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Abstract 

., 
Scientific computing software has had considerable success in producing ef-

ficient and correct numerical results. However other software qualities, such 

as usability, maintainability, testability, flexibility, and reusability, are often 

neglected. Presented in this work is our proposed solution to improve the 

quality of scientific computing software by using a document driven software 

engineering methodology. A parallel mesh generation toolbox (PMGT) is de­

veloped to illustrate our approach. 

This thesis proposes to improve quality via a methodology that con­

sists of a sequence of design steps and documents, including the following: a 

Software Requirements Specification (SRS), a Module Guide (MG), a Module 

Interface Specification (MIS), and a Summary of Validation Testing Report 

(SVTR). Where applicable, mathematical notation is used in these documents 

to make them as formal as possible. This formality improves the documents 

by making them less ambiguous and more validatable; therefore , the correct-

ness and testability of the software are improved. The proposed methodology 

also requires that the traceability between the documents listed above, and the 

traceability between these documents and code be explicitly specified. This al-

lows for verification of completeness and consistency and facilitates systematic 

change management. 

Quality is also promoted during the implementation stage. For in-

stance, a new modification is proposed to Rivara's longest side bisection al-

gorithm. The modified algorithm improves the quality of usability, without 
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sacrificing reliability. A new coarsening algorithm inspired by Oliver-Gooch is 

also proposed. Instead of decimating vertices by collapsing the edges, the new 

algorithm uses edge collapse to decimate the cells. 

The proposed methodology promotes testing as an important way to 

improve software quality. However, due to the lack of an expected answer, 

testing the correctness of PMGT is difficult. To overcome this challenge, the 

method promoted in our work is automated testing to verify the known prop­

erties of a correct solution, such as checking for conformality and for boundary 

closure. 
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Chapter 1 

Introduction 

Many physical problems of importance to scientists and engineers are modeled 

as a set of Partial Differential Equations (PDEs). In most practical cases, it is 

necessary to solve the PDEs numerically. Numerical methods to solve PDEs 

frequently require that the domain of interest be divided into a mesh, which is 

a set of small, simple elements (shapes) that cover the computational domain. 

In some applications, a single mesh is generated and used many times; in 

this case, the processing time spent on mesh construction is not critical and a 

relatively slow, sequential algorithm suffices (Ruppert, 1993). However, some 

applications need adaptive meshing, which requires that the meshes be gen­

erated once and then modified many times. For instance, adaptive meshing, 

which involves many mesh changes, is used for reliable Finite Element Analy­

sis (FEA) using a posterrori error estimation (Zienkiewicz et al., 2005). The 

increased mesh interaction for adaptive meshing means an increased need for 

speed in managing the mesh data. This suggests employing parallel processing 
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techniques. Although generating a mesh using multiple processors is compli­

cated, it can offer considerable speed-up over sequential processing. In addi­

tion, some FEA applications are implemented on multiple processors. If the 

adaptive mesh can be generated in multiple processors as well, the mesh data 

can remain on the local processors. Using local processors in this way has the 

potential to significantly reduces overall computation time. 

While considerable effort has been spent on research on mesh generation 

algorithms to improve efficiency and correctness, other qualities of mesh gener­

ation software, such as usability, maintainability, testability, flexibility, porta­

bility, and reusability, can still be improved. Software engineering method­

ologies have been adopted successfully across a broad spectrum of industry 

applications to achieve high quality software. However, software engineering 

methodologies are rarely applied to developing scientific computing software, 

including mesh generation software. This thesis addresses this past neglect 

by motivating, justifying and illustrating how the quality of a parallel mesh 

generation toolbox (PMGT) can be improved by using software engineering 

methodologies. 

This chapter provides introductory information about the thesis. Soft­

ware quality is defined in Section 1.1. The characteristics of scientific com­

puting software that contribute to the challenge of developing quality software 

are summarized in Section 1.2. Current mesh generation tools are investigated 

and summarized in Section 1.3. The basic knowledge of software engineering 

methodologies is provided in Section 1.4. Finally, the proposed methodology 

for developing PMGT is introduced in Section 1.5. 

2 
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1.1 What is Quality Software? 

Quality of software is often defined as "meeting requirements" (Lewis and 

Veerapollai, 2004; Copeland, 2003; CSTE, 2006). With this meaning, quality 

is a binary state; that is, it is a quality product or not. However, this definition 

has its limitations. A limitation of this definition can be seen by considering 

two different software programs, s1 and s2 . Program s 1 can perform a task in 

one hour, while s2 can perform the same task in two hours. All other features 
0 

of two program are assumed to be the same. Intuitively, s 1 would be said 

to have higher quality than s2 , even if Efficiency is not a requirement of the 

software. However, using the definition of "meeting requirements ," s 1 and s2 

would be of the same quality. This is not the consequence that one would 

expect. In addition, a binary value should not be used to define the quality 

of software. The same example software s 1 and s2 can be used to illustrate 

the limitation of a binary definition. Suppose the requirement of Efficiency is 

specified as "execution time of the software should be less than three hours." 

Then, by the binary definition, the quality of the two example programs is the 

same, but this contradicts our intuition. 

Pressman (1999) and Ghezzi et al. (2003) give different points of view 

from the "meeting requirements" definition given above about the quality of 

software. Both definitions include two categories of quality, which are prod-

uct qualities and process qualities. The product qualities are measured by 

how well the software conforms to both explicit requirements , which are "re-

quirements" from users , and implicit requirements, such as the desire for good 

maintainability. The classical quality factors proposed by McCall et al. (1997) 
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Factors Definition 
Correctness Extent to which a program satisfies its specifications 

and fulfills the user's mission objectives. 
Reliability Extent to which a program can be expected to perform 

its intended function with the required precision. 
Efficiency The amount of computing resources and code required 

by a program to perform a function. 
Integrity Extent to which access to software or data by unau-

thorized persons can be controlled. 
Usability Effort required for learning, operating, preparing input, 

and interpreting the output of a program. 
Maintainability Effort required for locating and fixing an error in an 

operational program. 
Testability Effort required in testing a program to ensure that it 

performs its intended function and how well the pro-
gram performs its function. 

Flexibility Effort required in modifying an operational program. 
Portability Effort required to transfer software from one configu-

ration to another. 
Reusability Extent to which a program can be used in other ap-

plications - related to the packaging and scope of the 
functions that programs perform. 

Interoperabili ty Effort required to couple one system with another. 

Table 1.1: Software Quality Factors. Table modified from McCall et al. (1997) 

• 

that are used to measure the qualities of software are listed in Table 1.1. Al-

though the table lists the qualities of a program, these qualities will also apply 

to other software products, such as a source code library. In the case of a 

source code library, the definitions would have to be slightly modified. For 

instance, usability would now refer to the effort required for a programmer to 

use the library. 

The definition of quality for software products adopted in this thesis is 

as follows: 

4 
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The quality of a software product is the degree to which the soft­

ware conforms to the software quality factors. 

Since the common "requirements" of software include one or more software 

quality factors, this definition is, in fact, an extension of the definition of 

"meet requirements." The "requirements" may not include all the factors. 

However, the factors still provide a assessment of the quality. The "require­

ments" provide the stakeholders' judgment on which of the qualities are most 

important and how to measure and evaluate whether the important qualities 

have been met. Achieving product quality is the ultimate goal. However, a 

process must be followed to improve the chance of achieving product quality. 

Studying the quality of the process is outside the scope of this thesis. 

1.2 Challenges in Scientific Computing Soft-

ware 

The quality factors listed in Table 1.1 are general. These factors do not have 

equal importance between different types of software. For example, Efficiency 

(QF3) in time is critical for a real-time application. However, it is usually 

not as important for a word processing application. The important factors for 

scientific computing software are proposed to be the following: 

• QF 1: Correctness 

• QF2: Reliability 

• QF3: Efficiency 

5 
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• QF4: Usability 

• QF5: Maintainability 

• QF6: Testability 

• QF7: Flexibility 

• QF8: Portability 

• QF9: Reusability 

Scientific computing software, as a special class of software, has its own 

characteristics. Some of the characteristics that make achieving the above 

qualities a challenge for scientific computing software are summarized below. 

1. Unknown Solution Challenge 

The answers for most scientific computing problems are unknown. Most 

scientific computing software is built to solve problems that are difficult 

or impossible to solve without the software. Hence, the software is the 

only possible way that the solution to the problem can be achieved. 

Judging the Correctness (QFl) of scientific computing software is more 

difficult than for other classes of software due to the lack of expected 

answers. 

2. Real Number Representation Challenge 

Most real numbers cannot be represented exactly on a computer. Float­

ing point numbers are used to approximate real numbers. However, 

this approximation can cause problems. A well-known example is the 

6 
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American Patriot Missile battery in Dharan, Saudi Arabia that failed 

to track and intercept an incoming Iraqi Scud missile during the Gulf 

War (Cirincione, 1992). The challenge of approximating real numbers 

makes it difficult to achieve Correctness (QFl) and Reliability (QF2). 

Using more storage for floating point numbers can help to some extent 

because it improves the precision of the computer representation of the 

real numbers. However, this decision has a tradeoff as it can potentially 

lower the Efficiency (QF3) of the software. 

3. Nonfunctional Requirement Challenge 

As for other classes of software, for scientific computing software, non­

functional requirements are as important as functional requirements, and 

nonfunctional requirements are difficult to properly specify and measure. 

For example, it is difficult to specify the usability requirement of soft­

ware. This challenge will be explained in greater detail in Chapter 2. 

4. Parallel Computation Challenge 

Scientific computing problems often deal with large amounts of calcu­

lation. Some scientific computing software takes advantage of parallel 

computation to improve the Efficiency of the software. However, us­

ing multi-processor usually lowers the Usability (QF4), Maintainability 

(QF5), and Portability (QF8), since communication between processors 

must be considered. The Reliability (QF2) can potentially be reduced be­

cause of the errors introduced during the communication between proces­

sors. 

7 
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1.3 Mesh Generation Tools 

Meshing is the process of decomposing a spatial domain into smaller and sim­

pler elements. Common shapes of elements are triangles and quadrilaterals 

for a two dimensional domain, and tetrahedra or hexahedra for a three dimen-

sional domain. Since the shape of the domain of the mesh may be irregular , 

unstructured meshes, which can discretize the domain more naturally than 

structured meshes, are of particular interest. An example mesh of Lake Supe-

rior is shown in Figure 1.1. 

Figure 1.1: A Mesh of Lake Superior. Image from Shewchuk (Last Access: 
January, 2006) 

Owen (1998) surveyed 94 mesh generation software packages. Most of 

the software on his list was developed by the people who intend to use it. 

The advantage of this is that they are experts in the application area; hence, 

they understand the requirements of the software well. However, they usually 

lack knowledge of software methodologies, which can cause problems in the 

8 
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current approach to developing mesh software. First, mesh generation soft­

ware is often developed by modifying an existing program. This approach 

demonstrates the importance of the requirement of reuse for mesh generation 

software. However, this "copy and paste" method for code reusing results 

in the growth of the software in unexpected ways. It is often the situation 

that the existing code has more functionality than one expects or desires. By 

adding more functionality, the code becomes bigger and bigger. This makes 

achieving the quality of Efficiency (QF3) difficult. A second problem with the 

current approach to developing mesh generation software is that it results in 

many similar mesh generation software packages. For instance, of the 94 soft­

ware packages surveyed by Owen (1998), 61 of them generate triangle meshes, 

and 43 of them use the Delaunay Algorithm. These numbers illustrate that 

although the requirement of reuse exists in mesh generation software devel­

opment , it is not fulfilled very well. The fact is that Reusability (QF9) of 

current mesh generation software is rarely achieved. The third problem with 

the current approach is that the documentation of many mesh generators is in­

complete, ambiguous, or even non-existent (Cao, 2006). Cao (2006) observed 

that among 120 papers available on Owen (Last Access: January, 2006) from 

2002 to 2004 , only 3 papers talk about the design of mesh generators. Without 

proper documentation, software is not only difficult to understand and main­

tain, it is also hard to validate and extend. As a consequence, the resulting 

software has poor quality in terms of Usability (QF4), Maintainability (QF5), 

Testability (QF6), and Reusability (QF9). 
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1.4 Software Engineering Methodologies 

Software Engineering is the application of a systematic, disciplined, quantifi­

able approach to the development, operation, and maintenance of software 

(IEEE, 1990). Using software engineering methodologies that relate to soft­

ware development can improve the quality of software. The debate by soft­

ware developers has switched from whether software engineering methodologies 

should be used to which methodologies are best for software development. 

All software development can be characterized as a problem solving loop 

in which four distinct stage are encountered: status quo, problem definition, 

technical development, and solution integration (Pressman, 1999). Pressman 

(1999) gives explanations of each stage as follows: i) Status quo "represents 

the current state of affairs" (Raccoon, 1995); ii) problem definition identi­

fies the specific problem to be solved; iii) technical development solves the 

problem through the application of some technology; and, iv) solution inte­

gration delivers the results to those who requested the solution in the first 

place. The development strategy that software engineers use is often referred 

to as a process model. Among many models proposed by software engineer­

ing researchers, the waterfall model, prototype model, and evolutionary model 

attract much of the attention. 

This section gives an introduction to the above models. Determining 

the development model is an important decision that will effect all other sub­

sequent decisions. Other aspects of software engineering methodologies will 

be introduced in the rest of the thesis. 
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1.4.1 The Waterfall Model 

The waterfall model was originally proposed by Royce (1970). The major 

stages of this model are requirements, design, implementation, verification, 

and maintenance, as illustrated in Figure 1.2. This model treats the process 

of developing software as a sequence of stages; therefore, the waterfall model 

is sometimes called the linear sequential model. The criteria of finishing a 

stage is the completion of the documentation for this stage. The waterfall 

model was the first systematic approach to developing software. It is a widely 

used model and is still the reference model for most software engineering text­

books and standard industry practices (Pressman, 1999; Ghezzi et al., 2003). 

However, this model has its difficulties. Lack of feedback is its most notable 

dis ad vantage. 

1.4.2 The Prototype Model 

The prototyping model emphasizes communication between customers and 

software developers. The prototype developers build services as a mechanism 

for identifying software requirements. There is no requirement for the quality 

of the prototype, and the prototype should be discarded if it does not meet the 

software quality criteria. However, in many cases, the poor quality prototype 

is built and carried forward to become real software. 

11 
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Requirements 

Design 

Implementation 

Verification 

Maintenance 

Figure 1.2: Waterfall Model 
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1.4.3 The Evolutionary Development Model 

The evolutionary model is based on an observation that requirements often 

change as development proceeds. Extending the waterfall model, the evolu­

tionary model incorporates the iterative philosophy of the prototype model, 

and adds iterative feedbacks from later iterations to previous iterations. Two 

examples of this type of model are the spiral model and the incremental model. 

1.4.3.1 The Spiral Model 

In contrast to the waterfall model, which is also called a document-driven 

model, the spiral model use risk as the criterion to terminate each iteration. 

Proposed by Beohm (1988), this model is called a risk-driven model. Figure 1.3 

shows a picture of the spiral model. As the development proceeds, the software 

engineers move around the spiral in a clockwise direction. Cost and schedules 

are adjusted based on the risk analysis. This approach has its drawbacks. It is 

very difficult to manage the development processes under control. The success 

of this approach heavily depends on the success of the risk analysis. If a major 

risk is not uncovered and managed, problems are very likely occur. 

1.4.3.2 The Incremental Model 

Like the prototype model, the incremental model is also based on the waterfall 

model. Like the spiral model, the scope of the software is increased after each 

iteration. The incremental model applies the waterfall model to each iteration. 

Each linear sequence produces a deliverable increment of the software. When 

an incremental model is used, the first increment is often a core product. That 

13 
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Figure 1.3: Spiral Model. Image from Beohm (1988) 

is , basic requirements are addressed, but many supplementary features (some 

known, others unknown) remain undelivered (Pressman, 1999). No prototypes 

are involved in this model. Each time the software is delivered as real soft-

ware. The disadvantage of delivering a poor quality prototype is eliminated. 

A complete document is the criterion for terminating each stage in each itera-

tion. With the information hiding principle (Parnas et al., 1984) in mind, the 

functionalities and corresponding documents may not need to change, or may 

change very little. 
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1.5 Proposed Methodologies for the Develop­

ment ofPMGT 

While software development methodologies have been applied successfully for 

many applications, development of scientific computing software, including 

mesh generation software, still focuses primarily on the "programming" stage. 

