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Abstract 


Thi thesis focuses on modelling electron dynamics in biased semiconductor 

superlattices, in the time domain. The numerical framework created on the 

basis of recently developed transparent boundary conditions proved to be an 

efficient and stable means to carry out simulations. A number of phenomena 

were modelled, with particular attention given to interminiband Rabi oscilla­

tions (RO); a quantitative description of the latter was given. We also report 

an observation of RO across three minibands in the high field regime. The de­

tailed resolution of wavepacket dynamics allowed for conclusions to be drawn 

regarding the physical basis of RO. Due to similarity of the investigated system 

with other areas of physics, the approach developed could be further applied 

to study non-linear transport phenomena in cold atom traps and photonics. 
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Chapter 1 

Introduction 

1.1 The Concept of Nanostructures 

Progress in miniaturization has in the recent years brought science and 

technology to the scale of nanostructures defined as "objects with character­

istic size of the order of 1-10 nanometers in one or more dimensions". At this 

distance scale the atomic structure of matter cannot be ignored, and quantum 

behavior manifests itself, thus making the concept of nanostructures extremely 

powerful. The astounding difference in nanostructure properties as compared 

to their bulk counterparts, typically arises from a relatively large proportion 

of atoms residing on the sample surface and a relatively large contribution of 

individual atoms. Nanotechnology makes tailoring properties of materials in 

a desired way possible, and opens up a whole new arena for scientific investi­

gations and technological applications. 
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1.2 Nanostructures Studies 


Semiconductor superlattices* (SC SLs) have been a hot topic in condensed 

matter physics and materials engineering since the introduction of the mini-

bands concept in 1970 [1]. In SC SLs, although qualitatively all the phenomena 

inherent to periodic SC structures still hold, quantitatively they get "rescaled" 

so that it becomes possible to observe them. The advent of modern techniques 

such as atomic force microscopy, molecular beam epitaxy and time-resolved 

sub-picosecond spectroscopy made it possible to fabricate SC SL and study 

their properties in more detail (see for example [2, 3]). 

Since SC SLs can be easily fabricated and allow for precise control of their 

properties in a broad range, they are convenient systems to study phenomena 

in quantum electron dynamics. Experimental data obtained so far have en­

couraged further theoretical investigations in this area and new theories are 

constantly being developed [4, 5, 6, 7, 8, 9, 10]. 

1.3 Nanostructures as Source of Coherency 

Great interest in transport properties of biased SC nanostructures has been 

sparked by emerging quantum computing technology that will favor coherent 

transport phenomena for quantum computer operations, over traditional in­

coherent electron flow in transistors. Coherent control over quantum states 

in solid-state devices enabling their manipulation is the concept of a qubitt. 

* Superlattices are a class of nanostructures consisting of a series of periodically alternating 

solid layers with thickness being of the order of a few nanometers. 

t Qubit is the operational base for quantum computer (a contraction from "quantum bit") 
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Presently scientists are proposing numerous physical models of qubits featur­

ing strong coherence, e.g. nuclear spins in solid solution and electron spin 

currents; an important class of such models is represented by SC nanodevices. 

An application of SC SLs that makes them important, is emission of co­

herent terahertz radiation, which was realized in quantum cascade lasers in 

1994 [11, 12], and can be obtained in Bloch oscillators capable of operating at 

much higher temperatures [13, 14, 15, 16]. 

1.4 Scope and Structure of This Work 

Under bias, SC SLs demonstrate some remarkable non-linear quantum 

transport effects, such as resonant Zener tunneling and Bloch and interband 

Rabi oscillations (RO) [17, 18, 19, 20]. Undoubtedly, a study of these phe­

nomena would contribute to a better understanding of quantum transport in 

SC nanodevices. 

We numerically reproduced various kinds of carrier behavior in chapter 3 

with close consideration being given to interband RO discussed in detail in 

chapter 4. Unlike most other authors, we use an ab-initio approach described 

in chapter 2, free of many simplifying yet restrictive model conditions. This 

enables us to test the validity of other models, as well as to reliably describe 

the dynamical phenomena occurring in a biased SC SL, thus contributing to 

the understanding of fundamental types of quantum transport. 

Although the present work focuses on a SL with uniform constant elec­

tric field, the numerical methods utilized are easily capable of handling time­
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dependent potentials as well, i.e. simulating an external driving field corre­

sponding to photon irradiation, or AC fields. It is also worth mentioning that 

the concept of quantum transport and the techniques considered here, with 

minor variations can be applied to other systems (e.g. double quantum dots 

[21, 2] and arbitrarily shaped potentials [22]) and even areas of physics, such 

as photonics [23, 24, 25, 26] and cold atom optical traps [27, 28, 29]. There­

fore, our approach appears to be robust enough to treat a broad variety of 

problems; let these be reserved for future investigations. 
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Chapter 2 

Physical Model 

2.1 Notation, Symbols and Acronyms 

Throughout this work, we use (meV]-[fs]-(nm] units for energy, time and 

distance, respectively*. For convenience, however, time is expressed in Bloch 

periods TB unless stated otherwise. The list of notation adapted throughout 

this work is put together into tables 2.1 and 2.2 for ready reference. In case 

some indices in the notations are omitted, the considered object is generic with 

respect to the omitted indices or they have already been specified. 

We will be frequently using a term "resonance" and label it as R~_tt(X). 

That refers to the phenomenon of an anticrossing of energy levels E: and E!+n 
belonging to WSLv and WSLJL, respectively; we will be using this term also 

to denote the range of bias values that are close to the resonant one and for 

which interband Rabi oscillations can be resolved. In the resonance labelled 

* e.g. units of 1 [~~]for bias that equallO [k~]; 


Planck's constant li = 6.582118893x102 meV · fs; 


mass of the electron m = 5.685629577x103 m:~;J82 
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Acronym Meaning Acronym Meaning 
BO 
IO 
MWT 
RO 
sc 
TB 
ws 
ZT 

Bloch oscillation(s) 
Intrawell oscillation(s) 
Multiwell tunneling 
Rabi oscillation( s) 
Semiconductor 
Tight-binding 
Wannier-Stark 
Zener tunneling 

HWHM 
ML 
OF 
RZT 
SL 
TrBC 
WSLn 

Half-width at half-maximum 
Monolayer 
Occupancy function 
Resonant Zener tunnellinng 
Superlattice 
Transparent boundary conditions 
Wannier-Stark ladder(s) 
associated with the nth miniband 

Table 2.1 Acronyms commonly used in this thesis. 

as 'R.~_JL(X), one observes the anticrossing between WS energy levels Ei and 

E!+n, namely Ei + nFd = Ez+n, in sample X; in the text it is referred to 

as a resonance between bands v and J-L with index n (v, J-L, n = 1,2,... ). 

2.2 Superlattice Potential 

Commonly, superlattices (SL) are made of semiconductor (SC) materials 

with different miniband structures, for example, III-V compound materials 

(GaAs/Ga1_xAlxAs). In addition to atomic periodicity, such structures fea­

ture periodicity on a scale of "'10 nm, which can be well approximated by the 

envelope potential VsL(x) replacing Coulomb potentials of individual atoms. 

Accordingly, the carrier wavefunction becomes an envelope function approx­

imating superposition of individual atomic wavefunctions; this is called the 

envelope function approximation. 

The larger periodicity d makes the characteristic energy E = ::~ smaller 

and thus the energy bands corresponding to this envelope potential have much 

10 




Symbol Meaning 

Ann 
p.-v 

E 
Ek 

v 
ESlfu) 

(:).Ek 
8Ek 
Fn 

Fnn 
v-p. 

F(t) 

r(v)neq
Inn 

Av-p. 

rnn v-p. 

fnn 
v-p. 

:oc 

£~-p,(F) 

mm* 
"'(+H ( ) 
'1-'(6/k/E)v X 

w(x, t) 
'lln(x) 
p(x, t) 
p(t) 

pneq(t) 

R~-p,(X) 
Pn(t) 
p~t 

TB 
Tnr,;_Jl. (F) 

rmaxnr,;_Jl. 
X 

w~(x) 
w:(x) 

Amplitude of RO corresponding to R~-p, (details on page 97) 

Energy space 

WS level corresponding to well kth and miniband v 


(Lower/upper) edge of miniband v 

Energy gap between kth and (k + 1)th minibands (k = 1,2,... ) 

Width of kth miniband (k = 1,2,... ) 

Resonant value of the bias corresponding to the index n 

Resonant value of the bias corresponding to R~-p, 


= -eE(t) The effective bias seen by an electron, E(t) being 

uniform electric field in the SL, e > 0 

Zener-like decay rate of the entire wavepacket (from miniband v) 

Decay rate of non-equilibrium part of wavepacket at R~-p, 


Decay rate of probability amplitude of Rabi oscillations at R~-p, 


HWHM of a resonance R~-p, (see page 94 for detail) 

Reciprocal space 


= [ ( ~~:!;) 2 
+ 1] -l Lorentzian curve corresponding to R~-p, 

Effective electron mass in the superlattice 

Bloch function corresponding to miniband v, (Bloch phase (} / 

/ crystal momentum k > 0 l k < 0 j energy eigenstate E) 

Wave function of the system 

'l'he wavepacket being built up in the process of RO 
=i'll(x, t)i 2 Norm of the wavepacket
=f~oo p(x, t) dx Total probability density of the wavepacket 

Norm of non-equilibrium part of wavepacket (explained on page 89) 

Please refer to the explanation on page 9 

Absolute occupancy function for miniband n 

asymptotic value of Pn(t) in a steady-state regime 

Period of BO 

Period of RO around R~-p, 


Maximum value of Tnr,;_Jl. (F) for resonance R~-p, 


Direct or real space 

Wannier function of miniband v and localized in cell n 

Tight-binding Wannier-Stark function of miniband v 

and centered around cell n 


Table 2.2 Symbols adopted in this work and their explanation. 
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1.4cr 
d 

(a) Single barrier cell 

Vo 

0.9V0 
 V(x) 

0.5 v0 

0.1 V0 

0 


(b) Biased superlattice 

Figure 2.1 Effective superlattice potential based on elementary cell with a 
single tanh-shape barrier 

narrower bands; they are commonly referred to as "minibands" (however, the 

term "band gap" remains the same). The difference between the miniband 

edge structure of the two materials (the conduction mini band offset) can effec­

tively be treated as a potential barrier of square-like shape (diagram 2.1(a)). 

Under uniform external electric field (bias) the entire SL potential gets tilted 

as in the diagram 2.1 (b). 

Experimentally the excitonic carrier population in the conduction mini-

band is created by ultrashort laser pulses, and the role of carriers is played by 

excitons (excited electron-hole pairs) [1]. This work deals only with conduction 

miniband electrons due to the fact that holes with their large effective mass 

are well-localized and do not demonstrate field-dependent absorption spectra 

[2]. 
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When modelling a SL potential, we chose an analytic form of potential 

barriers based on hyperbolic tangent function (tanh-shape potentials) as an 

alternative to the simplistic square-box approximation, in order to be able to 

use TrBC; it also allowed us to better reproduce reality [2]: 

_ Vo [ anh x + a/2 anh x - a/2 ]v.SL(X ) - - t - t , (2.1)
2 a a 

with a being the average width of the barrier, V0 - its height, a- its smoothness, 

and d - overall length of unit cell, as depicted in figure 2.1(a). The barrier 

height rises from 10% to 90% of its maximum value over a distance of about 

1.4a. It was tested that the system has little sensitivity to a over the range 

0.2 + 0.5 nm, so the presence of this parameter owes more to physics rather 

than to adjustment considerations. The tanh-shape potentials considered here 

reproduce GaAs/Ga1_xAlxAs structure with ML thickness of 0.283 nm and 

barrier height V0 = 790x meV, x being the fraction of Al in the barrier alloy. 

For a=0.2 nm the potential mostly rises over a single ML and for a=0.5 nm its 

rise stretches over "'2.5 ML, which is a reasonable range for this parameter. 

From physical considerations, the strongest barrier available was about 350 

meV, since for x > 0.44 Ga1-xAlxAs becomes an indirect gap SC, and our 

one-dimensional model cannot account for this. 

2.3 Bloch States 

When unbiased, a SL potential demonstrates spatial translation symmetry. 

The eigenstates are distributed evenly across the infinite periodic potential and 

the problem has real eigenvalues [3]. Physically, zero imaginary part of the 
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Figure 2.2 Cosine of Bloch phase in the Kronig-Panney model for sample A; 
allowed zones correspond to regions where Icos eI < 1. 

energy means zero linewidth, or infinitely large decay time; in fact, the electron 

has nowhere to decay in the absence of bias or scattering from the material 

imperfections. 

The eigenfunctions of the system are known as Bloch functions and can be 

easily computed in the Kronig-Penney model. A well-known transfer matrix 

formalism was used in our numerical scheme to construct Bloch functions, 

as described in [4]. Namely, we propagated basis solutions through a single 

unbiased potential cell of width d, using the summed Numerov method to 

solve the corresponding Schrodinger equation. The energy dependent wave 

functions g(x) and u(x) were chosen to satisfy the initial conditions g(O)=l, 

g'(O)=O; u(O)=O, u'(O)=l. 
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In this way, we obtained Bloch functions for minibands v = 1, 2, .. in the 

form: 

rp~~~(x) = g(x) + iZ u(x) 


odd v: 
 ¢~~~(x) = g(x)- iZ u(x) 


-~ 
Z - u(d) 

rp~~~(x) = u(x) + iZ g(x) 


even v: 
 ¢~~~(x) = u(x)- iZ g(x) (2.2) 

u(d)Z= 
Jl-g2 (d) 

Here, the energy-dependent Bloch phase (} is found from the relation cos (} = 

g(d)~u'(d). The fact that IcosBI < 1 within allowed minibands, allows one to 

locate their borders (see figure 2.2). From the equality(}= kd where k is the 

pseudo-momentum it is straightforward to get the dispersion law for the SL 

sample considered. One way to test the obtained Bloch functions is to check 

their periodicity (l¢v(0)12=1¢v(d)l2=1) which was satisfied with the precision 

of 10-16 in our calculations. 

