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Abstract 
Recent interest in the fundamental physics of the Kondo effect has been driven 

by the observation of Kondo physics in mesoscopic systems such as quantum 

dots [1, 2] and carbon nanotubes [3], which can act analogously to magnetic 

impurities in a bulk metal. Highly tunable mesoscopic systems such as these 

present the possibility of observing the controversial Kondo length scale ~K 

associated with the cloud of conduction electrons that screen the spin of the 

impurity [4]. This plays a similar role in scaling theories as the Kondo tem­

perature T K. 

One proposal [5] for detecting this length scale is to measure the finite-size 

dependence of persistent currents in an isolated conducting ring coupled to a 

quantum dot. The screening cloud should be 'trapped' in the closed system, 

and will not form if the size of the ring L is much smaller than ~K. In partic­

ular, the current in the Kondo regime should be a universal scaling function 

j = L-1 j(if> , L/~K, T/TK) (here if> is the applied flux) [6, 7]. Considerable dis­

agreement has arisen in the theoretical estimates of these persistent currents 

as different analytical treatments yield contradictory predictions [6, 8, 9, 10]. 

This thesis presents a new Quantum Monte Carlo (QMC) technique for 

measuring persistent currents in such systems, based on the Hirsch-Fye Im­

purity QMC algorithm [11] which is ideally suited to treating systems with a 

single impurity such as the quantum dot. The algorithm provides exact nu­

merical results at finite temperatures. The complexity of the algorithm does 

not scale directly with the size of the system, making it particularly attractive 

for investigating a wide range of system sizes. 
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Chapter 1 

Introduction 

1.1 B ackground 

The impact of magnetic impurities on a bath of conduction electrons has cap­
tured the interest of generations of condensed matter physicists. The study 
of the seemingly straightforward physics of the Kondo problem has played 
an important role in the development of a number of fundamental tools in 
condensed-matter theory, including ideas of scaling and the renormalization­
group (RG) approach. Despite the wealth of theoretical techniques [12, 13] 
that have been applied to the problem, fundamental interest continues due in 
no small part to relatively recent developments that allow various aspects of the 
physics to be investigated with a great deal of experimental control [1, 2, 14] . 

In particular, scaling theories of the Kondo problem predict the emergence 
of a characteristic length scale ~K (along with a characteristic energy scale 
TK, the Kondo temperature) associated with a 'cloud' of conduction electrons 
that screen the spin of the magnetic impurity. Despite the fundamental role 
this length scale plays in theoretical treatments, experimental signatures of the 
screening cloud have to date never been seen [4, 15] and its existence has some­
times been questioned [16]. The large size of this cloud (~ 0.111m in typical 
metals) is held to be responsible for this absence of experimental confirmation. 
The fine degree of control over the mesoscopic systems in which Kondo effects 
have recently been observed have rekindled hope that the screening cloud can 
finally be detected. 

One candidate system for demonstrating the existence of this screening 
cloud is that of a small, isolated, conducting ring coupled to a quantum dot. 
Threading such a ring with a magnetic flux can induce persistent currents 
in thermodynamic equilibrium due to the Aharanov-Bohm effect; however , 
the Kondo physics associated with the quantum dot can strongly enhance or 
suppress these currents, depending on the particular details of the geometry. 
Specifically, the isolated nature of the rings 'traps' the Kondo screening cloud, 
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2 CHAPTER 1: Introduction 

implying that the ratio of the size of the ring L to the size of the screen­
ing cloud ~K should have a strong impact on the behaviour of the system. 
Since such persistent currents have been observed in GaAs/GaAlAs hetero­
structures [17] similar to those in which the mesoscopic Kondo effect has also 
been observed [1], there is some hope that such a finite-size effect will be 
observable. 

Consequently, considerable theoretical effort [5, 6, 8, 9, 10, 18, 19, 20, 
21, 22, 23] has been invested in calculating the persistent current and its 
dependence on the length of the ring. Some disagreement has arisen as vastly 
contradictory results have been predicted by different analytical techniques. 
In lieu of this controversy, it is useful to consider numerical techniques that 
can provide essentially exact results in the relevant parameter regimes. To this 
end, this thesis describes a novel Quantum Monte Carlo (QMC) technique for 
numerically calculating properties of such systems, based on the Hirsch-Fye 
Impurity QMC algorithm [11]. 

The outline of this thesis is as follows. A brief history of the Kondo prob­
lem is presented in Sec. 1.2. The prediction and subsequent observation of 
Kondo physics in mesoscopic systems such as quantum dots is elaborated upon 
in Sec. 1.3. The physics of mesoscopic persistent currents in ideal conducting 
rings is introduced in Sec. 1.4, along with a brief review of the relevant exper­
imental work. The theoretical controversy surrounding the effects of quantum 
dots on persistent currents is outlined in Sec. 1.5. Chapter 2 outlines in 
detail the theoretical framework of the Hirsch-Fye Impurity QMC algorithm. 
Chapter 3 presents calculations of the persistent current in the non-interacting 
Anderson-model which act as an input for the QMC; the current is calculated 
using several methods to confirm the results. In addition, this chapter serves 
to elaborate on the remarkably rich physics of persistent currents, even in 
non-interacting systems. Chapter 4 discusses the extensions needed in order 
to calculate the effects of interactions on persistent currents in the Hirsch-Fye 
algorithm and validates the technique by comparing the current as calculated 
by the described QMC algorithm with results from exact diagonalization and 
previously published perturbative results. Finally, Chap. 5 presents conclu­
sions and perspectives on novel calculations that can be performed with this 
technique. 

1.2 The Kondo Effect 

Anderson and Kondo Impurities 

The Kondo effect is one of the major paradigms of condensed matter theory. 
This introductory discussion is based on the textbook by Hewson [12]. The 
effect was first associated with the upturn in the low-temperature resistance of 
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1.2: The Kondo Effect 3 

metals doped with magnetic impurities (i.e. those exhibiting a Curie term in 
the magnetic susceptibility, indicating the presence of free spins). Two simple 
models of isolated impurities in a bath of conduction electrons have played 
important roles: the Anderson model and the Kondo model. The Anderson 
model emphasizes the strong repulsive Coulomb interaction present in the d­
orbitals of magnetic impurities and in its simplest form it treats the impurity 
as a single localized orbital. In second-quantized form, the Hamiltonian reads 

k ,u k ,u (]" 

Here Cku (cku) are annihilation (creation) operators for electrons in state k with 
spin a, ndu = c~ucdu is the number operator for electrons in the impurity orbital 
with spin a, Ek and Ed are the single-particle energies of the conduction and 
impurity states, respectively, Vk is the hybridization, and U is the Coulomb 
interaction. 

In the limit that the impurity is singly-occupied (cd « Ep « Ed+ U), 
the Anderson model reduces to the Kondo or s-d model via a Schrieffer-Wolff 
transformation. The Kondo model treats the impurity as a localized spin 
operatorS~ interacting with the conduction electrons via a magnetic exchange 
interaction J, suppressing the particle-number fluctuations present in (1.1) 

(1.2) 

where (J are the Pauli matrices. 

The Kondo coupling generated by the Schrieffer-Wolff transformation, in 
terms of the parameters of the Anderson model, is 

(1.3) 

Typically an isotropic coupling Jkk' = J is considered. 

Particle-Hole Symmetry 

Assuming a dispersion relation Ek and hybridization Vk that are sufficiently 
symmetric about the Fermi level Ep (which will be set to cp = 0 for the 
purposes of this thesis), the Anderson impurity is particle-hole symmetric at 
the single point -Ed = U /2. This corresponds to half-filling. The Kondo 
impurity is particle-hole symmetric at half-filling. 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



4 CHAPTER 1: Introduction 

The Kondo Resonance and Screening Cloud 

Standard perturbation theory is not sufficient to describe the low tempera­
ture behaviour of magnetic impurities, as perturbative approaches in these 
simple models generate terms logarithmic in the temperature that diverge as 
T -t 0. Proper understanding of the physics of such impurities below the 
characteristic Kondo temperature T K requires ideas of scaling and the renor­
malization group. The general picture that emerges is that at sufficiently low 
temperatures, scattering of conduction electrons off the impurity spin becomes 
strongly correlated. The impurity spin forms a singlet with a 'cloud' of con­
duction electrons which then screens the spin. Associated with this cloud is 
a sharp resonance (of width T K) in the conduction electron density of states 
fixed to the Fermi level EF, called the Kondo resonance. Although Tx depends 
(sometimes strongly) on the particular parameters of the model, below this 
temperature it becomes the only relevant energy scale and all thermodynamic 
properties of the system become universal functions of T /T K. In bulk met­
als, the Kondo resonance enhances scattering off of the magnetic impurities, 
leading to the characteristic upturn of the resistance as T -t 0. Concepts of 
scaling and universality have been confirmed experimentally, and by numerous 
theoretical techniques [12]. 

A further consequence of the renormalization group approach to the Kondo 
effect is that the screening cloud should have a characteristic length scale, 
~K ~ nvF/kBTx, which is on the order of0.1pm in most metals. In the strong­
coupling limit, this length scale should be the only relevant one, akin to T K 

for thermodynamic functions. Hence spatial correlations should be universal 
functions of r/~K [4, 15]. This length scale, however, has never been observed 
experimentally, and some controversy exists over its theoretical validity [16]. 

1.3 Quantum Dots 

Recent developments in nano-fabrication have allowed experimentalists to con­
struct conducting devices small enough to see discrete electron energy levels. 
It was suggested [24, 25] that if one could prepare a mesoscopic device (such as 
a quantum dot) with a localized spin, Kondo physics should become relevant 
below a certain T K. Clear evidence of the mesoscopic Kondo effect was first 
seen in a semiconductor quantum dot by Goldhaber-Gordon et al. in 1998 [1], 
confirmation of which followed soon after from Cronenwett, Oosterkamp and 
Kouwenhoven [2], Schmid et al. [26], Vander Wiel et al. [14] and others. 

