of the end position, however, the index of the ending
boundary will be the index of the last byte, plus 1. This paradigm is very
commonly used and allows for specifying zero-length byte sequences.

6.3.3 Simp~e Containment

A number of container types exist with the ability to have child values.
In all cases, the serialised byte sequence of each child value of the
container will appear as a contiguous sub-sequence of the serialised
byte sequence of that container - in exactly the same form as it would
appear if it were on its own. The child byte sequences will appear in
order of their position in the container.

It is the responsibility of the container to be able to determine the end
(or equivalently, length) and start of each child element.

43

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

This property permits a container to be deconstructed into child values
simply by referencing a subsequence of the byte sequence of the
container as the value of the child which is an effective way of satisfying .

This property is not the case for the DBus serialisation format. In many
cases (for example, arrays) the encoding of a child value of a DBus
message will change depending on the context in which that value
appears. As an example: in the case of an array of doubles, should the
value immediately preceding the array end on an offset that is an even
multiple of 8 then the array will contain 4 padding bytes that it would
not contain in the event that the end offset of the preceding value were
shifted 4 bytes in either direction.

6.3.4 Alignment

In order to satisfy requirement Context Requirement 3, we must provide
programmers with a pointer that they can comfortably use. On many
machines, programmers cannot directly dereference unaligned values,
and even on machines where they can, there is often a performance hit.

For this reason, all types in the serialisation format have an alignment
associated with them. For strings or single bytes, this alignment is
simply L but for 32-bit integers (for example) the alignment is 4. The
alignment is a property of a type - all instances of a type have the same
alignment.

All aligned values must start in memory at an address that is an integer
multiple of their alignment.

The alignment of a container type is equal to the largest alignment of
any potential child of that container. This means that, even if an array of
32-bit integers is empty, it still must be aligned to the nearest multiple
of 4 bytes. It also means that the variant type (described below) has an
alignment of 8 (since it could potentially contain a value of any other
type and the maximum alignment is 8).

44

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

6.3.5 Fixed Size

To avoid a lot of framing overhead, it is possible to take advantage of
the fact that, for certain types, all instances will have the same size. In
this case, the type is said to be a fixed-sized type, and all of its values
are said to be fixed-sized values. Examples are a single integer and a
tuple of an integer and a floating point number. Counterexamples are a
string and an array of integers.

If a type has a fixed size then this fixed size must be an integer multiple
of the alignment of the type. A type never has a fixed size of zero.

If a container type always holds a fixed number of fixed-size items (as
in the case of some structures or dictionary entries) then this container
type will also be fixed-sized.

6.3.6 Framung Offsets

If a container contains non-fixed-size child elements, it is the
responsibility of the container to be able to determine their sizes. This
is done using framing offsets.

A framing offset is an integer of some predetermined size. The size is
always a power of 2. The size is determined from the overall size of
the container byte sequence. It is chosen to be just large enough to
reference each of the byte boundaries in the container.

As examples, a container of size 0 would have framing offsets of size 0
(since no bits are required to represent no choice). A container of sizes
1 through 255 would have framing offsets of size 1 (since 256 choices
can be represented with a single byte). A container of sizes 256 through
65535 would have framing offsets of size 2. A container of size 65536
would have framing offsets of size 4.

There is no theoretical upper limit in how large a framing offset can be.
This fact (along with the absence of other limitations in the serialisation
format) allows for values of arbitrary size.

45

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

When serialising, the proper framing offset size must be determined
by "trial and error" - checking each size to determine if it will work.
It is possible, since the size of the offsets is included in the size of
the container, that having larger offsets might bump the size of the
container up into the next catego!J0 which would then require larger
offsets. Such containers, however, would not be considered to be in
"normal form". The smallest possible offset size must be used if the
serialised data is to be in normal form.

Framing offsets are always stored at the end of containers and are
unaligned. They are always stored in little-endian byte order.

Placing the unaligned framing offsets after the possibly-aligned data
means that no bytes are ever wasted on padding. It also allows data to
be written to a serialisation buffer "as you go" without first knowing the
number of items that will be added to a container or the overall size of
the container (two aspects which affect the amount of space required
to store the offsets).

6.3.7 Endianness

Although the framing offsets of serialised data are always stored in
little-endian byte order, the data visible to the user (via the interface
mandated by requirement Context Requirement 3) is allowed to be in
either big or little-endian byte order. This is referred to as the "encoding
byte order". When transmitting messages, this byte order should be
specified if not explicitly agreed upon.

The encoding byte order affects the representation of only 7 types of
values: those of the 6 (16, 32 and 64-bit signed and unsigned) integer
types and those of the double precision floating point type. Conversion
between different encoding byte orders is a simple operation that can
usually be performed in-place (but see Section 7.1 for an exception).

46

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

6.4 Serialisation of Base Types

Base types are handled as follows:

6.4.1 Booleans

A boolean has a fixed size of 1 and an alignment of 1. It has a value of
1 for True or 0 for False.

6.4.2 Bytes

A byte has a fixed size of 1 and an alignment of 1. It may have any valid
byte value. By convention, bytes are unsigned.

6.4.3 Integers

There are 16, 32 and 64-bit signed and unsigned integers. Each integer
type is fixed-sized (to its natural size). Each integer type has alignment
equal to its fixed size. Integers are stored in the encoding byte order.
Signed integers are represented in two's complement.

6.4.4 Double Precision Floating Point

Double precision floating point numbers have an alignment and a fixed­
size of 8. Doubles are stored in the encoding byte order.

6.4.5 Strings

Including object paths and signature strings, strings are not fixed-sized
and have an alignment of 1. The size of any given serialised string is
equal to the length of the string, plus 1, and the final serialised byte is a
nul (0) terminator. The nul terminator is not strictly required (since the
size is already known) but is provided as a convenience to C programs

47

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

that wish to access the string. The character set encoding of the string
is not specified, but no nul byte is allowed to appear within the content
of the string.

6.5 Serialisation of Container Types

Containers are handled as follows:

6.5.1 Variants

Variants are serialised by storing the serialised data of the child, plus a
zero byte, plus the type string of the child. The reason the type string
is stored at the end is the same reason framing offsets are stored at the
end of container types - it ensures that no padding bytes are required.

The zero byte is required because, although type strings are a prefix
code, they are not a suffix code. In the absence of this separator,
consider the case of a variant serialised as two bytes - "ay". Is this a
single byte, I a I, or an empty array of bytes?

6.5.2 Maybes

Maybes are encoded differently depending on whether their element
type is fixed-sized not.

The alignment of a maybe type is always equal to the alignment of its
element type.

6.5.2.1 Maybe of a Fixed-Sized Element

For the Nothing case, the serialised data is the empty byte sequence.

48

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

For the Just case, the serialised data is exactly equal to the serialised
data of the child. This is always distinguishable from the Nothing case
because all fixed-sized values have a non-zero size.

6.5.2.2 Mayb<e of a Non-Fixed-Sized Element

For the Nothing case, the serialised data is, again, the empty byte
sequence.

For the Just case, the serialised form is the serialised data of the child
element, followed by a single zero byte. This extra byte ensures that the
Just case is distinguishable from the Nothing case even in the event
that the child value has a size of zero.

6.5.3 Arrays

Arrays are said to be fixed width arrays or variable width arrays based
on if their element type is a fixed-sized type or not. The encoding of
these two cases is very different.

The alignment of an array type is always equal to the alignment of its
element type.

6.5.3.1 Fixed Width Arrays

In this case, the serialised form of each array element is packed
sequentially, with no extra padding or framing, to obtain the array. Since
all fixed-sized values have a size that is a multiple of their alignment
requirement, and since all elements in the array will have the same
alignment requirements, all elements are automatically aligned.

49

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

The length of the array can be determined by taking the size of the array
and dividing by the fixed element size. This will always work since all
fixed-size values have a non-zero size.

6.5.3.2 Variable Width Arrays

In this case, the serialised form of each array element is again packed
sequentially. Unlike the fixed-width case, though, padding bytes may
need to be added between the elements for alignment purposes. These
padding bytes must be zeros.

After all of the elements have been added, a framing offset is appended
for each element, in order. The framing offset specifies the end boundary
of that element.

. Figure 6.3: an array of strings

The size of each framing offset is a function of the serialised size of the
array and the final framing offset, by identifying the end boundary of
the final element in the array also identifies the start boundary of the
framing offsets. Since there is one framing offset for each element in
the array, we can easily determine the length of the array.

length = (size- last_offset) I offset_size

To find the start of any element, you simply take the end boundary of the
previous element and round it up to the nearest integer multiple of the
array (and therefore element) alignment. The start of the first element
is the start of the array.

Since determining the length of the array relies on our ability to count
the number of framing offsets and since the number of framing offsets
is determined from how much space they take up, zero byte framing

50

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

offsets are not permitted in arrays, even in the case where all other
serialised data has a size of zero. This special exception avoids having
to divide zero by zero and wonder what the answer is.

6.5.4 Structures

As with arrays, structures are serialised by storing each child item, in
sequence, properly aligned with padding bytes, which must be zero.

After all of the items have been added, a framing offset is appended,
in reverse order, for each non-fixed-sized item that is not the last item
in the structure. The framing offset specifies the end boundary of that
element.

The framing offsets are stored in reverse order to allow iterator-based
interfaces to begin iterating over the items in the structure without first
measuring the number of items implied by the type string (an operation
which requires time linear to the size of the string).

Figure 6.4: a structure containing
16~bit integers an~ strin[lS

The reason that no framing offset is stored for the last item in the
structure is because its end boundary can be determined by subtracting
the size of the framing offsets from the size of the structure. The number
of framing offsets present in any instance of a structure of a given
type can be determined entirely from the type (following the rule given
above).

The reason that no framing offset is stored for fixed-sized items is that
their end boundaries can always be found by adding the fixed size to
the start boundary.

51

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

To find the start boundary of any item in the structure, simply start from
the end boundary of the nearest preceding non-fixed-size item (or from 0
in the case of no preceding non-fixed-sized items). From there, round up
for alignment and add the fixed size for each intermediate item. Finally,
round up to the alignment of the desired item.

For random access, it seems like this process can take a time linear to
the number of elements in the structure, but it can actually be performed
in a very small constant time. See Section 7 .2.

If all of the items contained in a structure are fixed-size then the
structure itself is fixed-size. Considerations have to be made to satisfy
the constraints that are placed on the value of this fixed size.

First, the fixed size must be non-zero. This case would only occur for
structures of the unit type or structures containing only such structures
(recursively). This problem is solved by arbitrary declaring that the
serialised encoding of an instance of the unit type is a single zero byte
(size 1).

Second, the fixed sized must be a multiple of the alignment of the
structure. This is accomplished by adding zero-filled padding bytes to
the end of any fixed-width structure until this property becomes true.
These bytes will never result in confusion with respect to locating
framing offsets or the end of a variable-sized child because, by
definition, neither of these things occur inside fixed-sized structures.

Figure 6.4 depicts a structure of type (nsns) and value [257, I xx I ,

514, I I] • One framing offset exists for the one non-fixed-sized item
that is not the final item (namely, the string I xx I). The process of
"rounding up" to find the start of the second integer is indicated.

6.5.5 Dictionary Entries

Dictionary entries are treated as structures with exactly two items ­
first the ke~ then the value. In the case that the key is fixed-sized,
there will be no framing offsets, and in the case the key is non-fixed-size

52

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

there will be exactly one. As the value is treated as the last item in the
structure, it will never have a framing offset.

6.6 Examples
This section contains some clarifying examples to demonstrate the
serialisation format. All examples are in little endian byte order.

The example data is given 16 bytes per line, with two characters
representing the value of each byte. For clarity, a number of different
notations are used for byte values depending on purpose.

• 	 'A shows that a byte has the ASCII value of A (65).

• 	 sp shows that a byte is an ASCII space character (32).

• 	 \0 shows that a byte is a zero byte used to mark the end of a string.

• 	 - - shows that the byte is a zero-filled padding byte used as part of
a structure or dictionary entry.

• 	 ## shows that the byte is a zero-filled padding byte used as part of
an array.

• 	 @@ shows that the byte is the zero-filled padding byte at the end of
a just value.

• 	 any two hexadecimal digits show that a byte has that value.

Each example specifies a type, a sequence of bytes, and what value this
byte sequence represents when deserialised with the given type.

53

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

String Example
With type string I s I :

'h 'e 'l 'l 'o sp 'w 'o 'r 'l 'd \0

has a value of I hello world I.

Maybe String
With type string ' ms I :

'h 'e 'l 'l 'o sp 'w 'o 'r 'l 'd \0@@

hasavalueofJust 'hello world'.

Array of Booleans Example
With type string 'ab I :

01 00 00 01 01

has a value of [True, False, False, True, True].

Structure Example
With type string ' (s i) I :

'f 'o 'o \0 ff ff ff ff 04

has a value of ('foo I -1).
,

54

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Structure Array Example
With type string 'a (si} ':

'h 'i \0 -- fe ff ff ff 03 ## ## ## 'b 'y 'e \0

ff ff ff ff 04 09

has a value of [('hi' I -2) 1 ('bye' 1 -1)].

String Array Ex:ample
With type string 'as' :

'i \0 'c 'a 'n \0 'h 'a 's \0 's 't 'r 'i 'n 'g

's '? \0 02 06 0a 13

has a value of ['i' I 'can' I 'has' I 'strings?'].

Nested Structure Example
With type string ' ((ys) as) ':

'i 'c 'a 'n \0 'h 'a 's \0 's 't 'r 'i 'n 'g 's

'? \0 04 05

has a value of (('i' I 'can') I ['has' I 'strings?']).

Simple Structure Example
With type string ' (yy) ' :

70 80

has a value of (0x70 I 0x80).

55

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Padded Structure Example 1
With type string (iy) I :I

60 00 00 00 70

has a value of (96, ex7e).

Padded Structure Example 2
With type string I (yi) I :

70 -- -- -- 60 00 00 00

has a value of (ex7e, 96).

Array of Structures Example
With type string I a (iy) 1

:

60 00 00 00 70 -- -- -- 88 02 00 00 f7

has a value of [(96 I ex7e) I (648 I exf7)] .

Array of Bytes Example
With type string ay II :

04 05 06 07

has a value of [exe4 1 exes 1 exe6 1 exe7] •

56

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Array of lntege[]"s Example
With type string ' ai ' :

84 00 00 00 02 01 00 00

has a value of [4, 258].

Dictionary Entry Example
With type string '{si} ':

'asp 'k 'e 'y \8 -- 02 02 ee 00 e6

has a value of { ' a key ' , 514}.

6.7 Non-N(Qrmal Serialised Data

Nominall~ deserialisation is the inverse operation of serialisation. This
would imply that deserialisation should be a bijective partial function.

If deserialisation is a partial function, something must be done about
the cases where the serialised data is not in normal form. Normally this
would result in an error being raised.

6.7.1 An Argument Against Errors

Requirement Performance Requirement 3 forbids us from scanning the
entirety of the serialised byte sequence at load time; we can not check
for normality and issue errors at this time. This leaves any errors that
might occur to be raised as exceptions as the values are accessed.

Faced with the C language's poor (practically non-existent) support for
exceptions and with the idea that any access to a simple data value might
possibly fail, this solution also becomes rapidly untenable.

57

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The only reasonable solution to deal with errors, given our constraints,
is to define them out of existence. Accepting serialised data in non­
normal form makes deserialisation a surjective (but non-injective) total
function. All byte sequences deserialise to some valid value.

For security purposes, what is done with the non-normal values is
precisely specified. One can easily imagine a situation where a content
fllter is acting on the contents of messages, regulating access to a
security-sensitive component. If one could create a non-normal form
of a message that is interpreted differently by the deserialiser in the
filter and the deserialiser in the security-sensitive component, one could
IIsneak by" the filter.

6.7.2 Default Values

When errors are encountered during deserialisation, lacking the ability
to raise an exception, we are forced into a situation where we must
return a valid value of the expected type. For this reason, a "default
value" is defined for each type. This value will often be the result of an
error encountered during deserialisation.

One might argue that a reduction in robustness comes from ignoring
errors and returning arbitrary values to the user. It should be pointed
out, though, that for most types of serialised data, a random byte error
is much more likely to cause the data to remain in normal form, but with
a different value. We cannot capture these cases and these cases might
result in any possible value of a given type being returned to the user.
We are forced to resign ourselves to the fact that the best we can do,
in the presence of corruption, is to ensure that the user receives some
value of the correct type.

The default value for each type is:

Booleans
The default boolean value is False.

58

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Bytes
The default byte value is nul.

Integers
The default value for any size of integer (signed or unsigned) is zero.

Floats
The default value for a double precision floating point number is
positive zero.

Strings
The default value for a string is the empty string.

Object Paths
The default value for an object path is I I 1

•

Signatures
The default value for a signature is the nullary signature (ie: the empty
string).

Arrays
The default value for an array of any type is the empty array of that
type.

Maybes
The default value for a maybe of any type is the Nothing of that type.

Structures
The default value for a structure type is the structure instance that has
for the values of each item, the default value for the type of that item.

Dictionary Entries
Similarly to structures, the default value for a dictionary entry type is
the dictionary entry instance that has its key and value equal to their
respective defaults.

Variants
The default variant value is the variant holding a child with the unit
type.

59

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

It is worth noting that the default value for any fixed-sized type serialises
to an all-zero byte sequence. This property simplifies the handling of
these cases.

6.7.3 Handling Non-Normal Serialised Data

On a properly functioning system, non-normal values will not regularly
be encountered, so once a problem has been detected, it is acceptable if
performance is arbitrarily bad. For security reasons, however, untrusted
data must always be checked for normality as it is being accessed. Due
to the frequency of these checks, they must be fast.

Nearly all rules contained in this section for deserialisation of non­
normal data keep this requirement in mind. Specifically, all rules can be
decided in a small constant time (with a couple of very small exceptions).
It would not be permissible, for example, to require that an array with
an inconsistency anywhere among its framing offsets be treated as an
empty array since this would require scanning over all of offsets (linear
in the size of the array) just to determine the array size.

There are only a small number of different sorts of abnormalities that
can occur in a serialised byte sequence. Each of them, along with what
to do, is addressed in this section.

The following list is meant to be a definitive list. If a serialised byte
sequence has none of these problems then it is in normal form. If a
serialised byte sequence has any of these problems then it is not in
normal form. Examples will be given in Section 6.7.4.

Wrong Size for Fixed Sized Value
In the event that the user attempts deserialisation using the type of a
fixed-width type and a byte sequence of the wrong length, the default
value for that type will be used.

60

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Non-zero Padding Bytes
This abnormality occurs when any padding bytes are non-zero. This
applies for arrays, maybes, structures and dictionary entries. This
abnormality is never checked for - child values are deserialised from
their containers as if the padding was zero-filled.

Boolean Out of Range
In the event that a boolean contains a number other than zero or one it
is treated as if it were true. This is for purpose of consistency with the
user accessing an array of booleans directly in C. If, for example, one
of the bytes in the array contained the number 5, this would evaluate
to True in C.

Possibly Unterminated String
If the final byte of the serialised form of a string is not the zero byte
then the value of the string is taken to be the empty string.

String with Embedded Nul
If a string has a nul character as its final byte, but also contains
another nul character before this final terminator, the value of the
string is taken to be the part of the string that precedes the embedded
nul. This means that obtaining a C pointer to a string is still a constant
time operation.

Invalid Object Path
If the serialised form of an object path is not a valid object path
followed by a zero byte then the default value is used.

Invalid Signature
If the serialised form of a signature string is not a valid DBus signature
followed by a zero byte then the default value is used.

Wrong Size for Fixed Sized Maybe
In the event that the size of a maybe instance with a fixed element
size is not exactly equal to the size of that element, then the value is
taken to be Nothing.

61

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Wrong Size for Fixed Width Array
In the event that the serialised size of a fixed-width array is not an
integer multiple of the fixed element size, the value is taken to be the
empty array.

Start or End Boundary of a Child Falls Outside the Container
If the framing offsets (or calculations based on them) indicate that any
part of the byte sequence of a child value would fall outside of the
byte sequence of the parent then the child is given the default value
for its type.

End Boundary Precedes Start Boundary
If the framing offsets (or calculations based on them) indicate that the
end boundary of the byte sequence of a child value precedes its start
boundary then the child is given the default value for its type.

The end boundary of a child preceding the start boundary may cause
the byte sequences of two or more children to overlap. This error is
ignored for the other children. These children are given values that
correspond to the normal deserialisation process performed on these
byte sequences with the type of the child.

If children in a container are out of sequence then it is the case that
this abnormality is present. No other specific check is performed for
children out of sequence.

Child Values Overlapping Framing Offsets
If the byte sequence of a child value overlaps the framing offsets of
the container it resides within then this error is ignored. The child is
given a value that corresponds to the normal deserialisation process
performed on this byte sequence (including the bytes from the framing
offsets) with the type of the child.

Non-Sense Length for Non-Fixed Width Array
In the event that the final framing offset of a non-fixed-width array
points to a boundary outside of the byte sequence of the array, or
indicates a non-integral number of framing offsets is present in the
array, the value is taken to be the empty array.

62

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Insufficient Space for Structure Framing Offsets
In the event that a serialised structure contains an insufficient space
to store the requisite number of framing offsets, the error is silently
ignored as long as the item that is being accessed has its required
framing offsets in place. An attempt to access an item that requires
an offset beyond those available will result in the default value.

6.7.4 Examples

This section contains some clarifying examples to demonstrate the
proper deserialisation of non-normal data.

