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Abstract 

The inelastic neutron scattering measurements by Coldea and co-workers on Cs2CuCl4 

have attracted intense attention due to the anomalous spin correlation properties 

revealed. The debate on the low-temperature magnetic phase, spiral ordered phase 

or spin liquid phase, of this material has triggered mainly two theoretical scenarios, 

a spin wave scenario and a spinon scenario, for the origin of the unusual scattering 

continua and large quantum effects. Since there is evidence of low-energy spin wave 

modes in the experimental data, a study of the spiral ordered phase using perturbation 

theory, taking into account spin wave interactions, becomes important to determine 

the nature of the magnetic excitations in this spin system. 

Motivated by this situation, we have carried out a perturbation calculation within 

the nonlinear spin wave theory framework by means of the 1/ S expansion scheme. 

In this work, we first develop the general formalism for a class of spiral ordered spin 

systems. Then we explain how to make contact between our theoretical calculation 

and experiment. After establishing the necessary formulae, we perform numerical 

evaluations for Cs2CuC14 to compare with experimental data. We find that a nonlin

ear spin wave analysis of this material results in significant continua in the scattering 

spectra as well as large quantum renormalization of the excitation energy. However, 

our results are quantitatively different from the experimental data. Further numeri

cal work needs to be done to better understand the remaining discrepancies between 

theory and experiment. 
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Chapter 1 

Introduction 

Recently, there has been intense work in the exploration of two-dimensional (2D) 

spin liquids in condensed matter physics. Since Anderson postulated a quantum

disordered "resonating-valence-bond" (RVB) ground state in the spin-1/2 Heisenberg 

triangular antiferromagnet[1 , 2], many theoretical advances [3, 4, 5] have made this a 

promising directio_ to search for 2D spin liquid states of spin-1/2 frustrated quantum 

magnets. However , nearly all experimentally studied 2D quantum magnets exhibit 

conventional magnetic order. In this respect the recent discovery of a 2D quantum 

magnet Cs2CuCl4 , whose inelastic neutron scattering measurements revealed uncon

ventional features , has stimulated several studies of the nature of the magnetic exci

tat ions in this spin system. 

Although previously considered as a quasi-1D spin-1/2 antiferromagnet [6 , 7, 8], 

Cs2CuCl4 , which is geometrically frustrated with low spin, can also be described 

as a layered Heisenberg antiferromagnet on a spatially anisotropic triangular lattice 

[9, 10, 11] . The crystal structure of Cs2CuCl4 is orthorhombic (Pnma) with lattice 

spacings a= 9.65A, b = 7.48A, c = 12.26A, as shown in Fig. l.l. Its quasi-2D character 

restricts the main superexchange routes to neighboring spin sites in the (be) plane, 

and the exchange energies are low rv 1 - 4K . Experiments suggest a minimal spin 

Hamiltonian [9] of the form 

<i,i' > <i,j> 

1 
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Figure 1.1: Crystal structure in Cs2 Cu Cl4 from Ref. [ 11]. 

describing an isotropic Heisenberg spin on each site with nearest neighbor coupling J 

along the b axis and J' / J = 0.34(3) along the zig-zag bonds. The significant dispersion 

observed along both [OkOJ and [OOl] directions confirms the two dimensionality of the 

spin correlations. 

What the scattering measurements show is that, although there is incommensurate 

spiral magnetic order below the Neel temperature TN = 0.62K, a broad continuum 

shows up and extends to reasonably high frequencies in the inelastic scattering spec

trum in addition to sharp low-energy spin-wave peaks. Linear spin wave theory fails 

to quantitatively describe the scattering line shape[ll]. 

As the remarkable continuum is reminiscent of spinon excitations in a lD Heisen

berg antiferromagnetic chain, many theoretical investigations of the excitation prop

erties have been carried out and several scenarios have been proposed. In the conven

tional spin-wave theory (SWT) framework , after the linear spin-wave theory (LSWT) 
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was exploited[12, 13] on the J1-h Heisenberg model, a 1/ S-expansion calculation[14, 

15] was performed, beyond LSWT, including spin-wave interaction effects. Series ex

pansion studies[16 , 17, 18] calculated the excitation spectra of 2D frustrated spin-1/2 

Heisenberg antiferromagnets (HAFM's) and found quantitative agreement with ex

periment. Meanwhile, quasi-1D effects have been explored by treating the triangular 

lat tice as coupled LD Heisenberg antiferromagnetic chains[19]. Based on the RVB pic

ture, a variational wave-function was constructed as an ansatz for the 2D spin liquid 

phase[20, 21]. IntErestingly, a projective symmetry group (PSG) method was intro

duced to classify the symmetric spin liquids on triangular lattice[22]. On the other 

hand, Chung et a.l. [23 , 24, 25] used large-N and slave-boson mean-field theories to 

study the possible spin-liquid phase in this material. 

More recently, Isakov et al.[26] discussed the possibility of the Cs2CuCl4 phe

nomenology controlled by a quantum critical point (QCP) separating the Z2 spin 

liquid and the spir :1l ordered state inspired by the suggested phase diagram (as shown 

in Fig.l.2) in Ref.[ll]. Afterwards, Florens et al.[27] outlined a bosonic version of the 

Kondo effect in mHgnetic systems with deconfined bosonic spinons and suggested em

ploying magnetic impurities as a probe of deconfined criticality. Furthermore, based 

on exact diagonalization and density matrix renormalization group (DMRG) method, 

Weng et al. [28] studied the phase diagram of an anisotropic t riangular lattice Heisen

berg spin model and found a spin-liquid phase in the weak interchain coupling regime. 

Also, a new theoretical approach to the triangular antiferromagnet was exploited[29] 

to yield a new critical spin liquid-an "algebraic vortex liquid", which was applied to 

Cs2CuCl4. 

In spite of the great amount of progress made in the theoretical understanding of 

spin liquid phases, it is still not clear whether the low-temperature phase of Cs2CuCl4, 

in which low-energy peaks and high-energy continua coexist, is a 2D spin liquid, a 

quasi-1D spin liquid, or, in fact a conventional magnetically ordered phase. The last 

possibility is not excluded, though LSWT fails , because when strong magnon interac

tions are included in the dynamics, a broad continuum appears due to multi-magnon 

processes. In particular, for a frustrated 2D system, the traditional 1/ S-expansion 

generates a coupling between transverse and longitudinal excitations such that some 
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Figure 1.2: Phase diagram of Cs2CuCl4 suggested in Ref.[ll]. 

scattering weight from one-magnon processes will be shifted to two-magnon processes. 

Qualitatively, this reduces the spin-wave peak and enhances the two-particle contin

uum in the scattering spectra. Also due to the geometric frustration and low spin 

value, even in the ordered phase the conventional magnetic fluctuations are not ex

pected to be small, which could cause a large renormalization of the bare parameters 

in the Hamiltonian. Hence it is worthwhile to perform a higher-order calculation to 

study the quantum effects within non-linear SWT for this spin system. 

Motivated by this consideration, Veillette et al. [15] has applied the 1/ S-expansion 

approach to Cs2CuCl4 at zero temperature. They calculated the dynamical spin 

correlations as well as the renormalized magnon spectrum for the Hamiltonian in

cluding the Dzyaloshinskii-Moriya interaction, which creates an effective easy-plane 
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anisotropy that orients the ordered spins nearly in the (be) plane. This symmetry 

breaking term suppresses some low-energy fluctuations and stabilizes the long-range 

order. However, things remain unclear for the minimal Hamiltonian, where the fluc

tuations are much stronger. Whether there is still well-established long-range order 

in SWT, and if there is, how the spin wave dispersion is renormalized by quantum 

fluctuations and what the dynamical spin correlations turn out to be, are all impor

tant issues to be addressed. These unsolved problems have stimulated the theoretical 

work presented in this thesis. 

The remainder is organized as follows . In Chapter 2 after introducing the bosonic 

Hamiltonian, the LSWT calculation is briefly reviewed with some discussion of the 

ground state properties. Then beyond LSWT we calculate the zero temperature 

Green's function to first sub-leading order in 1/ S expansion, from which the renor

malized magnon dispersion is obtained. To make a connection to experimental mea

surements, we develop expressions for the dynamical structure factor in Chapter 3. 

In Chapter 4, the established theoretical formalism is applied to a quasi-2D quantum 

magnet Cs2CuCl4 . We show our numerical results on the 1/ S renormalized magnon 

dispersion and the spin structure factor at different wavevectors to compare with the 

experimental data. A short conclusion is drawn in Chapter 5. Finally, the treatment 

of Goldstone modes is left to the Appendix. 



Chapter 2 

Spin Wave Analysis of J-J' HAFM 

on the Anisotropic Triangular 

Lattice 

Here we present a general formalism of spin wave analysis for the J-J' Heisenberg 

antiferromagnet (HAFM) on the spatially anisotropic triangular lattice. The method 

we are using is the so-called 1/ S expansion, which is implemented by the Green's 

function technique. 

2.1 Statement of the Problem 

We consider an anisotropic triangular lattice with N sites of lattice spacings b and 

c. The degrees of freedom are vector spin operators Si attached to the site R , which 

follow the usual commutation relations 

[SO! sf3] - . a(3-y s -r s: 
j , k - Z t j Uj ,k, 

where the superscripts a, {3, and 1 denote the x, y, and z components and Eaf3-r is the 

totally antisymmetric tensor. We work with periodic boundary conditions and, at the 

end of the calculation, take the thermodynamic limit. 

7 
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The dynamics of the degrees of freedom are controlled by the spin-~ antiferro

magnetic Heisenberg Hamiltonian with the exchange coupling J along one bond and 

the coupling J' along the zigzag directions. Such a model Hamiltonian is expressed 

as (n = 1) 

H - ""' l· .S · · S · - ~ t} t ]' (2.1) 
<i,j> 

which is invariant under rotations in spin space and where Jij > 0 with each nearest 

neighbor < i, j > counted once. The arrangement of the exchange couplings on the 

anisotropic triangular lattice, taken from Ref.[ll], is shown in Fig.2.1. 

b 

Figure 2.1: Schematic of the exchange couplings on the anisotropic triangular lattice 
from Ref.[11]. 

In two space dimensions (2D), the Heisenberg model cannot exhibit long-range 

order for any spin at finite temperature [30]. Even at zero temperature, it is still an 

open question whether the spin long-range order can survive quantum fluctuations 

when the system is frustrated and the amplitude of spin is small, which is the case 

of interest here. Early studies on the Hamiltonian (2.1) have shown that it exhibits 

a rich phase diagram with respect to the ratio of the two exchange couplings. In 

particular, when J = 0, it is in the collinearly long-range ordered phase as the case 

of the square lattice; and when J' = 0, it is in the magnetically disordered phase 

as the case of the 1D spin liquid. For J = J', the frustrated 2D magnet, there has 

been more and more evidence[31, 32, 33, 34] for the robustness of the non-collinear 

order, although no rigorous proof is available for the existence or nonexistence of 
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long-range order in the ground state. It has been proved in the framework of linear 

spin wave theory[l 2, 13] that a spiral order, which is a classical configuration of the 

globally ordered spin structure, arises when J' / J lies between 0 and 2. It is necessary 

to investigate whether such a non-collinear order can survive quantum fluctuations 

when spin wave interactions are taken into account and how the physical properties 

are affected by the interactions. 

Here we wish to study the ground-state and the dynamical properties of the Hamil

tonian (2.1) on an anisotropic triangular lattice. Assuming that the ground state of 

the model possesses long-range order, we shall calculate the ground-state energy, the 

sublattice magnetization, the excitation spectrum and the dynamical spin correlations 

to the first sub-leading order. 

2.2 Spin "'Nave Theory 

Spin wave theory is one of the most powerful tools in the theory of magnetism. 

Originally proposed by Bloch [35, 36] and Holstein and Primakoff [37] as a theory of 

the ferromagnetic state, it was later extended to the antiferromagnetic N eel state by 

Anderson [38], Kubo [39], and Oguchi [40]. Dyson's profound analysis of spin-wave 

interactions [41, 42] demonstrated that spin waves may be used to obtain asymptotic 

expansions for the thermodynamic functions of the Heisenberg ferromagnet at low 

temperatures. [43] 

In principle, the spin-wave approach is less effective for low-dimensional quantum 

spin systems, as quantum spin fluctuations typically increase in reduced space dimen

sions and for small spin quantum numbers S. Moreover, since at finite temperature 

thermal fluctuations completely destroy the magnetic long-range order in 1D and 2D 

Heisenberg models with isotropic short-range interactions [30], in such cases conven

tional spin wave theory completely fails. Hence all the following discussion is carried 

out at zero temperature. 

The perturbation theory for spin waves is usually called a 1/ S expansion since 

LSWT is exact in the limitS~ oo. The Hamiltonian approach to the 1/ S expansion 

is quite standard, basically following a few steps: 
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• Take a boson representation of spin operators; 

• Transform the spin Hamiltonian into a boson Hamiltonian; 

• Diagonalize the quadratic part by a Bogoliubov transformation to find the un

perturbed ground state; 

• Treat the higher order terms in the Hamiltonian as perturbations to perform 

the traditional perturbative calculation. 

As a concrete application to our specific model, let us implement the procedures step 

by step. 

2.2.1 Holstein-Primakoff Representation of Spin Operators 

The angular momentum eigenstates obey 

Flj, m) = mlj, m), 

J+lj, m) = J(j- m)(j + m + 1)lj, m + 1), 

J-lj, m) = yf(j + m)(j- m + 1)lj, m- 1), 

where lj, m) is the eigenstate of the z component of the angular momentum. The spin 

operators obey the same rules and if we define a deviation operator n - S- f;z, it has 

the same eigenstates as f;z with the eigenvalue n = S - m. Therefore the following 

properties hold 

fJziS, n) = (S- n)IS, n), niS, n) = niS, n), 

S+IS,n) ~ .,jn(2S + 1- n)IS,n -1) ~ j2s ( 1-~) n IS, n -1), 

s-Is, n) = yf(2S- n)(n + 1)IS, n + 1) = J2S(n + 1) ( 1- 2~) IS, n + 1). 

