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Abstract 

The purpose of gene expression microarray studies is to identify differentially ex

pressed genes. Due to the very large number of genes compared to the very small 

sample size, and the possibility of high level of non-normal random noise, traditional 

hypotheses tests cannot be used directly. In this thesis , we applied parametric and 

nonparametric empirical Bayes methodologies to test the hypotheses of differential 

expression in a real microarray data set from a study of Type 1 Diabetes and some 

other simulated data sets. In our real data, we saw some problems of applying para

metric empirical Bayes (in terms of R software called EBarrays; nonparametric 

empirical Bayes method implemented in the R packaged Siggenes also has problems 

in detecting differential expression in real data when some extreme patterns show up 

in the permutation matrix. We implemented a new function called EB ayes based on 

Efron's idea of nonparametric empirical Bayes method. EB ayes performs much bet

ter than other empirical Bayes methodologies in dealing with real data. Furthermore, 

the results of simulated data show that the new function EBayes are comparable to 

Siggenes EBAM function. 
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Chapter 1 

Introduction 

Microarray experiments are very important in investigating biological phenomena. A 

wide variety of techniques and algorithms exist for analyzing and extracting infor

mation from microarrays. This chapter focuses on nucleotide-based microarrays, one 

of the most popular type , and provides a simple overview of the steps involved in 

analyzing these experiments, the important algorithms used today, and the areas of 

active research. 

1.1 Genetic Background 

It is well known that there are about approximately ten to the 14th power (1014 ) cells 

in the human body. The nucleus of almost every cell comprises the complete human 

genome. The human genome is the blueprint for all cellular structures and activities in 

the human body. It consists of 23 pairs of chromosomes. In each pair, one chromosome 

comes from the mother and the other from the father. Chromosomes are the organized 
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form of Deoxyribonucleic Acid (DNA) found in cells. They contain a single continuous 

piece of double-stranded D A, which contains many genes, regulatory elements and 

other intervening :mcleotide sequences. Each strand of a D A molecule is built up 

by a sequence of the bases: Adenine (A) , Cytosine (C), Guanine (G) and Thymine 

( T) . Watson and Crick ( 1953) first proposed the double-helix spatial structure of the 

DNA. According t o the Watson-Crick base pairing rule, the bases are paired so that 

an A in one strand can only bind to a Tin the other, and a C can only bind to 

a G. The two strands are called complementary since each strand hence holds the 

same sequence inbrmation. Some segments of the D A sequence contain genetic 

information and are loosely called genes. Figure 1.1 shows the structure of the DNA 

double helix. 

The chain ~onstructed from one gene forms a large cellular molecule called 

a protein. Proteins are the structural components of cells and tissues and perform 

many key functior s of biological systems. Tumor cells differ from normal cells and 

medically treated cells differ from those untreated cells. The production of proteins is 

controlled by gene~;. The extent to which a gene is used to produce proteins is known 

as gene expression. It is a multiple-step process that begins with the "transcription". 

During transcription, a single strand of messenger ribonucleic acid, or mR A, is 

copied from the DNA segment coding the gene. After transcription, mR A is used 

as a template to a3semble a chain of amino acids to form the protein, this is known 

as "translation". Transcription and translation are two principal stages involved in 

protein productions, it is illustrated in the schematic of Figure 1.2. 

There are :;everal techniques available for measuring gene expression, such 

as serial analysis of gene expression (SAGE), cD A library sequencing, differential 
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Figure 1.2: The Central Dogma of Molecular Biology. 
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display, cD A subtraction , multiplex quantitative RT-PCR, and gene expression mi

croarrays. Following the Central Dogma of Molecular Biology, if the assumpt ion 

behind DNA micr•)arrays holds- that most of t he mRNA is translated into proteins, 

then t he function of a cell also can be investigated by measuring the mRN A levels. 

Here we will focus our interest on t he analysis of DNA microarrays. 

There are several microarray technologies. The main types of gene expres

sion assays are: sp .)tted cD:'\A arrays , short oligonucleotide arrays (Affymetrix) , long 

oligonucleotide arrays (Agilent Inkjet), and fibre optic arrays (Illumina) . One preva

lent approach involves the use of high-density oligonucleotide arrays, the most widely 

used. oligonuclcoti1le array type is the Affyrnetrix GencChip (for brevity Affy). In 

Affy arrays, expre:;sion of each gene is measured by comparing hybridization of the 

sample mRNA to :1 set of probes, composed of 11- 20 pairs of oligonucleotides, each 

of length 25 bases The first type of probe in each pair is known as perfect match 

(P M) and is taken from the gene sequence. The second type is known as mismatch 

(MM) and is creatEd by changing t he middle (13th) base of the PM sequence to reduce 

t he rate of specific binding of mRN A for that gene. The goal of MMs is cont rolling 

for experimental variation and nonspecific binding of mRN A from other parts of t he 

genome. 

Oligonucleotide arrays are well discussed by Lockhart et al. (1996) ; and Affymetrix 

(1999) gives detaib on Affy arrays. By an llustration of Affymetrix GeneChip in Fig

ure 1.3, we can see that an R:'\A sample is prepared, labelled with a fluorescent dye, 

and hybridized to m array. Arrays are then scanned , and images are produced and 

analyzed to obtain a fluorescence intensity value for each probe, measuring hybridiza

t ion for t he corresponding oligonucleotide. For each gene, or probe set , t he typical 
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Hybridized Probe F ature 

Figure 1.3: An Illustration of Affymetrix GeneChip. 

Graphics from http:/ j www.jyi. org. Image Courtesy: Affymetrix. 

output consists of ·;wo vectors of intensity readings, one for PMs and one for MMs. 

Then different approaches of data analysis for deriving probe-set summaries that best 

reflect the level of expression of the corresponding genes can be made. 

1.2 Overv'.ew of Microarray Data Analysis 

Over the past decade there have been two dramatic changes in microarray data analy-

sis . First, with the advance of DNA hybridization microarray technologies nowadays, 

it is possible to simultaneously assess the expression levels of tens of thousands of 

genes. So studies of single genes are being replaced by studies that probe many 

genes simultaneous ly. It means our analysis also changes to dealing with a family 
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of tens of thousanis oft-tests simultaneously instead of a two-sample t-test or some 

other "t-like" tests. Second, different types of biological information, such as genomic 

alterations, rnRNA levels, and protein levels, are being combined together in an at

tempt to give a comprehensive view of biological processes. So for the application of 

high-throughput measurement of gene expression, various groups have demonstrated 

that the use of modern statistical methodology can substantially improve accuracy 

and precision of the gene expression measurements, relative to ad hoc procedures 

introduced by designers and manufacturers of the technology. 

To adapt to these changes, computational statisticians are engaged in devel

oping new methocologies for analysis of genome-wide data sets. Their analysis will 

serve as a guide fo analyzing microarray data and for computing unbiased estimates 

of relative gene ex ression. 

1.2 .1 General Steps in M icroarray Data Analysis 

We can treat microarray analysis as a series of sequential steps because the output 

of one step feeds nto the next step, and each step converts one type of data into 

another by variom. algorithms and software packages. Generally, there are six steps 

of data processing quantization, background correction, mismatch adjustment , nor

malization, summarization and statistical analysis (Boutros, 2007). The first step -

quantization - is <on image analysis. The next four steps - background correction, 

mismatch adjustment, normalization, and summarization - are preprocessing steps to 

produce gene expression measurements/values. The last step - statistical analysis -

is to identify the DNA sequence variants in specific genes or regions of the human 
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genome that are a3sociated with phenotypes of interest such as disease. 

Step 1: Quantization 

The first st·~P in microarray data analysis is called "quantization" step because 

it convert an image into a series of numbers. A microarray experiment is performed 

as follows: first t e labelled mRN A is hybridized to the array; then the array is 

washed to remove the excess or weakly bound mRNA; next the microarray is excited 

by a laser and finally the array is scanned. So we will get a picture of the array in 

which high bindin. ~ will be visible as white spots on a black background. Therefore, 

quantization is a mandatory step in all microarray analyses. It takes the raw image 

as an input , and converts it to estimates of signal in a spot (foreground signal, FG) 

and of nonspecific signal in the surrounding regions to a spot (background signal, 

BG). In this thesi~ , we use the default Affymetrix quantization algorithm. 

Step 2: Background Correction 

As we haw discussed, a preprocessing procedure includes four steps: back

ground correction, mismatch adjustment, normalization and summarization. They 

are used to produ e an expression measurement. At each stage of this procedure, 

numerous methodf: have been proposed for GeneChip arrays. 

Background correction is also referred to as signal adjustment . The scanning 

of arrays results ir. optical and background noise affecting pixel intensities. Because 

each spot in a microarray has both specifically bound DNA and non-specific signal, a 

slight signal could be seen in the area that is in between spots on some array images. 

So backgrotmd information is difficult to obtain. Background corrections are used 

to remove a non-s·)ecific signal that arises from non-specific hybridization, the slide 

itself, or coatings •)r other materials on the slide. Many studies have demonstrated 
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that careful remmal of this signal can significantly increase the signal-to-noise ratio 

of a microarray ex periment. 

Numerous background correction methods have been proposed. For Affy data, 

background correction is done by a maximum likelihood deconvolution of the probe 

intensity into an exponential signal and normal noise. This procedure is a part of the 

"RMA" (Robust f\Iulti-chip Average) procedure in R package Affy(Irizarry, Gautier, 

& Cope, 2003). Sl) we will apply RMA deconvolution background correction in our 

project. 