PMGT is a library tool that will be called by other applications, such as FEA 

software. It is designed to be built on the Shared Hierarchical Academic Re­

search Computing Network (SHARCNET) , where SHARCNET is structured 

as a "cluster of cluster" designed to meet the computational needs of high 

performance computing researchers. PMGT is developed in this thesis to il­

lustrate the use of software engineering methodologies to improve the quality 

of scientific computing software. 

The quality factors that are important for PMGT include all quality 

factors for scientific computing software except for Portability (QF8), since 

PMGT is designed for a specific system. However, SHARCNET is constantly 

being improved. Hence, Portability (QF8) is desired if possible. 

A scientific computing toolbox, like PMGT, has the following charac­

teristics: i) embedded in another applications; ii) no direct interaction with 

the end users; and, iii) can start with a simple set of requirements and grad­

ually add components. Given these characteristics, the incremental process 

model was chosen as the basis to developing PMGT. There are two iterations 

for the development of the software. The output of the first iteration does not 

involve parallelism. During the second iteration, some functionalities are im-
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plemented using parallel algorithms. The process model used for developing 

PMGT is actually a modified incremental model. The modifications are as 

follows: 

1. Feedback from later stages are added to previous stages in each iteration. 

That is, within each iteration, if significant problems due to decisions 

made during previous stages were discovered, then the decisions from the 

previous stages are modified before proceeding. The earlier a problem is 

found , the lower the cost to fix it. Adding feedback from later stages to 

previous stages can reduce the cost of a problem and thus improve the 

overall quality of the software, since the saved resource can be used for 

improving quality. 

2. Commonality analysis was performed before the software requirements 

activities, where a commonality analysis is a process to study shared 

features or attributes among similar software to find possibilities for de­

velopment of the software as a program family. The advantages of devel­

oping programs as a family are discussed in Dijkstra (1972) and Parnas 

(1976, 1978). The commonality analysis for mesh generation software 

has been discussed in Chen (2003) ; Smith and Chen (2004) , and Cao 

(2006) . 

Four documents are generated during the development of PMGT, namely 

the Software Requirements Specification (SRS), the Module Guide (MG) , the 

Module Interface Specification (MIS) and the Summary of Validation Testing 

Report (SVTR) . These documents can improve the Usability (QF4) of PMGT 
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since they specify what PMGT do in different level of abstraction. Mathemat­

ical notation is used in the documents. It can improve the Correctness (QFl) 

and Testability (QF6) since it makes the SRS and the MIS unambiguous and 

validatable. Traceability matrices are also developed. These matrices can im­

prove the Correctness (QFl), Maintainability (QF5), and Flexibility (QF7) of 

PMGT. The use relations of modules can improve the Testability (QF6) and 

Reusability (QF9), and the modification of algorithm can improve the Effi­

ciency (QF3) and Usability (QF4). The automation of the correctness testing 

can improve the Usability (QF4) of PMGT. 

The remainder of this thesis illustrates how software engineering method­

ologies are applied to the development of PMGT to improving the quality of 

the software. The organization of the rest of the thesis is as follows. Chap­

ter 2 reviews the software requirements activities of PMGT. Chapter 3 outlines 

the architecture design of PMGT and gives more detail on the design of the 

software. Chapter 4 discusses implementation issues. Chapter 5 summarizes 

validation testing on PMGT. Chapter 6 provides conclusions from the thesis 

and addresses some extensions that can be studied in the future. In addi­

tion, the documentation for the SRS, MG, MIS, and SVTR are appended as 

appendices A, B, C, and D, respectively. 
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Chapter 2 

Software Requirements 

Although the qualities of software have been defined in the previous chapter, 

a metric is still needed to measure them. Like other engineering disciplines, 

software engineering should provide measurement to assess the quality of soft­

ware. Software requirements can tell which of the qualities are most important 

and how to measure and evaluate whether the important qualities have been 

met. A software requirement is: i) a condition or capability needed by a user 

to solve a problem or achieve an objective; ii) a condition or capability that 

must be met or possessed by a system or system component to satisfy a con­

tract , standard, specification, or other formally imposed document; or, iii) a 

documented representation of a condition or capability as in the above two 

definitions (IEEE, 2000). 

Software requirements can improve the following software qualities: 

• Correctness (QFl): The process of writing software requirements, espe­

cially formal software requirements , helps the user understand what they 
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actually want to build. 

• Usability (QF4): Software requirements provide the information of what 

the software can do. This information introduces the functionality of 

the software. The documentation of the functionality make the software 

easier to use. 

• Maintainability (QF5): With the software requirements, maintainers can 

discover and locate errors by comparing the requirements with what 

the software actually does. Therefore, the software becomes easier to 

maintain. 

• Testability (QF6): Software requirements serve as a contract between 

developers and testers. Without unambiguous and validatable software 

requirements, it is difficult to test the software. 

• Reusability (QF9): The software can only be reused if what the software 

does is known. This information is easier to obtain by directly reading 

software requirements document than by deciphering the code. 

Usually software requirements activities include software requirements 

elicitation, software requirements analysis, software requirements documenta­

tion, and software requirements verification. Software requirements elicitation 

facilitates the understanding of what the software is supposed to do. The soft­

ware analysis is the process of refining and modeling the requirements. Soft­

ware elicitation and software analysis are necessary for producing the software 

requirements document. The software requirement verification checks whether 
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the requirements are consistent and complete. In some case requirements ver­

ification is considered part of the analysis stage. However, it is separated in 

the current work to highlight the importance of verification step. 

This chapter describes how these activities are conducted to develop 

PMGT. In Section 2.1, Section 2.2, Section 2.3, and Section 2.4, the activities 

of software requirements elicitation, software requirements analysis, software 

requirements documentation, and software requirements verification are spec­

ified, respectively. A complete SRS for PMGT is provided in Appendix A. 

2.1 Software Requirements Elicitation 

Requirements elicitation is the process of discovering the requirements for a 

system by communication with customers, system users and others who have a 

stake in the system development (Sommerville and Sawyer, 1997). The start­

ing point for the current work was Smith and Chen (2004), which provides 

a set of software requirements that are common to mesh generation software. 

They also considered the differences between mesh generators in term of there 

variabilities. Smith and Chen (2004) significantly reduced the time and effort 

necessary to gather the requirements from stakeholders. However, the system 

analyzed by Smith and Chen (2004) was targeted at Finite Element Analysis 

(FEA) applications. PMGT, on the other hand, only manages the geomet­

ric information about the mesh, not other FEA related information , such as 

boundary conditions and material properties. Hence, only commonalities from 

Smith and Chen (2004) that are meaningful for PMGT were selected. 
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2.2 Software Requirements Analysis 

Traditionally, requirements analysis methods are placed into two categories: 

structured analysis and object-oriented analysis. A limitation of both cate­

gories is that these methods associate requirements analysis with programming 

languages. Structured analysis relates to structured programming languages 

and object-oriented analysis relates to object-oriented programming languages. 

Focusing on specific class of programming languages brings the design decision 

to the early stage of the development. This invalidates the basic principles of 

software requirements that the software requirements should be abstract and 

methodology independent. 

Goal-based methods are concerned with the use of goals for eliciting 

and analyzing requirements (van Lamsweerde, 2001). This kind of analysis is 

abstract since it does not favor any class of programming languages; hence, 

it gives more freedom for the later stage of development. PMGT used ideas 

from goal-based method for analyzing software requirements. 

The first step of analysis is identifying the goals of PMGT. These goals 

are too general to be easily implemented as software, especially for the first 

iteration of the development. For example, a goal for PMGT may be to "refine 

a given mesh into a new mesh according to the provided information on which 

elements need to be refined." Without some restrictions (assumptions), such 

as the dimension of the input mesh, it would be impossible to develop the 

software. Hence, the goals need to be refined step by step to find requirements 

that are concrete enough to fit the scope of the software to be developed. 

Also, goals are usually expressed in natural language, and natural language 
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is inherently ambiguous. During the refinement, mathematical notations and 

terms are introduced to make the requirements validatable and unambiguous. 

2.3 Software Requirements Documentation 

A Software Requirements Specification (SRS) is a document containing a com­

plete description of what the software will do, without describing how it will 

do it (Davis, 1990). According to their formality, methods for document­

ing requirements are categorized into informal methods, formal methods, and 

semi-formal methods. By using informal methods, software requirements are 

expressed in natural language. Most requirements documents in industry use 

informal methods due to the understandability of natural language. However, 

natural language is inherently ambiguous; hence, the requirements are difficult 

to validate. In contrast to informal methods, formal methods use languages 

designed for specification, such as Z, to document the requirements. The use 

of formal techniques can reduce the ambiguity of the requirements. However, 

this kind of method is not widely used due to understandability challenges and 

high cost. Semi-formal methods, such as UML, try to keep a balance between 

informal methods and formal methods. Semi-formal methods are easier to un­

derstand and develop than formal methods. However, problems of verification 

and validation of requirements still exist. 

There is no universally accepted way of documenting requirements. A 

combination of informal methods and formal methods is used to document the 

software requirements of PMGT. For each requirement, plain English is used 
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for description. In addition, formal mathematical/logical expressions are used 

where applicable to improve the Testability (QF6) of PMGT. The format of 

the mathematical notations and terms are borrowed from Gries and Schneider 

(1993), as explained in Appendix A. 

The template proposed by Lai (2004); Smith and Lai (2005); Smith 

et al. (2007) is used as a basis for the current SRS. Lai's template modified 

the general software requirements templates documented in IEEE (1998) and 

in Robertson and Robertson (2001). Lai's template was designed for the spe­

cific case of engineering mechanics software. Solving a engineering mechanics 

problem begins with generating theoretical models for the problem and then 

instantiating these models. The step of instantiating the model was removed 

for documenting PMGT, since PMGT is a general tool involving only a few 

mathematical equations. There is no need to instantiate the theoretical mod­

els, as the theoretical models already have the correct level of abstraction. 

Data constraints, which are part of Lai 's template, are also not considered to 

be necessary in the current work. The complete SRS for PMGT is in Appen­

dix A. Note that the SRS should be updated when the software requirements 

change. Sections of the SRS for PMGT are as follows: 

1. Reference Material 

2. Introduction 

3. General System Description 

4. Specific System Requirements 

5. Other System Issues 
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6. Traceability Matrix 

7. List of Possible Changes in the Requirements 

8. Values of Auxiliary Constants 

Each of these sections is described m more detail below, including exam­

ples where appropriate. Sections of Reference Material, Introduction, General 

System Description, and Specific System Requirements give introductions of 

PMGT in different perspectives, and improve the Usability (QF4) of PMGT. 

2.3.1 Reference Material 

This section includes tables of symbols , abbreviation and acronyms. These 

tables helps reduce the ambiguity of the document. For instance, a reader 

can refer to the table after reading the goal statements to see that MIN and 

MOUT are the symbols used for the input and output meshes, respectively. 

The reference material section also includes an index of requirements, to facil­

itate users quickly finding the requirements they need. 

2.3.2 Introduction 

This section gives an overview ofthe SRS for PMGT. First, the purpose of the 

documents is provided. Second, the scope of PMGT is identified. Third, some 

terminology about software engineering and mesh generation are defined. As 

mentioned in Section 1.3, most of mesh generation software is not developed 

by software engineers. Readers of the SRS for PMGT may not have essential 

knowledge of software engineering. Hence, including terminology about both 
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software engineering and mesh generation is necessary. Finally the organiza­

tion of the document is summarized. 

2.3.3 General System Description 

This section describes the general information about the system. The in­

terfaces between the system and its environment are defined first. Then the 

characteristics of potential users are discussed. At end of this section, some sys­

tem constraints are described. This software is intended to be used on Shared 

Hierarchical Academic Research Computing Network (SHARCNET). How­

ever, SHARCNET is constantly improving and changing its system. There­

fore, it is important to design the software to only need the basic features of 

SHARCNET, and not to focus on details of SHARCNET. Abstracting away 

the detailed system constraints makes it possible for PMGT to be used in 

other systems similar to SHARCNET, which improves the Portability (QF8) 

ofPMGT. 

2.3.4 Specific System Requirements 

This section describes the system requirements in detail. After the problem is 

clearly and unambiguously stated, some solution characteristics are specified. 

Non-functional requirements are also included in this section. This section is 

the major section of the SRS. Goals , assumptions, theoretical models, data 

definitions, and software requirements are all specified here. 

A goal is an objective that the system under consideration should 

achieve (van Lamsweerde, 2001). One of goals of PMGT is 
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Gl: Given a mesh MIN and instructions I on how to refine the 

mesh, PMGT should generate a refined mesh MOUT according to 

the instructions I . 

MIN and MOUT represent an input and an output mesh respectively, and I 

represents instructions on how a mesh should be refined/ coarsened. 

An assumption reduces the scope of the software. One example as­

sumption of PMGT is 

• Al: PMGT focuses on a 2D domain. 

• A4: The input and output meshes are conformal. 

• A5: The elements of input and output meshes are triangles. 

Usually, the software is extended by relaxing one or more assumptions. In­

cluding assumptions in the SRS can make adding more functionality to the 

software easier by tracing from assumptions to requirements and then, in a 

later step, to modules. 

Theoretical models refine the goals in two aspects. First , this refine­

ment makes the goals more concrete by applying assumptions to the goals. 

Second, the refinement makes the goals more unambiguous by expressing the­

oretical models more formally. A theoretical model that refines G 1 follows. 

TMl: Refining Mesh 

Input: MIN: MeshT , I : RCinstructionT, 

Output: MOUT: MeshT 

The following behavior is specified: 
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That is , the output mesh is a refined version of the input mesh. 

Theoretical models, such as TMl, are more formal than the goals. How­

ever, they can be difficult to understand. Data definitions help by defining 

terms used in the theoretical models and requirements. Some of data defini­

tions used to define TMl are introduced as follows: 

RCinstrctionT (D22) is defined as 

RCinstructionT :=tuple of (rORc: InstructionT, clnstr: set of 

CellinstructionT) 

where InstructionT :={REFINE, COARSEN, NOCHANGE}, 

and Cell!nstructionT :=tuple of (cell: CellT, instr: InstructionT) 

Refined( MO UT, MIN) (D23) is defined as 

Refined: MeshT x MeshT x RCinstructionT~~ 

Refined(m', m: MeshT, rc: RCinstructionT) -

rc.rORc =REFINE A ValidMesh(m) A ValidMesh(m') A 

CoveringUp(m', m) A # m' 2:: # m 

All data definitions used in D23 are formally defined in the SRS. However, for 

the presentation in this chapter, it is not necessary to formally define all of 

the definitions. Some data definitions used to define D23 and data definitions 

used later in this section are explained informally as follows : 

• VertexT: type of vertices; 

• EdgeT: type of edges; 
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• Cell T: type of cells; 

• MeshT: type of meshes, which is a set of Cell T; 

• Vertices: a function that returns the vertices in a mesh; 

• Edges: a function that returns the edges in a mesh; 

• Boundary Vertices: a function that returns the set of boundary vertices; 

• BoundaryEdges: a function that returns the set of boundary edges; 

• ValidCell: a boolean function that returns true if the cell is a triangle; 

• Bounded: a boolean function that returns true if the boundary edges 

form a closed polygon; 

• No!nterior!ntersect: a boolean function that returns true if a point in 

space is inside only one cell of the mesh; 

• OnEdge: a boolean function that returns true if a vertex is on the line 

segment between two vertices (exclusive) of an edge. 

In the data definition D23, ValidMesh (D18) is a boolean function to check if 

a mesh is valid, which is defined as 

ValidMesh: MeshT -+ Iffi 

ValidMesh(m: MeshT) _ (V e: EdgeT I e E Edges(m): ValidEdge(e)) 

1\ (V c: CellT I c Em: ValidCell(c)) 1\ 

Bounded(m) 1\ Conformal(m)l\ No!nteriorlntersect(m) 

29 



<i. 

