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Abstract

The purpose of gene expression microarray studies is to identify differentially ex-
pressed genes. Due to the very large number of genes compared to the very small
sample size, and the possibility of high level of non-normal random noise, traditional
hypotheses tests cannot be used directly. In this thesis, we applied parametric and
nonparametric empirical Bayes methodologies to test the hypotheses of differential
expression in a real microarray data set from a study of Type 1 Diabetes and some
other simulated data sets. In our real data, we saw some problems of applying para-
metric empirical Bayes (in terms of R software called EBarrays; nonparametric
empirical Bayes method implemented in the R packaged Siggenes also has problems
in detecting differential expression in real data when some extreme patterns show up
in the permutation matrix. We implemented a new function called EBayes based on
Efron’s idea of nonparametric empirical Bayes method. EBayes performs much bet-
ter than other empirical Bayes methodologies in dealing with real data. Furthermore,
the results of simulated data show that the new function EBayes are comparable to

Siggenes EBAM function.
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Chapter 1

Introduction

Microarray experiments are very important in investigating biological phenomena. A
wide variety of techniques and algorithms exist for analyzing and extracting infor-
mation from microarrays. This chapter focuses on nucleotide-based microarrays, one
of the most popular types, and provides a simple overview of the steps involved in
analyzing these experiments, the important algorithms used today, and the areas of

active research.

1.1 Genetic Background

It is well known that there are about approximately ten to the 14th power (10') cells
in the human body. The nucleus of almost every cell comprises the complete human
genome. The human genome is the blueprint for all cellular structures and activities in
the human body. It consists of 23 pairs of chromosomes. In each pair, one chromosome

comes from the mother and the other from the father. Chromosomes are the organized



form of Deoxyribonucleic Acid (DNA) found in cells. They contain a single continuous
piece of double-stranded DNA, which contains many genes, regulatory elements and
other intervening nucleotide sequences. Each strand of a DNA molecule is built up
by a sequence of the bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine
(7). Watson and Crick (1953) first proposed the double-helix spatial structure of the
DNA. According to the Watson-Crick base pairing rule, the bases are paired so that
an A in one strand can only bind to a 7 in the other, and a C can only bind to
a G. The two strands are called complementary, since each strand hence holds the
same sequence information. Some segments of the DNA sequence contain genetic
information and are loosely called genes. Figure 1.1 shows the structure of the DNA
double helix.

The chain -onstructed from one gene forms a large cellular molecule called
a protein. Proteins are the structural components of cells and tissues and perform
many key functiors of biological systems. Tumor cells differ from normal cells and
medically treated cells differ from those untreated cells. The production of proteins is
controlled by genes. The extent to which a gene is used to produce proteins is known
as gene expression. It is a multiple-step process that begins with the “transcription”.
During transcription, a single strand of messenger ribonucleic acid, or mRNA, is
copied from the DNA segment coding the gene. After transcription, mRNA is used
as a template to assemble a chain of amino acids to form the protein, this is known
as “translation”. '[ranscription and translation are two principal stages involved in
protein productions, it is illustrated in the schematic of Figure 1.2.

There are several techniques available for measuring gene expression, such

as serial analysis of gene expression (SAGE), cDNA library sequencing, differential
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display, cDNA subtraction, multiplex quantitative RT-PCR, and gene expression mi-
croarrays. Following the Central Dogma of Molecular Biology, if the assumption
behind DNA microarrays holds—that most of the mRNA is translated into proteins,
then the function of a cell also can be investigated by measuring the mRNA levels.
Here we will focus our interest on the analysis of DNA microarrays.

There are several microarray technologies. The main types of gene expres-
sion assays are: spotted cDNA arrays, short oligonucleotide arrays (Affymetrix), long
oligonucleotide arrays (Agilent Inkjet), and fibre optic arrays (Illumina). One preva-
lent approach involves the use of high-density oligonucleotide arrays, the most widely
used oligonucleotide array type is the Affymetrix GeneChip (for brevity Affy). In
Affy arrays. expression of each gene is measured by comparing hybridization of the
sample mRNA to a set of probes, composed of 11 — 20 pairs of oligonucleotides, each
of length 25 bases The first type of probe in each pair is known as perfect match
(PM) and is taken from the gene sequence. The second type is known as mismatch
(MM) and is created by changing the middle (13th) base of the PM sequence to reduce
the rate of specific binding of mRNA for that gene. The goal of MMs is controlling
for experimental variation and nonspecific binding of mRNA from other parts of the
genome.

Oligonucleotide arrays are well discussed by Lockhart et al. (1996); and Affymetrix
(1999) gives details on Affy arrays. By an llustration of Affymetrix GeneChip in Fig-
ure 1.3, we can see that an RNA sample is prepared, labelled with a fluorescent dye,
and hybridized to an array. Arrays are then scanned, and images are produced and
analyzed to obtain a fluorescence intensity value for each probe, measuring hybridiza-

tion for the corresponding oligonucleotide. For each gene, or probe set, the typical
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output consists of swo vectors of intensity readings, one for PMs and one for MMs.
Then different approaches of data analysis for deriving probe-set summaries that best

reflect the level of expression of the corresponding genes can be made.

1.2 Overview of Microarray Data Analysis

Over the past decacle there have been two dramatic changes in microarray data analy-
sis. First, with the advance of DNA hybridization microarray technologies nowadays,
it is possible to sirwultaneously assess the expression levels of tens of thousands of
genes. So studies of single genes are being replaced by studies that probe many

genes simultaneously. It means our analysis also changes to dealing with a family



of tens of thousands of t-tests simultaneously instead of a two-sample t-test or some
other “t-like” tests. Second, different types of biological information, such as genomic
alterations, mRNA levels, and protein levels, are being combined together in an at-
tempt to give a comprehensive view of biological processes. So for the application of
high-throughput measurement of gene expression, various groups have demonstrated
that the use of modern statistical methodology can substantially improve accuracy
and precision of the gene expression measurements, relative to ad hoc procedures
introduced by designers and manufacturers of the technology.

To adapt to these changes, computational statisticians are engaged in devel-
oping new methoc ologies for analysis of genome-wide data sets. Their analysis will
serve as a guide for analyzing microarray data and for computing unbiased estimates

of relative gene expression.

1.2.1 General Steps in Microarray Data Analysis

We can treat microarray analysis as a series of sequential steps because the output
of one step feeds nto the next step, and each step converts one type of data into
another by various algorithms and software packages. Generally, there are six steps
of data processing quantization, background correction, mismatch adjustment, nor-
malization, summarization and statistical analysis (Boutros, 2007). The first step -
quantization - is &n image analysis. The next four steps - background correction,
mismatch adjustmant, normalization, and summarization - are preprocessing steps to
produce gene expression measurements/values. The last step - statistical analysis -

is to identify the DNA sequence variants in specific genes or regions of the human



genome that are associated with phenotypes of interest such as disease.

Step 1: Quantization

The first step in microarray data analysis is called “quantization” step because
it convert an image into a series of numbers. A microarray experiment is performed
as follows: first the labelled mRNA is hybridized to the array; then the array is
washed to remove the excess or weakly bound mRNA; next the microarray is excited
by a laser and finally the array is scanned. So we will get a picture of the array in
which high bindinz will be visible as white spots on a black background. Therefore,
quantization is a 1nandatory step in all microarray analyses. It takes the raw image
as an input, and converts it to estimates of signal in a spot (foreground signal, FG)
and of nonspecific signal in the surrounding regions to a spot (background signal,
BG). In this thesis, we use the default Affymetrix quantization algorithm.

Step 2: Background Correction

As we have discussed, a preprocessing procedure includes four steps: back-
ground correction, mismatch adjustment, normalization and summarization. They
are used to produce an expression measurement. At each stage of this procedure,
numerous methods have been proposed for GeneChip arrays.

Backgroundl correction is also referred to as signal adjustment. The scanning
of arrays results ir optical and background noise affecting pixel intensities. Because
each spot in a microarray has both specifically bound DNA and non-specific signal, a
slight signal could be seen in the area that is in between spots on some array images.
So background information is difficult to obtain. Background corrections are used
to remove a non-specific signal that arises from non-specific hybridization, the slide

itself, or coatings or other materials on the slide. Many studies have demonstrated



that careful removal of this signal can significantly increase the signal-to-noise ratio
of a microarray experiment.

Numerous background correction methods have been proposed. For Affy data,
background correction is done by a maximum likelihood deconvolution of the probe
intensity into an exponential signal and normal noise. This procedure is a part of the
“RMA” (Robust Multi-chip Average) procedure in R package Affy(Irizarry, Gautier,
& Cope, 2003). So we will apply RMA deconvolution background correction in our
project.

Step 3: Mismatch Adjustment

As we discussed in Section 1.1, Affymetrix GeneChip expression arrays usually
contain two types of sequences: “perfect match” (PM) and “mismatch”(MM). PM
matches an mRNA transcript exactly. MM is almost the same as PM except that
MM has a 1 mutation in the center of its sequence. This mutation will prevent
binding of the actial transcript, but will allow any “non-specific hybridization” still
to occur. So MM can be used to remove non-specific hybridization. If the mismatch
sequence performs as expected, this process can dramatically reduce the noise in an
array experiment.