Step 3: Mismatch Adjustment 

As we disc sscd in Section 1.1, Affymetrix GeneChip expression arrays usually 

contain two types of sequences: "perfect match" (PM) and "mismatch" (MM). PM 

matches an mRNA. transcript exactly. MM is almost the same as PM except that 

MM has a 1 mut:1tion in the center of its sequence. This mutation will prevent 

binding of the act,Jal t ranscript, but will allow any "non-specific hybridization" still 

to occur. So MM •:an be used to remove non-specific hybridization. If the mismatch 

sequence performs as expected , this process can dramatically reduce the noise in an 

array experiment. 

The biggest. problem of mismatch adjustment is that this process rarely per

forms as expected. One Affymetrix analysis software MicroArray Suite (MAS) in 

version 4.0 calculated the signal as PM-MM, but the real analysis shows that there 

are about 30% of data points that have negative values of signal. Later Irizarry, 

Hobbs, et al. (200~) found that MM data only added noise but contributed very little 

to signals. Therefore, RMA totally ignores all MM probes and only utilizes the PM 

probes. 
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Step 4: Normalization 

Normalization is an important step in microarray data analysis. It is designed 

to remove variation of non-biological noise and systematic artifacts within or between 

arrays so that thei:· values can be comparable. Sources of obscuring variation include 

variation introduc<~d during the process of sample preparation, during the manufac

ture of the array, during the hybridization of the sample on the array, and during 

the scanning and analysis of fluorescent intensity after hybridization. The obscur

ing sources of var ation can have many different effects on data, unless arrays are 

appropriately nornalized. 

Various no:·malization methods have been proposed, such as constant nor

malization, contra:;ts normalization, invariant set normalization, loess normalization, 

qspline and quant.le normalization. Yang (2006) compared a number of commonly 

used and state-of-art normalization methods in microarray analysis, such as Robust 

Multi-chip Average (RMA), MAS5.0, GCRMA, PLIER and dChip. RMA has quan

tile normalization as build in method. Based on the assumption that the distribut ion 

of expression levels is constant across chips , quantile normalization assumes that 

the chips have a ommon distribution of intensities, so they may be transformed 

to produce similar distributions. Therefore, after quantile normalization, all probe 

sets will have sam e box plots across the chips. RMA uses quantile normalization of 

the background-ccrrected P M probes because it provides a fast method to normalize 

multiple chips. 

Step 5: Summarization 

A single gene might be represented by many sequences on an array. Different 

sequences might r :!present different parts of the gene, or t hey may be replicates. As 
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the last step in pre-processing, summarization is where multiple probe intensities 

within a probe set are combined to produce an expression value. 

Commonly discussed summarization methods include Average Difference (Avgdiff) 

summarization, m<!dian polish summarization, MAS summarization, and Li and Wong 

(2001) summariza1;ion . For Affymetrix arrays, the RMA algorithm always uses me

dian polish method to combine the signals from multiple probes together. Median 

polish is a data a1alysis technique (more robust than A OVA) for examining the 

significance of vari :ms factors in a multi-factor model. In our case t here are 2 factors: 

t he array and the probe. The estimate of the arroy coefficient is defined to be the 

expression for the probe set or the array. This procedure is called "robust" because 

it is relatively insmsitive to outliers. We will apply median-polish as part of RMA 

preprocessing to sllmmarize our genome data in this project. 

Step 6: Statistical Analysis 

In microarr:ty data analysis, our ultimate goal is to identify genes that change 

between experimental conditions by appropriate statistical analysis methods. For 

example, in our si udy, we want to identify genes that have different expression in 

strains of mice that are resistant or susceptible to Type 1 Diabetes (TlD) out of the 

bulk of the microarray data. 

A serious statistical problem in microarray experiments is that the sample 

size is too small compared to the big number of sample dimensions, which may cause 

difficulties in data reduction and simultaneous inference. Several techniques have been 

tried to solve thesE problems, such as principle component analysis (PCA), empirical 

Bayes analysis, clHstcring analysis and Significant Analysis of Microarrays (SAM). 

In this project, parametric and nonparametric empirical Bayes will be discussed and 
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Ta le 1.1: Possible outcomes from m hypothesis tests 

we will focus our Etudy on nonparametric empirical Bayes. A simple nonparametric 

empirical Bayes model proposed by Efron et al. (2001) will guide the efficient reduction 

of the data to a single summary statistic per gene, and also to make simultaneous 

inferences concern. ng differentially expressed genes. We will discuss three different 

variations of nonpc,rametric empirical Bayes based on Efron's idea in detail , and then 

apply them to a real microarray data set and some simulated data sets. 

1.2.2 M ultiple-Testing Problem and Bayesian Methods 

In microarray dat:t analysis, multiplicity makes identification of differentially ex-

pressed genes very hard. In multiple hypotheses testing, suppose there are G inde

pendent test statis1;ics with level a, then P(at least one falsely reject)= 1 - (1- a) 0 , 

which will rise with G. The number of probe sets (G) in an Affy chip is large. For 

example, in our Affy data sets, the number of probe sets is G = 12488. So the 

probability of type I error in this multiple hypothesis testing is very close to 1. 

Take an excmple of multiplicity test from Table 1.1 , where V is the number 

of Type I errors (false positives) , T is the number of Type II errors (false negatives), 

and R = V + S is be total number of significant hypotheses. In order to measure the 

errors incurred in multiple hypothesis testing and control the Type I error, Benjamini 
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and Hochberg (1905) first proposed the False Discovery Rate (FDR) as the following: 

FDR = E (~IR > o) · Pr(R > 0) (1.2.1) 

Instead of calculating the chance of any false positives E[V], FDR controls 

the expected proportion of false positives among the number of all genes which have 

been claimed posit ive, so it is adaptive to the amount of signal in data. FDR is a 

new approach to the multiple comparisons problem. Some statisticians believe it is a 

bridge between traditional statistical thinking and modern problems in data mining 

and bioinformatics. 

Positive False Discovery Rate (pFDR) was proposed by Storey (2002). It is 

defined as the follcwing: 

pFDR = E (~IR > o) (1.2.2) 

The term "positive" has been added to reflect the fact that we are conditioning 

on the event that :lOsitive findings have occurred. Although the ideas of FDR and 

pFDR were originally proposed under the assumption that all p values are indepen

dent. In more gene ral cases, such as with dependence or in nonparametric situations, 

it is possible to ap ly very similar ideas to obtain accurate estimates of pFDR and 

FDR. For a large class of dependence structure, Storey and Tibshirani (2001) show 

that t he effect of dependence could be negligible if G is large. Therefore, this multiple

hypothesis testing :nethodology is useful not only in fields like genomic analysis but 

also in the field of data mining. 

Early statistics for microarray experiments include gene specific t-tests and/ or 

permutation methods by Dudoit et al. (2002), as well as maximum likelihood methods, 
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to find differentially expressed genes. Because microarrays hold information about 

thousands of geneE simultaneously, it is natural to use empirical Bayes approaches. If 

the overall information about thousands of genes is summarized into prior parameters, 

their performances will be much superior to the usual t-statistic and similar methods. 

However, finding appropriate distributional assumptions to produce conjugate priors 

for the parameters is not easy. We will discuss empirical Bayes approaches (including 

parametric and nonparametric Bayes) in detail later in Chapter 2. 

1.3 Type I Diabetes and Mouse Model Experi

ment :Design 

Due to multiple genetic risk factors and currently unknown environmental factors , 

Type 1 Diabetes ( f1D) is a complex, autoimmune-mediated disease. Since T1D is 

usually diagnosed :n children and young adults, it was previously known as juvenile 

diabetes. In type 1 diabetes, the body does not produce insulin. Insulin is a hormone 

that is needed to convert sugar (glucose), starches and other food into energy needed 

for daily life. As Llanos and Libman (1994) found , the incidence of T1D varies widely 

between populations. It happens 0.7/ 100, 000 people per year in Peru and 45/100, 000 

people per year in Finland. Canada has the third highest rate in the world. In the 

past 50 years, the incidence of TlD has risen rapidly. Furthermore, TlD cost the 

Canadian health c.ue system $1.32 billion in 2002 and is projected to rise to $1.6 

billion by 2010 (N·~whook et al., 2004) . Therefore, biologists are working hard to 

define complex genetic contributions to T1D. And computational statisticians are 
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t rying to develop new methodology to analyze genome-wide data sets to get good 

estimates of relati·1e gene expression. 

One geneti<: region called Idd4 has been shown to affect genetic susceptibility 

to T1D, so biologi:;ts are interested in the Idd4 locus on the mouse genome. By mat

ing two inbred stra.in mice: non-obese diabetic (NOD) mice and non-obese resistant 

(NOR) mice, and back crossing the descendants 5 - 10 generations, biologists get 

NOD.NOR-Idd4 congenic mice. The OD. OR-Idd4 mice have the NOD genome 

everywhere except at the Idd4 locus where they have the OR genome. Since studies 

show 85% female NOD mice get diabetes by 6 months of age while OR mice are 

diabetes resistant , although 88% of their genomes are identical to NOD mice, we 

want to find the difference between NOD.NOR-Idd4 mice and NOD mice in their 

gene expression profiling. 

In this pro ject, we use mice data from Affymetrix GeneChip MGU14a V2. 

The objective of the study is to identify the differentially expressed genes among 

12488 probe sets ty these Affy chips. The data is processed on two different days to 

obtain eight arrays: four replicates that include two NOD strains and two NOD.NOR

Idd4 strains on dE.y one, and four replicates that include two NOD stains and two 

XOD.NOR-Idd4 s1;rains on day two. We will adj ust for the day effect on these eight 

chips first, then apply different statistical analysis to find differentially expressed 

genes. 
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1.4 Organization of the Thesis 

The objective of Lhis project is to apply parametric and nonparametric empirical 

Bayes analysis to detect differential expression of genes between NOD mice and 

::\OD.NOR-Idd4 rr.ice, based on Affymetrix GeneChip MGU74a V2 data sets we have. 