Introduce the operators 

atln) - Vn+lln + 1), aln) vnln- 1), 



where [a, at] = 1, [a, a] = [at , at] = 0. Then we have 

Expand the operator fs(n) as 

s+ = V2S fs(n) a, 

s- = V2S at fs(n), 

!Jz = s- n 
' 

[ 
~ ]1/2 

!s(n) 1- 2~ 

~ ~ 2 

fs(n) = 1- _!!:_ - ~ - ... . 
45 3252 
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(2.2) 

(2.3) 

The truncation of the series (2.3) to a finite order may lead to a spectrum that has 

admixtures of unphysical states with quanta of spin deviations n > 25. This problem 

was first addressed by Dyson [41] for the ferromagnetic case. For the antiferromagnetic 

case, there is a perturbation-expansion treatment of the Hamiltonian (2.1) in the 

original spin-operator representation performed on the square lattice [44] to resolve 

the problem. Other approaches have also been investigated. 

Since the foundation of spin-wave theory for our model is the assumption that 

antiferromagnetic long-range order exists in the ground state and that the amplitude 

of zero-point motion of quantum fluctuations about the classical Neel state is small, 

we directly use the Holstein-Primakoff [37] boson representation to transform the 

Hamiltonian (2.1) into a boson Hamiltonian kept to order 5° for the study of spin

wave interaction effects. 

2.2.2 Boson Hamiltonian 

It is more convenient to transform the non-collinear magnetic structure into a 

ferromagnetic configuration by applying a uniform twist on the coordinate frame. 

By doing so we can describe the system in terms of a single boson field, as in the 

ferromagnetic case [34] [43] . 
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Define local coordinates such that the mean spin direction at each site appears 

along the z direction. The coordinate transformation between the fixed laboratory 

reference frame (a, b, c) and the rotating local reference frame (x, y, z) is defined by 

( 
SR. ) ( 1 0 0 ) ( SR_ ) 
S~ = 0 cos( c/JR) - sin( c/JR) S~ 

SR. 0 sin( ¢R) cos( ¢R) SR. 
(2.4) 

where ¢R = Q · R + ¢0 , ¢0 is an arbitrary angle. Here Q is the ordering wavevector 

describing the long-range spiral ordered configuration of the spins. Then the Hamil

tonian H = L.'.: J.sSR · SRH becomes 

H = L J.s [ SR_SR_+O + cos(Q · 6) ( S~Sft.+O + SR_SR_+O) 
R,6 

- sin(Q · 6) ( S~SR.+.s- SR_Sft.+.s) l 
= L J6 [sR_SR.+.s + cos(Q · 6) ( S~Sft.+.s + SR_SR.+.s)- 2sin(Q · 6)S~SR.+.s] 

R,.S 

= L J.s [~ ( 1- cos(Q · 6)) ( SJtSJt+O + SjiSR+O) 
R,.S 

+ ~ ( 1 + cos(Q · 6)) ( SJtSit+.s + SjiSJt+.s) 

+ cos(Q · 6)SR_SR.+O + i sin(Q · 6) ( SJt- Sji) SR.+.s]· 

Applying the Holstein-Primakoff transformation, 

(2.5) 

the Hamiltonian is 

H = H(o) + H(2) + H(3) + H(4) + ... , 



where H (n) contains n boson operators and a pre-factor S 2-nl 2 , 

H(o) =N S2 2::::: locos( Q · 6) , 
0 

H(2
) =2S 2::::: 1o {- cos(Q · 6) ak_aR + ~ [ 1 + cos(Q · 6) J ( ak_+OaR + ak_aR+O) 

R,o 

13 

+~ [ 1- cos(Q · 6) J ( ak_+Oak + aRaR+o)} , 

H(3
) =J2S2::J6 sin(Q · 6)i (ak_ak_+OaR+O- ak_+OaR+OaR) , 

R,o 

H(4
) = 2::::: ]0{ cos(Q · 6) ak.+oakaR+OaR 

R,o 

- ~ [ 1 + cos(Q · 6) J (ak_+OakaRaR + ak_ak_aRaR- o + h.c.) 
- ~ [ 1 - cos( Q · 6) J ( ak_ aRaRaR+O + ak_ aRaRaR- o + h. c.) } . 

Since the system possesses translational symmetry it is more convenient to perform 

calculation in momentum space. Take the Fourier transform of the boson operators 

1 ""' ik· R aR = 17\T ~ake , 
vN k 

(2.6) 

then the inverse transformation reads: 

1 ""' - ik ·R ak = 17\T ~ aRe . 
vN R 

(2.7) 

And define 

Jk _ 2::::: 10 eik·o = 2::::: lo cos(k · 6 ), (2.8) 
0 0 

which is the Fourier transform of the exchange coupling. The Hamiltonian is repre-
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sented in momentum space as 

H(o) =NS2Jq, 

H(2
) =2S L Akatak + ~Bk ( ata~k + aka-k) , 

k 

H(3
) = v;; L 81+2,3 ~(Ct + C2) ( ala~aa + ata2a1), 

v N 1,2,3 2 

(4) 1 1 (1) t t 
( )

2 

H = N L 81+2,3+4 2 Y 12;34 al a2aaa4 
1,2,3,4 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where the sum over k is performed in the first Brillouin zone and the subscripts 

1, ... , 4 denote kt, ... , k4 . The coefficients are expressed as 

Ak ~ L 10 cos(k · <5) [ 1 + cos( Q · <5) J - Jq 
2 0 

= ~ [21k + (A+Q + A-q)] - Jq, 

Bk = ~ ~ 10 cos(k · <5) [ 1 - cos( Q · <5) J 

= ~ [21k- (A+Q + Jk-q)], 

ck =- 2::: 1o sin(k. <5) sin(Q. <5) 
0 

= ~ [A+Q- Jk-Q], 

Dk = L Jo cos(k · <5) cos(Q · <5) 
0 

= ~ [1k+Q + A-q], (2.14) 

Tl~34 = (Dt-s + D2-s + Dt-4 + D2-4)- (At+ A2 +As+ A4)- 4Jq, 

Tl~3 - -(Bt + B2 + Ba). 

Using the relation between the coefficients, 



we have 

Y~~34 = (Al-3 + A2-3 + Al-4 + A2-4) - (Bl-3 + B2-3 + Bl-4 + B2-4) 

- (A1 + A2 + A3 + A4), 

Using as well the relations: 

we find 

15 

(2.15) 

(2.16) 

which turns out to be very helpful for the analysis of the Goldstone mode at k = Q 

(see the Appendix) . 

2.2.3 Linear Spin Wave Theory 

Linear spin wave theory only considers the quadratic Hamiltonian which is diag

onalized by a Bogoliubov transformation 

(2.17) 

This is a canonical transformation of the second quantized operators such that the 

commutation relation remains the same. In terms of ak, at boson operators the 

quadratic Hamiltonian reads 

H(2) =2S L { ( Akv~ + Bkukvk) + [ Ak ( u~ + v~) + Bk2ukvk] atak 
k 

+ [ Akukvk + ~k (u~ + v~)] ( ata~k + aka-k)}. 

Setting the off-diagonal part equal to zero, we get 

H(2
) = NSJq + ~ l.::wk + l.::wkatak, (2.18) 

k k 
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where wk = 28 J A~ - B~ - 2SOk is the linear spin wave dispersion relation, and 

(2.19) 

or 

(2.20) 

Properties of the Ground State 

Our perturbative 1/ S expansion is based on the quadratic Hamiltonian, which 

is taken as the unperturbed part, and treats the cubic and quartic parts as per

turbations. Thus it is necessary to understand the properties of the unperturbed 

ground state and excitation spectrum. As shown in (2.18), the ground state energy 

of the quadratic Hamiltonian is different from that of the classical ground state by a 

quantity N S JQ + ~ Lk wk and the annihilation and creation of the quasi-particle ex

citations is denoted by the boson operators a, at. As the vacuum of the quasi-particle 

excitations, the ground state IO) satisfies 

and the pair expectation values of a particles with respect to the ground state are 

Therefore we obtain non-trivial expectation values of pairs of a and at operators in 

the ground state: 

(2.21) 

Here (atak) is simply the density of Holstein-Primakoff particles which is finite in the 

ground state. Therefore non-interacting spin waves reduce the local spin expectation 
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value to 

(2.22) 

Meanwhile quc.nt um corrections to the classical value of Q can be obtained by 

minimizing the si gle site ground state energy, including the correction due to linear 

spin waves, 
ELsw 1 '"""" ~ = S(S + 1)JQ + S N ~ Ok. 

k 

(2.23) 

The critical pointE are determined by the conditions, which are transcendental equa-

tions, 

where i = x , y . The classical ordering wavevector Qc is obtained by keeping the 

0 (5 2 ) part only, while the 0(51) terms represent the corrections due to the linear 

spin wave zero-point energy which is a higher order 1/ S effect . Since the formula holds 

for general spin amplitude S, perturbation effects are characterized and classified by 

their order of 1/ S. Thus in lowest order, it is natural to expect that the leading 

correction to the classical Q is of order 1/ S. Taking this as given, we expand 8~~~w 

around Qc to linear order and notice that ~JQg I = 0, .6-Q rv 0(1/S), such that 
' Q=Qc 

Hence 

(2.24) 

where 

(2.25) 
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Properties of LSWT Excitations 

The normal modes of the LSWT Hamiltonian, the so-called magnons, have the 

following dispersion relation 

(2.26) 

which contains three zero modes at k = 0 and ±Q. This is no surprise. As we know, 

one of the consequences of spontaneous continuous symmetry breaking is the appear

ance of zero-energy excitations, Goldstone modes. We started with a Hamiltonian 

symmetric in spin space, but postulate a long-range ordered ground state for the sys

tem. Then the symmetric Hamiltonian controlled dynamics for this kind of system 

naturally generates arbitrarily low energy modes, as a reflection of the underlying 

symmetry. 

2.2.4 Spin Wave Interactions 

Effects of Quartic Interactions 

The corrections due to quartic terms in the Hamiltonian are easy to compute. 

To leading order in 1/ S, one can just perform the simple one-loop diagrammatic 

calculation. Alternatively, it can be done by simply decoupling the fourth order term 

into all possible pair averages. The quadratic form allows for non-zero normal (atak) 

and anomalous (ata~k), (aka-k) pair products of Bose particles, and the decoupling 

changes the quadratic coefficients and the zero-point energy [34]. 

The existence of off-diagonal terms in the quadratic Hamiltonian implies non

conservation of the number of particles. After the decoupling of quartic terms we are 

ready to achieve the renormalized ground state and quasi-particle, magnon, energy. 

In terms of (2.21) it is straightforward to calculate the renormalized quadratic 
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coefficients 

[ ( ) l [ - 1 1 Aq 1 1 1 1 
Ak =Ak 1- - ( - '"'-- 1 + --'"'- -BkB + (Ak - Bk )A ] 2S N ~ n 2S N ~ n 2 q -q -q q 

\ q q q q 

1 1 
- 2S N L !Jq, 

q 

[ ( )] [ l - 1 1 Aq 1 1 1 1 
Bk =Bk 1-- ( - '"'- -1 + --'"'- -AkB - (Ak - Bk )B 2S N ~ 0 2S N ~ 0 2 q -q -q q ' 

\ q q q q 

(2.27) 

which do not have dynamical effects since they are frequency independent . There are 

still well-defined quasi-particle excitations with a modified spectrum wk = J A~ - B~ . 

It is easy to see that although the k = 0 zero mode remains gapless, a gap appears at 

k = ±Q resulting from the fact that symmetry is not preserved unless we include all 

the contributions of the same order in 1/ Sin the Hamiltonian [45, 46, 47, 48]. Thus 

it is necessary to investigate the effects due to cubic interactions, which is the topic 

in the next section. 

Other effects due to quartic interaction include the renormalization ofthe ground

state energy which comes from the completely paired terms, and the order O(S-2) 

correction to the ordering wavevector Q. 

Effects of Cubic Interactions 

The contributions from the cubic interacting vertices, which are unique to non

collinear configura-~ions, give rise to a couple of effects: 

• Renormalized ground-state energy and the order O(S-2 ) correction to the or

dering wavevector Q; 

• Renormalized magnon dispersion relations and associated finite life-times for 

quasi-particl( ~ excitations; 

• Non-trivial c:>rrelations between one- and two-magnon processes. 
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We will discuss in detail how the cubic interactions modify excitation spectra and 

introduce new features to the dynamical spin correlations by coupling the transverse 

and longitudinal fluctuations. 

Since our perturbation expansion is based on the LSWT ground state, i.e. the 

vacuum of the Bogoliubov transformed particles, on the one hand, one could proceed 

by transforming the cubic Hamiltonian from the Holstein-Primakoff boson represen

tation (a, at) to the Bogoliubov boson basis (a, at) to perform the calculation of 

physical quantities. Alternatively, one may take the original simple form of the cubic 

vertices and use matrices of bare Green's functions. 

2.3 Green's Function at T = 0 

The Green's function technique is one of the most useful tools for studying the 

dynamics of many-body systems. Here for our specific problem we introduce the 

Holstein-Primakoff boson Green's function at zero temperature which has a 2 x 2 

matrix form due to the property of the unperturbed ground state[49]: 

where T is the time-ordering operator. The Dyson equation is 

G(k,w) = G0 (k,w) + G0 (k,w):E(k,w)G(k,w), 

c--(k,w)] ' 

c+-(k, w) 
(2.28) 

(2.29) 

where G0 (k, w) is the unperturbed Green's function and :E(k, w) is the self-energy 

generated by the interaction vertices. From the quadratic Hamiltonian we have 

(2.30) 



It will be proved later that the following relations hold: 

L;+- (k, w) = L;-+ (k, -w) L:(k, w), 

I.;--(k,w) = L:++(k,w)- L:o(k, w), 
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where L:0 refers to the off-diagonal self-energy. Hence the elements of the exact Green's 

function have the same relations as those of the unperturbed Green's function: 

c -+(k ,w) = c+-(k, -w), c--(k,w) = c++(k,w). 