Based on Bloch functions, one can further calculate a TB Wannier function 

localized in the cell with index n defined as follows: 

w:(x) - 21 11r e-in9 r/>(O)v(x)d(} 
7r -'!r 

1 {E" [ in9 ,~.(+) ( ) -in9 ,~.(-) ( )] 8(} dE (2.3)27r 1El e '~-'(9)v X + e '~-'(9)v X aE 

where the latter integral runs over an allowed mini band [5]. Since g~ has 

singularities at the miniband borders, the integral is quite sensitive to the 

location of E1 and Eu. The best integration results were obtained using a 
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grid in E with exponentially increasing density of points when approaching 

the integration limits and the smallest step being equal to the precision of 

locating miniband borders (we got w-s meV with the bisection method). 

2.4 Wannier-Stark Ladder 

2.4.1 Basic concepts 

With a non-zero bias, the problem of SL eigenstates becomes more involved 

[6]. In a weak electric field (Fd ~ fl.E1) a reasonable simplification is to con­

sider field-free minibands tilted by external bias. Carriers move semiclassically 

down the potential ramp with acceleration and reverse their direction of mo­

tion every time they reach either end of a miniband (see section 3.1 for more 

detail). This approximation is called the miniband model and is successfully 

used for weak fields [7]. 

Moderate electric fields (Fd"' 0.1fl.E1) require a quite different approach 

called Wannier-Stark hopping. There has been a long-standing debate about 

the eigenstate structure of a biased SL system (e.g. see [8]), a comprehensive 

summary of which can be found in [9]. The outcome of this discussion was 

recognition that a relatively strong electric field causes splitting of mini bands of 

delocalized states into subbands of localized states forming an equally-spaced 

ladder called the Wannier-Stark ladder (WSL) (see figure 2.3). It is understood 

that these states are resonant (or metastable) since conduction electrons are 

inherently bound to the continuum and there is finite probability to tunnel 
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Figure 2.3 Wannier-Stark ladders in a biased superlattice and their resonant 
coupling resulting in Rabi oscillations (see chapter 2.5). Energy levels from 
WSL1 are shown in thinner and from WSL2 in thicker bars. The arrow shows 
an RL2 resonance. 

from one eigenstate into another (interband tunneling) according to Zener's 

theory [10]. We will use the commonly accepted terms WS states and WSL 

energy levels rather than the terms eigenvalue and eigenfunction that are only 

approximations in this context. The experimentally obtained HWHM of cold 

carrier absorption lines is a common measure of Zener tunneling rate for a 

given sample [2, 11]. 

The entire picture is still different in case of a high bias (Fd "' ~E1). 

Now one has to describe carrier motion in terms of hopping from well to well 

or sequential tunneling [12]. A comprehensive review of all three quantum 

transport regimes can be found in [13]. 

17 




2.4.2 Allowed States 

An electron's allowed states can be represented in two equivalent ways, 

namely in Bloch and Wannier-Stark pictures; the choice is primarily deter­

mined by the potential gauge being used to solve (2.10). Under bias, the 

probability of interwell tunneling is reduced, and states are more localized; it 

is natural to choose WS states as the basis for a computational domain limited 

in X:. A simple way to construct Wannier-Stark states is to consider bands in 

the absence of interaction with each other (tight-binding approximation, TB); 

thus TB Wannier-Stark states are composed only of Bloch functions of the 

corresponding band. 

Solving for allowed states in the TB approximation gives: 

(2.4) 

where v denotes the miniband index, and the electron wavevector is decom­

posed into longitudinal and transverse parts (k = ku + k:_) according to the 

direction of electrostatic field F [14]. This expression is valid only for mod­

erate values of electric field where Zener tunneling may be neglected, and the 

TB approximation is valid. For details on derivation of these analytic formulas 

please refer to [14]. 
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Figure 2.4 Examples of Wannier functions calculated for the three lowest mini­
bands of sample A. Rescaled SL potential is shown in background (dotted line), 
for reference. 

The obtained TB functions were consistent with other authors' calculations 

[15, 16]. Some samples of the calculated Wannier and WS states for sample A 

are provided in figures 2.4 and 2.5, respectively. 

2.5 Two-Level System 

Typically, Rabi oscillations are observed in systems featuring interlevel 

transitions under external radiation. This phenomenon occurs when the fre­

quency of radiation is close to the frequency of a two-level system (w12 = 

Fh-;_E1 
). Under such conditions, which are often seen in lasers, the carrier pop­

ulation starts to oscillate periodically between the two levels; the transition 

from E2 to E1 happens due to stimulated spontaneous emission. 

In a biased SL, interband transitions can be seen in the absence of external 

radiation as well [17, 18, 19]. Once energy levels corresponding to different 

WSL align in neighboring wells, a carrier can easily hop to the upper WSL 

without changing its mean energy, by tunneling from cell to cell. The period­
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Figure 2.5 Examples of Wannier-Stark functions calculated for the three lowest 
minibands of sample A at field F = 0.7 meV. Rescaled SL potential is shown nm 
in background (dotted line), for reference. 
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icity of RO is ensured by the anisotropy in the tunnelling direction of a carrier 

(down or up the potential ramp). 

A comprehensive description of RO in the two-miniband approximation 

can be found in [20]; for the their mathematical description, see for example 

[21], [22] and [23]. For the case of a biased SL not exposed to external periodic 

electric field (i.e. tmdriven SL), a useful analogy can be made with a two-level 

atom under external periodic radiation V(t) = EoJl cos(wt) ( {L = x is the 

dipole transition operator between minibands 1 and 2 and E0 is the magnitude 

of the external electric field) [24]. Let us assume that the two WS states are 

stationary and orthogonal, by neglecting carrier decay. The acceleration theo­

rem together with a dispersion relation enables us to keep track of wavepacket 

motion in E. For moderate bias, the decomposition V(x) = VsL + Fx links 

wavepacket's positions in JE and X during a Bloch oscillation: 

(x(t)} = ~1t dE(k~: ft) dt 

In a strong enough potential (which is typical for a SC SL) with two tightly 

bound lowest minibands, the dispersion law can be approximated as E(k) = 

En+ 5: cos(kd) and the mean position (x(t)) = ~ (cos(wBt)- 1) for F >0, 

where wB is the Bloch angular frequency. 

If the :%:-origin is placed at (x(t)), the wavepacket's motion in X (see sec­

tion 3.1) with constant position in JE (due to conservation of its total energy) 

can heuristically be replaced by its motion in the kinetic energy space, while 

keeping a constant mean position in X. The effective potential then becomes 

V(x, t) = VsL(x) + 5
: cos(wBt); the energy miniband's position in JE stays 
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the same as in the case with bias and no periodic driving. That looks much 

like the potential of an irradiated atom: the system has a natural frequency 

w12 = Ek"hE1 and is effectively driven by BO. Then the Hamiltonian of our 

system at resonance field Fn becomes 

·~ aw(x, t) 
(Ho + V) w(x, t) with v = !i:Fn cos(wBt), (2.6)'t'" at 	 ­

and H0 refers to a biased SL in TB approximation. An expression for the 

population of the second level with initial configuration 'll(x, 0) = W1(x) can 

be now obtained in the same fashion as for an atom-like system [24]. Simple 

calculations show that in our case w12 - w = w12 - nwB = (E1:-:a_~2 )
2 (A -~)is 

the difference between the system's frequency at the nth resonance (n=1,2,... ) 

and the driving BO frequency. With necessary modifications we obtain 

- n(max) £(!: r) . 2 ( t )p~(t) 	 (2.7)P2 .,, sm 1r r;r=Jc(~,r) , 

where 

£(~, r) 	 ( (~;r)2 +1) -1 (2.8) 

1 1 
~ ­

F Fn 

X on
r ­

E2- E1 

d


'T{'!ax
R = 

X on 


Xnm = (Wf(x)lx/W;n(x)) 
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These equations can be easily generalized for an arbitrary set of interacting 

minibands. When replacing the stationary atomic energy levels with SL mini­

bands, we should make a correction for their finite width: 

- n(max)£(t: r(E)) sin2 (n t ) (2.9)p~(t) 
Pz ~, r;=Jc(~,r(E)) ' 

with r(E) =E:!!:.1;1 being distributed with the same normalized distribution 

function f(E) in E as is f(E2 - E1) = f(E2)- /(E1). This corresponds to 

the broadening of atomic levels which can reasonably be approximated by a 

Gaussian. Note that in order to predict the P2(t) curve in the entire near-

resonant region we need only one value of the dipole matrix element Xnm 

computed at a resonant field. 

In this simplistic derivation, we assumed a two-level system with weak 

interband coupling and neglected dispersion of the wavepacket in the process 

of BO. We will refer to this analogy with a two-level atom only to interpret 

the results obtained. 

We will study in the high-field regime, where the BO domain is typically 

smaller than a cell width; that implies that (i) Energy levels are sparse due 

to a large splitting of WSL and there is only one main path for a carrier to 

transfer from levell to level 2 close to resonance; (ii) At a resonance, WS states 

have their main part localized, with an exponentially vanishing tail streching 

towards infinity, so we expect that Xon ex: e-n (this has been predicted by a 

two-level model [18] and also has been explicitly calculated for a multiband 

case [6]). 
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Name Va, meV d, nm(ML) a, nm(ML) a,nm 
Sample A 212 13.0 (46) 3.1 (11) 0.4 
Sample B 250 17.3 (61) 2.5 (9) 0.4 
Sample C 212 10.2 (36) 2.8 (10) 0.4 
SampleD 350 19.0 (67) 2.5 (9) 0.4 

Table 2.3 Geometric parameters of the potentials used in simulations. Barrier 
height of 100 meV corresponds to x=0.13, of 212 meV to x=0.18, of 250 meV 
to x=0.3 and of 350 meV to x=0.44 in the GaAs/Ga1_xAlxAs structure. 

2.6 Selection of Potentials 

There were two main criteria for choosing potentials to work with: their 

experimental feasibility (imposing constraints on cell length and barrier height) 

and convenience for observing RO. 

Miniband isolation Obviously, a potential has to have at least 2 well­

isolated ground minibands for a wavepacket to perform sustainable RO. On the 

other hand, too strong miniband isolation narrows the interband resonances 

and makes it difficult to resolve them. 

Miniband separation To be able to conveniently observe many resonances 

over a small range of bias, a shorter period (in 1/F) between resonances is de­

sired, therefore large separation between 1st and 2nd mini bands (accompanied 

by miniband narrowing) is demanded which can be done either by reasonably 

extending cell length or making a stronger barrier. At the same time, in case 

of high fields, the 1st and 2nd band gaps should stretch over more than 1 cell 

in order to be able to distinguish structure of low-index resonances, and the 

resolvability limit for R~~f! is F < pm=~min(o~1 •0E2). 
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Figure 2.6 Band structure of the SL samples listed in table 2.3 

Potential barrier strength A weaker barrier gives larger tunneling proba­

bility and makes resonances with greater indices observable, however making 

minibands wider and more closely spaced. 

Miniband arrangement Finally, the relation E2 - E1 ~ l:lE2 ensures slow 

escape of the carrier out of the system, which plays a vital role at high fields. 

We found that for the ratio ~E~1 ~1.5 it is possible to resolve only a few first 

RO for RL2 after which they smear away due to their quick decay. Er~1 ~1 

produces Ri_2 with a clear structure. Also, to obtain a clear picture of low­

index RO, RZT coupling the first 3 ground minibands must be avoided, i.e. 

EEa-EE2 should not be close to a rational number!!! with small m and n. Good 
2- 1 n 

results were obtained for this ratio being ""1.60 ... 1.65 (sample B). 

Based on these criteria, our band-engineering investigations produced a 

few potentials whose paran1eters and TB miniband structure are laid out in 
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Name 6E1 !:l.E2 !:l.Ea E2-E1 Ea- E2 
Sample A 8.8 73.0 50.9 88.8 138 
Sample B 3.98 54.7 58.8 50.4 82.2 
Sample C 20.2 74.8 34.5 134 212 
SampleD 1.97 58.7 69.0 44.6 73.0 

Table 2.4 Band structure of the potentials used in simulations corresponding 
to figure 2.6; energy is in meV. 

tables 2.3 and 2.4 and figure 2.6. Sample A demonstrates mixed regimes and 

allows comparison with the previously published calculations [25); sample B 

exhibits very clean widely separated resonances that are convenient to study 

in detail; sample C features well-resolvable resonances R~~;; in sampleD, we 

have 3 strongly bound WSL and it is possible to observe strong RO across 3 

mini bands. 

2.7 General Numerical Scheme 

A common model approach, namely the two-weakly-coupled-minibands 

model, considering a simplified system with weak interminiband coupling, 

works well in the case of shallow superlattices (i.e. optical potentials), how­

ever, stronger SC SL potentials may require a more elaborate techique. Lately 

there has been interest in studying three-level systems subject to one [26] or 

two [27] driving frequencies. Typically, one proceeds with perturbative cal­

culations [28], solving optical Bloch equations with or without damping [29), 

using density matrix method [30, 31, 22], and directly solving time-dependent 

Schrodinger equation [28, 32, 33, 34, 35] or use other methods [27]. In the 
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Figure 2.7 Demonstration of transparent boundary conditions: a Gaussian 
wavepacket passes through the border of a computational domain with no 
back reflection due to the applied TrBC; t 0 < t1 < t2 • 

past few years some authors started using more powerful calculational tech­

niques, usually in the context of driven vertical transport, basing their work 

on eigenstates and eigenfunctions of a multiband system [6, 25]. However, the 

underlying physical mechanism has not been highlighted well enough and this 

work provides a first-principles description of the nature of RO. 