Master Thesis - Wen Yu -McMaster- Computing and Software 

CoveringUp (D19) is a boolean function to check if two meshes cover up one 

another, which is defined as 

CoveringUp: MeshT x MeshT --+ 1B\ 

CoveringUp(ml, m2: MeshT) - V vl, v2: VertexT I 

vl E Boundary Vertice(ml) 1\ v2 E Boundary Vertices(m2): 

(::3 bl, b2: EdgeT I bl E BoundaryEdges(ml) 1\ 

b2 E BoundaryEdges(m2): 

( OnEdge(vl, b2) V vl E b2) 1\ ( OnEdge(v2, bl) V v2 E bl)) 

Conformal (D16) is a a boolean function to check if a mesh is conformal, which 

is defined as 

Conformal: MeshT --+ 1B\ 

Conformal(m: MeshT) - V cl, c2: CellT I c1 Em 1\ c2 E m 

1\ c1 =/=- c2 : 

(::3 e: EdgeT I e E Edges(m) : (::3 v: VertexT I v E Vertices(m): 

(cl n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (• OnEdge(v , e)))) 

The detailed data definitions can be found in the SRS. 

The theoretical models can then be further refined to the functional 

requirements of the software. For each goal, assumption, theoretical model, 

data definition, and requirement, a name and a unique number are assigned 

for readability of the SRS , and for Usability (QF4) of PMGT. 

All functional and nonfunctional requirements are specified in a tabu­

lar form. An example functional requirement is shown in Table 2.1. In each 

table, the field Description gives a brief description of this requirement. It 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F1 
RefiningMesh 
PMGT should have capabilities for 
refining an existing mesh. 
I.rORc = REFINE 1\ 

Refined(MOUT, MIN) 
C1, V3 
D20, D22, D23 
TM1 
Scope time 
Created- June, 2005. 
Modified - October, 2005. Change 
the name from "ImprovingMesh" 
to "RefiningMesh." 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" were 
added. 

Table 2.1: An Example Functional Requirement 

tells what PMGT should do to fulfill this requirement. There are two paten-

tial sources, shown in the Source field, for each requirement. One source is 

from Smith and Chen (2004), and the other comes from Dr. Smith. If the 

requirement is from Smith and Chen (2004), then this field will show the com-

monality number, with a prefix C and the associated variability, shown by a 

prefix V. Where applicable, Related Data Definitions and Related Theoretical 

Models give the numbers of the related data definitions and the numbers of 

the related theoretical models, respectively. These two field only appear for 

functional requirements. The Binding Time field either shows scope time or 

run time. Scope time means that this requirement is determined when the 

SRS is written. Run time means that this requirement is determined when 
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the system is running. History records the time and details of creating and 

changing the requirement. 

An example nonfunctional requirement (NFR) is shown in Table 2.2. 

An NFR has similar fields to a functional requirement. However, there is no 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Nl 
Performance 
Refining/ coarsening a mesh using 
multiple processors should be faster 
than when using a single proces­
sor. In addition, the performance 
of PMGT should be comparable 
with that of similar applications. 
The execution time to refine an ex­
ample mesh, which is specified in 
Appendix D, should be RSPTIME. 
C15, V39 
Scope time 
Created- June, 2005. 

Table 2.2: An Example Nonfunctional Requirement 

Related Data Definitions and Related Theoretical Models, since there are no 

such relations. As mentioned Section 1.2, Nonfunctional Requirement Chal­

lenge exists in scientific computing software, including PMGT. NFRs are dif-

ficult to formally document and test. In the case of PMGT, an attempt was 

make to give a criterion for each NFR so that it is possible to test whether 

the requirement has been met. For example, in the Description of the non-

functional requirement Nl, the criterion is quantified by giving a constant 

RSPTIME, which will be specified in Section 2.3.8. The quantifying of the 

requirements improves the Testability (QF6) of PMGT. 
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2.3.5 Other System Issues 

This section includes some other supporting information that might contribute 

to the success or failure of the system development. Open issues, off-the-shell 

solutions, and waiting room items are considered here. In particular, the wait­

ing room items relate to relaxing the assumptions introduced in Section 2.3.4. 

The waiting room provides a blueprint of how the system will be extended, 

and hence it improves the Flexibility (QF7) of the software. 

2.3.6 Traceability Matrix 

This section shows the traceability matrix. This matrix gives the associations 

among goals, assumptions, data definitions, theoretical models , and functional 

and nonfunctional requirements. A portion of the matrix is shown in Table 

2.3 and Table 2.4. This matrix can be used for improving the Maintainability 

(QF5) , and Flexibility (QF7) of PMGT. For example, if one of the goals of 

PMGT changes, all of the assumptions, most of data definitions, one of the 

theoretical models, and most of functional requirements would change. On 

the other hand, if the assumption that "the input and output meshes are 

conformal" (A4) changes, only the data definition D16 and the requirement 

F7, which relate to comformality , would change. Another use of the matrix is 

to improve the Correctness (QFl) of PMGT since the matrix ensures that the 

initial goals are correctly transferred into the software requirements. Other 

uses of the traceability matrices are specified in Section 2.4. 
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2.3. 7 List of Possible Changes in the Requirements 

The system might evolve to accommodate some changes in the future. These 

changes will add additional goals to the software library. For example, the 

input of PMGT may change to include material properties. Including this 

information improves the Flexibility (QF7) of PMGT. 

2.3.8 Values of Auxiliary Constants 

The constants given in this section are used to make some of the nonfunctional 

requirements validatable. These constant are defined to quantify the nonfunc­

tional requirements by comparing them to a similar software product, such 

as AOMD (SCOREC, Last Access: January, 2006). For example RSPTIME 

is defined as the execution time to refine the same mesh as that specified in 

nonfunctional requirement Nl using AOMD. It is noticed that these constants 

are for specific system. As mentioned previously, this quantifiable requirement 

improves the Testability (QF6) of PMGT. 

2.4 Software Requirements Verification 

An important part of the requirement analysis is verifying the requirements 

for completeness and consistency. A traceability matrix can helps with this 

activity. For example, the traceability matrix checks for completeness since if 

there is no check mark ( ./) in a cell associated with a goal, or a assumption, 

or a theoretical model in the corresponding column, it means the goal or the 

assumption, or the theoretical model is not address by any software require-
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ment. Hence, the software requirements are not complete. The traceability 

matrix can also partially check the consistency of the requirements document. 

If there are no entries in the column associated with a data definition, it means 

the data definition is not useful and should not appear in the document. If 

there are no data definitions in columns associated with a theoretical model 

in a row, this model should be checked carefully to see if there are any po­

tential deficiencies in the software requirements, potentially due to software 

requirements analysis problems. 
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I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21 

Al ./ ./ ./ 
A2 ./ ./ ./ 
A3 ./ ./ ./ 
A4 ./ ./ ./ 
A5 ./ ./ ./ ./ 
A6 ./ ./ ./ 

Dl ./ ./ ./ 
D2 ./ ./ 
D3 ./ ./ 
D4 ./ ./ ./ ./ 
D5 ./ ./ ./ ./ 
D6 ./ ./ ./ ./ 
D7 ./ ./ 
D8 ./ ./ ./ 
D9 ./ ./ ./ 
DlO ./ ./ ./ ./ 
Dll ./ ./ 
D12 ./ ./ ./ ./ 
D13 ./ ./ ./ 
D14 ./ ./ ./ 
D15 ./ ./ ./ ./ 
D16 ./ ./ ./ ./ 
D17 ./ ./ ./ ./ 
DIS ./ ./ 
D20 ./ ./ 
D21 ./ ./ 
D22 ./ ./ 
D19 ./ ./ ./ ./ 
D23 ./ 
D24 ./ 

Table 2.3: Traceability Matrix (PART I): Goals, Assumptions, Theoretical 
Models, Data Definitions, and Requirements (I) 
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I Gl I G2 I AI I A2 I A3 I A4 I A5 I A6 I TMII TM21 
Fl ./ ./ 
F2 ./ ./ 
F3 ./ ./ ./ ./ 
F4 ./ 
F5 ./ ./ ./ ./ ./ ./ 
F6 ./ ./ ./ ./ ./ 
F7 ./ ./ ./ 
F8 ./ ./ ./ ./ 
F9 ./ ./ ./ ./ 
FlO ./ ./ 
Fl6 ./ ./ 

Table 2.4: Traceability Matrix (PART I) : Goals , Assumptions, Theoretical 
Models, Data Definitions, and Requirements (II) 
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Chapter 3 

Design 

According to the process model for PMGT proposed in Section 1.5, once soft­

ware requirements have been analyzed and specified, software design follows. 

Software design is defined as decomposing the software into modules, describ­

ing what each module is intended to do and specifying the relationship among 

the modules (Ghezzi et al., 2003). A module is defined as a "work assign­

ment," as proposed by Parnas (1972). Instead of "a portion of a program," 

this definition includes in software design the activities that occur before pro­

gramming. Because the module decomposition of PMGT does not assume 

any programming language, a different class of programming language will 

potentially change the implementation. The independence of PMGT from the 

specific programming language means that the Reusability (QF9) of the design 

is improved. 

The principle applied for design is information hiding. According to 

this principle, system details that are likely to change independently should 
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be hidden in different modules (Parnas et al., 1984). The information hiding 

principle allows both designers and maintainers to easily identify the parts of 

the software that they want to consider without needing to know irrelevant 

details. The Maintainability (QF5) and Flexibility (QF7) of the software are 

thus improved. The process of module decomposition can proceed in different 

ways, such as top-down or bottom-up. The top-down process decomposes the 

system by stepwise refinement from higher levels of abstraction to lower levels 

of abstraction. In contrast, bottom-up decomposition first defines modules 

and then iteratively combines these modules into higher level components. 

Like the design of most software, the strategy used here is a combination of 

top-down and bottom-up design. 

Applying the top-down strategy, the whole design of PMGT is decom­

posed into an architectural design, which will be specified in Section 3.1, and 

a detailed design, which will be introduced in Section 3.2. 

3.1 Architectural Design 

Software architecture is the overall structure of the software and the ways in 

which that structure provides conceptual integrity for a system (Shaw and 

Garlan, 1995). The overall structure is illustrated in Section 3.1.1. The com­

pleteness and consistency of this structure are verified in Section 3.1.2. The 

use relation is shown in Section 3.1.3. The architectural design is documented 

in the MG, which is appended in Appendix B. 
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3.1.1 Decomposition of the System into Modules 

By hiding details that are likely to change independently in different modules, 

PMGT is easier to maintain and extend. For example, if one of algorithms that 

refines the input mesh changes, only the modules that hide the information 

on how to refine a mesh need to change. It is not likely that the modules that 

hide the information on how to coarsen a mesh need to change. This design 

for change approach is adopted throughout the architectural design of PMGT. 

There are two steps for designing the architecture of PMGT. In the 

first step, anticipated changes are identified. These changes should not impact 

the basic functionality of PMGT in that the goals of the software should not 

be affected. The list of anticipated changes can improve the Flexibility (QF7) 

of PMGT since this list helps to find modules to be changed when software 

requirements change. Several examples of anticipated changes (from Appendix 

B) are as follows: 

• AC7: The mechanisms for validating the input and output meshes. 

• ACll: The data structure of a mesh. 

• AC12: The algorithms for refining a mesh. 

• AC14: The shape of a cell, which is initially assumed to be a triangle. 

Ideally, all anticipated changes should be independent of one another, so that 

one change can be hidden inside one module. When a change occurs, only the 

module that hides the change needs to be modified. 
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Unlikely changes are also listed. If one of these changes occurs , the 

design of PMGT makes no obligation that adapting to this change will only 

require small modifications. Some unlikely changes include the following: 

• UC5: The type of the mesh is unstructured. 

• UC6: The representation of an edge as a set of vertices. 

• UC8: A Cartesian coordinate system is used. 

An unstructured mesh is more complex than a structured one. Therefore , it 

is not likely to adapt unstructured mesh software to structured mesh software 

because of the greater generality of the unstructured mesh. Hence, the type 

of unstructured mesh is an unlikely change (UC5). Another example of an 

unlikely change is the change of the representation of an edge (UC6). This 

change will affect all of the data structure modules. Unlike the design pro­

posed by ElSheikh et al. (2004), the coordinate system is also assumed to be 

an unlikely change (UC8). Putting UC8 into the anticipated changes category 

would make the software more general. However, this generality would be at 

the price of complexity. A design decision was made to consider the UC8 to 

be an unlikely change because this decision reduces the complexity of PMGT. 

Listing unlikely changes helps one set realistic goals for Flexibility (QF7) be­

cause it explicitly identifies those maintenance tasks that would not be likely 

nor feasible. 

After identifying likely and unlikely changes, the system was decom­

posed into modules. A bottom-up strategy was used for the decomposition to 

facilitate the principle of information hiding. Each module accommodates one 
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(or more) anticipated changes. These modules were iteratively combined to 

form higher level modules until the whole system was constructed, as shown in 

Table 3.1. The level 1 decomposition into hardware-hiding module, behavior­

hiding module and software decision module was inspired by Parnas et al. 

(1984) . 

Level 1 Level 2 Level 3 Level 4 

Hardware-
Extended Virtual Memory 

Hiding 
Computer Module Module 

File Read/Write 
Module 

Module 
Device Interface Keyboard Input 
Module Module 

Screen Display 
Module 

Behavior- Input Format Mod-
Hiding ule 
Module Output Format 

Module 
Service Module 

Vertex Module 
Software 

Mesh Data Module 
Entity Module Edge Module 

Decision Cell Module 
Module Mesh Module 

Algorithm Module 
Refining Module 
Coarsening Module 

Table 3.1: Module Hierarchy 

Each module has its secrets and provides services to the other modules. 

Only the leaves in the hierarchy have to be implemented. The higher level 

modules are conceptual. They are used to facilitate reading of the MG for 

understanding the design. Some of the leaf modules, such as the leaves in the 

"Hardware Hiding Modules," are commonly used in many different software 
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projects. These module are usually implemented by the operating system or 

through the libraries of the implementing programming language. 

In the MG, in addition to Secrets and Services, there is an Implemented 

By field for each module. If the entry in this field is OS, then this module is 

assumed to already be implemented. PMGTmeans this module will be imple­

mented by PMGT. If a dash ( -) is shown, this means that this module does 

not need to be implemented. Whether this module is implemented depends on 

the programming language used. For example, if an imperative programming 

language is used, the higher level modules will not likely be implemented. How­

ever, if inheritance exists in the implementing programming language, such as 

in an 00 language, the higher level modules can be implemented as super 

classes. As mentioned previously, the decomposition of PMGT is independent 

of programming language. Examples of module decomposition are illustrated 

as follows: 

• M4: Screen Display Module 

Secrets: The data structure and algorithms to display graphics and text 

on the screen. 

Services: Provides an interface between the system and the screen so 

the system can display information on the screen through the use 

of programs in the module. 

Implemented By: OS 

• Behavior-Hiding Module 

Secrets: The contents of the required behaviors. 
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Services: Includes programs that provide externally visible behavior 

of the system as specified in the software requirements specifica­

tion (SRS) documents. This module serves as a communication 

layer between the hardware-hiding module and the software deci­

sion module. The programs in this module will need to change if 

there are changes in the SRS. 

Implemented By: -

• M12: Refining Module 

Secrets: Algorithms for refining a mesh. 

Services: Refining a mesh. 

Implemented By: PMGT 

3.1.2 Verifying the Decomposition 

The decomposition can be verified for consistency and completeness by consid­

ering the traceability matrices. The traceability matrix between modules and 

requirements is shown in Table 3.2. M followed by a number is the number of 

a module. F followed by a number is a number of a functional requirement. N 

followed by a number is the number of a nonfunctional requirement. There is 

also a special column "Doc," which represents the documentation of PMGT. 