Solving the Dyson equation formally we have 

G(k,w) = [G0
1(k,w)- :E (k,w)r

1 

= 
1 

[-2SAk- w- E(k, -w), 

D(k,w) 
2SBk + Eo(k,w), 

2SBk + Eo(k,w) ] 

-2SAk +w- E(k,w) 

(2.31 ) 

In terms of the symmetric and antisymmetric combinations of the self-energy L: 

1 
Es(k,w) = 2 [L:(k ,w) + L:(k, -w)] , 

1 
EA(k,w) = 2 [L: (k,w)- E(k, -w)], 

E(k,w) = Es(k,w) + EA(k,w), L:(k , -w) = L:s(k,w)- EA(k,w) , 

we can express the denominator as 

D(k,w) = [2SAk + L:s(k, w)] 2
- [2SBk + E0 (k,w)] 2

- [w- L:A(k ,w)]2
. (2.32) 

2.3.1 Renormalized Excitation Spectrum 

The singularities of the exact Green 's function determine both the excitation en

ergies and the corresponding damping. Looking into the pole structure equation 

[w- L:A(k,w)] 2 = [2SAk + Es(k,w)] 2
- [2SBk + L:o(k, w)] 2

, (2.33) 

the linear (bare) dispersion relation is naturally recovered. Apparently, any 1/ S cor

rections to the quadratic coefficients Ak and Bk contribute in the same order as 

the self-energies, i. e. O(S0 ). Based on the earlier analysis , we see that there are two 
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sources. On the one hand, the shifted Q, due to linear spin-wave fluctuation, results 

in: 

~A = _ 2_"" [8J(k + Q) aJ(k- Q)l M.-:1 L. 
k ss L aQ. + aQ · ~) 1 ' 

i,j ~ ~ Q=Qc 

(2.34) 

On the other hand, the 1/ S correction due to quartic vertices, the so called one-loop 

corrections in the sense of Feynman diagrammatic analysis, is purely real and fre

quency independent which can be incorporated into the redefinition of the quadratic 

coefficients denoted by Ak and .Bk in (2.27). At this stage, we may include (2.34) 

into (2.27) such that Ak and .Bk represent both of these two corrections. Then there 

are only cubic vertices involved in the diagrammatic perturbative calculation of the 

self-energies which are frequency dependent and consist of both real and imaginary 

parts. From this analysis we might write the above equation in the following way 

[ 
(3) ] 

2 
[ - (3) ] 

2 
[ - (3) ] 

2 
w- I:A (k,w) = 2SAk + I:8 (k,w) - 2SBk + I:0 (k,w) . (2.35) 

However for the convenience of resolving the perturbative solution of the excitation 

we restore the contribution of the quartic interactions into the self-energy part to treat 

equation (2.33) as the starting point. Notice that the self-energies are of order O(S0
) 

explicitly, if we are pursuing the leading order correction to the excitation spectrum 

in a 1/ S scheme, it is allowable to substitute the zeroth-order value of the excitation 

dispersion relation into the self-energy expressions. Assume 

(2.36) 

is the solution to (2.33), where ~wk, rk rv O(S0
) are real. By keeping the terms to 

O(S1) on both sides, order by order, we find that 

~wk = ~k [ Ak ( 2S~Ak + Rei:s(k, wk)) - Bk ( 2S~Bk + Rei:o(k, wk))] 

+ Rei:A(k, wk), 

fk =- ~k [Ak lmi:s(k,wk)- Bk lmi:o(k,wk)]- lmi:A(k,wk), (2.37) 



' 
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which are of order O(S0 ) as assumed. Therefore to leading order in the 1/ S expansion, 

if r k, the damping rate, is small compared to the excitation energy wk = wk + D.wk, 

there still exist single-particle type excitations (well-defined quasi-particles) in the 

interacting many-body system, but with a finite life-time which damps the quasi

particles. 

It can be shown that the Goldstone modes are maintained (see the Appendix for 

details). 

2.3.2 One-loop Self-energies 

Quartic Self-energy 

Our model Hamiltonian shows that the first order perturbation theory in quartic 

vertices and the second order perturbative calculation in cubic vertices contribute the 

same order self-energies in the 1/ S criterion. As discussed in the last section, it is 

easy to obtain the self-energies due to the quartic interactions from the earlier result 

(2.27): 

E~)(k) = Ak + ~ L ~q [ ( Ak-q- Bk-q- Ak- Aq)Aq + (~Bk + Bq) Bql ' 
q 

E~)(k) = Bk + ~ L ~q [ ( -Ak-q + Bk-q + ~Ak + Aq) Bq- ( Bk + Bq)Aql ' 
q 

E~) (k) = 0. (2.38) 

Cubic Self-energy 

Before evaluating the one-loop diagrams enabled by two cubic vertices, let us 

briefly recall some basic principles of diagrammatic perturbation theory. Instead of 

exactly solving interacting many-degree-of-freedom system, a much simpler and more 

generally applicable approach is: Treat the interaction term H1 as a perturbation, 

compute its effects as far in perturbation as is practicable, and hope that the per

turbation is small enough that this gives a reasonable approximation to the exact 

answer. Through the use of Feynman diagrams it will be possible to visualize the 
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perturbation series which turns out to be very simple in structure. To illustrate this, 

let us consider the two-point correlation function, or two-point Green's function as 

defined earlier, 

(OIT{ ¢(x)¢(y) }10), (2.39) 

where the notation IO) denotes the ground state of the interacting theory, which is 

generally different from IO), the ground state of the free theory, and ¢(x) represents 

a field operator defined at space-time point x = (x, t). Using Gell-Mann and Low's 

theorem on the ground state, we arrive at an expression in the interaction picture: 

(OIT{ ¢(x)¢(y) }IO) = (OIT{ ¢I(x)¢I(Y) exp[-i f~oo dt HI(t)]}IO) 
(OIT{ exp[-i f~oo dt HI(t)]}IO) 

(2.40) 

So far this expression is exact. The virtue of it is that it is ideally suited to doing 

perturbative calculations; we need only retain as many terms as desired in the Tay

lor series expansions of the exponentials. Next, Wick's theorem states an operator 

identity: 

T{ ¢(x1)¢(x2) · · · ¢(xm)} = N { ¢(x1)¢(x2) · · · ¢(xm) +all possible contractions}. 

(2.41) 

For non-condensed particle ¢, in the vacuum expectation value of this time-ordered 

operator product, any term in which there remain uncontracted operators gives zero, 

which allows us to turn any expression of the form 

(2.42) 

into a sum of products of free two-point correlations. Then, what follows is to develop 

a diagrammatic interpretation of such expressions. These diagrams are the so-called 

Feynman diagrams, each of which is built out of propagators, vertices, and external 

points. To write down the analytic formula for the diagrams, one needs to make 

certain rules for associating analytic expressions with pieces of diagrams. In most 

calculations, it is simpler to express the Feynman rules in momentum space. Finally, 

the disconnected diagrams exponentiate, factor, and cancel. 
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Applying to our case, we are concerned with the cubic interaction 

(3) {2S""" 1 t t t H = y N L...,.61+2,32(Ct + C2)(a3a2a1 + a1 a2 a3 ), 

1,2 
(2.43) 

ck = ~(Jk+Q - Jk- Q) · (2.44) 

Since the procedure mentioned above is directly applied to non-condensed particles, 

it is more convenifmt to work with the quasiparticle a. Thus, changing particle basis 

from a to a, (2.43) becomes 

where 

JtJ = (Ct + C2)(u1u2ua- v1v2va) + (Ct- Ca)(ulv2v3- v1u2u3) 

+ (C2- Ca)(vlu2v3- u1v2ua) , 

f~2J = (Ct + C2)(u1u2v3- v1v2ua) + (Ct- Ca)(ulv2u3- v1u2va) 
' 

(2.45) 

(2.46) 

(2.47) 

The prefactors 1/2 and 1/3! reflect the symmetries between the operators at the 

vertex and they will be cancelled by the number of ways to place contractions into 

this vertex when we evaluate Feynman diagrams. In the diagrams to be calculated, we 

may use an a-particle for the internal propagator whilst keeping the external particle 

in HP boson so as to connect with the originally defined Green's function. A further 

analysis shows that there are merely two bubble diagrams contributing, which relate 

to two types of cubic vertices. In light of this, the interaction Hamiltonian takes the 

following form after transforming one of the a-particle back to an a-particle, 

(2.48) 
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where we have dropped the prefactors 1/2 and 1/3! because they are naturally vanish

ing in the Feynman diagram calculation for the symmetry reason mentioned above. 

As a result, the two types of cubic vertex functions are 

(1) (1) (2) 
'lf1,2 =11,2. U3- 11,2 . V3 

=(C1 + C2) · u1u2- (C1- C3) · v1u2- (C2- C3) · u1v2 , (2.49) 

associating with such type of vertices as shown in Fig.2.2: and 

Figure 2.2: Schematic of the first type of cubic vertices: The red lines represent the 
Bogoliubov transformed bosons and the black ones denote the HP bosons. To highlight 
the cubic interaction vertices, we draw them in blue. 

(2) (1) (2) 
W12 =- 112. V3 + 112. U3 , , , 

(2.50) 

associating with such type of vertices as shown in Fig.2.3: 

Figure 2.3: Schematic of the second type of cubic vertices with the same color ar
rangement as that for the first type. 
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It is easy to see that these vertex functions are symmetric with respect to exchange 

between 1 and 2 , .md are odd functions of 1 and 2 , i.e., w~~ _2 = -W~~-
, ' 

We are left with the following momentum-space Feynman rules: 

1. For each a-propagator, it has the expression g0 (k, w) = 1+ o+; w-wk t 

2. For each ver~ex , it is associated with a factor function i 112V2§ W~~' j = 1, 2; 

3. For each ext ernal point , there is a momentum-flow (k, w) in or out; 

4. Impose mon:.entum conservation at each vertex; 

5. Integrate ovnr each undetermined 4-momentum: ~ Lq f~oo ~~~; 

6. Divide by the symmetry factor. 

Taking the net momentum-flow direction from right to left , the two bubble dia

grams are demonstrated in Fig.2.4. 

k, ;W k, lJ k, w 

-- ~~- -~- --E-

Figure 2.4: Schematic of the two bubble diagrams due to cubic interactions. The 
dashed lines represent the net momentum-flows. 

Their analytic expressions are 

1 2S ~ (j) (k) 100 

dw' ( ') , -2 · N L.,; W1,2w1,2 -oo 21ri go q ,w go(k- q ,w- w) 
q 

(2.51 ) 

and 

1 2S L (j) (k) 100 

dw' ( ' ) ( ' ) -- · - W W - go -q -w go - k + q -w + w 
2 N 1,2 1,2 2 . , , , 

- oo 7r'l q 

(2 .52) 
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where the minus sign comes from (i112) 2 = -1/i; the prefactor 1/2 is due to the sym

metry factor "2" of the diagrams, and the vertex functions involved are determined 

by the external particles. Integrating over the internal frequency, they become 

s q,Ci) wCk) 
~ I,2 I,2 and 

N ~ WI + w2 - w - iQ+' 
q 

s wCi) wCk) 
~ I,2 I,2 

N ~ WI + W2 + w - iQ+. 
q 

(2.53) 

Both of the bubble diagrams go into each element of the self-energy matrix. Together 

with the right type of vertices, it is now possible to obtain the expressions for these 

elements: 

s I: [ ( wi~k r (wi~k)
2 

] ~+- (k w) = -- + _ ____,_-=-----
' N q WI + W2 - W - iQ+ WI + W2 + W - iQ+ ' 

s L [ (wi~~) 
2 

(wi~~)
2 

] 
~-+ (k w) = -- + -----'---'-----

' N q WI + W2 - w - iQ+ WI + W2 + w - iQ+ ' 

~++(k w) = __ ~ I,2 I,2 + I,2 I,2 
s [ well wC2) w(l) wC2) ] 

' N ~ WI + W2 - w - iQ+ WI + W2 + w - iO+ ' 

~--(k w) = __ ~ I,2 I,2 + I,2 I,2 . 
s [ w(l) wC2) wCl) wC2) ] 

' N ~ WI + w2 - w - iO+ WI + w 2 + w - iQ+ 
(2.54) 

In the symmetric, antisymmetric and off-diagonal element notation, we have 

~(3)(k w) _ -S ~ [(wC1)) 2 
+ (wC2))2] ( 1 + 1 ) 

S ' - 2N ~ I,2 I,2 WI + W2 - W - iQ+ WI + W2 + W - iQ+ ' 
q 

~(3)(k w) = -S ~ [2 w(l) . wC2)] ( 1 + 1 ) 
O ' 2N ~ I,2 I,2 WI + w 2 - W - iQ+ WI + W2 + W - iQ+ ' 

q 

~~) (k, w) = ;~ L [ ( wi~~ r -( wi~~ r] (WI + w2 ~ w - iO+ - WI + w2 : w - iQ+) . 
q 

(2.55) 

At this stage, it is clearly shown that all the self-energy elements are even functions 

of k; ~~) and ~~) are even, or symmetric, functions of w whereas ~~) is odd, or 

antisymmetric. 
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For later convenience, we introduce another set of definit ions for the vertex func

tions: 

<I> (l) =w<ll + w<2l 1,2 - 1,2 1,2 

=(C1 + C2)(u1u2- v1v2) + (C1- C2)(u1v2- v1u2) 

=C1(u1- v1)(u2 + v2) + C2(u1 + v1)(u2- v2) 

<t> <2l =w<ll _ w<2l 1,2 - 1,2 1,2 

= (C1 + C2)(u1u2 + v1v2) + (2Ca- C1- C2 )(u1v2 + v1u2) 

=(C1 + C2)(u1- v1)(u2- v2) + 2Ca(u1v2 + v1u2). 