In order to overcome drawbacks of the two-weakly-coupled-minibands ap­

proach and to minimize possible model limitations, we chose the envelope 

function approximation as the foundation for our work. The time-dependent 

Schrodinger equation for a wavepacket 'IJ!(x, t) 

was numerically solved to obtain its evolution with time, and then the desired 

data was extracted from 1/J(x, t). For eq. 2.10, an average effective mass 

m*=0.071 was used for the GaAs/Ga1_xAlxAs compounds, in the envelope 

function approximation. 
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It is assumed that our superlattice is ideal, i.e. free of such imperfections 

as doping fluctuations and interface roughness; however it is straightforward 

to introduce these imperfections in our calculations. We also ignore thermal 

motion of individual atoms; this way we can disregard carrier-superlattice in­

teraction resulting in phonon emission and keep to a single-particle model. 

Thus temperature effects are beyond the scope of this work, and the system 

herein is taken to be at zero temperature. A common simplification of con­

sidering only longitudinalt motion was applied since the quantum confinement 

effect acts only in this direction. 

In contrast with previous studies based on a similar ab-initio approach 

[28, 32, 33], we used transparent boundary conditions (TrBC) [36, 37, 38] that 

were recently derived for the Schrodinger equation in lD {full detail can be 

found in [39] and more specifically in [40]) and have proven to be successful [41). 

This ensured efficient use of available computational resources and allowed us 

to overcome the rigid-wall boundary conditions constraint. Also, a greater 

computational power as compared to the time of the above-mentioned studies 

allows us to perform simulations in more detail and consider more different 

cases. For the details of the finite difference implementation, please refer to 

appendix A. Together with the above ab-initio approach, TrBC provided a 

stable and powerful numerical scheme while avoiding excessive artificial model 

limitations. Figure 2.7 shows a Gaussian wavepacket passing through the 

border of a computational domain with no back reflection due to the applied 

TrBC. 

t 	motion in the direction of the electric field vector perpendicular to the crystal growth 

axis 
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Figure 2.8 Test of transparent boundary conditions: a Gaussian wavepacket 
sliding down a flat potential ramp escapes out of the computational domain 
with no back reflection. Solid line shows total probability p associated with 
the part of the wavepacket remaining inside the domain; dashed line shows 
sum of occupancy functions for all the minibands considered. 

The downside of using TrBC was its slow-down after a large number of 

time steps due to the increasing number of previous edge values of 'll(x, t) 

stored in memory. TrBC also imposed a constraint to have only one particle 

in the system (otherwise there would be nonlinear terms present in eq. 2.10 

thus making it impossible to apply TrBC) and using a non-adaptable grid in 

X. Other non-problematic TrBC requirements were to have constant potential 

outside the considered region and to choose the X-domain large enough so 

that it would contain the entire 'll(x, 0). The use of Numerov's method made 

computations faster at the cost of avoiding the variable effective mass of an 

electron m*(x) (due to its introduction of a term with ~! in eq. 2.10). 

As a test for TrBC, we recorded the norm of a Gaussian wavepacket (with 

width of 50 nm) remaining in the computational domain that was initially set 
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free to slide down a flat potential ramp (F = 3 ~~). The results from figure 

2.8 give evidence of perfect transmission through the domain border. 

The sensitivity of the numerical scheme to purely computational param­

eters (such as domain size, smoothness of potential, maximum field values, 

space and time steps for integrating eqs. 2.10, 2.4 and 2.5, etc.) was studied 

very carefully. The criterion for the optimal values for such parameters was 

self-convergence of our calculations to a certain value or behavior that would 

agree with existing findings and relations as demonstrated in the next chapter. 

To simplify algebraic derivations, some authors work with atomic units (a. u.) 

as in [6], whereby all quantities are represented by dimensionless numbers. 

For clarity, we chose to use [meV]- [fs]- [nm] units throughout this work 

and turned to atomic units only to compare our results with various papers in 

the literature. 

In summary, our numerical approach allows for stable ab-initio computa­

tions, within the constraints of considering a single particle in a zero-temperature 

superlattice in the envelope function approximation. Similar conditions can 

be found in experiments involving cold atoms trapped in optical potentials. 

In SC SLs these conditions hold well at low temperatures, as evidenced by 

experimental observations of several Rabi oscillation cycles [42]. 

2.8 Data Visualization 

A typical data set, like those in figures 2.9, 2.10 or 4.2, shows the time evo­

lution (along the vertical axis) of the occupancy function of the corresponding 

electron mini band, for different values of bias (along the horizontal axis) by 

30 




0.1 0. 15 0.2 0.25 

1/F (nm/meV) 

lnp2 
0 

-I 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 
0.3 0.35 0.4 

Figure 2.9 Map plot of occupancy function for the 2 n d miniband of sample C; 
w(x, 0) = wl(x). 

means of a color map plot. The plot is composed of si1nulation data (Pi(t , Fi)) 

from single time-dependent simulations, for each given value of bias Fi. On 

map plots like the one in figure 4.35 , the evolution of norm of the wavepacket 

p(x, t) in real space is shown. Here, "stroboscopic snapshots ' of probability 

density p(x, ti) are put together for each value of time ti. 

The quantity Pn(t) is the probability that an electron occupies the nth TB 

miniband at the time t and is calculated as the projection of the wave packet 

w(x, t) onto a corresponding Wannier-Stark state: 

2Pn(t) L l(w(x, t)IW~k) (x )) l , (2. 11) 
k= -oo 

with index k corresponding to the cell index. 
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Figure 2.10 Map plot of occupancy function for the 2 nd miniband of sample 
B; w(x ,0) = W t (x). 

Evidently it is impossible to precisely compute the above summation run­

ning over an infinite range of cells, since a non-zero bias breaks the SL potential 

translation symmetry, and periodic boundary conditions become inapplicable. 

According to TrBC (section 2.7), the potential outside of the considered re­

gion is taken to be constant that physically means the end of a biased SL. 

vVe chose to trim the length of our computational domain in X so that : (i) 

probability of the "uphill" tunneling through the background potential ramp 

is negligible; (ii ) on its way to continuum an electron passes in IE through all 

major band gaps; and (iii ) X-domain must be no less that 40 cells in total, 

in order to represent most experimental situations and to avoid dealing with 

surface states. For large miniband indices , band gap widths !::.En are decreas­

ing, and in the limit of self-convergence of the resul ts we obtained that the 

width of the last considered miniband must be no more than the potential 
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drop over 2 cells. In practice, that means taking into consideration on average 

N ~5 lowest minibands and the ratio ~~~ :::::::: 0.02 - conditions that cannot 

lead to significant distortion of the real situation. With the conditions (i) and 

(ii) satisfied, our calculations for 40-cell and 120-cell domain lengths did not 

reveal any noticeable difference (<0.1%) in the data. 

We also will refer to the relative OF given by 

Pn (t) _ Pn(t) (2.12)
P l\ll(x, t)12 

that are useful to separate occupation probability dynamics from the back­

ground Zener decay of the wave packet, and e;;(t) E [0,1). 

Generally speaking, the projection-on-bands method loses its original mean­

ing at high fields where Wannier-Stark and miniband transport models do 

not hold any more, and we have to consider sequential tunneling. However, 

it still gives us an idea of the \ll(x, t) distribution in E {and hence between 

wells in X), since Wn ( x) contain only harmonics with certain wavelengths 

2A = ; E (~d, n~1 d) in the TB approximation, and there is a direct rela­

tion between kinetic energy and k (coming from the term in the Hamiltonian 

2.10 involving k2 = \72). A component with higher kinetic energy corresponds 

to shorter wavelength and hence will project on a Wannier state with higher 

band index. Thus, Pn(t) provides a means of recording the carrier's kinetic 

energy, averaged over certain intervals. 

To test the Ininiband projection method and completeness of the Wannier 

basis for an arbitrarily shaped function, we projected the Gaussian wavepacket 

from the example in fig. 2.8 onto the basis of seven states {wn(x)}~=O con­
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Figure 2.11 Test of Wannier basis for completeness: as a Gaussian wavepacket 
slides down a flat potential ramp, the sum (solid line) of occupancy func­
tions for all minibands (shown by different linetypes) gives exactly the total 
probability. 

structed for sample A. As expected, the accelerated motion down-shifts the 

wavevector distibution's centre of mass (k) according to the acceleration the­

orem, and as (k) passes values n~, peak of occupancy shifts over to the OF of 

the next miniband- the sequence represented in figure 2.11. From figure 2.8, 

one can also see that the net miniband occupancy 'E,pi remains extremely close 

(within 0.2%) to the total remaining probability p(t) at all times. Also, it was 

checked that for the SL, the sum of OF 'E,pi(t) over the minibands included in 

consideration remains unity within 0.01% accuracy even after t 1000TB, orrv 

about 105 timesteps. 

In this light, TB WS and Wannier states both include the same harmonics, 

i.e. Bloch functions, owing to the method of their construction (eqs. 2.3, 2.5). 

That explains why projection on minibands by means of either set appeared 

to be insignificant ( <1% difference) even for moderate fields, when the WS 
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state is significantly more delocalized than the corresponding Wannier state. 

Based on this evidence, we adopted the simplification of using Wannier func­

tions w~ (x) as the projection basis. At the points of WSL anticrossings, a 

different representation than eq. 2.5 should be used to compose non-TB WS 

functions (see [6, 25], for example) which is a difficult task in itself and lies 

beyond the scope of this work. We will use TB Wannier functions as a conve­

nient orthogonal basis for the miniband projection with the meaning discussed 

above. 
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Chapter 3 

Electron Wavepacket Dynamics 

According to previous studies [1, 2, 3], there are a number of recognized 

phenomena in electron dynamics in a biased SL: classical accelerated motion, 

two modes of Bloch oscillations (breathing and oscillatory), intrawell oscilla­

tions, interminiband Rabi oscillations and resonant Zener tunneling at higher 

electric fields. Their study is important for a better understanding of physics 

of quantum transport as well as for validating our numerical scheme. 

3.1 Bloch Oscillations 

BO is one of the most intriguing types of non-linear carrier dynamics. As 

an electron classically slides down the potential ramp in X, it is simultaneously 

changing its state in OC according to the acceleration theorem: 

nik (3.1)
dt 

As an electron traverses a Brillouin zone, it moves across an allowed miniband 

in the kinetic energy space (since total energy of the system is conserved in the 

absence of emission/ absorption processes). When it hits the edge of Brillouin 
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Figure 3.1 Schematic of Bloch oscillations in the ground miniband in a super­
lattice under low bias; only two lowest minibands are shown. 

zone (corresponding to an edge of the allowed miniband), the carrier makes a 

transition -~ -t +~ in][{ resulting in reversal of its direction of motion and 

thus producing high-frequency oscillations (figure 3.1). 

The oscillation domain length is LTK = 2; in ][{ and Lx = 5ff in X. From 

equation (3.1) one can easily estimate period of Bloch oscillations for a given 

bias: 

2n'fi 
(3.2)

Fd 

It is remarkable that since TB is independent of miniband width it is the same 

for all minibands of a given potential. 

Localization of a wave packet in X is related to its distribution in ][{ through 

Plank's uncertainty relation ~p ~x ~ ~. To learn its effect on carrier dynam­
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ics, let us consider two extreme cases: well-localized versus well spread-out in 

X wavepackets, leading to two different kinds of dynamics (1]. 

3.1.1 Oscillatory Mode 

A spatially broad wavefunction \li(x, t) has a narrow peak distribution in 

JK, hence its motion in the Brillouin zone resembles uniform motion of a point 

given by eq. 3.1. In case of a tightly bound state, probability of tunneling into 

the next miniminiband is small, therefore the major part of \li(x, t) undergoes 

Bloch oscillations that are well distinguishable in both X and lK (left section 

of figure 3.2). 

In fact, one can easily keep track of oscillations of the wavepacket's centre 

of mass 

(x(t)) = 1: x i'li(x, t)i 2dx 

with dispersion of the wave packet 

being small as can be seen in the bottom left panel of figure 3.2. Estimation 

of the width of the first allowed zone, by the domain of oscillations of (x) 

found from this panel, gives ~E1 = 12.8 cells x 13.018 nm x 0.05 ~~ = 

(8.3 ± 0.5) meV which agrees well with to the theoretical value of 8.82 meV 

from table 2.4. 
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3.1.2 Breathing Mode 

The other extreme situation is w(x) widely spread in JK and E. Although 

this extreme localization in X is not a realistic case, it is still instructive to 

consider it. Wide coverage in JK results in spanning most of or the entire 

Brillouin zone, and all states in E have high rate of occupation. Thus instead of 

moving across the miniband, the wavepacket periodically shrinks and expands 

in X (the oscillation domain is again given by Lx = 5ff) due to interference 

of harmonics composing it, which is called a breathing mode. For symmetric 

W ( k), the center of mass remains still whereas the dispersion shows periodic 

oscillations- see panels in the right part of figure 3.2. 

3.1.3 Mixed Mode 

In a more general case like the one shown in figure 3.3, these two regimes 

are mixed, which immediately can be seen from the (x) ± u (t) curves in 

the bottom panel of the figure, and from the increased width of trajectory 

lines in :OC as compared to the left part of figure 3.2. Moreover, BO occur 

simultaneously in two lowest minibands since the chosen initial wavepacket 

had non-zero components in these minibands: we can see in the top panel 

of figure 3.3 that there are two parts of \ll(x, t) (having unequal magnitude) 

whose oscillation domains in X are different with the period of BO being the 

same. 
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3.2 Zener tunneling 

Since a WSL is inherently coupled to the continuum, there is a finite prob­

ability for an electron to tunnel out into the above-barrier states. Taking 

a semiclassical approach to the problem, Zener derived the decay rate for a 

two-miniband potential as: 

diFI ( mm*(t1E)2 d) (3.3)'Y(F) = 2rrn exp - 4n2 IFI ' 

where t1E stands for the only gap in the system [4]. 

To demonstrate this relation, we employed a sinusoidal potential (found in 

cold atom optical traps) as an approximation to the single-gap system in [4]: 

Ford= 2rr and Vo =50 meV, the second gap was only rv2% of the first one: 

t1E1 = 25 meV and t1E2 = 0.6meV. Given that p(t) = p(O)e--rt for a Zener­

like decay, the decay rate can be calculated using the norm of the remaining 

wavepacket after a fixed period of timet= NTB: 

-'Y(F) t = In [p(NTB)l (3.4)
p(O) 

Results of the simulation for the sinusoidal potential and N =30, are repre­

sented in figure 3.4, and show good agreement with the theoretical prediction. 