The biggest problem of mismatch adjustment is that this process rarely per-
forms as expected. One Affymetrix analysis software MicroArray Suite (MAS) in
version 4.0 calculated the signal as PM-MM, but the real analysis shows that there
are about 30% of data points that have negative values of signal. Later Irizarry,
Hobbs, et al. (200¢) found that MM data only added noise but contributed very little
to signals. Therefore, RMA totally ignores all MM probes and only utilizes the PM

probes.



Step 4: Normalization

Normalization is an important step in microarray data analysis. It is designed
to remove variation of non-biological noise and systematic artifacts within or between
arrays so that thei- values can be comparable. Sources of obscuring variation include
variation introduced during the process of sample preparation, during the manufac-
ture of the array, during the hybridization of the sample on the array, and during
the scanning and analysis of fluorescent intensity after hybridization. The obscur-
ing sources of var ation can have many different effects on data, unless arrays are
appropriately norrialized.

Various normalization methods have been proposed, such as constant nor-
malization, contrasts normalization, invariant set normalization, loess normalization,
gspline and quant le normalization. Yang (2006) compared a number of commonly
used and state-of-art normalization methods in microarray analysis, such as Robust
Multi-chip Average (RMA), MAS5.0, GCRMA, PLIER and dChip. RMA has quan-
tile normalization as build in method. Based on the assumption that the distribution
of expression levels is constant across chips, quantile normalization assumes that
the chips have a common distribution of intensities, so they may be transformed
to produce similar distributions. Therefore, after quantile normalization, all probe
sets will have same box plots across the chips. RMA uses quantile normalization of
the background-ccrrected PM probes because it provides a fast method to normalize
multiple chips.

Step 5: Summarization

A single gene might be represented by many sequences on an array. Different

sequences might represent different parts of the gene, or they may be replicates. As

10



the last step in pre-processing, summarization is where multiple probe intensities
within a probe set are combined to produce an expression value.

Commonly discussed summarization methods include Average Difference (Avgdiff)
summarization, median polish summarization, MAS summarization, and Li and Wong
(2001) summarizaiion. For Affymetrix arrays, the RMA algorithm always uses me-
dian polish method to combine the signals from multiple probes together. Median
polish is a data anzalysis technique (more robust than ANOVA) for examining the
significance of various factors in a multi-factor model. In our case there are 2 factors:
the array and the probe. The estimate of the arroy coefficient is defined to be the
expression for the probe set or the array. This procedure is called “robust” because
it is relatively insensitive to outliers. We will apply median-polish as part of RMA
preprocessing to summarize our genome data in this project.

Step 6: Statistical Analysis

In microarray data analysis, our ultimate goal is to identify genes that change
between experimental conditions by appropriate statistical analysis methods. For
example, in our study, we want to identify genes that have different expression in
strains of mice that are resistant or susceptible to Type 1 Diabetes (T1D) out of the
bulk of the microarray data.

A serious statistical problem in microarray experiments is that the sample
size is too small compared to the big number of sample dimensions, which may cause
difficulties in data reduction and simultaneous inference. Several techniques have been
tried to solve these problems, such as principle component analysis (PCA), empirical
Bayes analysis, clustering analysis and Significant Analysis of Microarrays (SAM).

In this project, parametric and nonparametric empirical Bayes will be discussed and

11



Accept Null | Reject Null | Total

Null True U Vv Gy
Alternative True i S G
Total \\% R G

Table 1.1: Possible outcomes from m hypothesis tests

we will focus our study on nonparametric empirical Bayes. A simple nonparametric
empirical Bayes model proposed by Efron et al. (2001) will guide the efficient reduction
of the data to a single summary statistic per gene, and also to make simultaneous
inferences concern ng differentially expressed genes. We will discuss three different
variations of nonperametric empirical Bayes based on Efron’s idea in detail, and then

apply them to a real microarray data set and some simulated data sets.

1.2.2 Multiple-Testing Problem and Bayesian Methods

In microarray data analysis, multiplicity makes identification of differentially ex-
pressed genes very hard. In multiple hypotheses testing, suppose there are GG inde-
pendent test statisiics with level «, then P(at least one falsely reject)=1— (1 — a)%,
which will rise with G. The number of probe sets (G) in an Affy chip is large. For
example, in our Affy data sets, the number of probe sets is G = 12488. So the
probability of type I error in this multiple hypothesis testing is very close to 1.

Take an exemple of multiplicity test from Table 1.1, where V' is the number
of Type I errors (false positives), T' is the number of Type II errors (false negatives),

and R =V + S is the total number of significant hypotheses. In order to measure the

errors incurred in nwltiple hypothesis testing and control the Type I error, Benjamini

12



and Hochberg (1995) first proposed the False Discovery Rate (FDR) as the following:
vV
FDR=E (EIR 5 0) -Pr(R > 0) (1.2.1)

Instead of calculating the chance of any false positives E[V], FDR controls
the expected proportion of false positives among the number of all genes which have
been claimed positive, so it is adaptive to the amount of signal in data. FDR is a
new approach to the multiple comparisons problem. Some statisticians believe it is a
bridge between traditional statistical thinking and modern problems in data mining
and bioinformatics.

Positive False Discovery Rate (pFDR) was proposed by Storey (2002). It is

defined as the follewing:

pFDR=E (%m > 0) (1.2.2)

The term “positive” has been added to reflect the fact that we are conditioning
on the event that oositive findings have occurred. Although the ideas of FDR and
pFDR were originelly proposed under the assumption that all p values are indepen-
dent. In more general cases, such as with dependence or in nonparametric situations,
it is possible to apoly very similar ideas to obtain accurate estimates of pFDR and
FDR. For a large class of dependence structure, Storey and Tibshirani (2001) show
that the effect of dependence could be negligible if G is large. Therefore, this multiple-
hypothesis testing methodology is useful not only in fields like genomic analysis but
also in the field of data mining.

Early statistics for microarray experiments include gene specific t-tests and/or

permutation methods by Dudoit et al. (2002), as well as maximum likelihood methods,

13



to find differentially expressed genes. Because microarrays hold information about
thousands of genes simultaneously, it is natural to use empirical Bayes approaches. If
the overall information about thousands of genes is summarized into prior parameters,
their performances will be much superior to the usual t-statistic and similar methods.
However, finding appropriate distributional assumptions to produce conjugate priors
for the parameters is not easy. We will discuss empirical Bayes approaches (including

parametric and nonparametric Bayes) in detail later in Chapter 2.

1.3 Type I Diabetes and Mouse Model Experi-
ment Design

Due to multiple genetic risk factors and currently unknown environmental factors,
Type 1 Diabetes (T'1D) is a complex, autoimmune-mediated disease. Since T1D is
usually diagnosed n children and young adults, it was previously known as juvenile
diabetes. In type 1 diabetes, the body does not produce insulin. Insulin is a hormone
that is needed to convert sugar (glucose), starches and other food into energy needed
for daily life. As Llanos and Libman (1994) found, the incidence of T1D varies widely
between populatiors. It happens 0.7/100, 000 people per year in Peru and 45/100, 000
people per year in Finland. Canada has the third highest rate in the world. In the
past 50 years, the incidence of T1D has risen rapidly. Furthermore, T1D cost the
Canadian health care system $1.32 billion in 2002 and is projected to rise to $1.6
billion by 2010 (N2whook et al., 2004). Therefore, biologists are working hard to

define complex geretic contributions to T1D. And computational statisticians are

14



trying to develop new methodology to analyze genome-wide data sets to get good
estimates of relative gene expression.

One genetic region called Idd4 has been shown to affect genetic susceptibility
to T1D, so biologists are interested in the Idd4 locus on the mouse genome. By mat-
ing two inbred strain mice: non-obese diabetic (NOD) mice and non-obese resistant
(NOR) mice, and back crossing the descendants 5 — 10 generations, biologists get
NOD.NOR-Idd4 congenic mice. The NOD.NOR-Idd4 mice have the NOD genome
everywhere except at the Idd4 locus where they have the NOR genome. Since studies
show 85% female NOD mice get diabetes by 6 months of age while NOR mice are
diabetes resistant, although 88% of their genomes are identical to NOD mice, we
want to find the difference between NOD.NOR-Idd4 mice and NOD mice in their
gene expression profiling.

In this project, we use mice data from Affymetrix GeneChip MGU74a V2.
The objective of the study is to identify the differentially expressed genes among
12488 probe sets by these Affy chips. The data is processed on two different days to
obtain eight arrays: four replicates that include two NOD strains and two NOD.NOR-
Idd4 strains on dey one, and four replicates that include two NOD stains and two
NOD.NOR-Idd4 sirains on day two. We will adjust for the day effect on these eight
chips first, then apply different statistical analysis to find differentially expressed

genes.