The byte sequences are presented in the same form as for the
normal-form examples. A brief description is provided for why a value
deserialises to the given value.

Wrong Size ·ror Fixed Size Value
With type string IiI:

07 33 90

has a value of 0.

Since any value with a type of I i I should have a serialised size of
4, and since only 3 bytes are given, the default value of zero is used
instead.

Non-zero Pildding Bytes
1With type string (yi) I :

55 66 77 88 02 01 00 00

has a value of (0x55, 258) .

Non-zero padding bytes (66 77 88) are simply ignored.

63

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Boolean Out of Range
With type string ab I:I

01 00 03 04 00 01 ff 80 00

has a value of [True, False, True, True, False, True, True,
True, False].

Any non-zero booleans are treated as True.

Unterminated String
With type string I as I :

1 h 'e 1 l 'l 'o sp 'w 'o 'r 'l 'd \0 0b 0c

has a value of [I I , I I 1 (two empty strings).

The second string deserialises normally as a single nul character, but
the first string does not contain a nul character. Regardless of the fact
that a nul character immediately follows it, the first string is replaced
with the empty string (the default value for strings).

String with Embedded Nul
With type string I s I :

'f 'o 'o \0 'b 'a 'r \0

has a value of I foo I.

64

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

String with embedded nul but none at end
With type string I s I :

'f 'o 'o \0 'b 'a 'r

has a value of 1 1 (the empty string).

The last byte in the string is always checked to determine if there is
a nul and, if not, the empty string is used as the value. This includes
the case where a nul is present elsewhere in the string.

Wrong size for fixed-size maybe
With type string mi II :

33 44 55 66 77 88

has a value of Nothing.

The only possible way for a value with type I mi 1 to be Just is for its
serialised form to be exactly 4 bytes.

Wrong size ·~or fixed-width array
With type string a (yy) II :

03 04 05 06 07

has a value of [] .

With each array element as a pair of bytes, the serialised size of the
array should be a multiple of two. Since this is not the case, the value
of the array is the empty array.

65

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Start or end boundary of child falls outside the container
With type string (as) II :

'f 'o 'o \0 'b 'a 'r \0 'b 'a 'z \0 04 10 0c

has a value of [I foo I , I , I] •I I

No problems are encountered while unpacking the first element in the
array (which is marked as falling between byte boundaries 0 and 4).
When unpacking the 2nd element, its end offset (16) is outside of the
bounds of the array. This offset (16) is also the start of the 3rd array
element. As a result, both of these elements are given their default
value (the empty string).

End boundary precedes start boundary
With type string 1 (as) I :

'f 'o 'o \0 'b 'a 'r \0 'b 'a 'z \0 04 00 0c

has a value of [I foo I , I , foo I] •I I

Again, no problems are encountered while unpacking the first element
in the array. When unpacking the second element it is noticed that the
end boundary precedes the start. Since this is impossible, the default
value of I is used instead. Unpacking the final element (from 0 to 12)I

occurs without problem. The final element overlaps the first element,
however, and when assessing its value, the embedded nul character
causes it to be cut off at foo II •

66

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Insufficient space for structure framing offsets
With type string (ayayayayay) I:I

03 02 01

has a value of ([3] 1 [2] 1 [1] 1 [] 1 []) •

Since this is not a fixed-size value, the fact that it has an impossible
size does not cause it to receive its default value (ie: there is no
concept of "minimum-size"). Unpacking the first three items in the
structure occurs without a problem (demonstrating that the content
of a value can overlap the framing offsets). Attempting to unpack the
last two items fails, however, since the required framing offsets simply
do not exist. The default values are used instead.

67

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 7

Implementing the Format

This chapter contains information about the serialisation format that is
not part of its specification.

This information discusses issues that will arise during implementation
of the serialisation format. Certainly, the issues discussed in this chapter
have had an impact on the GVariant implementation discussed in
Chapter 10.

An unfortunate observation is made about the safety of byteswapping
operations and a method is given (along with proof of correctness) that
random accesses to the contents of a structure can be made in constant
time, despite the fact that framing offset are omitted for fixed-sized
values.

7.1 Notes on Byteswapping

Implementors may wish to perform in-place byteswapping of serialised
GVariant data. There are a couple of things to consider in this case.

The primary concern arises from the fact that if non-normal serialised
data is present then byteswapping may not be possible.

69

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

With a type string of (ssn) consider the following non-normal serialised
data in little-endian byte order:

78 ee ee e2

The first string has a length of 2 (including the nul terminator) and a
value of 1 The second string is given its default value of I

1 as a resultxI •

of its end offset of 0 preceding its start offset of 2. Finally, the 16-bit
integer, with a start offset of 0 (thus overlapping the first string) has a
value of ex78. The value of the entire structure is (IxI 1 I I 120).1

To change this serialised data to be in big-endian byte order requires
the swapping of the bytes of the 16-bit value. To do so, however, would
also modify the value of the string which these bytes overlap. In this
case (and in general) there is no way to avoid this problem.

Because of this problem, any implementation wishing to perform in­
place byteswapping of serialised data must first ensure that the data is
in normal form.

There are a couple of cases where this requirement for normal form does
not exist. In the case of any fixed-sized value or variable sized array, no
framing offsets are present. This effectively eliminates the possibility
of overlapping data and means that this cases can be byteswapped in­
place without first checking for normality.

Through a fortunate alignment of circumstances, these types (together
with strings, which need not be byteswapped at all) are exactly the sorts
of data that an implementation may wish to make available to the user
via a pointer. As a result it is easy to imagine that an implementation
may end up not requiring the ability to in-place byteswap serialised data
except in cases where it is always safe.

70

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

7.2 Calculating Structure Item Addresses

In the C language, structures exist in much the same way as they exist
in the serialisation format. Each item in the structure follows the one
preceding it as closely as possible, subject to alignment constraints.

No matter what is done, it is impossible to determine the address of
an item in a structure in C in a constant amount of time. The sizes and
alignments of the items preceding it each need to be considered - a
process which can not occur in less than linear time. The algorithm
for doing this is to start at the starting address of the structure and
then for each preceding item in the structure, round up to its alignment
requirement and add its size. Finally, round up to the alignment
requirement of the item to be accessed.

This process can be described with a simple algebra containing two
types of operations:

• 	 (+c): add to a natural number, some constant, c.

• 	 (i c): "align" (round up) a natural number up to the nearest multiple
of some constant power of two, 2c.

Assume that the compiler aligns integer values to their size. To find the
address of a 32-bit integer following a 16-bit integer following an array
of three 64-bit integers, for example, the following computation must be
performed, given the address of the start of the structure, s:

((i3); (+24); (fl); (+2); (t2))s

in which (a; b) denotes reverse function composition: "a then b".

Of course, no sane C compiler saves this computation to be performed
at each access. Instead, the compiler performs the computation at the
time of the structure definition and builds a table containing the starting
offset and size of each item in the structure. Because every item in the
structure is of a fixed size and because the start address of the structure
is always appropriately aligned, the address of an item in a structure

71

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

can always be specified as a constant relative to the address of the start
of that structure.

For our example:

(+28) s

Admitting non-fixed-sized items to structures very obviously prevents
the starting offset of items following any non-fixed-sized item from being
a constant relative to the start of the structure. The start address of
any item will clearly depend on the end address of the non-fixed-sized
item that most immediately precedes it. Worse than this though, due to
the fact that this end address has no particular alignment, the starting
offset of each item cannot be expressed as a constant offset, even to the
end of the non-fixed-sized item preceding it.

Without discovering another method to build a table, the address
computation would have to be performed, in fulL at each access - in
linear time. Fortunately, another method exists, permitting constant­
time access to structure members. It is possible to build a table
with each row containing four integers such that this table permits
calculating the start address of any structure item to be performed in
only four operations:

((+a); (i b); (+c)) offsets[i]

Where offsets is the array of framing offsets for the structure and i, a, b
and care the four integers from the table. By definition, offsets[-1] = 0.

7 .2.1 Performing the Reduction

In this and the following sections, (x i y) is the result of applying (i y) to
x. If x andy are constants then (x i y) will also be a constant - allowing
us to compute its value ahead of time.

Essentially, we are interested in a process by which we can reduce any
length of sequence of constant adding and alignment operations to a
sequence of length 3, with the form shown above. We can then perform

72

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

this small constant number of operations at each access instead of the
full computation.

This reduction process occurs according to the following reduction rules
(which are proven in Section 7.2.5):

Addition rule
(+a); (+b)= (+(a+ b))

Greater alignment rule
(T a); (+b); (t c)= (+(b t a)); (T c), if c ~a

Lesser alignment rule
(ta); (+b); (tc) = (ta); (+(b t c)), ifc sa

We can prove that, using these rules, any sequence of operations can be
reduced to have no more than one alignment operation. If there exist
two alignment operations in the sequence, one of these cases must be
true:

• two alignment operations separated by exactly one addition

• two adjacent alignment operations

• two alignment operations separated by more than one addition

In the case that there is exactly one addition separating our two
alignment operations then the greater or the lesser alignment rule may
be immediately applied to reduce the number of alignment operations
by one.

In the case that there are more than one additions, they can be
merged down to a single addition by application of the addition rule
before applying one of the alignment rules. In the case of two adjacent
alignment operations, a (+0) operation can be introduced between then
before applying one of the alignment rules.

Since we can reduce any sequence of operations to a sequence
containing only one alignment operation, we can further reduce it to

73

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

the form (+a); (l b); (+c) by using the addition rule to merge all of the
additions that occur before and after this single alignment operation.

7 .2.2 Computing the Table

Based on the reduction rules above, an efficient (but still linear time)
algorithm for computing the entire table at once can be developed.

At all times, the "state so far" is kept as the four variables: Ca, band c
such that getting to the current location is possible by computing ((+a);
(l b); (+c)) relative to the offset[i]. i is kept equal to the index of the
framing offset which specifies the end of the most recently encountered
non-fixed-sized item in the structure (or -1 in the case that no such item
has been encountered). a, b, c start at 0.

Three merge rules are defined to allow any additional operation to be
appended to this sequence without changing the size of the form of the
sequence; the merge rules effect only the integer values of a, band c.

1. 	 appending an alignment d less than or equal to the current
alignment: (a, b, c) := (a, b, c l d) as a direct result of the lesser
alignment rule application (+a); (l b); (+c); (l d) = (+a); (l b) (+c
l d).

2. 	 appending an alignment d greater than the current alignment:
(a, b, c) := (a + (c l b), d, 0) by the greater alignment rule
application (+a); (l b); (+c); (l d) = (+a); (+c f b); (l d), addition
rule application to (+a + (c f b)); (l d) and harmless appending of
(+0) to give (+a + (c f b)); (l d); (+0).

3. 	 appending an addition e: (a, b, c) := (a, b, c + e) by obvious use of
the addition rule (+a); (l b); (+c); (+e)= (+a); (l b); (+(c +e)).

Each time a non-fixed-sized item is encountered, i is incremented and
a, b, care set back to zero.

74

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The algorithm is implemented by the following Python function which
takes a list of (alignment, fixed size) pairs as input, representing the
structure items. Its output is the table, given as an array of 4-tuples.

def generate_table (items):
(i, a, b, c)= (-1, 0, 0, 0)
table= []
for (d, e) in items:

if d <= b:
(a, b, c) = (a, b, align(c, d)) #merge rule #1

else:
(a, b, c) = (a+ align(c, b), d, 0) #merge rule #2

table.append ((i, a, b, c))
if e == -1: # item is not fixed-sized

(i, a, b, c) = (i + 1, 0, 0, 0)
else:

(a, b, c) = (a, b, c + e) # merge rule #3
return table

It is assumed that align(a, b) computes (a l b).

7 .2.3 Further Reduction

The reductions described above are non-confluent. An equivalence on
the final sequence of operations exists. Specifically, if d is a multiple of
2b, then:

(+a); (T b); (+(c +d))= (+(a+ d)); (T b); (+c)

This is because, being a multiple of 2b, d can 11pass through" the
alignment operation without change.

Consider, for example, the following:

(n + 16) l 3

It is clear that this is equivalent to

75

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

(n i 3) + 16

since there are no low order bits in the binary representation of 16 to
be affected by a rounding operation that clears only the bottom 3 bits.

In the case where only small alignment constraints are encountered (no
larger than 8) it is possible (by shifting multiples of 256 out of c into a)
to ensure that c fits into no more than a single byte. This applies to the
serialisation format as specified, considering that the largest alignment
constraint ever encountered is 3.

7 .2.4 Plus/And/Or Representation

As a micro-optimisation, after performing the reduction in the previous
section, the resulting values of a, b, c can be transformed such that
the calculation can be performed in only 3 commonly-available machine
instructions.

This transformation takes advantage of three simple facts about
rounding.

First note that rounding up to the nearest multiple of any number is
the same as adding that number, minus 1, then rounding down to the
nearest multiple of that number.

Second, note that rounding down to the nearest multiple of a number
that is a power of two is the same as taking the bitwise and with the
bitwise complement of that number minus 1.

Third, note that the result of rounding to a multiple of a power of 2
results in the low order bits of the result being cleared. Adding a number
less than that multiple to the result of the rounding can't possibly result
in carrying, so using bitwise or is an equivalent operation.

Keeping in mind that after the reduction in the last section, c < 2b:

((+a); (i b); (+c) s) =((+(a+ 2b- 1)); (& -(2b- 1)); (!c)) s)

76

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

where I denotes bitwise or, & denotes bitwise and, and - denotes bitwise
complement.

We can therefore choose to store the following into the table:

(a + 2b - 1, -(2b- 1), c)

and for each address we calculate, we are only required to perform an
addition, a bitwise and and a bitwise or.

7.2.5 Proof of Reduction Rules

Given a few "intuitive" lemmas, we can prove that the reduction rules
are sound.

Lemma 1
Va, b: (t a); (t b)= (t (max(a, b)))

since alignment is always to powers of two, two successive alignment
operations are equivalent to the "most powerful" of the two.

Lemma 2
Va, b, c, r: r = (t c) = r(a) + r(b) = r(a + r(b))

since r(b) is already a multiple of 2c it can "pass through" the second
application of r without change.

Lemma 3
Vc, (0 t c) = 0

7.2.5.1 Addition Rule

Associativity of addition:

Va, b, n: (n + a) + b = n + (a + b)

which is just the same as:

77

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

"'a, b, n: ((+a); (+b)) n = (+(a + b)) n

By partial instantiation:

'Vn: ((+a); (+b)) n =(+(a+ b)) n

and then by extensionality:

(+a); (+b)= (+(a+ b))

7 .2.5.2 Greater Alignment Rule

Let r = (Tc) and s = (T a).

Lemma 2:

Vm, n : s(n) + s(m) = s(s(n) + m)

Lemma 3 allows:

'Vm, n : s(n) + s(m) + s(O) = s(s(n) + m)

Repeated application of lemma 2 to the above:

'Vm, n : s(n) + s(s(m) + 0) = s(s(n) + m)

'Vm, n : s(s(n) + s(m) + 0) = s(s(n) + m)

Which of course is equivalent to:

Vm, n : s(s(n) + s(m)) = s(s(n) + m)

Since addition commutes and we universally quantify over both m and
n, there is no reason that what works for one won't work equally well
for the other:

'Vm, n: s(s(n) + s(m)) = s(n + s(m))

so, clearly:

78

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

Vm, n: s(s(n) + m) = s(n + s(m))

Which we can partially instantiate as:

Vn: s(s(n) + b) = s(n + s(b))

It must be true, then, that:

Vn: r(s(s(n) +b)) = r(s(n + s(b)))

Remembering that r = (Tc) and s = (Ta):

Vn: ((l a); (T c)) ((n T a) + b) = ((T a); (T c)) (n + (b T a))

And lemma 1 (since as c) merges this into:

Vn: (T c) ((n T a) + b) = (Tc) (n + (b T a))

Vn: ((Ta); (+b); (T c)) n = ((+(b T a)); (Tc)) n

By extensionality:

(Ta); (+b); (Tc) = (+(b T a}}; (Tc)

7 .2.5.3 Lesser Alignment Rule

Let r = (Ta) and s = (Tc).

Trivially:

Vn: s(r(n) + b) = s(r(n) + b)

From lemma 1, since c sa:

Vn: s(s(r(n)) + b) = s(r(n) + b)

Then lemma 2 allows:

Vn: s(r(n)) + s(b) = s(r(n) + b)

79

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Effectively reversing the first application of lemma 1:

Vn: r(n) + s(b) = s(r(n) + b)

Remembering r = (i a) and s = (i c):

Vn: ((+(b f c)); (fa)) n = ((i a); (+b); (i c)) n

By extensionality:

(+(b i c)); (ia) = (ia); (+b); (fc)

80

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

PART III

This part documents the implementation of GVariant that
was developed for inclusion in the GNOME platform. The
application programmer interface is introduced and some
examples are given ofcommon use cases to illustrate the basic
functioning of this implementation. Some noteworthy internal
implementation details are described.

81

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

Chapter 8

Programmer Interface

As a first step to understanding the implementation of GVariant, this
chapter gives an overview of its interfaces.

The chapter is split into a number of sections such that each major "part"
of the interface is briefly described in its own section.

Detailed API reference documentation, on a call-by-call basis is provided
as Appendix A.

8.1 Types

As GVariant has been developed in, and for, the C programming
language, the possibility of performing any sort of compiler supported
static type checking of programs using GVariant is practically non­
existent.

For this and other reasons, GVariant must feature some notion of
representing types, on its interfaces, as runtime objects. The name of
the type of this runtime object is GVa riantType.

The range of GVa riantType includes all of the types described in
Chapter 5. GVariantType also includes "wildcard types".

83

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

8.1.1 Wildcard Types

GVa riantType supports the concept of "matching" and "wildcard types".
Any type matches itself, but a wildcard type matches other types as well.
A wildcard type can never be the type of an instance (but an instance,
of course, may match a wildcard type).

Matching can be used to support a degree of polymorphism while
enforcing runtime type assertions.

There are three base wildcard types which each match a number of
other types. An infinite number of wildcard types can be formed by
applying the other type constructors, in the usual way, to other wildcard
types.

All wildcard
The all wildcard type matches any type. This wildcard is represented
by the * ' character.I

Basic wildcard
The basic wildcard type matches any one of the basic types. It is itself
considered to be a basic type. This wildcard is represented by the I? 1

character.

Structure wildcard
The structure wildcard type matches any structure type. This wildcard
is represented by the I r I character.

The grammar of type strings is expanded to support wildcard types in
the following manner. At any position in the derivation of a type string
where a valid type string could appear then any of the new terminal
characters (I* I, I? I or I r I) can now appear. At any position of a type
string where only a base type could appear (ie: as the key of a dictionary
entry type) the terminal character 1 ?' can now appear.

The reason that a base wildcard type exists to match any structure type,
but not for any of the other type constructors, is because structures
are the only variadic type constructor. Equivalent wildcard types may

84

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

be formed for the other type constructors by providing the other base
wildcard types as arguments for those constructors (consider type string
I a* I and I{?*} I, for example).

8.1.2 Type Classes

A user of GVariant may be interested in handling GVariant instances of
arbitrary types. This can be done by recursing and iterating over the
structure of the instance in a generic way.

In order for the user to be able to unwind the structure of the type of
a value, they need the ability to categorise many different types into
classes. One step of a recursive algorithm can then perform its local task
based on which class it is dealing with.

To this end, a small finite number of "type classes" exist as an
enumerated a type called GVa riantTypeClass.

Querying the type class of a GVa riantType effectively gives all of the
information about the "top layer" of the type. In terms of type strings,
the type class can always be determined by looking only at the first
character.

Some examples of type classes are "array", "structure" and "32 bit
signed integer".

8.2 VallJ1es

The most central part of the interface, of course, is the type that
represents a single value. This type is, accordingly, given the name
GVariant.

A GVa riant is essentially a dependent pair of one of the types described
in Chapter 5 and a value of that type. It is no accident that this definition
bears close resemblance to the definition given for the "variant" type in
the same chapter - these two things serve the same purpose and can

85

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

contain exactly the same range of values. The only difference is that one
exists within the type system of GVariant and the other exists within C.

A GVa riant has its type and value when it is constructed and these two
things never change. A GVa riant is a value, not a variable. The only way
to "change" the value is to destroy the instance create a new one in its
place.

Each GVa riant is reference counted. This allows a number of users to
"share" a value. So long as a particular user holds on to their reference
they can ensure that the value will continue to exist. Coupled with the
statement in the previous paragraph, this enables a given user to be
certain that the value that they have a reference to will never change.

Floating reference counts are supported. This concept is very familiar
to GNOME programmers, as the GObject type system features it. In
essence, in addition to a reference count, each instance has a "floating"
flag. A new "sink" operation is defined as follows: if the floating flag is
set then unset it and do nothing else; if the floating flag is unset then
increase the reference count.

When any GVa riant instance is added to a container, the sink operation
is performed on that instance. In the case that the floating flag was
not set, this causes the container to acquire a new reference to the
instance. New instances are created with the floating flag set however.
This allows for the programmer to skip the step of explicitly releasing
their reference to an instance in the very common case that it is created
only to be added directly to a container (since at the point of adding
to the container the sink operation effectively transfers the reference
from the caller to the container). This feature is a nice convenience in a
language that lacks automatic reference counting.

8.3 Plain C Interfaces
Creating new instances or gaining access to the value of an existing
instance is accomplished by a range of calls that are detailed in the
appendix.

86

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

For each base type x there is a g_variant_new_x(} function and a
g_va riant_get_x () function.