In this case, the following relations hold, 

(w(ll) 2 + (w <2l ) 2 = ~ [ (<t> <ll ) 2 + (<t> <2l ) 2] 1,2 1,2 2 1,2 1,2 , 

2 w(ll . w<2l = ~ [(<t> <ll )2- (<t> <2l )2] 1,2 1,2 2 1,2 1,2 , 

(w<ll) 2 - (w <2l ) 2 = ~ [2 <I>(l) . <I>(2) ] · 1,2 1,2 2 1,2 1,2 

(2.56) 

Obviously, the <I> 's possess the same properties regarding the internal momenta as the 

'lt 's do. Complying with this set of definitions, (2.55) is writ ten as 

(2.57) 

Notice that since wk is of order O(S1) , the one-loop self-energy is of order O(S0
) . 

A more elegant way to treat the cubic interaction is representing it in a matrix 

form , instead of the scalar ones we used first , in accordance with the matrix Green's 
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function. For this end, we have 

(2.58) 

and it can also be written in the hermitian form 

(2.59) 

In terms of <I>'s, the cubic vertex is written as 

and its hermitian, V t1,2 v'2822S [aa~kk] ' 
where 

[

v,(u)] 1,2 
V12 = , 

v,(d) 1,2 
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In this way, we obtain the matrix self-energy directly 

2 [v,(u)(t')] 
~(k,w ) = - i ~ L 1: dt' eiw(t'-t") (v;s) / T 

1

,

2 

q \ v~)(f) 
1,2 

[

Es(k,w) + EA(k,w) Eo(k,w) ] ' 

Eo(k,w) Es(k ,w) - EA(k,w) 

where the expressions of the E's are those defined in (2.57). 

Finally, in terms of the one-loop self-energies due to quartic and cubic interactions, 

we have the dressed single-particle Green's function: 

G(k,w) = [
[-2SAk-~s(k,w))-[w-~A(k,w)) 

D(k ,w) 

2SBk+~o(k,w) 
D(k,w) 

2SBk+~o (k,w) ] 
D(k,w) 

[-2SAk -~s(k,w))+[w-~A(k,w)) ' 
D(k,w) 

(2.60) 

which is symmetric in k. To highlight the symmetry with respect to frequency, it is 

better to organize the components in another way: 

[

Gs(k,w) + GA(k,w) 

G(k ,w) = 

Go(k,w) 

Go(k,w) ] 

Gs(k,w)- GA(k ,w) ' 

where G s and Go are symmetric in w while G A is odd. 

(2.61) 

Armed with the single-particle Green 's function derived in this chapter, the cal

culations of the physical quantities connected to the experimental measurements are 

ready to be performed in the next chapter. 



Chapter 3 

Connec cion to Experimental 

Measur(ements 

Understanding the link between experiment and the microscopic world is essential 

for theoretical studies. It is important to know how and what each measurement 

technique probes and how one begins to calculate the corresponding quantities from 

simple theoretical models in order to compare with experimental data, confirming or 

ruling out the mechanism suggested by the model. 

In condensed matter physics, each measurement is fundamentally related to a 

given correlation function from which one extracts the information on the underlying 

excitation spectrum, the collective modes and the ground-state correlations of the ma

terial. In scattering experiments, the scattering particles couple to some microscopic 

variable 0( x) of the system under study, which results in a differential scattering cross 

section reflecting a measure of the autocorrelation function of O(x) at the wavevecter 

k and frequency w = E/fi inside the material, 

d~:w rv J d4x(O(x, t)O(O, O))e-i(k·x-wt). 

For spin systems, inelastic neutron scattering is one of the main experimental ap

proaches to studying electronic spin structures. In this chapter, we concentrate on 

how to relate the corresponding theoretical quantities of our spin system to experi

mentally measurable quantities in inelastic neutron scattering. 

33 
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3.1 Linear Response and Correlation Functions 

Experimentalists study the properties of a physical system by perturbing it and 

seeing how it responds. If the probe used couples to the system weakly enough, one can 

make the linear response approximation in which the change in the coupled variable 

is proportional to the external force or source current. 

Let us perform a little thought experiment on a spin system at T = 0. Suppose 

there is an arbitrary weak source current turned on at t ~ 0. The source-dependent 

Hamiltonian becomes 

H[j(t)] = Ho + Hs(t), 

Hs(t) =- LJJi(t)S}i(t), (3.1) 
R,o 

where a= x, y, z. Here H0 is the unperturbed Hamiltonian, while Hs(t) is the external 

source term which is taken as a perturbation in the following interaction picture so 

that 

sH(t) = ut(t)S1(t)U(t), 

U(t) = Texp [ -i 1t dt' Hs(t')] , (3.2) 

where T is the time-ordering operator. The time-ordered exponential represents the 

operator series 

( -i)n 1t 
U(t) = L -

1
- dtn · · · dtlT[Hs(tn) · · · Hs(tt)] 

n n. 0 

= 1- i 1t dt' H8 (t') + "· . (3.3) 

Thus, 

SH(t) = [ 1 + i 1t dt' Hs(t') + · · ·] S1(t) [ 1- i 1t dt' H8 (t') + · · ·] 

= S1(t)- i 1t dt' [SI(t), Hs(t')] + · · · , (3.4) 

where the Heisenberg picture refers to the time evolution with respect to H[j(t)] 

whereas the interaction picture is with respect to H0 . In this case, the expectation 
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value of the spin operator evolves under H[j] as 

(S~(t)) 1 = (S~(t)) + i 1t dt' 2::: j~,(t')( [ S~(t) , S~, (t')]) + · · · , (3.5) 
0 R' ,a' 

where we have dro pped the subscript I with the implication that (- · ·) is defined with 

respect to H0 . Th(~n by only considering the leading change in the observable, which 

