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Abstract 

For High-Tc superconductors the fluctuation regime is much wider than conven­

tional superconductors due to the short coherence length and high transition temper­

ature. AC measurements can probe the conductivity at a wide range of frequencies , 

and therefore provide a test of the scaling properties predicted from theory. The 

measured critical exponents and width of the fluctuation peak are sample dependent , 

which suggests that the sample imhomogeneities may play an important role in the 

crit ical region. 

In this thesis wE study the effects of disorder on the fluctuation conductivity in the 

crit ical regime of zero-field normal-superconducting transition by the time-dependent 

Ginzburg-Landau theory. We set up a discretized model of the superconductor and 

calculate the two-dimensional and three-dimensional scaling function without disor­

der above Tc. Thf! result of the discretized model deviates slightly from previous 

theoretical studies l)f the continuous model, which can be explained by a finite short­

wavelength cutoff m Ginzburg-Landau theory. Our results agree well with other 

theoretical investiga .. tions on cutoff effects from an analytical approach. 

Disorder in a superconductor is modeled by a distribution of Tc's at the lattice 
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sites. We add random disorder to a two-dimensional lattice and calculate the scaling 

functions averaged over 1000 disorder configurations. When disorder is weak, the 

scaling functions are increased when T is close Tc . At strong disorder anomalous 

behavior may occur at the region close to Tc. 
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Chapter 1 

In trod U([:tion 

1.1 AC Fluctuat ion Conductivity 

1. 1.1 D C and A C Conductiv ity in Superconductors 

A superconductor is characterized by its zero resistivity, or infinite conductivity 

for a DC current. However, there will be nonzero dissipation at any finite frequency 

since the electrons will be accelarated and decelerated by the oscillating electric field. 

In a general two fluid model, the linear response of the normal and superconducting 

electrons ( i = n, s) to a field Eeiwt are: [3] 

(1.1) 

If T 5 is infinite , CT15 becomes a delta function , and the imaginary part , CT25 , is 

n 5 e2 jrmu, which is the result of the first London equation. 

1 
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1.1.2 Fluctuation Effects 

Thermodynamic fluctuations near superconducting phase transitions have been 

studied for several decades. In the vicinity of Tc , fluctuation induced behavior occurs 

in many physical quantities, such as the specific heat , the diamagnetic susceptibility, 

the DC and AC electritical conductivity. These effects can be observed in various 

experiments. Theo retically, the phenomenological Ginzburg-Landau theory provides 

a foundation for understanding the effects of fluctuation. A review in this area was 

made by W. J. Skocpol and M. Tinkham in 1975 [4]. 

Above Tc fluctuations will create superconducting regions and produce the ex­

cess conductivity called the "paraconductivity". For the dynamical conductivity, the 

time-dependent Ginzburg-Landau equation determines the equation of motion for 

the order-parameter which describes these superconducting regions. By calculating 

fluctuation effects about mean field theory, Schmidt obtained the Aslamazov-Larkin 

term of the frequen cy-dependent conductivity for bulk materials , thin films and thin 

wires above Tc [5] in 1968 and below Tc [6] in 1969. 

In conventional low-Tc superconductors, fluctuation effects are generally quite 

small because of the long correlation length. As a result it is hard to observe fluctu­

ations beyond the Gaussian (mean field) level experimentally. After the discovery of 

high-Tc supercondu :::tors, there has been a resurgence of interest in fluctuation effects 

both theoretically and experimentally. Due to the high temperature and short cor­

relation length, flue tuations in high-Tc materials are greatly enhanced. The critical 
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region near Tc is therefore much wider and can be probed experimentally. Accord-

ing to a qualitative estimation based on the Ginzburg criterion, the width of the 

critical region in high-Tc superconductors is of the order Kelvins, whereas in low-Tc 

superconductors it is at most w-6K. 

1.2 Micro'wave Measurements 

The microwave cavity perturbation method [7] is a technique to probe the com-

plex conductivity ,t microwave frequencies. The measurable quantity is the complex 

surface impedance Z5 Rs + iX5 , which is related to the complex conductivity via: 

(1.2) 

Figure 1.1 show 3 a new microwave resonator from the University of British Columbia. 

By measuring the resonant frequency and quality factor of the cavity with sample in 

and sample out , information can be obtained about the penetration depth A and 

surface resistance R5 : 

.A(T) -.\(To) ex t:lf- llfo , (1.3) 

(1.4) 

where t:lf = f(T) ·- f(To) , f and fo are the resonant frequencies, and Q and Q0 are 

the quality factors with sample in and sample out respectively. 
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Figure I. I : The new microwave resonator, Oniv. of' British Columbia 
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Penetration depth measurements [8] suggest that 1/..\3 ex T -Tc over a temperature 

range 5-10 Kelvin wide below Tc, which agrees with the prediction of the 3dXY model. 

Recently W. N. H1rdy et al observed the fluctuation peak of the AC conductivity 

near Tc in high-qu'lJity bulk crystals [9], which has previousy been observed mainly 

in thin films [10, ll]. 