Obviously Zener's approximation fails for high fields ( ~ < 0.8 ~~ in this 

example) where width of the gap becomes negligible, and wavepacket essen­

tially does accelerated motion down the ramp without sensing the shallow 
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Figure 3.4 Zener decay for a sinusoidal potential; chain-dotted line shows the 
fit from eqn. 3.4. 

potential. For larger ~ values, the Zener curve is superimposed on sinusoidal 

oscillations since the 2nd gap cannot be fully ignored. They originate from 

RZT manifesting itself in multigap systems and were expressed in a much 

stronger form for sample A (see figure 3.5). 

For RZT, interminiband tunneling probability is not an exponential func­

tion of the bias any more, since each WSL has discrete energy level structure 

whose spacing cannot be neglected at higher fields. Whenever energy levels 

in the neighboring wells align, a carrier is more likely to travel through the 

corresponding well, and the overall tunneling rate drastically increases. RZT 

has been studied extensively lately {e.g. [5]); it is only recently {2004) that 

the relation between RZT and ZT beyond perturbative theory was derived [6). 

Experimentally, RZT shows up as peaks of current-voltage dependence for a 

transistor based on SC SL ([7]). 

RZT is always accompanied by interminiband Rabi oscillations whose mag­

nitude and decay rate depend on strength of the SL potential and which will 

be discussed in the next chapter. 
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Figure 3.5 Zener decay of a wavepacket in sample A; shown is the remaining 
probability density after t = 50TB elapsed. Shaded area shows the difference 
between ln(p(50TB)) and zero. 

3.3 Intrawell Oscillations 

At higher fields, a carrier oscillating over a domain of less than a single cell 

width (so-called intrawell oscillations) becomes noticeable. It was pointed out 

in [3] that IO are caused by a non-zero matrix element between WSLl and 

WSL2 states if 'llf(x, 0) is a mixture of two states and only the non-resonant 

case was considered. In the real case, however, there are no stationary states 

in a biased SL, and 'llf(x, 0) cannot remain a "pure" (in the TB model sense) 

state due to inherent coupling between WSL. If 'llf(x,O) is set as w 1(x), or 

TB W1 (x), it will tend to tunnel out of the system; if 'llf(x, 0) is a proper 

many-miniband model W1(x) it will be delocalized and will already include 

the "leaky" part beyond its parent TB miniband [8]. This departure from the 

TB model cannot be ignored at anticrossings and leads to macroscopic dis­
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4 

nL
Figure 3.6 Schematic for wavepacket self-perturbation. Along with RO for 

2 , there is interaction between the levels E~ +--t Ef E~ +--t Ef and Eg +--t E~ 
indicated by dashed arrows. 

placement of the wavepacket as will be shown later. Hence the 10 oscillations 

with frequency 

(3.5) 


are inherent as far as interacting minibands are considered and are related to 

a carrier "sensing" the presence of another band. 

Generally, we found that the magnitude of 10 strongly depends on the 

initial wavepacket shape. On the map plots 4.5 and 4.7, 10 are much stronger 

in the case of w(x, 0) = w1(x) +w1(x- 3d) and their frequency changes from 

2wB to 3wB at the peak phase of RO. This is understood in terms of self­

perturbation of the wavepacket as plotted in figure 3.6. 
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For simplicity, let us consider interaction within an ensemble of two res­

onant states 'l!1 and 'l!2 having energies e1 and e2, correspondingly. Due to 

overlap of 'l!1 and W2 in X (or equivalently their distributions in E), the two 

states can exchange probability density at a frequency w = e1 h_e2 as long as the 

ensemble's mean energy (e) = e1 I1J!1I2+ e2 !'l!21
2 is conserved within Plank's 

uncertainty relation. From these considerations, the absolute rate of the ex­

change is the largest for !1J!1!2 ~ I1J!2j2. 

Using this logic, we see that the pairs of WSL levels with strong interaction 

shown by dashed arrows in figure 3.6 are Ef ~~and~~ E~ (having the 

same difference in energy ~(E2 - E1)). Indeed, levels EJ and Eg are too far 

apart in E; levels E~ and Ef are as close as Ei and E~ are, but since the 

WSLl is more isolated that WSL2, the former pair coupling is very weak. 

In the pair Ef_ ~ Ei, despite Ef belonging to WSLl, the shorter distance 

between corresponding cells makes the E~ ~ Ef interaction nearly as strong 

as the E~ ~ E~ one. 

Therefore IO are stronger for wavepackets occupying several adjacent cells 

and with the high occupation rate of a loosely bound WSL. 
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Chapter 4 

Interminiband Rabi Oscillations 

The phenomenon of interminiband RO in SC SL is also known in the liter­

ature as excitonic Rabi oscillations, Rabi flopping, periodic population swap­

ping, field-induced delocalization, oscillatory dipole and interwell oscillations. 

Undoubtedly, previous investigations [1, 2, 3] have covered many and various 

aspects of RO in SC systems since their first experimental observation in the 

early 1990's, by the laser pump-and-probe technique in SC SL [4]. Typical 

systems demonstrating RO are SC quantum dots under pulsed resonant exci­

tation, but they can also be observed in other systems, such as cold trapped 

ions [5]. 

A close resemblance of the cross-section of a typical resonance obtained, 

seen in figure 4.1, with a Lorentzian implies the resonant nature of RO and 

motivated us to investigate its origin and resultant properties in detail in this 

chapter. 

In experiment, RO can be resolved as oscillating charge density dipoles. 

It has been possible to resolve more than 14 cycles of RO at T=lOK in a SC 

SL [6]. At room temperature, RO coherence is greatly reduced, nevertheless 
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Figure 4.1 A set of 10 superimposed cross-sections of p2 at RL2 in sample A 
(shown in figure 4.3) taken with the interval !::lt = r:;r= /2 starting from t = 0. 

resonant coupling between the two lowest minibands has been observed even 

at these conditions [4]. 

4.1 Data Analysis 

For convenience, we may omit some indices from the notation R~-p, (this 

symbol is explained on page 9), which means that the considered property is 

generic with respect to the omitted indices or they have already been discussed. 

Figure 4.3 presents a typical set of data taken for minibands 1, 2 and 3 

in sample A and w(x,O) = w 1(x). One can see RO as persistent self-induced 

oscillations in WSL population of significant magnitude with period Tn. rv 

10... 100 TB (their frequency range is between microwave and infrared re­

gions); some other dynamics is present as well and will be explained below. 

Resonances RL~ are well pronounced, wide, symmetric, show similar periodic 
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Figure 4.2 Total probability map plot showing decay of a wavepacket for sample 
A; w(x, 0) = w 1(x) . One can clearly see periodic drops in wavepacket's lifeti1ne 
due to RZT. Periodic spikes at each peak correspond to RZT through a series 
of minibands with the resonant conditions being superimposed. 

pattern corresponding to RO and large decay rate 'Y for lower indices (figure 

4.2) . Although seeming to narrow with t ime the horizontal [vertical] cross-

section of a resonance displays perfectly periodic oscillations with magnitude 

decaying for values of bias [for t ime] away from the resonant bias [time ori­

gin]. RO a resonances with lower indices decay very quickly, therefore, for 

the quantitative investigations in this chapter we considered resonances with 

index n = 3. 

By comparing figures 4.2 and 4.3 one can see that MWT 1nay not necessar­

ily result in RZT for well bound interacting WSL. Generally, RO is the reverse 

side of RZT in the WSL interaction; the ratio between the two depends on the 

strength of the potential. 
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Figure 4.3 Occupancy function maps for pt (bottom) , 2nd (middle) and 3rd 

(top ) minibands in sample A; w(x, 0) = w 1(x) . 
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Minor periodic changes in p1 ( t) and p2 ( t) creating a horizontal mesh on 

the background, with period TB, is the signature of BO: each time an electron 

accelerated by an electric field meets a confining barrier, it tunnels into the 

adjacent well. For extremely high fields (F > 10 ~~)their period and magni­

tude explodes since 8E1 +~E1 < F(d-a) and transition to the next miniband 

can be made without tunneling; then a theory different from interwell hopping 

should be applied. Such high fields are difficult to realize, and this regime will 

be discussed only briefly in section 4.12. 

There are two sets of periodic spikes at the top panel of figure 4.3 marked by 

longer and shorter arrows corresponding to series of resonances 'R1_ 2 and R 1_ 3 , 

respectively. In contrast with 'R1_ 3 , the resonances R 1_ 2 exhibit periodic 

pattern of great magnitude in p2 (t) and are wider. 'R1_ 3 show strong RZT 

rather than RO: tl.E3 =50 meV is considerably less that E2 - E1 = 89 meV, 

and this width is not enough to strongly bind an electron in the SL. At a lower 

bias, tl.E2 = 73.02 meV suppresses tunneling to the 3rd miniband, and only 

'T)k<5 ..bl 
'"1= 3 are VlSI e. 

nt3 is particularly interesting as it appears to be stronger than the pre­

ceeding 'RL3 • The reason lies in the tunneling mechanism involved: when 

making five interwell hops to reach the 3rd miniband, an electron's energy af­

ter two hops is close to E2 • This proximity greatly assists the tunneling process 

between minibands 1 and 3 by providing available density of states in the 2nd 

miniband; in other words, the transition element x~~ ~~ is of the order of x~~ 

(here x~n = (w~(x)lxlw~(x))). This also makes RO corresponding to 'R1_ 2 

vanish at the given field since the barrier through which the carrier tunnels to 
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the 3rd miniband and then to the continuum is significantly reduced by cou­

pling between WSL2 and WSL3. Let us call R~-v an isolated resonance if the 

resonant coupling between WSLv and WSL,u is much stronger than coupling 

between any other bands with either WSLv or WSL.u; otherwise we would be 

dealing with overlapping resonances. 

Resonances RL2 and RL2 seem to have diverging branches after time t ~ 

40 TB that has no physical cause, and is merely a product of finite resolution 

of the data grid and round-off error of the graphics software used. This also 

accounts for the fading pattern oscillatory in t sometimes appearing at lower 

fields when length of a time step (typically rv 0.01 TB) is larger than the period 

ofiO. 

In order to demonstrate structure of a resonance in more detail, the isolated 

resonance R~_2(A) for w(x, 0) = w1 (x) is enlarged on a separate plot 4.4; we 

will use this resonance as a good starting point in our further investigations and 

then proceed with generalizations. Apart from RL2 in the center of the map 

plot 4.4, there are two very narrow weak vertical traces at F.
1 = 0.4248 nmv 
"' me 

and }, = 0.4565 :;;{r. Interestingly enough, they correspond to Ri~!4 (since
8 

d/(A- A)= dFo=410.7 :;;{r, and E4 -E1 = 414.2 :;;{r) and are still noticeable 

despite their large indices. These and two other resonances (Ri~!5 ) are marked 

by white strokes at the top part of figure 4.4; this marking applies to other 

plots as well to indicate narrow resonances featuring significant RZT. 

The fits for data analysis that will be made in the subsequent sections, 

have been made by means of nonlinear least-squares method with asymptotic 

standard error of the fit parameters not exceeding (and at most times signifi­
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cantly less than) 1%. Thus we were expecting to have 1% accuracy within our 

interpretation of the results, based on the TB states. 

4.2 Resonance Condition 

By comparing details of wavepacket evolution at resonant and off-resonant 

fields, the resonant conditions for, and the nature of RZT and interminiband 

RO become clear. 

4.2.1 Self-Interference of Wavepacket 

Figure 4.5 demonstrates the dynamics of probability density p(x, t) associ­

ated with a carrier in a biased SL, that was initially localized in the oth cell; 

on the color map, greater value of p(x, t) is shown in a lighter color. In X, 

IO can be noticed by the wavy edges of the main parts of p(x, t) localized in 

the oth cell. BO appear in the form of the periodic burst-outs of a wavepacket 

from the oth into the 1st cell having a larger magnitude. 

The strong correlation between subsequent well-to-well tunneling events 

arises due to their coherence. This correlation manifests itself in the inter­

ference between IO and BO that is constructive for near-resonant fields and 

destructive otherwise. In the former case, it leads to a gradual transition of 

the center of mass of p(x, t) from the oth into the 2nd cell in X and from the 1st 

into the 2nd Brillouin zone in OC; thus one can talk about multiwell tunneling 

(MWT) of a carrier. That also explains why exactly at the resonant field the 
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BO phase difference of the two wavepacket's parts localized around the oth 

and the 2nd cells stays constant over time. 

The wavepacket interferes with itself through oscillations with two intrinsic 

frequencies, namely Wp,v and wB with detuning per single 10 cycle being 

(4.1) 

around a resonance with index n. The numerator in eq. 4.1 is simply a 

difference between energy levels belonging to the coupled WSL n cells apart 

E~ and E2 and it has two sources of variability. In the off-resonant region, 

10 frequency changes insignificantly compared to the BO one, and !:::..w varies 

mainly due to the change in bias. For IF- Fnl « r n' the opposite is true due 

to the mutual repulsion betweeen the resonant states' Ep, and Ev (i.e. their 

anticrossing, the concept is explained in the next paragraph). This results in 

a non-zero HWHM of a resonance, even at zero temperature. 

If bias is gradually increased, the difference E:J - E2, approaches zero as 

one nears the resonant value of bias Fn = E2;:dEZ. At certain proximity, when 

the two levels are very close to each other, one cannot precisely measure the 

difference between the resonant energies any more (the measured value will 

be distributed as f(E) with HWHM of the interband transition line): the 

resonant energies acquire significant complex part due to their strong mixing, 

corresponding to the fact that a carrier can freely decay from one miniband 

into another (i.e. the dipole matrix element (W~(x)lxiW:(x)) becomes large), 

or transfer between states through RO. So the two resonant levels will "merge" 

in an experiment at a resonance because of their wide distributions in E. With 
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Figure 4.4 Detailed view of Ry_2 in sample A. 
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and lK (lower panel) at RL2 in sample A. 
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further increase in bias, the interband tunneling becomes weaker, and one can 

experimentally resolve the individual resonant energies again; a good example 

of such anticrossings calculation can be found in [7]. 