is linear in the souce current, we define the spin response function as 

~~~~(t- t') = -ie(t- t')( [ s~(t), s~,(t') J ), (3.6) 

which is essentially a retarded correlation function , sometimes also called the "dy

namical susceptibility". 

Now let us carry out a spectral decomposition of the response function. We begin 

by expanding the response function in terms of a complete set of energy eigenstates 

which satisfy 

HI.\) = E,\1.\) , 

I: l.\)(.\1 = 1, 
,\ 

(3.7) 

where H = H0 , the full Hamiltonian without the source term. Using the above results, 

(3.6) is expanded as follows , 

~R_~,(t- t') = -ie(t- t') 2::: (e-i(E>,-Eo)(t-t')(OIS~I.\)(.\IS~,IO) 
,\ 

Translational invariance of the Hamiltonian yields ~RR' = ~(R - R'). Therefore the 

space-time Fourier transform of ~ is 

~cxcx' (k, w) = ~I: e-ik· (R - R') 100 dt eiwt ~cxcx' (R- R', t) 
RR' -oo 

= 2::: [ (OISki.\)(.\IS~~IO) _ (OIS~~I.\)(.\ISkiO) l (3.9) 
" w- (E"- Eo)+ iO+ w + (E"- Eo)+ iQ+ ' 
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where 

SI: = ~ I:e-ik·RsR_. 
vN R 

Introducing positive and negative frequency spectral functions: 

A em' (k, w') = L (OISI: I-\) (-\IS~~IO) 8[w' - (E>. - Eo)], 
>. 

Baa' (k, w') = L (OIS~~I-\) (-\ISI:IO) 8[w'- (E>.- Eo)], 
>. 

(3.9) can be written as 

~aa' (k, w) = {oo dw' [ Aaa' (k, w') - Baa' (k, w') l· 
} 0 w-w'+iO+ w+w'+iO+ 

(3.10) 

(3.11) 

(3.12) 

However, it is not easy to calculate retarded correlation functions directly in inter-

acting many-body problems. It is generally more convenient to define an associated 

time-ordered correlation function of the same operators, such that diagrammatic per

turbation theory can be applied to evaluate the time-ordered correlation function by 

means of single-particle Green's functions following certain Feynman rules. Hence, 

the remaining problem is to relate the time-ordered and retarded functions, using the 

spectral decomposition method. 

Define the time-ordered spin correlation function as 

ea~,(t- t') = -i(TSR_(t)S~,(t')), (3.13) 

which is also called the "causal" correlation function. The analysis is the same as 

that performed for the response function. Expand eR~' ( t - t') in terms of the energy 

eigenstates: 

ea~,(t- t') =- i [o(t- t')(SR_(t)S~,(t')) + B(t'- t)(S~,(t')SR_(t))] 

=- iL [o(t- t')e-i(E>,-Ea)(t-t')(OISR.I-\)(-\IS~,IO) 
>. 

+B(t'- t)ei(E>,-Eo)(t-t')(OIS~,I-\)(-\ISR.IO)]. (3.14) 

Since either boson representations of spin operators, such as the Holstein-Primakoff 

one used here, or bilinear fermion representations render the commutation behavior of 
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spin operators as bosons, there is no sign change when exchanging the two operators 

in the above expression. Furthermore, by taking the Fourier transform, we obtain 

eaa' (k, w) = ~ L e-ik (R - R ') 100 dt eiwt eaa' (R- R' , t) 
RR' -oo 

="""' [ (O!Ski-\)(-\IS~~IO) _ (OIS~~I-\) (-\ISk!O) ] · (3.15) L: w- (E>.- Eo)+ i O+ w + (E>. - E0 ) - iO+ 

Writing it in the frequency representation gives 

eaa'(k ,w) = r>O dw' [ Aaa'(k, ~') - Baa'(k,~') l· (3. 16) 
} 0 w - w' + zO+ w + w' - zO+ 

By virtue of the identity 

1
. = P (.!.) =t= inb(x), 

X ± zO+ X 
(3.17) 

it is easy to find the relation between the real and imaginary parts of (3.12) and 

(3.16) , which is 

where sgn(w) = w/lwl. 

Re~(k,w) = Ree(k,w), 

Im~(k,w) = sgn(w)Ime(k ,w), (3. 18) 

The real and imaginary parts of the response function are physically measur

able quantities that describe the system's response and dissipation, while those of 

the causal function are theoretically calculable quantities. Therefore, (3.18) builds a 

bridge joining theory to experiment. 

3 .2 Dynamical Structure Factor 

The fluctuations of a system may be characterized by time correlation functions 

of the dynamical variables. The space-time spin correlation is simply expressed as 

SJl~,(t- t') = (SR(t)SR:,(t')) . (3.19) 
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It is natural to use the same spectral decomposition analysis. First we have 

SR_<k,(t- t') = L e-i(E>.-Eo)(t-t')(OISiii-X)(-XIS~,jO). (3.20) 
>. 

Then the Fourier transform results in 

gaa' (k, w) = ~ L e-ik-(R-R') 100 g: eiwt gaa' (R- R', t) 
RR' -oo 

= L(OISJ:I.X)(.XIS~~IO) 8 [w- (E>.- Eo)]. (3.21) 
>. 

Here an extra prefactor 1/27r has been added to the Fourier transform for the sake 

of later convenience. This Fourier transformed correlation function, the dynamical 

correlation function, is sometimes called the "dynamical structure factor", which is 

real and describes the spontaneous fluctuations at momentum k and frequency w 

and is measurable by scattering experiments. We may also notice that the dynamical 

structure factor contains only the positive frequency spectrum. 

3.3 Fluctuation-dissipation Theorem 

There is deep link between fluctuations about equilibrium and the response of a 

system to external forces. If the susceptibility of a system to external change is large, 

then the fluctuations about equilibrium are expected to be large. The imaginary part 

of the spectral response function is the dissipative part, which describes the damping 

of the external oscillations by exciting internal modes of the system. The mathemati

cal relationship that quantifies this connection is called the "fluctuation-dissipation" 

theorem, whose classical form has been known for a long time. In quantum-mechanical 

terms, this relation is given as 

1 1 
S(k,w) = -- /T Im~(k,w). 

1r 1- e-w 
(3.22) 

where we have taken h = ks = 1. At zero temperature, the second fraction on the 

right hand side becomes 

lim 1 { 1 
T-+0 1- e-w/T - 0 

w2:0 

w < 0. 
(3.23) 



39 

Then we obtain the zero-temperature version of the fluctuation-dissipation theorem: 

1 
S(k, w) = -- Im9t(k, w), 

7r 
w;::: 0. (3.24) 

Due to the relation (3.18), it can also be expressed as 

1 
S(k,w) = -- Ime(k,w) , 

7r 
w;::: 0. (3.25) 

Let us verify the above zero-temperature formula by writing down the explicit forms 

of Im9t(k, w) and Ime(k ,w), which are straightforward to derive from (3.9), (3.15) 

and (3.17) , 

Im9t(k, w) = -7r L { (OISki-\)(-\IS~~IO) c5[w- (E>.- Eo)] 
>. 

- (OIS~~I-\)(-\ISkiO)c5[w + (E>.- Eo)]}, 

Im e(k,w) = -7r L { (OISki-\)(-\IS~~IO) c5[w- (E>. - Eo)] 
>. 

+ (OIS~~I-\)(-\ISkiO)c5[w + (E>.- Eo)]}. (3.26) 

Comparing the positive frequency parts of these with (3.21), we see that the relations 

(3.24) and (3.25) do hold. 

As we mentioned earlier, e(k, w) is a theoretically calculable quantity in diagram

matic perturbation theory, while S(k, w) is an experimentally measurable quantity. 

T he relation (3.25) naturally offers the connection of our calculations to the experi

mental observations. Building on this , we will establish in the following section, for 

our specific problem, the formalism needed to compare with experiments. 

3.4 Inelastic Neutron Scattering 

Neutrons interact weakly with matter so that they provide an ideal probe of the 

bulk properties of matter. 

The unpolarized inelastic neutron scattering cross section is given by 

d~:n = IAI2 L (c5/lv- kllkv) SllV (k ,w), (3.27) 
/lV 
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where J-l, v = a, b, c label the crystallographic axes, k11 denotes the J-L-component of 

the unit vector in k direction, and fk, the magnetic form factor, is determined by the 

magnetic ions in the insulator of interest. In this case, the dynamical correlation func

tions are directly related to the measurements. To compare to experiments, we need 

to calculate the structure factor based on the nonlinear spin wave analysis performed 

in the last chapter. 

The rotating coordinates description requires us to represent the dynamical struc

ture factor in the crystallographic reference frame in terms of that in the local refer

ence frame by means of the transformation (2.4), which yields 

gaa(k,w) = gxx(k,w), 

gbb(k, W) = gcc(k, W) 

1 
= 4 [(SYY(k + Q,w) + gzz(k + Q,w)) + i (SYz(k + Q,w)- gzy(k + Q,w))] 

+ ~ [(SYY(k- Q,w) + gzz(k- Q,w))- i (SYz(k- Q,w)- gzy(k- Q,w))], 

(3.28) 

gab(k,w) = gba(k,w) = gac(k,w) = gca(k,w) = 0, 

gbc(k,w) = _gcb(k,w). (3.29) 

Clearly, the off-diagonal elements of the dynamical structure factor do not contribute 

to the cross section. Thus (3.27) is simplified as 

(3.30) 

The out-of-plane polarized structure factor corresponds to the transverse fluctua

tions in the long-range ordered ground state at the same wavevector. In contrast, the 

in-plane polarized part comprises three types of fluctuations at different wavevectors: 

modulated by +Q and -Q. This mixing of various fluctuations and the shifting as well 

as splitting in the dependence on wavevectors are characteristic of noncollinear long

range order. Physically, SYY refers to transverse fluctuations, the same as gxx, while 

gzz portrays longitudinal fluctuations in the sense that z is the eigen-direction of spin 

in the ground state. What is more interesting is the contribution gyz, or gzy, which 
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depicts the non-tr ivial correlation between longitudinal and transverse fluctuations, 

unique to noncollinear order. In the second-quantization language and considering 

the leading-order contributions only, it can be pictured as follows. The transverse 

fluctuation is equivalent to a one-magnon scattering process and the longitudinal one 

is equivalent to a two-magnon process, within the framework of linear spin wave the

ory. The cross tern implies a one magnon splitting into two magnon or two magnons 

combining into one magnon process, which, however , only exists beyond linear spin 

wave theory as th(! interaction between spin waves is required. 

To evaluate these quantities, we turn to the relation obtained in the last section: 

g a:/3 = -Imea.Bjn, where a,{3 = x,y,z. Then (3.28) may be written in the following 

brief form , 

gbb(k, W) = gcc(k , W) 

= -~ Im [:r+(k + Q, w) + :r-(k- Q, w) J, 

where 

:r± ( q, w) = ~ [ eyy ( q, w) + ezz ( q, w) ± i ( eyz ( q, w) - ezy ( q, w)) l 
represent the +Q and -Q shifted branches respectively. It is easy to see that 

due to the properties, which will be proven: 

eaa( -q, w) = eaa(q, w), 

ea.B(-q,w) = -ea.B(q,w) , a =I {3, 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

i.e., the diagonal causal correlation functions are even functions of momentum whereas 

the off-diagonal ones are odd functions of momentum. Then the structure factor 

satisfies 

s~~ (k, w) = s~~ (-k, w), (3.35) 
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as expected from the inversion symmetry of the system. 

Now we turn our attention to calculating the corresponding time-ordered corre

lation functions using diagrammatic perturbation theory. We concentrate on a series 

of correlations of the following form: 

eaf3(k,w) = ~ L::e-ik·(R-R') 1oo dteiwt(-i) \TS~(t)S~,(O))H, 
RR' -oo 

(3.36) 

where the subscript H indicates that this quantity is to be evaluated in the Heisenberg 

picture. Usually, these correlation functions can not be calculated exactly for inter

acting many-body problems. However, for weakly interacting systems, we may use 

well-developed quantum field theory method to carry out a perturbative calculation. 

The general procedure, which has already been introduced, is as follows: 

• First, the spin operators are represented by the corresponding field operators, 

the Holstein-Primakoff bosons here, i.e. 

X V28[ t 1 t t t l SR = -
2

- aR + aR-
48

(aRaRaR + aRaRaR) + · · · , 

y_V28[ t 1 t tt ] SR- 2i aR- aR-
48

(aRaRaR- aRaRaR) + · · · , 

SR_ = S- akaR. (3.37) 

• Second, the Gell-Mann Low theorem enables us to relate the operators in the 

Heisenberg picture to those in the interaction picture via the S-matrix, 

I a !3 ) _ (r§(oo,-oo)SR(t)S~,(o)\ 
\ TSR(t)SR,(O) H- (§(oo, -oo)) , (3.38) 

where the S-matrix is 

§( oo, -oo) = T exp [ -i 1: dt' V(t') l· (3.39) 

Here V denotes the interaction operator in the interaction picture. 

• Third, we expand the S-matrix as a power-series in V, 

( -i)n 1oo 
§(oo, -oo) = L ~ -oo dt1· · ·dtnT[V(tl) · · · V(tn)]. 

n 

(3.40) 
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Then Wick's theorem allows us to implement the Feynman diagram expansion 

and due to be S-matrix in the denominator, only the connected diagrams need 

to be calcul .ted. 

• Finally, as a problem faced by any perturbative calculation, we need to decide 

at what ordEr the truncation is made based on physical grounds for our specific 

problem. 

As discussed in the preceding chapter, our perturbative expansion scheme is the 

1/ S expansion. In what follows, we include only the leading order effects in 1/ S due 

to spin wave interactions. 

3 .4 .1 Transverse P art 

cr- ' --o 
Figure 3.1: Schematic of the tadpole diagrams. 

When evaluating the transverse correlation functions, we encounter the so-called 

"Tadpole" diagrams (illustrated in Fig. 3.1) which contain equal-time propagators 

due to the three-operator product in sx, SY. The existence of the non-zero Tadpoles is 

essentially a consequence of the HP boson condensing in the ground state. Physically, 

these Tadpoles represent the finite densities of all kinds of HP boson parings. For this 

reason, we can avoid evaluating those Tadpole diagrams, and instead, decouple the 
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cubic terms by making all possible pair averaging. For instance, 

akaRaR + akakaR = 2(akaR)aR + (aRaR)ak + 2(akaR)ak + (akak)aR 

~ [ ~ ~ (2(a~a.) + {aqa-q))] (aR + ak) 

~ [ ~ ~(2v! + uqvq)] (aR + ak) {341) 

As a consequence, 