The thesis is organized as follows. Chapter 2 provides necessary preliminaries of 

empirical Bayes a1talysis (including parametric and nonparametric empirical Bayes 

methodologies) iu microarrays . In Chapter 3, we first apply two empirical Bayes 

methods to a real microarray data set. Then we investigate the problems we found 

in parametric empirical Bayes analysis on microarrays (based on R package named 

E B arrays) , and t!te problems in nonparametric empirical Bayes analysis on microar

rays (based on R Jackage named Siggenes). Then we go through the model from 

Efron's paper (Efnn et al., 2001) and propose three new methods derived from it. 

Simulation compar isons of these four nonparametric empirical Bayes methods are ad

dressed in Chapter 4. Finally, conclusions are drawn in Chapter 5, and future work 

will also be discussed. 
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Chapter 2 

Empirical Bayes Analysis in 

Microarrays 

Empirical Bayes (:~B) methods have been popular for quite a long time. The ear

liest work can be 1;raced back to the 1940's by von Mises, but the first major work 

must be attributed to Robbins (1955). Applying Empirical Bayes approaches to make 

inferences from microarrays is natural because microarrays hold information about 

thousands of genes simultaneously. But the sample size is relatively small. Therefore, 

the amount of information per gene can be relatively low. Efron and Morris (1977) 

analyzed the so-called Stein Effect in Empirical Bayes methods. Roughly speaking, 

the Stein Effect asf,erts that estimates can be improved by using information from all 

coordinates when ~ ~stimating each coordinate. In microarrays, the data from other 

genes provide som{· information about the typical variability in the system. Further

more, since microarrays hold information about thousands of genes simultaneously, 

if we summarize the overall information into prior parameters, and combine it with 
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means and standard deviations at t he gene level, their performance will be much 

superior to the usual t-statistic. 

The major difference between parametric and nonparametric empirical Bayes 

analysis is that the parametric approach specifies a parametric family of prior distri

butions, but the nJnparametric approach leaves t he prior completely unspecified . In 

the following sections, we are going to discuss parametric and nonparametric empiri

cal Bayes methodclogies, how to apply them to microarrays, and their disadvantages 

and advantages. 

2.1 Paran1etric Empirical Bayes Analysis and EM 

Algorithm 

Since the first major work of parametric empirical Bayes analysis is done by Efron and 

Morris in the 1970s, they have been called the founders of modern empirical Bayes 

data analysis (Ca:lella, 1985). In microarray data analysis, there are two models 

quite prevalent: he Gamma-Gamma model and Lognormal-Normal model. These 

are proposed in N(~wton and Kendziorski (2003) . 

2.1.1 The Gamma-Gamma and Lognormal-Normal Models 

of Parametric Empirical Bayes Analysis 

Let YiJ be the e:xpression level of gene i in array j (i = 1, ... , G; j = 1, ... , n 1, 

n 1 + 1, ... , n 1 + n 2 == n) for a two-condition model structure, where the first n 1 arrays 

and last n 2 arrays are obtained under the two different conditions. We want to char-
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acterize the proba ility distribution of Y i = (Yil, Yi2, ... , Yin). The basic assumption 

of microarray data analysis is t hat the majority of genes have unchanged expressions 

across arrays, so these n samples are exchangeable. Thus , YiJ can be treated as in-

dependent randorr. deviations from a gene-specific mean values P,i and they have an 

observed distribut:on f obsC IJ..ti) · 

Suppose th sample set can be partitioned into two subsets n 1 and n2 with 

corresponding mean values p,1 and p,2 . If t he distribution of measured expression is 

not affected by th is grouping, we say t hat there is equivalent expression (EEi) for 

gene i; otherwise, there is differential expression (DEi) . Then we can assume that the 

gene effects arise ,ndependently and identically from a system-specific distribut ion 

1r (p,), and this allows genes to share information. 

If the frac1 ion of differentially expressed genes among all genes is p , then 

the fraction of eqllivalently expressed genes is 1 - p. An EE gene i presents data 

Y i = (Yil, Yi2, . .. , )lin) which will have a distribution 

(2.1.1) 

Alternative ly, if gene i is differentially expressed, the data Yi = (Yi( I), Yi(2)) 

will have a distribution 

So the marginal distribution of the data is 

(2.1.3) 

By Bayes ' rule a d known estimates of j 0 , fi and p, the posterior probability of 
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differential expres~.ion is 

(2.1.4) 

• Gamma-Gamma (GG) model 

The GG model supposes that the observation component has a Gamma distri-

bution with >hape parameter a > 0 and mean value J.L , so the scale parameter 

is >. = aj J.L· Thus , for measurements y > 0, 

r ( I ·) - >.aya- 1 exp{ - >.y} 
Jobs y J.lt - r(a) (2.1.5) 

So the marginal distribution 7r(J.Li) can be taken to be an inverse Gamma distri-

bution with ~ .hape parameter a0 and scale parameter v for a fixed a. Therefore, 

the key dens;ty f 0 (-) has the form 

where 

(lln )a-1 
( ) 

i=1 Yi 
fo Y1' Y2, ... yn = K ( + L;n ·) la+ao 

v 1=1Y1 

K = vaor(na + ao) 
rn(a)r(ao) . 

• Lognormal-Normal (LNN) model 

(2.1.6) 

In the LNN model, we assume log-transformed measurements for each gene i 

have a norm .1 distribution with mean J.li and common variance a-2
. A conjugate 

prior for the J.Li is normal distribution with mean J.Lo and variance T5. So the 

density f 0 (-) for an n-dimensional input becomes Gaussian with mean vector 

J.Lo=(J.Lo , J.Lo , .. J.Lo)t and exchangeable covariance matrix 

where In is a n x n identity matrix and Mn is an n x n matrix of ones. 
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Because GG and LNN models both hold the assumption of a constant coeffi

cient of variation ( CV), this property can be checked before we do model fitting. 

2 .1.2 EM A .gorithm 

In both GG and LNN models, we need to apply maximum (marginal) likelihood 

method, to estimate unknown parameters (a, a0, 1.1) and (J..Lo, o-2 , TJ) respectively. We 

can estimate those parameters by expectation-maximization (EM) algorithm. 

An EM alg rithm is used in statistics for finding maximum likelihood estimates 

of parameters in p10babilistic models, where the model depends on unobserved latent 

variables. Dempster et al. (1977) first generalized the method and developed the 

theory behind it. They also explained and gave the name of EM algorithm in this 

paper. The EM algorithm includes two steps: Expectation (E) step and Maximization 

(M) step. TheE step computes an expectation of the likelihood by including the latent 

variables as if they were observed; The M step computes the maximum likelihood 

estimates of the p~,rameters by maximizing the expected likelihood found on the E 

step. Then the parameters found in the M step will be passed to a new E step. This 

process will be rep, ~ated until the estimates found in E step and M step converge to 

each other. 

With data Yi governed by a mixture model from Equation (2.1.3) , we intro

duce pattern indicator <tv cPil = 1 when expression pattern on gene i is pattern l; 

cPil = 0 otherwise. ~)o the complete data log likelihood is 

(2.1.7) 

In E-step, b.:lSed on a current estimate 00 , the expectation given the observed 
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data amounts to n ~placing ¢il with ¢il · In the M-step, we use the arithmetic mean of 

¢.,k to estimate Pk , then we can get updated estimates of e. This process is iterated 

until successive est imates stabilize. 

2.2 Nonparametric Empirical Bayes Analysis in Mi-

croarrays 

From the previous sections in this chapter, we know that parametric tests may not be 

valid for microarrays in practice since they have too strong parametric assumptions 

or large sample justifications. As alternatives, nonparametric statistical methods, 

such as empirical Bayes method of Efron et al. (2001) and the significance analysis 

of microarray (SA\1) method of Tusher et al. (2001) have been proposed. Those 

two methods both rely on constructing a test statistic and a so-called null statistic 

such that the dishbution of null statistic could be used to approximate the null 

distribution of the test statistic. We will focus our work on nonparametric empirical 

Bayes method in this project. In this section, we will give a brief descript ion of how 

nonparametric empirical Bayes method works and the general steps to apply this 

method to microar:-ays . 

2 .2.1 R eview of Nonparametric Empirical Bayes Analysis in 

M icroarrays 

Suppose that Y;1 is the expression level of gene i in array j (i = 1, .. . , G; j = 1, ... , n 1, 

n 1 + 1, ... , n 1 + n2 = n). Suppose that the first n 1 and last n 2 arrays are obtained 
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under the two diff<~rent conditions respectively. A general statistical model is 

(2.2.8) 

where Xj = 0 for 1 ::::; j ::::; ni, and Xj = 1 for ni + 1 ::::; j ::::; ni + n2 , and E are 

independent (but not necessarily identically distributed) random errors with mean 

0. Hence ai and ai + bi are the two mean expression levels of gene i under the two 

conditions respect: vely. So the hypothesis test to find differentially expressed genes 

Let the sample means of Yi/s for gene i under the two conditions be fi(I ) = 

L Jn ll Y;J· "\/" L J' .!:_~Jn+2 1 Y;j d l b h l d d d d . . C . 
= I . - - , an et s,· e t e poo e stan ar eviatwn 10r gene z: 
n1 ' •(2) - n 2 

(2.2.9) 

Then a reasonable test statistic for assessing differential gene expression is the stan

dard (unpaired) t- 3tatistic: t i = Y;c2J~fic 1 l . To reduce the overall variance of the si, 

giving the tests m ::>re power on average, Tusher et al. (2001) take a nonparametric 

approach to this 2nd shrink the si toward an adaptively chosen s0 . The modified 

t-statistic is then 

zi = fi(2) - fi(l J 

S i +So 
(2.2.10) 

where s0 is chaser , as the percentile of the si values that makes the coefficient of 

variation of Zi apr::roximately constant as a function of si . This has the added effect 

of dampening large values of zi that arise from genes whose expression is near zero. 