Semiconductor quantum dots used to investigate the mesoscopic Kondo 
effect are typically constructed on the two-dimensional electron gas (2DEG) 
formed at the interface of GaAs/GaAlAs hetero-layers. Metallic features can 
be patterned on top of the 2DEG allowing experimental structures to be de-

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



1.3: Quantum Dots 5 

fined. Quantum dots are formed by isolating a small region (,....., 150 nm2 in 
the Goldhaber-Gordon experiment) of the 2DEG. Often three gates are used 
whose relative potential can be tuned: two to control the coupling of the dot 
to surrounding co duction electrons, and the third to control the number of 
electrons on the dot itself. The small dimensions of the dot lead to large, dis­
crete energy spacings be. Doubly-occupying a single state with two electrons 
(of opposite spin) is associated with a repulsive Coulomb energy U. These en­
ergy scales can be clearly detected by measuring the differential conductance 
G = di / dV through the quantum dot as a function of the gate voltage Ed, due 
to Coulomb blockade physics. 

Coulomb Blockade and Kondo Enhancement of the Conductance 

At low temperatures, transport through the dot occurs only at energies be­
tween the Fermi-levels of the source and drain leads, J.L£ and f.1R [27]. If the 
resonances associated with the energy levels of the dot are separated and nar­
row enough (as defined by the size of the dot and strength of the couplings 
between the dot and the leads) that the Fermi levels lie between two reso­
nances, the number of electrons on the dot cannot fluctuate and transport is 
forbidden . This is the Coulomb blockade. A typical measurement of G as a 
function of the gate voltage finds a sequence of peaks as Ed passes resonances 
in the dot density of states separated by valleys in which the conductance is 
strongly suppressed. 

When the dot is occupied by an odd number of electrons, however , it acts 
as a localized spin. A Kondo resonance forms at temperatures below [28] 

(1.4) 

Here r is the broadening of the dot energy levels and co is the energy of 
the highest occupied level. This resonance allows electrons to tunnel through 
the dot, enhancing the conductance in the region suppressed by the Coulomb 
blockade. The characteristic sequence of valleys in the conductance as a func­
tion of gate voltage can thus be divided into two alternating types; those in 
which the dot is evenly occupied in which the conductance drops with T , and 
those with odd occupancy in which the conductance begins to increase once 
T drops below T K. 

Kouwenhoven's group later demonstrated the striking fact that the Kondo 
enhanced conductivity could reach the unitary limit (the theoretical maximum 
for single-channel conductors), completely overcoming the Coulomb block­
ade [14]. The ability to tune the conductance so strongly may have important 
technological applications. 

Another experiment by Goldhaber-Gordon et al. explored the mixed­
valence regime of the Anderson model, confirming that semi-conductor quan-

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



6 CHAPTER 1: Introduction 

tum dots are well described by the Anderson Hamiltonian [29]. Further work 
has demonstrated the Kondo effect in a variety of other mesoscopic systems, 
including spin-1 quantum dots [30], carbon nano-tubes [3] and multiple quan­
tum dot systems [31, 32]. 

The fine control available over quantum dots should allow for investigations 
into many fundamental aspects of Kondo physics that are not directly observ­
able in bulk metallic systems. In order to observe the screening cloud, the 
theoretical goal is to describe an experimentally observable quantity whose 
behaviour clearly demonstrates the Kondo length scale f,K. One suggestion 
that has received considerable theoretical attention is the persistent current in 
a conducting loop coupled to a quantum dot, which should show evidence of 
finite size effects when the conducting loop is smaller than the Kondo screening 
cloud. 

1.4 Persistent Currents 

Persistent Currents in Ideal Rings 

Circulating currents generated by an Aharanov-Bohm flux1 <I> that remain sta­
ble in thermodynamic equilibrium were first investigated in superconducting 
rings, in which the current serves to quantize the flux passing through the ring 
in units of <l>s = chj2e (see [33] for instance). However, it was pointed out by 
Biittiker and others [34] that such flows could be expected in normal metal 
rings as well, provided that the phase of the conduction electron remained co­
herent as it circuited the ring. The essential observation was that this would 
not require a perfect sample: so long as the impurities and other scattering 
centres are static on the time scale of a single circuit, the phase shift of the 
electrons remains coherent and the Aharanov-Bohm twist should result in fi­
nite current flow. Further discussion of the concept of a decoherence time can 
be found in the textbook by Imry [35], amongst others. 

The Aharanov-Bohm flux induces a complex twist in the electron wave 
functions. The vector potential can be gauge-transformed into the boundary 
conditions 

(1.5) 

where <!>0 = chje is the flux quantum (about 4.136 x1Q-15 Wb) and Lis the 
length of the ring (measured, for the purposes of this thesis, in units of the 
lattice constant a). Since the wave functions are thus periodic functions of <I>, 
it follows that all properties of the system (including the persistent current) 
must also be periodic in <I>. Moreover, the current density can be calculated 

1 An Aharanov-Bohm flux threads the interior of a ring without applying a field at the 
sites of the ring itself. 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



1.4: Persistent Currents 7 

-I 

a 

(a) Energy levels of an ideal ring (b) 'Saw-tooth' persistent current 

Figure 1.1: (a) Energy levels of an 8-site tight-binding ideal ring at a = 0 
and a= O.l7r. The number of electrons occupying each state is indicated by 
the arrows. The allowed wave vectors shift to the right as a increases. The 
current density -evn/ L carried by the right- and left-moving states cancels 
exactly at a = 0 (circles) . The degeneracy at the Fermi-level is broken by a 
small applied flux (squares) upon which the highest-occupied left-moving state 
becomes doubly occupied. (b) The normalized persistent current jLfevp for 
the same ring. The current is linear in the flux and jumps discontinuously at 
a= 2mr. 

by taking the derivative of the ground state energy (at zero temperature) or 
the free energy (at finite temperature) with respect to the flux 

. dE0 e dE0 J = -c-- = ----. 
d<I> h da 

(1.6) 

It is reasonably straightforward to calculate the persistent current for non­
interacting electrons at T = 0 in an ideal ring (considering a single orbital at 
each site with no defects or disorder off of which the electrons can scatter). 
T his problem has been discussed lucidly and extensively by Cheung et al. [36]. 

From Eq. (1.5), we can see that the only effect of the flux will be to modify 
the allowed wave vectors in the system 

21rn a 
kn= L+L' n = 0, ... , L- 1. (1. 7) 

For a quadratic dispersion relation Ek = h 2 k2 /2m with fixed particle number, 
the ground state energy will be quadratic in the flux as well and thus the 
persistent current will be linear in the flux. Using a tight-binding Hamiltonian 

(1.8) 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



8 CHAPTER 1: Introduction 

and the corresponding dispersion relation Ek = - 2t cos k, the current converges 
on the same result very quickly as L increases. Figure 1.1(a) shows the tight­
binding dispersion relation and the allowed wave-vectors for an 8-site ring at 
two values of o:. At half-filling there will be N = L electrons in the ring. 
When there is no applied flux, the current carried by the occupied right­
moving and left-moving states will cancel exactly. When a flux is applied 
this symmetry between right and left moving states is broken, but to a good 
approximation the current is dominated by the contribution of the highest 
occupied state. Thus when a small positive flux is applied, the left-moving 
state just below the Fermi level becomes doubly occupied, leading to a current 
of order j ~ efi1rjmL2 = 2evpj L. The current decreases linearly with o: until 
the highest occupied right-moving state crosses the Fermi level at o: = 2n7r 
upon which the current jumps discontinuously back to j = 2evpj L. This 
characteristic 'saw-tooth' wave is shown in Fig. 1.1(b). 

It must be stressed that the amplitude and periodicity of this saw-tooth 
is strongly dependent on the parity of the ring L and the number of electrons 
N. At half-filling for L even, the current is 27r periodic in o: (this corresponds 
to a ¢0 periodicity in the flux); however the phase of the current is shifted by 
7r when L/2 is odd (that is, for a 10-site ring the discontinuities in the current 
occur at o: = (2n + 1)7r rather than at o: = 21r as they do for the L = 8 ring). 
Defining [B] between -1r and 1r by 

e = 2n7r + [B] (1.9) 

the current for L even is 

i = { 

L/2 even 
(1.10) 

L/2 odd. 

For L odd there is only a single electron in the highest occupied state. The 
maximum magnitude of the saw-tooth curve is thus only evp /Land it becomes 
7r periodic in o: ( ¢0/2 periodic in the flux) 

. evp 
J =- JrL ([o:] + [o:- 7r])' L odd. (1.11) 

The persistent current, however, is very sensitive to many specific details 
of the Hamiltonian considered, making it difficult to accurately predict the 
outcome of experiments. Levy et al. [37] reported the first observation of 
persistent currents in an ensemble of 107 copper rings, with an area of 0.3 
pm2

, cooled to as low as 10 mK. They observed a <I>0/2 periodicity in the 
current, which was attributed to the ensemble average washing out the first 

Peter Hitchcock - M. Sc. Thesis (McMaster University) 



1.5: Persistent Currents Through Quantum Dots 9 

harmonic. Chandrasekhar et al. performed a similar experiment [38] on a 
single gold loop of similar dimension to the copper rings in Ref. [37]. They 
observed the expected <I> 0 periodicity but found the magnitude of the cur­
rent to be nearly two orders of magnitude larger than theoretical predictions. 
Mailly and coworkers performed experiments [17, 39] on semi-conductor loops 
in a GaAs/GaAlAs hetero-structure, similar to those used for quantum dot 
experiments. Their observations matched the theory closely, but the lower 
carrier density (thus stronger interaction effects) and weak disorder of the 
semi-conductor loop called into question theoretical explanations of the cur­
rent in metallic rings based on the effects of interaction and disorder. Further 
experiments on arrays of gold rings [40], connected semi-conductor rings [41] 
and silver rings [42] investigated diffusive effects, connectivity of multiple rings, 
and spin-orbit coupling (respectively) . Experiments on persistent currents are 
very difficult to perform, and observations can only be made of the first few 
harmonics of the current rather than the full detailed flux dependence. 