15



1.4 Organization of the Thesis

The objective of this project is to apply parametric and nonparametric empirical
Bayes analysis to detect differential expression of genes between NOD mice and
NOD.NOR-Idd4 mrice, based on Affymetrix GeneChip MGU74aV?2 data sets we have.
The thesis is organized as follows. Chapter 2 provides necessary preliminaries of
empirical Bayes analysis (including parametric and nonparametric empirical Bayes
methodologies) in microarrays. In Chapter 3, we first apply two empirical Bayes
methods to a real microarray data set. Then we investigate the problems we found
in parametric empirical Bayes analysis on microarrays (based on R package named
EBarrays), and the problems in nonparametric empirical Bayes analysis on microar-
rays (based on R oackage named Siggenes). Then we go through the model from
Efron’s paper (Efron et al., 2001) and propose three new methods derived from it.
Simulation comparisons of these four nonparametric empirical Bayes methods are ad-
dressed in Chapter 4. Finally, conclusions are drawn in Chapter 5, and future work

will also be discussed.
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Chapter 2

Empirical Bayes Analysis in

Microarrays

Empirical Bayes (2B) methods have been popular for quite a long time. The ear-
liest work can be traced back to the 1940’s by von Mises, but the first major work
must be attributed to Robbins (1955). Applying Empirical Bayes approaches to make
inferences from microarrays is natural because microarrays hold information about
thousands of genes simultaneously. But the sample size is relatively small. Therefore,
the amount of infermation per gene can be relatively low. Efron and Morris (1977)
analyzed the so-called Stein Effect in Empirical Bayes methods. Roughly speaking,
the Stein Effect ascerts that estimates can be improved by using information from all
coordinates when cstimating each coordinate. In microarrays, the data from other
genes provide some information about the typical variability in the system. Further-
more, since microarrays hold information about thousands of genes simultaneously,

if we summarize the overall information into prior parameters, and combine it with
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means and standard deviations at the gene level, their performance will be much
superior to the usual ¢-statistic.

The major difference between parametric and nonparametric empirical Bayes
analysis is that the parametric approach specifies a parametric family of prior distri-
butions, but the nonparametric approach leaves the prior completely unspecified. In
the following sections, we are going to discuss parametric and nonparametric empiri-
cal Bayes methodclogies, how to apply them to microarrays, and their disadvantages

and advantages.

2.1 Parametric Empirical Bayes Analysis and EM

Algorithm

Since the first major work of parametric empirical Bayes analysis is done by Efron and
Morris in the 1970s, they have been called the founders of modern empirical Bayes
data analysis (Casella, 1985). In microarray data analysis, there are two models
quite prevalent: tie Gamma-Gamma model and Lognormal-Normal model. These

are proposed in Newton and Kendziorski (2003).

2.1.1 The Gamma-Gamma and Lognormal-Normal Models

of Parametric Empirical Bayes Analysis

Let Y;; be the expression level of gene ¢ in array j (i = 1,..,G; j = 1,...,m,
ny+1,...,n1 +ng = n) for a two-condition model structure, where the first n; arrays

and last no arrays are obtained under the two different conditions. We want to char-
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acterize the probability distribution of Y; = (yi1, ¥i2, ---, ¥in). The basic assumption
of microarray data analysis is that the majority of genes have unchanged expressions
across arrays, so these n samples are exchangeable. Thus, y;; can be treated as in-
dependent randomnr deviations from a gene-specific mean values u; and they have an
observed distribution fup(-|s;).

Suppose the sample set can be partitioned into two subsets n; and ny with
corresponding mean values p; and po. If the distribution of measured expression is
not affected by this grouping, we say that there is equivalent expression (EE;) for
gene i; otherwise, there is differential expression (DE;). Then we can assume that the
gene effects arise mdependently and identically from a system-specific distribution
7(p), and this allows genes to share information.

If the fraction of differentially expressed genes among all genes is p, then
the fraction of equivalently expressed genes is 1 — p. An EE gene i presents data

Yi = (yilv Yizy ooy /“1) which will have a distribution

fo(ys) = / (H fobs(yz‘j|u)) m(p)dp. (2.1.1)

Alternatively, if gene i is differentially expressed, the data y; = (yiq),Yi2)

will have a distribution

[ m ni+ng=n
hily:) = (/ 4 Hfobs(yulu)> ﬂ(u)du) (/ < | 1T fobs(yijlu)) W(u)du> :

\j=1 j=ni+1
(2.1.2)

So the marginal distribution of the data is

phiyi) + (1 = p)fo(yi)- (2.1.3)
By Bayes’ rule and known estimates of fy, f; and p, the posterior probability of
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differential expression is

Tvl) — phi(yi)
PDEy) = oe v + 0 Do) (2.1.4)

e Gamma-Gamma (GG) model

The GG model supposes that the observation component has a Gamma distri-
bution with shape parameter @ > 0 and mean value y, so the scale parameter

is A = a/p. Thus, for measurements y > 0,

aga—1 xn{ —\
fovs(ylp) = | I,e(ap){ al (2.1.5)

So the marginal distribution 7(u;) can be taken to be an inverse Gamma distri-
bution with shape parameter ag and scale parameter v for a fixed a. Therefore,
the key dens ty fo(-) has the form

(Il yi)*
R . 2.1.6
fO(ylayQ» Y ) (V+E?=1yj)la+a0 ( )

where
K= v*T(na + ap)
()T (ao)
e Lognormal-Normal (LNN) model

In the LNN model, we assume log-transformed measurements for each gene i
have a normel distribution with mean p; and common variance 0. A conjugate
prior for the p; is normal distribution with mean j and variance 72. So the
density fo(-) for an n-dimensional input becomes Gaussian with mean vector

wo=(tt0, to, -- f10)" and exchangeable covariance matrix
2. = (0®)Ia + (10)°M,,
where I, is an n x n identity matrix and M, is an n X n matrix of ones.
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Because GG and LNN models both hold the assumption of a constant coeffi-

cient of variation (CV), this property can be checked before we do model fitting.

2.1.2 EM Algorithm

In both GG and LNN models, we need to apply maximum (marginal) likelihood
method, to estimaie unknown parameters («, ag, v) and (uo, 02, 72) respectively. We
can estimate those parameters by expectation-maximization (EM) algorithm.

An EM algorithm is used in statistics for finding maximum likelihood estimates
of parameters in probabilistic models, where the model depends on unobserved latent
variables. Dempster et al. (1977) first generalized the method and developed the
theory behind it. They also explained and gave the name of EM algorithm in this
paper. The EM algorithm includes two steps: Expectation (E) step and Maximization
(M) step. The E step computes an expectation of the likelihood by including the latent
variables as if they were observed; The M step computes the maximum likelihood
estimates of the psrameters by maximizing the expected likelihood found on the E
step. Then the parameters found in the M step will be passed to a new E step. This
process will be repcated until the estimates found in E step and M step converge to
each other.

With data ¢; governed by a mixture model from Equation (2.1.3), we intro-
duce pattern indicator ¢;: ¢; = 1 when expression pattern on gene i is pattern [;
¢y = 0 otherwise. So the complete data log likelihood is

1(6) = Z {Z dir[log fr(yi) + 108(Pk)]} . (2.1.7)

k=0

i

In E-step, based on a current estimate 6y, the expectation given the observed
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data amounts to replacing ¢;; with <Z>i,. In the M-step, we use the arithmetic mean of
dA),,k to estimate px, then we can get updated estimates of 6. This process is iterated

until successive estimates stabilize.

2.2 Nonparametric Empirical Bayes Analysis in Mi-
croarrays

From the previous sections in this chapter, we know that parametric tests may not be
valid for microarrays in practice since they have too strong parametric assumptions
or large sample justifications. As alternatives, nonparametric statistical methods,
such as empirical B3ayes method of Efron et al. (2001) and the significance analysis
of microarray (SAM) method of Tusher et al. (2001) have been proposed. Those
two methods both rely on constructing a test statistic and a so-called null statistic
such that the dist-ibution of null statistic could be used to approximate the null
distribution of the test statistic. We will focus our work on nonparametric empirical
Bayes method in this project. In this section, we will give a brief description of how
nonparametric empirical Bayes method works and the general steps to apply this

method to microarr-ays.

2.2.1 Review of Nonparametric Empirical Bayes Analysis in

Microarrays

Suppose that Y;; is the expression level of gene i in array j (i =1,...,G; j = 1,...,n1,

ny +1,...,n1 +ny = n). Suppose that the first n; and last ny arrays are obtained
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under the two different conditions respectively. A general statistical model is
Y = e+ bz + &y (2.2.8)

where z; = 0 for 1 < j < my,and z; = 1for m; +1 < j < ny + ny, and € are
independent (but not necessarily identically distributed) random errors with mean
0. Hence a; and a; + b; are the two mean expression levels of gene ¢ under the two
conditions respect vely. So the hypothesis test to find differentially expressed genes
is Hy:b;,=0Vs. H,:b; #0.