For each container type class there is a function to allow construction
of a GVa riant instance with a type of that class, given existing child
instances.

There are also g_variant_n_children(} and g_variant_get_child()
calls which may be applied to children in obvious ways to loop over their
contents.

As an added convenience there are iterator and builder interfaces that
allow for step-by-step construction and deconstruction of containers.

Finally, there are calls to allow direct pointer access to serialised
data that can be directly understood by C. The functions
g_variant_get_fixed() and g_variant_get_fixed_array() can be
applied to fixed-sized values and arrays thereof.

8.4 varargs C Interfaces

Even with the convenience functions provided as part of the builder
and iterator interfaces, constructing and deconstructing complex
hierarchies of values (particularly complex structure types) can be
particularly frustrating. For this reason, a printf ()-style interface has
been introduced.

The functions g_variant_new() and g_variant_get(} each accept
a special format string. This format string describes the types of
arguments that will be collected and the final (or initial) type of the value
being constructed (or deconstructed).

Any type string (including those containing wildcards) is a valid format
string. Additionally any type string appearing within the format string
may have I@' prepended to it. Any type string corresponding to a fixed­
type that appears within the format string may have I & 1 prepended to it.

87

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

These two modifiers don't change the type involved in the construction
or deconstruction but change how the arguments are collected.

More detail about format strings is provided in the appendix.

As with all varargs functions, this interface is slightly evil. This evilness,
however, provides for significantly less typing.

Versions of these functions that take a pointer to a va list (similar to
vp rintf ())also exist. They are denoted with the suffix va.

8.5 Load and Store

Contained in a separate header file and not intended for use by "normal
users" is support for interfacing with GVariant on the level of serialised
data.

Calls exist for writing serialised data out to a buffer, or for requesting
the serialised data stored internally within a GVariant (in the case that
this does not yet exist, it will be created).

Calls also exist for creating new GVariant instances from serialised data
- either by taking a copy of the data, or in the most efficient case using
the data in-place.

8.6 Markup

Facilities are provided for pretty-printing GVa riant instances to and
parsing them from a GMarkup1-based format.

1 GMarkup is a substantial subset of XML designed for simplicity. It has all of the
basic features which one would normally recognise as being XML. Some missing
features include user-defined entities, DTD validation and character encodings other
than UTF-8.

88

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Any value is representable in the markup language, so parsing
composed with printing is an identity operation. One current exception
(which may be addressed in future work) is a loss of floating point
precision.

Support has been added2 to GLib to support "subparsing" of GMarkup
documents whereby a subparser can be invoked to handle a segment
of a larger document. It is in this context, as a subparser, that GVariant
markup parsing is expected to be most commonly used.

An example document in this markup language is given below. The type
string of the type of the value that results from parsing the document
is (yasabaq).

<struct>

<byte>42</byte>

<array>

<string>hello</string>

<string>world</string>

</array>

<array>

<true/>

<true/>
<false/>

</array>

<!-- GVariant is unable to infer the type

so it must be explicitly specified

- ->
<array type='aq'/>

</struct>

2 http://bugzilla.gnome.org/show_bug.cgi?id=337518#c24

89

http://bugzilla.gnome.org/show_bug.cgi?id=337518#c24

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Chapter 9

Clarifying Examples

Before describing the implementation of GVariant in more detail, this
chapter provides some insight into what occurs, internally, in response
to some common usage scenarios.

9.1 Readling from a mapped file

The first example demonstrates how GVariant can be used to access a
single string within a memory mapped file containing an array of strings.

First, we assume that a GMappedFi le named mapped exists .

91

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The mapped file contains, among its data, the serialised form of an array
of strings. We can tell GVariant to create an instance representing the
value of this array by calling g_variant_from_data ().

GVariant *array;

array= g_variant_from_data (G_VARIANT_TYPE ("as"),

mapped_data + offset,

size,

G_VARIANT_TRUSTED,

g_mapped_file_free,

mapped);

This function call causes a number of things to happen.

Figure 9.2 : a GVariant using memory-mapped data

Most obviously, a new instance will be created to represent the array.
This instance contains a pointer to the serialised data of the array
(including its size). At this point there has been no access to the
contents of the mapped file - merely an exchange of pointers.

Of course, since GVariant didn't take its own copy of the data,
GMappedFile must continue to exist for the duration of the life

92

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

of array. This is the purpose of the last two arguments to
g_variant_from_data ().This is where the notify instance comes in.

notify is internal to GVariant and is never made accessible to the
programmer. Its purpose is to exist for as long as the data provided by
the user is needed. When it stops existing, it calls a notification function.
In this case, the notification function is the freeing of the mapped file
and its data.

There are two reasons that this indirect approach has been used instead
of embedding the notify closure directly into the array itself. The first
is that there simply wasn't enough room to store two extra pointers
into a GVa riant instance. The second is that having the notify instance
provides for more flexibility.

Imagine now that we want to actually obtain one of the strings from
inside the string array, the one with an index of 2.

GVariant *string;

string= g_variant_get_child (array, 2);

Strings are variable-sized, so in order to determine where our string lies
among the serialised data we have to read the framing offsets associated
with it. We read two (consecutive) integers telling us the start and the
end of the string's data and use these offsets as the pointers for a new
instance. No other data is read at this point.

93

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Figure 9.3: a GVariant shares thf!memory of its parent

Notice that string directly references the notify instance now. This
means that if we were to drop our reference to the array it could be
freed.

g_variant_unref (array);

94

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

.,)<.·{' • >.·<:.· ;,

J)~~~l!~~},')

Fi{Jure 9.4: S()Urce data kep~ ali'l,le_as lonfl a~ it. i~ in use

At this point, we might want to actually access the string data. This is
a very simple proposition.

canst gchar *ptr;

gsize len;

ptr = g_variant_get_string (string, &len);

Because we provided the G_VARIANT_TRUSTED flag when loading the
data we know that the string is properly formatted and of the right
length. This allows GVariant to provide the length of the string to the
programmer for free. We're also confident that the string is properly
nul-terminated, so we don't have to access the string's data at all at this
point - only return a pointer.

95

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

ptr

.Figure 9.5: a pointer is provided directly to memory-mapped data

At this point, the user is able to use the string directly as if it were a
native C string. This will cause the data associated with the string to be
paged in (unless it had happened to share a page with its own offsets
which we read earlier).

The pointer remains valid for the life of string. When string is
released then it drops its reference on notify which will, in turn, call
g_mapped_file_free () on mapped.

g_variant_unref (string);

96

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

?

/
(

ptr

Figl.!re 9.~: the pointer is inva.lid (lfie~ the reference is released

Of course/ at this point/ ptris no longer valid (since string has been freed
and its serialised data is gone).

9.2 Construction of new values
The second example demonstrates what happens when GVariant is used
to construct new values.

Imagine we want to create an array of integers.

GVariantBuilder *builder;

GVariant *array;

builder= g variant builder new (G VARIANT TYPE CLASS ARRAY, NULL);
g_variant_builder_add (builder, "[", 42);- - ­
g_variant_builder_add (builder/ "i", 28);
g_variant_builder_add (builder, "i", 84);
array= g_variant_builder_end (builder);

In this case/ a separate GVariant instance has been created for each
integer. Integer and floating point data is small enough that it can
fit inside the GVa riant structure and need not refer to an external
serialised data buffer.

97

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

A GVa riant instance has also been created to represent the array. This
instance contains references to the integers.

Figure 9.7: a tree ofGVariant instances

It may seem wasteful to create an array of integers in this way, but
consider the case that we were adding more complicated values to the
array. In this case, the cost of copying the data of those values into a
separate serialised buffer may outweigh the benefit.

Next, perhaps want to have the array as one of the child items of a
structure type. This is easy enough to do.

GVariant *structure;

structure= g_variant_new ("(s@ai)", "hello world", array);

Note that due to the floating reference counts of GVa riant instances the
reference held by array has been assumed by structure.

98

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Nesting can continue in this way to arbitrary depths.

Eventually it may be desirable to access the serialised representation
of the value of structure. Two different methods are provided for
accomplishing this.

First is an API to store the serialised data into a buffer provided by the
caller. A call is provided to determine how large this buffer must be.

gpointer *data;

gsize size;

size= g_variant_get_size (structure);

data= g_malloc (size);

g_variant_store (structure, data, G_LITTLE_ENDIAN);

Each leaf node writes its own data into the buffer and the intermediate
container nodes write only the framing information and padding bytes

99

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

where appropriate. This means that any given piece of data is written
only once and not copied several times as it moves through each layer.

There is also an API to allow access directly to the serialised data of a
value.

gconstpointer data;

gsize size;

data= g_variant_get_data (structure, &size);

This call presents a problem for the case where the value is stored in
tree format (as is the case with structure). There is no serialised data
to return a pointer to.

In order to satisfy the request, a new memory buffer is allocated.

Figure 9.9: implicit serialisation occurs

100

- - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

The serialisation process then occurs with this new buffer as the
destination. The process is very similar to the one that occurs when
using the first API (specifically, each value stores its own contents
directly into the top level buffer).

Once the serialisation is complete, the top level value drops any
references it holds on the child values. The instance is no longer in tree
form; it has been serialised.

Fiqure 9.10: after serialisation, _the children are released

Any future calls to g_va riant_get_data () will be able to return
immediately. The return value of g variant get data () is valid for the
life of the instance.

Any future calls to g variant get child () will deserialise the child
from the serialised data (similar to what occurred in Section 9.1.

101

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 10

Implementation Details

This chapter presents information about the implementation of
GVariant.

10.1 Internal Modularity

Internally, GVariant is separated into a number of separate source
files. These separate flies are used to separate functionality into logical
groupings and to increase modularity by enforcing the principle of loose
coupling.

As an example of how loose coupling is forced by this arrangement, all
non-trivial structure types in GVariant are declared within a C source
file (not a header) and are accessible to only the functions contained in
that file. This limits the amount of code that can be affected by a change
to one of these structures.

One particular division is worth mentioning because it is not made along
boundaries that are implied by logical grouping of functionality. This
is the separation between the files gva riant- util. c and gva riant­
core. c.

103

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

These files both contain functions that are used for creating and
accessing GVa riant instances. The simple rule for which file a particular
function goes in is determined by the fact that the GVa riant structure
is declared in gva riant- core. c. If a function requires direct access to
the GVa riant structure then it goes in this file. Everything else goes into
gva riant- util. c. During development, effort has been made to keep
the number of functions in gva riant- core. cas small as possible.

10.2 Values

A GVa riant instance is a small structure type (24 bytes on 32 bit
systems) allocated on creation and freed when the last reference to it
drops.

Each GVariant instance contains a reference count encoded as an
integer. The high bit of this integer is used as the floating reference flag
(in order to implement the floating reference behaviour described in
Chapter 8.) All reference counting operations are performed using the
glib atomic functions and are therefore thread-safe without locking.

Each instance also contains a pointer to a type information structure
(described below). The type of the instance never changes, so accessing
it is always safe, so long as the instance continues to exist.

Each instance contains a state register, encoded as an integer. The
individual bits in this integer value represent various conditions that
may or may not be true about the instance. This is explained in
considerable detail in Section 1 0. 3 .1.

The remainder of the content of the instance is determined by the state
that the instance is in (as determined from the state register).

104

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

10.3 Sta'fte Transformations
Initially, the implicit state transitions that a GVariant instance needed to
undergo were handled in an ad hoc manner in response to programmer
calls.

For example, g_ va riant_get_size () (which reports the byte size of the
serialised form of a value) would check if the size was already known
(internally: the size field contains a value other than -1) and, if so, report
this value directly. Otherwise, if the value was in tree form and, it would
call the serialiser to determine the number of bytes that would result
from serialising that tree, caching the result.

If another function needed to know this size then, out of interest of
avoiding code duplication, it would call g_variant_get_size() which
would perform the work if necessary (or simply return the cached value
if it was available).

With the wide range of state transitions that a GVa riant instance
can undergo, the web of function calls that occurred between these
functions was getting difficult to keep track of. Keeping track of when
locks needed to be held or not was also becoming difficult. Changes to
GVariant would often have unintended side-effects that would only be
discovered through unit test failures and a bit of head-scratching.

10.3.1 The Condition Machine

As a method of dealing with this increasingly unmanageable complexity
the level of formalism was increased - "conditions" were introduced as
the method of dealing with the state of each instance.

Astate register was added to the GVa riant structure. This state register
is an integer, that when viewed in binary, has each bit corresponding
to a particular condition (for example "size is known"). All hacks about
checking if a value was equal to -1 or a pointer was equal to NULL were
removed.

105

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

For any given instance, a condition bit may only ever transition from
zero to one; conditions may be false, but they can never change from
true to false.

For every defined condition, a transition function was defined to
transition the condition from false to true. In the case of the "size known"
condition this is the function that would invoke the serialiser and record
the result. Each transition function was given a precondition (in terms
of other conditions) that had to be satisfied before it could run.

The "condition machine" was developed. Its responsibility is to satisfy
requests for certain conditions by executing transition functions to
enable them. If the transition function has a precondition then it invokes
itself recursively to satisfy that precondition.

Excepting reference counting, only transition functions are allowed to
make any change to the state of a GVa riant instance. Concurrency
considerations are greatly simplified; a lock is held whenever the
condition machine is operating (including when transition functions are
operating), ensuring that no two threads are trying to modify a given
instance at a time.

Of course, concurrent read accesses are safe, but we are left to consider
the case of concurrent read and write access. This is dealt with by
seeing each condition as a sort of promise - if a condition is true then
some operation is safe. Because conditions can never be disabled, it is
sufficient simply to check that a condition is true before proceeding ­
no lock required.

There are a small number of operations (all relating to dealing with
tree form GVariant instances) that are not safe to perform unless locked
(essentially because we need to prevent the tree from disappearing from
under us in the case that the value is serialised). The instance is locked
in these cases, but the lock is only ever held briefly (typically only for
the duration of reading the value of a pointer and increasing a reference
count).

106

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Details about the operation of the condition machine and the list of
conditions that GVariant uses are given in Appendix C.

10.3.1.1 Comments on the Change

Moving to using the condition machine represented a near-complete
redefinition of the GVa riant structure type. Considerable work was to
be expected and significant breakage would be understood.

Due to the separation between gva riant- core. c and gva riant- util. c,
however, the amount of rewriting was kept to a minimum - about
two days of work, including development of ideas. This provides some
anecdotal evidence for the soundness of the division between these two
files.

Providing some evidence for the soundness of giving such explicit
treatment to the concept of conditions is the fact that GVariant had a
large suite of unit tests that were developed against (and found many
bugs in) the old implementation. When the new implementation based
on the condition machinery was first written, with the exception of some
trivial mistakes, these unit tests all passed right away.

Perhaps a more significant (although somewhat less quantitative)
endorsement comes in form of the fact that the author's "clarity" about
what's going on has increased considerably. It no longer feels like one
wrong move could bring down an entire house of cards.

10.4 Locking

GVariant uses per-instance locking; contention can only occur when
separate threads are making use of the same GVa riant instance.

Plain (non-recursive, no distinction between reader and writer) mutual
exclusion locks are used. Since the lock primitives available as part of
GLib (GMutex, GStaticMutex) and POSIX (pth read_mutex_t) are all very

107

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

large with respect to the size of the GVariant structure, a new mutex
lock implementation was developed that requires only a single bit.

This implementation is described in Appendix B.

The highest bit of the state register is used for the lock.

10.5 Type Information

GVariantTypeinfo is an opaque structure type that is for internal use
only. It is a private implementation detail not exposed to the user.

The purpose of GVa riantTypeinfo is to act as a cache of information
associated with a given GVa riantType.

10.5.1 Life Cycle

GVa riantTypeinfo structures come and go as needed, but no more than
one exists for a given type. Reference counts are used.

When the type information structure for a given type is required a
lookup in a hash table of existing type information is performed. If
the type already has an information structure, then that structure has
its reference count increased. If the type does not already have an
information structure then one is created on the fly and added to the
hash table.

When a particular user of the type information is done with the
information, they unreference it. If they held the last reference, then
currently the type information is destroyed and removed from the table.
Future implementation tweaks may involve keeping data cached for a
while after it is no longer used.

108

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

10.5.2 ln1Formation Contained

All type information structures contain some basic information:

Type
the GVa riantType corresponding to this type information.

Alignment
the alignment requirement for values of this type. Stored as the value
that the starting address must be a multiple of, minus 1.

Fixed size
the serialised size that all values of this type share. If the type is not
a fixed-size type then 0 is stored (note that all fixed-size types have
a non-zero fixed size).

The type is stored as part of the type information structure for two
reasons. First, it allows the type to be determined from the type
information. This allows GVariant instances to store only a pointer to
the type information (and not also to the type). Secondly, the type itself
is needed as a key into the hash table when an entry has to be removed.

A couple of derived properties are available from those listed above.

Always native byte order
values of some type are always. in native byte order and never
need to be byteswapped (strings, for example). Naturally, the items
that never need to be byteswapped are exactly those that have no
alignment constraints (since they do not contain multi-byte integer
values). Knowing this allows for pruning the tree while byteswapping
complicated values.

Is container
many operations on GVa riant instances are only applicable if the
value has a container type. This can be easily determined from the
type stored here.

For container types, extra type information is stored.

109

M.Sc. Thesis -Ryan Lortie Computing and Software - McMaster University

For maybe and array types, only one additional piece of information is
stored: a pointer to the element type's GVa riantTypeinfo. This direct
reference means that no string manipulation need be performed to
determine this type and no hash table lookup need be performed to find
its information structure.

For structure and dictionary entry types as well, the GVariantTypeinfo
pointers for each item type are stored. Additionally, for each item,
information is stored in order to allow constant time lookup of that item
within the structure. This information is generated according to the
algorithm described in Section 7.2.2 and stored in normalised plus/and/
or format (described in Section 7.2.4).

10.6 Serialisation

The serialiser and deserialiser are implemented as three privates
interfaces that are used internally by GVariant.

The serialiser only operates on container types. Non-container types
have very simple formats and they are accessed directly without
additional abstraction.

Determine Size
This call is used to determine the number of bytes that would be
required for a buffer to store the serialised form of a GVa riant
instance into. This function is called before serialisation of an instance
occurs in order to know how large to make the buffer.

Serialise
This call is used to serialise the value into an existing buffer. The
buffer must have already been allocated (using the size returned by
the previous operation).

110

M.Sc. Thesis- Hyan Lortie Computing and Software - McMaster University

Deserialise
When given a GVa riant instance, and an index n, this call is
responsible for determining the sub-sequence of the serialised data of
the instance that corresponds to the nth child.

This call also consults the GVa riantTypeinfo structure to determine
the type information for the new child instance.

Because all deserialisation operations on the serialisation format
can occur in constant time, since the GVa riantTypeinfo structure
contains a direct pointer to all the necessary, and because no data is
copied, the deserialisation operation occurs in constant time.

There is one exception (the source of the claim that only "nearly
all" deserialisation operations are constant time): when extracting
the value from a variant, the type string of the variant must parsed
and looked up in the hash table of GVa riantTypeinfo instances. This
operation is linear in the size of the type string.

111

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Chapter 11

Testing

The requirements listed in Chapter 4 are the sorts of requirements that
don't easily lend themselves to verification by automated testing. The
body of this thesis has been dedicated to providing evidence that these
requirements have been satisfied.

There are a whole other class of "obvious" implicit requirements,
however, that lend themselves nicely to automated testing.

These requirements are things like "does not crash" and "gives me back
the same value I put in". Validation of these requirements has mostly
been performed by development of test cases and through early use of
GVariant in other projects (see Chapter 13 for more information about
these).

This chapter discusses a number of methodologies that were used
during the development of the automated tests.

Automated tests were used in two separate ways. Some tests were
written after the features that they were meant to test were in place
with the intention of finding bugs in the existing software. Other tests
were written before the features (with the intention that the tests would
immediately fail) in order to drive development. For this reason, it is

113

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

hard to make clear statements about exactly how many bugs particular
test cases have caught.

11.1 Identity Operations

Looked at from a certain angle, GVariant can be seen as a translation
system. It can store data in its native serialisation format, but also allows
for the data to be pretty-printed to or parsed from XML. There are also
several programmer interfaces to GVariant.

Moving data into GVariant through one of these interfaces and out
through another is effectively a translation process. We expect that, over
the course of any number of translations, if the value is translated back
to its original representation it will be exactly the same as the value that
was given in the first place.

Testing this simple property has revealed a number of bugs.

11.2 Random Testing

The number of ways in which different types of GVariant containers
can be stacked together is essentially limitless. It can be quite difficult
to guess which particular combination might expose flaws in the
implementation. Coming up with imaginative test cases is a tiring
exercise.

An alternative to manual development of test cases is to write code to
produce test cases for you.

For GVariant, such a framework was developed by William Hua. A
random well-formed and semantically valid XML document is produced
and loaded into GVariant, put through a number of transformations and
then printed out again and compared to the original.

Random testing has proven to be extremely successful in discovering a
large number of bugs in GVariant.

114

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

11.3 Fuzz Testing

Another sort of testing performed is to check how GVariant responds to
non-normal serialised data.

This test process is driven by producing a valid serialised byte sequence
for a given (randomly generated) value. Random errors are then
introduced to this byte sequence such that it is no longer exactly equal
to the original. The number of random errors that are introduced is a
variable of the test, and several different levels are tried, ranging from
1-bit errors to substantial damage (20% of the bytes randomly replaced).