1.5 Persistent Currents Through 
Quantum Dots 

No experiment has been done to date that has observed the effect on persis­
tent currents of coupling the conducting loops to a quantum dot; indeed it 
has been suggested t hat this would be an extremely challenging experiment. 
Theoretically, however, such persistent currents have received much attention. 

When considering the effects of quantum dots on persistent currents, two 
geometries are commonly considered. In the first (Fig. 1.2(b)), the quantum 
dot is embedded directly in the conducting loop such that conduction electrons 
must pass through the dot in order to complete the circuit ; this is referred to 
as the Embedded quantum dot (EQD). The dot is coupled to the ring by a 
modified tunnelling constant t'. In the second, the quantum dot is coupled to 
the side of the ring (also with a modified tunnelling constant t') such that the 
current is affected primarily by the strong correlations between the dot and the 
ring; this is referred to as the Side-Coupled quantum dot (SCQD). The dots 
can be modelled either as an Anderson impurity or the simpler Kondo impurity. 
This thesis will focus exclusively on the Anderson impurity models since they 
are more naturally suited to the Hirsch-Fye impurity QMC approach. The 
specific Hamiltonians studied will be presented in Chap. 3. 

Much of the controversy regarding the persistent current when the ring is 
coupled to a quantum dot surrounds the effects of the finite size of the ring. 
Two opposite limits are considered. In the first the ring is much larger than 
the size of the screening cloud L » ~K or equivalently the level spacing in the 
ring is much larger than the Kondo temperature 6E » T K. In the second, the 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 
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(a) Ideal Ring 
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_fr'\ ---v 

(b) Embedded QD (EQD) (c) Side-Coupled QD (SCQD) 

Figure 1.2: Commonly studied geometries for considering the effects of quan­
tum dots on persistent currents. (a) A tight-binding, ideal ring. Coulomb 
interactions are neglected. The quantum dots in (b) and (c) are indicated 
by the large grey site. The dots are typically modelled either as a Kondo or 
an Anderson impurity. In all three systems shown the number of sites in the 
ring L is 10, but the number of electrons N at half-filling is one greater for 
the SCQD geometry ( N = 11) then for the ideal ring and EQD geometries 
(N = 10). 

ring is taken to be much smaller than the screening cloud L « f,K ( 6E « T K). 
The behaviour of the current with the dot is usually discussed relative to the 
ideal case. 

Biittiker and Stafford considered [8] both geometries in the limit L « 
f,K, assuming no Kondo effects will be present in this limit. Working in the 
Anderson model, they studied the effects of charge transfer between the dot 
and the ring on the persistent current. In the EQD case, Coulomb blockade 
effects similar to those discussed earlier suppress the current except when 
a single-particle resonance from the dot passes through the Fermi level. In 
contrast, Coulomb blockade effects are not present in the SCQD case, but due 
to the strong effects of parity on the current, the transfer of electrons from the 
ring to the dot induces a strong change in the magnitude of the current. 

Kondo effects were considered in the EQD by Ferrari et al. [18] in a cluster 
mean-field approach, pointing out that the Kondo resonance should give rise 
to a persistent current as L > f,K. Furthermore, they argued using slave­
boson mean field theory that the current at the Kondo resonance should go as 
0(1/vfi) (rather than as 0(1/ L)). Applying a variational ansatz to the EQD, 
Kang and Shin argued that parity effects suppress this Kondo enhancement 
for N odd [19]. 

The SCQD case was considered by Eckle et al. using a Bethe ansatz [9], by 
Cho et al. using slave-boson theory in the U--+ oo limit with a diagrammatic 
expansion [20], by Anda et al. using a form of cluster mean-field theory [23], 
and by Zvyagin and Schlottmann, also using a Bethe ansatz [43]. These works 
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1.5: Persistent Currents Through Quantum Dots 11 

argued the Kondo effect should lead to an ideal current in the L » ~K limit. 
These predictions, however, were contradicted by Hu et al. using slave­

boson mean field theory [21 J and by Simon and Affleck, who developed a 
renormalization-group-enhanced perturbation theory [5, 6]. The latter argued 
that the current should in fact be a universal function of the flux and of the 
ratio ~K/ L 

jL = f(a , ~K/ L). (1.12) 

In the (strong-coupling) limit of L » ~K, the Kondo-coupling should renor­
malize to infinity, but in the opposite limit , ~K » L, the finite size provides 
an infrared cutoff bounding the growth of the renormalized coupling. In this 
limit, standard perturbation theory should apply. These works predicted that 
as a result of the Kondo resonance at half-filling, the persistent current in the 
EQD should be that of the ideal ring. On the other hand, the impurity in the 
SCQD should form a singlet with a localized conduction electron in the ring, 
leading to a complete suppression of the current. In the L « ~K limit , low­
harmonics of the current dominate leading to a sinusoidal current (suppressed 
from the ideal 'saw-tooth' curve) . 

These limits have been tested numerically by ED and DMRG techniques, 
which found good agreement with the small L perturbation approach and 
evidence supporting the predictions of strong coupling behaviour [10]. Pertur­
bation theory in 1/ JK for the weak-coupling, SCQD case finds further evidence 
that jL-+ 0 in this limit, though very large values of JK were required to see 
good numerical agreement. The effects of particle-hole symmetry breaking off 
of half-filling remain unclear, though they are predicted to have a larger effect 
on the SCQD when N is odd [44]. 

Despite (or perhaps because of) the wide range of approaches applied to 
calculating the persistent current, there remains some controversy over its 
true behaviour, particularly in the strong-coupling limit of the SCQD where 
the effects of particle-hole symmetry breaking are unclear. While extensive 
numerical work has been done at zero temperature for smaller system sizes, 
the development of a Quantum Monte Carlo algorithm for calculating per­
sistent currents in the two commonly considered geometries would be useful 
for confirming analytical predictions and understanding the behaviour in the 
cross-over region where L ~ ~K. The algorithm described in this thesis is 
ideally suited for calculation of the persistent current at finite temperatures 
which are more relevant to the experimental situation. In the context of the 
scaling theory, at finite temperatures the current should become a universal 
function of three arguments 

(1.13) 
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Chapter 2 

The Hirsch-Fye Impurity 
Quantum Monte Carlo 
Algorithm 

2 .1 Formalism 

The Hirsch-Fye impurity algorithm is ideally suited to treat fermionic sys­
tems in which the interactions are treated only in a small fraction of the 
system. Originally developed to investigate the single impurity Anderson 
model [11 , 45], it has been used heavily as a component of Dynamic Mean 
Field Theory (DMFT) calculations [46]. While I am not aware of it having 
been used to calculate persistent currents through normal-metal, it has been 
used to investigate persistent currents through a Josephson-coupled supercon­
ducting ring. 

The derivation of the algorithm relies on a discrete version of the Hubbard­
Stratonovich transformation for Anderson impurity interaction terms Und1nd!· 
While results can be obtained for Kondo impurities via a U --+ oo projection 
technique [47], this thesis will focus on Anderson impurities. The Hirsch­
Fye QMC algorithm is a finite-temperature algorithm; a related algorithm 
developed by Feldbacher, Held, and Assaad is better suited for obtaining zero­
temperature results , and may be similarly applicable [48]. 

There are numerous reviews of the algorithm in the literature; the following 
is based largely on [45, 46, 49, 50]. This chapter is primarily a review of the 
algorithm, emphasizing the role of the impurity green's function. The non­
interacting green's functions which act as input to the QMC are discussed in 
det ail in Chap. 3, and some remaining details specific to calculating persistent 
currents are discussed in Chap. 4. 

13 



14 CHAPTER 2: Hirsch-Fye Impurity QMC 

2.1.1 Discrete Hubbard-Stratonovich Transformation 

We consider the Anderson model, broken up into interacting and a non­
interacting parts 

A A A 
HAM= Ho+HI 

u- "'"" At A "'"" [TI At A H ] "'""( u) At A no = ~ EkCkCk + ~ v kCkcrCdcr + .C. + ~ Ed + 2 CdcrCdcr 

k,cr k,cr cr 

and the partition function 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

At this point we apply the Trotter decomposition to separate the interacting 
and non-interacting parts of the Hamiltonian, which introduces a systematic 
error of 0(~72 ) (one must be careful about the nature of H0 and H1 here in 
order to ensure the linear error cancels [49, 51]). 

L.,. 

Z = Tr II e-t:nHoe-l:;.THJ + 0(~72). (2.5) 
£=1 

This is the only systematic source of error in the algorithm. The error remains 
finite in practise, since we work at finite Ln and it will be present in the 
estimates of all observables calculated. However, the limit of ~72 ---+ 0 can in 
practise be extrapolated. For brevity I will neglect this term in the remainder 
of this discussion. 

The exponential term with the interacting part of the Hamiltonian can now 
be decomposed into quadratic terms by introducing an Ising-like auxiliary spin 
¢ = ±1. This can be done in a number of ways depending on which symmetry 
one wishes to respect in the resulting Hamiltonian [49, 52]. Here we will use a 
decomposition which breaks the SU(2) symmetry of the system (it is restored 
upon integrating out the auxiliary spin), but which leads to a simpler final 
expression. Since the fermionic number operators can only take on the values 
0 and 1, 

Performing this transformation at every time-slice removes the interaction 
term at the cost of generating an effective time-dependant potential that acts 
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2.1: Formalism 15 

only at the impur ity and depends on the auxiliary spins { ¢e}. Since there are 
no terms that couple the two spin sectors, we can partition Z into a separate 
trace over each sector. Neglecting the constant pre-factor, 

L-r 

Z = Th{ </>e} II 'If II e-t::.T!Ig evt, 
u £=1 

where the effective time-dependant potential is given by 

with rJ = ±1. 