Let the sample means of Y;;’s for gene 7 under the two conditions be Y;(l) =

B g = Tt ot ok o, b the pooled stasidand deviation 5 :

ey P AE) =T ¢ Al et s; be the pooled standard deviation for gene :
& > (Yy = Yi)? + S5 (Y — Yi)? (2.2.9)

' ny o Ny ny +ng — 2 =

Then a reasonable test statistic for assessing differential gene expression is the stan-

dard (unpaired) t-statistic: t; = X—(:’)S_@

To reduce the overall variance of the s;,
giving the tests more power on average, Tusher et al. (2001) take a nonparametric
approach to this end shrink the s; toward an adaptively chosen s;. The modified

t-statistic is then

Yie) — Yi)

Zy =
Si + So

(2.2.10)

where sy is choser. as the percentile of the s; values that makes the coefficient of
variation of Z; aprroximately constant as a function of s;. This has the added effect
of dampening large values of z; that arise from genes whose expression is near zero.
The nonparametric empirical Bayes method proposed by Efron et al. (2001)
attempts to avoid Lighly specified models, relying instead on a simple inference model.

Let p; be the prooability that a gene is affected, pg = 1 — p; be the probability
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unaffected, and f1(Z) be the density of expression Z for affected genes, fo(Z) the

density of Z for unaffected genes, then the mixture density of the two populations is

f(Z) =pofo(Z) +p1f1(2Z) (2.2.11)

In our situation, we can estimate f(Z) directly from the i-th expression scores
Z; obtained from the Equation (2.2.10). Concentrating on the two-sample case, the
null distribution f,(Z) can be calculated by permuting the group labels, or one can
use the bootstrap. Here we will use permutation method because it has a strength in
that if the null hypothesis is true, then we can calculate the null distribution.

Applying Bayes’ rule to the mixture model in Equation (2.2.11), we can get

posterior probabilities p;(Z) and po(Z) as

n(Z) =1 —po%zz—)),
_ . fol2)
po(Z) =po 72) (2.2.12)

where p;(Z) is the posterior probability for differentially expressed genes and and
po(Z) is the posterior probability for equivalently expressed genes.

Obviously, if we can estimate the value of py and ratio %2, then the posterior
probabilities will b= found. One way to estimate this ratio is using their relative den-
sities from the observed score {Z;} and permuted score {z;}’s empirical distributions.
If we consider values of {Z;} as “success” and values of {z;} as “failures”, then with
G = 12488 genes and B = 20 permutations, we can plot G(1+ B) = 12488 x 21 total
scores on a line, wtere G = 12488 scores from observed {Z;} and G x B = 12488 x 20

scores from permutated {Z;}. So the probability 7(Z) of a success at point z is given
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f(Z)
w(Z) = 2.2.13
D=5z + B8R A
so the posterior probability of differentially expressed gene p;(Z) becomes
—7(2)
Z)=1—-py——+ 2.2.14
Pi(Z) =1-po =) ( )

We can estimate 7m(Z) by logistic regression as follows: first divide the range
of the observed and permuted statistics into several equal intervals; then find the
frequencies of the observed and permuted values in each interval; finally pass those
values to a logistic regression function with a natural spline on degrees of freedom
equals 5 to estimate 7(Z).

Another va'ue we should know to get p;(Z) is py (the probability that a gene
is unaffected). Since the posterior probability of differentially expressed genes p;(Z2)

is nonnegative for all Z, it restricts py and p; as

f(2)

p1 > 1 —min , 2.2.15
f z fo(Z) ( )
f(Z)
po < mm
z fo(2)
Therefore, the upper bound of py is equal to %, so we can estimate py from the

value of this relative densities.
In summary, the algorithm for nonparametric empirical Bayes analysis for

microarrays is the following:

e Step 1

Compute the Z statistic for observed data values Y by Equation (2.2.10);
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Step 2
Generate B independent row-wise sign permutations, compute the z statistic

for permutec data values in the same way as Z was calculated;

Step 3

Apply logistic regression to estimate the probability of success 7(Z) based on

fo(2) .

the relative densities of the Z; and z;, then get ratio 12

Step 4

Use the upper bound of % to estimate po;

Step 5

Find the posterior probability p;(Z) for each gene from Equation (2.2.14).

Obviously, other variants of this algorithm could be applied to estimate the

posterior probabilities but this is the method given by Efron et al. (2001). More

details about other variations will be discussed in Chapter 3 and Chapter 4.

2.2.2 False Discovery Rate of Nonparametric Empirical Bayes

Analysis

From the developmrent in the Section 2.2.1, we can see that the nonparametric empiri-

cal Bayes analysis 's very closely related to Benjamini and Hochberg’s False Discovery

Rate (FDR) criterion. The FDR is the expected proportion of type I error made using

a given rejection rule, so Efron defines the local false discovery rate as

fo(Z)

fdr(Z) = po 12)

(2.2.16)
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Thus local fdr(Z) is the posterior probability po(Z).

Now we need to define estimated FDR (P{I-)T%) for a rejection region ¢ =
(—00,a) U (b,+0o0) for our microarray data.

Let [,(C') be the number of observed test scores in this region, [,(C) be the
number of permuted test scores in this region, and B is the number of permutations,

then
1,(C)/B

FDR¢ = p 2.2.17

Re =po 1(O) ( )
where py is the estimated probability of unaffected gene. Since we use the upper
bound of % to estimate pg, it turns out the value of F/D?{C we calculated is slightly

conservative.
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Chapter 3

Real Microarray Data Analysis by

EBarrays, Siggenes and EBayes

In Chapter 2, we discussed the preliminaries of parametric and nonparametric em-
pirical Bayes analysis for detecting differential expression in microarrays. In this
chapter, we will investigate the application results of these methodologies in our real

microarray data.

3.1 Microarray Data Set

From the introducsion of mouse model experiment design in Section 1.3, we know that
there are eight microarray chips in our real microarray data sets, and each array has
12, 488 individual DNA sequences. The first four chips are taken from male NOD mice
and the last four caips are taken from male NOD.NOR-Idd4 mice. Our objective is to

detect which genes on locus Idd4 have effects on T1D resistance. After preprocessing
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Probe Set Id. Y] Y2 Y3 Y4 Y5 Ys Y7 Yg

“93427 at” Yi1 Y12 Yis Yi4 Yis Yis Yiz Yig

“104748 s_at” | Yu, Yao Yo 3 Yo Y5 Yo Yoz Yaog

’

144 » >
92557 _f_at” | Yioass1 | Yizass2 | Yi2ass3 | Yioassa | Yiousss | Yizasse | Yi2ass,7 | Yioasss

Table 3.1: Ezpression values of Y.

steps of data anal/sis by RMA function from Affy package in R software, we have
a 12,488 x 8 matrix M of expression values, one value for each gene on each array.
Because eight microarray chips are taken from two different days (chips My, My, M5,
Mg; from day one and chips M3, My, M7, Mg from day two), we need to adjust for
the day effect on those chips first. From Yigiang Luo’s MSc thesis (Luo, 2007), we
know that day effect does exist using cluster analysis and SAM analysis. Since we
are not interested in evaluating the day effect in this report, we simply adjust the
day effect by adding difference of mean values between two days to the lower day’s
expression values for each gene. After the above steps, we obtain a 12,488 x 8 matrix
of expression values Y as our data shown in Table 3.1.

We then apply Efron’s idea to detect differential expression. Let Y; indicate
the j-th column of Y, a 12,488 vector, then Y, Y2, Y3, and Y4 come from NOD
mice and Y5, Yg, Y7, and Yg come from NOD.NOR-Idd4 mice. Let )71(1) and 371-(2)
be the sample means for gene ¢ under the two conditions (NOD or NOD.NOR-Idd4
mice), then we car. get observed expression scores Z; by Equation (2.2.10). We can
also get “null” expression score z; by permutations, which approximate the unaffected

gene samples. The permutation can be done as the following: Represent the original

29



label for each row as (00001 1 1 1) (where 0 denotes NOD mice from group I and 1
denotes NOD.NOR-Idd4 mice from group II), then randomly assign four samples for
label 0, and the other four samples for label 1. For example, we can set the label pool
as(01101100)or(01011100)etc. The total possible number of permutations

: 8
is Biota = (

4) = 70 here. Next we calculate the corresponding permutated Y7

i(1)
and }71.’(’2) to obtain the test statistic z; for each gene by Equation (2.2.10), where
}_’;’()1) and }71'];2) represent the sample means for gene ¢ under two conditions (0 group
or 1 group) corresponding to permutation matrix. Finally, based on the observed
expression scores .7; and the “null” expression scores z;, after B permutations, we

can estimate the relative density ratio fo(Z)/f(Z) through their relative frequencies

by methodology introduced in Section 2.2.1.

3.2 Results of EBarrays in Microarrays — Para-
metric Empirical Bayes

In previous chapters, we discussed the methodology of parametric empirical Bayes.
The methodology is implemented in the R package EBarrays, which was written by
Kendziorski et al. 2003). By EBarrays, we can calculate posterior probabilities of
patterns of differential expression across multiple conditions.