No empty row in the table means that all requirements of PMGT are fulfilled 

by one or more modules; that is, the design is complete. No empty column 

means that all modules are necessary to implement one or more requirements; 

that is, the design is consistent. 
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I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Mq Ml~ Mq Docl 
Fl ./ 
F2 ./ 
F3 ./ ./ 
F4 ./ ./ ./ ./ ./ 
F5 ./ ./ 
F6 ./ ./ ./ 
F7 ./ ./ ./ 
F8 ./ ./ 
F9 ./ ./ 
FlO ./ ./ ./ 
Fll ./ 
F12 ./ 
F13 ./ 
F14 ./ 
F15 ./ 
F16 ./ 
Nl ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N2 ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N3 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N4 ./ ./ ./ ./ ./ ./ ./ 
N5 ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N6 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N7 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 

Table 3.2: Traceability Matrix: Modules and Requirements 

The traceability matrix improves Maintainability (QF5) and Flexibility 

(QF7). For example, if the requirement that "PMGT should have capabilities 

for refining an existing mesh" (Fl) changes, then only the "Refining Module" 

(M12) would need to change since from the traceability matrix only M12 is 

associated with Fl. Another example is that if the requirement that the shape 

of the elements in a mesh is triangular (F5) changes, then only the service 

module (M7), which hides the information on how to validate a mesh, and the 
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I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Ml~ Ml~ Mq 
ACl .( 

AC2 .( 

AC3 .( 

AC4 .( 

AC5 .( 

AC6 .( 

AC7 .( 

AC8 .( 

AC9 .( 

AClO .( 

ACll .( 

AC12 .( 

AC13 .( 

AC14 .( .( 

Table 3.3: 'Iraceability Matrix: Modules and Anticipated Changes 

cell module (MlO), which hides the information on the data structure of a cell, 

would need to change. The matrix also can improve the Correctness (QFl) of 

PMGT since the matrix ensures that the software requirements are correctly 

transferred into the modules. 

The matrix in the functional requirements area is sparse; that is, chang-

ing one of functional requirements will not change too many modules. On the 

other hand, changing one of the nonfunctional requirements means changing 

many modules. This demonstrates that nonfunctional requirements are asso-

ciated with qualities of the system, not specific functions. 

Another traceability matrix is the matrix between modules and antic-

ipated changes , as shown in Table 3.3. As in Table 3.2 , M followed by the 

number is the number of a module. AC followed by a number is a number 

of an anticipated change. Except for AC14 (anticipated change for the shape 
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of cells) , M7 (service module), and MlO (cell module), which have multiple 

associations , the rest of the anticipated changes and modules have single as­

sociations. For each module, there is only one anticipated change associated 

with it; that is , the module is simple since it only have one secret (anticipated 

change). For each anticipated change, there is usually only one module asso­

ciated with is; that is , the module is as independent as possible, since each 

secret is only hidden in one module. Changing one anticipated change usu­

ally only requires changing one module. For example, if the data structure 

of a mesh (ACll) changes , then the mesh module (Mll) would change, since 

from Table 3.3 ACll associates with Mll. Decomposing PMGT to simple and 

independent modules promotes Testability (QF6), Maintainability (QF5) and 

Flexibility ( QF7). 

3.1.3 Use Relation 

Software design includes relationship among modules. The use relation for 

PMGT is shown in Figure 3.1. Parnas (1978) said of two programs A and B 

that A uses B if correct execution of B may be necessary for A to complete the 

task described in its specification. That is, A uses B if there exist situations in 

which the correct functioning of A depends upon the availability of a correct 

implementation of B. It can be seen that the graph is a directed acyclic graph 

(DAG). Each level of the hierarchy offers a testable and usable subset of the 

system. This improves the Testability (QF6) and Reusability (QF9) of PMGT. 

For example, the mesh module (together with vertex module, edge module, and 

cell module) is a subset of the system. The design and the implementation 
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Figure 3.1: Uses Hierarchy among Modules 
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of this subset can be reused since it does not use other modules. Another 

example is that the coarsening module and output format module can be 

removed, and the remaining subset is still very useful. Modules in the higher 

level of the hierarchy are essentially simpler because they use modules from 

the lower levels, thus the Maintainability (QF5) of PMGT is improved. The 

design is easily understood due to its simplicity; therefore, the Usability (QF4) 

of PMGT is improved. 

3.2 Detailed Design 

Figure 3.1 gives the uses relations between modules. However, these relations 

do not give enough information for each module to be developed independently. 

The syntax and semantics of the access routines for each module are still 

needed. The detailed design of PMGT being described in this section provides 

this information by specifying the interface of each module. A document that 

provides the detailed design, called the Module Interface Specification (MIS), 

is appended in Appendix C. The detailed design is less abstract than the 

architectural design in the last section. However, it is still abstract because 

it describes what the module will do, but not how to do it. A state machine 

MIS is used. Note that some of the modules have multiple projections, as 

used for example in Bauer (1995). In this case, state variables give the format 

of all states for all of the created objects. The change of state variables is 

applicable to the particular object associated with this module. Before giving 

some examples to illustrate the detailed design of PMGT in Section 3.2.2, 
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the template for documenting the MIS for each module is first introduced in 

Section 3.2.1. 

3.2.1 Template 

The template used to document the MIS for each module is a modified version 

of the MIS template presented in Ghezzi et al. (2003) and of that presented 

in Hoffman and Strooper (1999). According to the adopted template, each 

module is modeled as a finite state machine. It has a set of state variables, 

inputs, outputs, and transitions. In the case that some conditions do not hold, 

an exception is raised by the access program that detects the exception. If an 

access program has an output, then Output is specified. If an access program 

changes states variables, a Transition is specified. The inputs of the access 

program are listed as arguments. The mathematical notations used in the 

MIS follow that introduced by Gries and Schneider (1993), as illustrated in 

the SRS document in Appendix A. The whole template is composed of four 

parts as follows: 

1. Module Name: This section gives the name of the module. 

2. Uses: This section lists constants, data types, and access programs that 

are defined outside of this module. The format of each imported item is 

specified as 

Uses (module name) Imports (resource constants/data_typejaccess_program 

list ) 

The associations with other modules are listed when the use of the other 
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modules is necessary to document the MIS. It is not necessarily the same 

as the uses relation in Section 3.1.3. For example, in the examples listed 

in Section 3.2.2 , the refining modules uses is ValidMesh and Covering Up 

functions defined in the Service module to specifying the assumptions 

and semantics of the access program. However, the Service module is 

not used to fulfill the functionality of the refining module. Hence, there 

is no uses relation between the refining module and the service module. 

On the other hand, it is obvious that the refining module will use the 

add Cell function to refine a mesh. However, this function is not used by 

the refining module for specifying the semantics of the access program 

of the refining module. Hence, the addCell function is not imported by 

the refining module in the MIS document. 

3. Interface Syntax: This section defines the syntax of the module interface. 

The interface indicates the services that the module provides. Other 

modules can only access this module through this interface. The other 

information inside the module is the secret that it hides from other mod­

ules. Changing this internal information will not affect the way that 

other modules use this module. This section includes the exported con­

stants, exported data types, and exported access programs. Each access 

program has a name, input list, output list, and exceptions. 

4. Interface Semantics: This section introduces the semantics associated 

with the above syntax. It includes i) state variable; ii) assumption; 

iii) access program semantics; iv) local functions; v) local data types; 
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vi) local constants; and, vii) considerations. The access program seman­

tics include possible exceptions, possible outputs , and possible transi­

tions . The semantics should be as formal as possible to improve the 

Testability (QF6) of PMGT. When necessary and appropriate, an Eng­

lish explanation is included to help readers understand the meaning of 

the mathematical notation. The natural language explanation improves 

the Usability (QF4) of PMGT. Both assumptions in the interface seman­

tics and exceptions in the access program semantics specify abnormal sit­

uations. However, exceptions and assumptions serve different purposes. 

When an assumption does not hold, the software makes no guarantee 

on the behavior. On the other hand, when an exception occurs, the 

software is obligated to handle it. Local functions, local data types, and 

local constants are used to facilitate the expression of the interface se­

mantics. The considerations section includes other issues related to the 

MIS of this module that could not be covered in the other parts. 

3.2.2 Examples 

The detailed design of each module is documented according to the template in 

Section 3.2.1. As shown in Table 3.1, the system is decomposed into three mod­

ules in Level 1. Hardware-Hiding Module is implemented outside of PMGT 

and not included in the examples. Service Module, which belongs to Behavior­

Hiding Module is selected as one of examples. Software Decision Module is 

the most important module. Hence, two example modules that belong to the 

Software Decision Module are illustrated here. One is the Mesh Module, which 
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is for the data structure of the mesh, and the other is Refining Module, which 

is for one of the algorithms. These three examples that illustrate the idea of 

the detailed design are provided in the section that follows. If an MIS sub­

section does not have content, then this section is excluded to save space. In 

addition, not all of the semantics of the access programs are listed to simplify 

the presentation. The full details for these example can be found in Appendix 

c. 

3.2.2.1 Mesh Module 

• Imported Data Types: 

Uses Vertex Module Imports VertexT 

Uses Edge Module Imports EdgeT 

Uses Cell Module Imports CellT 

• Exported Data Types: MeshT := set of Cell T 

• Exported Access Programs: The exported access programs for the mesh 

module are listed in Table 3.4. 

• State Variables: m: set of Cell T 

• Invariant: #m ~ 0 

• Assumptions: initMesh() is called before any other access routines. 

• Access Program Semantics: 

- initMesh() 
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Routine N arne Input Output Exceptions 
initMesh 
get Mesh MeshT 

numOfCells N 
add Cell CellT MeshT Cell Exist 

delete Cell CellT CellNotExist 
onEdge VertexT, EdgeT lffi 

belongToCell EdgeT , CellT lffi 
inside VertexT , CellT lffi 

vertices set of Vert exT 

edges set of EdgeT 
boundary Edges set of EdgeT 

boundary Vertices set of VertexT 

Table 3.4: Exported Access Programs of the Mesh Module 

* Transition 

m:=0 

- addCell(c: CellT) 

* Exception 

c E m ===> CellExist 

* Transition 

m := mU {c} 

- onEdge(v: VertexT, e: EdgeT) 

* Description 

Returns true if a vertex v is on the line segment between two 

vertices (exclusive) of the edge e. 

* Output 

:J v1, v2: VertexT I 

v 1 E e /\ v2 E e /\ v 1 =/= v2 /\ v =/= v 1 /\ v =/= v2 : 
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(vl.x < v.x:::; v2.x 1\ 

(v.y- vl.y)j(v.x- vl.x) = (v2.y- vl.y)j(v2.x- vl.x)) 

- belongToCell(e: EdgeT, c: CellT) 

* Description 

Returns true if an edge e belongs to a cell c. 

* Output 

V v: VertexT I v E e : v E c 

- edges() 

* Description 

Returns a set of all edges of the mesh 

* Output 

{vl,v2: VertexT I (Vc: CellT IcE m: 

vl E c/\v2 E c/\vl =1- v2): {vl,v2}} 

- boundaryEdges() 

* Description 

Returns the set of boundary edges of the mesh 

* Output 

{ b: EdgeT I b E edges() 1\ 

(#{c: CellT I c Em 1\ belongToCell(b, c): c} · · 1): b} 

3.2.2.2 Service Module 

• Imported Data Types: 

Uses Vertex Module Imports VertexT 
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Uses Edge Module Imports EdgeT 

Uses Cell Module Imports CellT 

Uses Mesh Module Imports MeshT 

• Imported Access Programs: 

Uses Mesh Module Imports onEdge(), inside(), 

vertices(), edges(), boundaryEdges(), boundaryVertices() 

• Exported Data Types: 

InstructionT :={REFINE, COARSEN, NOCHANGE} 

CellinstructionT :=tuple of (cell: CellT, instr: InstructionT) 

RCinstructionT :=tuple of 

(rORc: InstructionT, clnstru: set of CellinstructionT) 

• Exported Access Programs: 

The exported access programs for the services module are listed in Table 

3.5. 

Routine N arne Input Output Exceptions 
isValidMesh MeshT :Ia 
covering Up MeshT x MeshT :Ia 

Table 3.5: Exported Access Programs of the Service Module 

• Access Program Semantics 

- isValidMesh(m: MeshT) 

* Description 

Returns true if the cells of the mesh are bounded, conformal, 

and if any two cells are not overlapping. 
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* Output 

Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m) 

- coveringUp(ml: Meshi , m2: Meshi) 

* Description 

Returns false if any boundary vertex of one mesh is not on a 

boundary edge of another mesh. Otherwise, return true. 

* Output 

\t'vl, v2: Vertexi, I 

vl E boundaryVertices(ml) 1\ v2 E boundaryVertices(m2): 

(:J bl, b2: Edgei I bl E boundaryEdges(ml) 1\ 

b2 E boundaryEdges(m2): 

(onEdge(vl, b2) V vl E b2) 1\ (onEdge(v2, bl) V v2 E bl)) 

• Local Functions 

- Valid Cell: Cell I ---+ 1B 

ValidCell(c: Celli) - #c = 3 1\ Area( c) 2: 0 

- Bounded: Meshi ---+ 1B 

Bounded(m: Meshi) = \1 v: Vertexi I v E boundaryVertices(m): 

(#{e: Edgei I e E boundaryEdge(m) 1\ vEe: e} = 2) 

- Conformal: Meshi ---+ 1B 

Conformal(m: Meshi) - \1 cl, c2: Celli I 

c1 E m 1\ c2 E m 1\ c1 -=1- c2 : 

(:J e: Edgei I e E eges(m): (:J v: Vertexi I v E vertices(m): 

(cl n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (• onEdge(v, e)) )) 
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- Nointeriorlntersect: MeshT ~ lB 

Nointeriorlntersect(m: MeshT) - 'V cl, c2: CellT I 

clEm/\ c2Em/\ cl=/=c2: 

('V v: VertexT I inside(v, cl): -, inside(v, c2)) 

3.2.2.3 Refining Module 

• Imported Data Types: 

Uses Mesh Module Imports MeshT 

Uses Service Module Imports 

InstructionT, CellinstructionT, RCinstructionT 

• Imported Access Programs: 

Uses Service Module Imports isValidMesh(), coveringUp() 

• Exported Access Programs: The exported access programs for vertex 

module is listed in Table 3.6. 

Routine Name Input Output Exceptions 
refining MeshT x RCinstructionT MeshT 

Table 3.6: Exported Access Programs of the Refining Module 

• Assumptions: isValidMesh(m) and i.rORc =REFINE 

for input m: MeshT and i :RCinstructionT 

• Access Program Semantics: 

- refining(m: MeshT, i: RCinstructionT) 
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* Output 

m' 

such that 

ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\ 

#m' ~ #m 
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Implementation 

The system implementation is the transformation of the design to a work prod­

uct. The implementation phase is very important in the software development 

life cycle because it produces an executable version of the system. Most of 

the quality factors mentioned in Section 1.1 are reflected through this work 

product. 

Unlike other phases in the software development life cycle, which are 

very simple or completely missing in scientific computing software , the imple­

mentation is always part of scientific computing software. However, even when 

the implementation is the sole component, it is not always done well. One of 

reasons for poor quality scientific computing software is that most scientific 

computing software, including mesh generation software, is written by scientist 

and most scientists have simply never been shown how to program efficiently 

(Wilson, 2006) . 

The implementation is the final step of the refinement from abstract to 
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concrete. The major decisions relating to the implementation of PMGT are 

the data structure, algorithms, and programming language. A considerable 

effort has been spent on studying the data structures and algorithms for mesh 

generation. This thesis is not intended to develop a brand new data structure 

or algorithm for mesh generation. Instead, considerations are given to choose 

(with minor modifications if necessary) proper data structure and algorithms 

to fit the scope of PMGT and to improve the qualities of PMGT. The selection 

of the data structure, the algorithms, and the programming language for the 

serial version of PM G T are discussed in Section 4.1, Section 4. 2, and Section 

4.3, respectively. Other decisions related to the implementation of PMGT, 

such as the decisions about parallelism and the system, are discussed in Section 

4.4. This chapter also includes an introduction to the software technologies 

used to improve the quality of PMGT in Section 4.5. 

4.1 The Data Structures 

A mesh can be represented by a list of cells, and each cell can be represented 

by a list of vertices. This data structure that is used for representing meshes 

in the previous chapters is simple and easy to understand (with meshes as sets 

of cells, cells as sets of vertices and vertices as tuples of real numbers). · Itis 

a good choice for representing a mesh during the software requirements and 

design stages since they are abstract and understandability is of high impor­

tance. However, in practice, this data structure is too inefficient. Although the 

geometrical information (the positions of the vertices) is given, the topological 
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information needs to be more detailed. Whenever information, like what cells 

are adjacent to a particular cell, is needed, searching the entire list will be 

necessary. On the other hand, if all geometrical and topological information 

are stored, too much space will be required. A compromise must be made 

to keep a balance between understandability, which relates to Maintainability 

(QF5) and Flexibility (QF7), and Efficiency (QF3). In this section potential 

mesh data structures are surveyed in Section 4.1.1. The data structure that 

PMGT uses is illustrated in Section 4.1.2. 