1.3 Critical Phenomena and Disorder 

1.3.1 Universality Class and Critical Exponents 

Among all the E econd order transitions in various systems such as fluids, superflu­

ids, antiferromagmts and superconductors there are some common features. Near the 

transition power laws of many physical quantities occur, which can be described by a 

set of critical exponents a, (3, 1, v, rJ. These indices are independent of the particular 

properties of the system, and all the phase transitions can be divided into a small 

number of universality classes determined by the symmetry of the ordered state and 

the dimensionality of the system. 

Another key idE a of second order phase transition is scaling, which means that the 

physical quantities are related to each other by power-laws. Near a second-order phase 

transition the corrElation length~ has singular dependence on T- Tc, dominating all 

other microscopic l<mgths near Tc. This leads to the scaling laws which are inequalities 

or equalities of the critical exponents. 
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According to the modern theory of critical phenomena, the static universality 

class for the zero-fidd normal-superconducting phase transition of a three-dimensional 

superconductor is ~ldXY (three dimensional, complex order parameter). However, the 

nature of the critical dynamics, which determine the dynamic transport properties, 

is not as well known. Fisher, Fisher and Huse [12] pointed out that in the critical 

region n 8 f'.J e-d and T f'.J c, therefore from (1.1), the dynamic conductivity scales as 

(1.5) 

where e is the cor relation length, z is the dynamic critical exponent, and d is the 

spatial dimensionajty. In the limit T---+ Tc , the conductivity remains finite , therefore 

the scaling functions approaches S+(x) ~ S_(x) ~ cx[(d-2)/z-l] for x---+ oo. Wickham 

and Dorsey [1] verified the FFH scaling hypothesis [12] for linear ac conductivity, and 

showed that the 3d-XY universal scaling function deviates only slightly from its Gaus­

sian form (Fig 1.2). Peligrad and Mehring [2] then took the short-wavelength cutoff 

into consideration. They calculated the ac fluctuation conduct ivity in 3D isotropic, 3D 

anisotrophic and 2D superconductors. Their results showed that the short-wavelength 

cutoff leads to a breakdown of the scaling property in frequency and temperature. 

1.3.2 Disorder 

In real systems there are always impurities, defects, dislocations, etc. Will disorder 

affect the behavior of the system near critical points? A thorough investigation of 

this problem requires a quantitative renormalization group analysis. Generally, the 
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Figure 1.2: The AC conductivity scaling function S(y), for 3dXY critical theory (solid 
curve) and Gaussi ,n theory (dashed curve) [1] . 
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phase transition remains sharp in the presence of disorder. Whether the behavior of 

the disordered system differs from the pure system or not is controlled by the Harris 

criterion [13] v ~ 2/ d, where v is the correlation length critical exponent and d is 

spatial dimensionality. If the Harris criterion is satified, the critical exponents will 

be the same as th~ clean system. If the Harris criterion is violated, two classes of 

phenomena will happen [14]: If inhomogeneities remain finite at all length scales, the 

critical point still displays conventional power-law scaling with a new set of critical 

exponents. If inhomogeneities increase with coarse graining, the power-law scaling is 

replaced by exponential scaling. 

The study oft e fluctuation conductivity in the following chapters was motivated 

by the inconsistency between theory and experiment. Experimentally it is found that 

the measured con ·.uctivity curves are highly sample-dependent. Therefore we think 

disorder may play m important role in the critical regimes, and that a distribution of 

Tc 's inside the sam) le leads to a loss of universality. We use a "lattice model" to study 

the effects of dism der. The superconductor is treated as a set of lattice sites with 

a different Tc at d~fferent sites. The Ginzburg-Landau hamiltonian and the current 

operator are written in a discretized formalism, and the conductivity is calculated 

from the resulting correlation functions, averaged over many disorder configurations. 

Chapter 2 pres,~nts a calculation of the conductivity of a uniform superconductor 

for this lattice mo el. We compare our results for a three-dimensional superconductor 

with other theoretical investigations. In Chapter 3, disorder effects are taken into 
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account in our model, and numerical results for a two-dimensional superconductor is 

presented. Conclm.ions and plans for future work are in Chapter 4. 



Chapter 2 

Fluctuation Conductivity in the 

Gaussian Approximation 

2.1 The Lattice Model 

2.1.1 Formalism for the Continuum Case 

Before I describe the lattice model, I will introduce the calculation for the conti­

nous superconductor. A more detailed description can be found in [1]. 

The free energy of the Ginzburg-Landau model is described by: 

(2.1) 

where r0 ex T- T ce changes sign at the mean-field transition temperature Teo· At the 

Gaussian level, thE· terms higher than second order are negelected forT> Tc(b = 0). 

10 
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We choose units n = kBTc = 1 and m = 1/2, where m is the mass of a Cooper pair. 