We will consider two particular specifications of the general mixture models—
Gamma Gamma (GG) model and Lognormal Normal (LNN) model. Table 3.2 shows
the number of sigrificant genes detected by GG and LNN models when we set the

posterior probability p to be 0.5, 0.62 and 0.95 respectively. We also obtain the joint
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;>sterior probability | p > 0.5 | p > 0.62 | p > 0.95
B GG Model 336 312 232

LNN Model 335 307 225
» GG ) LNN 325 304 219

Table 3.2: Number of significant genes by EBarrays.

number of significant genes detected by both models. We can see that there is no
big difference of gene numbers detected by these two models. By list of gene names
from those two models, the genes detected by those two models are also quite similar.
From the above results of EBarrays, GG and LNN models of parametric Bayes seem
to work very well. But if we take a close look to them, we can find some problems.

The GG and LNN models both involve the assumption of a constant coefficient
of variation (CV) and this property is often observed in microarray data (Newton &
Kendziorski, 2003 . Now we can check this property in our data by EBarrays.
Ideally, we want to get a constant CV from the data, but from Figure 3.1 we can see
that the coefficient of variation does not approximate a constant very well, especially
at the right end. So the goodness of fit of parametric empirical Bayes models in our
data becomes suspact.

To test the goodness of fit, we then check the Quantile-Quantile (QQ)-plots,
marginal density plots for GG model and LNN model. For LNN model, from marginal
density plot of Figure 3.2, our data fits quite well except that the empirical kernel
density of log expression is a little sharper than the fitted model’s distribution in the
middle.

The QQ-plct of LNN model in Figure 3.2 shows that, although most of data
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Figure 3.2: Marginal Densities for Lognormal-Normal Model.
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Figure 3.3: QQ plot for Lognormal-normal model.

has a straight QQ-plot as we wanted, there are still a number of points departed from
the straight line. So we cannot say that our data fit well of the LNN model.

For the GG model, the empirical and theoretical marginal densities of log
expressions in Figire 3.4 show the empirical marginal densities do not overlap the
theoretical marginal densities, there is a big difference between them. Also, the QQ-
plot of GG model in Figure 3.5 shows a big amount of data points depart from the
straight line, which means our data do not follow the gamma distribution very well.
Therefore, GG model of parametric empirical Bayes is not an appropriate way to
analyze our microarray data.

If we take an even closer look at the differentially expressed gene name list,
we can find the most serious problem of EBarrays for our data. Table 3.3 lists six
gene names which appear on the differentially expressed genes’ list. Based on biology

experimental knowledge, they should not appear there, because they are designed
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“AFFX-18SRNA VIuR /X00686-M-at” | “AFFX-BioB-3-st” “AFFX-BioB-5-st”

“AFFX-BioB-M-st” | “AFFX-BioC-5-st” | “AFFX-MURINE-bl-at”

Table 3.3: Quality control gene names in significant gene name list by EBarrays.

for quality control purpose in microarray experiments, they should have unchanged
expressions respectively across all chips. So far, why those six genes were detected as
differentially expressed is unknown.

Based on the above problems we found by EBarrays, we conclude that: we
cannot trust LNN and GG models of parametric empirical Bayes methodology in our
real Gene Chip data analysis. We will discuss results of nonparametric empirical

Bayes in the following sections.

3.3 Results of EBAM in Microarrays — Nonpara-
metric Empirical Bayes

We discussed nonparametric empirical Bayes methodology by Efron et al. (2001)
in Section 2.2, this methodology is also implemented in the R package Siggenes
(Schwender et al., 2006), which was written by Holger Schwender. By Siggenes, we
can calculate posterior probabilities for high-dimensional data to detect differential
expression across rnultiple conditions. Although Siggenes works very well on one
real microarray data set and some other simulated data (Golub et al., 1999), it shows
some serious problems when we apply it to our microarray data.

One key sted of Efron’s nonparametric empirical Bayes is to get the null score

{zi} by generating B = 20 independent row-wise sign permutations of z. Ideally, we
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Figure 3.6: Ideal plot of posterior Vs. Z value.

would like to get a plot of posterior probability against observed Z value as shown in
Figure 3.6. When |Z| value is small, posterior probability of differential expression
would approach to 0, because small |Z| value represents little/no difference of ex-
pression values between group I genes and group II genes. When |Z| value is bigger,
posterior probability of differential expression would approach to 1, because bigger
|Z| value represents bigger difference of expression values between group I genes and
group II genes.

But when we process this step using a different random start number for
function EBAM in Siggenes, we can get very different results. For example, when
we set a random start number r = 476, with a permutation matrix as shown in Figure
3.7, we do not get a good solution by EBAM as Figure 3.8 uncovered. When we take
a closer look to this problem, we found that whenever an extreme pattern such as (0

0001111)or(11110000) appears in the permutation matrix, EBAM failed to
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Figure 3.8: EBAM plot with random seed for permutations r



> r=321

> perm

(.11 (,2] (,31 (,4) [,5] [,6] [,7] [,8]
[1,] 1 1 1 0 0 0 i 0
[2,] 1 1 0 1 1 0 0 0
[3,1] 0 1 0 0 1 0 1 L
[4,] 0 1 0 0 1 1 0 1
[5,] 0 1 1 0 0 0 1 1
[6,] 0 i 0 1 1 0 0 1
£7:1 0 i § N 0 1 0 0 i 4
[8,] 0 1 0 0 i i 1 0
[9,] 0 i 1 0 0 1 1 0
(10,1 1 0 1 0 1 0 1 0
[11,] 1 0 0 0 1 0 1 1
[12,] 0 1 0 1 0 1 1 0
[13,] 1 0 0 1 1 1 0 0
[14,] 0 0 0 1 i 0 1 1
[15,) 0 1 1 i} 0 X 0 0
[16,] 0 0 1 1 0 1 1 0
(17,1 0 1 1 1 1 0 0 0
[18,] 1 1 0 0 1 0 0 1
[19,] 0 1 0 0 0 L 1 1
[20,] 0 i 1 1 0 0 1 0

Figure 3.9: Permutation matriz for EBAM with random seed for permutations

r=321.

detect any differential expression. In the above example, an extreme pattern (0 0 0 0
111 1) does appear in row 19 of the permutation matrix (see Figure 3.7). Therefore,
we conclude that the EBAM function cannot detect differential expression when an
extreme pattern appears in the permutation matrix.

Furthermore, even when no extreme pattern shows up, EBAM can very easily
fail in detecting ccrrect differential expressions. For example, with a permutation
matrix as shown in Figure 3.9, EBAM plot in Figure 3.10 shows the positive end of
the posterior curve falls down. Based on the fact that when |Z| increases, posterior
probability should monotonically increase at the positive end. Therefore, we can not
trust EBAM’s result when we set a random start seed for permutations r = 321.

Because theoretically we can set any random start number of EBAM to

get the permutation matrix, based on above problems we found in Siggenes, we
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Figure 3.10: EBAM Plot with random seed for permutations r=321.

cannot trust EBA M function as nonparametric empirical Bayes to detect differential

expression for our microarray data.

3.4 Our Methodology of Nonparametric Empirical
Bayes — EBayes

Due to problems we found in Siggenes, we apply our own nonparametric empirical
Bayes function EBayes in R based on the idea of Efron et al. (2001). The core
code was originally written by Dr. Angelo Canty. In this project, we make several
modifications to iniprove its performance. The final version of the code is presented
in Appendix A.1. The key step of nonparametric empirical Bayes is to estimate the

relative density of fo(Z)/f1(Z2).
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EBayes attempts to find the posterior probability that each gene is differen-

tially expressed. From Equation (2.2.14), the posterior empirical Bayes probability

f(2)

F(2)+Bfo(2)’ defined in Equation

is obtained by estimating the density ratio 7(Z) =

(2.2.13). We consider three different ideas to implement the estimation of 7(Z2).

e METHOD 1. Logistic regression on quantile interval points.

We divide th> range of observed statistics and permuted statistics into N inter-
vals on the quantile scale. The frequencies of the observed and permuted values
in each interval are found and these values are passed to a logistic regression
against the interval midpoints with a natural spline on 5 degrees of freedom as

the regression function.

¢ METHOD 2. Smoothing spline fitting on quantile interval points.

By using the same intervals as Method 1, we find the ratios of frequencies of
observed and total frequencies of observed and permuted statistics. A smooth-
ing spline with 5 degrees of freedom is fitted to the logits of the ratios against
the interval inidpoints. Then the n(Z) is the predicted value found from the

spline for each observed statistic value.

e METHOD 3. Logistic regression on all data points.