(2.7) 

(2 .8) 

The fermionic degrees of freedom can now be integrated out. The descrip­
tion of this procedure is strongly based on the nice discussion of Hirsch, in the 
Appendix of Ref. [53]. It is useful to re-label the fermion operators Co. where 
a runs over all L- 1 conduction wave-vectors k and the impurity site d. The 
non-interacting Hamiltonian can thus be written in terms of an L x L matrix 
ho 

Ho = L cl(ho)o.,eC,e ( = choct). (2.9) 
o. ,,B 

Similarly the effective potential can be described by an L x L matrix at each 
time slice with a single non-zero element Vt. 

The many-body trace is of the form 

(2.10) 

The trace can be evaluated straightforwardly with the identity 

(2.11) 

where f)i are the single-particle basis states that diagonalize the matrix eAeB 
and e>-; are its corresponding eigenvalues. This identity is established in detail 
by Hirsch in the Appendix of Ref. [53]. We can then evaluate the trace in the 
11 basis. Since each state can independently be occupied or unoccupied, the 
trace over the full 2£ many-body Hilbert space is 

(2.12) 

The last determinant is taken over the L spatial degrees of freedom. 
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16 CHAPTER 2: Hirsch-Fye Impurity QMC 

Two definitions are convenient. Let 

B u B v:a 
€ = oe e . (2.13) 

These are L x L matrices (here v~r is short hand for an L x L matrix with 
a single non-zero element acting on the impurity site equal to V£u defined by 
(2.8)). The partition function Z then becomes 

Z = Tr{<t>e} IT det (I+ Bf Bg ... B£J. (2.14) 

Finally, let ou be LL7 x LL7 matrices defined as 

I Bu 
Lr 

-Bf I 
ou = Bu - 2 I (2.15) 

-Bt-l I 

The final form of the partition function can then be expressed as a product of 
the determinants of these matrices 

z = Tr{<t>e} det or det ot. (2.16) 

The most important property of these matrices is that their inverse is the 
imaginary-time green's function 

9ij(re,re,) = (T(\(re)c}(re,)) 

= { ou} i£~€'. 

(2.17) 

(2.18) 

This can perhaps most easily be seen by considering the partition function 
in terms of path integrals. Since the Hamiltonian is quadratic in the fermion 
operators, it is possible to write Z in terms of a Gaussian path integral over 
Grassman numbers 

Z = Tr{q,e} J V[1{!t, 1/J] exp {1{3 1/Jt 9-11/!dr} 

= Tr{<t>d det 9-f1 det 911 

(2.19) 

(2.20) 

since the spin sectors are still independent. We can thus identify 9-1 = 0, 
although there are subtleties in the discretization procedure [50]. This equal­
ity can be shown directly in the Hamiltonian formalism as well, though the 
derivation is lengthy (see for instance [49]). In terms of the B matrices defined 
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2.1: Formalism 17 

above, the discrete green's function g is 

Tp_ < Tp_t, 
(2.21) 

JU­t - _I_+_B_u __ B_u_B_u __ B_u_ · 
p_ • • • 1 LT . . . £+1 

(2.22) 

which can indeed be shown to be the inverse of ou. While this expression is 
used in related algorithms, it will not be necessary here. 

2.1.2 Dyson Equation 

The simple structure of ou makes it is easy to relate the green's function 
for one auxiliary spin field configuration vu = vu ( { ¢£}) to that for another 
V'u = vu ( { <Pa). Note that vu here is also a (diagonal) LL7 x LL7 matrix. 

(2.23) 

For brevity I will drop the spin index, as it plays no role in the following 
discussion. 

If we define 

e-vl Bo 
-Bo e-v2 

- v 0 = oe- = -Bo e-v3 (2.24) 

then we can simply subtract off the old time-dependent potential e-v and add 
the new one e-v' 

0' = 6- e-v + e-v'. (2.25) 

Not ing that 6-1 = g = ev g, 

(2.26) 
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18 CHAPTER 2: Hirsch-Fye Impurity QMC 

Substituting back in g, we find 

eV' g' = ev g- ev g(e-V'- e-v)ev' g' 

g' = g + g' _ eV'-V g' _ g(I _ eV'-V)g' 

= g + (g _ I)(eV'-V _ I)g'. (2.27) 

Alternatively, we can start with the transpose of 0. Carrying through 
similar steps and transposing back at the end, another Dyson equation can be 
derived 

g' = g + (g' _ I)(I _ eV-V')g. (2.28) 

The Dyson equations (2.27) and (2.28) are the primary tools of the Hirsch­
Fye impurity algorithm. In order to calculate expectation values of observ­
ables, we need to trace over all auxiliary spin configurations. If we can find 
one such green's function, we can use these to generate all the others. In their 
current form, however, g and 0 are LL7 x LL7 matrices which are cumber­
some to perform practical computation with. However, the simple form of the 
effective potential V that acts only on the impurity site allows for a major 
simplification 

i,j 

i,j 

= 9dd + (9dd- I)(ev'-V- !)g~d· (2.29) 

Solving this equation for g~d 

I A-1 V'-V 9dd = dd 9dd, Add= I- (9dd- I)(e -I). (2.30) 

We can now update the L7 x L7 imaginary-time impurity green's function 
without keeping track of any details of the environment. We will see that we 
can in fact perform the whole calculation keeping only 9dd· 

2.1.3 The Monte Carlo Algorithm 

By formally setting all the auxiliary spin variables to zero ¢e = 0, we can turn 
off the interaction, leaving us with the non-interacting Anderson model. Since 
the green's function can be solved for by taking matrix elements of1 

(2.31) 

1See Hewson, §1.2 and §5.2 [12]. 
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2.1: Formalism 19 

this provides a means of calculating an initial green's function , from which we 
can calculate the interacting green's function for any spin configuration via 
the Dyson equation (2.27). The exact form of g~d will be discussed later. 

The full , interacting green's function can be calculated as 

(g) = Tr{<l>t} g det or det Ol 
Tr{<t>t} det or det 0 1 ' 

(2.32) 

but summing over the whole auxiliary spin space is impossible for large L7 . 

Instead the sum is estimated using a Metropolis-like Monte Carlo algorithm 

(g) = L P( { </>e } )g, 
{</>t} 

P( { </>e }) = det O~det Ol . (2.33) 

The distribution P is generated using a Markov chain where the probability 
of flipping a single spin </>s ---+ </>~ = - </>8 is 

R _ P( </> ---+ </>') = det O'r det O'l. 
s s det or det 01 (2.34) 

The ratio R can be evaluated with the help of the Dyson equation (2.27) for 
the entire matrix g 

det O'r det 0'! 
R = ----=--=- ------::-:-

detor detOl 

= det Ar det Al 
' 

det gr det g! 
det g'r det g'l 

det A r g'r det A l g'l 
det g'r det g'! (2.35) 

with A a = I - (ga - I) ( e v'u-vu - I). Dropping the spin index CJ, for a single 
auxiliary spin flip the matrix (ev'-v- I) has a single non-zero element. Thus 
the matrix A has a simple form and the determinant can easily be evaluated. 
The matrix elements of A are (here i, j, k are spatial indices and £, f' , f" are 
temporal indices) 

Aie,if' = 6ij6ee' + L (gik(Te , Te")- 6ik6ee") (ev'-v- I)kf" ,je' 
kf" 

(2.36) 
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20 CHAPTER 2: Hirsch-Fye Impurity QMC 

The matrix has non-zero elements along the diagonal and in one column 

1 An,ds 
1 A12,ds 

A= 
Ads,ds 

(2.37) 

ALL,.,ds 1 

The determinant can easily be evaluated by expanding along the ds'th row 

V'-V: R = det A= Ads,ds = 1 + (9dd(T8 , T8 )- 1)(e " "- 1). (2.38) 

This ratio again depends only on the impurity green's function 9dd· We can 
thus perform Monte Carlo sampling of the auxiliary spin field configurations 
keeping track only of the impurity green's function. In general this ratio is a 
complex number, and for certain models the algorithm suffers from the sign­
problem. As discussed in further detail below, however, so long as there is 
only one impurity site at which interactions are included, this ratio is positive 
definite and thus suitable for use as a probability. 

A;tl (see Eq. (2.30)) also has a particularly simple form for single flips, 

A -1 
dd-

1 

1 

A-1 
ds,ds 

(2.39) 

_ AdL,.,ds 1 
Ads,ds 

As a consequence, the matrix product g~d = A;tl9dd can be performed in O(L;) 
steps instead of the O(L~) steps required to numerically invert Add 

g~d(Tg,T£1) = 9dd(T£,T£1 ) + (9dd(Tg,Ts)- bts)Ts9dd(T8 ,T£'), 
ev;-vs _ 1 

We are now in a position to describe the algorithm. 

(2.40) 

(2.41) 

1. Calculate g~d for the appropriate non-interacting Anderson model from 
Eq. (2.31). 
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2.2: Observables and Wick's Theorem 21 

2. Pick an initial spin configuration { ¢£} and calculate 9dd via 

[Ao ]-1 o 
9dd = dd 9dd? A~d =I- (g~d- I)(ev- I). (2.42) 

The matrix A~d does not have the simple form (2.37) so the inverse must 
be calculated numerically. 

3. Perform Metropolis spin flips with probability P( ¢s --+ ¢~) given by Eqs. 
(2.34) and (2 .35). Update 9dd after each flip using Eq. (2.40). These 
single-flip updates require only O(L;) operations. 

4. At regular intervals check for numerical drift using A~d9dd = g~d· If 
required, recalculate 9dd using Eq. (2.42). The Hirsch-Fye algorithm is 
in general very stable numerically (much more so than the BSS algorithm 
that relies on evaluating matrix products such as Eq. (2.21) [49]. As a 
result the O(L~) matrix inversion rarely needs to be performed. 