In the simplest relaxation model, it is natural to assume that the relaxation rate 

is proportional to the deviation from equibrium, 

8'1/J oF 
at= -roo'l/;* +(. (2.2) 

The noise ( is assumed to be a Gaussian random function, which has zero mean 

and is uncorrelatecl in space and time, 

(((r, t)) = 0, (((r, t)(*(r' , t')) = 2f08(r- r')o(t- t') , (2.3) 

where the factor : ~r 0 follows from the fluctuation-dissipation theorem [15]. The 

Fourier transform of the order parameter is defined as: 

"''( ) /A ddk J dw nl•(k ) ik·r-iwt 
'P r , t = (21r)d (21r) 'P , w e , 

'l/; (k, w) = j ddr j dt'l/;(r, t)e-(ik-r-iwt), 

where A is an ultraviolet cutoff in Ginzburg-Landau theory. 

(2.4) 

(2.5) 

In linear response theory, the response functions are related to the current-current 

correlation functions at zero external field. The real part of the conductivity can be 

evaluated by the Kubo formula: 

(2.6) 

where J 5 (w) is Js(k,w) at k = 0. 
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The supercurre t , ]8 , is 

Js(r, t) = -ieo('l/J*'V'l/J - '1/J V'l/J*), (2.7) 

where e0 is the charge of a Cooper pair. 

From the aboVE equations we can calculate the conductivity in the Gaussian ap-

proximation. A Fourier transform of the TDGL (time-dependent Ginzburg-Landau) 

equation (2.2) yields: 

((k,w) 
'1/J(k, w) = r ( + k2) . oro - zw 

(2.8) 

Therefore we ce.n calculate the correlation functions: 

cY(k- k')o(w- w')C(k, w) = ('1/J(k, w)'l/J*(k', w')), (2.9) 

where 

(·'·(k )·'·*(k' ')) = (((k,w)(*(k',w')) 
<f' ,w <f' ,w r6(ro + k2)2 + w2' (2.10) 

We obtain 

(2.11) 

From equation :2.6) and (2.7) , the real part of the conductivity is: 

(2 .12) 

Using a contom integration for the frequency integral, we get: 

(2.13) 
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Taking the cutl)ff A to be infinity, after another contour integral over k, we get 

the following form for the conductivity: 

2 c4-d 
'( ) eo - '>o S' ( ) 

(J w = 2r o (J 4 - d a Yo ' (2.14) 

where y0 is the scaled frequency: 

w~5 
Yo= 2fo ' (2.15) 

and ~0 is the Gaus3ian order-parameter correlation length: 

(: - -1/2 
'>0 = ro , (2.16) 

and (j is: 

_ sd 
(J = (27r)dr(d/2)r(3- d/2), (2 .17) 

where Sd is the surface area of ad-dimensional unit sphere: 

(2.18) 

The scaling function, S~(y0 ) , is: 

S~(y)) = d( d ~ 2) :5 [ 1 - (1 + Y5)d/4 
cos (~arctan y0 ) ] . (2.19) 

Using the Kramers-Kronig relation, 

CJ" ( w) = _ p J dw' CJ
1 

( w') , 
1r w'- w 

we get the comple·~e form of the scaling function: 

s ( ) - 8 1 [ d . ( . )d/2] G Yo - d(d _ 2) y5 1- 22Yo- 1 - 2Yo . 

(2.20) 

(2.21) 
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2.1.2 The D :lscretized Model 

Now we view the superconductor as a number of "lattice sites" with the order 

parameter WR defined at each site R. Assume a square latt ice with nearest spacing 

l. The Ginzburg-Landau free energy then becomes a summation over lattice sites 

instead of an integ::al over r: 

F = z~ L 11/JR - WR+ol
2 + 2:: toi1/JRI

2
, 

R,o R 
(2 .22) 

where the \1 2 in the continuous model is replaced by a summation over the difference 

between nearest neighbors 8. 

The Fourier transformation of the order parameter is: 

WR(t) = ~ J (~) ~ 1/J(k,w)eik-R-iwt, 

1/J(k , w) = Vo J dt L WR(t)e-(ik·R-iwt)' 
R 

(2.23) 

(2.24) 

where v0 = zd is the volume of a "unit cell", and V = Nv0 is the total volume of the 

superconductor. 

The correponding form of the TDGL equation is: 

(2.25) 

and 

(2.26) 
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Substituting (2.22) into (2.25) , we can solve for ?j;(k , w) 

(k w) = ((k , w) 
'lj; ' ro [& l:o (1 - eik·8) +to]- iw ' 

(2.27) 

and the correlatior, functions 

(?j;(k, w)?j;*(k', w')) = 2rov5[27r8(w- w')] (N8k,k') . (2_28) 
r5 [& l:o (1 - eik-8) +to] 2 + w2 

The current operator can also be discretized. For a three-dimensional system, 

(2.29) 

(2 .30) 

(2 .31 ) 