We create a vector of all observed and permuted values first. Then construct
a corresponding vector which is TRUE for each observed value and FALSE
for each permuted value. These are then passed as the predictor and response
variables to & logistic regression with natural spline regression function with 5

degrees of freedom. Then 7(Z) is the predicted values at the observed statistics.
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Figure 3.11: Correlations plot of posterior probabilities of differential expressions

among 3 methods 'n EBayes.
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These three methods give some differences in the posterior probabilities. The first
and third method are quite similar on average having correlation of 0.995 whereas
the second tends t> be somewhat more conservative and has correlation of 0.964 and
0.985 with method 1 and method 3 respectively. Figure 3.11 shows the correlation
among the three methods in EBayes.

Method 1 and method 2 are quite fast in computation time. Method 3 is very
computationally intensive compared to the others as it requires passing two vectors
of length (B + 1) x G to the glm function, where B is the number of permuations

and G is the number of genes. The results from the third method are closest to that

of the EBAM method.

3.5 Comparison of EBAM and EBayes in Microar-
ray Data

We test the performance of this new nonparametric empirical Bayes methodology
(EBayes) on our MGU7/aV2 Affymetrix Gene Chip data. With any random start
number and permitation matrix, EBayes performs very well. We also compare the
results of EBAM and EBayes under the same conditions (same fudge factor sy and
the same permutation matrix).

Table 3.4 presents the comparison results of applying the EBAM and EBayes
function to our real microarray data. For each method, the significant gene number
(R), estimated False Discovery Rate (FDR), the probability of unaffected genes (py),

lower cutoff level (Cutlow), upper cutoff level (Cutup) and the method status (Status)
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Random No.  Method R | FDR | po | Cutlow | Cutup | Status

r=476 EBAM 0 |0.288|0.029 | -inf inf | Problem

r=476 EBayesI | 368 | 0.057 | 0.592 | -2.28 | 2.854 | Normal

r=476 EBayesII | 107 | 0.056 | 0.811 | -2.294 | 3.931 | Normal

r=476 EBayeslII | 391 | 0.059 | 0.576 | -2.221 | 2.789 | Normal

r=321 EBAM | 132 0.046 | 0.708 | -2.626 inf | Problem

r=321 EBayesl | 340 | 0.038 | 0.625 | -2.248 | 3.391 | Normal

r=321 EBayesII | 165 | 0.029 | 0.782 | -2.677 | 3.931 | Normal

r=321 EBayeslII | 462 | 0.049 | 0.658 | -2.15 | 2.642 | Normal

Table 3.4: Comparison of the EBAM and EBayes procedures to the real microarray

data set when setting random start number r = 476 and r = 321.

are presented in the table. From the table, we can see that when EBAM function
fail to detect differential expression, three methods in EBayes all work normally.
Figure 3.12 and Figure 3.13 compare the results of EBayes and EBAM un-
der the same conditions. In Figure 3.12, we can see that EBAM fails to detect
differential expressions; while in EBayes, the posterior probabilities of differential
expression approac1 to 0 when |Z]| is close to 0; the posterior probabilities of differen-
tial expression approach to 1 when |Z| is far away from 0; and no points fall down on
the extremes of x-axis. In Figure 3.13, we can see that no points fall down on the ends
of x-axis in EBayes plots but two points fall down on the positive end of EBAM
plot. Those two figures show that when EBAM failed to get the differentially ex-
pressed genes, all three methods in EBayes perform much better when dealing with

our real microarray data.
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Chapter 4

Simulation Results of EBAM

Analysis Vs. EBayes Analysis

In last chapter, we can see that EBayes analysis works better than the EBAM
function to our real microarray data because when EBAM sometimes fail to detect
differential expression, all three methods in EBayes function work normally. Whether
the overall performance of EBayes would be better than EBAM needs to be verified
by simulations and further research. In simulation study, we know which gene is really
differentially expressed by data generating function, so we can compare the estimated
FDR and real FDR to see which method can get the most accurate results. Also, we
wish to mimic the real microarrays by simulated data to know the performance of the
new EBayes function to these simulated data. But the closest similarity between the
real microarray deta and the simulated data cannot be guaranteed due to people’s
limited knowledge on real human being’s genome.

In this chapter, the performance of EBAM in Siggenes and three nonpara-
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metric empirical Bayes approaches in EBayes are compared by applying them to
three different simulated data sets. In each simulation, B = 100 permutations are

used to assess the null distribution (i.e., gene is not differently expressed).

4.1 Data Sets and Simulation Procedure
The simulation is performed as follows:

e STEP1. Gen-rate three different simulated data sets.

Generate a 10,000 x 10 matrix p containing random values drawn from standard
normal distributions. Compute the expression level y;; of the i-th gene, ¢ =

1,...,10,000; and the j-th sample, j =1,...,n, X 2 by

(
(51'_]'7 if 7 S 500 and ] S Ty

Yij = tij + 4 6;;, if 501 <4 < 1000 and j < n,; (41.1)

0, otherwise.
\

where p;; ~ N(p = 5,0 = 2), §;; ~ seq(—3,—1,length = 500) x o;, 6;; ~
seq(1,3,length = 500) x ;. Also suppose that the first n, columns/samples
belong to group 1, and the remaining n, samples belong to group 2. Thus, a
data matrix YV is constructed that contains expression levels of 2n, samples, n,
from each group. The total number of genes is 10,000 of which the first 10%

are differentizlly expressed.

For simulation I, set n, = 5; for simulation II, set n, = 10; for simulation III, set

n, = 20. i.e., she number of samples from each group is 5, 10 and 20 respectively
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for each simulation. Therefore, these three simulations are performed quite
similarly except we increase the sample size from 10 in simulation I to 40 in

simulation I1I.

STEP2. Aprly procedures EBAM and EBayes to above data sets, and record
the numbers of differentially expressed genes and the estimated FDRs (m)
obtained by these methods. Calculate real FDRs corresponding to these four

methods alsc.

STEP3. Repeat M = 100 times of step 1 and step 2. For each procedure,
compute mean numbers of differentially expressed genes and mean values of
FDRs and real FDRs by averaging over iterations. Standard deviations of these

quantities have also been calculated.

4.2 Problems of EBayes in Simulation and Modi-

fications

Based on above simulated data sets, we apply each procedure from EBAM and

EBayes to them respectively. For simulation I, EBAM and EBayes both work

well. But when we increase the sample size to 20 (simulation II) and 40 (simulation

III), one problem shows up. Ideally, “posterior Vs. Z value” plot should have a “U”

shape (as in Figure 3.6) regardless of sample size. But for method I and method III

in EBayes, we found that posterior probability curve has a “W” shape in the middle

when sample size increases, especially for EBayeslIII. The bigger the sample size, the

more likely this “I1”” shape will show up. Figure 4.1 illustrates the problem we found
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in one data set of simulation II.

If we check the source code and posterior probability plot from Siggenes, we
can see that EBAM simply replaces the middle part of posterior curve by a horizontal
line, which obviously is not appropriate. After different trials, we found that this
problem can be so ved by decreasing the degree of freedoms of logistic regression in
EBayes from 5 to 3. Figure 4.2 shows the improvement we have after setting df = 3
for EBayes in the same data set from simulation II.

By comparing outputs of FDR, significant number of genes, lower cutoff level
and upper cutoff level in Figure 4.1 and Figure 4.2, we can see that there are no
big differences of theses values in two figures for the same data set. Under differ-
ent degrees of freedom, these two outputs are almost identical, but the shape of
posterior probability curve improved dramatically in the latter figure for EBayesl
and EBayeslII. Therefore, the problem of “W” shape posterior probability curve of
EBayesl and EBezyeslII can be solved by decreasing degrees of freedom in logistic
regression of EBayes to 3 for bigger size samples.

For EBayeslI, since so far we have not found “W” shape posterior probability
curve, and in terms of power to detect differential expression under the same FDR,
setting df = 5 can give us a better result. So we will keep df = 5 for EBayeslII.
In the next section, we will discuss the comparison results of EBAM and EBayes

when setting df = (3,5, 3) for three methods in EBayes.
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Figure 4.1: Plot of “posterior Vs. Z value” for simulated data II when set df = 5.

Real FDR for above four methods (clockwise) are: 0.011, 0.000, 0.000, 0.020.
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Figure 4.2: Plot of “posterior Vs. Z wvalue” for simulated data II when set df = 3.

Real FDR for abov> four methods (clockwise) are: 0.011, 0.000, 0.000, 0.021.
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4.3 Results

In the following, simulation results of the EBAM and EBayes are summarized in
Table 4.1. For each method and data set, the number of identified genes (R), the
estimated false discovery rate (fD\R), and real FDR are listed, where FDR has been

defined in Section 2.2.2 as F/DT{C = Po l”l(oc()c/)B.

For simulat .on data sets, since we know that the first 10% genes (with row I.D.
1= 1,2,---,1000.) are differentially expressed, then we know exactly which gene is
really differentially expressed and which one is not. Thus, we can calculate real FDR
by dividing the wrongly claimed significant gene numbers (V) by the number (R)
of genes which we claimed significant by above four nonparametric empirical Bayes
methodologies. i.e., real FDRz%. When the significant gene number R = 0, we
define FDR=0.