It must be emphasized again that the significant simplification of using only 
9dd rather than the entire matrix g (or equivalently 0) is possible due to the 
simple form of the interaction term. Related algorithms developed for studying 
the Hubbard model either keep track only of spatial correlations (leading to 
L x L matrices), or keep track of all spatial and temporal correlations. Note 
as well that with the exception of the initial calculation of g~d ' the algorithm 
needs no further input from the specific form of H0 . 

2.2 Observables and Wick's Theorem 

The algorithm naturally gives us access to the imaginary time impurity green's 
function. Due to the quadratic form of the Hamiltonian at each spin configura­
tion, four-point (and higher) green's functions can also be calculated via Wick's 
theorem, which follows in the standard fashion by differentiating Eq. (2.19). 
For instance, the local moment of the impurity can expressed 

(2.43) 

Applying Wick 's theorem to this first term, 

(2.44) 

and the third contraction vanishes. The impurity site's contribution to the 
magnetic susceptibility can calculated similarly. 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 
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Unfortunately, the cost of throwing away the conduction electron green's 
functions is that we no longer have access to global properties of the system. 
For instance, the free energy (H) - J.1(N) would require the entire matrix g 

to be kept, not just 9dd· This is in principle possible, but computationally 
extremely challenging. With some work, however, we can calculate some local 
properties of a finite number of conduction electrons (and their correlations), 
at the cost of keeping another L 7 x L 7 matrix at each step of the Monte Carlo 
for each green's function needed. This will be described in further detail in 
Chap. 3. 

2.3 The Fermion Sign Problem 

As mentioned above, the ratio R given by Eq. (2.35) is in general a complex 
number. It is simply shown that particle-hole symmetry, of the type 

etc. (2.45) 

implies that the ratio R is real and non-negative. Under the above symmetry 
transformation, 

{'ru ' "' At A ' "' A At 
vI! = /\fJ <pfCduCdu ---+ /\fJ <pf!Cdu' Cdu' 

= AfJ¢~_(1 - ndu') 

= AfJcpg + ~u'. (2.46) 

The determinant of ou can be written in terms of the original trace over 
fermion degrees of freedom 

LT LT 

det ou = Tr IT e-t::.Tiloi't' e)..u<f>e =IT e>.u<t>e det ou'' 

f=l f=l 

and since the matrix ou contains only real elements, the ratio 

det O'l det 0'! 
R= ----:----:-

det or det O! 

is real and non-negative. 

IJ~==~ e>-<t>~ ( det O'l) 
2 

n~==l e>-u<t>e ( det 01) 2 

(2.47) 

(2.48) 

However, it has recently been shown by Yoo et al. [54] that, provided the 
Hamiltonian can be transformed into a one-dimensional problem, the ratios 
of the determinants det ou are individually positive semi-definite. So long as 
there is only a single Anderson impurity, this can be done even away from the 
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particle-hole symmetric point (Ed= -U /2) and when an Aharanov-Bohm flux 
is applied. 

2.4 Complexity 

Because performing a full update of 9dd requires a matrix inversion, the algo­
rithm scales as O(L~) making the T --7 0 limit computationally demanding. 
There is no direct dependence on L, the size of the system to be studied 
except possibly in the calculation of 93d; indeed the initial study on the An­
derson model was conducted in the thermodynamic limit at which 93d can be 
calculated exactly. 

The persistent current is of order 1/ L, however, which makes stochastic 
estimation of j more difficult as L increases. This limit has not yet been 
tested empirically, but we hope that useful calculations can be performed at 
significantly larger system sizes than have currently been investigated. 
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Chapter 3 

]Persistent Current Through 
]~on-Interacting Quantum Dots 

The Hirsch-Fye algorithm provides a numerical estimate of the impurity's 
imaginary-time green's function. While in principle all correlation functions 
are available to the algorithm, only a small, finite number can in practise be 
obtained for large system sizes due to the computational effort required. As 
mentioned earlier, the consequence is that the ground state or free energy 
cannot be directly calculated. Instead, the equilibrium persistent current can 
be calculated from a small number of correlation functions , as will be described 
below. 

In this chapter I present calculations of the persistent current in rings cou­
pled to a non-interacting impurity in the two geometries discussed in Sec. 1.5 
(embedded and side coupled dots) . The calculations are performed using the 
non-interacting imaginary-time green's functions (ITGF) that form the input 
to the Monte Carlo algorithm described in the previous chapter. In order to 
check the ITGF results in detail, they are compared to an expansion in powers 
of 1/ L of the persistent current through a scattering potential due to Gogolin 
and Prokof'ev (GP) [55], and to single-particle exact diagonalization (ED) re­
sults. Most importantly, this verifies the validity of the ITGF approach and 
the expressions used for the current that are essential for the QMC algorithm. 
However, the results presented below also highlight the particularly sensitive 
physics of persistent currents. Even in non-interacting systems, the persistent 
current shows a strong dependence on effects of the ring geometry, the parity 
of the number of sites Land electrons N, and the choice of ensemble averaging 
(that is, whether the particle number N or the chemical potential J.l is held 
fixed). 

The ITGF approach yields finite temperature results with fixed chemical 
potential J.l. In contrast, the GP expansion is a ground state result with fixed 
particle number N. In some cases these yield essentially identical results for 
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the current, however in other cases there are significant differences between 
the current in the different ensembles. All results have been checked in detail 
against the exact diagonalization results which can be run in either ensemble. 

In general all derivations below are outlined for arbitrary hopping strength t, 
however all numerical results presented in this thesis are for t = 1. 

3.1 The Current Operator 

The time derivative of the charge density operator (ji = -ec! ci in a tight­
binding Hamiltonian with only nearest-neighbour couplings t (see (1.8)) is 

(3.1) 

Using 'V · 0 = Oi -Oi-l as a lattice derivative, this can be rearranged as a 
continuity equation for the charge density 

o A 

(j+'V·j=O (3.2) 

which defines the current operator Ji 

(3.3) 

where we have set n = (c = kB = )1. 
We can then write the finite-temperature current in terms of the imaginary­

time green's function. As in Chap. 2, define 9ij(T£,Te) = (Tci(rt')c}(re)) (Tis 
the time-ordering operator), so the expression for the current becomes 

(3.4) 

These green's functions can be calculated straightforwardly in the non­
interacting Anderson model (for now it is convenient to stay in momentum 
space) 

Ho = L EkcL.cka + L [Viclacdo- + H.c.J + L Ednda· (3.5) 
k,a k,O" 

The tight-binding dispersion relation Ek = -2t cos k will hold for both geome­
tries, but the hybridization VK is geometry dependent. Evaluating matrix 
elements of the operator equation [12] 

(3.6) 

Peter Hitchcock- M. Sc. Thesis (McMaster University) 



3.2: Embedded Quantum Dot 27 

where Wn = (2n + 1)1rj j3 are the fermionic Matsubara frequencies, we get 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

At this point the spin index a will be dropped since the two spin channels 
are independent and identical in the non-interacting case. The electron spin 
will still contribute t o parity effects. From these expressions, the spatial cor­
relation functions (and thus the current) can be extracted by inverse Fourier 
transforming, but since those transformations are different for the two geome­
tries, they will be discussed later. Note that where one takes the complex 
conjugate of the hybridization depends on the definition of the hybridization: 
here (kiHid) = Vk, which is opposite of the definition used in Hewson [12]. 

3.2 Embedded Quantum Dot 

3.2.1 Imaginary-Time Green's Function (ITGF) 
Approach 

The embedded quantum dot can be modelled by the following tight-binding 
Hamiltonian 

L- 2 

fiEQD = -t L [ c}O'cJ+lO' + c}+lO'cjO' J + Cd L ndO' + und1nd1 
j=l 0' 

0' 
(3.11) 

t ' [ ~ t ( ia/2 ~ - ia/ 2 ~ ) H ] - cdO' e c10' + e cL-lO' + .c . . 

The effects of the Aharanov-Bohm flux <I> are included by adding a total phase 
twist of a = 21r<I> / <I>0 in the bonds between the impurity and the two sites that 
couple directly to it. Fourier-transforming to obtain the original momentum­
space Hamiltonian (3.5) , 

k = Jrn L L,n=1 ... - 1 (3 .12) 
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gives the standard dispersion relation Ek = - 2t cos k and the hybridization 

Vk = -t' Vi ( eia/2 sink+ e-ia/2 sin k(L- 1)). (3.13) 

The effects of the flux are encoded entirely in this expression for the hybridiza­
tion. 

We are interested in the correlations between adjacent sites on the ring. 
By inverse Fourier-transforming Eqs. (3.7), these spatial correlations can be 
found 

9dj ( Te, T£1) = (T cd( Te)CJ ( T£1)) 

=Vi L sin kj [~ L e-iwn(Te-Te')9dk(iwn)l 

k Wn 

(3.14) 

and similarly 

. Vi"' vk sin kj . 
9jd( 'lWn) = L L.J . + 9dd( 'lWn) 

k 'lWn Ek 
(3.15) 

( . ) - 2 ["""'sin kj sin kj' """' vk sin kj (. ) vk~ sink' j'] 
9jj' 'lWn - - L.J . + L.J . 9dd 'lWn . , 

L k 'lWn + Ek kk' 'lWn + Ek 'lWn + tk' 
(3.16) 

although strictly we need here only the green's functions 9dl and 9Id· We 
can now calculate the persistent current by Fourier-transforming back to the 
imaginary time domain; for instance1 

9dd(Te- Te') = ~ L eiwn(Te-Te')9dd(iwn)· 

Wn 

(3.17) 

We can now calculate the current. However, since the hopping between 
the impurity site and the adjacent site is modified by the effects of the flux, 
the definition of current operator between these links changes: 

jL Lt' 1 ( ia/2 ( - ) -ia/2 ( - )) - = - m e 9w 0 , 0 - e 9oi 0 , 0 . 
evF t 

(3.18) 

1There is a discontinuity in these green's functions at equal times, stemming from the 
fermionic anti-commutation relations: lim8__, 0+ (T ci ( T£ )cj ( T£ + 8)) + (T Ci ( T£ )c} ( T£- 8)) = 8ij. 