After Fourier t::ansformation, 

[J s(w)]x = [Js(k, w)]xlk=O = ~~: ~ J ~:1 :L)sin klxZ)?j;*(kl , w1)?j;(k1. W1 + w) , 
kl 

(2.32) 

(2.33) 

(2.34) 
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Using the Kubo formula 

(2.35) 

the real part of thf: conductivity is given as: 

Substituting ( .28) into (2 .36) and integrating over the frequency, we get the 

conductivity in thE following form: 

To compare wii.h equation (2.14), the conductivity can be written as: 

1 ( ) e5 ~o Sl( ) 
(J3d w = 2fo 81f t, v ' (2 .38) 

where ~0 = t~ 1/2 and 

N - 1 

1 
4 (21r) 3 - ---r:r-1r, ... ,1r sin2 x + sin2 y + sin2 z 

S ( t ' v) = ~;1f2 t3/2 ----;./ L ..,...[ 6---2-( c_o_s_x_+_co_s_y_+_c_o_s z- )-+-t] 
x ,y ,z 

1 
X 2 ' 

v2 + { t[ 6 - 2 (cos x + cos y + cos z)] + 1 } 
(2.39) 

where x = k1xl, y = k1yl , z = k1zl and the scaled t emperature t and frequency v is 

defined as: 

(2.40) 



w 
v=--

- 2foto · 

In the limit N = V/vo- oo, Ekl - v J c~)3' and 

.1 17[ 17[ 17[ sin2 x + sin2 y + sin2 z 
S'(t, v) = --- dx dy dz-=-------=-------------=---------,-----: 

n2 ~3/2 -1r -1r -1r [6 - 2( cos x +cosy + cos z) + t] 
1 

X 2' 
v2 + { i[ 6 - 2 (cos x + cos y + cos z)] + 1} 

Similarly, for the two dimensional system, we have: 

where 
N-l 

S'(t v) = ~ (2n)2- ~ ... ,1r sin2 x + sin2 y 
' nt N L...J [ 4 - 2 (cos x + cos y) + t] 

x ,y 

1 
X 2' 

v2 + { H 4 - 2 (cos X + cos y) l + 1} 

In the large N limit, 

217[ 17[ sin2 x + sin2 
y S' ( t , v) = - dx dy-,----,-----------,--~ 

nt -1r -7[ [4- 2(cosx +cosy)+ t] 
1 

X 2' 
v2 + { i[ 4 - 2 (cos x + cos y)] + 1} 

17 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

It can be easily verified that in the l - 0 limit , equation (2.42) and (2.45) approach 

the result of the continuous model (2.19). 

2.1.3 Dimensional Analysis 

It is worthy to point out the dimensions of the Ginzburg-Landau free energy, the 

correlation functic•ns and the conductivity. The G-1 free energy in equation (2 .1 ) is 



dimensionless, so 

[/ ddr iV7f;1 2] = 1 ==} Ld · L-2[7f;] 2 = 1, 

where we use [ . .. ] ~o denote the dimensions of the quantity enclosed. 

Hence, 

[7f;( r , t)] = Ll-d/2, 

where L is the unii of length. 

Then [r0] can be determined. 

which agrees with I)Uf previous definition ~0 = r 0
1

/
2

. 

Then we have the units of the parameters in the TDGL equation (2.2), 

[((r , t)] = Ll-d/2 . r-1 , 

[fo] = L 2 
· r-I, 

where T is the unii of time. 

And there follows 

[(7j;(r , t) 'lj;(r' , t'))] = [7f;] 2 = L 2
-d. 

In k space, 

[7f;(k , w)] = ['lj;(r , t) ] · Ld · T = Ll+d/2 . T, 

[(7f;(k,w)7j;(k',w'))] = L 2+d. T 2, 

18 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2 .52) 
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(2.53) 

From equation (2.12), 

[IT!_w)] = [C(k, w)] 2 · L - 2-d · T-1 · C2 = C2 · L 2
-d · T , (2.54) 

where C denotes tae unit of charge. 

For the discret tzed model, an additional parameter l with dimension L is intro­

duced. 1ji(R) has dimension L and [to] = [r0] = L - 2 . Since the analysis is much 

similar to the cont muous case, we will not go through the details here. I will end this 

part by pointing out that from (2.38) and (2.43), it can be seen that the results of the 

lattice model has the same dimension as the continuous model. Therefore the dimen­

sional analysis prcvides a tool to test the validity of the models before we calculate 

the conductivity numerically. 

Notice that at ·~he beginning, we taken= kBTc = 1 and m = 1/ 2 for convenience. 

To connect our reE:ult to real systems, we have to take these constants into account. 

2.2 Numerical Results and Discussion 

2 .2. 1 Scaling Functions 

We carry out the integration numerically by Mathematica for the two-dimensional 

and three-dimensional systems and plot our scaling functions S'(t, v) versus the scaled 
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frequency z; at different values of t in comparison with the scaling functions for the 

continous system. The two-dimensional case and three-dimensional case are plotted 

in fig. 2.1 and fig . 2.2, respectively. 