From Table 4.1, we can see that when sample size increases, the number of
identified genes (R) increases while FDR and real FDR are monotonically decreasing.
Which is true since bigger sample size will offer us more information about genes.

For all three simulated data sets, in terms of the number of identified genes (R),
FDR and real FDR, EBayesllI is quite similar to EBAM, and EBayesl is similar
to EBayesll. Under same level of FDR and real FDR, EBayeslIIl and EBAM can
find approximately same number of differentially expressed genes, so do EBayesl
and EBayesIl. But EBayesl and EBayeslII have less power than EBayeslII and
EBAM because they detect far fewer significant genes for the same data set under
the same cutoff value 0.9. When real differentially expressed gene number is 1000,

they can only detect 3 or 4 genes in simulation I, which is too conservative to meet
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Data Simulation I (nr=>5) | Simulation II (nr=10) || Simulation III (nr=20)
Method | R | FDR | FDR | R | FDR | FDR | R | FDR | FDR
EBAM 138 | 0.0366 | 0.0294 || 583 | 0.0093 | 0.0097 | 840 | 0.0022 | 0.0023

(s.d.) 21 | 0.0055 | 0.0157 || 17 | 0.0007 | 0.0043 | 10 | 0.0002 | 0.0017
EBayes I 4 10.0107 | 0.0092 | 56 | 0.0001 0 163 0 0

(s.d.) 3 10.0088 | 0.0579 || 21 | 0.0001 0 29 | 0.000005 0

EBayes 11 3 1 0.0088 | 0.005 || 41 | 0.0001 0 137 0 0
(s.d.) 2 | 0.0090 | 0.05 15 | 0.0001 0 24 | 0.000006 0
EBayes III || 133 = 0.0336 | 0.0290 | 663 | 0.0151 | 0.0185 || 890 | 0.0055 | 0.0070

(s.d.) 26 0.0039 | 0.0162 || 18 | 0.0006 | 0.0062 | 10 | 0.0004 | 0.0027

Table 4.1: Comparison of the EBAM and EBayes procedures to three simulated

data sets when setting cutoff level at 0.9.
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Figure 4.3: Plot of “Real FDR Vs. Estimated FDR” for simulation I.

biologists’ needs.
Next, we will take a closer look of simulation results for each individual simu-

lated data set.

4.3.1 Simulation I

Figure 4.3 shows relationships between real FDR and estimated FDR among above
four methods for sirnulation I. From this figure, we can see that EBAM and EBayesIII
have similar pattern, estimated FDR are quite close to real FDR. Also, EBayesl and
EBayeslI have quite similar patterns. For EBayesl, only 3 points have relative high
real FDR; for EBayeslI, only one point has a relative high real FDR.

Figure 4.4 shows relationships of posterior probability of differentially ex-

pressed genes among EBAM and three methods in EBayes for a representative
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Figure 4.4: Plots of pairwise relationship of posterior probability for one data set in

stmulation I.

data set in simulation I. From this figure, we can see that EBAM and EBayesIII
have similar level of posterior probabilities, and which are higher than posterior prob-
abilities of EBayesl and EBayesII. Higher level of posterior probabilities of EBAM
and EBayeslII als» help explain why these two methods can detect more differential

expressions for the same data set.

4.3.2 Simulation II

Figure 4.5 shows relationships between real FDR and estimated FDR among four
methods for simulation II. Similar to simulation I, EBayesl and EBayesIl have
similar pattern and EBAM and EBayeslII are similar to each other. Also from the

EBayesl and EBayeslI plots, we can see that the total 100 data points all have
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Figure 4.5: Plot of “Real FDR Vs. Estimated FDR” for simulation II.

real FDR values at 0, so the regression line in it shrinks to a horizontal line y = 0
respectively. This fact tells us that although EBayesl and EBayeslI are conservative
to detect different al expressions (they can detect a very small number of significant
genes), the genes they claimed significant are very accurate.

Figure 4.6 shows relationships of posterior probability of differentially ex-
pressed genes among EBAM and three methods in EBayes for a representative
data set in simulation II. From this figure, we can see that EBayeslI is highly cor-
related with EBayesll; EBayeslII has the highest posterior probability among four
methods; while EBAM is close to but little less than EBayesIIl. Thus EBayesIII

can detect the biggest number of differential expressed genes.
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Figure 4.6: Plots of pairwise relationship of posterior probability for one data set in

simulation I1.
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Figure 4.7: Plot of “Real FDR Vs. Estimated FDR” for simulated data III.
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Figure 4.8: Plot of pairwise relationship of posterior probability for one data set in

simulation I11.
4.3.3 Simulation II1

Figure 4.7 shows the relationship between real FDR and estimated FDR among above
four methods for simulation III. Again, EBAM and EBayesIII have similar patterns
and EBayesl and EBayeslI have same patterns. Since the real FDR for all 100 data
points are 0 and the estimated FDR are very close to 0 for EBayesl and EBayeslII,
the regression line on those plots shrinks to a horizontal line also. The fact that all
real FDRs equal to 0 means the significant genes claimed by EBayesl and EBayesII
are very accurate.

Figure 4.8 shows the relationships of posterior probability of differentially ex-
pressed genes among EBAM and three methods in EBayes for a representative data

set in simulation I1[. Again, EBayeslI is highly correlated with EBayesIl. EBayesIII
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has the highest posterior probability among four methods, which also explained why
EBayesllII can detect the biggest number of differential expressed genes for the same
data set in simulation III.

In summary, plots of “Real FDR Vs. Estimated FDR” and pairwise relation-
ships of posterior probability among EBAM and EBayes for three simulations both
show EBayesl is highly correlated with EBayesll and EBAM is highly correlated
with EBayeslIl. But EBayesl and EBayeslI can only detect very small number of
differentially expressed genes. This will limit their applications to our real microar-
ray data analysis. Furthermore, EBayeslII has the highest posterior probability of
differential expression among four methods. This also explains why EBayesIII can
detect more number of differential expressions than EBayesl and EBayeslI under
the same cut off level p = 0.9.

From Equation (2.2.12), we know that the posterior probability of differential

expression p;(Z) = 1—py f;?((ZZ)) , so we may guess that EBayeslIII has the highest p,(Z2)

due to lower value of py among four methods. But after a close check on values of

po, we cannot see this relationship. Therefore, we know EBayeslII can detect more

fo(Z)

differentially expressed genes because it can get a better estimated ratio of R

Figure 4.9 illustratad the relationship of pg among four methods in simulation III. We

can get similar patterns in simulation I and simulation II.
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Chapter 5

Discussions and Future Work

In this project, we applied parametric and nonparametric empirical Bayes to detect
differentially expressed genes in our Affy microarray data set.

Results of EEBarrays in R show that this parametric empirical Bayes does not
work well because our microarray data do not follow ideal Lognormal-normal model
or Gamma-gamma model, the only models for which parametric empirical Bayes is
offered so far. Whether there are any other good parametric models for microarray
data analysis may be discussed in the future. Also, why those six weird probe sets (see
Table 3.3) original y for quality control purpose appeared in differentially expressed
gene list by EBarrays could be discussed further.

We also did nonparametric empirical Bayes analysis on microarrays based on
Efron’s idea. One nonparametric empirical Bayes package called Siggenes in R does
not work well also. We found that with different random start numbers, EBAM
function in Siggenes could fail if an extreme pattern appears in permutation matrix.

Furthermore, even if there is no extreme pattern, sometimes the results from EBAM
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still cannot be trusted. Some points at the extremes of posterior probability curve
fall down, but this should not happen according to Efron’s methodology.

We applied our own R function called EBayes to implement Efron’s (Efron
et al., 2001) nonperametric empirical Bayes methodology. The real microarray data
analysis on Affymetrix GeneChip MGU7/aV2 data and some simulated data sets
show that EBayes works very well, especially when EBAM fails to detect differen-
tially expressed geaes. Therefore, EBayes is a good nonparametric empirical Bayes
methodology to analyze microarrays.

The original simulation results show that when sample size increases, a ‘W’
shape could appear in the ‘Posterior Vs. Z value’ plots for EBayesl and EBayesIII.
But this problem could be solved by changing the degrees of freedom from df =
5 to df = 3 in the logistic regression of EBayes without making big difference
on estimating FDRs and detecting differentially expressed gene numbers (R). We
conclude that for bigger simulated microarray data sets (sample size n > 10), df = 3
is the best choice for EBayesl and EBayeslII; and df = 5 is the best choice for
EBayeslI. Since we get this conclusion through practical trials, another systematic
methodology of finding optimal degrees of freedom for logistic regression in EBayes
for all different sariple size could be discussed in the future.

Three differently sized simulations also show that EBayesl is highly correlated
with EBayesll, anid EBayesIII is highly correlated with EBAM. Since the former
two methods are too conservative to detect differential expressions, EBayesIII and
EBAM have better performance in simulated microarray data sets. Furthermore,
with a concern that the ‘Posterior Vs. Z value’ plots for EBAM could easily have

some drop off points at the extremes of x-axis in real microarray analysis, we be-
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lieve that EBayeslIII is the best methodology in detecting differential expression in

microarrays.
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Appendix A

R Codes

A.