SR ~ ~ [ 1 - 4; N ~ ( 2v! + Uq v.)] ( aR + ak) - ~ t, ( aR + ak), 

8ft~ -i~ [1- 4;N ~ (2v!- u.v.)] (aR- ak) -i~ t,(aR- ak), 

(3.42) 

where tx, ty are constants. Therefore, the transverse correlation functions may be 

written as 

exx(k,w) = ~ L.:e-ik-(R-R') loo dteiwt(-i) (TS;._(t)S~_,(O))H 
RR' -oo 

= ~ t; [c-+(k,w) + c+-(k,w) + c--(k,w) + c++(k,w)] 

= ~ t; [ 2Gs(k, w) + 2Go(k, w) J, (3.43) 

which directly corresponds to the out-of-plane structure factor, and 

eYY(k,w) = ~ L.:e-ik·(R-R') 100 

dteiwt(-i) (TS~(t)Sfv(O))H 
RR' -oo 

= ~ t;[c-+(k,w) +G+-(k,w)- c--(k,w)- G++(k,w)J 

= ~ t;(2Gs(k,w)- 2Go(k,w)J, (3.44) 

which corresponds to the transverse component of the in-plane structure factor. Here 

the single-particle Green's functions are those we obtained in the last chapter. 
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3.4.2 Mixing Part 

The non-zero correlation between transverse and longitudinal fluctuations can 

not happen in non-interacting spin-wave theory, but it can in 1st order perturbation 

theory because of the cubic terms in the Hamiltonian. As discussed in the section on 

the self-energy calculation (Sec. 2.3.2) , there are two ways to manipulate the cubic 

interaction term: One is a scalar approach which is quite intuitive but a little tedious; 

the other is a matrix approach which is more elegant and concise. We will consider 

both, the former as an intuitive introduction and the latter as an abstract refinement. 

Considering the leading order effect, one term in the mixing part is 

(3.45) 

where H(3) ( t') is 

H (3)(t') = fi L 01'+2'-3' [ wi~~2' ( a~,(t')a21 (t')a1 1 (t') + ai,(t')a~,(t')a31 (t')) 
1',2' 

+ wi~~2' ( a-3' ( t')a2' ( t')a1' ( t') + ai, ( t')a~, ( t')a~3' ( t')) ] . 

As in the previous analysis, the two a-particles at t = 0 in (3.45) will enter a bubble 

diagram, so we can transform them into a-particles and ret ain only the terms that 

contribute, that is, 

(3.46) 

where we have symmetrized the two-particle vertices, but not the interaction vertices, 

under the interchange of 1 and 2. As usual, the factor 1/2 can be ignored in the 

expressions for these vertices because of the cancellation. Diagrammatically, (3.46) 

may be sketched as shown in Fig. 3.2 
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Figure 3.2: Schematic of the two-particle non-interaction vertices. They are repre
sented by black points. 

Figure 3.3: Schematic of the eight diagrams contributing to the expansion of (3.45). 

In total, there are eight diagrams (illustrated in Fig. 3.3), or amplitudes, con

tributing to the expansion of (3.45) . They give 

ieyz(k,w) = ty 2~ L (3.47) 
q 

{ [c -+(k w)w(l ) - c+- (k w)w(2) - c++(k w)w(l ) + c-- (k w)w(2)] 
' 1 ,2 ' 1,2 ' 1 ,2 ' 1 ,2 

X --------------
W1 + w2 - w - iO+ 

+ [ - c -+ (k w)w(2) + c+- (k w)w(l) + c++(k w)w(2) - c-- (k w)w(l)] 
' 1 ,2 ' 1,2 ' 1 ,2 ' 1,2 

(3.48) 



47 

Using 

c-+w(ll- c+- wC2) = ~ [(c-+ + c+-)(wCl)- wC2l) + (c-+- c+-)(wCl) + wC2l)] 

= G s<I>(2) + G A <I> (l), 

-c-+wC2) + c+-w(ll = ~ [(c-+ + c+-)(wCl)- wC2l) - (c-+- c+-)(w(l) + wC2l)J 

= G s<I>(2) - G A <I>(l), 

c++w(l)- c-- wc2) = ~(c++ + c--)(w(l)- wC2l) 
2 

= Go<I>(2) , 

we obtain: 

ieyz(k,w) = ty 4~ L { 2[Gs(k,w)- Go(k,w)] <I>~~k (uiv2 + viu2) 
q 

X (WI + w2 ~ W - iQ+ - WI + W2 : W - iQ+) } . 

Next we define the symmetric and antisymmetric functions of w: 

which are of order O(S0 ) and which describe a type of bubble diagrams with one cubic 

interaction vertex and one two-particle non-interaction vertex, as shown in Fig.3.4. 

We can write the above formula as 

Since M 's are odd functions of k , the mixing term is odd in k, but even in w. 
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Figure 3.4: Schematic of the mixing bubble diagram generated by one cubic interaction 
vertex and one two-particle non-interaction vertex. The dashed line represents the net 
momentum-flow. 

The other mixing term is 

-iezy(k, w) = -i ~ L e-ik(R- R') 100 

dt eiwt( -i) (TSR_(t)S~,(O)) 
RR' -oo 

= -i ~ L e-i(-k)·(R' - R ) 100 

dt ei(-w)(-t)( -i) (TS~,(O)SR_(t)) 
RR' -oo 

(3.51) 

Adding together gives 

i( eyz(k,w)-ezy(k,w)) = 2ty{ 2[Gs(k,w) -Go(k,w)]Ms(k,w)+2GA(k,w)MA(k,w) }· 

(3.52) 

Unlike the transverse and longitudinal parts , the mixing process is odd in momentum. 

This originates from the form of the cubic terms in the Hamiltonian, which depend 

on differences of neighboring spins. 

Next, let us turn to the matrix approach introduced at the end of Sec. 2.3.2, where 

the cubic term is represented as [at , a_k] ~V. Inserting this and (3.46) into (3.45), 
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it follows: 

z( ) ~J2S 1 ""'( ) 100 

d 100 

d I iwt( ·)2 ieY k ,w =- ty ---N ~ UtV2 + VtU2 t t e -1, 

2 2 -00 -00 q 

) T { ( ak(t) -a! .(t)) [ a~{t') a~k(t')] 
1
,
2 

( a~(O)a\(0) + <'-2(0)<>~1 {0)) } ) 
[

v,(u)(t')] 

\ v,(d) (t') 1,2 

= [c-+(k,w)- c++(k,w) c--(k,w)- c+-(k ,w)] 

= / vi1 (t') (a~ (O)a\ (0) +<>~2< 0)<>~ 1 {0)) 

xt, 2~ L)u1v2 +v1u2) 1 dt'eiwt!\T ) 

q -oo V1(,~ (t') ( a~(O)ai (0) + CL2(0)a-1 (0)) 

=( c-+(k,w) + c+-(k,w)- c++(k,w)- c--(k,w))tvMs(k,w) 

+ ( c-+(k,w)- c +-(k ,w))tyMA(k,w) 

where the M 's are defined in (3.49). 

3 .4.3 Longitudinal Part 

Finally, we are left with the calculation of the longitudinal correlation function: 

e zz(k, w) = ~ L e-ik·(R-R') 100 

dt eiwt( - i) (TSR.(t)Siv(O)) H 

RR' -oo 

= ~ L j oo dt eiwt( -i) (r [a~q(t)ak-q(t)aLq,(O)a-q'(o)J) H . 

qq' -00 
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Performing the perturbative expansion gives 

(3.53) 

Diagrammatically, these processes are illustrated in Fig. 3.5: The first diagram repre-

+ 

+ + + 

+ + + 

+ ".. . .. 

Figure 3.5: Schematic of the diagrams contributing to the two-particle correlation 
function. Here the quartic interaction vertices are denoted by green points. 

sents none other than the bubble diagrams constructed by two two-particle vertices 
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and two a-propag;:.tors without interaction effects, whose analytic expression is read

ily obtained: 

eb~re(k,w) = -~- ""'(ulv2 + vlu2)2 ( 
1 

. + 
1 

. ) . 
2N L w 1 + w2 - w - zQ+ w1 + w2 + w - zQ+ 

q 

(3.54) 

This is a non-interacting spin-wave result. Systematically, the sum of the first diagram 

on each line forms a single bubble diagram similar to the top one, but with dressed 

internal propagators. 

The second diagram on the second line due to quartic interaction generates a 

series of ladder di;:,grams as shown in Fig. 3.6. 

+ +' , • I • e • e 

Figure 3.6: Schematic of the ladder diagrams. 

Figure 3. 7: Schematic of the dumbbell diagram generated by two cubic interaction 
vertices for the two-particle correlation function. 

What is intriguing is the "dumbbell" diagram (Fig.3. 7) on the third line, because 

its intermediate states involve a one-particle process which might shift some scatter

ing weight from the two-magnon process to the one-magnon process. It is handily 

calculable in the matrix approach based on the results from the mixing part. The 

int ermediate part involving two cubic interactions and one a-particle propagator (as 

shown in Fig. 3.8) is expressed as 
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Figure 3.8: Schematic of the intermediate part in the dumbbell diagram generated by 
two cubic interaction vertices. 

[

G-+(k, w) 
s yt (t') 2 1,2 

G++(k, w) 

c--(k,w)l 
v 1,2(t"). 

G+-(k, w) 

Substituting this piece into the dumbbell diagram expression in (3.53) , we have 

C~~mbbdl(k, w) ~ ( li) 2 

{ c-+(k,w)[MA(k,w) + Ms(k,w)]' 

+ c+- (k, w) [MA(k,w)- Ms (k,w)r 

+ ( c -- (k, w) + Q++(k,w)) [MA(k,w?- Ms(k, w) 2
]} 

= ~ { [ c - +(k, w) + c+- (k, w) + c -- (k, w) + c++(k, w)] MA(k, w) 2 

+ [c-+(k, w) + c+-(k,w)- c - -(k,w)- G++(k,w)] Ms(k, w) 2 

+ [c-+(k,w)- c+- (k,w)]2MA(k,w)Ms(k,w)} 

= ~{ 2[Gs(k,w) + Go(k,w)]MA(k,w) 2 

+ 2 [cs(k,w)- Go(k, w)J Ms (k ,w? 

+ 2GA(k, w) · 2MA(k,w)Ms(k,w) } , 
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where the prefactor filS cancels the factor VSf2 in the M's which comes from SY 

when evaluating the mixing part. 



Chapter 4 

Application to Cs2CuCl4 

This chapter describes the application of the non-linear SWT formalism derived 

in the last two chapters to a real experimental system Cs2CuC14 , which is a quasi-2D 

S = 1/2 frustrated Heisenberg antiferromagnet on an anisotropic triangular lattice, 

in which neutron scattering measurements show the dynamical correlations to be 

dominated by a broad continuum [11]. 

Our numerical evaluation is performed using Mathematica. Adopting the experi

mentally determined bare exchange parameters: J = 0.374 meV along the b axis and 

J' = 0.128 meV along the zig-zag bonds, and neglecting the inter-layer couplings 

J" / J = 0.045 as well as the small Dzyaloshinskii-Moriya terms along the zig-zag 

bonds Da/ J = 0.053, we first turn to the single-site magnetization reduced by lin

ear spin-wave fluctuations and the modified ordering wave vector within the LSWT 

framework. In non-linear SWT, the self-energies lead directly to renormalized magnon 

dispersion and damping. FUrthermore, to compare with inelastic neutron scattering 

line shapes, we need to calculate spin structure factors at several momentum trans

fers. Weighted by the experimentally applied polarization factors , the in-plane and 

out-of-plane structure factors are added together to obtain the total scattering cross 

sections at those specific wavevector transfers. 

55 
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4.1 Sublattice Magnetization 

The 1/ S correction to the local spin expectation value can be easily calculated 

within the LSWT framework. By numerical integration of Eq. (2.22), the first order 

correction to the classical value S is found to be 

l:lS = -0.435393, (4.1) 

which reduces the local magnetization from 0.5 to 0.0646068. The large spin reduction 

reflects the large quantum fluctuations in this system, and since this is purely due 

to longitudinal fluctuations, it also implies that the longitudinal susceptibility may 

be large, which is relevant to the two-magnon scattering process. On the other hand, 

for the 1/ S expansion scheme itself, the large first-order correction naturally raises 

a question: Will the higher-order corrections kill the finite magnetization destroying 

the long-range order? 

The measured spin reduction[11 J is l:lS = -0.125 which is much smaller than the 

LSWT result. This enhancement of the local spin moment is puzzling as it is too large 

to be attributed to the inter-layer couplings and the DM interaction not included in 

this calculation, which can quench some of the low-energy fluctuations and partially 

stabilize the spin ordering. 

4.2 Shift of the Ordering Wavevector 

Another LSWT result is the shift of the ordering wave vector Q, which is acquired 

by minimizing the LSWT ground-state energy with respect to Q. From (2.24) and 

(2.25), we have 

0 l 4J 
Ji2 

[ 4J 

where 
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Apparently, det M-1 > 0, when 1' < 21; when 1' = 21, det M-1 diverges, which 

indicates a possible phase transition point[12, 13]; when 1' > 21, t:J.Qx changes sign, 

if this formalism Btill holds and Lx is non-negative. It can be shown that for the 

isotropic triangular lattice, i.e. 1' = 1, Lx = 0 so that !:J.Q = 0. In the case at hand, 

M;x1 = 0.363048, Lx = 0.0739398. Then we find 

l:J.Qx = -0.0324141. 

The shifted ordering wave vector becomes 

Qo = (0.522325, 0). 

Compared to the classical one 

Qc = (0.554740, 0), 

we see that quantum fluctuations decrease the incommensuration from Ec = 0.054740 

to Eo = 0.022325, and Eo/ Ec = 0.407837. This renormalization of the incommen

suration is even stronger than the large experimental value[ll] Eo = 0.030, and 

Eo/ Ec = 0.56. 

4 .3 Excitation Spectrum 

Now, let us turn our attention to the non-linear SWT calculation. First of all, one 

of the physical properties encoded in the dressed Green's function is the renormalized 

excitation spectrum, which can be determined by exploring its pole structure. In our 

calculation, the correction to the bare dispersion relation is only retained to leading 

order in 1/ S, since to complete the higher order corrections requires inclusion of 

higher-order l:J.Q-effect and other two-loop diagrams. For this reason, the excitation 

position we locate is just slightly different from the real pole position of the Green's 

functions as long as the higher-order-in-1/ S terms in the denominator are relatively 

small. Otherwise, the perturbative expansion itself becomes problematic. 

To compare with the experimental data, we take a special momentum direction 

(0, k, 0) in which to study the renormalized excitation spectrum, where the momentum 
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transfer is expressed in reciprocal lattice units of (2n/a,2n/b,2n/c). As shown in 

(2.37), besides the self-energy contributions, the shift of the ordering wave vector 

directly gives rise to a modification of the spectrum: 

We can see from Fig. 4.1 that this modification is rather large around (0, 1, 0), but 

hardly noticeable in other areas. 

The 1/ S renormalized excitation dispersion relation w~18 and damping rk are 

shown in Fig. 4.1 as well as the comparison with the bare dispersion relation w~ and 

the 1/ S ~Q-modified one w~Q. Although there exist well-defined quasi particles in 

most of the low-energy regime, the non-negligible damping of some medium- to high

energy excitations implies the failure of the magnon description at those wave vectors. 