The "lattice sites" in our model is by no means the crystal lattice; The "lattice 

constant" l , is noi a microscopic quantity. It is related to the coarse graining of 

the Ginzburg-Lanclau theory. When we discretize the superconductor, the order pa­

rameter is uniforrr:. inside a "unit cell" with volume v0 = [d . This is equivalent to 

introducing a shor~-wavelength cutoff A ex 1/l to the Ginzburg-Landau theory. 

T he scaling fur:ction S'(y0 ) break into a set of curves for different values oft. At 

fixed t, the scaling functions is similar to S'(y0 ) and approaches a finite value at z; = 0. 

This implies that tf we keep the "lattice constant" l proportional to the correlation 

length ~0 = ~0 (T:1 , the scaling property is preserved. In general, the fluctuation 

conductivity for the lattice model is lowered with respect to the continuous model. 

Dimensionality pkys an important role in our problem: In three-dimensional systems 

the decrease is more remarkable than two-dimensional case. At small values oft and 

v, the scaling functions S'(t , v) approaches S'(y0 ). 

2.2.2 Comp arison with Other Theoretical Work 

There has been theoretical work investigating with the short-wavelength cutoff 

effects on AC fiuc1;uation conductivity by Peligrad and Mehring [2]. They calculated 

the conductivity with a finite cutoff for the three-dimensional isotropic and anisotropic 
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Figure 2.1: Tlie 2d AC conductivity scaling function S'(t , v) vs. v plotted at t = 
0.1 , 0.2, 0. 0, !,compared witli tlie scaling function S'(y0 ) for tlie contious case. 
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F igure 2.2: Tlie ~;d AC conductivity scaling function S'(t , v) vs. v plotted at t = 
O.OI , O.I , 0.2, ... , I ,compared witli tlie scaling function S' (y0 ) for tlie contious case. 



23 

cases as well as two--dimensional thin films. They introduce a dimensionless parameter 

A and set the cutoff in kx to be Aj~0 (T = 0) , where ~0 (T = 0) is the correlation length 

at zero temperature. In the three-dimensional isotropic case, the same cutoff applies 

to ky and kz, and the integral in k space has an upper limit kmax = J3 /A. The real 

part of the AC flue tuation conductivity is obtained in the following form 

where 

e2 ( ~(T) ) z-1 

(JI(w, T, A)= 32~o(T = 0) ~o(T = 0) Sl(w, T , A), 

S1 (w, T, A) = : 
3

n
1
0 2 [P_(P~ + 2)L + 2P+(P~- 2)A + 16 arctan( Q)], 

L = ln ( 2 + Q2 + ( Q - p-) 2) 
2 + Q2 + (Q + P_)2 , 

A (
2Q + p_) (2Q- p_) 

=arctan p+ +arctan p+ , 

and the dimensior.less variable 

(2.55) 

(2 .56) 

(2.57) 

(2 .58) 

(2.59) 

(2.60) 

Figure 2.3 shows a set of S1 curves ploted at three different frequencies. The cutoff 

parameter A is O.li. The dashed curve shows the S1 curve at A= oo , which is only a 

function of the scaled frequency n. 
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To compare our result witli tlie above theoretical investigations [2], we plot our S' 

curves at fixed frequencies and fixed l, which corresponds to a fixed cutoff A. l can 

be approximately determined by 

e;ax = J\.j6(T = 0) = 1rjl ===;. l = 7r~o(T' = 0)/A = 27r~o(T' = 0). (2.61) 

We clioose Tc to be tlie value in [2], 84.04K. For every v ( wliicli is n in tlie above 

equations) , we can find tlie value oft and tlien calculate S ' (t, v) numerically. Our 

result is plotted in Fig. 2.4. 
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Figure 2.4: The 3d AC conductivity scaling funct ion S ' (t, v) vs. v plotted at three 
diffenent frequenc:es compared witli S'(y0 ) 
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It can be seen from Fig. 2.3 and Fig. 2.4 our scaling functions agrees well qualitively 

wit h [2]. Note tha t in equation (2.56), there are three parameters, A, T, and w. In 

figure 2.3, A ex: ~0 (T = 0) is a constant, and the scaling functions S1 approaches zero 

at small 0. In ou_ model there are only two parameters, which is the ratio of the 

"lattice constant" l to the correlation length at T, and the scaled frequency v . If we 

keep l/~(T) fixed as in fig. 2.1 , at smallv the scaling functions approach a finite value 

instead of zero. 

Peligrad and Mehring also discussed the cutoff effects on the imaginary part of the 

conductivity. The effects are small compared with the real part, and close to Tc the 

curve with and without the cutoff are indistinguishable. The scaling functions for the 

3d anisotropic superconductors and 2d thin films were also discussed. These issues 

are beyond the scope of this thesis, but we will possibly calculate the imaginary part 

of the conductivity in our future work. 