The "fuzzed" data is then loaded back into GVariant. The introduction
of errors could have three possible effects:

• 	 GVariant interprets the serialised data as having the same value as
the original, but notices that it is no longer in normal form.

GVariant interprets the serialised data as having a different value
but accepts the data as being in normal form.

GVariant interprets the serialised data as having a different value
and notices that it is no longer in normal form.

Note that it is not possible for the new byte sequence to have the same
value while still remaining in normal form because there is only one
normal form per value.

In the case that GVariant reports the data to be in normal form, we check
to ensure that the value of the data is different than the original value.
This testing offers assurance that GVariant will not accept two different
serialised byte sequences as normal forms of the same value.

In the case that GVariant reports that the data is not in normal form,
the data is normalised and checked to ensure that it differs from the
fuzzed data.

115

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

This testing method has revealed several bugs, mainly in the validation
code. Surprisingly, it also unearthed a couple of bugs in the serialiser.

116

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

PART IV

This part contains a summary of the contributions of this work
and discusses future work in terms of changes to GVariant
itself and projects that intend to use GVariant in substantial
ways.

117

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 12

Summary

In short: it works.

The tests are passing, and people are making use of the work for
development of new projects.

GVariant is slated to be included in the next release of GLib which will
expose it to a wider range of hackers and more use. Development will
continue.

The contributions of this work are the following:

• 	 Collection and description of the best common practices that form
the Itfolk knowledge" of the GNOME community.

• 	 Development of a new serialisation format adhering to these
principles.

• 	 Development of a number of techniques to allow constant-time
access to data stored in the new serialisation format, including
a technique for compiling a table allowing constant-time random
access to members of a structure containing variable-width data.

119

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

• 	 Development of a working software library allowing creation of and
access to data stored in the new serialisation format.

120

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Chapter 13

Future Work

As always, there is still work to be done. This work has been divided
into two categories - work on GVariant itself and work on new projects
based on GVariant.

13.1 GVariant

Looking forward, the next hurdle for GVariant is to have its API reviewed
by the maintainers of GLib and to merge it into this library.

Work is currently underway by Diego Escalante Urrelo to create Python
bindings for GVariant. As it turns out, GVariant's type system of arrays
and structures maps rather nicely onto Python's type system of lists and
tuples.

A number of features have been suggested by users of GVariant. One
such feature makes note of the fact that deserialisation of a GVariant
instance can occur without having the entire instance in memory, but
that this is not true for serialisation. A new builder interface would be
added that could stream out to a file or network socket "on the fly" as
values are added to it (removing the need to store all of the values in
memory at once).

121

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

13.2 DBus

Many of the ideas developed for GVariant may eventually find their way
into DBus itself.

Considerable discussion has been made about extending DBus's type
system in ways described here (and also in ways described by others,
such as the addition of a single precision floating point type).

There is also some discussion about changing DBus to use the
serialisation format of GVariant in order to avoid having to translate
between the two formats.

Work on these ideas is currently blocked only by a shortage of willing
contributors.

13.3 GSettings

As the motivating project for this work, GSettings will be one of the first
projects to take advantage of GVariant.

Most obviously, GSettings will make use of the serialisation format
described here to store values in its settings database.

GSettings will have GVariant as part of its API. Any GVariant value can
be provided as the value of a setting to store in the configuration system.

GSettings is a strongly type configuration system based on the concept
of schemas. This fits in nicely with GVariant's strong typing. When
coupled with GVariant's lack of deserialisation errors and with the
g_ va riant_new_va {) and g_ va riant_get_va {) functions, this allows
for a powerful programmer interface.

As a simple example, if a settings schema specifies that the size property
in the settings database has the type { ii) then the following code can
be used:

122

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

int width, height;

g_settings_get (settings, "size", &width, &height);

The user can always be sure that they will be left with valid integer
values for width and height.

The current status of the GSettings project is somewhat disrupted due to
significant changes that have occurred in GVariant over the past several
months. GSettings needs to be brought up to date with these changes
before work can continue.

13.4 GBus

Many ideas are planned for a new project - GBus.

The current DBus library was designed as a reference implementation
and to allow ease of binding for higher level programming languages.
As such, it contains very few facilities that make it convenient to use
directly from C. A number of attempts have been made to correct for
these shortcomings - such as by the dbus-glib and dbind projects - by
binding additional code to the low-levellibdbus library.

These projects have had limited success, and still use the libdbus library.
Concerns have been raised about the libdbus library in terms of license
compatibility with some GNOME projects and attempts to solve these
problems have failed due to uncertainty about the ownership of large
parts of the DBus code base.

Another problem with the DBus library is that it implements its own
linked lists, dynamic strings, hash tables, memory allocation, and many
other facilities that are already available in GLib.

GBus is a complete implementation of a new DBus client built using
GLib and GVariant. It will consist of a lower level interface (which

123

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

will "borrow" some API ideas from dbind) and a higher level interface
allowing direct interaction with the GObject object system.

At present, the low level interfaces are partially complete (having been
written by the author and by William Hua). It is possible to connect to
the bus and send messages, giving GVariant instances as the values for
those messages. The API is currently cumbersome and will change. A
great deal of work remains.

The high level interfaces are currently in the idea-gathering phase.

13.5 GObject Introspection

The GObject Introspection project plans to provide runtime and
statically-accessible information about the functions available on a given
GObject. This project is being undertaken by a number of developers ­
mainly the ones involved in writing language bindings for GNOME.

The introspection information will greatly simplify creating language
bindings for new types of GObjects and will also facilitate publishing
objects on the message bus for remote procedure calls.

The database containing the lists of functions defined for each object
is expected to be collected at compile-time using one of a variety of
techniques (code scanning, or by specification in an additional IDL file).

The database will be serialised using the GVariant serialisation format
and stored either as a binary blob within the shared library that
implements the object or in an additional file accompanying that library.

GVariant will be used to query and access information about particular
functions, properties and signals associated with a specific object type.

The main ideas for the GObject Introspection project were gathered this
past March. The project is currently under way and making significant
progress.

124

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

13.6 GVariant Hash File
One particularly simple and useful use of GVariant is to implement a
write-once/read-many hash file. These sorts of files are often used to
allow fast and memory-efficient access to many smaller files that are
often spread out over a number of subdirectories.

Examples in the current desktop include the font and icon caches.
GSettings will also have a similar cache for storing schemas.

The use of one large file what can be memory mapped is driven by the
desire to have high performance access to these objects and being able
to share the memory overhead associated with using them (since the
cache file is mapped into dozens of processes as shared memory, the
cost to each individual process is low).

Building this type of file using GVariant is a simple exercise. The file is
stored as a serialised GVariant value with a type matching (a*aa(si))
where * matches the type of data to be stored.

Given a list of pairs of key strings and values, a table can be built as
follows. Assign each value a number, in sequence. Store those values in
an array, in sequence. This forms the a* part of the file. Then, choose
a prime number to use as the size of the hash table. This becomes the
length of the a a (s i) array. Hash each key string and reduce the result,
modulo the prime. Pair each key string with the integer corresponding
to its value and store it in the sub-array indexed by the reduced result
of the hash.

Lookup is done by hashing the search string with the same hash
algorithm and using the reduced result to index into the hash array. Each
item in the sub-array is then checked for string equality with the search
string. When the correct string is found, the paired integer is used as
an index into the first array.

This indirection (not storing the strings and values directly together) is
used to keep the number of memory pages used by the hash table as
small as possible. The table will be accessed for every single lookup and

125

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

mixing the value data in with the table would result in this data being
unnecessarily faulted in during table lookups (particularly in the case of
traversing highly populated hash chains).

The hash table functionality is generally useful and simple in its
implementation so it is likely that it will eventually be included as a core
part of GVariant.

126

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Bibliography

[GNOME] GNOME: The Free Software Desktop Project
http://www.gnome.org/
last access: 2008-09-29.

[GConf] GConf configuration system
http://www.gnome.org/projects/gconf/
last access: 2008-09-29.

[DBus] D-Bus Specification
Havoc Pennington. Anders Carlsson. Alexander Larsson.
http://dbus.freedesktop.org/doc/dbus-specification.html
last access: 2008-09-29.

[ast] Modem Operating Systems
Second Edition
Andrew S. Tanenbaum.
© 2001 Prentice-Hall, Inc.

[XML] XML In a Nutshell
Third Edition
Elliotte Rusty Harold. W. Scott Means.
© 2004 O'Reilly

[CORBA] CORBA Basics
Object Management Group.
http://www.omg.org/gettingstarted/corbafaq.htm
last access: 2008-09-29.

127

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

[protobuf] Protocol Buffers
Google.
http://code.google.com/p/protobuf/
last access: 2008-09-29.

128

http://code.google.com/p/protobuf

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Appendix A

Interface Reference

This appendix contains a copy of the API reference documentation of
GVariant.

The documentation is current and mostly complete at the time of
printing. Like any software, however, GVariant is likely to evolve to
address future needs and these improvements will cause changes in the
interface documented here. As such, this documentation may be out of
date.

Updated documentation can be found online.

129

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

GVariantTypeCiass

Synopsis

enurn GVariantTypeClass;

gboolean
gboolean

g_variant_type_class_is_basic
g_variant_type_class_is_container

(GVariantTypeClass class);
(GVariantTypeClass class);

Description

Details

enum GVariantTypeCtass

typedef enum
{

G VARIANT TYPE CLASS INVALID : '\0' 1

G-VARIANT-TYPE-CLASS-BOOLEAN = 'b' I

G=VARIANT=TYPE=CLASS=BYTE = tyt I

G VARIANT TYPE CLASS INT16 = 'n' I

G-VARIANT-TYPE-CLASS-UINT16 = 'q' I

G-VARIANT-TYPE-CLASS-INT32 = I' ~ I ,
G=VARIANT=TYPE=CLASS=UINT32 = 'u' 1

G VARIANT TYPE CLASS INT64 = 'x' I

G=VARIANT=TYPE=CLASS=UINT64 = 't' I

G_VARIANT_TYPE_CLASS_DOUBLE = 'd' I

IG VARIANT TYPE CLASS STRING = I 5 I

G-VARIANT-TYPE-CLASS-OBJECT PATH = 'o',
G=VARIANT=TYPE=CLASS=SIGNATURE = tgt I

G_VARIANT_TYPE_CLASS_VARIANT = 'v' I

G VARIANT TYPE CLASS MAYBE = 'm',
G-VARIANT-TYPE-CLASS-ARRAY = 'a' 1

G-VARIANT-TYPE-CLASS-STRUCT = I r' I

G=VARIANT=TYPE=CLASS=DICT_ENTRY = 'e',

G_VARIANT_TYPE_CLASS_ALL = '*I
IG VARIANT TYPE CLASS BASIC = 7'

} GVariantTypeClass; ­

130

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

A enumerated type to group GVa riantType instances into classes.

If you ever want to perform some sort of recursive operation on
the contents of a GVa riantType you will probably end up using a
switch statement over the GVa riantTypeClass of the type and its
component sub-types.

A GVariantType is said to "be in" a given GVariantTypeClass. The
type classes are overlapping, so a given GVa riantType may have
more than one type class. For example, G_VARIANT_TYPE_BOOLEAN
is of the following classes: G_VARIANT_TYPE_CLASS_BOOLEAN,
G_VARIANT_TVPE_CLASS_BASIC,G_VARIANT_TYPE_CLASS_ALL.

G_VARIANT_TVPE_CLASS_INVALID
the class of no type

G_VARIANT_TYPE_CLASS_BOOLEAN
the class containing the type G_VARIANT_TYPE_BOOLEAN

G_VARIANT_TYPE_CLASS_BYTE
the class containing the type G_VARIANT_TYPE_BYTE

G_VARIANT_TYPE_CLASS_INT16
the class containing the type G_VARIANT_TYPE_INT16

G_VARIANT_TYPE_CLASS_UINT16
the class containing the type G_VARIANT_TYPE_UINT16

G_VARIANT_TYPE_CLASS_INT32
the class containing the type G_VARIANT_TYPE_INT32

G_VARIANT_TYPE_CLASS_UINT32
the class containing the type G_VARIANT_TYPE_UINT32

G_VARIANT_TYPE_CLASS_INT64
the class containing the type G_VARIANT_TYPE_INT64

131

- - - -
- - -

- - - -

- - - -

- - - - -

- - - -

- - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

G VARIANT TYPE CLASS UINT64
the class containing the type G VARIANT TYPE UINT64

G_VARIANT_TYPE_CLASS_DOUBLE
the class containing the type G_VARIANT_TYPE_DOUBLE

G_VARIANT_TYPE_CLASS_STRING
the class containing the type G_VARIANT_TYPE_STRING

G_VARIANT_TYPE_CLASS_OBJECT_PATH
the class containing the type G_VARIANT_TYPE_OBJECT_PATH

G_VARIANT_TYPE_CLASS_SIGNATURE
the class containing the type G_VARIANT_TYPE_SIGNATURE

G_VARIANT_TYPE_CLASS_VARIANT
the class containing the type G_VARIANT_TYPE_VARIANT

G_VARIANT_TYPE_CLASS_MAYBE
the class containing all maybe types

G VARIANT TYPE CLASS ARRAY
the class containing all array types

G VARIANT TYPE CLASS STRUCT
the class containing all structure types

G VARIANT TYPE CLASS DICT ENTRY
the class containing all dictionary entry types

G VARIANT TYPE CLASS ALL
the class containing all types (including G_VARIANT_TYPE_ANY and
anything that matches it).

G_VARIANT_TYPE_CLASS_BASIC
the class containing all of the basic types (including
G VARIANT TYPE ANY BASIC and anything that matches it).

132

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

g_variant_type_class_is_basic ()
-,n

i: gboolean

.:(: g_variant_type_class_is_basic (GVariantTypeClass class);

Determines if class is a basic class.

The following are considered to be basic classes: boolean, byte, the
signed and unsigned integer classes, double, string, object path and
signature. Additionally, the 'basic' type class is also considered to be
basic.

class:
a GVariantTypeClass

Returns:
TRUE if class is a basic class

riant_type_class_is_container ()

gboolean
g_variant_type_class_is_container (GVariantTypeClass class);

Determines if class is a container class.

The following are considered to be container classes: maybe, array,
struct, dict_entry and variant.

class:
a GVa riantTypeClass

Returns:
TRUE if class is a container class

133

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

GVariantType

Synopsis
typedef

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

gboolean

gboolean

#define

void

GVariantType*

GVariantType*

gsize

const gchar*

gchar*

GVariantTypeClass

gboolean

gboolean
gboolean
gboolean

guint
gboolean

gboolean

GVariantType;

G VARIANT TYPE BOOLEAN
G-VARIANT-TYPE-BYTE
G-VARIANT-TYPE-INT16
G-VARIANT-TYPE-UINT16
G-VARIANT-TYPE-INT32
G-VARIANT-TYPE-UINT32
G-VARIANT-TYPE-INT64
G-VARIANT-TYPE-UINT64
G-VARIANT-TYPE-DOUBLE
G-VARIANT-TYPE-STRING
G-VARIANT-TYPE-OBJECT PATH
G-VARIANT-TYPE-SIGNATURE
G-VARIANT-TYPE-VARIANT
G-VARIANT-TYPE-ANY
G-VARIANT-TYPE-ANY BASIC
G-VARIANT-TYPE-ANY-ARRAY
G-VARIANT-TYPE-ANY-DICTIONARY
G-VARIANT-TYPE-ANY-DICT ENTRY
G-VARIANT-TYPE-ANY-MAYBE
G-VARIANT-TYPE-ANY-STRUCT
G=VARIANT=TYPE=UNIT

g_variant_type_string_is_valid
g_variant_type_string_scan

G VARIANT TYPE
g=variant=type_free
g_variant_type_copy
g_variant_type_new

g_variant_type_get_string_length
g_variant_type_peek_string
g_variant_type_dup_string

g_variant_type_get_class
g_variant_type_is_in_class

g_variant_type_is_concrete
g_variant_type_is_container
g_variant_type_is_basic

g_variant_type_hash
g_variant_type_equal

g_variant_type_matches

(const gchar *type_string);
(const gchar **type_string,
const gchar *limit);

(type string)

(GVariantType *type);

(const GVariantType *type);

(const gchar *type_string);

(const GVariantType *type);
(const GVariantType *type);
(const GVariantType *type);

(const GVariantType *type);
(const GVariantType *type,
GVariantTypeClass class);

(const GVariantType *type);
(const GVariantType *type);
(const GVariantType *type);

(gconstpointer type};
(gconstpointer typel,
gconstpointer type2};

(canst GVariantType *type,
const GVariantType *pattern);

134

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

canst GVariantType* g_variant_type_element (canst GVariantType *type);

canst GVariantType* g_variant_type_first (canst GVariantType *type);

canst GVariantType* g_variant_type_next (canst GVariantType *type);

gsize g_variant_type_n_items (canst GVariantType *type);

canst GVariantType* g_variant_type_key (canst GVariantType *type);

canst GVariantType* g_variant_type_value {canst GVariantType *type);

GVariantType* g_variant_type_new_maybe (canst GVariantType *element);

GVariantType* g_variant_type_new_array (canst GVariantType *element);

canst GVariantType* (*GVariantTypeGetter) (gpainter data);

GVariantType* g_variant_type_new_struct (gcanstpainter *items,

GVariantTypeGetter func,
gsize length);

GVariantType* g_variant_type_new_dict_entry (canst GVariantType *key,
const GVariantType *value);

Description

Details

GVariantType

typedef struct OPAQUE_TYPE_GVariantType GVariantType;

An opaque type representing either the type of a GVa riant instance
or a pattern that could match other types.

Each GVariantType has a corresponding type string. The grammar
generating all valid type strings is:

type = base I 'a' type 1 'm I type 1 1 I* II vI

1 1 1 1 1 1 1
lrl I { +base+ type+ } I (+types+) I

lyl I nl lql IiI lui I X Ibase = 'b 1

It' dl Is I lg I I? II lol

types = 'I type + types

The types that have single character type strings are all defined with
their own constants (for example, G_VARIANT_TYPE_BOOLEAN).

The types that have type strings starting with 'a' are array types,
where the characters after the 'a' are the type string of the array
element type.

135

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

The types that have type strings starting with 'm' are maybe types,
where the characters after the 'm' are the type string of the maybe
element type.

The types that start with '{' and end with '}' are dictionary entry
types, where the first contained type string is the one corresponding

· to the type of the ke~ and the second is the one corresponding to
the type of the value.

The types that start with '(' and end with ')' are structure types,
where each type string contained between the brackets corresponds
to an item type of that structure type.

Any type that has a type string that can be generated from 'base' is
in the GVariantTypeClass G_VARIANT_TYPE_CLASS_BASIC.

Any type that has a type string that can be generated from 'type' is
in the class G_VARIANT_TYPE_CLASS_ALL. This is all types.

Each type is a member of exactly one other GVariantTypeClass.

Note that, in reality, a GVa riantType is just a string pointer cast to an
opaque type. It is only valid to have a pointer of this type, however,
if you are sure that it is a valid type string. Functions that take
GVa riantType as parameters assume that the string is well-formed.
Also note that a GVa riantType is not necessarily nul-terminated.

G_VARIANT_TYPE_BOOLEAN

#define G_VARIANT_TYPE_BOOLEAN ((canst GVariantType *} "b")

The type of a value that can be either TRUE or FALSE.

G~VARIANT_TYPE_BYTE

#define G_VARIANT_TYPE_BYTE ((canst GVariantType *) "y")

The type of an integer value that can range from 0 to 255.

136

- -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

G_VARIANT_TYPE_INT16

,, #define G_VARIANT_TYPE_INT16 ((canst GVariantType *) "n")

The type of an integer value that can range from -32768 to 32767.

G~VARIANT_TYPE_UINT16

..~) #define G_VARIANT_TYPE_UINT16 ((const GVariantType *) "q")
:\i.

JThe type of an integer value that can range from 0 to 65535. There
,:') were about this many people living in Toronto In the 1870s.
,:,;.:
·i.,l

?: ;·~

G_VARIANT_TYPE_INT32
"{",~

·:;; #define G_VARIANT_TYPE_INT32 ((canst GVariantType *) "i")
.,

;.;: The type of an integer value that can range from -2147483648 to
;:: 2147483647.

G VARIANT TYPE UINT32
~

.... #define G_VARIANT_TYPE_UINT32 ((canst GVariantType *) "u")

The type of an integer value that can range from 0 to 4294967295.
That's one number for everyone who was around in the late 1970s.

G_VARIANT_TYPE_INT64

:,; #define G_VARIANT_TYPE_INT64 ((const GVariantType *) "x")
;:i
· • The type of an integer value that can range from
<:; -9223372036854775808 to 9223372036854775807.

G~VARIANT_TYP~_UINT64

\ #define G_VARIANT_TYPE_UINT64 ((canst GVariantType *) "t")

137

- - -

--- -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

The type of an integer value that can range from 0 to
18446744073709551616. That's a really big number, but a Rubik's
cube can have a bit more than twice as many possible positions.

G VARIANT TYPE DOUBLE

') #define G_VARIANT_TYPE_DOUBLE ((const GVariantType *) "d")

·~~,~ The type of a double precision IEEE754 floating point number. These
.;t guys go up to about 1.80e308 (plus and minus) but miss out on
':;; some numbers in between. In any case, that's far greater than
{~! the estimated number of fundamental particles in the observable
f~;f: universe.
;·~·<)

G_VARIANT_TYPE_STRING

#define G_VARIANT_TYPE_STRING ((const GVariantType *) "s")
r\
;·; The type of a string. 1111 is a string. NULL is not a string.