But still, in the vicinity of the Goldstone modes, the magnetic excitations remain as 

long-lived single particles, which to some extent explains the appearance of sharp peak 

feature in the low-energy regime measured by the neutron experiments[ll]. Moreover, 

the large damping of those medium- to high-energy excitations can not only broaden 

the excitation peaks in the inelastic scattering, but also induce a high-energy tail 

which might explain the extended continuum features in the experimental data. 

However, we find that, compared with the experimentally measured excitation 

energies (as shown in Fig. 4.2), the calculated are much lower in energy except those 

Goldstone modes. 
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Figure 4.1: The red dotted line represents the 1/ S renormalized excitation dispersion 
relation, while the pink dotted line exhibits the corresponding excitation damping at 
those wave vectors. As a comparison, the bare and ~Q-modified dispersion relation 
are also shown in terms of black and blue solid line respectively. 
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4 .4 Spin Structure Factor 

Neutron scattering experiments directly measure the scattering cross-section in

tensity. The dynamical spin correlation functions are obtained from the scattering 

int ensity distribution versus the energy transfer in inelastic scattering measurements. 

The experimental results on Cs2CuCl4 by Coldea and co-workers include energy scans 

at several non-equivalent positions in the Brillouin zone with different polarization 

factors to explore the properties of the excitations in this spin system. Likewise, we 

calculate the spin structure factors at those wave-vector transfers to determine the 

theoretical cross sections. 

Based on physical consideration, we will take the full expressions of the correlation 

functions, without keeping the final results only to the sub-leading order in 1/ S as 

we did for the spectra calculation. Thus, our results for spin structure factors do not 

follow the 1/ S order criterion strictly. 

4.4.1 Numerical Results 

In Table 4.1, capital letters A-H indicate location of energy scans with parameters 

listed, where the wavevector transfer k = (h, k, l) is expressed in reciprocal lattice 

units of (27r/a, 27r/b,27r/c). The energy lattice spacing we used is ~w = 0.01meV. 

To illustrate the relative intensity of the different components of the line shape, 

the different processes in the scattering are displayed separately first and then added 

together. Taking the G point as an example, first of all, the two processes in the 

in-plane two-magnon scattering, the bare two-magnon process and the dumbbell two

magnon process, are shown in separate figures in the left panel of Fig. 4.3; The total 

two-magnon scattering intensity is shown in the upper-right corner, and the lower

right corner exhibits the relative contributions of the two components, together with 

the total. As discussed in Sec. 3.4, the in-plane structure factor involves multiple 

components: transverse, longitudinal and mixing parts, which correspond to different 

excitations. Naively, the transverse part is related to one-magnon excitations with 

two-magnon intermediate states that damp the single mode and induce some high-
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Scan k(rlu) l(rlu) Pb Pa 
A -0.389 0 1.95 0.05 
B -0.30 0 1.98 0.02 
c 0.21 0 1.75 0.25 
D 2.11 0 1.05 0.95 
E -0.33 0.78 1 1 
F -0.39 1.66 1 1 
G 0.5 1.53 1 1 
H 0.28 1.205 1 1 

Table 4.1: Scan parameters: wave vector k = (0, k, l) and polarization factors (pb,Pa) 
at this point. Slightly different from Ref. [11], instead of choosing energy-trajectories 
for the wavevector transfers, we pick up constant wavevector transfers without energy 
dependence. And since the interlayer coupling is neglected in our calculation, his set 
to zero. Here Pb, Pa describe in-plane and out-of-plane polarization respectively. 

energy structure in the one-magnon dynamical correlations. This process is shown in 

the upper-left graph of Fig. 4.4. From the expression for the transverse correlation 

(3.44), the small prefactor ty, which is 0.611617 in this case, further suppresses the 

weight of this part, reflecting the large fluctuations. In the same graph panel, the 

mixing and longitudinal parts are shown in the lower-left and upper-right corner 

respectively. A comparison of all these three in-plane parts is made in the lower-right 

diagram. 

Finally, we put the in-plane and out-of-plane structure factor in Fig. 4.5. Similar 

to the in-plane transverse part, there is a prefactor suppression for the out-of-plane 

correlation: tx = 0.517597 in the case at hand. Weighted by the specific polarization 

factors at the point, the total cross-section intensity is evaluated as: 

J(k, W) = Pb gbb(k, W) + Pa gaa(k, W ), (4.2) 

which is shown in the upper-right corner of graph panel 4.5. A comparison of the two 

components as well as the total result is given in the lower-right graph. 

In the same pattern, the line shapes at all the other points are shown in the 

following figures. 
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Figure 4.3: In-plane two-magnon scattering at G point. The two dashed lines in the 
upper- and lower-left graph are the bare and interactive two-magnon scattering inten
sities respectively. The solid blue line in the upper-right corner is the total two-magnon 
part after summing those two sub-parts. All the components and the resultant am
plitude are gathered in the lower-right graph. 
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Figure 4.5: Structure factors and cross section at G point. The in-plane and out-of
plane structure factors are denoted by dashed green and blue line in the upper- and 
lower-left graph. Total cross-section intensity is plotting as solid red line shown in the 
upper-right graph. And the comparison is given in the lower-right corner. 
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Figure 4.6: In-plane two-magnon scattering at A point. 
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Figure 4.12: In-plane two-magnon scattering at C point. 
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Figure 4.14: Structure factors and cross section at C point. 
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Figure 4.15: In-plane two-magnon scattering at D point. 
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Figure 4.16: Three in-plane scattering processes at D point. 

1 

1 



~ 1.5 
~ 1.25 
rl 

1 

In- plane Scattering 

i 'I 

.c 0. 75 
-~ 0. 5 
!=: 
<ll ..., 0.25 ~ 

' ', 

!=: 
H 

0 --- ---.:.:- ----- ---- --._ -~. 

0 0.2 0.4 0.6 0.8 
Energy (meV) 

1 

Out - of - plane Scattering 

~ 0~~~ !: 
•' 2 o. 2s n 
•' , _ 0. 2 :: 

,..., '' 
-~ 0.15 f : 
~ 0 . 1 {J l 
~ 0. 05 f \ ,", 

+""' I \ t ", 
!=: 0 _________ ) , ______ . '·--------------------
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV ) 

~ 1. 75 
~ 1.5 
2.1 . 25 

>. 1 
-~ 0. 75 

73 

Total Cross Section 

~ 0.5 J) 
~ 0.25 
!=: 0~~~~==~~~~~ ~~ 
H 0 0.2 0.4 0 .6 0.8 1 

~ 1. 75 
~ 1.5 
2- 1. 25 

Energy (meV ) 

Component Demonstration 

>. 1 
-~ 0 . 75 
~ 0.5 

~ 0.2~~==~~~;~·\~~-~--;--~--~~~~-~--~--~--~-~~---~~=) 
H 0 0.2 0 . 4 0.6 0.8 1 

Energy (meV) 

Figure 4.17: Structure factors and cross section at D point. 



74 

' 

Bare Two-magnon 
> 3~----~--~------------~ 
w : s 2. 5 . 
' :: 
M 2 n~ ... , 

Ill I 

>,1.5 !'!~ . 
.u ! \ 
~ 1 i ~~~ 
I=! 0. 5 i \ ___ \ 
~ 0 ....•..... .! ·-----............. . 
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

Dumbbell Two-magnon 
> 

I I w s 1 
'- •' rl •' •' 

0.5 •' •' •' ! >, 
1: I 
: ~ r: .. 

_jJ 

0 } ~ ,I :: . ...; '•' ..... -. .. -.. -.. .... -
(/) :::./- .. ... 
I=! 

F 
~ 

w -0.5 
_jJ 

I=! 
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

Two-magnon Scattering 
>4r-----~----------------~ 
w 
8 

;:::; 3 

Energy (meV) 

Component Demonstration > 4 ,.--------..,.-------------.., 
w 
~ 3 
rl 

2 
>, 

-~ 1 
(/) 

~ 0~---W~~=-~~~~-----4 
_jJ 

I=! 
H 0 0 . 4 0.6 

Energy (meV) 
0.8 1 

Figure 4.18: In-plane two-magnon scattering atE point. 

~ 1.4 
~ 1.2 
rl 1 

>, 0. 8 
-~ 0. 6 
~ 0.4 
~ 0.2 

One-magnon Scattering 

~ 0~==~~~~--~~~~===J 
0 1 

>, 
.w . ...; 

1 

0.5 

0 

~ -0.5 
w 
.w 
I=! 
H 

-1 
0 

Energy (meV ) 

Mixing Scattering 

V\ .... ~ 

0.2 0.4 0.6 0 . 8 
Energy (meV ) 

1 

Two-magnon Scattering 
>4 
w 
8 

;:::; 3 

>, 2 
.w . ...; 
(/) 

1 I=! w 
.w 
I=! 
H 0.8 

Energy (meV) 

Amplitude Comparison 
> 4 
w 
8 3 '-
rl 

2 
>, 
.w 1 . ...; 
(/) 

I=! 0 w 
.w 
I=! -1 
H 0 

Energy (meV) 

Figure 4.19: Three in-plane scattering processes at E point. 

1 

1 



>. 3 
.1-) 

· ri 2 
Ul 

~ 1 
.1-) 

>=: 

In- plane Scattering 

H 0 0.2 0.4 0.6 0.8 1 

~ 3 
~ 2 . 5 
rl 

2 

ii 1. 5 
· ri 

Energy (meV ) 

Out-of - plane Scattering 
' ' ' ' . . . . . 
" .. 
" " " 
~l :: 
:: 

0. 5 :: .. 
I I I, 

Ul 1 
>=: 
QJ 
.1-) 

>=: 
0 ____________ .) ¥ ...... ____________ .... _____________ _ 

0 0.2 0.4 0.6 0.8 1 H 

Energy (meV} 

!> 
~ 5 

....... 
2. 4 
>. 3 

.1-) 

-~ 2 

~ 1 
.1-) 

Total Cross Section 

>=: 0~~~~~~~~~~=? 
H 0 0.2 0 . 4 0.6 0 . 8 1 

Energy (meV ) 

Component Demonstration 
!> 
~ 5 

~ 4 ~ 
>. 3 \! 
.w = -~ 2 :: -, .,, . 
~ ~ · ' 
Q) 1 : : ·~ ... ,_ 

~ 0 l==~-~~.. _; _,.:,..~---=--::--:::--:::.::.::.·::=~-::::~ ~=:===.l 
H 0 0 . 2 0.4 0.6 0.8 1 

Energy (meV ) 

Figure 4. 20: St ructure factors and cross section at E point. 

75 



76 

Bare Two-magnon 
> 2.5 
~ 2 

1.5 
>, 

.j..J 

·ri 1 

! 
: ~ 
: ~~ 
' ' ' ' ' . 
' ' : \ 

~ : ..... 
,/~ _ ... ,/ \ .... 
i \ : '~ 

0.5 : v \ 
CJJ 
c 

0 _____ ! ··------------------· 
Q) 

.j..J 

c 
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

Dumbbell Two - magnon 

~ 0. 2 i:\ 
, 0~~-----:~: r; ~--~~--------~ 

::: 8 -0.2 ....... , :\: 
I lit 

0 4 ,, ' 
~- . ,· ~ 

.~ -0 • 6 ~ : I 

'' 
~ -0 .8 : i 
..... '' 2J -1 \: 
~ -1.2~--7'~--~~~~~~~--~ 

0 0.2 0.4 0.6 0.8 1 
Energy (meV) 

~ 2 
s 
' H 1.5 

~ 1 
·ri 

~ 0.5 
Q) 

.j..J 

c 
H 

Two-magnon Scattering 

0.4 0.6 0.8 1 
Energy (meV ) 

Component Demonstration 
2.5r-------~---------------. 

>, 
.j..J 

·ri 
CJJ 

2 
1.5 

1 
0.5 

~ -0.5 
.w 
c 
H 

:' -1 '•: 
~--~~~~~~~~~--~ 
0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

Figure 4.21: In-plane two-magnon scattering at F point. 

~ 0.8 
s 
' H 0.6 

~ 0.4 
·ri 

~ 0.2 
Q) 
.w 
c 
H 

> 
Q) 

s 
' H 

>, 
.w 
·ri 

CJJ 
c 
Q) 
.w 
c 
H 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

0 

One-magnon Scattering 

0.8 
Energy (meV) 

Mixing Scattering 

0.2 0.4 0.6 0.8 
Energy (meV ) 

1 

1 

> 2 Q) 

s 
' ,...j 1.5 

>, 1 .w 
·ri 

CJJ 
0.5 c 

Q) 
.j..J 

c 
H 

~ 2 
s 

;::; 1. 5 

>, 
.w 

1 

-~ 0. 5 
c 
Q) 
.w 
c 
H 0 

Two-magnon Scattering 

0.4 0.6 0.8 
Energy (meV) 

Amplitude Comparison 

0.2 0.4 0.6 0.8 
Energy (meV) 

Figure 4.22: Three in-plane scattering processes at F point. 

1 

1 



> 
Q) s 2. 5 
' .-I 2 

>. 1. 5 
.j.) 

-~ 1 

0.5 

In - plane Scattering 

,--·· 
'' .. ' ~ 

Q) 
.j.) 

~ 
H 

0 -----·' 
0 0.2 0. 4 0. 6 0.8 

Energy (meV ) 
1 

Out-of - plane Scattering 

~ 1 . 75 I 
~ 1.5 
:::::_ 1. 25 = 

1 :::\ >, ,:: ~ 

.;! 0. 7 5 l~ \ 
•f ' ~ 0. 5 : \ 

~ 0. 25 : \ ,-, : ......... ,,-- .. _______ ,,, .......... _________ _ 
~ 0 _________ , --
H 0 0.2 0 . 4 0.6 0.8 1 

Energy (meV ) 

> 3 
Q) 

~ 2.5 
.-I 2 

.c 1. 5 
-~ 1 

77 

Total Cross Section 

~ 
Q) 
.j.) 

~ 
H 

0.5 

0~~~~~~~~7==? 
0 0 . 6 0.8 1 

> 3 
Q) 

~ 2 . 5 
.-I 2 

.c 1 . 5 
-~ 1 

@ 0.5 
.j.) 

~ 
H 

Energy (meV ) 

Component Demonstration 

0 . 8 1 
Energy (meV} 

Figure 4.23: Structure factors and cross section at F point. 



78 

Bare Two-magnon 
> ~ 
Q) 1.5 :~1, 
~ 1.25 :'\ : \ ,, 
H I ~ ~ 

1 J \_,.~ 
~ ' ' 
~ 0.75 ( \ 
ri ' ' 
~ o.5 1 \ 
ffi 0 . 2 5 i ··---\ 
~ ' ' 
~ 0 _____________ . .: ~---------------

H 0 0.2 0.4 0.6 0.8 1 
Energy (meV) 

Dumbbell Two-magnon 
> 1 l Q) 

s 0.8 . -...__ •' •' ,.-1 
0.6 

,. 
" ,. ,, 

0.4 •' 
~ 

•' ,, ,. 
~ 0.2 '' '' ·ri '' '. 
Ul 0 '' -
~ ' ' \f 111 • 

Q) .,, --· ' 
~ 

-0.2 ·:, ,/" ~\/ 
~ -0.4 '• 
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

~ 1.5 
~ 1.25 
,.-1 

1 

Two-magnon Scattering 

.c 0. 75 
- ~ 0. 5 
~ 
Q) 
~ 
~ 
H 

0.25 

0~=7~~~~~~~==~ 
0 0.2 0.8 1 

Energy (meV) 

Component Demonstration 
> Q) 1. 5 
s 

-...__ 
,.-1 1 

" .c 0. 5 i 
·ri • ~- ~ 
U) I I I ~ 

ffi o~-----"·~·.~~ ----+_1-·~.,~~--~ 
... ' ..... .. ...... ~ 

~ \! y 
H 0 0.2 0. 4 0. 6 0.8 1 

Energy (meV) 

Figure 4.24: In-plane two-magnon scattering at H point. 

~ 0.7 
~ 0.6 
:::::_ 0.5 
~ 0.4 
.~ 0. 3 
~ 0.2 
B o.1 

One-magnon Scattering 

~ Ol,====:~-:--~--o-......,_...:::::::::::::==..J 
H 0 0.2 0.8 1 

> 1 
Q) 0.8 s 

-...__ 0.6 ,.-1 

0.4 
~ 0.2 
~ 
·ri 
Ul 

0 
~ -0.2 
Q) 

-0.4 ~ 
~ 
H 0 

Energy (meV) 

Mixing Scattering 

0.2 0.8 
Energy (meV) 

1 

~ 1.5 
~ 1. 25 
,.-1 

1 

Two - magnon Scattering 

.c 0.75 
·~ 0. 5 
~ 
Q) 
~ 
~ 
H 

0.25 

0~==~~~--~~~==~ 
0 0. 2 1 

Energy (meV) 

Amplitude Comparison 
> 1.5 Q) 

s -...__ 
,.-1 1 

~ 0.5 
~ 
·ri 
Ul 0 ~ 
Q) 
~ 
~ -0.5 
H 0 0.2 0.8 1 

Energy (meV ) 

Figure 4.25: Three in-plane scattering processes at H point. 



In-plane Scattering 
:> 3 

~ QJ 
8 2.5 '-

,...; ,, 
2 

,, 

f\i \ 
>. 1.5 I', 
.w 
·rl 1 

' 0 

Ul 
.. , 

.:: ., 

QJ 0.5 
~~ ~- ·~ .w 

.:: 0 ----- ----
H 0 0.2 0 . 4 0.6 0.8 1 

Energy (meV ) 

Out - of - plane Scattering 
:> 
~ 2. 5 

:::;- 2 

>. 1. 5 
.w 
·rl 1 
Ul 

I • .. 
•' .. .. 
•' .. .. 
•' .. .. .. .. .:: 

QJ 
.w 
.:: 

o. s n 
0 _____ __________ / \__ .. .......... _______ /\, ____ .. 