From the close-up plots of the wavefunction we see that its transition from 

one miniband into another stops as soon as either maximum possible value of 

OF (p = pj_t + p'!/) is reached, or dephasing of 1r has occurred between the two 

oscillations. Figure 4.6 supports the latter argument. In the upper panel, it 

shows a simulation of wavepacket dynamics close to resonance. In the lower 

panel, shown is a computed dipole moment ('ll!(x, t)!xl'lll(x, t)) calculated over 

the oth and thee 2nd cells; here one can see IO clearly, especially around t = 0. 

For brevity, we will refer to the wavepacket part remaining in the oth cell as 

'lllo and in the 2nd cell as '1!12. 

One can see that with time, peaks of the oscillatory motion of '1!1 0 in X 

shift with respect to the peaks of the pure Bloch oscillatory motion, the latter 

occurring at t = NTB; this is a result of superposition of IO and BO. At 

the same time, the oscillatory motion of '1!12 has peaks on average at times 

t = (N + ~)TB (although shape of the oscillations changes over time due to 

IO) and do not exhibit such a shift. With time, the phase shift between the 

peaks of the resultant ocsillatory motion of '1!1 0 and '1!12 builds up, and reaches 

its net increment of 1r at t = Tn = 13.5 TB when l'lll2(t)l2 has a maximum 

and hence RO reaches its peak. After this, destructive interference between 

the out-of-phase part of '1!10 coming into the 2nd cell and already accumulated 

there '1!1 2 becomes so strong that it starts destroying the previously built up 

probability density in the 2nd cell. 
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Thus, we conclude that Rabi oscillations are governed by the process of 

self-interference of a wavepacket, and their amplitude is determined by the 

field detuning from the resonant value. This again evidences the coherence of 

multiwell tunneling, and in principle one can judge on the coherence length of 

a SL by the number of clearly observable resonances. 

As a matter of fact, the dynamics of w(x, t) in :OC demontrates features 

similar to those of BO across a single miniband, i.e. the wavepacket's center 

of mass is steadily traversing the 1st mini band and the 2nd one as a whole 

with the period TB. As the mismatch in energy alignment (Ep- E~- 2Fd) 

becomes smaller, the carrier in its BO motion in :OC across the 1st Brillouin zone 

faces little barrier in :OC on its way to the 2nd one. From this perspective, an 

anticrossing can be thought of as a phenomenon of two adjacent WSL merging 

into one broader one. Note that the width of distribution of w(x, 0) in X does 

not affect the overall appearance of RO; it only superimposes a uniformly 

spaced mesh corresponding to BO across two minibands, thus making them 

more distinguishable for a wider distribution in X (compare firgures 4.7 and 

3.2). 

4.2.2 Interminiband Transition of Wavepacket 

The shape of the probability density being built up in the 2nd miniband, in 

the process of RO, turns out to be nearly the same for different values of the 

off-resonance field; it also has a close resemblance to the corresponding TB 

WS function when considered at a peak of p2 (t) (here we will use a generic 

notation l'lln.(x)i2 for this built up probability in a corresponding cell). In the 

66 




n 

0.5 

0.18 

0.16 

-0.5 
0.14 

0.12 

-1.5 
0.1 

0.08 

-2.5 0.06 

-3.5 

0.04 

0.02 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

0 

0.1 

0.05 

0 

c -0.05 

-0.1 

-0.15 

-0.2 .___..__....______.___.__---'-----'----'----'----'----'---L--'-'---..__......_~ 

0 1 2 3 4 5 6 7 8 9 1011 12 1314151617 
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in X and in the lower panel the dipole moment (w(x, t) ixi 'll (x, t)) calculated 
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Figure 4.8 Comparison of the built-up wavefunctions (solid line) at resonant 
fields with the corresponding Wannier-Stark (dashed line) and Wannier states 
(chain-dotted line) in sample A at 'RL2 • 

diagram 4.8, one can see images of p(x, t) at timet= Tn/2 being compared 

to the TB WS functions of the corresponding cell at the given field. There is 

a striking similarity between them at 'Rf-2 and RL2 ; the large resonant bias 

A= 0.294 ~~ at RL2 challenged our method of constructing WS states 

(eq. 2.5), and we plotted the Wannier state instead for comparison, which 

at high fields should be close to TB WS states. The population of the 3rd 

miniband appears to be much larger at 'RL2 than at 'R~~2 due to a higher bias; 

this comes from strong coupling between WSL2 and WSL3 at that particular 

resonance which results in RZT being much stronger at A= 0.294 ~~ than 

at ,; = 0.439 nmv or ,; = 0.586 nmv as seen in figure 4.2. 
r3 me r4 me 

The left part of the figure 4.9 demonstrates the process of l'lln(x)l2 building 

up by a series of "stroboscopic snapshots" taken at equal time intervals at the 

resonant field over time range t E [0, Tn/2] for 'RL2 • On the right hand side, 

two l'lln(x)l2 for different fields around 'RL2 were compared. The first one 
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Figure 4.9 Evolution of the built-up state at FR2 and its comparison to fully
1-2 

built-up state for a near-resonant field. On the left, dashed lines correspond 
to time instants tk = 2k · TB < TR/2 (k = 0, 1, 2, ...); solid line shows the 
peak of the built-up state at t = TR/2. On the right, the shape of the built-up 
probability density at t = t2 at an intermediate moment t = t3 at the resonant 
bias (solid line) is found to be very close to the built-up probability density at 
a near-resonant field at timet= tTR. 
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was taken at the bias ~ - A~ 0.5f2 for which the peak population of the 2nd 

miniband was p2 ~0.77; the second one was taken at F = F2 at the moment 

when the population of the 2nd miniband was p2 ~ 0.77, too. Their close 

resemblance reveals that over the range of near-resonant fields, I'Wn.(xW is the 

same and appears to be a (rescaled) WS state of the 2nd miniband at F = F2 • 

4.2.3 Conditions for Interminiband Transition 

Overall, we saw that a series of relatively weak but coherent cell-to-cell se­

quential scattering events (multiwell tunneling) generates a remarkable macro­

scopic redistribution of the center of mass of the entire wavepacket under cer­

tain conditions. As a generalization, a distinguishable interminiband resonance 

occurs whenever the initial wavepacket is capable of building up a WS state 

of significant magnitude away from its initial location through the coherent 

process of self-interference. The capability to build I'Wn.(x)l2 is present at all 

biases since, in principle, WSL interact at any non-zero bias; so why is it only 

for certain resonant bias values that I'Wn.(x)l2 becomes observable and we can 

see RO? 

From our results, resonances are noticeable only at high fields, and we will 

be working in the high field regime, where typically the width of a miniband is 

not bigger than the potential drop per cell, whereas interminiband separation is 

larger than that. Hence, although speaking about interminiband transition, we 

will be considering interwell rather than interminiband tunneling. Obviously, 

the magnitude of the probability density built up through MWT should be 

negligible under a potential barrier and should be large inside a well, because 
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total energy of the wavepacket must be conserved within Plank's uncertainty 

relation (assuming the resonant energies to be real). Thus a distinguishable 

resonance between minibands J1 and v can be observed only for those discrete 

values of bias when the energy levels E;: and E;J situated inside wells n and 

malign: 

(m- n)Fd = E;'- E;;. (4.2) 

In principle, at low biases one would continuously observe resonances when 

changing bias, however in this case the tunneling channel between minibands 

J1 and v becomes very long, and the dipole transition matrix element from eq. 

2.9 vanishes, so the conditions for observing a resonance become very fragile 

and hardly implementable in experiment. 

The above argument was based on resonant energies of WSL being real 

which is not really the case for WSL; inspection of the self-interference mech­

anism allows us to get a more reliable understanding of the resonance phe­

nomenon. In the process of Bloch oscillatory motion, \ll(x, t) can tunnel out 

whenever it approaches the end of the oscillatory domain and produces a leak­

ing out pulse; let us denote the nth pulse as '1/Jn(x, t). As '1/Jn(x, t) scatter back, 

some fraction of them stays trapped in cells outside of the initial one and os­

cillates there; if oscillations of the trapped part of 'I/Jn-1(x, t) happen to be in 

phase with those of '1/Jn(x, t) trapped in the same well N, the conditions for 

constructive interference are met and the probability density jwn,(x)i2 builds 

up in this well. 
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For realistic fields, WB < Wp,v (or TB > Tp,v) and in order for oscillations of 

1/Jn(x, t) and 1/Jn-1 (x, t) in the Nth well to be in phase, the equality 

N (4.3) 

must be satisfied- this is the resonance condition for RO. Gradual decrease in 

bias makes wB smaller thus increasing N; that means that when the resonance 

conditions are met for the Nth time, we will observe l\lln.(x)l2 building up N 

cells down [up] the potential ramp from the initial one, which corresponds to 

a resonance with index N > 0 [N < 0]. Given this, for tunneling from the vth 

to the J-tth miniband, N = E'F::v . We will address the issue of periodicity of 

resonances in j;; in more detail in subsection 4.9. 

From the preceeding argument, we can state that the role of the inter band 

jumping mechanism as proposed in [5] in RO dephasing should be minimal. 

Indeed, if tunneling of the carrier into a certain well (and reflection back that 

doubles the phase increment of the 1/Jn(x, t)) puts it out of phase with the 

rest of the system, such well will not be largely populated due to destructive 

interference. Thus the effect of interband jumping on the entire wavefunction 

dynamics is negligible due to the coherence of MWT. 

Mathematically, our conclusion about the cause of MWT being the wave­

function's ability to buid up another WS state N cells down the potential ramp 

through the process of self-interference, corresponds to existence of the poles 

of the scattering matrix and in fact can be employed to successfully build a 

WS state for a multiband system [8]. 
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Figure 4.10 Values of FRn 
p.-v 

nd plotted versus inverse bias for various reso­
nances with lowest indices (n = 1, 2, 3, ... , ascending from the left to the right) 
and compared with Ep,- Ev calculated from the tight-binding model. Filled 
rhombi mark the data corresponding to R 1_ 2 ( C), filled circles to R 1_ 2 (A), 
filled triangles to R 1_ 2 (D), crosses to R 1_ 2 (E), empty circles to R 1_ 3 (D), 
empty rhombi to R 2_ 3(D), empty triangles to R 1_ 2 (B). 

4.3 Resonant Bias Values 

In order to check the validity of TB model calculations for energy levels of 

WSL, we compared the obtained values of nd Fn for the resonances with small 

indices in different samples with the corresponding interminiband separations 

calculated in the TB approximation (table 2.4) in figure 4.10.The data are 

plotted versus -j;; x error bars for all points refer to HWHM of a given resonance 

r n' whereas y error bars are rescaled in the same manner as A, i.e. their values 

equal ndrn. 

The values FR2 =(6.9±0.1) meV and F.,3 =(2.33±0.05) meV are reason­
1-2 nm "'1-2 nm 

ably close to the anticrossing calculation results performed in [7] (7.2 ~~ and 
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2.4 ~~, respectively) accounting for the fact that the potential used was an 

approximation to the square-box one used in that work. 

One could anticipate a deviation from the TB calculations and the two­

miniband model at higher biases; however, the resonances obtained occur pe­

riodically in ~ by complying with the resonance condition from eq. 4.2 for the 

TB values of EJ.L quite well. Even for resonances between the minibands 2 and 

3 (experimantally observed in [5]) in sample D, all 'R~::::(D) are surprisingly 

periodic in~ and hence ndFn are very close to l:l.E3 - l:l.E2 = 73.0 meV. The 

difference IFn.~_vnd- (EJ.L- Ev)l for all the resonances considered is less than 

2 meV, or rv 5%, except for 'R1_ 3 (D) at higher biases. 

However, the observed difference between the de facto relative position of 

E~ and E~ given by Fn.~-vnd and the one from the TB calculations (Ev­

EJ.L in table 2.4) typically is much larger than HWHM of the corresponding 

resonance (e.g. for 'R1_ 2 (A)). Hence, it cannot be explained by broadening 

of the corresponding pairs of energy levels (shown by the error bars in figure 

4.10). From the fact that Fn.~_vnd is always larger than EJ.L - Ev from the 

TB model, we anticipate that this increased difference between WSL energy 

levels is a result of mutual repulsion of EJ.L and Ev when close to resonant 

conditions, a well-known phenomenon of WSL energy level anticrossings. The 

strength of an anticrossing can be judged by the magnitude of the difference 

IFn.~-vnd - (EJ.L- Ev)l. 
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4.3.1 Deviation from the Tight-Binding Model 

In the case of the series of resonances R 1_ 3 (D), the value of ndFn expo­

nentially departs from !:iE3 - !:iE2 for ~ < 0.5, so that there is deviation 

from the resonant conditions as in eq. 4.2 for R 1_ 3 (D). At the same time, 

the resonance condition at such high biases is satisfied- for R 2_ 3(D) (RObe­

tween levels 2 and 3 in an atom have been observed in [5]) and even for much 

weaker potentials, such as sample C. As follows from the resonance condition 

holding very well for R 2_ 3(D) up to ~ > 0.25, the mutual alignment of levels 

belonging to WSL2 and WSL3 is not changing; it is departure of WSL1 from 

their TB-calculated values that is driving this. 

To check if this deviation is due to extreme narrowness of the 1st miniband 

in sample D as compared to the other minibands in samples D and the others, 

we performed simulations for sample E having a very strong SL potential, 

whose width of the first miniband 6E1 is even smaller than that in sample D. Its 

parameters are Vo = 212 meV, d = 15.85 nm [56 M L], a = 5.94 nm [21 M L] 

and u = 0.4 nm. The miniband structure for this sample is 6E1 = 1.7 meV, 

!:iE2 = 89.2 meV, !:iE3 = 89.2 meV, E2 - E1 = 87.0 meV and E3- E2 = 

117 meV. We see that for R 1_ 2 (E), resonance conditions hold for ~ > 0.2 

which means that the narrow 1st mini band is not the reason for the deviation 

of WSL energy levels from their TB values. 