Chapter 3 

Disorder Effects 

3 .1 Real Space Formalism 

Next we consider the effects of disorder in superconductors. Assuming the critical 

temperature is pmition-dependent, we replace the parameter t0 by ta : 

1 ~ 2 ~ 2 
F = [i L.....t i?/JR - 1/Ja+ai + L.....t toa i?/JRI , 

R ,8 R 

(3.1) 

where t 0a exT- 'l~(R). 

Let 

(3.2) 

where t is the aver age of ta and bta is the deviation. 

From the TDGL equation (2.25) we get: 

&1/la (t) { 1 } at = - ro Z2 ~ [1/la (t) - 1/la +a(t)] + toa?/la (t) + (a (t) (3.3) 

27 
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To solve the TDGL equation for the disordered case, we seperate the time and 

spatial dependence of the order parameter. Assume that the order parameter can be 

expanded in a complete set of orthogonal functions: 

(3.4) 

where { ¢~J satisfy: 

z~ :L:) <Pit - <fR+o) + toR<Pk = Aj<Piv 
0 

(3.5) 

In a matrix formalism , we write the above equation as: 

¢{ 

Ho = Aj (3.6) 

¢~ 

H0 is a N x N matrix with nearest neighbor hopping and periodic boundary 

conditions, and the { <fR} are the "eigenvectors" of H0 , which satisfy the orthnormal 

and complete conditions: 

(3.7) 

I)<t>it)*<fR, = OR,R' (3.8) 
j 

Substituting (3 4) into (3.3), we obtain the expression for aJ(w): 

(3.9) 
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and the correlation functions can be calculated as: 

(3.10) 

The conductivi ty can be written as the correlation of the current operator in real 

space as: 

O"'(w) = 
2
1
d ~ v~ L L (Js(R , w) · Js(R' , -w)) 

R R' 

(3.11) 

Now consider t e current operator in real space. Take the x component, 

[Js(R , w)] c = J dteiwt [Js(R , t) Jx 

= -~l· ::a J d
2
w1 [~it (wt)~R+lx(Wt + w)- ~it+1x(wt)~R(Wt + w)] (3.12) 

uo 7r 

Assume the lai.tice has N sites. Define a N x N matrix operator T (R) which 

sat isfies : 

= (~(wdi[T (R)]xl~(wt + w)), (3.13) 
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where 

'lj;l(w) 

?j;(w) ?j;R(w) (3.14) 

then t he summation over Rand R' in equation (3.11) can be carried out as a sum-

mation over the matrix T (R ): 

(3.15) 

where T x = ER[T(R)]x· 

Therefore the correlation function of the current operator is: 

LL(Js(R,u!) · Js(R' , -w)) = (LJs(R,w) · LJs(R', - w)) 
R R' R R' 

( 
e0 

2 J dw1 J dw2 
=- lvo 2;- 2;-[((?j; (wi)ITxl ?j; (wl + w))(?j; (w2)1 Txl ?j; (w2- w))) 

+ ((?j; (wi)IT yj 'lj; (wl + w))(?j; (w2)1 Ty j'lj;(w2 - w))) 
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Using (3.10) ar.d (3.16), and after t he frequency integral, we have: 

L L (Js(R. w) · Js(R', -w)) 
R R' 

~- (z~;) 
2 

2ro I;~l(T.);;(T.),,;, + (T.),;(T.),,p + (T .),;(T .),,p] 
~.) ~ ,J 

~ >..k + >..k' ( k)* k ( k' * k' 
L....J >.. >.. ,[w2 + f2(>.. + >.. ,)2] <Pi <Pj' <Pi') <Pj k,k' k k 0 k k 

=- ( eo_ ) 2 2fo L Ak + >.. k' 
lvo k k' >..k>..k' [w2 + r5( >..k + >..k' )2] 

' 
_(K x)kk'(K x)k'k + (K y)kk'(K y)k'k + (K z)kk'(K z)k'k], (3.17) 

where 

i,j 

i,j 

(K z)k'k = L (¢n*(T z)ij¢j'. (3.18) 
i,j 

The matrix K,_ can be viewed as the transformation of T x from the R "basis, 

into the { ¢f} "ba8is,: 

(3 .19) 

where 

U= (3.20) 

and ut = u- 1 . 



The conductivi ty is: 

where Ek, t, v are dimensionless and 

w 
v=--- 2r0t0 · 

Then we have the scaling functions for the three-dimensional case 

, ( ) e5 ~o S' ( ) 
a3dw =2ro87r 3dt , v , 

where 

And for the two-dimensional case, similarly we have: 

where 
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(3.22) 

(3.23) 

(3.25) 

If there is no disorder, tR = t 0, equantions (3.24) and (3.26) are equivalent to the 

corresponding eqm,tions (2.39) and (2.44) in Chapter 2. 
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3 .2 Computational Analysis 

3.2.1 Methods of Simulation 

We calculate the conductivity using Fortran 90 programs. The program is orga-

nized into the follc~wing steps: 

1. Generate a N x N matrix H with periodic boundary conditions and nearest 

neighbor hopping. Disorder is represented by adding a random number to the 

diagonal elenents. The operators Tx,Ty and T z are also generated. 