The nonparametric empirical Bayes method proposed by Efron et al. (2001) 

attempts to avoid Lighly specified models, relying instead on a simple inference model. 

Let PI be the pro ::>ability that a gene is affected, Po = 1 - PI be the probability 
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unaffected , and !J (Z) be the density of expression Z for affected genes, fo(Z) the 

density of Z for unaffected genes, then the mixture density of the two populations is 

f(Z) = Pofo(Z) + P1fi(Z) (2.2.11) 

In our sit uation, we can estimate J(Z) directly from the i-th expression scores 

Zi obtained from 1he Equation (2.2.10) . Concentrating on the two-sample case, t he 

null distribution fn(Z) can be calculated by permuting the group labels, or one can 

use the bootstrap. Here we will use permutation method because it has a strength in 

that if the null hypothesis is t rue, then we can calculate the null distribution. 

Applying Bayes' rule to the mixture model in Equation (2.2.11) , we can get 

posterior probabili ties p1(Z) and p0(Z) as 

fo(Z ) 
Pl(Z) = 1- Po f(Z), 

fo(Z) 
Po(Z) =Po J (Z ) (2.2.12) 

where p1(Z) is the posterior probability for differentially expressed genes and and 

p0 (Z) is the posterior probability for equivalently expressed genes. 

Obviously, if we can estimate the value of p0 and ratio ]gj, then the posterior 

probabilities will b ~ found. One way to estimate this ratio is using their relative den-

sities from the observed score { Zi} and permuted score { zi} 's empirical distributions. 

If we consider values of {Zi} as "success" and values of {zi} as "failures", then with 

G = 12488 genes a·1d B = 20 permutations, we can plot G(1 +B)= 12488 x 21 total 

scores on a line, wr ere G = 12488 scores from observed { Zi} and G x B = 12488 x 20 

scores from permu1 ated { Zi}· So the probability 1r(Z) of a success at point z is given 
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as 
J(Z) 

1r(Z) = f(Z ) + Bfo(Z) 

so the posterior probability of differentially expressed gene p 1 ( Z) becomes 

1- 1r(Z) 
Pl(Z) = 1 - Po B1r(Z) 

(2.2.13) 

(2.2.14) 

We can estimate 1r(Z ) by logistic regression as follows: first divide the range 

of the observed and permuted statistics into several equal intervals; then find the 

frequencies of the observed and permuted values in each interval; finally pass those 

values to a logistic regression function with a natural spline on degrees of freedom 

equals 5 to estimate 1r(Z). 

Another va: ue we should know to get p1 ( Z) is p0 (the probability that a gene 

is unaffected). Sin ·~e the posterior probability of differentially expressed genes p 1(Z) 

is nonnegative for :1ll Z , it restricts p0 and p1 as 

(2 .2.15) 

Therefore , the upr•er bound of p0 is equal to fa~~), so we can estimate p0 from the 

value of this relative densities . 

In summar:r, the algorithm for nonparametric empirical Bayes analysis for 

microarrays is the following: 

• Step 1 

Compute the Z statistic for observed data values Y by Equation (2 .2.10); 
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• Step 2 

Generate B independent row-wise sign permutations, compute the z statistic 

for permuteri data values in the same way as Z was calculated; 

• Step 3 

Apply logistic regression to estimate the probability of success 1r(Z) based on 

the relative densities of the Zi and zi, then get ratio ~/ffl ; 

• Step 4 

Use the uppm bound of /o~~) to estimate p0 ; 

• Step 5 

Find the posterior probability p1(Z) for each gene from Equation (2.2.14). 

Obviously, other variants of this algorithm could be applied to estimate the 

posterior probabilities but this is the method given by Efron et al. (2001). More 

details about other variations will be discussed in Chapter 3 and Chapter 4. 

2.2 .2 False Discovery Rate ofNonparametric Empirical Bayes 

Analy~>is 

From the development in the Section 2.2.1, we can see that the nonparametric empiri-

cal Bayes analysis is very closely related to Benjamini and Hochberg's False Discovery 

Rate (FDR) criterion. The FDR is the expected proportion of type I error made using 

a given rejection rule, so Efron defines the local false discovery rate as 

fo(Z) 
fdr(Z) =Po f(Z) . 
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Thus local fdr(Z) is the posterior probability p0 (Z). 

Now we med to define estimated FDR (:Fr)R) for a rejection region c 

( -oo, a) U (b, +oo) for our microarray data. 

Let l0 (C) be the number of observed test scores in this region, lp(C) be the 

number of permutt ~d test scores in this region, and B is the number of permutations, 

t hen 

(2.2.17) 

where Po is the eE timated probability of unaffected gene. Since we use the upper 

bound of fo~z_}) to estimate p0 , it turns out the value of FDRc we calculated is slightly 

conservative. 
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Chapter 3 

Real M icroarray Data Analysis by 

EBarra~rs, Siggenes and EBayes 

In Chapter 2, we discussed the preliminaries of parametric and nonparametric em

pirical Bayes analysis for detecting differential expression in microarrays. In this 

chapter, we will investigate the application results of these methodologies in our real 

microarray data. 

3.1 Microarray Data Set 

From the introduc :ion of mouse model experiment design in Section 1.3, we know that 

there are eight mit~roarray chips in our real microarray data sets, and each array has 

12, 488 individual NA sequences. The first four chips are taken from male NOD mice 

and the last four c1.ips are taken from male OD.NOR-Idd4 mice. Our objective is to 

detect which geneH on locus Idd4 have effects on TlD resistance. After preprocessing 
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Probe Set Id. y l y 2 y 3 y 4 y 5 y6 y7 Y s 

"93427_at" Y1 ,1 Y1 ,2 Y1 ,3 Y1,4 Y1 ,5 Yi ,6 Yl,7 Y1,s 

"104748...s_at" Y2,1 Y2,2 Y2 ,3 Y2,4 Y2,5 Y2,6 Y2,7 Y2,s 

"92557 _Lat" } i2488,1 y12488,2 yl2488,3 yl2488,4 y12488,5 yl2488,6 y12488,7 y12488,8 

Table 3.1: Expression values of Y. 

steps of data anal:rsis by RMA function from Affy package in R software, we have 

a 12, 488 x 8 matrix M of expression values, one value for each gene on each array. 

Because eight microarray chips are taken from two different days (chips M 1 , M2 , M 5 , 

M 6 from day one .md chips M 3 , M 4 , M 7 , M s from day two), we need to adjust for 

the day effect on those chips first. From Yiqiang Luo 's MSc thesis (Luo, 2007) , we 

know that day effect does exist using cluster analysis and SAM analysis. Since we 

are not interested in evaluating the day effect in this report, we simply adjust the 

day effect by adding difference of mean values between two days to the lower day's 

expression values f,)r each gene. After the above steps, we obtain a 12,488 x 8 matrix 

of expression values Y as our data shown in Table 3.1. 

We then apply Efron's idea to detect differential expression. Let Y j indicate 

the j -th column of" Y , a 12,488 vector , then Y 1 , Y 2 , Y 3 , and Y 4 come from OD 

mice and Y 5 , Y 6 , Y 7 , and Y 8 come from OD. OR-Idd4 mice. Let fi(I) and fi(2) 

be the sample means for gene i under the two conditions (NOD or NOD .NOR-Idd4 

mice) , then we car. get observed expression scores Zi by Equation (2.2.10). We can 

also get "null" expression score zi by permutations, which approximate the unaffected 

gene samples . The permutation can be done as the following: Represent the original 
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label for each row 'J.S (0 0 0 0 1 111) (where 0 denotes NOD mice from group I and 1 

denotes NOD .NOH-Idd4 mice from group II) , then randomly assign four samples for 

label 0, and the other four samples for label 1. For example, we can set the label pool 

as (0 1 1 0 1 1 0 0) or (0 1 0 111 0 0) etc. The total possible number of permutations 

is Btotal = (~) = 70 here. ext we calculate the corresponding permutated ~(1 ) 

and ~(2) to obtain the test statistic zi for each gene by Equation (2 .2.10), where 

~(1) and ~(2) repr sent the sample means for gene i under two conditions (0 group 

or 1 group) corresponding to permutation matrix. Finally, based on the observed 

expression scores Zi and the "null' expression scores zi, after B permutations, we 

can estimate the rdative density ratio f0 (Z)/ f(Z) through their relative frequencies 

by methodology in troduced in Section 2.2.1. 

3.2 Results of EBarrays in Microarrays - Para-

metric Empirical Bayes 

In previous chapte rs, we discussed the methodology of parametric empirical Bayes. 

The methodology i3 implemented in the R package EBarrays, which was written by 

Kendziorski et al. :2003). By EBarrays, we can calculate posterior probabilities of 

patterns of differential expression across multiple conditions. 

We will con 3ider two particular specifications of the general mixture models

Gamma Gamma (GG) model and Lognormal Normal (L N) model. Table 3.2 shows 

the number of sigr ificant gene detected by GG and L 1\ models when we set the 

posterior probabili1y p to be 0.5, 0.62 and 0.95 respectively. We also obtain the joint 
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- · 

Posterior probability p > 0.5 p > 0.62 p > 0.95 

GG Model 336 312 232 

LNN Model 335 307 225 
-· 

GG n L r 325 304 219 
- · 

Table 3.2: Number of significant genes by EBarrays. 

number of significant genes detected by both models. We can see that there is no 

big difference of gme numbers detected by these two models. By list of gene names 

from those two mojels, the genes detected by those two models are also quite similar. 