In fact, the departure from TB model becomes significant for ~ < 0.25 

which corresponds to the potential drop per cell Fd = 47.4 meV that is 

larger than E2 - E1 = 44.6 meV; i.e. according to the TB model, at such an 

extremely high bias the energy levels Ef and EJ would be found in the same 
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Figure 4.11 Dynamics of the wavepacket w(x, 0) = w2 (x) in X (upper panel) 
and 1K (bot tom panel) at R~_3 in sample D. 
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cell. This is clearly impossible since then the two carrier states corresponding 

to the energies Eg and the E~ that used to be in cell 1 for lower biases, 

would have the same set of quantum numbers once situated in the same cell. 

Hence, the structure of separate Wannier-Stark ladders is completely destroyed 

at this point. Also, the initial forms of \ll(x, 0) = wk(x) used do not have 

much physical sense any more; the indexing of wn(x) as well as wavepacket 

distribution in JK: now corresponds only to the set of components with certain 

wavelengths rather than miniband indices. 

This phenomenon does not affect R 2_ 3 (D) though: the initial wavepacket 

\ll(x, 0) = w2 (x) having only components with wavelength A = ~ E [~, d] 

does not gain many components with A E [d, 2d] (corresponding to the 1st 

TB miniband) over time, because then it would have to increase its kinetic 

energy (the relation between a component's wavelength and its kinetic energy 

was pointed out on page 33). Indeed, we see from the plot 4.11 that the 

components with A E [d, 2d] (peaking at the centre of the othcell in X and 

contributing to k E [-~, ~] in JK:) are nearly absent at R 2_ 3 (D). 

At R 1_ 3 (D), a wavepacket making IO within one cell tranverses through 

the first two Brillouin zones of the TB model. It essentially treats minibands 1, 

2 and 3 as a whole as can can be seen from its oscillations in JK: over the domain 

k E [- 3
;, 3;1 presented in the middle section of figure 4.12 and resembling BO 

of a carrier across a single miniband (see figure 3.2). In contrast with R 2_ 3(D), 

at R 1_ 3(D) the components with A E [d, 2d] are present in the oth cell as well 

and mix strongly with the components having A E [~, d] thus causing intrawell 

oscillations of large magnitude (as compared to IO at RL2 in figure 4.6, say) 
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that are explicitly shown in the lower panel of figure 4.12. Also, in the case 

of R 1_ 3 (D) with w(x, 0) = w 1(x), despite a higher field, tunnelling to the cell 

numbered "- 1" is stronger than for R 2_ 3 (D) because components with shorter 

wavelength have larger kinetic energy. 

In conclusion, we have demonstrated that interminiband separations cal­

culated in the TB approximation can be successfully used for predicting res­

onant values of bias using the relation from eq. 4.2 in the high-field regime 

(oE1 < Fd < oE1 + !lE1), with rv 5% for the group of samples considered. 

This prediction can be applied as well to resonances across three minibands, 

such as R 1_ 3 and resonances between minibands 2 and 3, e.g. R 2_ 3 • The only 

restriction, Fd < E2 - E1, applies when calculating resonant biases for R 1_v· 

4.4 Pulsed Output from the System 

For resolvable Rabi oscillations of the carrier, there is a periodic coherent 

pulsed output similar to the one caused by BO [9]. In principle, one can 

experimentally observe RO by measuring their pulsed output. The data shown 

in the plot 4.13 at resonance for RL2 (A) corresponds to a record of i'lf(x, t)l 2 

values for different times, at the endpoint x = Xend of the SL. 

In the case of a very long RO and a small Zener tunneling rate, such as for 

nt3(D) with TR = 186 ps, the pulsed output gets significantly distorted (see 

bottom section of figure 4.13), since over the long course of a single oscillation 

the net effect of small factors can be significant. Still the remainders of RO 

periodicity are seen as periodic drops in l'l'endl2 with period TR = 2050 TB. 

80 




a.. 1 \ 
-o 
<: 

'"'f~ 
0 '·­~ 

@. 0.5 
N-:a 

<: 
CD g.. 

0 
0 500 1000 1500 

t 

1 

~ 
.& 

N 0.5-:a 
<: 
CD g.. 

1000 2000 3000 4000 
t 

Figure 4.13 Pulsed output of aRabi oscillating system at 'RL2 (A) (top) and 
nL3(D) (bottom). IWendl 2 =l\ll(xend) t)l2 is shown in solid line, where Xend is 
the end of the superlattice having a lower potential; chain-dotted line is the 
wavepacket norm. 
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The magnitude of the pulsed output is determined by strength of RO and 

rate of its magnitude decay- by strength of RZT. Obviously, the oscillations 

flatten out away from resonance and only a smooth exponential decay in ac­

cordance with Zener theory would be observed. 

4.5 Initial Wave Packets 

How would the entire graph of Pi (F, t) would look for a linear combi­

nation of Wannier functions w(x, 0) = Ev,n d,;w~(x) ? In the case when 

all Wannier functions are centered about the same cell (i.e. n is the same 

for all w~(x)) it turns out to be simply a linear combination of the form 

Pi(F, t) = Ev icvl 2 rfi(F, t), where pi(F, t) denotes to Pi(F, t) with initial 

wavefunction being 'lf(x, 0) = Wv(x). 

If n =I canst in the above sum, i.e. for a wavepacket spread over several 

cells, the picture stays nearly the same for a moderate potential, such as 

sample A. As demonstrated in plot 4.14, there is very little difference between 

P2(t) for 'lf(x, 0) = w1(x) and a broad Gaussian 'lf(x, 0) = (27ru)-114e-x2
fu

2 

with u = 30 nm :::::;: 2.5 cells (having the distribution between the bands 

p1(0) = 0.88, p2(0) = 0.004 and p3 (0) = 0.11) even at high biases. 

Unless mentioned otherwise, we chose a single Wannier function of the 

corresponding miniband as the initial wavepacket in all our calculations, as 

in this case the behavioral features seem to be better emphasized, and the 

generated figures are sharper. The proper WS states for high biases require 

serious calculational effort and, in addition, are not orthogonal at high biases. 

Therefore, we use Wannier functions as a convenient basis; with the above 
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considerations, it is straightforward to obtain OF behavior for an arbitrarily 

shaped w(x, 0). 

4.6 Validity of Two-Miniband Model 

We showed that the task of computing resonant bias values can be done in 

most cases using the TB model. Could another widely used approximation, 

namely the two-miniband model, provide an appropriate quantitative descrip­

tion of RO? First of all, we will consider dynamics of level population in the 

process of RO at an isolated resonance between two adjacent WSL; the cases 

of significantly overlapping resonances and resonance across three minibands 

will be discussed in section 4.12. 

As seen in figure 4.15, the shape of ~(t) at a resonant bias for R 1_ 2 (A) re­

sembles the sinusoidal oscillations predicted by the two-miniband model given 

in eq. 2.9. Relative population of the 3rd is typically of the order of 0.1% 

as demonstrated in section 4.7. The lower the bias, the lower is the decay 

rate of the wavepacket and the smaller the magnitude of IO ; for a resonance 

index as large as n = 3 at F
1 = 0.44 nmv, the carrier demonstrates very clear 
3 me 

sinusoidal RO. Note that these RO are demonstrated for relative OF, whereas 

in eq. 2.9 the absolute OF are considered. 

It was found that OF dynamics at a resonance between minibands 2 and 3 

repeats the same pattern as the one at a resonance between minibands 1 and 2 

(figure 4.16). This means that the sinusoidal oscillations in the level population 

predicted within a two-band approximation prediction are obtained in this case 

as well. 
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Thus, the two-rniniband model without corrections can be applied only for 

low biases, i.e. when resonant Zener tunneling over one RO cycle is very small: 

p(t)-~~:T'R.) ~ 1. At higher biases, a different dependence of certain factors on 

bias was obtained and some additional values need to be taken into account, 

as described next in section 4.7. The following several sections are devoted to 

mathematically defining the correct description of dynamics of a carrier in the 

process of RO and the corresponding physical implications. 

4.7 Occupancy Function Decay Fitting 

Figures 4.18 and 4.19 tell us that RO are more persistent when the mag­

nitude of RO between the 1st and the 2nd mini bands is large and the total 

probability is quickly decaying. From the fact that ROof p2(t) and p3 (t) are 

in phase with each other, we conclude that there are no RO between them. 

The 3rd miniband is populated due to two factors: (i) the finite time it takes 

for the wavepacket to simply cross the 3rd miniband while escaping from the 

SL and (ii) possibility that the corresponding "true" resonant state for the 

2nd miniband may include harmonics from the 3rd TB miniband. From our 

observations, p~m ~ e-3 ~ 5% at all fields around a given resonance for 

'IJ!(x, 0) = 'l/;1 (x). This makes it reasonable to neglect the wave that is reflected 

back across more than one miniband since the reflected magnitude is no larger 

than <:~m)2 ~ e-6 ~ 0.25% (unless Rabi tunneling itself happens over three 

minibands as in R 1_ 3 , in which case we will neglect reflection from across more 

than four minibands). 
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circles on the right figure) around RL2 in sample A. The region at I~ ­
~ 1 < r n3 is enlarged in the inset. 

R3 1-2 
1-2 

To be able to ignore the factor (i) in our calculations, we will mostly use 

absolute OF and refer to relative OF only for illustrations. The factor (ii) may 

be significant only at extremely high biases and leads us beyond consideration 

of only two interacting minibands. 

From figure 4.19, the following fits for OF and total probability turned out 

to be quite satisfactory: 

-ryt pneq(l-e_'Yneqt)p(t) - e e (4.4) 

Pn(t) - e-"tnt [P:; ± Ane-ryAt cos ( ~= t) J (4.5) 

The choice of the sign to replace "±" in eq. 4.4 is determined by w(x, 0) 

and the miniband index n considered. For nfl-_v, "+" should be chosen for 

the component of initial wavepacket belonging to miniband v, and "-" for the 
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- -F 
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other one. The lower panel of figure 4.19 illustrates this rule well : at the initial 

timet = 0, the p1(t) curve has a crest in its oscillatory pattern, whereas for 

P2(t) has a trough. 

The meaning of the parameters is as follows. The first term in eq. 4.4, 

e-"~ t , corresponds to an exponential decay of the entire wavepacket at a steady 

rate /'; we ascribe the second term to the quicker (non-equilibrium) decay of 

the part of the wavepacket pneq that projects onto proper WS states of higher 

(n > 2) minibands. It was found that pneq is less than 1% beyond (roughly) 

3 r away from res nance, reaches its maximum of rv2% between 3f and 1f 

away, and becomes too small to be found closer to resonance. Furthermore, 

typically l'n eq rv 103/', so the non-equilibrium part can easily be neglected over 

the long run in our calculations. 

The common factor , e-'Ynt, in eq. 4.5 is caused by overall decay of the wave 

function ; in particular, l'n was found to be quite close to I' (see figure 4.17). 

The difference betw en /'l and I' is no more than 6% in this example, and there 
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is a certain trend that this difference vanishes at the two extreme cases of being 

far away from, or at resonance field F3 , and increases in the intermediate region 

with maximum located"' 0.5 r 3 away from F3 . As expected, 'Y demonstrates 

Lorentzian dependence around a resonance (10]. 

The expression ARe_"~At cos(~; t) represents RO starting with initial amli­

tude AR and decaying at a rate 'YA. p~t is the asymptotic steady-state value of 

Pn(t): when t -too, RO vanish and the system comes to a steady state regime 

(i.e. to dynamic equilibrium in terms of distribution of \ll(x, t) between the 

mini bands). 

One could expect that ';-(t) in itself perfectly demonstrates all features of 

RO; however, as it was just shown, generally 'Yn =/= "(, and as it follows from 

equations 4.4 and 4.5, Pn(t) =/= p~t + ARe_7 At cos(~; t) at large times in a non­

steady state. To compensate for the difference 'Yn- "(, p~t exponentially shifts 

with time (figure 4.19); therefore the value of 'YA was extracted from the Pn(t) 

graph by means of curve fitting. 

At the distance "' 6 r away from a resonance, the RO amplitude drops by a 

factor of"'103 , and becomes comparable in magnitude to intrawell oscillations. 

The OF behavior is a superposition of the two oscillations, that now become 

of comparable magnitude, as on graph 4.20(b). In a bird's eye view it acts 

similarly to background noise that makes it harder to reliably resolve RO, 

especially their decay rate (graph 4.20(a)). In the limit ofF- F3 ~r3 , RO 

get swamped by 10: p:; -t 1, AR -t 0, and "( -t 'Yn· 

One can see that this dependence is same as that predicted by the two­

miniband model except for the presence of the terms with p:; and 'Yneq. The 
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introduction of the p~t term has deep physical meaning: it corresponds to the 

finite probability of tunnelling out of the SL and provides a means to merge 

RZT and RO as the two sides of a single phenomenon, namely interminiband 

resonance. 

The rule to handle w(x, 0) = l:v,n c~w~(x) was described in section 4.5; 

one should take a linear combination of the corresponding fits with coefficients 

ic~l 2 and account for non-equilibrium values of initial Pi = ic~l2 in this case. 

4.8 Period of Oscillations and Half-Width at 
Half Maximum 

For all resonances in various samples, the RO period clearly showed a 

Lorentzian-like dependence as anticipated from the nature of Rabi oscillations: 

(4.6) 

that is shown in the figure 4.21. 

The data were obtained from the fit of figure 4.5 and over a large length 

of time considered (t ~50 .. . lOOTR) the precision of finding the RO period 

was <0.01%. In the subsequent sections we will rely on this fit as the most 

reliable one. 