4.1.1 The Current Approach 

Berti (2000) names two kinds of relations among mesh entities: incidence 

relations and adjacency relations, which are widely used in the mesh generation 

community. This thesis adopts this naming convention. An incidence relation 

is a relation between the different classes of mesh entities, such as a relation 

between a cell and one of its edges. The edge is called an incident edge of the 

cell, and the cell is called the incident cell of the edge. An adjacency relation 

is a relation between the same class of mesh entities, such as two cells. For 

instance, one cell can be adjacent to another cell. 

The data structures of a polygonal mesh, in which the shape of cells is a 

polygon, are mainly divided into two categories, face-based data structures and 

edge-based data structures. In two dimensional space, a face is a cell. For each 

kind of data structure, geometric information is stored; that is, a list of vertices 

is stored. The difference comes from what and how the topological information 

is stored; that is, what and how the incidence relation and adjacency relation 
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is stored. 

Face-based data structures store, for each face, the incident vertices, 

and its neighboring faces. Navigating around each vertex can be made by vis­

iting all surrounding faces. The "Triangle" mesh generation software (Shew­

chuk, Last Access: January, 2006) uses a face-based data structure. Face-based 

data structures are more efficient for a mesh in which the shape of faces is the 

same due to the use of an array to store the adjacent faces. However, it is 

not efficient for a mixed mesh, in which the shape of cells may vary, since the 

number of adjacent faces may vary. 

Edge-based data structures store an incident vertex, an incident face 

and its neighboring edges for each edge. A good example of edge-based data 

structures is the halfedge data structure, as illustrated in Figure 4.1. The 

halfedge data structure has its name because instead of storing the edges of 

the mesh, halfedges are stored. As the name implies, a halfedge is a half of 

an edge and is constructed by splitting an edge down its length. The two 

half-edges make up an edge pair. Half-edges are directed. A halfedge is called 

an outgoing halfedge of a vertex if the vertex is the starting point of the edge. 

On the other hand, a halfedge is called an incoming halfedge of a vertex if 

the vertex is the target point of the edge. The two halfedges of a pair have 

opposite directions, and each halfedge is called the opposite halfedge of the 

other. Different halfedge data structures vary in some minor details. The 

halfedge data structure used by OpenMesh (Last Access: January, 2006) is 

illustrated in Figure 4.1. The numbers refer to the following (where f.-* means 

has an attribute of): 
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1. Vertex ~ one outgoing halfedge 

2. Face~ one halfedge 

3. Half edge ~ target vertex 

4. Halfedge ~ its face 

5. Halfedge ~ next halfedge 

6. Halfedge ~ opposite halfedge (implicit) 

7. Halfedge ~ previous halfedge (optional) 

As shown by Figure 4.1, in this data structure, each vertex stores one out­

going halfedge's information. There is more than one outgoing halfedge for a 

vertex. It does not matter which outgoing halfedge is stored since searching 

for adjacent outgoing edges for an edge can be done in both a clockwise and 

counterclockwise order. Each face stores one incident halfedge of the face. 

Again this incident halfedge can be any halfedge that is incident to the face 

since a search can be performed on halfedges that are incident to the face. 

In the edge-based data structure the size of the storage is fixed. There­

fore, it is more efficient for a mixed mesh than a face-based data structure, 

since a fixed size array may be used. 

4.1.2 The Data Structure for PMGT 

Although PMGT can only deal with triangular mesh, it is likely to be extended 

to accommodate quadrilateral mesh since 90% of the FEA applications deal 

65 



Master Thesis - Wen Yu- McMaster - Computing and Software 

2 

Figure 4.1: Halfedge Data Structure. Image from OpenMesh (Last Access: 
January, 2006) 
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with quadrilateral meshes (Cao, 2006). Hence, an edge-based data structure 

is chosen to improve the Flexibility (QF7) of PMGT. The data structure for 

PMGT is based on the halfedge data structure used by OpenMesh (Last Ac­

cess: January, 2006). The two differences are as follows: 

1. Instead of arbitrary outgoing halfedge stored for a vertex, the first outgo­

ing halfedge is stored. The first outgoing halfedge of a boundary vertex 

is the outgoing halfedge whose opposite halfedge is a boundary halfedge. 

A boundary halfedge is a halfedge whose incident face is undefined. The 

first outgoing halfedge of a non-boundary vertex can be any outgoing 

halfedge of the vertex. 

2. Instead of an arbitrary halfedge stored for a cell, the halfedge with longest 

distance between the start vertex and the target vertex is stored. 

A simple mesh is shown in Figure 4.2. There are 5 vertices (vl- v5), 

16 halfedges (hl- h16) , and 4 cells (cl- c4). vl , v2, v3 , and v4 are boundary 

vertices, while v5 is not a boundary vertex. h2, h8, h12 , and h16 are boundary 

edges since the incident cell of these half edges are undefined (the space that is 

outside of the input domain). Other halfedges are not boundary edges. The 

first outgoing halfedge of vertex vl is hl since the opposite halfedge of hl is h2, 

and h2 is a boundary halfedge. The first outgoing halfedge of vertex v5 can be 

any one of the halfedges h5, h4, hlO , or h14. By changing the arbitrary halfedge 

stored for a vertex to the first halfedge, any outgoing halfedges can be found 

during only one iteration. The longest halfedge of cell c1 is hl. By changing 

the arbitrary halfedge stored for a cell to the longest halfedge, looking for the 
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h5 h6 

c1 c4 

v5 

0 
h14 

c2 c3 

h9 h10 

v3 

Figure 4.2: Halfedge Data Structure for PMGT. 
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longest halfedge, which is needed for one of the refining algorithms introduced 

in Section 4.2, can be done in constant time. Both of above changes improve 

the Efficiency (QF3) of PMGT. 

4.2 The Algorithms 

According to the SRS, PMGT has two functionalities, refining and coarsening 

a given mesh. Since PMGT deals with a triangular mesh, only algorithms for 

triangular meshes are discussed. The algorithms used by PMGT for refining 

and coarsening a given mesh are given in Section 4.2.1 and Section 4.2.2, 

respectively. 

4.2.1 Refining 

The following three principle methods are commonly used for triangle refine­

ment. 

• Edge bisection. An example of this method is longest edge (side) bisec­

tion. The triangle that is marked for refinement is first bisected by the 

longest edge into two and if non-conformity (that is , the intersection of 

any two cells in the mesh is other than one of the following: a vertex, or 

an edge or empty) still persists , the mesh is further refined to maintain 

the conformity. 

• Point insertion: Usually the point is inserted at the centroid of an ex­

isting element. After insertion, the mesh can be refined by dividing the 

triangle into three triangles. 
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• Template: One example is to decompose a single triangle into four similar 

triangles by inserting a new vertex, usually at the midpoint of its edges. 

If non-conformity exist, then the mesh is further refined to maintain the 

conformity. 

(a) 

(c) (d) 

Figure 4.3: An Illustration of the Refining Algorithms 

An illustration of above three algorithms is shown in Figure 4.3. A 

simple input mesh with 2 cells is shown in sub-figure (a). The cell 1 is meshed 

for refinement while cell 2 is not. The sub-figure (b) is the result of refining 

(a) using longest edge bisection algorithm. Note that the cell 2 is also refined 

to maintain conformity. How to refine the cell 2 depends on the algorithm. 

For simpleness the cell 2 is only divided into two cells. The sub-figure (c) is 
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the result of refining (a) using point insertion algorithm. There is no non­

conformity problem involved; therefore, cell 2 is not refined. The sub-figure 

(d) is the result of refining (a) using one of the template algorithms, which 

inserts three points at the midpoints of three edges. The cell 2 is refined to 

maintain conformity, and the cell 2 is divided into two cells, as for the longest 

edge bisection algorithm. 

All of above algorithms can fulfill the refining requirement provided in 

the SRS. Due to the limited resource, only the point insertion algorithm and 

the longest edge bisection algorithm were implemented. The point insertion 

algorithm used by PMGT is the same as that describing above. However, the 

longest edge bisection algorithm used by PMGT is different. In the above 

input mesh, the edge that is the longest edge of cell 1 is not the longest edge 

of cell 2. Simply dividing cell 2 into two cells, as shown in Figure 4.3, often 

reduces the minimum angle of the mesh. The minimum angle of a mesh is the 

smallest value among the smallest angles of the cells in the mesh. Usually, the 

greater the minimum angle, the better the quality of a mesh. The better the 

quality of a mesh, the closer the mesh representing the domain. The closer 

the mesh representing the domain, the more accurate the result of using the 

mesh to solve a particular problem. Although there is no requirement for the 

minimal angle of the refined mesh, improving the quality of the refined mesh 

can improve the Reliability (QF2) of PMGT. 

Rivara and Inostroza (1995) and Rivara (1997) proposed algorithms to 

solve the problem of reducing the minimum angle of the mesh. Rivara's al­

gorithms are basically divided into two categories, pure longest side bisection 
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algorithm and backward longest side bisection algorithm, respectively. Accord­

ing to Rivara and Inostroza (1995) and Rivara (1997), the pure longest side 

bisection is outlined as follows, where T represents a mesh and t represents a 

cell: 

Longest-side-bisection (T,t) 

Perform a longest-side bisection of t 

(Let P be the point generated) 

While P is non-conforming then do 

Find the neighbor t* of t (by the side containing P) 

Longest-side-bisection (T,t*) 

The above algorithm is recursive. The first action, which is Perform 

a longest side bisection of t, is just dividing t into two triangles by 

adding an edge connecting P with the opposite vertex of the longest side. 

Figure 4.4 illustrates the algorithm. The sub-figure (a) is the initial mesh with 

cell t to be refined. The points 1 and 2 in sub-figure (b) are two intermediate 

non-conformal generated points. The sub-figure (c) is the final mesh for the 

algorithm. The sub-figure (d) is the simplified version of the above algorithm, 

which will be introduced later. 

In Rivara (1997) , a non-recursive version of the longest side bisection 

algorithm, called backward longest side bisection algorithm, is proposed as 

follows: 

Backward_Longest-Side-Bisection(T,t) 

While t remains without being bisected do 
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(a) 

(c) (d) 

Figure 4.4: An Illustration of the Pure Longest Side Bisection Algorithm Pro­
posed by Rivara and Inostroza (1995) 

Find the LSPP(t) 

If t*, the last triangle of the LSPP(t), is a 

terminal boundary triangle, bisect t* 

Else bisect the (last) pair of terminal triangles 

of the LSPP(t) 

The longest side propagation path of a triangle t(O), LSPP(t(O)) , is 

defined as the ordered list of all the triangles { t(O), t(1) , t(2) , .. . , t( n- 1), t(n)}, 

such that t ( i) is the neighbor triangle of t ( i- 1), by the longest-side of t ( i - 1) , 

for i = 1, 2, ... , n. The algorithm is illustration in Figure 4.5. The sub-figure 
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(a) (b) 

(d) 

Figure 4.5: An Illustration of the Backward Longest Side Bisection Algorithm 
Proposed by Rivara (1997) 

(a) is the initial mesh with tO to be refined. In Figure 4.5, LSP P(tO) = 

{tO, tl, t2, t3}. The LSP P(tO) is not further expanded because the longest 

edges of t2 and t3 are the same edge. The sub-figure (b) and (c) illustrate the 

first 2 steps, and the sub-figure (d) is the final mesh. The new vertices have 

been enumerated in the order that they were created. 

In both the pure longest side bisection algorithm and the backward 

longest side bisection algorithm, a cell may be refined more than once. How-

ever, PMGT does not need to be that complicated. To make the PMGT 

easier to understand and easier to implement, refining each cell in the mesh 
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once is enough. In Rivara and Inostroza (1995), a simplified version of the 

pure longest side bisection algorithm is proposed. The result of this simplified 

version, which is shown in sub-figure (d) of Figure 4.4, is what PMGT desires. 

However, it is achieved in Rivara and Inostroza (1995) in a complicated way. 

By modifying the backward longest side bisection algorithm a new algorithm 

that creates a simpler resulting mesh can be achieved in an elegant way. The 

new longest edge bisection algorithm used by PMGT is as follows. 

procedure Refining(m: mesh) 

begin 

for each cell c in m do 

if c is marked to be refined 

find the LSPP(c) 

while LSPP(c) is not empty do 

c' := the last triangle of the LSPP(c) 

mark c' to no-change 

remove c' from LSPP(c); 

if LSPP(c) is empty then 

else 

bisect c' 

c'' :=the last triangle of the LSPP(c) 

mark c'' to no-change 

remove c'' from LSPP(c) 

if c' is a terminal boundary triangle then 

bisect(c') 
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c' :=a new cell that adjacent to c'' 

bisect-pair(c' ,c'') 

if c'' = c then 

break 

else 

c''' the last triangle of the LSPP(c) 

cc :=a new cell adjacent to c''' 

add cc to the end of the path LSPP(c) 

In the above algorithm, the procedure bisect-pair (c' , c' ') divides adja­

cent cells c' and c' ' into two cells respectively by adding a vertex v in the 

midpoint of the common edge e of c' and c ' ' , and adding edges connecting 

v and the opposite vertices of e. The final mesh after applying this algorithm 

to the initial mesh shown in the sub-figure (a) of the Figure 4.4 is the mesh 

shown in the sub-figure (d). 

4.2.2 Coarsening 

Most mesh coarsening algorithms deal with vertices or edges; that is, either 

vertice are removed (vertex decimation) (Guillard, 1993; Miller et al., 1997; 

Ollivier-Gooch, 2003), or edges are removed (edge decimation) (Gueziec, 1995; 

Ollivier-Gooch, 2003). However, as the SRS shows , PMGT coarsens a given 

mesh by removing cells. Hence, an existing algorithm needs to be modified to 

be used by PMGT. 

Note that Ollivier-Gooch (2003) IS listed in both vertex decimation 
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and edge decimation. The reason is that it dicusses an algorithm of vertex 

decimation. However, an edge decimation algorithm is used to remove a vertex. 

The algorithm is illustrated by Figure 4.6. The left half of the Figure shows a 

vertex 0, which is to be removed from the mesh, and its immediate neighbors 

in the mesh. Vertex 0 will be removed by sliding it along the edge 02 to vertex 

1. In the process, cells 6021 and 6032 are removed, as are edges 01, 02 and 

03. The resulting mesh fragment is shown in the right half of Figure 4.6. 

2 

4 
4 

3 
3 

Figure 4.6: An Illustration of the Coarsening Algorithm used by Ollivier­
Gooch (2003) 

Since the vertex decimation can be done by using an edge decimation 

algorithm, it is conjectured that cell decimation can also be done by using an 
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edge decimation algorithm. In fact , the algorithm illustrated above results in 

two cells being removed. The idea of coarsening algorithm used by PMGT 

is that a cell, which needs to be removed, and one of its adjacent cell, which 

also needs to be removed , are removed by removing the edge that is incident 

to both cells. As far as we know, this idea has not been formally proposed 

elsewhere. The new algorithm is described below. 

procedure Coarsen(m: mesh) 

begin 

for each cell c in m do 

if c is marked to be removed then 

for each cell c' that is adjacent to c do 

if c' is marked to be removed then 

for each vertex v that is an end point of the 

edge e that is incident to both c and c' do 

v' := another end point of e 

if legalRemove(v, e) then 

for each cell cc that is incident 

to v do 

mark cc to no-change 

for each edge eee that is incident 

to v do 

if (eee is incident to c 

or eee is incident to c') then 

delete eee; 
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for each edge ee that is incident 

to v do 

update the end point of v to v' 

delete e 

delete c, c' 

delete v 

In above algorithm the function legalRemove ( v, e) return true if sliding the 

vertex v along the edge e to vertex v' is legal. This function can be described 

as follows: 

function legalRemove(v: vertex, e: edge) 

begin 

end 

for each cell c that is incident to v do 

if c is not incident to e then 

for each pair (vi, v2), in which 

vi, v2 are other two vertices 

that are incident to c do 

return true; 

if v,vi,v2 are in counterclockwise order then 

v' = another vertex that is incident to e 

if v' ,vi,v2 are not in counterclockwise order then 

return false 
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4.3 The Programming Language 

To choose a programming language to implement PMGT, a programming 

paradigm must be selected first . A programming paradigm is a way of concep­

tualizing what it means to perform computation and how tasks to be carried 

out on a computer should be structured and organized (Floyd, 1979). There 

are four basic programming paradigms, namely imperative programming (Pas­

cal, C), objected oriented programming (C++, Java), functional programming 

(Haskell, Ocaml), and logic programming (Prolog, Mercury). Functional pro­

gramming languages do not fit for PMGT, since PMGT is intended for indus­

trial practitioners and functional programming language is more the domain 

of academics. Logic programming languages also do not seem appropriate 

for PMGT as the application domain of logic programming language focuses 

on expert system and automated theorem proving, not on scientific comput­

ing applications. Imperative programming languages are a good candidate 

for PMGT since they are the most widely used programming languages, . and 

because they have the advantage of faster implementations and better tool 

support (Grabmuller and Hofstedt, 2003). Object oriented (00) program­

ming languages are also an option because 00 can lead to more maintainable 

programs, since 00 programs consist of small self contained parts (classes). 