From the above remlts of EBarrays, GG and L models of parametric Bayes seem 

to work very well. But if we take a close look to them, we can find some problems. 

The GG and LNN models both involve the assumption of a constant coefficient 

of variation (CV) and this property is often observed in microarray data ( ewton & 

Kendziorski , 2003> Now we can check this property in our data by EBarrays. 

Ideally, we want to get a constant CV from the data, but from Figure 3.1 we can see 

that the coefficient of variation does not approximate a constant very well , especially 

at the right end. So the goodness of fit of parametric empirical Bayes models in our 

data becomes susp~ct. 

To test the goodness of fit, we then check the Quantile-Quantile (QQ)-plots, 

marginal density plots for GG model and L model. For L model, from marginal 

density plot of Figure 3.2, our data fits quite well except that the empirical kernel 

density of log expression is a little sharper than the fitted model's distribution in the 

middle. 

The QQ-plct of L model in Figure 3.2 shows that, although most of data 
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Figure 3.2: Marginal Densities for Lognor-mal-Normal Model. 
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F lgure 3.3: QQ plot for Lognormal-normal model. 

has a straight QQ-plot as we wanted, there are still a number of points departed from 

the straight line. ~ ~o we cannot say that our data fit well of the LNN model. 

For the GC: model, the empirical and theoretical marginal densities of log 

expressions in Fig 1re 3.4 show the empirical marginal densities do not overlap the 

theoretical margin :tl densities, there is a big difference between them. Also, the QQ-

plot of GG model in Figure 3.5 shows a big amount of data points depart from the 

straight line, which means our data do not follow the gamma distribution very well. 

Therefore, GG mc,del of parametric empirical Bayes is not an appropriate way to 

analyze our microuray data. 

If we take an even closer look at the differentially expressed gene name list , 

we can find the ml)st serious problem of EBarrays for our data. Table 3.3 lists six 

gene names which c:tppear on the differentially expressed genes' list. Based on biology 

experimental knowledge, they should not appear there, because they are designed 
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"AFFX-18SRN A: VI uR/ X00686-M-at" "AFFX-BioB-3-st" "AFFX-BioB-5-st" 

"AFFX-BioB-M-st" ' AFFX-BioC-5-st" "AFFX-MURINE-b1-at" 

Table 3.3: Quality control gene names in significant gene name list by EBarrays . 

for quality control purpose in microarray experiments, they should have unchanged 

expressions respectively across all chips. So far , why those six genes were detected as 

differentially expressed is unknown. 

Based on tlte above problems we found by EBarrays, we conclude that: we 

cannot trust LNN :1nd GG models of parametric empirical Bayes methodology in our 

real Gene Chip data analysis. We will discuss results of nonparametric empirical 

Bayes in the folio~ ing sections. 

3.3 Results of EBAM in Microarrays - Nonpara

metric: Empirical Bayes 

We discussed nonparametric empirical Bayes methodology by Efron et al. (2001) 

in Section 2.2 , thi3 methodology is also implemented in the R package Siggenes 

(Schwender et al., 2006), which was written by Holger Schwender. By Siggenes , we 

can calculate postt!rior probabilities for high-dimensional data to detect differential 

expression across multiple conditions. Although Siggenes works very well on one 

real microarray data set and some other simulated data (Golub et al., 1999) , it shows 

some serious probkms when we apply it to our microarray data. 

One key ste J of Efron's non parametric empirical Bayes is to get the null score 

{ zi} by generating B = 20 independent row-wise sign permutations of z . Ideally, we 
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Figure 3.6: Ideal plot of posterior Vs. Z value. 

would like to get a plot of posterior probability against observed Z value as shown in 

F igure 3.6. When IZI value is small , posterior probabili ty of differential expression 

would approach to 0, because small IZI value represents little/no difference of ex

pression values be1 ween group I genes and group II genes. When IZI value is bigger, 

posterior probability of differential expression would approach to 1, because bigger 

IZI value represen1s bigger difference of expression values between group I genes and 

group II genes. 

But when we process this step usmg a different random start number for 

function EBAM in Siggenes, we can get very different results. For example, when 

we set a random st 'l.rt number r = 476, with a permutation matrix as shown in Figure 

3.7, we do not get a good solution by EBAM as Figure 3.8 uncovered. When we take 

a closer look to this problem, we found that whenever an extreme pattern such as (0 

0 0 0 1 1 11) or (1 1 1 1 0 0 0 0) appears in the permutation matrix, EBAM failed to 
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> r~476 
> perm 

[, 1] [ ' 2] [ ' 3] [, 4] [ ' 5] [ ' 6] [ ' 7] [ ' 8] 
[ 1 , l 0 1 1 0 0 1 1 0 
[2 , l 1 0 1 0 0 0 1 
[3 , l 0 1 0 1 0 0 1 
[ 4 ' l 1 0 0 0 0 1 1 
[5 , l 0 1 0 1 1 0 0 
[ 6 , l 0 0 0 0 1 
[ 7 ' l 0 0 1 1 0 1 0 
[8 , l 1 1 0 0 1 1 0 0 
[ 9 , l 0 0 1 0 1 1 0 

[ 10 , l 0 1 1 0 0 1 0 
[11 , l 0 1 0 0 1 0 
[ 12 ' l 0 1 0 1 0 0 
[ 13 , ) 0 0 0 0 1 
[ 14 ' ) 1 0 0 0 1 0 1 
[15 , ) 0 0 1 1 0 1 0 
[ 16 , ) 1 0 0 1 1 0 0 1 
[ 17 ' ) 0 1 0 0 1 1 0 
[ 18 , ) 1 0 0 0 0 

[20 , ) 0 0 0 0 1 

Figure 3.7: Permutation matrix for EBAM with random seed for permutations 

r=476 . 
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Figure 3.8: EBAM plot with random seed for permutations r=476. 
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> r~321 
> perm 

[ ' 11 [ ' 21 [. 31 [ ' 41 [ ' 51 [ ' 61 [ ' 71 [ ' 81 
[ 1 ' 1 1 1 1 0 0 0 1 0 
[ 2 , 1 1 1 0 1 1 0 0 0 
[3 , 1 0 1 0 0 1 0 1 
[ 4 ' 1 0 1 0 0 1 1 0 
[5 , 1 0 1 0 0 0 1 
[ 6 , 1 0 0 1 1 0 0 
[7 ' 1 0 1 1 0 1 0 0 1 
[ 8 ' 1 0 1 0 0 1 1 1 0 
[9 , 1 0 1 1 0 0 1 1 0 

[ 10 , l 1 0 1 0 1 0 1 0 
[11 , l 1 0 0 0 1 0 1 1 
[12 , 1 0 1 0 1 0 1 1 0 
[ 13 , 1 1 0 0 1 1 0 0 
[ 14 ' 1 0 0 0 1 0 1 1 
[15 , 1 0 1 1 1 0 1 0 0 
[16 , 1 0 0 1 1 0 1 1 0 
[ 17 ' 1 0 1 1 1 1 0 0 0 
[ 18 , 1 1 1 0 0 1 0 0 1 
[ 19 , 1 0 1 0 0 0 1 1 1 
[20 , 1 0 1 1 1 0 0 1 0 

Figure 3.9: Permutation matrix for EBAM with random seed for permutations 

r=321. 

detect any diffcren1 ial expression. In the above example, an extreme pattern (0 0 0 0 

1 111) does appear in row 19 of the permutation matrix (see Figure 3.7). Therefore, 

we conclude that the EBAM function cannot detect differential expression when an 

extreme pattern ar;pears in the permutation matrix. 

Furthermore, even when no extreme pattern shows up, EBAM can very easily 

fail in detecting ccrrcct differential expressions. For example, with a permutation 

matrix as shown in Figure 3.9, EBAM plot in Figure 3.10 shows the positive end of 

the posterior curve falls down. Based on the fact that when IZI increases, posterior 

probability should nonotonically increase at the positive end. T herefore, we can not 

trust E BAM 's result when we set a random start seed for permutations r = 321. 

Because theoretically we can set any random start number of EBAM to 

get t he permutati n matrix, based on above problems we found in Siggenes, we 
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Figure 3.10: EBAM Plot with random seed for permutations r=321. 

cannot trust EBA\1 function as nonparametric empirical Bayes to detect differential 

expression for our nicroarray data. 

3.4 Our J\;J ethodology of Non parametric Empirical 

Bayes - EBayes 

Due to problems vve found in Siggenes, we apply our own nonparametric empirical 

Bayes function EBayes in R based on the idea of Efron et al. (2001). The core 

code was originally written by Dr. Angelo Canty. In this project, we make several 

modifications to improve its performance. The final version of the code is presented 

in Appendix A.l. The key step of nonparametric empirical Bayes is to estimate the 

relative density of .fo(Z)/ h(Z). 
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EBayes att;empts to find the posterior probability that each gene is differen

tially expressed. From Equation (2.2.14), the posterior empirical Bayes probability 

is obtained by estimating the density ratio 1r(Z) = J(Z)~~jo(Z), defined in Equation 

(2.2.13). We consider three different ideas to implement the est imation of 1r(Z) . 

• METHOD 1. Logistic regression on quantile interval points. 

We divide th3 range of observed statistics and permuted statistics into N inter

vals on the quantile scale. The frequencies of the observed and permuted values 

in each interval are found and these values are passed to a logistic regression 

against the interval midpoints with a natural spline on 5 degrees of freedom as 

the regressi011 function. 

• METHOD 2. Smoothing spline fitting on quantile interval points . 