The HWHM of a TR ( ~) dependence remains constant over time since the 

RO period is not varying with time, confirming our expectations from section 

2.5. Figure 4.22 shows the TR(~) fits from eq. 4.6 of first four minima of 

RO in P2(t) for RL2 (A) as retrieved from 4.4. Since TR(~) is fitted well 
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Figure 4.21 Period ofRO vs. bias for RL2(A) (left) and RL2 (B) (right) fitted 
by a Lorentzian .. 

with a square root of a Lorentzian (other quantities are hard to fit with a 

Lorentzian, as we will see later), we will refer to HWHM of this Lorentzian as 

HWHM of a resonance throughout this work . Explicit calculation of HWHM 

corresponding to the first five RO minima curves showed that their values were 

the same within the uncertainty range (5.25±0.3, 6.0±0.3, 5.9±0.3, 6.2±0.3 

and 5.9±0.2 ;;;, ). 

On OF map plots, one can see that the RO period Tn grows with resonance 

index n. It has been predicted in [11J using perturbation theory that frequency 

of RO grows linearly with bias, i.e. Tn ex n. However, by comparing periods 

for several RJ._2 in samples A and C, we rather see their exponential change 

with n (figures 4.23, 4.24). Thus perturbation theory fails to describe the 

process of RO properly. 

This increase in the period is well understood, since as the bias becomes 

lower, the horizontal transition to the next WSL lengthens in X, and it takes 
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Figure 4.22 Time recorded when p2 reached its first four minima in the process 
of RO at 'R,~_2 (A) versus bias. 

more time for the probability density to build up in the other miniband. In 

eq. 2.9 this is accounted for in the term Xnm, that is expected to vanish 

exponentially with the distance jm- nj, and indeed we obtained the following 

relation for RO period: 

Tf:"=) (n-1)
r:_n= r.;n= 2 n= 1,2, ... (4.7)n = 1 (ymax ' 

1 

As the index n ascends, 'R,~_11 are expected to become narrower since the 

length of the tunneling channel increases and so does the system's sensitivity 

to frequency detuning per interwell tunneling event. Again, the exponential 

law 

r2)(n-1) 
r1 r1 ,n=1,2, ... (4.8)( 

(4.9) 

clearly shows up in our simulations- figure 4.24(a). 
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Figure 4.23 Logarithmic fit of r;:-= versus resonance index for R 1_ 2 (A) (left), 
R 1_ 2 (C) (center) and R 2_ 3 (D) (right). 

Except for explaining some qualitative features, the simplistic model de­

rived earlier in section 2.5 can be used to estimate certain parameters. For 

example, the values for HWHM and RO periods calculated from eq. 2.9 (T1 = 

8.7 TB, T2 = 22 TB, r 1 = 16.5 :err;,. and r 2 = 6.88 ;~) were reasonably close 

to the values obtained from the simulations (T1 = (8.7±0.1) TB, T2 = (22±3) 

TB, rl = (15.1 ±0.1) :; and r2 = (5.9±0.2) ;;). 

The anticipated relation 

~= = _I_(r )-1 (4.10)
n Fo n 

holds particularly well as it does not involve the dipole matrix element Xnm 

and hence is not related to any particular method of constructing resonance 

WS functions. For sample A, a fit to figure 4.24(b) produced a coefficient 

Tlfnaxrn =(144 ± 7) ;;, whereas A= (145 ± 1) ;;. For sample C, r;a=r3 

= ( 334 ± 3) ;; as compared to ~o = ( 335 ± 5) ::e'7r. 

96 




32 

16 

~ 
l 
(!']. 

4 

2 

0.5 
2 

n 

4 

IS 

l 
;> 

10 

~']. 

0 

I 

~ 
\ 
I 

I 


\ 
't 

\ 

0 50 100 ISO 200 

TR'!.z 
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4.9 Amplitude of Oscillation 

As was shown in section 4.7 in this work, by amplitude An. we mean the 

RO amplitude for w(x, 0) = w1(x) at t=O when unaffected by RO damping. 

Figure 4.25 demonstrates that for a variety of near-resonant field values, RO of 

the OF have perfectly sinusoidal shape which was expected from the analogy 

between interminiband RO and other types of RO. 

Whereas in a two-level atom this shape of RO is explained by the pres­

ence of stimulated spontaneous emission, in our case it is due to the two-way 

symmetric (since l(wl(x)lw2(x))l2 ~ l(w2(x)lw1(x))l2) tunneling channel be­

tween the two minibands. The transfer between the minibands is equally free 

in both directions, so centre of mass of the wavepacket keeps oscillating be­

tween them, much like the swapping of population levels in the pumping media 

of a laser, the value of the equilibrium population of the nth level corresponding 
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Figure 4.25 First period of Rabi oscillations of 7(t) resolved for a set of dif­
ferent values of bias at RL2 (A). The values of bias were taken on one side of 
the resonant one and spanned the region of rv5 HWHM. The oscillations have 
the shape of a sine squared. 

to p~t. This can be seen in the figure 4.26 showing time evolution of various 

compositions of w(x, 0) = l:n Cn wn(x) at a resonant field. 

The AR(F) curve shows a more complicated dependence than a Lorentzian. 

It is easier to start with AR(TR) dependence that resembles a quarter-circle: 

.jc _(F)~ T,(F) ~ Jl- (1-~)a (4.11)v p, TJ;!;= Amax ' 
R R 

where a= 2 fits the data for both RL2 (A) and RL2 (B) quite well, as shown 

in figure 4.27. 

From a semiclassical model, one would normally expect a parabolic de­

pendence with AR(F) ex Cv-p,(F); in reality, the dependence now looks more 

like 

(4.12) 
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Figure 4.26 Occupancy function dynamics for w(x, 0) = Wt(x ) + w2(x) (bot­
tom) and w(x, 0) = w2(x) (top) at an off-resonant field for RL2 (A) (Pt in 
solid red, P2 in dashed green, p3 in dotted blue and p in chain-dotted magenta 
lines). 

99 




1/F (nm/meV) 

1.01 1.02 1.03 

0.9 

0.8 

0.7 

0.6 

~ 0.5 

.... 0.4 

0.3 

0.2 

0. 1 

J 

I 

·-·.. 
o. .,~-•o -o a:. · ,.._ 

9' 

~ -­
• • 9- · 

9/ 

~ .... 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

,. ..-·· .. ­.. 
p-

o'' .•· 
/

l 
f 

I 
! 

0 0 

0 	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A,.lA~" AR/A~ax 

Figure 4.27 Period of RO vs. their amplitude for RL2 (A) (left) and RL2 (B) 
(right). Filled circles correspond to ~ < A. 

In figure 4.28 one can see that the An(F) is close to a Lorentzian at the 

distance :2: 2r away from resonance, has a steeper slope in its vicinity and a 

much sharper peak at a resonant field. 

4.10 Oscillation Damping 

In a SC SL, there may be many sources of decoherence of RO whose role 

in experimentally observed RO damping has been analyzed before [12 , 13]. 

Among them are technical noise, lattice dynamics resulting in phonon emission 

[14], lattice imperfections [11], coupling to the continuum states [15], and other 

mechanisms such as biexciton excitation in a three-level atom. 

Since there is no incoherent scattering in our model as set out in section 

2. 7, the damping for R J.L - v arises solely from coherent damping caused by the 

broadening of EJ.L and Ev as metastable states [16]. It is no wonder that RO 
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Figure 4.28 Amplitude of RO vs. bias for RL2(A) (left) and RL2(B) (right). 
Chain-dotted line is a Lorentzian fit, solid line is fit from eq. 4.12. Filled 
circles correspond to ~ < ·1-a . 

damping rate has little to do with the overall carrier decay rate and the shape 

of the 'YA(~) curve looks quite different from thf;l other quantities characterizing 

OF dynamics (see figure 4.29). 

Due to nearly precise matching of the two energy levels at resonance fre­

quency F3 , 'YA ~ 0; as we move away from F = F3 , it grows very quickly. 

One can see two broad side features on figure 4.29 for resonance RL2 (A). 

Damping of RO is proportional to the width of the transition line E~-Er and 

the relation is non-linear as follows from the general equation [16]: 

p~(t) (4.13) 

r(E) 
f(E- E2)- f(E- E1) 
1 1 

~ - F- Fn' 
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Figure 4.29 Damping rate of RO vs. bias for RL2(A) expressed in in. (right) 
and the default iB (left) units. 

where f(E-Ek) is the normalized level density for level Ek belonging to WSLk. 

Thus increase in damping with its subsequent increase as we move away from 

F = F3 can be ascribed to the dependence of f(E), for the two energy levels, 

on bias at an anticrossing. For a Gaussian f(E), this dependence would be 

its HWHM. The resulting distribution for j(E1 ) + j(E2 ) corresponding to the 

term E2 - E1 in £(e, r(E)), over the considered bias range of"' 12 r, can 

produce as complex pattern as the one seen in figure 4.29 

By finding a way to extract the distribution functions f(E1 ) and f(E2 ) 

from data sets like the one in figure 4.29, one could gain valuable information 

about the complex-valued spectra of WSL at an anticrossing. A metastable 

state belonging to a WSL has complex energy E = Eo + ir, where r is the 

characteristic width of f (E) (HWHM in case of a Gaussian distribution). 

As it was mentioned earlier, RZT and RO show up at a resonance to dif­

ferent degree; generally, RO are quickly dissipating with time in case of strong 
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Figure 4.31 Carrier decay rate vs. bias for RL2 (A) (left) and RL2(B) (right). 
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Figure 4.32 Lorentzian fit of steady-state occupancy of the 1st miniband vs. 
bias for RL2 (A) (left) and RL2 (B) (right). The inset shows deviation of pJ.t 
from the Lorentzian fit close to resonant bias due to the increase in P2t and p'(,/ 
caused by RZT. 

RZT (i.e. RL2 (C)), but apart from that their relation is quite complicated. 

Although AR looks like a Lorentzian in any case, 1 behaves very differently 

each time as can be seen in figure 4.31; it has to be estimated using the routine 

described in [17] or [10]. The question of possible relation between RO and 

RZT is beyond the scope of this work. 

It is worth noticing that IRf- was of the order of 10-6 iB for RL2 (B),
2 

i.e. 103 times smaller than for sample A within 6 r around resonance, andrv 

could not be reliably resolved within t ~ 103 TB (figure 4.30). As a far stronger 

potential than sample A, sample B has much narrower f(E) for its levels and 

possesses greater ability to sustain RO. 

4.11 Steady State 
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Figure 4.33 Period of RO fitted vs. steady-state occupancy of the 1st mini band 
for the 3rd resonance for RL2(A) (left) and RL2(B) (right). Filled circles 
correspond to ~ < A. 

As RO asymptotically vanish with time, a steady state corresponding to 

pure ZT is achieved. It can be characterised by steady-state occupancy p:;, 
which is probability density dynamically residing in the nth miniband as the 

carrier slowly leaks out. The fact that p~t is not necessarily ~ has been observed 

by Fidio et al. [5] where it was called "asymmetry of decay'' 

The dependence of Pit on the bias again looks like an inverted Lorentzian 

(see figure 4.32); its fit versus RO amplitude on figure 4.33 reveals a sinusoidal 

dependence: 

(4.14) 


(4.15) 

where Pit corresponds to the ZT rate for the given bias (i.e. to Pit in the 

absence of a resonance); this "residual" p1 typically was less than 0.5%. 
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4.12 Resonance across three Minibands 

Finally, we would like to demonstrate an interesting phenomenon of a 

resonance across three minibands as obtained in our simulations for sample 

D. We could clearly resolve RL3 (D) at A = 0.3147 ;:~ and RL3 (D) at 

~ = 0.47855 ;:~ (figure 4.36). 3 

The dynamics of the relative OF is plotted in figure 4.34; it is remarkable 

that, despite the strong coupling to the 3rd miniband, the RZT rate is seen to 

be negligibly small. One can observe that the population of the second level, 

which would be excluded when naively applying the two-miniband model here, 

is significant over the course of time and thus needs to be taken into account 

(compare with population of the third band in figure 4.16 which is populated by 

RZT in that case and is excluded from quantitative considerations). With the 

index n of a resonance ascending, the average population of the 2nd miniband 

at Rr_3 decreases ( (p2(t)) = 0.22, 0.115, 0.080 and 0.030 for n = 1, 2, 3 and 

4, respectively), and its population is caused by RO rather than RZT. If the 

extent of involvement of the 2nd miniband in process of the carrier transfer 

between minibands 1 and 3 would remain the same for all indices, the average 

population (p2(t)) would be expected to be proportional to the tunneling rate 

of MWT, or inversely proportional to the period of RO. According to eq. 4.7, 

this would imply (p2(t)) ex e-n. However, the values of obtained (p2(t)) do not 

show an exponential dependence. The presence of available states in the 2nd 

miniband introducing the possibility for the probability density to build up 

there in the process of RO at R 1_ 3 , favors the transition of w(x) into the 3rd 

miniband. Thus the degree of participation of the 2nd miniband is determined 
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Figure 4.34 Occup ncy functions and wavepacket norm (p1 in solid red, p2 

in dashed green, p3 in dotted blue and p in chain-dotted magenta lines) at 
IJ- Fn!, I « r Ri'- 3 for n = 1 (top) through 4 (bottom) in sample D. The 

1-3 

broken black line shows (p2 (t)) . 
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by alignment of energy levels in WSL1 , WSL2 and WSL3 and is dissimilar for 

resonances with different indices. 

As one can see in figure 4.35, the carrier mostly bypasses the second mini­

band since the resonance condi tion for R 1_ 2 is not well satisfied, and it t unnels 

directly into the 3 rd miniband. Individual IO are not resolved in X even on 

a larger scale because of a strong potential in sample D and the fact that IO 

between the coupled mini bands 1+->2 and 1+-> 3 are nearly equal in magnit ude 

and strongly interfere with each other , as was noticed from the irregular shape 

of the result ing oscillations of a wavepacket within the o th cell (where the car­

rier was set ini tially) . Also, it was noticed that within the o th cell , the center 

of oscillations of the probability density was shifted from the centre of the cell 

under the influence of strong bias that made them asymmetric in X. In JK , 

the 2nd Brillouin zone consistently remains underoccupied relative to the 1 st 

and 3rd ones, which confirms the fact of direct tunneling from the 1st to the 

3rd miniband . Some traces of p(k, t ) in the 4th and the 5th zones correspond 

to RZT. 