G_VARIANT_TYPE_OBJECT_PATH
;;t1

'c;' #define G VARIANT TYPE OBJECT PATH ((const GVariantType *) "o")

":.;.' - ­

.:;; The type of a DBus object reference. These are strings of a specific
··· format used to identify objects at a given destination on the bus.

/;;;:

G_VARIANT_TYPE_SIGNATURE

P: #define G_VARIANT_TYPE_SIGNATURE ((const GVariantType *) "g")
jJi,
··.: The type of a DBus type signature. These are strings of a specific
'}·: format used as type signatures for DBus methods and messages.

Any valid GVa riantType signature string is a valid DBus type
signature. In addition, a concatenation of any number of valid
GVa riantType signature strings is also a valid DBus type signature.

138

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

G~VARIANT_TYPE_VARIANT

.· 	 #define G_VARIANT_TYPE_VARIANT {(canst GVariantType *) "v")

The type of a box that contains any other value (including another
variant).

G_VARIANT_TYPE_ANY
·/~·

::.#define G_VARIANT_TYPE_ANY ((const GVariantType *) "*")

The wildcard type. Matches any type.

G~VARIANT_TYPE_ANY_BASIC
i\{ 	

#define G_VARIANT_TYPE_ANY_BASIC ((canst GVariantType *) "7")

A wildcard type matching any basic type.

G_VARIANT_TYPE_ANY_ARRAY
. '

:: #define G VARIANT TYPE ANY ARRAY ((canst GVariantType *) "a*")
':) - - - ­
~·,;; A wildcard type matching any array type.

G VARIANT_TYPE_ANY_DICTIONARY
0

'#define G_VARIANT_TYPE_ANY_DICTIONARY ((canst GVariantType *) "ae")

·.•·• A wildcard type matching any dictionary type.

G_VARIANT_TYPE_ANY_DICT_ENTRY
•'-.<

? 	 #define G_VARIANT_TYPE_ANY_DICT_ENTRY ((canst GVariantType *) "{?*}")

A wildcard type matching any dictionary entry type.

139

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

G_VARIANT_TYPE_ANY_MAYBE

#define G_VARIANT_TYPE_ANY_MAYBE ((canst GVariantType *) "m*")

A wildcard type matching any maybe type.

G_VARIANT_TYPE_ANY_STRUCT
,,.,

:. #define G_VARIANT_TYPE_ANY_STRUCT ((canst GVariantType *) "r'1
)

. A wildcard type matching any structure type.

G_VARIANT_TYPE_UNIT
·,.,!

#define G_VARIANT_TYPE_UNIT ((canst GVariantType *) "()")

The empty structure type. Has only one valid instance.

g_variant_type_string_is_valid ()
;.:i
') 	

gbaolean

g_variant_type_string_is_valid (canst gchar *type_string);

Checks if type_string is a valid GVariantType type string. This
call is equivalent to calling g_variant_type_string_scan() and

, confirming that the following character is a nul terminator.

type_string:
a pointer to any string

Returns:
TRUE if type_string is exactly one valid type string

g_variant_type_string_scan ()

gboolean

g_variant_type_string_scan (canst gchar **type_string,

canst gchar *limit);

140

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Scan for a single complete and valid GVa riantType type string in
type_string. The memory pointed to by limit (or bytes beyond it) is
never accessed.

If a valid type string is found, type_string is updated to point to the
first character past the end of the string that was found and TRUE
is returned.

If there is no valid type string starting at type_string, or if the type
string does not end before limit then FALSE is returned and the state
of the type_string pointer is undefined.

For the simple case of checking if a string is a valid type string, see
g_variant_type_string_is_valid().

type_string ~
a pointer to any string

limit:
the end of string, or NULL

Returns:
TRUE if a valid type string was found

G_VARIANT_TYPE~)

\~: #define G_VARIANT_TYPE(type_string)

Converts a string to a const GVa riantType. Depending on the current
debugging level, this function may perform a runtime check to
ensure that string is valid.

It is always a programmer error to use this macro with an invalid
,, , type string.

type_string ~

a well-formed GVa riantType type string

141

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

g_variant_type_free ()

void

g_variant_type_free (GVariantType *type);

Frees a GVa riantType that was allocated with
g_variant_type_copy{), g_variant_type_new{) or one of the
container type constructor functions.

type:
a GVa riantType

g_variant_type_copy ()

:i; GVa riantType *

({ g_variant_type_copy (const GVariantType *type);

1

:;.,: Makes a copy of a GVariantType. This copy must be freed using
f:: g_variant_type_free{).

type:
a GVa riantType

Returns:
a new GVariantType

g_variant_type_new ()

GVariantType *

g_variant_type_new (const gchar *type_string);

Creates a new GVa riantType corresponding to the type string
given by type_string. This new type must be freed using
g_variant_type_free{).

It is an error to call this function with an invalid type string.

type_string:
a valid GVa riantType type string

142

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Returns:
a new GVariantType

g_variant_type_get_string_tength ()
i/i

gsize

g_variant_type_get_string_length (const GVariantType *type);

Returns the length of the type string corresponding to the given
type. This function must be used to determine the valid extent of the
memory region returned by g_variant_type_peek_string().

type:
a GVa riantType

Returns:
the length of the corresponding type string

g=variant_type_peek_string ()
'·_::;­

,;' 	 canst gcha r *

g_variant_type_peek_string (canst GVariantType *type);

Returns the type string corresponding to the given type. The result
is not nul-terminated; in order to determine its length you must call
g_variant_type_get_string_length().

To get a nul-terminated string, see g_variant_type_dup_string ().

type:
a GVa riantType

Returns:
the corresponding type string (non-terminated)

g_variant_type_dup_string ()

gchar *

g_variant_type_dup_string (const GVariantType *type);

143

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Returns a newly-allocated copy of the type string corresponding to
type. The return result must be freed using g_free () .

type:
a GVa riantType

Returns:
the corresponding type string (must be freed)

g_variant_type_get_class {)
,. ~ \

:' 	 GVa riantTypeClass

g_variant_type_get_class (const GVariantType *type);

Determines the smallest type class containing type.

For example, although G_VARIANT_TYPE_CLASS_ALL matches all
types, it will never be returned by this function except for the type
G

-
VARIANT- TYPE

-
ANY.

type:
a GVa riantType

Returns:
the smallest class containing type

g_variant_type_is_in_class ()

,:., gboolean

g_variant_type_is_in_class (const GVariantType *type,

GVariantTypeClass class);

Determines if type is contained within class.

Note that the class G_VARIANT_TYPE_CLASS_ALL contains every type
and the class G_VARIANT_TYPE_CLASS_BASIC contains every basic
type.

144

- - -

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

type:
a GVa riantType

class:
a GVa riantTypeClass

Returns:
TRUE if type is in the given class

riant_type_is_concrete ()

gboolean
g_variant_type_is_cancrete (canst GVariantType *type);

Determines if the given type is a concrete (ie: non-wildcard) type. A
GVariant instance may only have a concrete type.

A type is concrete if its type string does not contain any wildcard
characters('*', '?'or 'r').

type:
a GVa riantType

Returns:
TRUE if type is concrete

g_variant_type_is_container ()
,·,;

i:
h,

gbaalean

{,; g_variant_type_is_cantainer (canst GVariantType *type);

',':) Determines if the given type is a container type.

Container types are any array, maybe, structure, or dictionary entry
types plus the variant type.

This function returns TRUE for any wildcard type for which every
matching concrete type is a container. This does not include
G VARIANT TYPE ANY.

145

- -

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

type:
a 	GVa riantType

Returns:
TRUE if type is a container type

g~variant_type_is_basic ()

:'k 	 gboolean

g_variant_type_is_basic (const GVariantType *type);

Determines if the given type is a basic type.

Basic types are booleans, bytes, integers, doubles, strings, object
paths and signatures.

Only a basic type may be used as the key of a dictionary entry.

This function returns FALSE for all wildcard types except
G VARIANT TYPE ANY BASIC.

type:
a 	GVa riantType

Returns:
TRUE if type is a basic type

g_variant_type_hash ()
::.'.'

:~: 	 guint

g_variant_type_hash (gconstpointer type);

Hashes type.

The argument type of type is only gconstpointer to allow use with
GHashTable without function pointer casting. A valid GVariantType
must be provided.

146

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

type:
a GVa riantType

Returns:
the hash value

g~variant_type_equat ()
··,\

i·;i gboolean

g_variant_type_equal (gconstpainter typel,

gcanstpainter type2);

Compares type1 and type2 for equality.

Only returns TRUE if the types are exactly equal. Even if one type is
a wildcard type and the other matches it, false will be returned if
they are not exactly equal. If you want to check for matching, use
g_variant_type_matches().

The argument types of typel and type2 are only gconstpointer to
allow use with GHashTable without function pointer casting. For both
arguments, a valid GVa riantType must be provided.

typel:
a GVa riantType

type2:
a GVa riantType

Returns:
TRUE if type1 and type2 are exactly equal

g_variant_type_matches ()

gboalean

g_variant_type_matches (canst GVariantType *type,

canst GVariantType *pattern);

Performs a pattern match between type and pattern.

147

- -- - - -- -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

This function returns TRUE if type can be reached by making pattern
less general (ie: by replacing zero or more wildcard characters in
the type string of pattern with matching type strings that possibly
contain wildcards themselves).

This function defines a bounded join-semilattice over GVa riantType
for which G_VARIANT_TYPE_ANY is top.

type:
a 	GVa riantType

pattern:
a 	GVa riantType

Returns:
TRUE if type matches pattern

g_variant_type_element ()

;, 	 const GVariantType *

g_variant_type_element (const GVariantType *type);

Determines the element type of an array or maybe type.

This function must be called with a type in one of the classes
G VARIANT TYPE CLASS MAYBE or G VARIANT TYPE CLASS ARRAY.

type:
a GVa riantType of class array or maybe

Returns:
the element type of type

g_variant_type_first ()

const GVariantType *

g_variant_type_first {const GVariantType *type);

Determines the first item type of a structure or dictionary entry type.

148

- - - -
- - - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

This function must be called with a type in
one of the classes G VARIANT TYPE CLASS STRUCT or
G VARIANT n'PE CLASS DICT ENTRY but must not be called on the
generic structure type G_VARIANT_TYPE_ANY_STRUCT.

In the case of a dictionary entry type, this returns the type of the key.

NULL is returned in case of type being G_VARIANT_TYPE_UNIT.

This call, together with g_variant_type_next() provides an
iterator interface over structure and dictionary entry types.

type:
a GVa riantType of class struct or diet entry

Returns:
the first item type of type, or NULL

g_variant_type_next ()
~i>

;,:: 	 const GVariantType *
;,il 	 g_variant_type_next (const GVariantType *type);
r:
,~") 	 Determines the next item type of a structure or dictionary entry type .
.:\::

;; 	 type must be the result of a previous call to
g_variant_type_first(). Together, these two functions provide an
iterator interface over structure and dictioanry entry types.

If called on the key type of a dictionary entry then this call returns
the value type.

NULL is returned when type is the last item in a structure or the value
type of a dictionary entry.

type:
a GVa riantType

149

- - - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Returns:
the next GVariantType after type, or NULL

g_variant_type_n_items {)

gsize

g_variant_type_n_items (canst GVariantType *type);

Determines the number of items contained in a structure or
dictionary entry type.

This function must be called with a type in
one of the classes G VARIANT TYPE CLASS STRUCT or - - - -
G VARIANT TYPE CLASS DICT ENTRY but must not be called on the
generic structure type G_VARIANT_TYPE_ANY_STRUCT.

In the case of a dictionary entry type, this function will always return
2.

type:
a GVa riantType of class struct or diet entry

Returns:
the number of items in type

g_variant_type_key {)

canst GVariantType *

g_variant_type_key (canst GVariantType *type);

Determines the key type of a dictionary entry type.

This function must be called with a type in the class
G_VARIANT_TYPE_CLASS_DICT_ENTRY. Other than that, this call is
exactly equivalent to g_variant_type_first ().

type:
a GVa riantType of class diet entry

150

- - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Returns:
the key type of the dictionary entry

g_variant_type_value ()

const GVariantType *

g_variant_type_value (const GVariantType *type);

Determines the value type of a dictionary entry type.

This function must be called with a type in the class
G VARIANT TYPE CLASS DICT ENTRY.

type:
a GVa riantType of class diet entry

Returns:
the value type of the dictionary entry

g_variant_type_new_maybe ()
~:~
,1,>. 	 GVariantType *
iL: 	 g_variant_type_new_maybe {canst GVariantType *element);
)i:>i
t:;::
' ,, 	 Constructs the type corresponding to a maybe instance containing

type type.

The result of this function must be freed with a call to
g_variant_type_free().

element:
a GVa riantType

Returns:
a new maybe GVa riantType

g_variant_type_new_array ()

GVariantType *

g_variant_type_new_array (const GVariantType *element);

151

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Constructs the type corresponding to an array of elements of the
type type.

The result of this function must be freed with a call to
g_variant_type_free().

element:
a GVa riantType

Returns:
a new array GVa riantType

GVariantTypeGetter ()

constGVariantType* (*GVariantTypeGetter) (gpointer data);

A callback function intended for use with
g_variant_type_new_struct(). This function's purpose is to
extract a GVa riantType from some pointer type. The returned type
should be owned by whatever is at the end of the pointer because
it won't be freed.

data:
a pointer

Returns:
a canst GVa riantType

g_variant_type_new_struct ()

~ GVariantType *
g_variant_type_new_struct (gconstpointer *items,

GVariantTypeGetter func,

gsize length);

Constructs a new structure type.

152

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

The item types for the structure type may be provided directly (as
an array of GVa riantType), in which case func should be NULL.

The item types can also be provided indirectly. In this case, items
should be an array of pointers which are passed one at a time to
tunc to determine the corresponding GVa riantType. For example,
you might provide an array of GVa riant pointers for items and
g_ va riant_get_type () for func.

The result of this function must be freed with a call to
g_variant_type_free().

items:
an array of items, one for each item

func:
a function to determine each item type

length:
the length of items

Returns:
a new GVa riantType

g_variant_type_new_dict_entry ()
·;~·
·.:'

' GVariantType *

g_variant_type_new_dict_entry (const GVariantType *key,

const GVariantType *value);

Constructs the type corresponding to a dictionary entry with a key
of type key and a value of type value.

The result of this function must be freed with a call to
g_variant_type_free().

key:
a basic GVa riantType

153

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

value:
a GVa riantType

Returns:
a new dictionary entry GVa riantType

154

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

GVariant

Synopsis
typedef GVariant;
GVariant* g_variant_new

void g_variant_get

GVariant* g_variant_ref
GVariant* g_variant_ref_sink
void g_variant_unref
void g_variant_flatten

GVariantTypeClass g_variant_get_type_class
canst GVariantType* g_variant_get_type
canst gchar* g_variant_get_type_string
gboolean g_variant__:is_basic
gboolean g_variant_is_container
gboolean g_variant_matches

gboolean g_variant_format_string_scan
GVariant* g_variant_new_va

void g_variant_get_va

GVariant* g_variant_new_boolean
GVariant* g_variant_new_byte
GVariant* g_variant_new_uint16
GVariant* g_variant_new_int16
GVariant* g_variant_new_uint32
GVariant* g_variant_new_int32
GVariant* g_variant_new_uint64
GVariant* g_variant_new_int64
GVariant* g_variant_new_double
GVariant* g_variant_new_string
GVariant* g_variant_new_object_path
gboolean g_variant_is_object_path
GVariant* g_variant_new_signature
gboolean g_variant_is_signature
GVariant* g_variant_new_variant

gboolean g_variant_get_boolean
guint8 g_variant_get_byte
guint16 g_variant_get_uint16
gint16 g_variant_get_int16
guint32 g_variant_get_uint32
gint32 g_variant_get_int32

(canst gchar *format_string,
... >:

(GVariant *value,
const gchar *format_string, ...) :

(GVariant *value);
(GVariant *value);
(GVariant *value);
(GVariant *value);

(GVariant *value);
(GVariant *value);
(GVariant *value);
(GVariant *value);
(GVariant *value);
(GVariant *value,
canst GVariantType *pattern);

(canst gchar **format_string);
(canst gchar **format_string,
va_list *app};

(GVariant *value,
canst gchar **format_string,
va_list •app);

(gboolean boolean);
(guintS byte);
(guirit16 uint16);
(gintl6 int16);
(guint32 uint32);
(gint32 int32);
(guint64 uint64);
(gint64 int64);
(gdouble floating);
(const gchar •string);
(canst gchar •string);
(canst gchar *string);
(canst gchar *string);
(canst gchar *string);
(GVariant *value);

(GVariant *value);

(GVariant *value);

(GVariant *value);

(GVariant *value);

(GVariant *value);

(GVariant *value);

155

- - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

guint64
gint64
gdouble
canst gchar*

gchar*

GVariant*

gsize
GVariant*

gconstpointer

gconstpointer

typedef
gsize

GVariant*
void
gboolean
gboolean

typedef
#define
enurn
void
void

void

gboolean

gboolean

GVariantBuilder*
GVariant*
GVariantBuilder*

GVariantBuilder*

GString*

g_variant_get_uint64
g variant get int64
g-variant-get-double
g=variant=get=string

g_variant_dup_string

g_variant_get_variant

g_variant_n_children
g_variant_get_child

g_variant_get_fixed

g_variant_get_fixed_array

GVariantiter;
g variant iter init

g variant iter next
g=variant=iter=cancel
g_variant_iter_was_cancelled
g_variant_iterate

GVariantBuilder;
G VARIANT BUILDER ERROR
GVariantBuilderError;
g_variant_builder_cancel
g variant builder add- . - ­

g_variant_builder_add_value

g_variant_builder_check_add

g_variant_builder_check_end

g_variant_builder_close
g variant builder end
g=variant=builder=new

g_variant_builder_open

g_variant_markup_print

(GVariant *value);
(GVariant *value}:
(GVariant *value);
(GVariant *value,
gsize *length);

(GVariant *value,
gsize *length);

(GVariant *value);

(GVariant *value};
(GVariant *value,
gsize index);

(GVariant *value,
gsize size);

{GVariant *value,
gsize elem_size,
gsize *length);

(GVariantiter *iter,
GVariant *value);

(GVariantiter *iter);
{GVariantiter *iter);
(GVariantiter *iter);
(GVariantiter *iter,
const gchar *format_string,
...) ;

(GVariantBuilder *builder);
{GVariantBuilder *builder,
const gchar *format_string, ...);

{GVariantBuilder *builder,
GVariant *value);

(GVariantBuilder *builder,
GVariantTypeClass class,
const GVariantType *type,
GError **error);

(GVariantBuilder *builder,
GError **error);

(GVariantBuilder *child);
(GVariantBuilder *builder);
(GVariantTypeClass class,
const GVariantType *type);

{GVariantBuilder *parent,
GVariantTypeClass class,
canst GVariantType *type);

(GVariant *value,
GString *string,
gboolean newlines,
gint indentation,
gint tabstop);

156

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

GVariant* g_variant_markup_parse (canst gchar *text,
gssize text_len,
canst GVariantType *type,
Gi:rror **error);

void g_variant_markup_subparser_start (GMarkupParseContext *context,
canst GVariantType *type);

GVariant* g_variant_markup_subparser_end (GMarkupParseContext *context,
GError **error);

GMarkupParseContext* g_variant_markup_parse_context_new (GMarkupParseFtags flags,
canst GVariantType *type);

GVariant* g_variant_markup_parse_context_end (GMarkupParseContext *context,
GError **error);

Description

Details

GVariant

typedef struct OPAQUE_TYPE__GVariant GVariant;

GVa riant is an opaque data structure and can only be accessed using
the following functions.

g_variant_new ()
'::;,

~~ GVa riant *

;;: g_variant_new (canst gchar *format_string;

i -'; 	 •••) ;

i;!~i
',~·~

'''; 	 Creates a new GVariant instance.
{~;

:;;
,, 	

Think of this function as an analogue to g_strdup_printf ().
~l~

; ; 	The type of the created instance and the arguments that are
:;'j 	 expected by this function are determined by format_string. In the

most simple case, format_string is exactly equal to a concrete
GVa riantType type string and the result is of that type. All exceptions
to this case are explicitly mentioned below.

The arguments that this function collects are determined by
scanning format_string from start to end. Brackets do not impact the
collection of arguments. Each other character that is encountered
will result in an argument being collected.

157

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Arguments for the base types are expected as follows:

If a 'v' character is encountered in format string then a (GVa riant
*) is collected which must be non-NULL and must point to a valid
GVa riant instance.

If an array type is encountered informat_string, a GVariantBuilder
is collected and has g_variant_builder_end () called on it. The type
of the array has no impact on argument collection but is checked
against the type of the array and can be used to infer the type of an
empty array.

If a maybe type is encountered in format_string, then the expected
arguments vary depending on the type.

If a '*' character is encountered in format_string then a (GVa riant
*) is collected which must be non-NULL and must point to a valid
GVariant instance. This GVariant is inserted directly at the given
position.