2. The matrix is diagonalized using LAPACK (Linear Algebra PACKage) 

routines, and the eigenvalues Ej and eigenvectors {<Pit} is obtained. 

3. Transform T x,T y and T z to the {<Pit} basis to find K x,Ky and K z· This is 

just matrix multiplication in our program. To make the program efficient, we 

use a BLAS(Basic Linear Algebra Subprograms) routine to perform the 

matrix multiplication. 

4. Using equation (3.24) and (3.26), the scaling functions are calculated. 

We write equa-jon (3.5) as 

2:) <Pk - <Pit+O) + tR<Pit = Ej<;bit (3.27) 
8 
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and define H as 

H (3.28) 

H is a matrix which has diagonal elements equal to the number of nearest neighbor 

elements b + tR· ;t"or the elements Hij where i and j are nearest neighbors, Hij is 

- 1. Tx ,Ty and T ~ are sparse matrices whose elements are 0, 1 and -1. tR, Ej and 

11 are dimensionles3 numbers. For the calculation of the scaling function, everthing is 

dimensionless. 

Now consider t he timing of our program. The matrices have N x N elements, 

therefore the time spent in step 1 is proportional to N 2
. In step 3, the time spent in 

multiplying matrices of size N2 is proportional to N 3 . Considering the quick increase 

of running time of the matrix diagonization in step 2, the program is more time 

consuming with the increase of N. 

On the other hand, the number of lattice sites N is related to the precison of the 

program. In Chap ter 2, we calculated the scaling functions in the large N limit. If N 

is small, we are only summing over a few k points in the first Brillouin zone, which can 

hardly represent the real system. Therefore we have to compromise between precision 

and efficiency. 

We test our program by calculating the scaling functions for a uniform system. 

We use a two-dim~msionallattice for different N values. For small N our results agree 

with the result cal culated in Chapter 2 (equation (2.44)) , but deviates from the large 
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N limit results (2.45). As N increases, the results approaches (2.45). For a 30 x 30 

lattice, the scaling functions agree with the results for the large N limit within 3 digits 

after the decimal point. So we are going to use the N = 30 x 30 in the following 

calculation. 

3.2.2 The E '.genvalue Equation 

Consider the eigenvalue equation (3.27). If there is no disorder, the "eigenfunc-

tions" are plane wc,ves and the "eigenvalues" of H are the "energy" of the plane waves 

plus t. All of the eigenvalues are positive for if tis positive (which is true in our prob-

lem where T > Tc: . If we put ramdomness into H, how will the system behave? To 

answer this question we have to look at the eigenvalues and eigenvectors of H first. 

If we define 

H'- H -t· I 
- ' (3.29) 

then the eigenvect xs { ¢~.} of H are also the eigenvectors of H' , and the eigenvalues 

satisfy 

cj+t=Ej · (3.30) 

For a given configuration of Ota, if we diagonalize H' then we can get the eigen-

values and eigenvectors of H at different t values. 

Assume disord~r is randomly distributed with a Gaussian probability function: 

(3.31) 
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where the standard deviation p denotes the strength of disorder. 

We calculate the eigenvalues and eigenvectors of H' at different disorder configu­

rat ions. We find that when disorder is put into the system, negative eigenvalues of H' 

appear. At a certain strength p, for different disorder configurations the result varies, 

but if we average •Wer a large number of disorder configuration, the eigenvalues are 

regularly related to disorder strength p. 

For 1000 disorder configurations at a certain strength p, t he eigenvalues of H' are 

calculated. We plCtt the lowest eigenvalue E~ in fig. 3.1. 

For the matrix H , the lowest eigenvalue Eo= E~+t. When the temperature is close 

to Tc (t is small) c,nd disorder is strong, it is possible that Eo is negative. Physically 

the negative eiger.value represents the superconducting state of the system. How 

does the superconducting state appear when T > Tc? Griffiths [16] pointed out that 

for a large system with randomness , locally ordered regions may appear while the 

whole system is sUl in the disordered state. These rare regions lead to nonanalytical 

behavior of the sy:>tem near Tc. 

Our model in 1he last chapter and this chapter is based on the Ginzburg-Landau 

free energy forT > Tc. For the superconducting regions we have to consider the 1'1/1 14 

term of the free emrgy, and the equilibrium value of '1/J is not zero. We will restrict our 

following discussi n in the case Ej > 0, where no superconducting region is present. 
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Figure 3.1: The lowest eigenvalue E~ of H' at p = 0.1 , 0.2, · · · , 1. The dots are the 
mean value of E~ and the bars are the statistical standand deviation for the 1000 
disorder configurat ions. 
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3.2.3 Conductivity at Weak Disorder 

We calculate tlte scaling functions for p = O.I and p = 0.2. For a two-dimensional 

30 x 30 lattice, at :1 given p value IOOO different disorder configurations are averaged. 