4.12.1 Deviation from Two-Miniband Model 

The coupling of minibands 1 and 3 can noticeably be enhanced by means 

of the product of transition matrix elements (W1 (x) jxj W2 (x)) (W2 (x)jx jW3 (x)) 

when it is comparable with (W1 (.r) jx jW3 (x)). This fact was briefly mentioned 

in section 4.1 where it led to increased rate of RZT between minibands 1 and 

3. In the case wi th RO , greater coupling leads to increased rate of MWT and, 

as a consequence, to reduction in the period of RO . Indeed, figure 4. 37 demon­
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Figure 4.35 Dynamics of the wavepacket w(x, 0) = w 1(x) in X (upper panel) 
and IK (lower panel) at Rf_ 3 in sample D. 

109 




lnp 1 
0 

180 

-0 .5 
160 

-I 
140 

- 1.5 
120 

-2 

100 
-2.5 


80 
 -3 


60 
 -3.5 


40 
 -4 


20 
 -4.5 

-5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1/F (nm/meV) 
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w(x, 0) = wl(x). 

strates that the previously obtained exponential curve TJ?:;f~"3 versus n based 

on the two-miniband approximation is not a good fit to the data any more. 

We see that for the resonance RL3 , Tn is much longer than expected from 

the two-miniband model predicting an exponential data fit for RO periods. 

In the tunneling channel between the levels EP and Ej consisting of 4 

interwell hops, the only available to the carrier intermediate energy levels E~ 

are close to the carrier initial energy in cells k = 1, 2. It turns out that at 

F = F4 = 1.245 nmv , a carrier faces the most unfavorable situation for usingm e 

these available intermediate states in }-I\t\lT, because they are equally remote 

from the carrier's initial energy: IE? - Ei l ~ IE? - Ei l~ 1f! ~ 20 m eV 

(whereas in other cases, when n =I= 4, one of these distances in IE is shorter 

than 7 me V). Thus in order to be able to calculate parameters of a resonance 
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deviation from logarithmic fit. 

across three miniba ds, one has to take at least these three minibands into 

consideration. 

4.12.2 Role of Sandwiched Miniband 

T he general role f the 2nd miniband in R 1_ 3 was briefly pointed out on 

page 59; in order to understand it better, let us consider another example 

where strength of interminiband coupling at R 1_ 3 and R 1_ 2 is comparable 

(an ·'overlap" between resonances). 

The area correspo ding to the overlap of the two resonances RL3 and RL2 

in sample B is shown on the enlarged p2 map plotted for \ll (x, 0) = w2 (x) (figure 

4.39). RL2 is situated on the left and RL3 on the right, the former being 

wider and more powerful. Figure 4.38 shows details of the carrier dynamics 
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Figure 4.38 Absolute (bottom ) and relative (top ) occupancy functions for the 
case of strongly overlapping resonances RL2 (C) and RL3 (C). 

for field *= 0.646 ;~ where contribut ions from RL3 and RL3 are nearly 

equal. 

Since all three WSL are interacting at the same t ime, the resul tant dipole 

dynamics looks similar to a superposition of the three corresponding RO for 

individual resonances, and the time evolut ion of p1,2,3 (t) demonstrates beats. 

T hus RO at RJ.,-v with lv- ~ll > 1 are a product of interference not only BO 

and IO, but also RO corresponding to all pairs of coupled minibands K,~ f-t 

with p ~ ~ ~ v and p ~ K, ~ v , K, =/= ~-
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Obviously the two-miniband model cannot reproduce this type of behavior 

when trying to compose a combination of interactions between separate pairs 

of mini bands ~ <---7 r;,. As it has been found before [13] , RO in a three-level 

system are not merely summation of separate RO from the two-miniband 

model, they rather are a mixture. In fact, the temporary reduction of Rabi 

oscillations amplitude observed in work [18] was not due to dephasing; it was 

revival of RO , i.e. the beats caused by superposition of RO from several lowest 

mini bands. 

l\tiap plots of the wavefunction with different ini tial forms at the same 

field reveal more interesting features (figures 4.40 and 4.41): a large amount 

of p1 [p2] seems to facilitate the build-up of the other one. For example, 

p2 (t) (Pv(t) are seen as a part of p(x) whose shape has v humps per cell) is 

relatively low at t = 35 Ts and t = 70 Ts, i. e. at the moments when p3 (t) 

is almost zero. Also, when p2 (t) is relatively high, p3(t) becomes larger (e.g. 

at t = 20, 50 and 90 T8 ). In OC, we see movement of peaks in probability 

density between different Brillouin zones corresponding to the three types of 

RO (see section 4.2) and distinguishable by their different slopes 2 ~rr/d ,
n'?-2 

2 ~~/d and 3 ).rr!d ~· The finer background oscillations are caused by 
'RL:J nt - 3 nm B 

BO in individual minibands. On the plot 4.41 one can even see traces of 

interaction with the 4th miniband since a part of the Fourier t ransform of 

w(x, t) resides in the region ikl E [5J, 7;J. 
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Figure 4.40 Dynamics of the wavepacket w(x,O) = w 1(x) in X (upper panel) 
and IK (lower panel) at Ri_2 in sample A. 
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Figure 4.41 Dynamics of the wavepacket w(x, 0) = Wz(x) in X (upper panel) 
and lK. (lower panel) at RL2 in sample A. 
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4.13 Generalizations 


We found interminiband RO to be a result of wavepacket's self-interference 

due to two kinds of quantization in a biased SL system: discrete energy levels 

of different WSL and their Stark splitting in an external electric field; the 

corresponding system frequencies wp.-v = E.,~E,. and WB = F,;,d refer to 10 and 

BO, respectively. 

It was obtained that for any given F the following relations summarizing 

our quantitative findings 

w(x, 0, F) = Lkv c~w~(x) 

n= 1,2, ... 

(4.16) 

provide a reasonable description of a carrier dynamics, where IO(t, F) stands 

for the term describing the background intrawell oscillations; these relations 

closely follow the two-miniband model approximation except for a few terms 

incorporating RZT. 

117 



The resonant values of bias are found to be very close (within "'5 %) to 

those calculated using energy minibands given by the TB approximation, even 

for resonances across three minibands, and resonances between minibands 2 

and 3. The only restriction, Fd < E 2 - E 1, applies when calculating the 

resonant biases for R 1_v· 

Thus to be able to reconstruct the entire picture of carrier's RO reasonably 

well, values of only a few parameters (TR1 and TR2 ) obtained from an 
v-p. V-JJ. 

experiment or other calculations are necessary, and a wavepacket of arbitrary 

shape can be used for potentials of moderate strength. We leave open the 

question of obtaining relations for 'Y(fr), 'YA(fr) and magnitude of IO open, 

since their prediction requires significant theoretical derivations. In particular, 

an anlytical expression for RZT rate 'Y(fr) in the two-miniband approximation 

has been derived only recently in [19]. To precisely locate a resonance in the 

experimental setting, RO lifetime can be best used, as it demonstrates the 

narrowest peak at resonant bias. 

We did not account for the process of radiation emission of an oscillating 

dipole and induced spontaneous emission in the presence of such radiation in 

our calculations; this is beyond the single-particle model considered herein. 

Also, the questions of possible relation between RO and RZT and a compre­

hensive description of IO seem to be interesting for further research and will 

be addressed in our future works. Our numerical scheme in its present state 

can easily be applied in further investigations studying time-dependent (e.g. 

irradiated) potentials, surface states and the influence of lattice imperfections 

on the carrier dynamics. 
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Chapter 5 

Conclusions 

The aim of this work was to study single particle longitudinal dynamics in 

a biased ideal superlattice potential, in the time domain. In order to overcome 

drawbacks of the traditional tight-binding model, we used a first-principles 

approach and set up a stable and robust numerical scheme including transpar­

ent boundary conditions, to numerically solve the time-dependent Schrodinger 

equation; pros and cons of the scheme were analyzed. The constraints of a 

zero-temperature ideal superlattice are well satisfied in experiments with cold 

atoms in optical potentials and low-temperature semiconductor superlattices 

and double quantum dots. 

Various nonlinear transport phenomena such as Bloch oscillations, reso­

nant Zener tunneling and self-induced interminiband Rabi oscillations (RO) 

were modelled. In particular, RO with frequencies 1013 ... 1014 Hz were clearly 

resolved in the high-field regime in a variety of semiconductor superlattices. To 

our knowledge, we have performed the first simulation of direct RO between 

1st and 3rd minibands. The dependence of the maximum period of RO was 

found to be different from the predictions of perturbative calculations. Self­

interference of a wavepacket through coherent sequential scattering events was 
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explicitly shown to be the physical reason explaining the magnitude and dy­

namics of carrier polarization. Based on the acquired results, equation 4.16 

was proposed to describe carrier dynamics. 

The tight-binding model was found to be a good approximation for pr(r 

dieting the resonant values of bias even for resonances across three minibands, 

and resonances between non-ground bands. Resonant carrier dynamics was 

closely following predictions of the two-miniband model; for the case of over­

lapping resonances and a resonance across three minibands, the two-miniband 

approximation fails to give a reasonable description of the dynamics and a 

thre(rminiband model is required. 

The concept of quantum transport and the numerical scheme considered 

here, with minor variations are capable of handling a tim(rdependent potential 

and lattice imperfections and can also be applied to other systems (double 

quantum dots) and even other areas of physics, such as photonics and cold 

atom optical traps. 
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Appendix A 

Discrete Transparent Boundary 

Conditions under Bias 

Our numerical method was based on TrBC implemented with Numerov 

and Crank-Nicholson methods for space and time respectively. The cumulative 

precision was found to be O((D.x) 5) in space and O((D.t)2
) in time. We made 

an extension of the discrete TrBC as described in the Curt Moyer's work for the 

case of unequal non-zero saturation potentials on both sides. Most notations 

herein are the same as in Moyer's work; the imaginary unity is denoted i. 

Let us express eq. 2.10 in terms of finite differences. We will start from 

the finite difference form of the system's propagator translating system by 8t 

in time: 

'll(x, t +D.) ~ e-iH(t)Ll 'll(x, t), 

with D. =~and H(t) being the (generally speaking) time-dependent Hamil­

tonian of the system. Cayley's approximation preserves unitarity exactly: 
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Little algebra leads to the expression 

2 ~;n*(v(x,t)-~)] (w(x,t+~)+w(x,t)) = 

8imm* ( 3) 
- fi2~ w(x,t) + 0 ~ 

which serves as a discretized in time version of eq. 2.10 and as a starting point 

for discretization in X using Numerov method. 

In order to build the solution of eq. 2.10 w(x, t), we will use a uniform 

space grid consisting of J points and defined as xi= j ~x, j = 0, 1, ... , J- 1 

and uniform time grid t(k) = k ~t, k = 0, 1, .... The subscripts l, j and r will 

be used to refer to the points x0 , Xj and XJ-b respectively, and the superscript 

(k) -to refer to the time instant tk; thus w(xi, tCk)) =WJk) and V(xn) - Vn. 

To apply TrBC in the Numerov approximation for the 1D case, the neces­

sary conditions are: V(x < x0 ) = V0 =\ll, V(x > XJ_1) = VJ_ 1 =V,., and 

w?;r = 0 at t = 0. In this way, on having started at t = 0, we proceed as 

follows to contruct w(x, t<k+1)) given w(x, t<k)): 

(i) Calculate the time-independent coefficients over the X-grid: 

9j -
2mm* (11:·n J 

_ 2i) 
~, O~j~J-1 

dj 
1 (~x)2- ---u- 9j. O~j~J-1 

ei {Ut. 

2 + (~x)2 !!i.- _1_ 
dj ej-1' 

j=O 

O<j<J-1 
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(ii) Calculate the time-independent border coefficients: 

1+ (c5x)2 9l/r
az;r ­

2 dz;r 

CLzjr - az;r + ,ja?;r- 1 

2i(c5x)2mm* 1 
Cz;r 1­

3c5t dz;r 

</Jz;r 
(a?;r -1)arg 

Czjr 

Az;r 
1 -laz;rl2 

11- a?;rl 

Uzjr - dz;r(az;r - CLzjr) 

Pl/r - d"i;r(aT;r- CLz;r) 

(iii) Construct the polynomials for the next time step: 

1, k= -1 

Az;n k = 0 

2k+l A P.(k-1) _ _!L P.(k-2) k > o 
k+l l/r l/r k+l l/r ' 

e-i¢1/r P.(k) k=Ol/r'L (k) - {l/r ­
_1_ e-i(k+1)¢1;r (P.(k) - P.(k-2)) k>O2k+1 l/r l/r ' 

(iv) Calculate the time-dependent coefficients over the X-grid: 

= { 
O~j<J-1 

(k+l) + ( ,T,(k) + "\'k L(k-m),T,(m)) JX 
[qJ-2 Pr':J!r Ur 6m=0 r ':J!r eJ-2 

1 
X ( 1 - CLreJ-2) - , j=J-1 

l...(w~k+l) _ ~k+l)) O<j<J-1
ej J+l % ' 
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(iv) Based on these data, construct \II(x) for the next instant oftime: 

(k+l)

\{l~k+l) = '3.__ + ( 1. - 1) \{l~k) 
3 d· d· 3

3 3 

with the notations 

8i (Jx)2 mm* 
( 

Jt 
2i (Jx)2 mm* 

~ 3Jt 
Jt 

~ ­
1i 

and Pz~~ = P,;r(tCk)) being, of course, Legendre polynomials of the kth order 

having Al/r as an argument. 

In case of a time-dependent potential in the inner region, the coefficients 

from step (ii) become time-dependent, and we will simply have to recalculate 

them for every new instant of time. In the formula language, this means 

substitutions everywhere above V(xi) -+ V(xi, t(k)) =Vj(k) and 9i -+ g?), 

d(k) d (k)di -+ i , an ei -+ ei . 
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