Please note that the syntax of the format string is very likely to be
extended in the future.

format_string :
a GVa riant format string

... ..
arguments, as per format_string

Returns:
a new floating GVa riant instance

g_variant_get ()

void

g_variant_get (GVariant *value,

const gchar *format_string,

...) ;

158

- -

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

value:

format_string :

... ..
g_variant_ref ()

GVariant *
g variant ref (GVariant *value);

Increases the reference count of variant.

value:
a GVariant

Returns:
the same variant

g_variant_ref_sink ()

GVariant *
g_variant_ref_sink (GVariant *value);

If value is floating, mark it as no longer floating. If it is not floating,
increase its reference count.

value:
a 	GVariant

Returns:
the same variant

g~variant_unr~f ()

' 	void

g_variant_unref (GVariant *value);

159

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Decreases the reference count of variant. When its reference count
drops to 0, the memory used by the variant is freed.

value:
a GVariant

g_variant_flatten {)

void
g_variant_flatten (GVariant *value);

Flattens value.

This is a strange function with no direct effects but some noteworthy
side-effects. Essentially, it ensures that value is in its most favourable
form. This involves ensuring that the value is serialised and in
machine byte order. The investment of time now can pay off by
allowing shorter access times for future calls and typically results in
a reduction of memory consumption.

A value received over the network or read from the disk in machine
byte order is already flattened.

Some of the effects of this call are that any future accesses to the
data of value (or children taken from it after flattening) will occur
in 0(1) time. Also, any data accessed from such a child value will
continue to be valid even after the child has been destroyed, as
long as value still exists (since the contents of the children are now
serialised as part of the parent).

value:
a GVa riant instance

g_variant_get_type_class ()

GVariantTypeClass
g_variant_get_type_class (GVariant *value);

160

M. Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Returns the type class of value. This function is equivalent to calling
g_variant_get_type () followed by g_variant_type_get_class ().

value:
a GVariant

Returns:
the GVa riantTypeClass of value

g_variant_get_type ()
:; ~':

canst GVariantType *
g_variant_get_type (GVariant *value);

·I·'

'.' Determines the type of value.

The return value is valid for the lifetime of value and must not be
freed.

value:
a GVariant

Returns:
a GVa riantType

g~variant_get_type_string ()
{··

:, : canst gcha r *

g_variant_get_type_string (GVariant *value);

~ ':t

;::((

Returns the type string of value. Unlike the result of calling
,,; g_variant_type_peek_string(), this string is nul-terminated. This
' string belongs to GVa riant and must not be freed.

value:
a GVariant

161

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

Returns:
the type string for the type of value

g_variant_is_basic ()

gboolean

g_variant_is_basic (GVariant *value);

Determines if value has a basic type. Values with basic types may be
used as the keys of dictionary entries.

This function is the exact opposite of g_variant_is_container().

value:
a GVariant

Returns:
TRUE if value has a basic type

g_variant_is_container ()

~;! gboolean

,:;! g_variant_is_container (GVariant *value);

::\:i Determines if value has a container type. Values with container
';\types maybe used with the functions g_variant_n_children() and

g_variant_get_child().
,,

;;,: This function is the exact opposite of g_ va riant_is_basic ().
;.>,

,,, value:
\<:

a GVariant

Returns:
TRUE if value has a basic type

162

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

riant_matches ()

gboolean

g_variant_matches (GVariant *value,

const GVariantType *pattern);

Checks if a value has a type matching the provided pattern.
This call is equivalent to calling g_variant_get_type() then
g_variant_type_matches().

value:
a GVa riant instance

pattern:
a GVa riantType

Returns:
TRUE if the type of value matches pattern

g~variant_format_string_scan ()

!1; gboolean

jii g_variant_format_string_scan (const gchar **format_string);

~:l Checks the string pointed to by format_string for starting with a
);:, properly formed GVariant varargs format string. If a format string
'(; is fount, format_string is updated to point to the first character
','',1 following the format string and TRUE is returned.

;' 	If no valid format string is found, FALSE is returned and the state of
the {ormat_string pointer is undefined.

All valid GVa riantType strings are also valid format strings. See
g_variant_type_string_is_valid().

Additionall~ any type string contained in the format string may be
prefixed with a'@' character. Nested'@' characters may not appear.

163

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Additionally, any fixed-width type may be prefixed with a '&'
character. No wildcard type is a fixed-width type. Like '@', '&'
characters may not be nested.

No'@' or'&' character, however, may appear as part of an array type.

Currently, there are no other permissible format strings. Others may
be added in the future.

For an explanation ofwhat these strings mean, see g_variant_new()
and g_ va riant_get ().

format_string :
a pass-by-reference pointer to the start of a possible format string

Returns:
TRUE if a format string was scanned

g_variant_new_va {)

':':, GVa riant *
,-', g_variant_new_va (const gchar **format_string,
';: va_list *app);

) This function is intended to be used by libraries based on GVa riant
ii that want to provide g_variant_new()-like functionality to their
F; users.

, The API is more general than g_variant_new() to allow a wider
,,, range of possible uses.

format_string must still point to a valid format string, but it need not
be nul-terminated. Instead, format_string is updated to point to the
first character past the end of the given format string.

. . app is a pointer to a va list. The arguments, according to
, format_string, are collected-from this va_list and the list is left
· pointing to the argument following the last.

164

M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University

·'' These two generalisations allow mixing of multiple calls to
"g_variant_new_va() and g_variant_get_va()

actual varargs call by the user.

format_string :
a pointer to a format string

app:
a pointer to a va list

Returns:
a new, floating, GVa riant

g~variant_get_va ()

v: void
,., g_variant_get_va (GVariant *value,

~ const gcha~ **format_string,

\ .. ; va_list *app);

within a single

-~:' This function is intended to be used by libraries based on GVa riant
that want to provide g_variant_new()-like functionality to their

\<:' users. ,.
.\)

~:i The API is more general than g variant get () to allow a wider
;;.; range of possible uses. - ­

format_string must still point to a valid format string, but it need not
be nul-terminated. Instead, format_string is updated to point to the
first character past the end of the given format string.

app is a pointer to a va_list. The arguments, according to
format_string, are collected from this va_list and the list is left

··· pointing to the argument following the last.

These two generalisations allow mixing of multiple calls to
g_variant_new_va() and g_variant_get_va() within a single
actual varargs call by the user.

165

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

value:
a GVariant

format_string:
a pointer to a format string

app:
a pointer to a va_list

g_variant_new_boolean {)

's GVa riant * !'·,i
g_variant_new_boolean (gboolean boolean);

"

Creates a new boolean GVa riant instance -- either TRUE or FALSE.

boolean:
a gboolean value

Returns:
a new boolean GVa riant instance

g_variant_new_byte ()
~;11:

~,~) GVa riant *
\:jI'

g_variant_new_byte (guint8 byte);
!·:::;

:;:d
, Creates a new byte GVa riant instance.

{:~~
,; byte:
;', a guint8 value

', Returns:
>J

' a new byte GVa riant instance

g_variant_new_uint16 ()

GVariant *
g_variant_new_uint16 (guint16 uint16);

166

M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University

Creates a new uint16 GVa riant instance.

uint16:
a guint16 value

Returns:
a new byte GVa riant instance

g~variant_new_int16 ()

'''" 	 GVa riant *

g_variant_new_int16 (gint16 int16);

Creates a new int16 GVariant instance.

int16:
a 	gint16 value

Returns:
a new byte GVa riant instance

g~variant_new_uint32 ()

n1 	 GVa riant *
~ ') 	

g_variant_new_uint32 (guint32 uint32);
>'J
,, 	 Creates a new uint32 GVa riant instance.

uint32:
a 	guint32 value

Returns:
a new uint32 GVa riant instance

g_variant_new_int32 ()

.;: 	 GVa riant *

g_variant_new_int32 (gint32 int32);

167

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University

Creates a new int32 GVa riant instance.

int32:
a gint32 value

Returns:
a new byte GVariant instance

g_variant_new_uint64 ()

GVariant *
g_variant_new_uint64 (guint64 uint64);

Creates a new uint64 GVa riant instance.

uint64:
a guint64 value

Returns:
a new uint64 GVa riant instance

g_variant_new_int64 ()
·>ii·'

·,<
:\; 	 GVa riant *

g_variant_new_int64 (gint64 int64);

Creates a new int64 GVa riant instance.

int64:
a gint64 value

Returns:
a new byte GVa riant instance

g_variant_new_double ()

GVariant *
g_variant_new_double (gdouble floating);

168

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University

Creates a new double GVa riant instance.