In addition , the 00 aspect of inheritance enables the programmer to make 

new versions of a program by only programming the differences between the 

existing program and the new program. 

Although the Efficiency (QF3) of PMGT is important, the overall qual­

ity of PMGT is more desirable. The 00 programming paradigm is selected 
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to improve the Flexibility (QF7), Maintainability (QF5) and the Reusability 

(QF9) of PMGT. Between the most widely used 00 programming languages, 

C++ and Java, C++ was chosen. The reason is that in addition to the fact 

that the C++ is faster than Java in general, C++ is commonly used by mesh 

generation software developers and by those in scientific computing commu­

nity. Using C++ to implement PMGT can make the communication with 

other mesh generation developers easier; therefore, improving the Usability 

(QF4) of PMGT. 

4.4 Other Decisions 

This section discusses other decisions that relate to the implementation of 

PMGT. PMGT has the ability to manipulate meshes by taking advantage of 

parallelism. Section 4.4.1 discusses the decisions made for the parallel version 

of PMGT. Section 4.4.2 discusses the decisions that relate to the system. 

4.4.1 Decisions about Parallelism 

PMGT has two versions, a serial version and a parallel version. The use of 

multiprocessors in the parallel version is to improve the Efficiency (QF3) of 

PMGT since in general, the use of multiprocessors will reduce the execution 

time. 

The data structure for the two versions are similar, except that there 

is parallel information, such as global id for each cell, given for the parallel 

version of PMGT. Due to the limited resource of time, only one algorithm is 
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implemented in the parallel version. The implemented algorithm is the point 

insertion algorithm for refining a mesh. There is no conformality problem 

in this algorithm; therefore, no communication is necessary among processors 

during the refinement. The programming language for implementing the paral­

lel version of PMGT is MPI, since C++ is binded in MPI. The parallel version 

of PMGT could be written in a complicated language that is design specifically 

for parallel computation, such Charm++ (Koenig, 2003). However, Usability 

(QF4) of PMGT would not be promoted by this decision. 

Before performing refinement the entire initial mesh is loaded into the 

local memory of each processor and then partitioned according to the number 

of processors. The reason for this is to simplify the algorithm. The increased 

loading is not considered to be a problem since the initial mesh is assumed to 

be simple, thus it will not need much space. The other option would be to 

first partition the mesh and then only information related to each processor 

would be stored in that processor. In this case, the space needed to store the 

mesh would be reduced for each processor. However, the time needed to get 

its portion for each processor would be increased and more programming time 

would have to be committed to writing routines to partition vertices, edges, 

and cells. 

4.4.2 Decisions about the System 

Some decision relates to the system as specified below to improve the qualities 

of PMGT. 

• For each entity (including vertex, edge, or cell), an id, which is not men-
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tioned in the MIS, is stored to improve the Flexibility (QF7) of PMGT, 

since the id can be implemented by different data structures, such as 

index for array, pointer for linked list. For parallel version, there are two 

parts of an Id, global id and local id. 

• An array (or vector in the language of C++) is used to implement the 

lists of entities of a mesh in PMGT. To improve the Efficiency (QF3) of 

PMGT, before a entity is deleted, it is switched to the end of the list. 

Hence, deleting an entity only needs constant time. Adding an entity 

(to the end of the list) takes constant time, too. 

• Real numbers are approximated by IEEE double precision floating-point 

number. This decision can improve Reusability (QF9) of PMGT since 

this implementation is widely used by most software. 

• Use comments in the code, such as header information for all files, and 

frequently use "ReadMe. txt" to explain the usage of the software. These 

coding style can improve the Usability (QF4) of PMGT. 

• The implementation of PMGT is targeted at SHARCNET. However, it 

can execute on Linux/Unix/Mac operating system with g++ complier 

for the serial version. For the parallel version, the g++ compiler and 

MPI library ar~ needed. The serial version could easily be adopted to 

the Windows OS with minor modification. Implementing PMGT so that 

it can be used for more environments than just SHARCNET improves 

the Portability (QF8) of PMGT. 
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4.5 Software Technologies Used to Assist the 

Implementation 

Software engineering technologies were used through the implementation of 

PMGT to improve the software qualities. These technologies can improve 

the overall quality of software development process, as well as the software 

product. 

• Version Control. Version control combines procedures and tools to man­

age different versions of configuration objects that are created during the 

software engineering process (Pressman, 1999). Version control is done 

for the entire development of PMGT. Although version control is impor­

tant in the stage of software requirements, design, and testing, it is most 

valuable in the implementation, since more modification is involved in 

this stage. One of the advantages of version control is to easily diagnose 

errors by comparing incorrect versions of code to correct versions of code. 

Therefore, version control improves Maintainability (QF5). The version 

control program used by PMGT is subversion. 

• Makefile. A makefile can replace several commands, which can be error 

prone; therefore, the adopting of using a makefile improves the Correct­

ness (QFl) of PMGT. 

• Namespace. Using namespaces can avoid name conflict and unnecessary 

access of protected data and routines; therefore, this decision was make 

to improve the Correctness (QFl) of PMGT. 
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• Traceability Matrix. A traceability matrix of classes and modules can be 

used to check the completeness and consistency of the implementation 

against the design. The class-module traceability matrix of PMGT is 

shown in Figure 4.1. Only the modules that are implemented in PMGT 

are shown in the matrix. It is can be seen that classes and modules 

have a one to one relation. This promotes the Reusability (QF9) and 

the Maintainability (QF5) of PMGT. The definition of access routines 

in the vertex module (M8) , the edge module (M9), and the cell module 

(MlO) can be found in the file "Entity.h". The definition of the access 

routines in the input format module (M5), the output format module 

(M6), and the mesh module (Mll) can be found in the file "Mesh.h". 

The definition of the access routines in the refining module (Ml2) and 

the coarsening module (M13) can be found in the file "Algorithms.h". 

The definition of access routines in the service module (M7) can be found 

in the file "tester.h". 

I M5 I M6 I M71 M8 I M9l Mlq Mq Ml~ Mq 
Input Class ./ 
Output Class ./ 
Service Class ./ 
Vertex Class ./ 
Edge Class ./ 
Cell Class ./ 
Mesh Class ./ 
Refining Class ./ 
Coarsening Class ./ 

Table 4.1: Traceability Matrix: Classes and Modules 
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Chapter 5 

Testing 

In general, the purpose of testing is to measure and improve software qualities, 

which are defined in Section 1.1. However, due to limited resources of time, it 

is difficult to test PMGT against all of the quality factors. Like other scientific 

computing software, Correctness (QFl) and Efficiency (QF3) are among the 

most important quality factors of PMGT. The testing of PMGT focuses on 

validating the correctness and efficiency of PMGT. First, the details of what 

is included in the tests are discussed in Section 5.1. Then, the test cases with 

respect to the scope of the test are specified in Section 5.2. Finally, the result 

are recorded and analyzed in Section 5.3. The full details about the validation 

tests for PMGT are in Appendix D. 

5.1 The Scope of the Testing 

One of the most challenging aspects of testing the Correctness (QFl) of PMGT 

is that the actual output mesh for a specific input mesh is unknown. The 
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unknown solution is a challenge that is common to most scientific computing 

software, as mentioned in Section 1.2. In fact, in other scientific computing 

software, such as software to solve ordinary or partial differential equations, 

the challenge is even more pronounced because a unique true solution is being 

sought. Mesh generation software is different because the notion of a unique 

true solution does not apply, but it is still necessary to compute a valid solution 

of the required quality. Moreover, there is still the challenge of the lack of an 

expected sol uti on for comparison purposes. The lack of an expected solution 

makes PMGT difficult to test for correctness. Without a known solution, 

we can still test properties of the calculated solution that we know must be 

true. One way to test the Correctness (QFl) of PMGT is to see whether the 

output mesh is a refined or coarsened mesh of the input mesh. According to 

the SRS, the characteristics of a refined mesh relate to the data definition of 

Refined (D23) and that of a coarsened mesh relate to the data definition of 

Coarsened (D24). The data definitions D23 and D24 are defined in the SRS. 

In both definitions, the output mesh needs to be a valid mesh (D18) and the 

input mesh and output mesh covers up each other (D19) . In addition, other 

requirements that are common to a mesh, such as that a mesh conforms to 

the Euler Equation, should also be met. 

To improve the Usability (QF4) of PMGT, the correctness test is au­

tomated. The follows lists the automated correctness validation test require­

ments (ACVTRs) of PMGT: 

• The area of each element is greater than zero (referring to D5). 

• The boundary of the mesh is closed. (referring to D15). 
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• The mesh is conformal (referring to D16). 

• The intersection of any two elements is empty (referring to D17). 

• The input mesh and output mesh CoveringUp each other (referring to 

D19). 

• The length of each edge is greater than zero. (This is required by the 

definition of a mesh, which is defined in the SRS.) 

• The vertices of each element are listed in a counterclockwise order. (The 

counterclockwise order of the vertices for each element is not necessary 

for implementing PMGT. However, it is adopted by most meshing and 

FEA software. PMGT uses this convention.) 

• The output mesh conforms to the Euler Equation. (This requirement is 

not documented in the SRS. However, any mesh should implicitly satisfy 

the equation nc + nv- ne = 1, where nc is the number of cells, nv is the 

number of vertices, and ne is the number of edges.) 

Since the output mesh can be displayed on the screen, the output 

meshes can also be visually checked to ensure that the following visual cor­

rectness validation tests requirements (VCVTRs) are met: 

• No vertex is outside of the input domain. 

• No vertex is inside of a cell. 

• No dangling points or edges are present. 
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• All cells are connected. 

• The mesh is conformal. 

Some of the VCVTRs overlap with the ACVTRs. This redundancy provides 

increased confidence in case one testing method fails to catch an error. Both 

ACVTRs and VCVTRs improve the Testability (QF6) of PMGT. 

For the efficiency test, no comparison with other software, such as 

AOMD, is done, due to the limited resource of time to spend on testing and 

the difficulty of using other mesh generation software. Only the execution 

time of PMGT is considered. In particular, the execution of parallel version 

of refinement with different numbers of processor, and the execution time for 

the serial version of refinement are measured. 

5 . 2 Test Cases 

" In the validation test on PMGT, there are five test cases for testing correctness 

of the serial version. The test cases TCl, TC2, and TC3 refine a given mesh by 

refining some specific cells and then coarsen it by coarsening the refined cells. 

The difference among these three test cases is different algorithms or different 

input meshes . This refining and coarsening process may be performed several 

times. The test case TC4 refines and coarsens meshes according to the sizes 

of the cells, which are defined as the length of the shortest edges of the cells. 

The test cases TC5 repeatedly refines the given mesh by refining the specified 

cells until the required number of refinements is reached. The test case TC6 

tests both the correctness of the parallel version and the efficiency of PMGT. 
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This test case refines all cells in the mesh several times. To test the execution 

time, different the numbers of processor are used for the parallel version, and 

the same algorithm for the parallel version is used for the serial version. 

The test cases TC2, TC3 , TC4, and TC5 use the longest edge bisection 

algorithm that is defined in Page 75 for refinement. This longest edge bisection 

algorithm is call Refining for short. The test cases TCl and TC6 use the point 

insertion algorithm that is mentioned in Section 4.2.1 for refinement. This 

point insertion algorithm is called Spliting for short. The coarsening algorithm 

used is defined on Page 78. 

5.3 Results and Analysis 

The details of the test results are given in Appendix D. To illustrate the test 

process the results for two selected test cases are produced here. The analysis 

of the the result is also included here. The analysis discusses the speedups of 

different numbers of processors and the traceability matrices. 

5.3.1 Selected Results 

Two test cases are selected to illustrate the test results. One is the test case 

TCl. The input mesh is showed in Figure 5.1. The refining and coarsening 

criterion is that the cells that intersect with the vertical line, x = 0.6, are 

Split once, then the cells of the new mesh that intersect with the vertical line 

are coarsened once. When the splitting and coarsening is done, the vertical 

line is moved to the right one unit (x = x + 1.0), and another Splitting and 
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Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

TC1 
SplitCS 
Figure 5.1 
ACVTRs and VCVTRs listed in 
Section 5.1 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure 5.2, 5.3, 5.4 
Passed 

Table 5.1: Test Case1 

coarsening is performed. This procedure is until no cells intersect with the 

vertical line. The test cast TC1 is illustrated in Table 5.1. 

The other selected test case is TC6, which is shown in Table 5.2. This 

test case tests both the correctness and speed of PMGT. The input mesh is 

shown in Figure 5.5. This test simply splits all cells of the mesh 4 times. It is 

done in both the serial version and the parallel version with different numbers 

of processors. The execution time of setting the cells to be refined and splitting 

the cells is measured. The time spent on input and output is not included. 

5.3.2 Analysis 

All of the test cases conform to the ACVTRs and VCVTRs listed in Section 

5.1. The test result of TC6 show that when the number of cells increased, the 

execution time increased, and when the number of processors increased, the 

execution time decreased. That is, this test is passed. Figure 5.7 show the 

speedup when using different numbers of processors. The speedup is defined 
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Original Mesh 
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Figure 5.1: Input 1 

Mesh for "newVertices1 .dat" and "newCells1.dat" 
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Figure 5.2: Output 1 of TC1 
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Mesh for "newVertices15.da1" and "newCells15.da1" 
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Figure 5.3: Output 2 of TCl 

Mesh for "newVertices28.dat" and "newCells28.dat" 
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Figure 5.4: Output 3 of TCl 
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Test Case Number TC6 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

SplitM 
Figure 5.5 
ACVTRs and VCVTRs listed in 
Section 5.1 are met 
Execution time increases as the 
number of cells increases. Execu­
tion time decreases as the number 
of processors increases. 
Execution time as indicated in Fig­
ure 5.6 
The mesh is too dense to be shown. 
Passed 

Table 5.2: Test Case 6 

T1 
Speedup( n) = Tn 

Where T1 is the execution time of the serial version, and Tn is the execution 

time of the parallel version with n processors. In general, Speedup(n) < 

n. However, for PMGT, when the number of cells is greater than 2700, 

Speedup(n) > n, which represents a super linear speedup. Since the algo-

rithms used for the serial version and the parallel version are the same, the 

super linear speedup is probably due to the cache effect. That is, when the 

numbers of processors increases, the size of the accumulated caches from dif-

ferent processors also increases. With the larger accumulated cache size, more, 

or even all, core data set can fit into the caches and the memory access time 

reduces dramatically. This may explain the extra speedup in addition to the 

speedup from parallelization of the computation. 

In the traceability matrix for software requirements, if a test case tests 
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Original Mesh 

Figure 5.5: Input of TC6 

the functionality of a software requirement, there will be a check mark on 

the cell for the corresponding test case and software requirement. In each 

row of the traceability matrix for software requirements (Table 5.3), if the 

requirement in that row defines the correctness or the speed of the software, 

one or more cells in this row are checked. Otherwise, all cells in the row are 

empty. Table 5.3 shows that the test cases developed assist with validating 

the correctness and speed of the software. 