The Fourier transform (3.17) will give the midpoint, so one must pick either limit by adding 
or subtracting 8ij /2. 
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3.2.2 Gogolin and P rokof'ev (GP) Approach 

Gogolin and Prokof 'ev expressed the persistent current in a ring containing 
a potential scattering centre in terms of its transmission coefficient [55]. Ex­
panding in powers of 1/ L, they found that the persistent current to 0(1/ L) 
depends only on the parity of the number of electrons in each spin channel 
and the transmission coefficient T( kF) at the Fermi level of the system with 
no applied flux. The current contributed by each spin channel is given by 

jL 

JT( kF) sino: [arccos ( JT( kF) coso:) + 1r J 

1ryf1- T(kF) cos2 o: 

JT(kF) sino: [arccos ( JT(kF) coso:) J 

1r J 1 - T ( k F) cos2 o: 

if Nu even, 

(3.19) 

if Nu odd. 

where Nu refers to the number of electrons in that spin channel. The total 
current is the sum of contributions from each spin channel, thus when both 
spin channels have either even or odd occupancies (N even), the current is 21r 
periodic. When one spin channel has even occupancy and the other has odd 
(N odd), the periodicity halves to 1r. This result is valid at T = 0 with fixed 
particle number. 

In order to calculate the transmission coefficient of the non-interacting 
dot, we can substitute a one-dimensional scattering ansatz 'lj;j < O = eikj + 
pe-ikj , </>j > O = uikj and dispersion relation Ek = -2t cos k into the lattice 
Schrodinger equation 

Ek</>JjJ >1 = -t ( </>j+1 + </>j-1) 
Ek</>±1 = -t</>±2 - t' </>d 

Ek</>d = -t' ( </>1 + </>-1) + td</>d 

Solving for T(k) = ITI2 , this yields 

[ 
t2 [ ( t'2 ) ] ] - 1 T(k) = 1 + 4 . 2 Ek 1- 2 -Ed 

4t' sm k t 

At EF = 0 this reduces to 

(3.20a) 

(3.20b) 

(3.20c) 

(3.21) 

(3.22) 

The current for a non-interacting EQD is then given by Eqs. (3.19) and (3.22) . 
These expressions reduce to those of a non-interacting ideal ring (1.10) in the 
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limit that t' --+ t and Ed --+ 0, upon which the Hamiltonian (3.11) reduces to 
that of an ideal tight-binding ring. 

3.2.3 Single-particle Exact Diagonalization (ED) Ap­
proach 

When U is zero, the L x L matrix h0 (see Eq. (2.9)) corresponding to the non­
interacting Hamiltonian can be diagonalized to find the single-particle energies 
Ev and eigenstates lv) of the system. The current can then be evaluated 

(3) = Tr p] (3.23) 

in the basis of the eigenstates. The density matrix p can be calculated in 
either the finite-temperature grand-canonical ensemble using the Fermi-Dirac 
distribution Pvv = ( ef3(Ev-J.t) + 1) -I, or in the ground state canonical ensemble 
by filling up the lowest energy states with N electrons. The particle number 
can also be easily evaluated 

(3.24) 

which will be useful in understanding the differences between the canonical 
and grand-canonical results. Since we have only focused on the correlations 
between a few sites, we cannot obtain the total particle number from the 
ITGF approach. This method gives identical results to the ITGFs at finite T 
but despite its relative simplicity, it cannot provide the input required by the 
Hirsch-Fye QMC algorithm. 

3.3 Side Coupled Quantum Dot 

3.3.1 ITGF Approach 

We begin with the tight-binding, Anderson impurity model of an £-site ring 
side-coupled to a quantum dot 

(3.25) 

+ td 2::= ndu + u ndlnd!. 
(]" 

The effects ofthe flux a are included in this geometry by gauge-transforming 
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them into the boundary conditions for the ring states 

(3.26) 

We can recover the momentum-space Hamiltonian (3.5) by setting 

27m o: 
kn = L + L, n = 1, 2, .. . L. (3.27) 

This gives the usual dispersion relation and the hybridization Vk = -t' / vfL. 
The effects of the flux are encoded entirely in the choice of wave vectors. 

The relevant green's functions for the persistent current are the correlations 
between sites 0 and 1 on the ring itself (or any other two adjacent sites). They 
are given by 

(3.28) 

(3.29) 

(3.30) 

As in the EQD case, we can now transform back to the imaginary time 
domain and calculate the current 

.L 
L = Lim (glO(o-, o) - 9m (o-, o)). 
evf 

3.3.2 GP Approach 

(3.31) 

Again we can compare to the GP expansion based on the transmission coef­
ficient of the side-coupled dot. It is important to emphasize the difference in 
this geometry between L (the number of sites in the ring only) and N, the 
total number of electrons. At half-filling, the impurity contributes an electron 
as well, hence N = L + 1. 

Starting with the scattering ansatz '1/Jj<O = eikj + pe-ikj , cPj >O = Teikj, the 
transmission coefficient of the side-coupled quantum dot can be found using 
the single-particle lattice Schrodinger equation 

EkcPyo = -t( cPi+1 + cPi-1) 

EkcPO = -t(¢1 + cP-1)- t'qyd 
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(3.32c) 

Substituting in the scattering ansatz and tight-binding dispersion relation, 
the transmission coefficient T = /T/ 2 for each spin channel is 

(3.33) 

which becomes 

(3.34) 

when EF = 0. The current is then given by Eqs. (3.34) and (3.19). Notably, 
this formula predicts that at the particle-hole symmetric point ( Ea = 0) there 
will be no transmission and thus no persistent current. When the impurity is 
decoupled from the ring (t' = 0), the current becomes that of an ideal ring, 
though subtleties of counting electrons remain. 

3.3.3 ED Approach 

The single-particle exact diagonalization is done in the same way as described 
for the EQD geometry. The single-particle SCQD Hamiltonian is L + 1 x 
L + 1 due to the side-coupled impurity. The current and particle number are 
calculated as before. 

3.4 Results 

3.4.1 Finite Temperature Effects 

In general, the persistent current is suppressed by a finite temperature. Con­
sidering first the case of an ideal ring (with Leven), the effects of temperature 
are shown in Fig. 3.1 (b). The typical energy spacing between near the Fermi 
level is of the order of 

~E ~ -2tsin ~. (3.35) 

However, the relevant gap is between the highest right- and left-moving states 
(see Fig. 3.1 (a)) whose degeneracy is broken by a finite applied flux. This 
spacing is of the order of [a]. This emphasizes the importance of the points 
[a] = 0 where levels cross. Near the T = 0 discontinuities where level occu­
pancies change, the gap is vanishingly small. This makes such discontinuities 
difficult to resolve at finite temperature. The finite temperature current far 
away from these points should converge on the ground state current at higher 
temperatures than near the discontinuities. This feature is characteristic of 
the temperature dependence of the current in more realistic rings as higher 
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L = 8. N = 8 

0 a=O 
0 a=0.8~ 

- I 

k 

(a) Energy levels for Leven 

- T=O 
0 p = 5 
a P=25 
0 p = 125 

"" P=500 

33 

31t 
a 

(b) Persistent current at finite temperature 

Figure 3.1: (a) Energy levels for an ideal ring with an even number of sites 
for two values of the flux a. The wave vectors kn shift to the right as the 
flux increases. The ground state is degenerate at a = 0, but the degeneracy is 
lift ed by a finite applied flux. The splitting is of order [a]. The occupied states 
for fixed particle number N are indicated by the arrows, whereas the occupied 
states for fixed chemical potential J-L are indicated by the filled symbols. In 
this case the current is identical in the two ensembles. (b) The current at 
finite temperature. The solid black line is the T = 0 GP result. The open 
symbols are the current calculated at finite temperature using ITGFs. The 
dashed lines are finite temperature ED results. For (3 = 500 the GP and ITGF 
results are indistinguishable, but at higher temperatures higher harmonics of 
the current are washed out. 
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a 

Figure 3.2: Persistent current through a 16-site ring with an embedded quan­
tum dot. The coupling to the dot is fixed at t' = 0.8. The current is plotted 
for five values of the impurity site energy Ed· The transmission is enhanced as 
Ed -> EF, and the current is that of an ideal ring at Ect = 0. The solid lines are 
calculated at T = 0 using the GP approach. The symbols are calculated using 
ITGFs at {3 = 500, and agree well with the GP results for all values of t ' and 
Cdo 

harmonics of the current are washed out at fini te temperatures. Further fini te 
temperature results are presented at {3 = 500, low enough to agree well with 
fixed-~t ground state calculations. 

3.4.2 L even 

EQD results 

When the impurity in the EQD geometry is decoupled from the ring (t' = 0), 
the transmission is blocked, yielding no current at any value of the flux . When 
the coupling is turned on however , the transmission peaks at uni ty as r:d -> c f 
and is suppressed in the opposite limit. The current is plotted for five values of 
Ect in Fig. 3.2. The ITGF and GP results agree well with the ED results since 
in this case fixing the chemical potential ~t or the particle number N gives the 
same level occupancies at all values of a (see Fig. 3.l (a)). The phase shift of 
1r between L/ 2 even and L/ 2 odd discussed in the introductory chapter is also 
present (but not shown) in all approaches. 

SCQD Results 

Consider the energy levels shown in Fig. 3.3(a) of an L even site ideal ring 
weakly coupled to the impurity (t' « t ). If Ect » EF or Ect « EF, the impurity 
states will not mix with the ring states near the Fermi level that contribute to 
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. J 

0 CX=II.I H< 
0 cx = ll.9< 

(a) Energy levels of a weakly coupled SCQD 

35 

a. 