floating:
a gdouble floating point value

Returns:
a new double GVa riant instance

g~variant_new_string ()
\;~;:'

~~~- GVa riant * 
g_variant_new_string (canst gchar *string); 

Creates a string GVa riant with the contents of string. 

string: 
a normal C nul-terminated string 

Returns: 
a new string GVa riant instance 

g_variant_new_object_path () 
!';:,"'; 

'i:J GVa riant * 
;/'-\

.. , g_variant_new_object_path (const gchar *string): 

Creates a DBus object path GVa riant with the contents 
of string. string must be a valid DBus object path. Use 
g_variant_is_object_path() if you're not sure. 

string: 
a normal C nul-terminated string 

Returns: 
a new object path GVa riant instance 

169 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

g_variant_is_object_path () 

gboolean 

. g_variant_is_object_path (const gchar *string); 


Determines if a given string is a valid DBus object path. You should 
ensure that a string is a valid DBus object path before passing it to 
g_variant_new_object_path{). 

A valid object path starts with '/' followed by zero or more 
sequences of characters separated by'/' characters. Each sequence 
must contain only the characters "[A-Z][a-z][0-9]_". No sequence 
(including the one following the final'/' character) may be empty. 

string: 
a normal C nul-terminated string 

Returns: 
TRUE if string is a DBus object path 

g~variant_new_signature () 

GVariant * 

:;;} g_variant_new_signature (const gchar *string); 


'', 	 Creates a DBus type signature GVa riant with the contents
~~N ,, 	 of string. string must be a valid DBus type signature. Use 

g_variant_is_signature{) if you're not sure. 

string: 
a normal C nul-terminated string 

Returns: 
a new signature GVa riant instance 

g_variant_is_signature () 

gboolean 

·, g_variant_is_signature (const gchar *string); 


170 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Determines if a given string is a valid DBus type signature. You 
should ensure that a string is a valid DBus object path before passing 
it to g_variant_new_signature(). 

DBus type signatures consist of zero or more concrete GVa riantType 
strings in sequence. 

string: 
a normal C nul-terminated string 

Returns: 
TRUE if string is a DBus type signature 

g_variant_new_variant () 
:·,,· 

": GVariant * 
~~:~; 

g~variant_new_variant (GVariant *value); 
')' 
i'· 

:,,:; Boxes value. The result is a GVa riant instance representing a variant 
::,' containing the original value. 
~··., 

value: 
a GVariance instance 

Returns: 
a new variant GVa riant instance 

g_variant_get_bootean () 
:. "l 
,'~! gboolean 

, g_variant_get_boolean (GVariant *value); 


Returns the boolean value of value. 

It is an error to call this function with a value of any type other than 
' G VARIANT TYPE BOOLEAN. 

171 



- - -

- - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

value: 
a boolean GVa riant instance 

Returns: 
TRUE or FALSE 

g_variant_get_byte () 

guint8 

g_variant_get_byte (GVariant *value); 


Returns the byte value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE BYTE. 

value: 
a byte GVa riant instance 

Returns: 
a guchar 

g_variant_get_uintl6 () 

;,: guintl6 

',: g_variant_get_uintl6 (GVariant *value);

):ji 

Returns the 16-bit unsigned integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT16. 

value: 
a uint16 GVa riant instance 

Returns: 
a guint16 

172 



- -

- - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

gTvariant_get_int16 () 

gintl6 

g_variant_get_int16 (GVariant *value); 


Returns the 16-bit signed integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE INT16. 

value: 
a int16 GVariant instance 

Returns: 
a gint16 

g_variant_get_uint32 () 
::\! 

i. guint32 

;,.' g_variant_get_uint32 (GVariant *value); 


}r! 	 Returns the 32-bit unsigned integer value of value. 
,,~ ,, 

'\ 	It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT32. 

value: 
a uint32 GVa riant instance 

Returns: 
a guint32 

g~variant_get_int32 () 

l·f: gint32 

,, g_variant_get_int32 (GVariant *value); 


Returns the 32-bit signed integer value of value. 

173 



- -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

It is an error to call this function with a value of any type other than 
G - VARIANT - TYPE- INT32. 

value: 
a int32 GVa riant instance 

Returns: 
a gint32 

riant_get_uint64 () 

guint64 

g_variant_get_uint64 (GVariant *value); 


Returns the 64-bit unsigned integer value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE UINT64. 

value: 
a uint64 GVa riant instance 

Returns: 
a guint64 

g_variant_get_int64 () 

gint64 

g_variant_get_int64 (GVariant *value); 


Returns the 64-bit signed integer value of value. 

It is an error to call this function with a value of any type other than 
G- VARIANT 

-
TYPE 

-
INT64. 

value: 
a int64 GVa riant instance 

174 



- - - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Returns: 
a gint64 

g~variant_get_double () 

: gdouble 

g_variant_get_double (GVariant *value); 


Returns the double precision floating point value of value. 

It is an error to call this function with a value of any type other than 
G VARIANT TYPE DOUBLE. 

value: 
a double GVariant instance 

Returns: 
a gdouble 

g_variant_get_string () 
;,'·~~ 

;-,., 

,c.; const gcha r * 

g variant get string (GVariant *value, 


1 ~, - - - gsize *length); 

:;:::, 

Returns the string value of a GVa riant instance with a 
string type. This includes the types G_VARIANT_TYPE_STRING, 
G VARIANT TYPE OBJECT PATH and G VARIANT TYPE SIGNATURE. 

If length is non-NULL then the length of the string (in bytes) is 
returned there. For trusted values, this information is already 
known. For untrusted values, a st rlen () will be performed. 

It is an error to call this function with a value of any type other than 
those three. 

The return value remains valid as long as value exists. 

175 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

value: 
a string GVa riant instance 

length: 
a pointer to a gsize, to store the length 

Returns: 
the constant string 

g_variant_dup_string () 

gchar * 

g_variant_dup_string (GVariant *value, 


gsize *length); 


Similar tog_va riant_get_st ring () except that instead of returning 
a constant string, the string is duplicated. 

The return value must be freed using g_free ( ) . 

value: 
a string GVa riant instance 

length: 
a pointer to a gsize, to store the length 

Returns: 
a newly allocated string 

g_variant_get_variant () 

GVariant * 
g_variant_get_variant (GVariant *value); 

Unboxes value. The result is the GVa riant instance that was 
contained in value. 

value: 
a variant GVariance instance 

176 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Returns: 
the item contained in the variant 

g~variant_n_chitdren () 

;:;,\ 	 gsize 
:1'1 	 g_variant_n_children (GVariant *value); 

?\' 	 Determines the number of children in a container GVa riant instance. 
,; 	 This includes variants, maybes, arrays, structures and dictionary 

entries. It is an error to call this function on any other type of 
GVariant. 

For variants, the return value is always 1. For maybes, it is always 
zero or one. For arrays, it is the length of the array. For structures it 
is the number of structure items (which depends only on the type). 
For dictionary entries, it is always 2. 

This function never fails. TS 

value: 
a container GVa riant 

Returns: 
the number of children in the container 

g_variant_get_chitd () 
;·\;; 
' ~: 

;(~.j 	 GVa riant * 
:: ~~ 
.. g_variant_get_child (GVariant *value, 

' gsize index); 


Reads a child item out of a container GVa riant instance. This 
includes variants, maybes, arrays, structures and dictionary entries. 
It is an error to call this function on any other type of GVa riant. 

It is an error if index is greater than the number of child items in the 
container. See g_variant_n_children(}. 

;: This function never fails. 

177 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

value: 
a container GVa riant 

index: 
the index of the child to fetch 

Returns: 
the child at the specified index 

riant_get_fixed () 

gconstpointer 

g_variant_get_fixed (GVariant *value, 


gsize size); 


Gets a pointer to the data of a fixed sized GVa riant instance. This 
pointer can be treated as a pointer to the equivalent C stucture type 
and accessed directly. The data is in machine byte order. 

size must be equal to the fixed size of the type of value. It isn't used 
for anything, but serves as a sanity check to ensure the user of this 
function will be able to make sense of the data they receive a pointer 
to. 

This function may return NULL if size is zero. 

value: 
a GVariant 

size: 
the size of value 

Returns: 
a pointer to the fixed-sized data 

178 



M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

g_variant_get_·Hxed_array () 
:-·LI 

gconstpointer 
g_variant_get_fixed_array (GVariant *value, 


gsize elem~size, 

gsize *length); 


Gets a pointer to the data of an array of fixed sized GVa riant 
instances. This pointer can be treated as a pointer to an array of 
the equivalent C structure type and accessed directly. The data is in 
machine byte order. 

elem_size must be equal to the fixed size of the element type of value. 
It isn't used for anything, but sexves as a sanity check to ensure 
the user of this function will be able to make sense of the data they 
receive a pointer to. 

length is set equal to the number of items in the array, so that the 
size of the memory region returned is elem size times length. 

This function may return NULL if either elem size or length is zero. 

value: 
an array GVa riant 

elem_size: 
the size of one array element 

length: 
a pointer to the length of the array, or NULL 

Returns: 
a pointer to the array data 

GVariantiter 

typedef struct OPAQUE_TYPE__GVariantiter GVariantiter; 

An opaque structure type used to iterate over a container GVa riant 
instance. 

179 



- - -

- - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

The iter must be initialised with a call to g variant iter init ( ) 
before using it. Mer that g

-
variant- iter-- next ( ) will return the 

child values, in order. 

The iter may maintain a reference to the container GVa riant 
until g- variant 

-
iter 

-
next ( ) returns NULL. For this reason, it 

is essential that you call g variant iter next ( ) until NULL is 
returned. If you want to abort iterating part way through then use 
g variant iter cancel(). 

g_variant_iter_init () 

:;,; gsize

Ug_variant_iter_init (GVariantiter *iter, 

' GVariant *value); 

:~,~ 
?' 	 Initialises the fields of a GVa riant!ter and perpare to iterate over 

the contents of value. 

iter is allowed to be completely uninitialised prior to this call; it 
does not, for example, have to be cleared to zeros. For this reason, 
if iter was already being used, you should first cancel it with 
g

-
variant- iter 

-
cancel(). 

Mer this call, iter holds a reference to value. The reference will be 
automatically dropped once all values have been iterated over or 
manually by calling g_va riant_iter_cancel (). 

This function returns the number of times that 
g_variant_iter_next() will return non-NULL. You're not expected 
to use this value, but it's there incase you wanted to know. 

iter: 
a GVariantiter 

value: 
a container GVa riant instance 

180 



M. Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

Returns: 
the number of items in the container 

g_variant_iter_next ()
;-,., 
·;.;·

·ri GVa riant * 

':0 g_variant_iter_next (GVariantiter *iter); 


Retreives the next child value from iter. In the event that no more 
child values exist, NULL is returned and iter drops its reference to 
the value that it was created with. 

· The return value of this function is internally cached by the iter, so 
you don't have to unrefit when you're done. For this reason, thought, 
it is important to ensure that you call g_variant_iter_next() one 
last time, even if you know the number of items in the container. 

It is permissable to call this function on a cancelled iter, in which 
case NULL is returned and nothing else happens. 

iter: 
a GVariantlter 

Returns: 
a GVa riant for the next child 

~' .·
" 

g_variant_iter_cance\ () 
!.;·; 

\'-~-i . void 

.;:· g_variant_iter_cancel (GVariantiter *iter); 

'\ <"~ 

Causes iter to drop its reference to the container that it was created 
with. You need to call this on an iter if, for some reason, you stopped 
iterating before reading the end. 

You do not need to call this in the normal case of visiting all of the 
elements. In this case, the reference will be automatically dropped 
by g_variant_iter_next ()just before it returns NULL. 

181 



- - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

It is permissable to call this function more than once on the same 
iter. It is permissable to call this function after the last value. 

iter: 
a GVariantiter 

g_variant_iter_was_cancelled () 

gboolean 

g_variant_iter_was_cancelled (GVariantiter *iter); 


Determines if g_variant_iter_cancel {) was called on iter. 

iter: 
a GVariantiter 

Returns: 
TRUE if g variant iter cancel {) was called 

g~variant_iterate () 

gboolean 

g_variant_iterate (GVariantiter *iter, 


canst gchar *format_string, 

... ) ; 

Retreives the next child value from iter and deconstructs it 
according to format string. This call is sort of like calling 
g_variant_iter_next{) and g_variant_get{). 

This function does something else, though: on all but the first call 
(including on the last call, which returns FALSE) the values allocated 
by the previous call will be freed. This allows you to iterate without 
ever freeing anything yourself. In the case of GVa riant * arguments, 
they are unref'd and in the case of GVa riantiter arguments, they 
are cancelled. 

Note that strings are not freed since (as with g_ va riant_get {))they 
are constant pointers to internal GVa riant data. 

182 



M. Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

This function might be used as follows: 

{ 
const gchar *key, *value; 
GVariantiter iter; 

while (g_variant_i terate (iter, "{ss}", &key, &value)) 

printf ("dict['%s'] = '%s'\n", key, value); 


} 


iter: 
a GVariantiter 

format_string: 
a format string 

... .. 
arguments, as per {ormat_string 

Returns: 
TRUE if a child was fetched or FALSE if not 

GVariantBuilder 
'. 

typedef struct OPAQUE_TYPE__GVariantBuilder GVariantBuilder; 

An opaque type used to build container GVa riant instances one child 
value at a time. 

G~VARIANT_BUI~DER_ERROR 

#define G_VARIANT_BUILDER_ERROR 

Error domain for GVa riantBuilde r. Errors in this domain will 
be from the GVariantBuilderError enumeration. See GError for 
information on error domains. 

183 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

enum GVariantBuitderError 

typedef enum 
{ 

G VARIANT BUILDER ERROR TOO MANY, 
G-VARIANT-BUILDER-ERROR-TOO-FEW, 
G-VARIANT-BUILDER-ERROR-INFER, 
G-VARIANT-BUILDER-ERROR-TYPE 

} GVariantBuilderError; ­

Errors codes returned by g_variant_builder_check_add{} and 
g_variant_builder_check_end{). 

G_VARIANT_BUILDER_ERROR_TOO_MANY 
too many items have been 
g_variant_builder_check_add{}) 

added (returned by 

G_VARIANT_BUILDER_ERROR_TOO_FEW 
too few items have been 
g_variant_builder_check_end{}) 

added (returned by 

G_VARIANT_BUILDER_ERROR_INFER 
unable to infer the type of an array or maybe (returned by 
g_variant_builder_check_end{}) 

G_VARIANT_BUILDER_ERROR_TYPE 
the value is of the incorrect type (returned by 
g_variant_builder_check_add{}) 

g~variant_builder_cancel () 

····• void 
g_variant_builder_cancel (GVariantBuilder *builder); 

Cancels the build process. All memory associated with builder is 
freed. If the builder was created with g_ variant_builder_open (} 
then all ancestors are also freed. 

184 



M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

builder: 
a GVa riantBuilde r 

g_variant_builder_add () 

\i void 
" g_variant_builder_add ( GVa riantBuilde r *builder,
f; canst gchar *format_string, 

... ) i 
·~~~: 

!:<' Adds to a GVariantBuilder. 
::t;~ 

This call is a convenience wrapper that is exactly 
i: equivalent to calling g_variant_new() followed by 
;; g_variant_builder_add_value( ). 
J~ 
,,, This function might be used as follows: 

GVariant * 
make_pointless_dictionary (void) 
{ 

GVariantBuilder *builder; 
int i; 

builder= g_variant_builder_new (G_VARIANT_TYPE_CLASS_ARRAY, 
NULL); 


for (i = 0; i < 16; i++) 

{ 


char buf[3); 

sprintf (buf, "%d", i); 
g_variant_builder_add (builder, "{is}", i, buf); 

} 

return g_variant_builder_end (builder); 
} 

builder: 
a GVariantBui lder 

185 



- - - -

M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

format_string : 
a GVariant varargs format string 

... .. 
arguments, as per format_string 

g_variant_builder_add_value () 
·;-) 

" void 
g_variant_builder_add_value (GVariantBuilder *builder, 


GVariant *value); 


Adds value to builder. 

It is an error to call this function if builder has an outstanding 
child. It is an error to call this function in any case that 
g variant builder check add() would return FALSE. 

builder: 
a GVa riantBuilde r 

value: 
a GVariant 

g_variant_builder_check_add () 

gboolean 
g_variant_builder_check_add {GVariantBuilder *builder, 


GVariantTypeClass class, 

const GVariantType *type, 

GError **error); 


Does all sorts of checks to ensure that it is safe to call 
g_variant_builder_add() org_variant_builder_open(). 

It is an error to call this function if builder has a child 
(ie: g_variant_builder_open() has been used on builder and 
g_variant_builder_close() has not yet been called). 

186 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

It is an error to call this function with an invalid class 
(including G_VARIANT_TYPE_CLASS_INVALID) or a class that's 
not the smallest class for some concrete type (for example, 
G_VARIANT_TYPE_CLASS_ALL). 

If type is non-NULL this function first checks that it is a member 
of class (except, as with g_variant_builder_new(), if class is 
G_VARIANT_TfPE_CLASS_VARIANT then any type is OK). 

The function then checks if any child of class class (and type type, if 
given) would be suitable for adding to the builder. If type is non-NULL 
and is non-concrete then all concrete types matching type must be 
suitable for adding (ie: type must be equal to or less general than 

· the type expected by the builder). 

In the case of an array that already has at least one item in it, this 
function performs an additional check to ensure that class and type 
match the items already in the array. type, if given, need not be 
concrete in order for this check to pass. 

Errors are flagged in the event that the builder contains too many 
items or the addition would cause a type error. 

If class is specified and is a container type and type is not given then 
there is no guarantee that adding a value of that class would not 
fail. Calling g_variant_builder_open() with that class (and type as 
NULL) would succeed, though. 

In the case that any error is detected error is set and FALSE is 
returned. 

builder: 
a GVariantBui lder 

class: 
a GVa riantTypeClass 

187 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

type: 
a GVa riantType, or NULL 

error: 
a GError 

Returns: 
TRUE if adding is safe 

g_variant_builder_check_end () 

gboolean 

g_variant_builder_check_end (GVariantBuilder *builder, 


GError **error); 


Checks if a call to g_variant_builder_end{) or 
g_variant_builder_close{) would succeed. 

It is an error to call this function if builder has a child 
(ie: g_variant_builder_open{) has been used on builder and 
g_variant_builder_close ( ) has not yet been called). 

This function checks that a sufficient number of items have been 
added to the builder. For dictionary entries, for example, it ensures 
that 2 items were added. 

This function also checks that array and maybe builders that were 
created without concrete type information contain at least one item 
(without which it would be impossible to infer the concrete type). 

If some sort of error (either too few items were added or type 
inference is not possible) prevents the builder from being ended then 
FALSE is returned and error is set. 

builder: 
a GVa riantBui lde r 

error: 
aGError 

188 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Returns: 
TRUE if ending is safe 

g_variant_buitder_ctose () 

~j 	 GVariantBuilder * 
;:; 	 g_variant_builder_close (GVariantBuilder *child); 

','~, 

}: This function closes a builder that was created with a call to 
,: g_variant_builder_open(). 
:;f:: 

f., 	 It is an error to call this function on a builder that was created using 
" 	 g_variant_builder_new(). It is an error to call this function if child 

has an outstanding child. It is an error to call this function in any 
case that g_variant_builder_check_end() would return FALSE. 

child: 
a GVa riantBuilder 

Returns: 
the original parent of child 

g_variant_builder_end () 
~~ ': 

~~; 	 GVa riant * 
'~ 	 g variant builder end {GVariantBuilder *builder); 
~-~: - - ­
;\ ·j 

.,, 	 Ends the builder process and returns the constructed value. 
i;({ 

It is an error to call this function on a GVariantBuilder created 
by a call to g_variant_builder_open(). It is an error to call this 
function if builder has an outstanding child. It is an error to call this 
function in any case that g_variant_builder_check_end() would 
return FALSE. 

builder: 
a GVa riantBuilde r 

189 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

· Returns: 
a new, floating, GVariant 

g_variant_builder_new {) 

GVariantBuilder * 

g_variant_builder_new (GVariantTypeClass class, 


canst GVariantType *type); 


Creates a new GVa riantBuilde r. 

class must be specified and must be a container type. 

If type is given, it constrains the child values that it is permissible to 
add. If class is not G_VARIANT_TYPE_CLASS_VARIANT then type must 
be contained in class and will match the type of the final value. If 
class is G_VARIANT_TYPE_CLASS_VARIANT then type must match the 
value that must be added to the variant. 

Mter the builder is created, values are added using 
g_variant_builder_add_value(). 

Mter all the child values are added, g_va riant_bui lder_end () ends 
the process. 

class: 
a container GVa riantTypeClass 

type: 
a type contained in class, or NULL 

Returns: 
a GVa riantBuilder 

g_variant_builder_open () 

GVariantBuilder * 
g_variant_builder_apen (GVariantBuilder *parent, 


GVariantTypeClass class, 

canst GVariantType *type); 


190 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Opens a subcontainer inside the given parent. 

It is not permissible to use any other builder calls with parent until 
@g_variant_builder_close() is called on the return value of this 
function. 

It is an error to call this function if parent has an outstanding 
child. It is an error to call this function in any case that 
g_variant_builder_check_add() would return FALSE. It is an 
error to call this function in any case that it's an error to call 
g_variant_builder_new(). 

If type is NULL and parent was given type information, that 
information is passed down to the subcontainer and constrains what 
values may be added to it. 

parent: 
a GVa riantBuilder 

class: 
a GVa riantTypeClass 

type: 
a GVa riantType, or NULL 

Returns: 
a new (child) GVa riantBuilder 

g~variant_mark~p_print () 

~; GString * 

'''; g_variant_markup_print (GVariant *value, 

~:?: GString *string, 


gboolean newlines, 

'; gint indentation, 


gint tabstop); 


:i'' 

Pretty-prints value as an XML document fragment. 

191 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

If string is non-NULL then it is appended to and returned. Else, a new 
empty GSt ring is allocated and it is returned. 

The newlines, indentation and tabstop parameters control the 
whitespace that is emitted as part of the document. 

If newlines is TRUE, then newline characters will be printed where 
appropriate. 

If indentation is non-zero then this is the number of spaces that are 
printed before the first and last tag. If tabstop is non-zero then this 
is the number of additional spaces that are added for each level of 
nesting. 

value: 
a GVariant 

string: 
a GSt ring, or NULL 

newlines: 
TRUE if newlines should be printed 

indentation : 
the current indentation level 

tabstop: 
the number of spaces per indentation level 

Returns: 
a GString containing the XML fragment 

g_variant_markup_parse () 

GVariant * 
g_variant_markup_parse (canst gchar *text, 


gssize text_len, 

canst GVariantType *type, 

GError **error); 


192 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

One of the three interfaces to the GVa riant 
markup parser. For information about the 
others, see g_variant_markup_subparser_start() and 
g_variant_markup_parse_context_new(). 

You should use this interface if you have an XML document 
representing a GVa riant value entirely contained within a single 
string. 

text should be the full text of the document. If text len 
is not -1 then it gives the length of text (similar to 
g_markup_parse_context_parse( )). 

If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

In the case of an error then NULL is returned and error is set to a 
description of the error condition. This function is robust against 
arbitrary input; all error conditions are reported via error -- your 
program will never abort. 

text: 
the self-contained document to parse 

text_len: 
the length of text, or -1 

type: 
a GVa riantType constraining the type of the root element 

error: 
a GError 

Returns: 
a new GVa riant, or NULL in case of an error 

193 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

g_variant_markup_subparser_start () 

··· void 

·< g_variant_markup_subparser_start (GMarkupParseContext *context, 


const GVariantType *type); 


, One of the three interfaces to the GVa riant markup parser. For 
;;\ information about the others, see g_variant_markup_parse() and 
· g_variant_markup_parse_context_new(). 
·;!>'. 
: -~f 

' You should use this interface if you are parsing an XML document 
using GMa rkupPa rse r and that document contains an embedded 
GVa riant among the markup. 

You should call this function from the start_element handler of your 
parser for the element containing the markup for the GVa riant 
and then return immediately. The next call to your parser will 
either be an error condition or a call to the end element handler 
for the tag matching the start tag. From here, you should call 
g_variant_markup_parser_pop to collect the result. 

For example, if your document contained sections like this: 

<my-value> 

<int32>42</int32> 


</my-value> 


Then your handlers might contain code like: 

start_element() 
{ 

if (strcmp (element_name, "my-value") == 0) 


g_variant_markup_subparser_start (context, NULL); 

else 


{ 

} 

} 

194 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

end_element() 

{ 


if (strcmp (element name, "my-value") == 0)

{ -


GVariant *value; 


if (!(value= g_variant_markup_subparser_pop (context, error))) 
return; 

} 

else 


{ 


} 

} 


If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

This call never fails, but it is possible that the call to 
g_variant_markup_subpa rser_end () will. 

context: 
a GMa rkupPa rseContext 

type: 
a GVa riantType constraining the type of the root element 

g~variant_markup_subparser_end () 

.j GVariant * 
•. j g_variant_rna rkup_ subpa rse r _end (GMa rkupPa rseContext *context, 

.:·: GError **error); 


Ends the subparser started by 
g_variant_markup_subparser_start() and collects the results. 

195 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

You must call this function from the end element handler invocation 
corresponding to the start_element handler invocation from which 
g_variant_markup_subparser_start{) was called. This will be 
the first end_handler invocation that is received after calling 
g

-
variant 

-
markup- subparser

-
start(). 

If an error occured while processing tags in the subparser then your 
end_element handler will not be invoked at all and you should not 
call this function. 

· The only time this function will fail is if no value was contained 
between the start and ending tags. 

context: 
a GMa rkupPa rseContext 

error: 
the end_ element handler error, passed through 

Returns: 
a GVa riant or NULL. 

g_variant_markup_parse_context_new () 
::~~i? 

~ GMarkupParseContext * 

·i{ g_variant_markup_parse_context_new (GMarkupParseFlags flags, 

~ const GVariantType *type); 

~·.~~ 

One of the three interfaces to the GVa riant markup parser. For 
,. information about the others, see g_va riant_ma rkup_pa rse () and 

g_variant_markup_subparser_start() . 

. You should use this interface if you have an XML document that you 
· want to feed to the parser in chunks. 

This call creates a GMarkupPa rseContext setup for parsing 
a GVa riant XML document. You feed the document to 
the parser one chunk at a time using the normal 
g_markup_parse_context_parse() call. After the entire document 

196 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

is fed, you call g_variant_markup_parse_context_end ()to free the 
context and retreive the value. 

If type is non-NULL then it constrains the permissible types that the 
root element may have. It also serves to hint the parser about the 
type of this element (and may, for example, resolve errors caused by 
the inability to infer the type). 

If you want to abort parsing, you should free the context using 
g_markup_parse_context_free(). 

flags: 
GMarkupParseFlags 

type: 
a GVa riantType constraining the type of the root element 

Returns: 
a new GMa rkupPa rseContext 

riant_markup_parse_context_end () 

GVariant * 
g_variant_markup_parse_context_end (GMarkupParseContext *context, 

GError **error); 

Ends the parsing started with 
g_variant_markup_parse_context_new(). 

context must have been the result of a previous call to 
g_variant_markup_parse_context_new(). 

This function calls g_markup_parse_context_end_parse() and 
g_markup_parse_context_free() foryou. 

If the parsing was successful, a GVa riant is returned. Otherwise, 
NULL is returned and error is set accordingly. 

197 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

context: 
a GMa rkupPa rseContext 

error: 
a GError 

Returns: 
a GVa riant, or NULL 

198 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

GVariant-loadstore 

Synopsis 

enurn 
void 

gconstpointer
gsize
GVariant* 

GVariant* 

GVariant* 

Description 

Details 

GVariantFlags;
g_variant_store 

g_variant_get_data
g_variant_get_size
g_variant_load 

g_variant_from_slice 

g_variant_from_data 

enum GVariantFtags 

typedef enum 
{ 

G_VARIANT_TRUSTED 
G VARIANT LAZY BYTESWAP 

} GVariantFlags;­

g_variant_store () 

void 

(GVariant *value, 
gpointer data); 

(GVariant *value); 
(GVariant *value); 
(canst GVariantType *type,
gconstpointer data, 
gsize size, 
GVariantFlags flags); 

(const GVariantType *type,
gpointer slice, 
gsize size, 
GVariantFlags flags);

(const GVariantType *type,
gconstpointer data, 
gsize size, 
GVariantFlags flags,
GDestroyNotify notify, 
gpointer user_data); 

= exeee1eeee, 
=ex00020009, 

g_variant_store (GVariant *value, 
gpointer data); 

Stores the serialised form of variant at data. data should be serialised 
enough. See g_variant_get_size(). 

199 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

The stored data is in machine native byte order but may not be in 
fully-normalised form if read from an untrusted source. 

This function is approximately O(n) in the size of data. 

This function never fails. 

value: 
the GVa riant to store 

data: 
the location to store the serialised data at 

g_variant_get_data {) 

;f ~~~~~i~~~:~~~_data (GVariant *value); 

Returns a pointer to the serialised form of a GVa riant instance. The 
returned data is in machine native byte order but may not be in fully­
normalised form if read from an untrusted source. The returned data 
must not be freed; it remains valid for as long as value exists. 

In the case that value is already in serialised form, this function 
is 0(1). If the value is not already in serialised form, serialisation 
occurs implicitly and is approximately O(n) in the size of the result. 

This function never fails. 

value: 
a GVa riant instance 

Returns: 
the serialised form of value 

g_variant_get_size () 

gsize 
g_variant_get_size (GVariant *value); 

200 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

Determines the number of bytes that would be required to store 
value with g_variant_store(). 

In the case that value is already in serialised form or the size has 
already been calculated (ie: this function has been called before) 
then this function is 0(1 ). Otherwise, the size is calculated, an 
operation which is approximately O(n) in the number of values 
involved. 