The scaling functions are plotted in fig. 3.2 and fig. 3.3. To compare with the results 

witliout disorder in Chapter2 (fig. 2.I) , the same set of parameters t = O.I, 0.2, · · · , I 

is chosen . 
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Figure 3.2: caling functions S' (t , v) plotted at p = O. I , t = O.I , 0.2, · · · , I. 

We plot t he scaling functions with and without disorder in fig. 3.4, fig. 3.5 and 



1.2 

1.1 

1.0 

0.9 

0.8 -;> ..... 
0.7 -"0 

N 

'in 
0.6 

0.5 

0.4 

0.3 

0.2 
0.0 0.5 1.0 1.5 2.0 2.5 

v 

3.0 

- -t=0.1 
-- t=0.2 
-- t=0.3 
-- t=0.4 
- t=O.S 
-- t=0.6 

t=0.7 
-- t=O.B 
-- t=0.9 
-- t=1.0 

Figure 3.3: Scaling functions S'(t, v) plotted at p = 0. 2, t = 0.1, 0.2, · · · , I. 
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fig. 3.6. At tlie sa 1e t and v values, the value of S'(t , v) with disorder are larger tlian 

the clean system. At smaller t values (fig. 3.4 and fig. 3.5) this effect is stronger. At 

large t the curves with and without disorder almost overlap (fig. 3.6) , which means 

tliat wlien T is far enougli above '1~, disorder effects are not important to tlie scaling 

properties. 
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Figure 3.4: Comparison of scaling functions S'(t, v) for p = O.I , p = 0.2 and p = O(no 
disorder), plotted at t = 0.1. 

At every local lattice site, tlie critical temperature '1 ~(R) is randomly distributed 

and lias equal pwbability to be above or below '1 ~' tlie crit ical temperature for tlie 
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bulk system. It is interesting that the overall effect of the random distribution is to 

increase S'(t , v). 

Our compariso n of the scaling functions with and without disorder is under the 

same parameter t. We didn't include the effect that disorder will change both the 

local critical temperature Te and the local correlation length ~- In a real system, 

disorder may preferentially lower the critical temperature and shorten the correlation 

length, which musi. be taken into account for the measured quantities in experiments. 

3.2.4 Further Discussion 

For the moment we have discussed the weak-disorder case under which a sharp 

phase transition exists. If disorder is strong enough, Eo is negative and if we continue 

to calculate the scd.ling functions, the shape of the curve is completely destroyed. 

If a system has impurities that fluctuate strongly in space, the behavior near the 

phase transiton is often dominated by rare events, which can be described by the 

following physical picture: 

The critical temperature of a disordered system Te is smaller than the critical 

temperature of tht· clean system, Teo · At temperature Te < T <Teo , the bulk system 

is in t he disordered state, but there is a nonzero probability to find a region without 

impurity for an infinite size system. Local order can emerge in such regions while the 

bulk system is still in the disordered state. Such Griffths behavior has been studied 

theoretically and observed in magnetic systems. 



44 

For a superconductor the problem is more complicated. If the superconducting 

regions are small islands isolated by normal regions, there is no supercurrent for the 

bulk system. But if the superconducting regions are close to each other, they may be 

coupled and Josephson effects appear. These effects will bring interesting phenomena 

to our model, and we expect to do in-depth investigations in the future. 



Chapter 4 

Conclusion and Future Work 

In this thesis, we investigated the effects of disorder on AC fluctuation conductivity 

in superconducton; above Tc. We set up a lattice model to describe disorder in the 

superconductor and calculated the two-dimensional Gaussian scaling functions at 

weak disorder. Th results showed that disorder will change the shape of the scaling 

functions , espetial:y at T close to Tc and low frequencies. 

More work is n~quired to reach a satisfactory explanation of fluctuation effects in 

high-Tc supercond'lCtors. 

1. If the streng-;h of disorder increases, it is possible that the phase transition 

will be smea:~ed. We will improve our model to calculate the conductivity at 

strong disorder. 

2. All our work so far is based on the T > Tc phase where the equilibrium value 

of the order parameter 'ljJ is zero. To get a complete curve of the fluctuation 
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peak, the conductivity below Tc must be investigated. 

3. We have set up the models for two-dimensional and t hree-dimensional 

superconduc·~ors. However due to the large amount of computer time required 

we have only presented results for two-dimensional model in this thesis. To 

generalize our results for the three-dimensional systems, we are going to look 

for a metho to diagonalize large matrices more efficiently. 

4. In previous study of the fluctuation effects in superconductors near Tc, there 

has been a inconsistency between the theoretical and experimental value of 

the dynamic exponent, z. In Gaussian theory z = 2, while in the 3d-xy 

relaxtional model z = 2.15. Estimation from expemential data yields higher 

values of z = 2.65 [11]. We are going to examine whether disorder accounts for 

the discrepancy between theoretical and experimental values of the critical 

exponents. 
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