By using the same intervals as Method 1, we find the ratios of frequencies of 

observed and total frequencies of observed and permuted statistics. A smooth

ing spline wi1.h 5 degrees of freedom is fitted to the logits of the ratios against 

the interval midpoints. Then the 1r(Z) is the predicted value found from the 

spline for each observed statistic value. 

• METHOD 3. Logistic regression on all data points. 

We create a vector of all observed and permuted values first. Then construct 

a correspond ing vector which is TRUE for each observed value and FALSE 

for each permuted value. These are then passed as the predictor and response 

variables to . logistic regression with natural spline regression function with 5 

degrees of fret~dom. Then 1r(Z) is the predicted values at the observed statistics. 
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Figure 3.11: Con-elations plot of posterior probabilities of differential expressions 

among 3 methods in EBayes. 
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These three methods give some differences in the posterior probabilities. The first 

and third method are quite similar on average having correlation of 0.995 whereas 

the second tends t) be somewhat more conservative and has correlation of 0.964 and 

0.985 with method 1 and method 3 respectively. Figure 3.11 shows the correlation 

among the three n tethods in EBayes. 

Method 1 and method 2 are quite fast in computation time. Method 3 is very 

computationally intensive compared to the others as it requires passing two vectors 

of length (B + 1) x G to the glm function , where B is the number of permuations 

and G is the number of genes. The results from the third method are closest to that 

of the EBAM method. 

3.5 Comparison of EBAM and EBayes in Microar

ray Data 

We test the performance of this new nonparametric empirical Bayes methodology 

(EBayes) on our MGU14a V2 Affymetrix Gene Chip data. With any random start 

number and permJtation matrix, EBayes performs very well. We also compare the 

results of EBAM and EB ayes under the same conditions (same fudge factor s0 and 

the same permutation matrix). 

Table 3.4 p ~esents the comparison results of applying the EBAM and EBayes 

function to our re1l microarray data. For each method, the significant gene number 

(R) , estimated False Discovery Rate (FDR) , the probability of unaffected genes (p0 ), 

lower cutoff level ( utlow) , upper cutoff level (Cutup) and the method status (Status) 
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II Random No. I Method R I FDR I Po I Cutlow I Cutup I Status 

r=476 EBAM 0 0.288 0.029 -inf inf Problem 

r=476 EBayesi 368 0.057 0.592 -2 .28 2.854 ormal 

r=476 EBayesii 107 0.056 0.811 -2.294 3.931 Normal 

r=476 EBayesiii 391 0.059 0.576 -2.221 2.789 Normal 

r=321 EBAM 132 0.046 0.708 -2.626 inf Problem 

r=321 EBayesi 340 0.038 0.625 -2.248 3.391 Normal 

r=321 EBayesii 165 0.029 0.782 -2.677 3.931 Normal 

r=321 EBayesiii 462 0.049 0.658 -2.15 2.642 ormal 

Table 3.4: Comparison of the EBAM and EBayes procedures to the real microarray 

data set when setting random start number r = 476 and r = 321. 

are presented in t e table. From the table, we can see that when EBAM function 

fail to detect diffcr · ~ntial expression, three methods in EBayes all work normally. 

Figure 3.12 and Figure 3.13 compare the results of EBayes and EBAM un

der the same conditions. In Figure 3.12, we can see that EBAM fails to detect 

differential express ions; while in EBayes, the posterior probabilities of differential 

expression approac1 to 0 when IZI is close to 0; the posterior probabilities of differen

tial expression approach to 1 when IZI is far away from 0; and no points fall down on 

the extremes of x-a.<is. In Figure 3.13, we can see that no points fall down on the ends 

of x-a.xis in EBayes plots but two points fall down on the positive end of EBAM 

plot. Those two figures show that when EBAM failed to get the differentially ex

pressed genes, all three methods in EBayes perform much better when dealing with 

our real microarray data. 
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Figure 3.12: Comparison results between EBAM and EBayes with random seed for 

permutations r=476 . 
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Figure 3. 13: Comparison results between EBAM and EBayes with random seed for 
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Chapter 4 

Simulation Results of EBAM 

Analysi8 V s. EBayes Analysis 

In last chapter , 'he can see that EBayes analysis works better than the EBAM 

function to our real microarray data because when EBAM sometimes fail to detect 

differential expression, all three methods in EBayes function work normally. Whether 

t he overall performance of EBayes would be better than EBAM needs to be verified 

by simulations and further research. In simulation study, we know which gene is really 

differentially exprEssed by data generating function , so we can compare the estimated 

FDR and real FDH. to see which method can get the most accurate results. Also , we 

wish to mimic the real microarrays by simulated data to know the performance of the 

new EBayes funct ion to these simulated data. But the closest similarity between the 

real microarray d~:ta and the simulated data cannot be guaranteed due to people's 

limited knowledge on real human being's genome. 

In this chapter , the performance of EBAM in Siggenes and three nonpara-
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metric empirical Bayes approaches in EBayes are compared by applying them to 

three different simulated data sets. In each simulation, B = 100 permutations are 

used to assess the null distribution (i.e. , gene is not differently expressed). 

4.1 Data Sets and Simulation Procedure 

The simulation is performed as follows: 

• STEP 1. Gen ~rate tluee different simulated data sets. 

Generate a 10, 000 x 10 matrix J.L containing random values drawn from standard 

normal distributions. Compute the expression level YiJ of the i-th gene, i = 

1, .. . , 10, 000 and the j-th sample, j = 1, . .. , nr x 2 by 

6ij, if i ~ 500 and j ~ nr; 

YiJ = f..Li j + ()i j , if 501 ~ i ~ 1000 and j ~ nr; (4.1.1) 

0, otherwise. 

where f..LiJ "' N(J.L = 5, o- 2), 6ij "' seq( -3, -1, length = 500) x o-i, ()iJ 

seq(1 , 3, lengt h = 500) x o-i · Also suppose that the first nr columns/samples 

belong to group 1, and the remaining nr samples belong to group 2. Thus, a 

data matrix Y is constructed that contains expression levels of 2nr samples, nr 

from each gwup. The total number of genes is 10, 000 of which the first 10% 

are differentially expressed. 

For simulation I , set nr = 5; for simulation II, set nr = 10; for simulation III, set 

nr = 20. i.e., ~he number of samples from each group is 5, 10 and 20 respectively 
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for each simulation. Therefore, these three simulations are performed quite 

similarly except we increase the sample size from 10 in simulation I to 40 in 

simulation II I. 

• STEP2. Apr;ly procedures EBAM and EBayes to above data sets, and record 

-the numbers of differentially expressed genes and the estimated FDRs (FDRs) 

obtained by these methods. Calculate real FDRs corresponding to these four 

methods alsc. 

• STEP3. Repeat M = 100 times of step 1 and step 2. For each procedure, 

compute mean numbers of differentially expressed genes and mean values of 

-FDRs and re::tl FDRs by averaging over iterations. Standard deviations of these 

quantities have also been calculated. 

4 .2 Problems of EBayes in Simulation and Modi-

fications 

Based on above simulated data sets, we apply each procedure from EBAM and 

EBayes to them respectively. For simulation I, EBAM and EBayes both work 

well. But when we increase the sample size to 20 (simulation II) and 40 (simulation 

III), one problem Ehows up. Ideally, "posterior Vs. Z value" plot should have a "U" 

shape (as in Figuw 3.6) regardless of sample size. But for method I and method III 

in EBayes, we found that posterior probability curve has a "W " shape in the middle 

when sample size increases, especially for EBayesiii. The bigger the sample size, the 

more likely this "Vl "' shape will show up. Figure 4.1 illustrates the problem we found 
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in one data set of ~ ;imulation II. 

If we check the source code and posterior probability plot from Siggenes, we 

can see that EBAlVl simply replaces the middle part of posterior curve by a horizontal 

line, which obviomly is not appropriate. After different trials, we found that this 

problem can be so: ved by decreasing the degree of freedoms of logistic regression in 

EBayes from 5 to 3. Figure 4.2 shows the improvement we have after setting df = 3 

for EBayes in the same data set from simulation II. 

By compari ng outputs of FDR, significant number of genes, lower cutoff level 

and upper cutoff l vel in Figure 4.1 and Figure 4.2, we can see that there are no 

big differences of 1 heses values in two figures for the same data set. Under differ

ent degrees of freEdom, the e two outputs are almost identical, but the shape of 

posterior probabili cy curve improved dramatically in the latter figure for EBayesi 

and EBayesiii. Therefore, the problem of "W" shape posterior probability curve of 

EBayesi and EB<:tyesiii can be solved by decreasing degrees of freedom in logistic 

regression of EBayes to 3 for bigger size samples. 

For EBayedi, since so far we have not found "W" shape posterior probability 

curve, and in term> of power to detect differential expression under the same FDR, 

setting df = 5 can give us a better result . So we will keep df = 5 for EBayesii. 

In the next section, we will discuss the comparison results of EBAM and EBayes 

when setting df = c(3, 5, 3) for three methods in EBayes. 
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Figure 4.1: Plot o.f "posterior Vs . Z value" for simulated data II when set df = 5. 

Real FDR for abate four methods (clockwise) are: 0.011 , 0.000, 0.000, 0.020. 
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Figure 4.2: Plot of "posterior Vs. Z value" for simulated data II when set df 3. 