. This function never fails. 

value: 
a GVa riant instance 

Returns: 
the serialised size of value 

g_variant_toad () 
~',: -i 

.,·: GVa riant * 
<~: g_variant_load (canst GVariantType *type, 
~ gconstpointer data, 

gsize size, 
GVariantFlags flags); 

Creates a new GVa riant instance. data is copied. For a more efficient 
way to create GVariant instances, see g_variant_from_slice () or 
g_variant_from_data(). 

·.. This function is O(n) in the size of data. 

This function never fails. 

type: 
the GVa riantType of the new variant 

data: 
the serialised GVa riant data to load 

201 



- - -

M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

size: 
the size of data 

flags: 
zero or more GVa riantFlags 

Returns: 
a new GVa riant instance 

g_variant_from_stice () 
"·' ·~~j

"'' 	 GVa riant * 

g_variant_from_slice (canst GVariantType *type, 


:,:;· 

:;·~~~ gpointer slice, 

i~\~i 
 gsize size, 

GVariantFlags flags); 

:,t Creates a GVa riant instance from a memory slice. Ownership of the 
,;, memory slice is assumed. This function allows efficiently creating 
:;'1 GVa riant instances with data that is, for example, read over a socket. 

If type is NULL then data is assumed to have the type 
G VARIANT TYPE VARIANT and the return value is the value 
extracted from that variant. 

This function never fails. 

type: 
the GVa riantType of the new variant 

slice : 
a pointer to a GSlice-allocated region 

size: 
the size of slice 

flags: 
zero or more GVariantFlags 

202 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Returns: 
a new GVa riant instance 

g~variant_from_data () 

':{ GVa riant * 
'~?
, g_variant_from_data (canst GVariantType *type, 


gconstpointer data, 

gsize size, 

GVariantFlags flags, 

GDestroyNotify notify, 

gpointer user_data); 


,, Creates a GVariant instance from serialised data. The data is not 
;i,l copied. When the data is no longer required (which may be before 
,, or after the return value is freed) notify is called. notify may even be 

'!~ ~\ 

.~~~·,1 called before this function returns. 

If type is NULL then data is assumed to have the type 
G VARIANT TYPE VARIANT and the return value is the value 
extracted from that variant. 

This function never fails. 

type: 
the GVa riantType of the new variant 

data: 
a pointer to the serialised data 

size: 
the size of data 

flags: 
zero or more GVa riantflags 

notify: 
a function to call when data is no longer needed 

203 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

user data: 
a gpointer to pass to notify 

Returns: 
a new GVa riant instance 

204 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Appendix B 

Synchronisation Primitives 

A GVariant instance is a very small structure. It uses only 24 bytes of 
memory on 32-bit systems. 

On 32-bit systems, a GStaticMutex lock, as made available in GLib 
is 28 bytes. A GMutex is also 24 bytes (being implemented as 
a POSIX pthread_mutex_t which is the same size) and it also 
requires allocation of a separate memory region (increasing memory 
management overhead) and would also necessitate adding another 
pointer to the GVariant structure (which would increase the size of a 
GVariant instance to 32 bytes)1

• 

Associating one of these existing primitives with each GVariant instance 
would more than double the amount of memory used as overhead by 
GVariant. There are several places in GVariant, however, where access 
to a given instance must be limited to a single thread. For this reason, 
alternative solutions were sought out. 

One potential solution that was considered for this problem was to 
use code locks. A single lock would be allocated and used to ensure 

1 Memory in GLib is allocated via the slice allocator, which allocates memory regions 
with a size granularity of 2 pointer sizes. On 32-bit machines this is 8 bytes. 

205 



M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

that sensitive GVariant code is executing in no more than one thread. 
This solution would result in an excessive amount of lock contention, 
however, since even if threads were accessing totally separate instances 
they will still block on each other. 

Some form of finer-grained locking is required. A number of alternative 
solutions were evaluated and finally one was settled one: a 1-bit mutex 
lock. 

The 1-bit mutex has been proposed for2 (and is likely to be included 
in) the next version of GLib as a general purpose interface. It will be 
available as the functions g_bit_lock() and g_bit_unlock( ). 

Implementation of this lock is described here. 

8.1 Atomic integer operations 

GLib contains a small library of atomic integer access functions. These 
functions can be used to perform a small range of memory operations 
(such as adding to an integer) atomically. Since there is no portable way 
to perform atomic integer access inC, these functions are implemented 
in assembly language for each of the machines on which GLib runs. 

The implementation of the 1-bit mutex relies on two of these operations. 

g_atomic_int_get() 
reads the value of the integer. This function also acts as a memory 
barrier on platforms that require it for cross-processor consistency. 

g_atomic_int_compare_and_exchange() 
first ensures that the value of the integer has a certain expected value, 
then sets it equal to a new value. A boolean is returned to indicate if 
the operation succeeded. This function also acts as a memory barrier. 

2 

206 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

8.2 Futex 

In order to implement the 1-bit mutex, a lower level synchronisation 
primitive was required. This primitive is the futex(2) system call 
provided by the Linux kernel. 

The name "futex" originated from the phrase "fast userspace mutex". 
This name is misleading, however, since a futex is not a mutex at all­
it is merely a useful tool for implementing one. 

A futex is actually a sort of wait queue. Threads register an interest 
in receiving wake-up signals at a given virtual memory address. The 
thread blocks until another thread sends a wake-up message for the 
same address (at which point only one waiting thread wakes up). Before 
the thread blocks, the given memory address is atomically checked to 
ensure that it contains a value specified by the user. 

The futex ( 2) system call is only available on Linux systems and 
isn't portable at all. Linux is the primary operating system on which 
GNOME is used, however, so most users will have this efficient native 
implementation available to them. 

8.2.1 Emulating futex 

On Linux, we are able to use the futex ( 2) system call to get the desired 
functionality. GLib is intended to be portable to a wide range of systems, 
however. On other systems, we must use other existing synchronisation 
primitives to implement futex-like functionality for ourselves. 

GLib contains the GCond data type- a message queue that supports 
blocking and wake-up notification much like a futex. GCond, however, 
must be allocated before it can be used. 

The futex emulation code simply maintains a linked list mapping 
addresses that are being waited on to GCond queues. The futex wait and 
wake operations on a given address and then implemented using the 
GCond wait and wake operations on the appropriate condition queue. 

207 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

All of the operations on the linked list mapping are performed while 
holding a traditional mutex lock. 

This may sound very complicated and time consuming, but it is 
important to understand that futex calls are actually very rare -they 
are only used to resolve the contended case of lock acquisition and 
release. 

8.3 The 1-bit mutex 
The 1-bit mutex implements a mutex lock using only a single bit in 
an integer value. This bit is (easily) available in the state register of a 
GVariant instance, allowing for per-instance locking. 

The process of acquiring the lock uses the GLib atomic integer 
operations. First, the value of the entire integer is atomically read. If 
the bit used to represent the lock is unset then the old value is compare­
and-exchanged with a new value which has the bit set. If another thread 
were attempting to acquire the lock at the same time, this operation 
would fail (since the memory address would not compare equal to the 
old value). If this operation succeeds then the lock has been acquired 
and the function returns. 

If the lock bit was set then we are dealing with the contended case. We 
use a futex wait operation to sleep on the address (while checking that 
the value at the address is still what we expect - and therefore has not 
been unlocked in the meantime). 

To unlock, the same read/compare-and-exchange sequence is used to 
unset the lock bit. A futex wake operation is invoked on the address of 
the integer to wake any threads that might be waiting to acquire the 
lock. 

208 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

8.3.1 An optimisation: contention counters 

The 1-bit mutex lock implementation described above suffers from a 
small wart: the futex wake operation is invoked even in the case where 
nobody is waiting. This call is harmless, but takes time to execute. On 
Linux this implies a (fast) system call on each unlock. On other systems 
it implies a search through a (probably empty) linked list. 

A simple optimisation has been implemented to avoid this extra call in 
the vast majority of cases. 

The 1-bit mutex keeps an internal static array of "contention counters". 
The length of this array is a prime number (currently 11). The address 
of the integer being used for the lock is divided by this prime number 
and the remainder is taken as an index into the array. This provides a 
constant factor reduction in the number of instances that are sharing a 
single contention counter. 

Before waiting on a futex the contention counter associated with the 
wait address is incremented. After returning from a wait, the contention 
counter is decremented. Before the unlock code executes a wake 
operation, the contention counter for the address is checked. 

Excepting the case of sharing a contention counter with another 
contended instance, this means that futex wake calls are only ever 
executed when another thread is actually waiting for the lock. This 
exceptional case is expected to be hilariously rare and even if it occurs, 
the extra futex call is harmless. 

8.4 Future work: better bit operations 
The use of the read/compare-and-exchange sequences in the described 
implementation are necessitated by the lack of atomic bit test-and-set 
or test-and-clear functions in GLib. On Intel systems (on which GNOME 
runs most commonly) these operations can be implemented with single 
hardware instructions. 

209 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

At this time, these operations haven't been implemented. To do so 
properly would require knowledge of the assembly languages for every 
machine on which GLib runs- 32 and 64-bit version ofx86, ARM, spare, 
PowerPC and S390. 

8.5 Other approaches 

Some of the other approaches that were considered are detailed here. 

8.5.1 "Friendly" spinning 

A very simple variation on using a single bit for locking is to attempt to 
acquire the lock and yield to the scheduler if that fails. This is done in 
a loop until the lock is acquired. 

The idea is that yielding to the scheduler will allow the thread holding 
the lock to run to completion. This is only slightly bette~ however, than 
an unmodified spinlock and is definitely to be considered "evil". 

8.5.2 An array of mutexes 

This alternate approach takes a cue from how a number of different 
condition counters are used to lower the chance of contended instances 
causing emission of extra futex wake calls in the 1-bit mutex. 

Instead of a mutex being associated with each instance, an internal 
static array of mutexes would be used. The length of the array would be 
a prime number, and the address of the GVariant instance would decide 
which lock is acquired to protect that instance. This would provide a 
constant factor reduction in contention while still ensuring that only 
one thread could access a particular instance (at the cost of preventing 
access to some others). 

In some cases, however (for example, when serialising an entire tree) 
several GVariant instances need to be locked at the same time (with 

210 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

the same thread holding all locks). If two of these instances aliased in 
the mutex array, the program would deadlock. Contrast this with the 
contention counter array in the 1-bit mutex implementation where a 
conflict merely results in a small amount of unnecessary work being 
done. 

This could be resolved by using recursive mutexes. Unfortunatel~ this 
approach conceals an even more insidious problem. If in one thread an 
operation involved locking two instances in order and in another thread 
another operation involved locking two other instances in order, and the 
instances aliased in the mutex array such that the locks were acquired 
in reverse order with respect to each other, the program would deadlock 
due to a lock order inversion. 

Without making any statement about whether a workaround could be 
developed to deal with this situation, the entire approach has ultimately 
been abandoned. as fundamentally inelegant. 

8.5.3 The 2-bit mutex 

Instead of using only a single bit plus contention counters a more 
direct approach could have been taken: use a second bit to indicate the 
contended case. 

The second thread to attempt to acquire the lock would set the 
"contended" bit before going to sleep waiting for notification. Then 
notification would only be sent if the contended bit was set. 

One problem with this approach is in knowing how many threads are 
currently blocked. The contended bit can never be safely unset without 
knowing this. The futex wake call returns the number of processes 
that were woken but in order to discover that zero processes were 
sleeping, one extra unnecessary futex call needs to be issued. This 
would definitely cause extra calls compared to the contention counter 
approach since an extra call would occur in every case of contention. 

211 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Also, since the 1-bit mutex has been included as an external API in 
GLib, having it use only 1-bit makes it more appealing and easier to 
understand to other library users. 

Finally, when holding the 1-bit mutex, it is safe to perform non-atomic 
bit operations on the same integer that contains the bit (for example, to 
set other flags). This is because, if the lock bit is held by the executing 
thread, it can be sure that no other bits will be modified until the lock is 
released. Bringing a contention bit into the situation complicates things 
- the integer can be modified by another thread at any time by the 
adding of the contention bit. Atomic integer operations would have to 
be used throughout. 

212 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

Appendix C 

Conditions 

This appendix offers details on the implementation of the condition 
machinery that lies at the core of the implementation of GVariant. A list 
of all of the conditions is also provided. 

For a description of conditions, see Section 10.3.1. 

C.l List of conditions 

The following list represents all of the conditions that are currently 
defined in the implementation of GVariant. 

For each condition, the enabling precondition predicate is given 
(as described in Section 10.3.1). Each condition also has a list of 
other conditions that it implies, that it forbids, and that its absence 
implies. This list is used only for runtime assertion checking. Due to 
logical equivalences, forbids and absence-implies are symmetric: if one 
condition forbids a condition or implies it with its absence then the 
reverse must be true. 

213 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

C.l.l CONDITION_SERIALISED (ser) 

• enabling precondition: sk 

• implies: sk 

• forbids: not 

• absence implies: nat 1\ ind 

There are two main types of instances: serialised form and tree form. 

Instances that are serialised have all of the data associated with their 
value encoded as a single array of bytes at one location in memory. Non­
container values are always serialised. 

Container values, if not serialised, are stored in tree form; the instance 
is an array of values pointing to the child values of the container. 

The enabling function involves creating a memory region of the 
appropriate size and serialising the children into that memory region. 
The memory region is then set as the serialised data of the instance. 

sk is an enabling precondition because the amount of memory to allocate 
for the new buffer must be known. 

nat 1\ ind are implied by the absence ofser since an instance in tree form 
will always be in native byte order once serialised and doesn't depend 
on serialised data from any "source instance". 

C.1.2 CONDITION_SIZE_KNOWN (sk) 

• enabling precondition: T 

• implies: T 

• forbids: ...., 

214 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

• absence implies: T 

The size of an instance is known if the size of the data, if it were to 
be serialised, is known. Implicitly, serialised instances are always size­
known (since the serialised data is at hand}, so this condition is only 
interesting for instances in tree form. 

The enabling function involves invoking the serialiser on the child values 
in the tree to predetermine the amount of memory that would be 
required to seriaHse them. 

Note that it is possible, even if the size is known, that the size may 
change. CONDITION_SIZE_VALID is the condition that the size will never 
change. 

C.1.3 CONDITION_INDEPENDENT (ind) 

• enabling precondition: ...,nat 

• implies: T 

• forbids: l. 

• absence implies: ser 

An instance is independent if any serialised data that the instance is 
using belongs to that instance. An instance that is not independent is 
using data that belongs to another (parent) instance or to the user. 

The enabling function involves allocating a new memory region, making 
a copy of the buffer (from the source), and using that new buffer. If it 
was discovered that the source data was byteswapped during the copy 
then the function fails . 

...,nat as an enabling precondition has a number of effects. First, it 
implies that the instance is serialised and has its size known (since these 
states are implied by ...,nat). 

215 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

Second, nat is a precondition to exposing the serialised data to the 
user. If the user has seen the data then we cannot run the enabling 
function since the address at which the data resides will change (thus 
invalidating the pointer that was given to the user). The only way to be 
sure that the user has not seen the data is if nat is not set. 

Absence of ind implies ser since if serialised data from another instance 
is being used then the instance is obviously in serialised form. 

C.1.4 CONDITION_FIXED_SIZE (fix) 

• enabling precondition: T 

• implies: T 

• forbids: -, 

• absence implies: T 

An instance is known fixed-sized if the type of the instance is recognised 
as being a type where all values have the same size (for example: floating 
point values, but not strings). 

The enabling function involves checking the type of the instance. The 
transition function will fail if the type is not a fixed-size type. For 
simplicity of implementation, this condition has been kept separate from 
CONDITION_SIZE_KNOWN. No size information is actually collected or 
stored by this enabling function. 

Fixed sized values are interesting because, as mentioned in Section 7. L 
they can always be safely byteswapped, even when not in normal form. 

C.l.S CONDITION_SIZE_VALID (sv) 

• enabling precondition: (sk A fix) v (sk A tru) v (sk A nat) 

• implies: sk 

216 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

• forbids: ..L 

• absence implies: T 

The size of an instance can be known to be valid if the size is known and 
it is certain that the size will never change. The only thing that might 
potentially change the size is reconstruction, which doesn•t happen to 
instances that are native trusted or fixed-sized. In any of these cases, 
the size of the instance will never change in the future. 

This condition must be enabled before the serialised size of the instance 
is reported to the user since once the size is reported it must not change. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 
being certain that the size of the serialised data of the instance will not 
change The clauses are ordered from least to most expensive to satisfy. 

C.1.6 CONDITION_NATIVE (nat) 

• enabling precondition: sn v bn v rec 

• implies: T 

• forbids: not 

• absence implies: ser 

An instance is native if it is known to be in the byte order of the host 
machine. 

This condition must be enabled before a pointer to the serialised data 
is given to the user since the user will expect the data to be in native 
byte order. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 

217 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

the serialised data being known to be in native byte order. The clauses 
are ordered from least to most expensive to satisfy. 

C.1.7 CONDITION_SOURCE_NATIVE (sn) 

• enabling precondition: -tind 1\ -.nat 

• implies: nat 1\ ser 

• forbids: ind v bn v rec v not 

• absence implies: T 

An instance is source-native if it is known that its source instance has 
been byteswapped to native byte order since the instance was created. 
If the data of the source (which is shared by this instance) is now in 
native byte order then this instance is as well. 

The enabling function involves checking the bn condition on the source 
instance to see if it has been enabled. The function fails if the source 
instance does not have the bn condition enabled. 

-.ind is a precondition since independent values have no source to 
check. -.nat, because if the value is already in native byte order then it 
makes no sense to be performing this check. 

C.l.B CONDITION_BECAME_NATIVE (bn) 

• enabling precondition: (fix 1\ ind 1\ -.nat) v (tru 1\ ind 1\ --, nat) 

• implies: nat 1\ ser 1\ ind 

• forbids: sn v rec v not 

• absence implies: T 

218 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

An instance became native if it has converted itself to native byte order 
since it was created. 

The enabling function involves byteswapping the serialised 
representation from non-native to native byte order. 

ind is a precondition because we can only byteswap data that we "own" . 
...,nat because it makes no sense to byteswap data that is already in 
native byte order. fix v tru is required because, as mentioned in Section 
7 .1, byte swapping serialised data is only safe if it is fixed-sized or in 
normal form. 

C.1.9 CONDITION_TRUSTED (tru) 

• enabling precondition: st v bt v rec 

• implies: tru 1\ ser 

• forbids: bn v rec v not 

• absence implies: T 

An instance is trusted if its serialised data is known to be in normal form. 

There is no enabling function; the enabling precondition is sufficient. 
Each of the clauses in the precondition represents a different path to 
the serialised data being known to be in normal form. The clauses are 
ordered from least to most expensive to satisfy. 

C.l.lO CONDITION_SOURCE_TRUSTED (st) 

• enabling precondition: ....,tru 1\ ....,fnd 

• implies: tru 1\ ser 

• forbids: ind v bt v rec v not 

219 



M.Sc. Thesis- Ryan Lortie Computing and Software - McMaster University 

• absence implies: T 

An instance is source-trusted if it is known that its source instance has 
been scanned and found to be in normal form since the instance was 
created. If the data of the source (which is shared by this instance) is 
now trusted then the instance (which is contained in that data) must 
also be trusted. 

The enabling function involves checking the bt condition on the source 
instance to see if it has been enabled. The function fails if the source 
instance does not have the bt condition enabled. 

-.tnd is a precondition since independent values have no source to 
check. -.tru, because it makes no sense to perform this operation if the 
data is already trusted. 

C.l.ll CONDITION_BECAME_TRUSTED (bt) 

• enabling precondition: ser 1\ -.tru 

• implies: tru 1\ ser 

• forbids: bn v rec v not 

• absence implies: T 

An instance has become trusted if it has scanned itself and verified its 
data to be in normal form since it was created. 

The enabling function involves scanning the serialised data of the 
instance to determine if it is in normal form. The function fails if an 
abnormality is found. 

ser is a precondition since we must have serialised data to scan. -.tru is 
a precondition since it makes no sense to perform this operation if the 
serialised data is already trusted. 

220 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

C.1.12 CONDITION_RECONSTRUCTED (rec) 

• enabling precondition: ser 1\ ind 1\ -,nat 1\ -,tru 1\ _,fix 

• implies: tru 1\ nat 1\ ind 

• forbids: sn v bn v st v bt v not 

• absence implies: T 

Reconstruction is a gigantic hack to work around the fact that it's not 
possible to safely byteswap values that are not trusted and not fixed­
size. 

There is practically no reason for serialised data not to be in normal form 
unless "bad things" (eg: attacks on the system, etc.) are happening. For 
this reason, this case "should never happen" but is dealt with anyway to 
produce a friendlier API that is guaranteed never to fail. 

Instead of byteswapping, the value is reconstructed using a slow deep 
copy method that essentially iterates and recurses over the structure of 
the value making a new, trusted, native copy of it. 

Even though it is not possible that the data has been exposed to the 
user (since it's not in native endian) there exists the possibility that 
the instance is acting as source to other instances. For this reason, the 
original serialised data must be saved. 

The instance is required to be independent because the pointer at which 
the old data is stored uses the same memory location usually used by 
the pointer to the source instance data in dependent instances. This 
implementation hack prevents increasing the GVariant structure size by 
33% in order to deal with this "should never happen" case. 

C.1.13 CONDITION_NOTIFY (not) 

• enabling precondition: .l.. 

221 



M.Sc. Thesis- Ryan Lortie Computing and Software- McMaster University 

• implies: T 

• forbids: everything else 

• absence implies: T 

A notify instance does not represent a value. It is used, instead, as the 
source of a dependent instance that is using data provided by the user. 
When the notify instance is freed (indicating that the source data is no 
longer required) it dispatches a callback to the user to notify them that 
the data may be freed. 

The notify condition is never enabled. It is set at creation time. 

C.2 Condition machinery 

The main entry point to the condition machinery is the call 
g_variant_require_conditions (). This function takes a set of 
conditions and instructs the machine to ensure that they are all satisfied. 

In the most simple case, if the condition is already satisfied, the function 
immediately returns. 

Next, if the condition's enabling prerequisite is currently satisfied, the 
enabling function of the condition (if any) is run, and the transition is 
enabled if it succeeds. 

Failing that, the condition machinery searches for clauses in the 
enabling prerequisite with one false term. If it finds such a term then it 
invokes itself recursively, attempting to satisfy the missing prerequisites 
on the first such term that it finds. 

If this fails, the condition machinery searches for clauses with two 
false terms, and so on. This heuristic typically results in a smaller 
amount of work being done. Also, since the disjunctive clauses in the 
enabling prerequisite are attempted in order the condition machine can 
additionally be tweaked to favour "less expensive" enabling functions. 

222 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

If none of these attempts succeed, we restart the process because it will 
succeed a second time (see below). 

C.2.1 Attempting to enable 
CONDITION_INDEPENDENT during a byteswap 

The one case where the required condition may not be satisfied is 
when requiring CONDITION_NATIVE on a non-independent instance that 
was created with a non-native source. If the source instance is being 
byteswapped during the process of the condition machinery running 
then it can cause a failure. This will only occur if values are being 
simultaneously accessed from different threads. 

When CONDITION NATIVE is requested, it will attempt to 
satisfy the enabling precondition. The first clause includes 
CONDITION SOURCE NATIVE. This will fail if the source is not yet native. 
Meanwhile~ the source byteswaps itself and is now in native byte order. 

The next clause in the precondition for CONDITION_NATIVE 
includes CONDITION_BECAME_NATIVE which in turn requires 
CONDITION_INDEPENDENT. Since the source value is now in native byte 
order, however, the enabling function for CONDITION_INDEPENDENT will 
fail. This will cause the entire request to fail (since the only other clause 
also, transitively, requires independence). 

Of course, retrying the transition will succeed since, this time, the 
CONDITION_SOURCE_NATIVE clause of the precondition will succeed 
(since conditions are never disabled). 

C.3 Notes on thread safety 

There are two fundamental problems with concurrent access to data 
structures: 

• ensuring no two threads are making modifications at once 

223 



M.Sc. Thesis - Ryan Lortie Computing and Software - McMaster University 

• ensuring no thread is making modifications during a read 

The first issue is dealt with in a very simple way. The only functions 
that ever make modifications to a GVariant instance are the enabling 
functions for conditions. These functions are only ever invoked from the 
condition machine. The condition machine holds a per-instance mutex 
lock at all times that it is running. This effectively prevents any problems 
associated with concurrent modifications. 

The second issue is somewhat more complicated. The simple way to 
solving this problem is by taking the mutex during all read accesses. This 
results in high lock contention. This problem can be partially alleviated 
through use of a reader-writer lock. 

Still, with GVariant it's not possible to hold locks in all cases of access. 
Many of the API return pointers to the internal state of instances. This 
state will continue to be accessed after the calls return and locks can 
no longer be held. 

The condition machine helps to solve these problems. 

In the case that a function requires that a condition be 
disabled in order for an access to succeed, it uses the call 
g_variant_forbid_condition ().This call ensures that the condition is 
disabled and prevents it from becoming enabled. In the case that the 
condition is already enabled, the call fails (since conditions may not be 
disabled). 

The way that the condition machine ensures that the condition will not 
become enabled is simply by locking the machine. The caller must call 
the unlock function when they are done performing their access. For this 
reason, all accesses under this function must be very short and passing 
instance data back to the user is precluded. 

The other case, of course, is when a function requires that a condition 
be enabled in order for an access to succeed. It uses the call 
g_va riant_requi re_condition(). The call ensures that the condition 
is enabled (taking steps to enable it, if necessary). 

224 



M.Sc. Thesis - Ryan Lortie Computing and Software- McMaster University 

In this case, no locks are used. The one-way nature of conditions 
provides a guarantee that accesses requiring the condition to be true 
will now be safe for as long as the life of the instance. 

The conditions (and their directions) were chosen with this in mind. 
When the condition machinery is not running, the places where a 
condition is forbidden are few in number (three) and extremely short in 
running time (never more than one or two dereferences plus associated 
refcounting). 

For this reason, contention is very low during read accesses. 

The fact that there are a small finite number of conditions that can be 
enabled and that all access is lock-free once they are enabled also means 
that the total amount of contention is kept quite low. 

225 



9371 68 



	Structure Bookmarks
	Figure 9.2: a GVariant using memory-mapped data 
	Figure 9.3: a GVariant shares thf!memory ofits parent 
	Figure 9.7: a tree ofGVariant instances 
	Figure 9.9: implicit serialisation occurs 