Similar to Table 5.3, the traceability matrix for the modules (Table 

5.4) shows that the test cases validate the modules that are associated with 

correctness and speed. 
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Test Result of Efficiency Test 
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Figure 5.6: Output of TC6 
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Speedup for Different Number of Processors 
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Figure 5. 7: Speedup for Different Numbers of Processors 
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I TCI I TC2 I TC3 I TC4 I TC5 I TC6 I 
Fl ./ ./ ./ ./ ./ ./ 
F2 ./ ./ ./ ./ 
F3 ./ ./ ./ ./ ./ ./ 
F4 ./ ./ ./ ./ ./ 
F5 ./ ./ ./ ./ ./ 
F6 ./ ./ ./ ./ ./ 
F7 ./ ./ ./ ./ ./ 
F8 ./ ./ ./ ./ ./ ./ 
F9 ./ ./ ./ ./ ./ ./ 
FlO ./ ./ ./ ./ ./ 
Fll ./ ./ ./ ./ ./ 
Fl2 ./ ./ ./ ./ ./ 
Fl3 ./ ./ ./ ./ ./ 
Fl4 ./ ./ ./ ./ ./ 
Fl5 ./ ./ ./ ./ ./ 
Fl6 
Nl ./ 
N2 
N3 
N4 
N5 
N6 
N7 

Table 5.3: Traceability Matrix: Test Cases and Requirements 
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I TCl I TC2 I TC3 I TC4 I TC5 I TC6 I 
Ml ,( ,( ,( ,( ,( ,( 

M2 ,( ,( ,( ,( ,( ,( 

M3 ,( ,( ,( ,( ,( ,( 

M4 ,( ,( ,( ,( ,( ,( 

M5 ,( ,( ,( ,( ,( ,( 

M6 ,( ,( ,( ,( ,( ,( 

M7 ,( ,( ,( ,( ,( 

M8 ,( ,( ,( ,( ,( ,( 

M9 ,( ,( ,( ,( ,( ,( 

MlO ,( ,( ,( ,( ,( ,( 

Mll ,( ,( ,( ,( ,( ,( 

M12 ,( ,( ,( ,( ,( ,( 

M13 ,( ,( ,( ,( 

Table 5.4: Traceability Matrix: Test Cases and Modules 
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Chapter 6 

Conclusions and Future Work 

Correctness and efficiency are important for scientific computing software. 

Other software quality factors, such as those discussed in Chapter 1, also 

contribute to the software quality, but they are often neglected by develop­

ers of scientific computing software. Software engineering methodologies can 

improve the overall quality of software by considering all software quality fac­

tors during the software development process. However, scientific computing 

software is usually developed by domain experts, who often lack knowledge of 

software engineering methodologies; therefore, these methodologies are seldom 

adopted by scientific computing software development community. As a re­

sult, there is still room for improvement in the quality of scientific computing 

software. This thesis attempts to provide an example of developing quality 

scientific computing software, PMGT, using software engineering methodolo­

gies. Hopefully, our work can attract domain experts' interests in developing 

quality scientific computing software using software engineering methodolo-
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gies, such as document driven development. Moreover, the challenges posed 

for developing scientific software may attract some software engineers to turn 

their attention toward research on adapting existing methodologies for scien­

tific computing software applications . 

In this final chapter of the thesis , the contributions are first summarized 

in Section 6.1. This is followed by suggested future work in Section 6.2. 

6.1 Contributions 

In addition to the toolbox itself, our work illustrates that a document driven 

methodology can improve the overall quality of scientific computing software. 

This section provides a summary of the relevant software qualities and how 

the proposed methodology was used to improve them. These qualities relate 

to the quality factors listed in Section 1.2. 

1. Correctness (QFl): The correctness of PMGT is improved by 

• the requirements document (SRS); 

• the use of a makefile, which can reduce errors in the implementation; 

• the use of a namespace, which can avoid naming conflicts in the 

implementation; 

• the correctness validation testing; 

• the traceability matrices, since these matrices can be used to ensure 

that decisions propagate properly through the project. 

2. Reliability (QF2): The reliability of PMGT is improved by 
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• the use of the longest edge refining algorithm, which can improve 

the minimum angle of the mesh. 

3. Efficiency (QF3) 

• the use of the halfedge data structure, in which the outgoing halfedge 

of a vertex is the first outgoing halfedge and the halfedge of a cell 

is the longest halfedge; 

• the use of arrays to implement the list of mesh entities; 

• the use of multiprocessors in the parallel version of PMGT. 

4. Usability (QF4): All of the documents can improve the usability of 

PMGT since these documents explicitly tell the reader what PMGT 

can do at different level of abstraction. In particular, the documents 

improve the usability of PMGT by: 

• assigning names and unique numbers for items, such as goals, data 

definitions, software requirements, and modules; 

• decomposition of the system into modules since the decomposition 

can make PMGT easier to understand; 

• the English explanations for the mathematical notations in the se­

mantics of the access routines; 

• the selection of C++ programming language, which is widely used 

by mesh generation software developers; 

• the use of the popular MPI library to implement the parallel version 

of PMGT; 
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• style adopted for coding, including header information for all files 

and frequent use of ReadMe.txt files; 

• the automation of the correctness validation tests. 

5. Maintainability (QF5): In addition to the use of traceability matrices, 

which facilitate locating errors, the maintainability of PMGT is improved 

by 

• the SRS, which one can use for finding possible errors; 

• the decomposition of the system into simple and independent mod­

ules; 

• the design of the data structure, which is easy to understand; 

• the selection of an 00 programming languages, which encapsulates 

and facilitates finding errors; 

• the use of version control, which keeps the history of the develop­

ment; 

6. Testability (QF6): Unambiguous and validatable software requirements 

documented in the SRS is the key issue for testability of PMGT. In 

particular, the testability of PMGT is improved by: 

• the quantifying of the software requirements; 

• the use of formal mathematics in the SRS; 

• the decomposition of the system into simple and independent mod­

ules; 
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• the formality of the semantics of the access routines in the MIS; 

• the use of the Automated Correctness Validation Testing Require­

ments (ACVTRs). 

7. Flexibility (QF7): The traceability matrices improve the flexibility of 

PMGT, since when the software needs to be changed, it is can be done 

by tracing from the goal down to the file which contains the appropriate 

module. In addition, the flexibility of PMGT is improved by 

• the waiting rooms in the SRS, which lists the most likely changes 

of PMGT; 

• the decomposition of the system into simple and independent mod­

ule; 

• the lists of anticipate and unlikely changes, which can help to find 

modules that are likely to change, or explicitly identify those main­

tenance tasks that would not be likely nor feasible; 

• the design of the data structure, which is easy to understand and 

extend to accommodate a mixed mesh; 

• the selection of an 00 programming languages, which makes it easy 

to change and to add new members; 

• the use of id field for each mesh entities within the implementation. 

8. Portability (QF8): The portability of PMGT is improved by 

• the system constraints that are specified in the SRS, which states 

to not focus on details of SHARCNET; 
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• the decision made during the implementation that PMGT can be 

executed on Linux/Unix/Mac operating systems. 

9. Reusability (QF9) The Reusability of PMGT is improved by 

• the SRS since what the software does can be easily obtained from 

the SRS; 

• the decomposition of the system into simple and independent mod­

ules; 

• the definition of module as work assignments; 

• the selection of 00 programming languages, which allows encapsu­

lation; 

• the implementation of the approximation of real numbers as IEEE 

double precision floating point numbers, which is a choice widely 

adopted by software developers. 

6.2 Future Work 

The results of our work encourage further research in the field of using software 

engineering methodologies to improve quality of scientific computing software. 

The suggested investigations needed to evaluate the effectiveness of our work 

are as follows: 

• Add more algorithms to enable PMGT to generate meshes with different 

requirements. One example of these requirements is generating meshes 

whose minimum angle is greater than a given angle. 
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• Embed PMGT in a real application, such as a finite element application. 

• Test PMGT against more requirements and quality factors. 

• Add unit testing for PMGT. 

• Compare PMGT to other mesh generation software. 

• Modify the service module to allow automated testing as desired by the 

user, even at run time. 

• Add a mechanism dealing with load balancing when communication is 

needed between processors to refine/coarsen a mesh in parallel. 

• Develop a tool to help maintain consistency between the documents 
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A.l 

A.l.l 

A.l.l.l 

n 
[2* 

K 

A.1.1.2 

lD 
2D 
3D 
FEA 
HPC 
PDE 

Reference Material 

Table of Symbols, Abbreviations and Acronyms 

Symbols 

a closed bounded domain in JR2 

a mesh covering the domain bounded by f2 
a simple shape, such as a line segment in lD, a triangle 
or a quadrilateral in 2D, or a tetrahedron or hexahe­
dron in 3D 

an input mesh 

an output mesh 
instructions on how a mesh should be 
refined/ coarsened 

Abbreviations and Acronyms 

One Dimensional Space 
Two Dimensional Space 
Three Dimensional Space 
Finite Element Analysis 

PMGT 
SHARCNET 

High Performance Computing 
Partial Differential Equation 
Parallel Mesh Generation Toolbox 
Shared Hierarchical Academic Research Computing 
Network 

SRS 
AOMD 

Software Requirements Specification 
Algorithm Oriented Mesh Database 
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A.1.2 Index of Requirements 

CoarseningMesh, 132 
Conformal, 135 

DomainDimension, 134 

ElmShape, 134 
ElmTopology, 138 
ElmUniqueiD, 138 
Exception, 142 

Help, 140 

InputDefinition, 135 

LookAndFeel, 142 

Maintainability, 143 
MeshType, 133 

OutElmOrder, 139 
OutputStorage, 137 
OutVertexOrder, 139 

Performance, 141 
Portability, 142 
Precision, 141 

RCinstruction, 136 
RefiningMesh, 132 
RefiningOrCoarsening, 133 

Usability, 143 

VertexUniqueiD, 137 
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A.2 Introduction 

This section gives an overview of the Software Requirements Specification 
(SRS) for a Parallel Mesh Generation Toolbox (PMGT). First, the purpose of 
the document is provided. Second, the scope of PMGT is identified. Third, 
some terminology for software engineering and mesh generation are defined. 
Finally, the organization of the document is summarized. The Table of Sym­
bols, Abbreviation and Acronyms, and Index of Requirement are given at the 
beginning of the SRS. 

A.2.1 Purpose of the Document 

This SRS provides a black-box description of PMGT. The intended audiencP. 
of the SRS is the development team and the users of PMGT. 

A.2.2 Scope of the Software Product 

PMGT provides a library that will be embedded into a larger application, such 
as a finite element analysis (FEA) program. 

• The input of PMGT is an existing mesh MIN with instructions I pro­
vided by the user on how the mesh should be refined/ coarsened. 

• PMGT refines/coarsens MIN according to the supplied instructions I 
on how the mesh should be refined/ coarsened. 

• PMGT will take advantage of parallel computation. 

• The output of PMGT is a refined/coarsened mesh MOUT. 

Note that depending on the given instruction, PMGT can either refine or 
coarsen the given mesh, but cannot do both at the same time. That is, any 
individual transition from MIN to MOUT will only do one of refining or 
coarsening. The embedding application will have access to reading the mesh 
information, such as information on the position of vertices and on the vertices 
that define a given element. However, the application cannot directly change 
any mesh data, except for the information indicating which elements should 
be refined/ coarsened. 

118 



Master Thesis - Wen Yu -McMaster- Computing and Software 

A.2.3 Terminology Definition 

This subsection provides the definitions for terminology used in the SRS. There 
are two classes of terminology. One relates to software engineering, and the 
other relates to mesh generation. The definitions are listed in alphabetical 
order. 

A.2.3.1 Software Engineering Related Terminology 

Constraint: A statement that expresses measurable bounds for an element or 
function of the system. That is, a constraint is a factor that is imposed 
on the solution by force or compulsion and may limit or modify the 
design changes. (IEEE, 1998) 

Context: The boundaries between the system that we intend to build and the 
people, organizations, other system and pieces of technology that have 
a direct interface with the system. (Robertson and Robertson, 2001) 

Functional Requirements: Functional requirements define precisely what 
input are expected by the software, what outputs will be generated by the 
software, and the details of relationships that exist between those inputs 
and outputs. In short , functional requirements describe all aspects of 
interface between the software and its environment (that is, hardware, 
humans, and other software). (Davis, 1990) 

Goal: Goals capture, at different levels of abstraction, the various objectives 
the system under consideration should achieve. (van Lamsweerde, 2001) 

Non-functional Requirements: Non-functional requirements define the over­
all qualities or attributes to be exhibited by the resulting software sys­
tem. (Davis , 1990) 

Requirements: A software requirement is: i) a condition or capability needed 
by a user to solve a problem or achieve an objective; ii) a condition or 
capability that must be met or possessed by a system or system com­
ponent to satisfy a contract , standard, specification, or other formally 
imposed document; or, iii) a documented representation of a condition 
or capability as in the above two definitions. (IEEE, 2000) 

Software Engineering: Software Engineering is the application of a system­
atic, disciplined, quantifiable approach to the development, operation, 
and maintenance of software. (IEEE, 1990) 
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Software Requirements Specification: A Software Requirements Specifi­
cation (SRS) is a document containing a complete description of what 
the software will do without describing how it will do it. (Davis, 1990) 

System: An interdependent group of people, objects, and procedures consti­
tuted to achieve defined objectives or some operational role by perform­
ing specified functions. (IEEE, 1998) 

System Context: System Context documents the relationships between the 
system being specified and other human and computer systems. (Som­
merville , 1992) 

User: The person, or persons, who operate or interact directly with the prod­
uct. (IEEE, 2000) 

A.2.3.2 Mesh Generation Related Terminology 

Cell: Another name for an element, as defined in page 120. 

Conformal Mesh: A conformal mesh is a mesh (defined on page 121) follow­
ing the definition of a mesh, with the addition of the following property: 
The intersection of two elements in the mesh fl* is either the empty set, 
a vertex, an edge or a face (when the dimension is 3). (Frey and George, 
2000) 

Connectivity: There are two types of connectivity, one for the mesh and one 
for a mesh element: 

1. "The connectivity of a mesh is the definition of the connection be­
tween its vertices." (Frey and George, 2000) 

2. "The connectivity of a mesh element is the definition of the connec­
tions between the vertices at the element level." (Frey and George, 
2000) 

Domain: The area or volume that is to be discretized. The domain is some­
times referred to as the computational domain. (Smith and Chen, 2004) 

Edge: An edge is a line segment between two vertices. 

Element : The original domain is discretized into smaller, usually simpler, 
shapes called elements. The typical shapes for elements in 1D is a line, 
in 2D is a triangle or a quadrilateral, and in 3D a tetrahedron or a 
hexahedron. Elements are also called cells. (Smith and Chen, 2004) 
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Embedding Application: The software that uses PMGT. 

Face: A face is a maximal connected subset of the plane without vertices 
inside the subset. In 2D, a face is a cell.(Frey and George, 2000) 

Hybrid Mesh: A mesh is said to be hybrid if it includes some elements with 
a different spatial dimension. (Frey and George, 2000) 

Mesh: In Smith and Chen (2004), a mesh is defined as follows: 
Let n be a closed bounded domain in lR or IR2 or JR3 and let K be an 
element. A mesh of n, denoted by n*, has the following properties: 

1. n ~ U(KIK En*: K), where U is first closed and then opened 

2. the length of every element K, of dimension 1, in n* is greater than 
zero 

3. the interior of every element K, of dimension 2 or greater, in n* is 
nonempty 

4. the intersection of the interior of two elements is empty 

The only difference between above definition and the definition given 
by Frey and George (2000) is that equality ( =) had been changed to 
approximate equality (~). 

Mesh Generation: The automatic mesh generation problem is that of at­
tempting to define a set of elements to best describe a geometric do­
main, subject to various element size and shape criteria. (Smith and 
Chen, 2004) 

Mixed Mesh: A mesh is said to be mixed if it includes some elements of a 
different geometric nature. (Frey and George, 2000) 

Structured Mesh: The mesh in which the local organization of the grid 
points and the form of the grid cells do not depend on their position 
but are defined by a general rule. There is a pattern to the topology 
that repeats. Frey and George (2000) say, "a mesh is called structured if 
its connectivity is of the finite difference type." They go on to remark, 
"Peculiar meshes other than quad or hex meshes could have a structured 
connectivity. For instance, one can consider a classical grid of quads 
where each of them are subdivided into two triangles using the same 
subdivision pattern." 
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Topology: "The topology of a mesh element is the definition of this element 
in terms of its faces and edges, these last two being defined in terms of 
the element's vertices." (Frey and George, 2000) 
The topology of a mesh is the set of topologies of its constitute mesh 
elements. 