Real FDR for· abov. ~ four methods (clockwise) are: 0. 011 , 0.000, 0.000, 0.021. 
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4.3 Results 

In t he following, s tmulation results of the EBAM and EBayes are summarized in 

Table 4.1. For each method and data set, t he number of identified genes (R), the 

- -estimated false discovery rate (FDR), and real FDR are listed , where FDR has been 

d fi d . s t" 2 2 2 F-----DR - A lp(C) / B e ne m ec wn . . as c- POL;;[C) · 

For simulat .on data sets, since we know that t he first 10% genes (with row I.D. 

i = 1, 2, · · · , 1000. 1 are differentially expressed , then we know exactly which gene is 

really differentially expressed and which one is not. Thus , we can calculate real FDR 

by dividing the w ongly claimed significant gene numbers (V) by the number (R) 

of genes which we claimed significant by above four nonparametric empirical Bayes 

methodologies. i.E·., real FDR=~. When the significant gene number R = 0, we 

define FDR= O. 

From TablE 4. 1, we can see that when sample size increases, the number of 

identified genes (R) increases while FDR and real FDR are monotonically decreasing. 

Which is true sine~~ bigger sample size will offer us more information about genes. 

For all thref: simulated data sets, in terms of the number of identified genes (R) , 

-----FDR and real FDH., EBayesiii is quite similar to EBAM, and EBayesl is similar 

to EBayesll. Und er same level of fOR and real FDR, EBayesiii and EBAM can 

find approximately same number of differentially expressed genes, so do EBayesl 

and EBayesll. But EBayesl and EBayesii have less power than EBayesiii and 

EBAM because t hey detect far fewer significant genes for the same data set under 

the same cutoff value 0.9. When real differentially expressed gene number is 1000, 

they can only detEct 3 or 4 genes in simulation I, which is too conservative to meet 
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Data Simulation I (nr=5) Simulation II ( nr= 10) Simulation III (nr=20) 

---- ---- ----Method R FDR FDR R FDR FDR R FDR FDR 

EBAM 138 0.0366 0.0294 583 0.0093 0.0097 840 0.0022 0.0023 

(s.d.) 21 0.0055 0.0157 17 0.0007 0.0043 10 0.0002 0.0017 

EBayes I 4 0.0107 0.0092 56 0.0001 0 163 0 0 

(s.d.) 3 0.0088 0.0579 21 0.0001 0 29 0.000005 0 

EBayes II 3 0.0088 0.005 41 0.0001 0 137 0 0 

(s.d.) 2 0.0090 0.05 15 0.0001 0 24 0.000006 0 

EBayes III 133 0.0336 0.0290 663 0.0151 0.0185 890 0.0055 0.0070 

(s.d .) 26 0.0039 0.0162 18 0.0006 0.0062 10 0.0004 0.0027 

Table 4.1: Compm'ison of the EBAM and EBayes procedures to three simulated 

data sets when setting cutoff level at 0.9. 
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Figure 4.3: Plot of "Real FDR Vs. Estimated FDR " fo r simulation I. 

biologists ' needs. 

ext, we will take a closer look of simulation results for each individual simu-

lated data set . 

4.3.1 Simulation I 

-Figure 4.3 shows relationships between real FDR and estimated F DR among above 

four methods for simulation I. From this figure, we can see that EBAM and EBayesiii 

have similar pattern, estimated Fl5J'i. are quite close to real FDR. Also, EBayesl and 

EBayesii have quite similar patterns. For EBayesl, only 3 points have relative high 

real FDR; for EBayesii , only one point has a relative high real FDR. 

Figure 4.4 :;hows relationships of posterior probability of differentially ex-

pressed genes among EBAM and three methods in EBayes for a representative 
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Figure 4.4: Plots c•f pairwise relationship of posterior probability for one data set in 

simulation I. 

dat a set in simula1 ion I. From this figure, we can see that EBAM and EBayesiii 

have similar level o posterior probabilities, and which are higher than posterior prob-

abilities of EBaye~:I and EBayesii. Higher level of posterior probabilities of EBAM 

and EBayesiii als J help explain why these two methods can detect more differential 

expressions for the same data set. 

4.3.2 Simulation II 

Figure 4.5 shows r J ationships between real FDR and estimated FnR among four 

methods for simulation II. Similar to simulation I, EBayesi and EBayesii have 

similar pattern an EBAM and EBayesiii are similar to each other. Also from the 

EBayesi and EBayesii plots, we can see that the total 100 data points all have 
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Figure 4.5: Plot of "Real FDR Vs. Estimated FDR" for simulation II. 

real FDR values at 0, so the regression line in it shrinks to a horizontal line y = 0 

respectively. This fact tells us that although EBayesi and EBayesii are conservative 

to detect different al expressions (they can detect a very small number of significant 

genes), the genes 1 hey claimed significant are very accurate. 

Figure 4.6 shows relationships of posterior probability of differentially ex-

pressed genes among EBAM and three methods in EBayes for a representative 

data set in simulation II. From this figure, we can see that EBayesi is highly cor-

related with EBa~resii ; EBayesiii has the highest posterior probability among four 

methods; while E:SAM is close to but little less than EBayesiii. Thus EBayesiii 

can detect the biggest number of differential expressed genes. 
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Figure 4.8: Plot o.f pairwise relationship of posterior probability for one data set in 

simulation III. 

4.3.3 Simulation III 

-Figure 4.7 shows t e relationship between real FDR and estimated F DR among above 

four methods for simulation III. Again, EBAM and EBayesiii have similar patterns 

and EBayesi and EBayesii have same patterns. Since the real FDR for alllOO data 

-points are 0 and th estimated F DR are very close to 0 for EBayesi and EBayesii, 

the regression line on those plots shrinks to a horizontal line also. The fact that all 

real FDRs equal to 0 means the significant genes claimed by EBayesi and EBayesii 

are very accurate. 

Figure 4.8 Ehows the relationships of posterior probability of differentially ex-

pressed genes among EBAM and three methods in EBayes for a representative data 

set in simulation III. Again, EBayesi is highly correlated with EBayesii. EBayesiii 
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has the highest po >terior probability among four methods, which also explained why 

E B ayesiii can deLect the biggest number of differential expressed genes for the same 

data set in simula1 ion III. 

In summar~', plots of "Real FDR Vs. Estimated FDR" and pairwise relation

ships of posterior r,robability among EBAM and EBayes for three simulations both 

show EBayesi is highly correlated with EBayesii and EBAM is highly correlated 

with EBayesiii. Hut EBayesi and EBayesii can only detect very small number of 

differentially exprEssed genes. This will limit their applications to our real microar

ray data analysis. F\1rthermore, EBayesiii has the highest posterior probability of 

differential cxprcsEion among four methods. This also explains why EBayesiii can 

detect more numb r of differential expressions than EBayesi and EBayesii under 

the same cut off level p = 0.9. 

From Equa1;ion (2.2.12), we know that the posterior probability of differential 

expression P1 ( Z) = 1-Po 7/ffJ , so we may guess that EBayesi ii has the highest p1 ( Z) 

due to lower value of p0 among four methods. But after a close check on values of 

p0 , we cannot see this relationship. Therefore, we know EBayesiii can detect more 

differentially expn!ssed genes because it can get a better estimated ratio of ;g]. 
Figure 4.9 illustrated the relationship of p0 among four methods in simulation III. We 

can get similar patterns in simulation I and simulation II . 
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Figure 4.9: Plots of pairwise relationships of p0 for simulation III. 
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Chapter 5 

Discussions and Future Work 

In this project, we applied parametric and nonparametric empirical Bayes to detect 

differentially expre3sed genes in our Affy microarray data set. 

Results of E:Barrays in R show that this parametric empirical Bayes does not 

work well because our microarray data do not follow ideal Lognormal-normal model 

or Gamma-gamma model, the only models for which parametric empirical Bayes is 

offered so far. Wh ether there are any other good parametric models for microarray 

data analysis may he discussed in the future. Also , why those six weird probe sets (see 

Table 3.3) original.y for quality control purpose appeared in differentially expressed 

gene list by EBarrays could be discussed further. 

We also did nonparametric empirical Bayes analysis on microarrays based on 

Efron's idea. One nonparametric empirical Bayes package called Siggenes in R does 

not work well also . We found that with different random start numbers, EBAM 

function in Siggenes could fail if an extreme pattern appears in permutation matrix. 

Furthermore, even if there is no extreme pattern, sometimes the results from EBAM 
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still cannot be trmted. Some points at the extremes of posterior probability curve 

fall down, but this should not happen according to Efron's methodology. 

We applied our own R function called EBayes to implement Efron's (Efron 

et al. , 2001) nonpc.rametric empirical Bayes methodology. The real microarray data 

analysis on Affymetrix GeneChip MGU74a V2 data and some simulated data sets 

show that EBaye~ . works very well, especially when EBAM fails to detect differen

tially expressed ge:1es. Therefore, EBayes is a good nonparametric empirical Bayes 

methodology to analyze microarrays. 

The original simulation results show that when sample size increases, a 'W' 

shape could appea:· in the 'Posterior Vs. Z value' plots for EBayesi and EBayesiii. 

But this problem could be solved by changing the degrees of freedom from df = 

5 to df = 3 in the logistic regression of EBayes without making big difference 

on estimating ID~ and detecting differentially expressed gene numbers (R). We 

conclude that for bigger simulated microarray data sets (sample size n ;::: 10) , df = 3 

is the best choice for EBayesi and EBayesiii; and df = 5 is the best choice for 

EBayesii. Since we get this conclusion through practical trials, another systematic 

methodology of finding optimal degrees of freedom for logistic regression in EBayes 

for all different sanple size could be discussed in the future. 