1 R Codes for EBayes

EBayes <- function(obs, perms, nint=200, df=c(3,5,3), by.range=F) {

H
#

T
F#
FH
##
H#
#H#
##

HOH OH H H R

+H
##
H#
##

i+
it

B S S S S S S

Three methods in this function are tried to implement Efron’s
nonparametric empirical Bayes idea to find posterior probability
of differentially expressed genes. A main difference among
these three methods is the way they find pi(Z) as Equation
(2.2.15) defined. Methodl applies logistic regression on
quantile interval points; Method2 uses smoothing spline fitting
on quantile interval points; and Method3 applies logistic
regression on all data points.

The following values should be input into EBayes function:

obs the observed Z values

perms = the permutated z values

nint = number of intervals be used to get relative frequencies

daf degrees of freedom of logits function for 3 methods

by.range= True/False. If it is True, the whole data range is
a combination of all points from observed Z values and 2 end
points from the permutated z values; if it is False, the whole
data range is a combination of all points from observed Z
values anc. permutated z values.

The output of this function is a list contains two vectors:
pr=c(prl, prZ, pr3). It is a G*3 matrix which corresponding
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##  to the posterior probabilities of differentially expressed
##  genes calculated by three methods;

# pO=c(p01, p02, p03). It is a 1*3 vector including the

##  probabilities of unaffected genes from EBayes 3 methods.
CHHHHR R R R AR R R R R

if (by.range)

alldata <- «¢(obs,range(perms))
else

alldata <- c¢(obs,perms)
# Method 1.
breaks <- quantiles(alldata, (0:(nint+1))/(nint+1))
mids <- (breals[-(nint+1)]+breaks[-1])/2
freq.obs <- table(cut(obs, breaks, include.lowest=TRUE))
freq.perms <- table(cut(perms, breaks, include.lowest=TRUE))
fregs <- cbind(freq.obs, freq.perms)
mod <- glm(freqs ns(mids, df=df[1]), family=binomial(logit))
piZ <- predict (mod, data.frame(mids=obs), type="response")
fratio <- (1-piZ)/(ncol(perms)*piZ)
p01 <- min(c(i, 1/fratio))
prl <- 1-pOixfratio

# Method 2.

ratio <- freqgs[,1]/(freqs[,2]+freqs[,1])

mod <- smooth.spline(mids, logit(ratio), df=df[2])
piZ <- inv.logit(predict(mod, obs)$y)

fratio <- (1-piZ)/(ncol(perms)*piZ)

p02 <- min(c(1, 1/fratio))

pr2 <- 1-p02*fratio

# Method 3.

x <- c(obs, perms)

y <- rep(c(TRUE, FALSE), c(length(obs), length(perms)))
mod <- glm(y rs(x, df=df[3]), family=binomial(logit))
piZ <- predict (mod, data.frame(x=obs), type="response")
fratio <- (1-piZ)/(ncol(perms)*piZ)

p03 <- min(c(1, 1/fratio))

pr3 <- 1-pO3*fratio

list(pr=cbind(prl, pr2, pr3),pO=cbind(p01,p02,p03))
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A.2 R Codes for FDR Calculation

EBayes.FDR <- function(obs,perms,pr=pr,p0=1,delta=0.9) {

SHERHE R R R RS R R R AR RS R R R R R

# The following values should be input into EBayes.FDR function:

# obs = the observed Z values

# perms= the permutated z values

# pr = the posterior probability corresponding to observed Z value
# p0 = the probabilities of unaffected genes from EBayes function
# delta= cutofi level of posterior probability of differentially

FH expressed genes, it can be any number in (0,1]

# This functiorn’s output is a 5-column-table with values:

# Delta = cutoff level of posterior probability on differential
it expressions, it can be any number in (0,1]

# Number= the significant number of differential expressions

# FDR = estimated FDR defined by Equation (2.2.19)
# CL = lower cutoff level on observed Z values
# CU = upper cutoff level on observed Z values

SRR S R S S S S R B S e

if (any(delta<=0 | delta>1))
stop("The delta values must be in (0,1]")
pr <- prlorder (obs)]
obs <- sort(ots)
m <- length(ols)
out <- matrix(0,length(delta),5)
colnames(out) <- c("Delta","Number","FDR","CL","CU")
for (i in 1:length(delta)) {
sig.ids<-which(pr>=deltali])
out[i,2]<-length(sig.ids)
#out[1,3]<-mean(1-pr[sig.ids]) # get local FDR
neg.ids <- which(obs<0&pr>=deltali])
if (length(ueg.ids)>0)
out [i,4]<-obs[max(neg.ids)]
else
out[i,4]<- -Inf
pos.ids <- which(obs>0&pr>=deltalil])
if (length(pos.ids)>0)
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o)
els
o

ut [i,5]<-obs[min(pos.ids)]
e
ut[i,5]<- Inf

perms.ids<-vhich(perms<=out[i,4] | perms>=out[i,5])

out

out

A.3

EBayes.

HHHEH
The
obs

[i,3]<-pO*length(perms.ids)/ncol (perms)/max(out[i,2],1)

R Codes for EBayes Plot

plot<- function(obs,perms,pr,p0=1,delta=0.9, main="EBayes Plot") {

FHRHE R R R R e e R R R R
following values should be input into EBayes.plot function:
= the observed Z values

perms= the permutated z values

pO
delt
##
# main

#
*
#
# pr
#
#

# This
#it
#
#t
##

= the posterior probability corresponding to observed Z value
= the probabilities of unaffected genes from EBayes function
cutofi level of posterior probability of differentially
expressed genes, it can be any number in (0,1]

the title of the plot

a

function’s output is a plot of ‘Posterior against Z value’
to illustrate the relationship between posterior probabilities
of differentially expressed genes and observed Z values, which
are calculated by EBayes function. It has a legend at the
bottom r:ight with the following values:

# Significant= the significant number of differential expressions

# FDR
# pO
# Cutl

= estinated FDR defined by Equation (2.2.19)
= the probabilities of unaffected genes from EBayes function
ow= lower cutoff level on observed Z values

# Cutup = upper cutoff level on observed Z values

# The
##
HH
##

data points which are claimed as significant will be marked
as green color while the majority of unaffected genes are
marked as black color. If no points are claimed significant,
a dashed horizontal line at the value of delta will vanish.
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SHE##H RS S R R R S S R R R S R R R

out<-EBayes.FIR(obs,perms,pr,p0,delta)
ids<-which(obs<=out[1,4] | obs>=out[1,5])
main<-paste(main, "Delta=", delta[1])
xlab<-"z Value"
ylab<-"Posterior"
if (length(ids)==0)
plot (obs,pr,main=main,xlab=xlab,ylab=ylab,ylim=c(0,1))
else {
plot(obs[-ids],pr[-ids],main=main,xlab=xlab,ylab=ylab,
xlim=range (obs) ,ylim=c(0,1))
points(obs[ids],pr[ids],col=3)

}
abline(h=deltz,lty="dashed")
tmpl<-c("Significant:", "FDR:", "pO:","Cutlow:","Cutup:")

tmp2<-c (out [1, 2] ,round(out[1,3],3) ,round(p0,3),

round(out [1,4],3) ,round(out[1,5],3))
textlegend<-paste(tmpl,tmp2,sep=" ")
legend("bottomright",legend=textlegend,cex=0.8,bty="n",y.intersp=1.3)

A.4 R Codes for Simulation

simuyn <- function(G,nr,G0=G*0.1,mu,sd) {

B S S S S S S S S S S S s
This function can give us a Gx(nr*2) simulated data matrix yn.
nr= number of samples for each strain

G = total number of genes

GO= number of differentially expressed genes

mu= mean of the normal distribution

sd= standarc deviation of normal distribution

diseq= difference between differentially expressed genes

#H# and ecually expressed genes

H OH H H H R R

# For example, we can get a 10000*(nr*2) data matrix yn with row
i names 1,2,...,10000 as the following:
# nr<-5 # there are 5 samples in each strain
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# G <-10000

# GO<-Gx0.1

# mu<-5

# sd<-2

HHHH

mui<-rnorm(G,nu,sd)

sdi<-sqrt(rchisq(G,1));
diseq<-c(seq(-3,-1,length=G0/2) ,seq(1,3,length=G0/2))
diseq<-diseq*sdi[1:GO0]

di<-c(diseq,rep(0,G-GO))

strainl=matriy (rnorm(G*nr,rep(mui,nr),rep(sdi,nr)) ,nrow=G,ncol=nr) ;
strain2=matriy (rnorm(G*nr,rep(mui+di,nr),rep(sdi,nr)),nrow=G,ncol=nr);
yn<-cbind(strainil,strain?2)

row.names (yn)<-1:G

yn
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