(b) Current for fixed N vs. fixed f..L 

Figure 3.3: (a) Energy levels for an 8-site ring with a weakly coupled impuri ty 
at two values of the flux a. When the chemical potential JJ is fixed , the 
impurity occupancy is independent of a (as indicated by the filled symbols). 
In this case the presence of the impurity is irrelevant to the persistent current. 
When the particle number N is fixed and the impurity level lies close to the 
Fermi level, electrons can move between the impurity and ring states as a 
function of the flux (electron occupation is indicated by the arrows) , leading 
to discontinuities in the current at T = 0 not present in the grand-canonical 
ensemble. (b) Corresponding current calculated by ITGFs (fixed JJ) and ED 
(fixed N) showing the discontinuity in the fixed N current near a = 1r /2 . 

the current , and the site will either be doubly occupied or empty, regardless 
of the flux a . However, when the impurity energy is close to the Fermi level, 
the impurity and ring states will mix more strongly (as suggested by the dip 
in the current predicted by the GP result (3.3)). 

We see here the first small difference between fixing the chemical potential 
and the fixing the particle number. When t' is vanishingly small, the impurity 
is essentially decoupled from the (now ideal) ring. If the chemical potential 
is fixed, the occupancy of the site will simply be given by the Fermi-Dirac 
distribution and not affect the persistent current in any way. ote however , 
that at T = 0 for JJ = 0 in this case, (N) =Lor £+2 depending on whether Ed 

lies above or below the chemical potential, which does not correspond to half­
filling in the fixed-particle case. vVhen N is fixed, the impurity can act as a 
sort of particle reservoir , leading to discontinuities in the current as the highest 
occupied levels in the ring cross the impurity site energy (see Fig. 3.3(b)). 
These discontinuities are not present in the grand-canonical ensemble. These 
subtle issues of particle counting are less apparent in the symmetric Anderson 
or Kondo models in which particle-hole symmetry enforces N = L + 1 in the 
SCQD geometry. 

When the site is coupled to the ring, the dot suppresses transmission at 
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Figure 3.4: Persistent current of a 16 site ring side-coupled to a quantum dot 
with t' = 0.6 . vVhen Cd is far from the Fermi level, the transmission through 
the coupled dot is strong and the current remains nearly ideal. In this regime 
there is reasonably good agreement between the predictions of the canonical 
and grand-canonical ensembles. However, as Ed --+ Ep , the transmission is 
suppressed (with characteristic width of t'2 /2t). In this regime the G P and 
ITGF results are strikingly different. The GP results predict that the current 
will be completely suppressed at Ed but the ITGF results show a finite current. 
See text for discussion. 
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Figure 3.5: Persistent current in the SCQD geometry in the canonical ensemble 
with t' = 0.6 and Ed = 0. The 1/ L term in the GP expansion predicts a 
complete suppression of the current. ED results with fixed N show a finite 
current that decays as the system size increases, indicating the presence of a 
large 1/ £ 2 or higher order term in the GP expansion. 
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the Fermi level when Ed is within a characteristic width t'2 l2t of EF. Figure 3.4 
shows the current plotted versus the flux for four values of Ed as calculated by 
ITGFs and the GP expansion (ED results not shown). There is a reasonably 
good agreement between the GP and ITGF results when Ed is far from EF, 

and the discrepancy can be accounted for by the difference between keeping 
N fixed versus keeping J-l fixed (this is confirmed by ED calculations). 

The agreement, however , breaks down eriously as the impurity level ap­
proaches the Fermi level. In this case the difference is not solely due to working 
in a different statistical mechanical ensemble. Figure 3.5 shows the current cal­
culated with fixed N at Ed = 0 by ED as the system size increases. (The GP 
current is proportional to 1 I L so j L I ev F remains constant as L increases.) For 
small system sizes, the current remains large even in the canonical ensemble. 
However, as the system size increases, the current decays towards the 0(11 L) 
term of the G P expansion. This suggests the presence of large higher order 
terms in the GP expansion that have not been taken into account. 

3.4.3 L odd and Ensemble Effects 

The situation when L is odd is more complicated. Even for an ideal ring, 
there is a drastic difference between the current in the canonical and grand­
canonical ensembles. Consider energy levels of an ideal ring with an odd 
number of sites, shown in Fig. 3.6(a). When the particle number is fixed , the 
ground state current is discontinuous at a = mr as the highest right- and 
left- moving states cross. \tVhen the chemical potential is fixed , however , the 
discontinuities occur when the states cross the chemical potential. When L 
is even, the relevant level crossings occur at the chemical potential, so the 
discontinuities in the current for fixed N and fixed J-l occur at the same values 
of the flux. However, when L is odd, the levels cross the chemical potential 
(but not each other) when a = n)2 + mr leading to strong fluctuations in ( N) 
for fixed J-l. The result is that the characteristic 'saw-tooth' curve is shifted by 
n 12 in a between the two ensembles. Figure 3.6(b) shows the current in both 
ca es, and the corresponding particle number (N). 

EQD Results 

\tVhen the impurity energy level Ed and the coupling t' are shifted from their 
ideal values, the energy level structure shifts and electrons begin to reflect off of 
the impurity, shifting and rounding the discontinuities in the persistent current 
(see Fig. 3.7) . The difference between fixing the particle number and fixing 
chemical potential becomes more apparent . The ITGF results in the grand­
canonical ensemble are shown as open symbols, the GP results as a solid line, 
and the corresponding ED results are shown as dashed lines. When Ed -=J. 0 in 
the non-interacting Anderson model, particle-hole symmetry is broken and the 
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II 
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(a) Energy levels for L odd 
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(b) Current and (c) Particle number for fixed 
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Figure 3.6: (a) Energy levels for an ideal ring with an odd number of sites. 
In a system with a fixed number of electrons, the highest occupied levels lie 
above the 'half-filling' chemical potential, f.J, = 0. The degeneracy at ex = 0 of 
the right- and left-moving states is broken by a finite applied flux, causing a 
discontinuity in the occupation number of the highest states at ex = 0 ( occu­
pation numbers for fixed N are indicated by arrows). This level crossing leads 
to discontinuities in the persistent current at ex = 7f /2 for fixed N. When {l is 
fixed at 0, this broken degeneracy does not lead to a change in the occupation 
number of the right- and left-moving states. The discontinuities occur as the 
levels cross the chemical potential, when ex = 7f /2 + n1r (occupation numbers 
for fixed f.J, are indicated by the filled symbols). (b) The persistent current 
for fixed N (solid line) jumps at ex = n1r. The current for fixed f.J, (symbols, 
dashed line) jumps at ex = rm + 7f /2. (c) The corresponding particle number 
for each ensemble. The total number of electrons for fixed f.J, jumps by 2 as 
levels cross the chemical potential. 
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Figure 3. 7: Persistent current of a 17 site ring with an embedded dot , t' = 0.6, 
Ed = 0.4. The squares indicate the ITGF result at fixed 1-l· The solid line 
indicates the GP result for fixed N. Corresponding ED results are shown as 
dashed lines. For small system sizes, the 1r periodicity of the GP expansion is 
broken in the ED results . This is a result of broken particle-hole symmetry. 
(b) Corresponding particle numbers. ote the strong fluctuation of the particle 
number in the fixed p case that also break the 1r periodicity in the flux. 

1r periodicity in the flux is lost (in both ensembles). The loss of 1r periodicity 
is not captured, however, by the GP result, suggesting that it is restored as 
L ---+ oo. 

SCQD Results 

The effects of tuning away from the ideal ring in the SCQD geometry with an 
odd number of sites are qualitatively similar to those of tuning away from the 
ideal limit in the EQD case. They are summarized in Fig. 3.8. 

3 .5 Conclusions 

Clearly there are many details that can strongly affect the persistent current, 
even in non-interacting systems. The effects of finite temperature, choice of 
statistical-mechanical ensemble, ring geometry, and the parity of both the 
electron number and the number of sites in the ring have all been discussed in 
this chapter, and their qualitative effects will remain even when interactions 
are included. Moreover, it seems likely that all of these effects are relevant 
to potential experimental situations. In particular, it should be possible to 
choose an experimental setup such that either the chemical potential or the 
particle number is fixed. 
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Figure 3.8: (a) Persistent current of a 17-site ring side-coupled to a quantum 
dot. The squares indicate the ITGF results for fixed f-L. The solid line indicates 
the GP result for fixed N. Corresponding ED results are shown as dashed lines. 
Note the broken 7r periodicity in the flux of the ED results at fixed N that 
is restored as L increases, similar to the EQD case. This again is a result of 
broken particle-hole symmetry. (b) Corresponding particle numbers in each 
ensemble. The discontinuities in the current when {L is fixed occur when the 
particle number jumps. 

As verified extensively in this chapter, the persistent current in both SCQD 
and EQD geometries without interactions can be calculated using imaginary­
time green's functions . These are used as the input to the Hirsch-Fye impurity 
QMC algorithm discussed in Chap. 2. Further details of calculating the effects 
of the Coulomb interaction in the dot are given in the next chapter. 
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Chapter 4 

Persistent Current Through 
Interacting Quantum Dots 

Chapter 2 described the general framework of the Hirsch-Fye QMC algorithm, 
emphasizing the role of the impurity green's function .9dd· As discussed in 
Chap. 3, the persistent current can be calculated from the correlations between 
adjacent sites in the ring, .9dl and g1d in the case of the EQD, g01 and g10 in 
the case of the SCQD, for instance. These correlation functions can also be 
determined in the interacting case through the framework described in Chap. 2. 
The first section of this chapter describes the relevant extensions to the Monte 
Carlo algorithm. The second section describes the results obtained to elate 
in comparison with other calculations of the persistent current in interacting 
systems. 