Three differ ntly sized simulations also show that EBayesi is highly correlated 

with EBayesii, and EBayesiii is highly correlated with EBAM. Since the former 

two methods are t oo conservative to detect differential expressions , EBayesiii and 

EBAM have bett r performance in simulated microarray data sets. Furthermore, 

with a concern that t he 'Posterior Vs. Z value' plots for EBAM could easily have 

some drop off poi11ts at the extremes of x-axis in real microarray analysis, we be-

62 



lieve t hat EBayesiii is t he best methodology in detecting differential expression in 

microarrays. 
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Appendix A 

R Codes 

A.l R Codes for EBayes 

EBayes <- func h on(obs , perms , nint=200 , df=c(3,5,3) , by.range=F) { 

##############1 ~####################################################### 

# Three method ~ : i n this funct i on are tried to implement Efron's 
# # nonparamE!t r ic empirical Bayes i dea to find posterior probability 
# # of differentially expressed genes . A main dif f erence among 
# # t hese three methods is the way they find pi(Z) as Equation 
# # (2 . 2.15) defined . Method! applies logistic regression on 
# # quanti l e i nterval points ; Method2 uses smoothi ng spline fitting 
# # on quant i.le interval points; and Method3 appl i es logistic 
# # regressi Cln on all data points . 

# The followi ne; values should be input into EBayes f unction : 
# obs the <•bserved Z values 
# perms the F•er mutated z values 
# nint numbE1r of intervals be used to get relative frequencies 
# df degn1es of freedom of logi ts function for 3 methods 
# by. range= Tn.e/False . If it is True, the whole data range is 
# # a combinat ion of all points from observed Z val ues and 2 end 
## points fr c>m the permutated z values; if it is False, the whole 
## data rangE ~ i s a combinat i on of all points from observed Z 
# # values anc. permutated z values . 

# The output of t his function is a list contains two vectors : 
# pr=c (pr1, pr~~ , pr3) . It is a G*3 matrix which corresponding 
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} 

## to the ponterior probabilities of differentially expressed 
## genes calculated by three methods; 
# pO=c(p01, pO~~ , p03) . It is a 1*3 vector including the 
## probabili i:ies of unaffected genes from EBayes 3 methods. 
##############1t################################################ 

if (by . range) 
alldata <- c(obs,range(perms)) 

else 
alldata <- c(obs ,perms) 

#Method 1 . 
breaks<- qu~ Lt iles(alldata, (O : (nint+1))1(nint+1)) 
mids <- (breal:s [- (nint+1)] +breaks [-1]) 12 
freq . obs <- t able(cut(obs, breaks, include . lowest=TRUE)) 
freq . perms <- table(cut(perms, breaks, include.lowest=TRUE)) 
freqs <- cbincl (freq.obs, freq.perms) 
mod<- glm(fnJqs-ns(mids, df=df[1]), family=binomial(logit)) 
piZ <- predict.(mod, data.frame(mids=obs) , type="response") 
fratio <- (1-p iZ) I (ncol(perms) *piZ) 
p01 <- min (c( l. , 1lfratio)) 
pr1 <- 1-p01*f ratio 

# Method 2 . 
ratio <- freq~ : [, 1] I (freqs [, 2] +freqs [, 1]) 
mod<- smooth . spline(mids, logit(ratio), df=df[2]) 
piZ <- inv . lo~it(predict(mod, obs)$y) 
fratio <- (1-piZ) I (ncol (perms) *piZ) 
p02 <- min(c( l, 1lfratio)) 
pr2 <- 1-p02*iratio 

# Method 3 . 
x <- c (obs, pE!rms) 
y <- rep(c(TRUE, FALSE), c(length(obs), length(perms))) 
mod<- glm(y-r.s(x, df=df[3]), family=binomial(logit)) 
piZ <- predict.(mod, data.frame(x=obs), type="response") 
fratio <- (1-I,iZ) I (ncol (perms) *piZ) 
p03 <- min (c ( l, 1lfratio)) 
pr3 <- 1-p03*i r atio 
list (pr=cbi nd (pr 1, pr2 , pr3),pO=cbind(p01,p02,p03) ) 
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A.2 R Codes for FDR Calculation 

EBayes . FDR <- f unction(obs,perms,pr=pr,p0=1,delta=0 . 9) { 

##############tt################################################### 
# The followinE; values should be input into EBayes. FDR function: 
# obs the observed Z values 
# perms= the p~ 1rmutated z values 
# pr the posterior probability corresponding to observed Z value 
# pO t he pr obabilities of unaffected genes from EBayes function 
# delta= cutoff level of posterior probability of di fferentially 
## expref:sed genes, it can be any number in (0, 1] 

# This function' s output is a 5- column-table with values: 
# Delta= cutojf level of posterior probability on differential 
## expref:sions, it can be any number in (0, 1] 
# Number= the f:ignificant number of differential expressions 
# FDR estimated FDR defined by Equation (2.2 . 19) 
# CL l ower cutoff level on observed Z values 
# CU upper· cutoff level on observed Z values 
##############t=################################################### 

if (any (delta<=O I delta>1)) 
stop (" The dElta values must be in (0,1]") 

pr <- pr[order(obs)] 
obs <- sort(obs ) 
m <- length(ots ) 
out<- matrix (O, length(delta),5) 
colnames(out) <- c("Delta" , "Number", "FDR", "CL", "CU") 
for (i in 1 :1Ength(delta)) { 

sig.ids<-which(pr>=delta[i]) 
out[i , 2]<-lEngth(sig . ids) 
#out[i,3]<-rrean(1-pr[sig.ids]) #get local FDR 
neg . ids <- which(obs<O&pr>=delta[i]) 
if (length(neg . ids)>O) 

out[i ,4]<-obs[max(neg . ids)] 
else 

out[i, 4]<- -Inf 
pos . ids <- whi ch(obs>O&pr>=delta[i]) 
if (length(pos.ids)>O) 
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} 

} 

out [i, 5] <- ·obs [min(pos. ids)] 
else 

out [i, 5] <-· Inf 
perms . ids<-.,hich(perms<=out[i,4] I perms>=out[i,5]) 
out[i,3]<-pO*length(perms . ids)/ncol(perms)/max(out[i,2],1) 

out 

A.3 R Codes for EBayes Plot 

EBayes.plot<- f unction(obs,perms,pr,p0=1,delta=0.9, main="EBayes Plot") { 

##############1t######################################################### 
# The following values should be input into EBayes.plot function: 
# obs the observed Z values 
# perms= the pflrmutated z values 
# pr the posterior probability corresponding to observed Z value 
# pO the probabilities of unaffected genes from EBayes function 
# delta= cutoff level of posterior probability of differentially 
## expre~; sed genes, it can be any number in (0, 1] 
# main the t i.tle of the plot 

# This function's output is a plot of 'Posterior against Z value' 
## to illus1;rate the relationship between posterior probabilities 
## of differentially expressed genes and observed Z values, which 
## are calculated by EBayes function. It has a legend at the 
## bottom r :.ght with the following values: 

# Significant= the significant number of differential expressions 
# FDR estimated FDR defined by Equation (2 . 2 . 19) 
# pO the probabilities of unaffected genes from EBayes function 
# Cut low= lower cutoff level on observed z values 
# Cutup = upper cutoff level on observed z values 

# The data points which are claimed as significant will be marked 
## as green color while the majority of unaffected genes are 
## marked a~ ; black color . If no points are claimed significant, 
## a dashed horizontal line at the value of delta will vanish. 
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} 

##############1t################################################## 

out<-EBayes.FDR(obs,perms,pr,pO,delta) 
ids<-which(obf:<=out [1 ,4] I obs>=out [1, 5]) 
main<-paste(main, "Delta=", delta[1]) 
xlab<-"z ValU~ ! " 

ylab<- "Poster j.or" 
if (length(idf:)==O) 

plot(obs,pr,main=main,xlab=xlab,ylab=ylab,ylim=c(0,1)) 
else { 

plot(obs[-i<ls] ,pr[-ids] ,main=main,xlab=xlab,ylab=ylab, 
xlim=range(obs),ylim=c(0,1)) 

points(obs[ j.ds],pr[ids],col=3) 
} 

abline(h=delta,lty="dashed") 
tmp1<-c("Signi ficant:", "FDR : ", "pO:", "Cutlow: ","Cutup:") 
tmp2<-c(out[1 , 2] ,round(out[1,3],3),round(p0,3), 

round (out[1,4] ,3),round(out[1,5] ,3)) 
textlegend<-p<Lste (tmp1, tmp2, sep=" ") 
legend("bottomright",legend=textlegend,cex=0.8,bty="n",y . intersp=1 .3) 

A.4 R Codes for Simulation 

simuyn <- funchon(G,nr,GO=G*0.1,mu,sd) { 

#############1'################################################### 

# This functic 'n can give us a G*(nr*2) simulated data matrix yn. 
# nr= number of samples for each strain 
# G = total ntmber of genes 
# GO= number c,f differentially expressed genes 
# mu= mean of the normal distribution 
# sd= standarc. deviation of normal distribution 
# diseq= diff erence between differentially expressed genes 
## and equally expressed genes 

# For example , we can get a 10000*(nr*2) data matr i x yn with row 
## names 1 , 2, .. . ,10000 as the following: 
# nr<-5 # there are 5 samples in each strain 
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} 

# G <-10000 
# GO<-G*0 . 1 
# mu<-5 
# sd<-2 
#############t =################################################## 

mui<-rnorm(G, mu,sd) 
sdi <-sqrt (rchi sq (G, 1)) ; 

diseq<-c(seq ( -·3, -1, length=G0/2), seq (1, 3, length=G0/2)) 
diseq<-diseq*sdi[1 :GO] 
di<-c(diseq,nlp(O, G-GO)) 

strain1=matri}:(rnorm(G*nr,rep(mui,nr),rep(sdi,nr)),nrow=G,ncol=nr); 
strain2=matri}:(rnorm(G*nr,rep(mui+di,nr),rep(sdi,nr)),nrow=G,ncol=nr); 
yn<-cbind(strain1,strain2) 
row.names(yn) <-1:G 
yn 
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