H 0 0.2 0.4 0 . 6 0.8 
Energy (meV ) 

1 

Total Cross Section 
:> 
~ 5 
' 2.4 
>. 3 
.w 
-~ 2 

~ 1 
.w 
.:: 0 l::===:::=::::~o--:-:::--:::-==::::=~=? 
H 0 0.2 0.8 1 

:> 
~ 5 
' 2.4 
>. 3 
.w 

Energy (meV) 

Component Demonstration 

-~ 2 (\.. 
~ 1 jl \ _, __ _ 
.w •' 
.:: 0 ~==:::====~--c::.,.:'::.·---=·--:.::--:::-:;::·--::::--;:- ~:::::;:==~ 
H 0 0.2 0.4 0.6 0.8 1 

Energy (meV) 

Figure 4.26: Structure factors and cross section at H point. 

79 



81 

4.4.2 Line Shape Analysis 

In the in-planE component graph panels, it is clearly seen that the two-magnon 

scattering process c:arries a large weight of the intensity and forms an extensive shape, 

spanning from the medium- to the high-energy regime with a sharp lower threshold. 

This is not surprising because the longitudinal fluctuations are expected to be large as 

discussed in Sec. 4.1. By comparison, the one-magnon processes both for the in-plane 

transverse part a d the out-of-plane polarized part are rather small, which on the 

one hand is a conuequence of the frequency-dependent self-energy, and on the other 

hand, due to the small prefactor suppression: 

ty = 0.611617, tx = 0.517597. 

The mixing process results in a re-distribution of the scattering weight as shown in 

the diagrams. 

With different polarization factors, A,B and C points mainly reflect the in-plane 

structure factor while D to H measurements are almost unpolarized. However, since 

the two-magnon process is extremely large, all of them exhibit a noticeable continuum 

extended into a high-energy tail. The G point is somewhat special because there is 

a sharp peak showing up in the low-energy regime at about 0.07 meV, which is the 

out-of-plane polarized principal mode with almost no damping. Above an energy gap, 

starting at 0.2 meV, another peak appears decaying slowly with energy. This agrees 

quite well with the experimental observation except that the position of the peak and 

the ending of the tail are a little lower. Also agreeing with the observation at the H 

point, the principal peak merges into the continuum. Although the polarizations at 

the A and F points are different, the line shapes are not so different from each other 

since the two-magnon contribution is dominant in both cases. 

However, in spite of some similarity between the calculated and measured line 

shape, there exist significant discrepancies. For convenience, we put the calculated 

cross sections at these points together (see Fig. 4.27) to make a comparison with the 

experimental data (see Fig. 4.28). First, the energy region for the theoretical scattering 

occurrence is generally lower than the experimental ones. This is consistent with the 

calculated spectrum which is also shifted to lower energy than is measured. 
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Second, the theoretical line shape at the E point is remarkably different from 

the experimental result: instead of having a single sharp peak, it is still dominated 

by a continuum due to the large two-magnon scattering intensity. This disagreement 

motivates us to investigate the situation where there are Dzyaloshinskii-Moriya terms 

in the Hamiltonian that reduce the multiple magnon process. Taking the experimental 

value of this DM coupling 0.020 meV [11], we perform the numerical work at the E 

point with the result shown in Fig. 4.29, 4.30, 4.31. 

The line shape with DM terms is quite different from that without DM terms 

(as shown in Fig. 4.32) . Particularly, the two-magnon scattering intensity is greatly 

reduced such that the continuum carries a much smaller weight . 

Finally, there are unphysical peaks appearing at high energies in some graphs, 

which have been discussed in Ref. [15] . 
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Chapter 5 

Conclusion 

In this work we have used nonlinear spin wave theory to calculate the dynamical 

spin structure factor as well as the renormalized excitation spectrum in the spiral or

dered phase of J-J' Heisenberg antiferromagnet on the anisotropic triangular lattice. 

The application to a real experimental system, Cs2CuCl4 , has been initially made. 

We found that to the first sub-leading contribution in a 1/ S expansion, quantum 

fluctuations are rather large, which give rise to considerable renormalization of the 

magnon dispersion relation as well as noticeable excitation damping in some regions of 

the Brillouin zone. More significantly, we found a strong continuum in the dynamical 

structure factor, which is mainly due to multi-magnon scattering processes. However, 

our results have crucial discrepancies compared with the experimental observations. 

First, the energy regimes where continua occur are generally lower than the experi

mentally observed. Second, there are remarkable differences between the line shapes 

at some wave vectors especially at the saddle point E. Third, the theoretically cal

culated 1/ 5-renormalized excitation spectrum can not explain the experimental data 

since the overall energy scale is much smaller than that measured. 

In spite of these disagreements, there remain quite a few similarities on the quali

tat ive level, e.g. the notable scattering continua. Also, our comparison to experiment 

is at a preliminary stage as it did not choose energy-trajectories for the wavevector 

transfers and did not perform wavevector averages when computing the structure 

factor. Furthermore, the precision of the numerics needs to be improved in light of 
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the oscillating signals in some of the graphs. Therefore, it would be necessary to 

make more progress on the numerical evaluation for a complete comparison to the 

measurements. 

Another speculation from this work is a question about the Hamiltonian: Does the 

minimal Hamiltonian really capture all the essential physics? Veillette et al. 's work[15) 

shows that the DM interaction enhances the sublattice magnetization and suppresses 

the fluctuations so that the ordered phase is more stable. Purely starting from the 

minimal Hamiltonian, we obtain a fragile ordered phase which could be destroyed by 

higher-order corrections and make the perturbative expansion problematic. 

Finally, we have to point out that since this 2D calculation is restricted to zero 

temperature, we have nothing to say about the temperature dependence of the con

tinuum, while the experiment shows its survival to relatively high temperature (above 

TN) as convincing evidence for a spin liquid state. 

All in all, the nature of Cs2CuC14 's low temperature magnetic phase is still not well 

understood. Both additional experimental and theoretical work would be desirable. 
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Appendix A 

Goldstone Modes 

Here we show that the excitation spectrum defined by (2.37) exhibits the Gold

stone modes. The appearance of Goldstone modes is one of t he phenomena stemming 

from spontaneous continuous symmetry breaking in t he ground state of a system 

whose dynamics is controlled by a symmetric Hamiltonian. T he 1/ S-expansion of the 

Heisenberg model is expected to maintain spin rotational symmetry order by order in 

1/ S. Thus, our renormalized excitation spectrum, which includes all the contributions 

to order O(S1 ) and O(S0
), is expected to preserve these zero modes. 

In linear spin wave theory, where only the contribution of order O (S1) is counted, 

the Goldstone modes occur at k = 0, Q c due to the facts that 

k---->0 2:: 1 0 Ak- B k -----+ -M. -6.k·6.k· . . 2 tJ t J ' 
A B k ----> 0 fi . 

k + k -----+ mte, (A.1) 
t,J 

where i, j = x, y, 6.ki,j = ki,j - 0 and 

and 

A B k->Qc fi . 
k- k ~ mte, k->Q c 2:: 1 

Ak + Bk ~ - M·· 6. k·6.k· 2 tJ t J' (A.2) 
i,j 

where i, j = x, y, 6.ki,j = ki ,j- Q~,j and Mij is defined in (2.25), i.e., 
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Hence 

is linear around the two Goldstone modes because both the constant and linear terms 

in the relevant factor Ak - Bk or Ak + Bk vanish. 

A straightforward property of the LSWT ground state is that the ordering wavevec

tor Q is shifted by a O(S-1
) amount. This new value of Q will contribute to the next 

order perturbative calculation. Hence, we need to examine the Goldstone modes at 

wave vectors 0 and the shifted Q = Qc + ~Q- Qo for the 1/ S-renormalized excita

tion spectrum. 

For the convenience of analysis, the correction to the bare dispersion relation, 

Eq. (2.37), is written in the following way: 

First, we consider the vicinity of the zone center: k ----+ 0, where we have 

(Ak + Bk) 112 ----+finite, 

Re [ ~s(k, wk) + ~o(k, wk) J ----+finite, 

(Ak- Bk)1/2 ----+ (~ ~Mg~ki~ki) 
112

, 
z,J 

2SM• ~ t= ~ iJ'~:.!:•) ~•~o b.k;!Y>k;, 

Re [ ~s(k, wk)- ~o(k, wk) J ----+ 0 (l~kl 2), 

Re~A(k, wk) ----+ 0 (l~kl 2). 

(A.3) 

(A.4) 



Then 

From this we find 

F~l) ~ 0 (l~kl 1 ), 

F~2) ~ 0 (l~kl 1 ), 

F~3) ~ 0 (l~kl 1 ) . 
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(A.5) 

(A.6) 

And at this point we could, in principle, calculate the renormalized spin-wave veloc

ities. 

Next, let us consider the excitation energy at Qc, where we have 

Then 

(Ak- Bk) 1
/

2
1 =finite, 
k=Qc 

2S~Akl =finite, 
k=Qc 

Re[Es(k,w.)- Eo(k,w,)Jik~Qo =finite, 

(A,+ B.)ti'I,~Q" = 0, 

ReEA(k,wk)l = 0. 
k=Qc 

F~l)l = 0, 
k=Qc 

F~2)1 = 0. 
k=Qc 

(A.7) 

(A.8) 

The part F~3) at k = Q c is of the " § " type, which should be evaluated in the 

limiting case. In the numerator , the self-energy part includes both the quartic and 

cubic interaction contributions. It is easy to show that 

(4) (4) 1 "'"' 1 [ 2 ] E8 (k) + E0 (k) = N ~ Oq - nq + (Aq- Bq)(Ak-q- Bk-q) 

+(A>+B•)[l- ~~~.(A.-~s.)] (A.9) 
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At k ---+ Qc, it becomes 

~~4)(k)+~~)(k) = ~ L ~q [ -O~+(Aq-Bq)(Ak-q-Bk-q)l +0 ((llk) 2
). (A.10) 

q 

Since wqc = 0, at k---+ Qc, the cubic part simply becomes 

[ 
(1)] 2 

[ 
(3) (3) ] 1 """"' <I>t,2 

Re ~s (k, 0) + ~o (k, 0) = - N ~ 2(01 + 02)' 
q 

(A.ll) 

where 1 = q, 2 = k - q, and 

Using the relation (2.16): 

the cubic couplings c~, c2 can be expressed as 

Cq = [ (Aq - Bq) - (Ak-q + Bk-q)] + [ (Ak-q + Bk-q) - (Aq-Qc + Bq-QJ], 

Ck-q = [(Ak-q- Bk-q)- (Aq + Bq)] + [(Aq + Bq)- (Ak-q-Qc + Bk-q-Qc)]. 

Define 

then, 

We write the couplings as 

Ct = [(At - B1)- (A2 + B2)] + 1)1(1, 2), 

C2 = [(A2- B2)- (At+ B1)] + 1)1(2, 1). 

Substituting the above expressions into (A.ll), after a little algebra, we find that 

[ 
(3) (3) ] - 1 """"' 1 [ 2 Re ~s (k, 0) + ~0 (k, 0) - N ~ n 20q- 2(AqAk-q + BqBk-q) 

q q 

+2(Aq + Bq) 1/J(q, k- q)- 2(Aq- Bq) 1/J(k- q, q) + 0(1)12
)]. 
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Together with the quartic part, we arrive at 

Re [Es (k , 0) + Eo(k, 0)] = ~ L ~ [n~- (Aq + Bq)(Ak-q + Bk- q) 
q q 

+2(Aq + Bq) 1/J (q, k- q)- 2(Aq- Bq) 'lj; (k- q, q) + 0('1j;2
)] + 0 ((.6.k) 2

) . 

Since Aq, Bq and !Jq are all even functions of q, the expression above can be written 

as 

[ ' 1"'1[2 1 Re Es(k, 0) + Eo t,k , 0)] = N ~ n nq- 2(Aq + Bq)(Ak-q + Bk-q + Ak+q + Bk+q) 
q q 

+2(Aq + Bq) '1/J(q, k- q)- 2(Aq- Bq) 'lj;(k- q, q) + 0('1j;2
)] + 0 ((.6.k) 2

). 

When k-----+ Qc, we have 

'1/J(q, k- q) = Jk-q- JQc-q ~ 2:::: 8~~~q I L:lki + o ((.6.k) 2
), 

i t k=Qc 

'1/J (k- q, q) = Jq- Jk-Qc-q ~-L 81ka~c-q I L:lki + o ((.6.k) 2
) 

i t k=Qc 

= ~ ~z lk~· ll.k, + 0 ((ll.k)') . 

T he last term is a n odd function of q so that it vanishes after the summation over q. 
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From these we obtain 

that is, 

(A.12) 

Thus, 

Since Ly = 0, Mxy = Myx = 0 in our case, the formula is simplified as 

The region between Q 0 and Qc can not be discussed in the analytic approach because 

the slope in the kx direction changes sign when the non-analytical point Q is shifted 

from Qc to Q0 . Based on this analyticity consideration, we choose k-approaching Qc 

from the right along kx direction in the limiting evaluation, i.e. 

lim F.(3
) = lim 

+ k + (kx,O)-+(Qc ,0) (kx,O)-t(Qc ,0) 

Recall that 
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so that 

Qo) 

Thus we have 

WQc = WQc + LlWQc = 2S[~Mxx(AQc Qo) 

= 2S[~Mxx (AQc (A.13) 

Therefore, at k = Qc, the 1/ S-renormalized excitation acquires a finite positive energy 

gap which is linear in momentum with respect to the new Goldstone mode position 

Q0 and is of order 0(8°) This feature is consistent with our order-by-order symmetry 

argument. 

Finally, we turn to the new Q-value of the Goldstone mode to investigate the 

excitation energy at k = Q 0 . 

It is easy to see that 

(Ak Bk) 112
1 =finite, 
k=Qo 

2S .6.Ak I = finite, 
k=Qo 

Re [ ~s(k, wk) ~o(k, wk) J I = finite. 
k=Qo 

(A.14) 

Due to the wave vector dependence in the neighborhood of Qc, the other terms in 

(A.3) behave as 

ReEA(k, wk) ~k~Qo - O(JLl.QJ), 

(A.+ s.)'i'I.~Qo - O(JLl.QI), 

Re [~s(k, wk) + ~o(k, wk)] rv O(I.6.QI) 
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Since lb.QI is of order O(S-1
), for the solution of b.wk "'0(8°), we still have 

But the last term becomes 

~~1)1 == 0, 
k=Qo 

~~2)1 == 0, 
k=Qo 

Re2:A(k,wk)l == 0. 
k=Qo 

(Aqa - Bqo)1/2 . l:i Lib.Qi 

(2:· . 2Mi1·b.Qib.Q1·)112 
t,) 

(Aq0 - Bq0 )
1

/
2 

· Lxb.Qx 

(2Mxx)l/2 lb.Qxl 

From the LSWT, the bare excitation energy at Q0 is 

Therefore we have 

which demonstrates that Q0 is, indeed, a zero mode. 

(A.l5) 

(A.16) 

In conclusion, Goldstone modes occur at k == 0 and ±Q0 in the 1/ S-renormalized 

excitation spectrum as expected by symmetry. 

L~ 0 U U J
r· Q 