4 .1 Calculating the Current in the Hirsch-Fye 
Algorithm 

Evaluating the necessary green's functions in the Hirsch-Fye framework is 
straightforward using the Dyson equations (2.27) and (2.28) that relate the 
full green's function at different auxiliary spin configurations { ¢e} and { ¢~ }. 
Given the effective time-dependent potentials V and V' generated by these 
two configurations, the Dyson equations are 

g' = g + (g- I)(ev'-v- I)g' 

g' = g + (g'- 1)(1- eV-V')g 

(2.27) 

(2.28) 

These are the full LL7 x LL7 matrices containing information about all pair­
wise correlations in the system (gij ( Te' Tel) = (T (\ ( Te) c} ( T;))). The spin index 
has again been suppressed since there are no spin-flip processes in the Ander-

41 



42 CHAPTER 4: Interacting Persistent Current 
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Figure 4.1: Extrapolation of the persistent current to tlT = 0. Results shown 
are the raw persistent current of the system described in Fig. 4.2 for the flux 
a = 0.4, with (3 = 20 and U = 2. The dashed line is a linear fit to the data, 
and the point at tlT

2 = 0 shows the estimated current and error bars. The 
inset shows a close up of the extrapolation. 

son model. ·while the Hirsch-Fye algorithm requires only the impurity green's 
function 9dd to perform the Monte Carlo sampling of the auxiliary field con­
figurations, we can calculate the other green's functions of interest as well by 
taking matrix elements of the above equations. 

!J~j = !Jdj + (g~d- I)(!- eV-V')!Jdj 

I ( V'-V I) I !Jjd = !JJd + !JJd e - 9dd 
I ( V'-V I) I 9jj' = 9]J' + 9Jd e - 9dj 

( 4.1) 

( 4.2) 

( 4.3) 

These allow us to calculate the additional green's functions without inverting 
any additional matrices 

g~ = AdJ9dJ 

gjd = 9JdAJd 

gjJ' = 9JJ' + gjdAJJ' 

AdJ =I+ (g~d- !)(!- ev-v') 

Ajd =I+ (ev'-v- I)g~d 

Ajj' = (ev'-v- I)g~j· 

( 4.4) 

( 4.5) 

( 4.6) 

Moreover, when the auxiliary spin configurations differ only by a single flip 
(¢s---+ ¢~),updating these green's functions is even more trivial than updating 
the impurity green's function. 

9~j(Te,Te) = !]dj(Te,Te') + (g~d(Te,Ts)- bes)(1- eVs-v;)9dj(T8 ,Te) (4.7) 

gjd(Te,Te) = 9Jd(Te,Te) + 9Jd(Te,Ts)(ev;-vs -1)g~d(Ts,T£i) (4.8) 
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Figure 4.2: Persistent current for an EQD in a L = 16 site ring with t' = 0.5 , 
U = 2, and Ed = -1. The solid line is the current calculated by full, many­
body ED courtesy of E. S. S0rensen. Monte Carlo results at f3 = 20, 50, and 
100 evolve towards the T = 0 result. 

(4.9) 

These matrix operations are O(L~) and must be performed at each Monte 
Carlo sweep. While the green's functions required for calculating the current in 
the EQD geometry (9dl and 91d) can be calculated directly from the impurity 
green's function , calculating the current in the SCQD geometry requires six 
additional green's functions to be calculated: 9do , 9od , 9dl , 9ld, 901, and 910· 

4.2 Results 

T he only systematic error present in the Hirsch-Fye QMC algorithm stems 
from the Trotter decomposition of the partition function. For small 6.T, the 
error should be of order 6.T2 . A fully accurate estimate of any quantity thus 
involves running with successively larger numbers of time slices LT looking for 
behaviour linear in 6.T2 in order to extrapolate to the 6.T = 0 limit. An ex­
ample of such an extrapolation is shown in Fig. 4.1. Clearly this extrapolation 
becomes more difficult as f3 increases; it is also sensitive to the strength of the 
interaction U, becoming more difficult as U increases. 

Few exact results for the persistent current in the interacting Anderson 
model at fini te temperature exist in order to check the results of this algo­
rithm in detail. Two checks, however , have been performed for the EQD case. 
Notably, all determinant ratios R (see Eq. (2.35)) calculated have been real 
and positive, that is, there has been no fermionic sign problem. 

Figure 4.2 shows results for a L = 16 ring with t' = 0.5, U = 2 at the 
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Figure 4.3: Persistent current for an EQD in a L = 8 site ring with t' = 0.2, 
U = 0.5 , and Ed = -0.25. The solid lines are perturbative results reported by 
Aligia [22]. The symbols are QiviC results at (3 = 10 and 20. 

particle-hole symmetric point Ed = -1. The solid line was calculated by ex­
act diagonalization of the many-body Hamiltonian (3.11), provided by Erik 
S0rensen. Due to computational limitations, calculations have not been per­
formed at low enough temperatures to fully recover the T = 0 result, however 
the finite temperature results are converging towards the zero temperature 
results. In particular, the finite temperature results reproduce the zero tem­
perature slope of the current near a = 7r. 

Figure 4.3 shows results for a L = 8 ring with t' = 0.2 , U = 0.5 again 
at the particle-hole symmetric point Ed = -0.25. The Monte Carlo results 
are compared here with results for the interacting Anderson model due to 
Aligia [22] calculated with a self-consistent perturbative approach, accurate 
to second order in U. The agreement is not perfect, particularly for low flux, 
but the temperature dependence is of the correct order of magnitude, lending 
good confidence to the QMC results. 

Coulomb Blockade 

In order to observe an effect solely due to the presence interactions, the persis­
tent current on a 16-site EQD ring was calculated while varying the impurity 
site energy Ed. Results are shown in Fig. 4.4. The current peaks at Ed = 0 as 
it would in the non-interacting system, but it also peaks at Ed = -U clue to 
the Coulomb interactions on the dot. The peaks are similar to the Coulomb 
blockade peaks in similar plots of the conductance through an embedded quan­
tum dot. Further checks of the algorithm have not been possible due to time 
limitations. 
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Figure 4.4: Persistent current for an EQD in a 16-site ring with t' = 0.2, U = 2, 
and {3 = 20 as a function of Ed . The current peaks near Ed = 0 and Ed = -U 
and is suppressed between these values, an effect reminiscent of the Coulomb 
blockade that is not present in the non-interacting system. The results shown 
have not been extrapolated to !:lT = 0 (!:lT2 = 0.0625). 
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Chapter 5 

Conclusions and Perspectives 

5. 1 Conclusions 

This thesis has demonstrated the feasibility of calculating persistent currents 
in rings coupled to quantum dots using the Hirsch-Fye impurity Quantum 
Monte Carlo algorithm. The fortunate lack of a fermionic sign problem makes 
this a powerful technique for numerically calculating exact results over a wide 
range of parameter space at finite temperatures. Though only calculations in 
the EQD geometry have been verified due to time constraints, there are no 
difficulties foreseen in performing calculations in the SCQD geometry. 

5 .1.1 Accessible P aramet er R egimes 

The primary computational challenge for this algorithm lies in simulating low 
temperatures since the algorithmic complexity effectively scales as 0(/33 ). The 
error due to the Trotter decomposition is also sensitive to the strength of the 
interaction U, consequently simulating Kondo impurities is computationally 
more difficult. While extracting the ground state properties of any large sys­
tem size will be challenging, low temperature physics should be accessible. 
Although the algorithm is intrinsically insensitive to the size of the system L, 
the shrinking of the mesoscopic gap as L --? oo in turn requires simulations to 
be run lower temperatures. 

In the broader scope, the algorithm should be adaptable to many modifi­
cations of the Hamiltonian. It should be straightforward to include the effects 
of asymmetric couplings, static disorder in the ring, Zeeman splitting of the 
energy levels in the dot , or Aharanov-Casher effects [9]. The possibility of in­
vestigating multi-channel models has not been considered in detail. Including 
multiple impurities (with on-site Coulomb interactions) or interactions be­
tween the conduction electrons will introduce a fermionic sign problem away 
from particle-hole symmetric points [54], making such calculations difficult. 
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Quantum Monte Carlo calculations in the Hubbard model, however, can be 
performed in some parameter regimes despite the sign problem, so it is possible 
that some relevant calculations could be performed in such cases as well. 

5.2 Further Work 

Having demonstrated that the technique is feasible and generates correct re­
sults, there are a variety of worthwhile projects to be undertaken. Three of 
them are discussed below. 

• The Kondo problem has historically acted as an important context for 
developing ideas of scaling and the renormalization group. As pointed 
out by Simon and Affleck [5], the persistent current should be a universal 
function at T = 0 of the flux o: and of L/~K (modulo parity effects). At 
finite temperature, the current should also be a function of T /T K 

jL = f(o:, L/~K, T/TK)· (5.1) 

It should be feasible to confirm this scaling relation, verifying as well the 
controversial prediction that the current is suppressed in the SCQD case 
as L >> ~K· 

• Experiments measuring the persistent current are extremely difficult to 
perform. It has been proposed [7] that by weakly coupling the ring to 
a particle-bath, it may be more feasible to observe electrons tunnelling 
into and out of the ring as a function of the flux. If this signal has a 
strong finite-size dependence, it may provide another means of indirectly 
detecting the screening cloud. While the total number of particles is not 
directly accessible to this algorithm, it may be possible to determine 
N(o:, L/~K, T/TK) by means of a sum rule. 

• Although it has not been emphasized in this thesis, a great deal of theo­
retical work has been devoted to understanding the conductance through 
quantum dots coupled to infinite quantum wires. Since the Hirsch-Fye 
algorithm gives information about the dynamics of the system as well, 
it may be possible to calculate the conductance directly in the thermo­
dynamic limit either with a Kubo formula, or by looking for a term 
proportional to lwnl in the imaginary-time impurity green's function 
gdd(iwn) [44]. 
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