Unstructured Mesh: The mesh whose element connectivity of the neigh­
bouring grid vertices varies from point to point. Any mesh that is not 
structured is an unstructured mesh. (Smith and Chen, 2004) 

Vertices: The locations that define the shape of the cells. In ID the vertices 
are the end-points of the elements. For 2D and 3D elements the vertices 
correspond to the location in space that defines the intersection of the 
edges of an element. (Smith and Chen, 2004) 

A.2.4 Organization of the Document 

This SRS follows the template introduced by Lai (2004). Lai's template targets 
an SRS for scientific computing software. In particular, the example shown is 
for engineering mechanics software, such as software to analyze beams. In the 
current work, Lai's template is modified to fit PMGT, which is a more general 
purpose software. For example, the instanced model section of Lai's template 
is removed since PMGT is not designed for solving a specific physical problem. 

Section A.2 (this section) is an introduction to the SRS. The rest of the 
document is arranged as follows. Section A.3 provides the general information 
about the system. Section A.4 is the major part of the SRS. All functional 
requirements and non-functional requirements of the software are presented 
in this section. Section A.5 discusses some other system issues. Section A.6 
gives a traceability matrix that summaries the association of each requirement 
with goals, assumptions, theoretical models and data definitions introduced in 
A.4. This SRS also contains the list of possible changes in the requirements 
and values of auxiliary constants. The references are listed at the end of this 
document. 

A.3 General System Description 

This section describes the general information about the system. The inter­
faces between the system and its environment are defined first. Then the 
characteristics of potential users are discussed. At end of this section, some 
system constraints are described. 
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A.3.1 System Context 

The software to be built is a library tool that will be called by other ap­
plications. There is no direct interaction between the system and the end 
users. Users of the embedding application, such as an FEA program, provide 
some parameters directly to the FEA program. Some of these parameters are 
passed to PMGT by the FEA program. The interface between PMGT and 
the embedding application should only show what PMGT can do and hide the 
information about how to do it. Therefore, users who are not experts in mesh 
generation or in parallel processing will be able to use this toolbox. 

PMGT 

Output 

Figure A.l: System Context Diagram 

Figure A.l shows the context that PMGT will normally fit into. A circle 
represents an external entity outside the system, an embedding application in 
this case. The rectangle is the system itself. Arrows represent the data flows 
between them. 

The input: MIN xI 
The output: MOUT. 
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PMGT has the following function: 

A mesh MIN and some refining/coarsening instructions I are given. 

PMGT generates a refined/coarsened mesh MOUT according to 
the instructions I. 

A.3.2 User Characteristics 

The target user group of PMGT includes both software designers, who intend 
to embed this library in their applications, and theoreticians, who are involved 
in parallel mesh generation. A user of PMGT is expected to be familiar with 
the notion/knowledge of mesh creation. PMGT is a library used by other ap­
plications. Therefore, users should not be novices in terms of software design. 
The prerequisite software design knowledge are equivalent to that of a senior 
undergraduate student in science or engineering who took an introductory 
course on programming. For example, they should be comfortable with com­
pilation of the programming language in which PMGT is written, be familiar 
with embedding a library in their software, etc. 

A.3.3 System Constraints 

This system is intended to be built on the Shared Hierarchical Academic Re­
search Computing Network (SHARCNET). SHARCNET is structured as a 
((cluster of clusters" across South Central Ontario, designed to meet the com­
putational needs of researchers in a diverse number of research areas and to 
facilitate the development of leading-edge tools for high performance comput­
ing (HPC) grids. 

Large production clusters, located at the Universities of Western On­
tario, Guelph and McMaster, house over 400 HP /Compaq Alpha processors 
and large symmetric multiprocessor computers. Windsor and Wilfrid Laurier 
host smaller development clusters (8 processors), which enable researchers to 
develop and test code before moving to one of the larger clusters. A glance 
of SHARCNET systems is shown in Table A.l. Note that the network is con­
stantly being updated. Detailed information can be found at SHARCNET 
(Last Access: January, 2006). 

A.4 Specific System Requirements 

This section describes the system requirements in detail. After the problem is 
clearly and unambiguously stated, some solution characteristics are specified. 
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System Make Type CPUs OS 
bala Compaq Cluster 8 Red Hat Linux 7.2 
cat Unknown Cluster 162 Red Hat Linux 8 
goblin Sun Cluster 56 Fedora Core 2 
hammerhead Compaq Cluster 112 Red Hat Linux 7. 2 
idra Compaq SC Cluster 128 Thu64 
mako HP Cluster 16 Fedora Core 2 
tiger Compaq Cluster 8 Red Hat Linux 7.2 
typhon Compaq SMP 16 Thu64 
wobbe Unknown Cluster 193 Red Hat Linux 8 
TOTALS 699 

Table A.1: A Glance at the SHARCNET System 

Non-functional requirements are also included in this section. The symbol:= is 
used to indicate type definition. The notation for set building and expressions 
used in this section follows Gries and Schneider (1993). To define the notation, 
first let x be a list of dummies, t a type, R a predicate, E an expression, * 
an operator, and P a predicate. Notation {x : t I R : E} represents a set of 
values that result from evaluating E[x := v] in the state for each value v in t 
such that R[x := v] holds in that state. Expression (*X : t I R : P) denotes 
the application of operator * to the values P for all x in t for which range R 
is true. 

A.4.1 Problem Description 

The problems (goals) specified in this subsection represent ideal general mod­
els. The problems are simplified by introducing some assumptions , which are 
listed in Section A.4.2. 

A.4.1.1 Background Overview 

Many physical problems of importance to scientists and engineers are modeled 
as a set of Partial Differential Equations (PDEs). In most practical cases, it 
is necessary to solve the PDEs numerally. Numerical methods to solve PDEs 
frequently require that the domain of interest be divided into a mesh, which is 
a set of small, simple elements that cover the computational domain. In some 
applications , a single mesh is generated and used many times; in this case 
the processing time spent on mesh construction is not critical and a relatively 
slow, sequential algorithm suffices (Ruppert , 1993). However, some applica-
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tions need adaptive meshing, which requires that the meshes be generated 
once and then modified many times. For instance, adaptive meshing is used 
for reliable Finite Element Analysis (FEA) using a posterrori error estimation 
(Zienkiewicz et al., 2005). The increased mesh interaction for adaptive meshing 
means an increased need for speed of managing the mesh data which suggest 
employing parallel processing techniques. Although generating a mesh using 
multiple processors is complicated, it can offer considerable speed-up over se­
quential processing. In addition, some FEA applications are implemented on 
multiple processors. If the adaptive mesh can be generated in multiple proces­
sors as well, the mesh data can remain on the local processors. Potentially, 
time to be used will be significantly reduced. 

A.4.1.2 Goal Statements 

There are two related goals for PMGT. 

Gl: Given a mesh MIN and instructions I on how to refine the mesh, PMGT 
should generate a refined mesh MO UT according to the instructions I. 

G2: Given a mesh MIN and instructions I on how to coarsen the mesh, 
PMGT should generate a coarsened mesh MOUT according to the in­
structions I. 

A.4.2 Solution Characteristics Specification 

The goals stated in the last section are too general to achieve. In this section, 
the assumptions are specified first to reduce the scope of the software. Second, 
the theoretical models for the goals are described. Third, data definitions 
are given to assist with defining the theoretical models. Finally, the system 
behaviour is summarized. 

A.4.2.1 Assumptions 

Al: PMGT focuses on a 2D domain. 

A2: The input and output meshes are bounded. 

A3: The input and output meshes are unstructured. 

A4: The input and output meshes are conformal. 

A5: The elements of input and output meshes are triangles. 
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A6: The initial mesh is valid. 

A.4.2.2 Theoretical Model 

The theoretical models corresponding to the goals given in Section A.4.1 de­
scribes the relationship between the input mesh (MIN) and the output mesh 
(MOUT). The meshes are assumed to be embedded in a 2D space. 

TMl: Refining Mesh 

Input: MIN: MeshT, I: RCinstructionT 

Output: MOUT: MeshT 

The following behavior is specified: 

That is , the output mesh is a refined version of the input mesh. 

TM2: Coarsening Mesh 

Input: MIN: MeshT, J: RCinstructionT 

Output: MOUT: MeshT 

The following behavior is specified: 

That is, the output mesh is a coarsened version of the input mesh. 

A.4.2.3 Data Definitions 

The data definitions below are organized so that a definition listed in the 
beginning may be used to define a data item listed after it. 

VertexT ( Dl): A vertex is represented by two real numbers, which are its 
x coordinate and y coordinate. More formally, 
VertexT :=tuple of (x : JR, y: JR). 

EdgeT ( D2): An edge is represented by a set of VertexT. More formally, 
EdgeT := set of VertexT. 
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ValidEdge ( D3): An edge is valid if the edge is a line segment (that is, the 
set has two elements). More formally, 
ValidEdge: EdgeT ~ lffi 
ValidEdge(e: EdgeT) - #e = 2 

CellT ( D4): A cell is represented by a set of VertexT. More formally, 
CellT :=set of VertexT 

Area ( D5): The area of a triangle whose apexes are elements of a cell. More 
formally, 
Area: CellT ~ lR 
Area(c: CellT) - :Bvl, v2, v3: VertexT I vl E c 1\ v2 E c 1\ v3 E c 
1\ vl =:J v2 1\ v2 =:J v3 1\ v3 =:J vl : 

1
1
2 * lvl.x * v2.y- v2.x * vl.y + 

v2.x * v3.y- v3.x * v2.y + 
vl.x * v3.y- v3.x * vl.yl 

ValidCell ( D6): A cell is valid if the cell is a triangle (that is , the set has 
three elements) and the area of the triangle is greater than zero. More 
formally, 
Valid Cell: Cell T ~ lffi 
ValidCell(c: CellT) - #c = 3/\ Area( c) 2: 0 

MeshT ( D7): A mesh is represented by a set of cells. More formally, 
MeshT := set of CellT. 

OnEdge ( D8): Checks if a vertex is on the line segment between two vertices 
(exclusive) of an edge. More formally, 
OnEdge: VertexT x EdgeT ~ lffi 
OnEdge(v: VertexT, e: EdgeT) :3 vl, v2: VertexT I 
v 1 E e 1\ v2 E e 1\ v 1 =:J v2 1\ v =:J v 1 1\ v =:J v2 : 
(vl.x < v.x::::; v2.x 1\ 

(v.y- vl.y)j(v.x- vl.x) = (v2.y- vl.y)j(v2.x- vl.x)) 

BelongToCell ( D9): Checks if an edge belongs to a cell. More formally, 
BelongToCell: Vert exT x Cell T ~ lffi 
BelongeToCell(e: EdgeT, c: Cell T) - V v: Vert exT I v E e : v E c 

Inside ( DlO): Checks if a point (of type VertexT) is inside of a cell. The 
inside checking is false if the point is on an edge of the cell or the point is 
a vertex of the cell. (The algorithm to check if a point is inside a polygon 
is from Blackpawn (Last Access: January, 2006).) More formally, 
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Inside: VertexT x CellT --* Iffi 
Inside(v: VertexT, c: CellT) - :3 vl, v2, v3: VertexT I 
vl E c/\v2 E c/\v3 E c/\v1 I= v21\v2 I= v31\v3 I= vl: 
((v.y- vl.y) * (v2 .x- vl.x)- (v .x- vl.x) * (v2.y- vl.y)) * 
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) > 01\ 
((v .y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2 .y)) * 
((v .y- v3.y) * (vl.x- v3.x)- (v.x- v3.x) * (vl.y- v3.y)) > 0 

Vertices ( Dll): A set of all vetices of the mesh. More formally, 
Vertices: MeshT --* set of VertexT 
Vertices(m: MeshT) = { v: VertexT I (\/ c: CellT I c E m: v E c) : v} 

Edges ( D12): A set of all edges of the mesh. More formally, 
Edges: MeshT --* set of EdgeT 
Edges(m: MeshT) = {v1, v2: VertexT I (\/c: CellT IcE m : 
v1 E c/\v2 E c/\v1 I= v2): {v1 , v2}} 

BoundaryEdges ( D13): A set of edges are boundary edges if they form a 
boundary of a mesh. More formally, 
BoundaryEdges: MeshT --* set of EdgeT 
BoundaryEdges(m: MeshT) _ {b: EdgeT I bE Edges(m) 1\ 
(#{c: CellT I c Em/\ BelongToCell(b, c): c} = 1): b} 

BoundaryVertices ( D14): A set of boundary vertices of the mesh. More 
formally, 
Boundary Vertices: MeshT --* set of Vert exT 
Boundary Vertices(m: MeshT) 
{ v: Vert exT I v E BoundaryEdges(m): v} 

Bounded ( D15): A mesh is bounded if the boundary edges form a closed 
polygon(all vertices of boundary edges belong to exactly two boundary 
edges). More formally, 
Bounded: MeshT --* Iffi 
Bounded(m: MeshT) - \lv: VertexT I v E BoundaryVertices(m): 
(#{e: EdgeT I e E BoundaryEdge(m) 1\v E e : e} = 2) 

Conformal ( D 16): In 2D, a mesh is conformal if the intersection of any two 
cells is either a vertex or an edge or empty. More formally, 
Conformal: MeshT --* Iffi 
Conformal(m: MeshT) -Vel, c2: CellT I c1 Em 1\ c2 Em 1\ c1 I= c2: 
(::le: EdgeT I e E Eeges(m): (::lv : VertexT I v E Vertices(m): 
(cl n c2 = e v c1 n c2 = v V c1 n c2 = 0) 1\ ( • OnEdge(v, e)) )) 
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N olnteriorlntersect ( D 1 7): N olnteriorlntersect is true if a point in space 
(of type VertexT) is inside only one cell of the mesh. More formally, 
Nolnteriorlntersect: MeshT ----+ Jffi 
Nolnteriorlntersect(m: MeshT) -Vel, c2: CellT I 
c1 E m/\c2 E m/\cl =/= c2: (Vv: VertexT I Inside(v, ci): ---, Inside(v,c2)) 

ValidMesh ( Dl8): A mesh is valid if the mesh is bounded, conformal, and 
any point is only inside one cell. More formally, 
ValidMesh: MeshT ----+ Jffi 
ValidMesh(m: MeshT) - (Ve: EdgeT I e E Edges(m): ValidEdge(e)) 
1\ (Vc: CellT I c Em: ValidCell(c)) 1\ 

Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m) 

CoveringUp ( D19): True if two meshes covering up each other, that is, if 
all endpoints of the boundary edges of one mesh are on the boundary 
edges or are end points of the boundary edges of another mesh. More 
formally, 
CoveringUp: MeshT x MeshT ----+ Jffi 
CoveringUp(ml, m2: MeshT) - Vvl, v2: VertexT , I 
vl E Boundary Vertice{ml) 1\ v2 E Boundary Vertices(m2): 
(::Jbl, b2: EdgeT I bl E BoundaryEdges(m1) l\b2 E BoundaryEdges(m2): 
(OnEdge(v1, b2) Vvl E b2)/\ (OnEdge(v2, bl) Vv2 E bl)) 

lnstructionT ( D20): The type of instructions is defined as: 
InstructionT :={REFINE, COARSEN, NOCHANGE} 

CelllnstructionT ( D21): The type of instructions on a cell is defined as: 
CellinstructionT:= tuple of (cell: Cell T, instr: InstructionT) 
(For each cell, there is an instruction for refining, coarsening, or no change.) 

RCinstructionT ( D22): The type of instructions on a mesh is defined as: 
RCinstructionT:= tuple of ( rORc: InstructionT, clnstr: set of CellinstructionT) 
(For each mesh, there is an instruction on whole mesh, and there are set 
of instruction on each cell.) 

Refined ( D23): True if a mesh M' is a refined mesh of a mesh M. More 
formally 
Refined: MeshT x MeshT x RCinstructionT ----+ Jffi 
Refined(m', m: MeshT , rc: RCinstructionT) _ 
rc.rORc =REFINE 1\ ValidMesh(m) 1\ ValidMesh(m') 1\ 

CoveringUp(m', m) A#m' ~ #m 
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Coarsened ( D24): True if a mesh M' is a coarsened mesh of a mesh M. 
More formally 
Coarsened: MeshT x MeshT x RCinstructionT ----+ lB 
Coarsened(m', m: MeshT, rc: RCinstructionT) = 
rc.rORc = COARSEN 1\ ValidMesh(m) 1\ ValidMesh(m ') 1\ 

CoveringUp(m', m) A#m' :::; #m 

A.4.2.4 System Behaviour 

System Behaviour, shown through functional requirements, defines what the 
software should do. The functional requirements, as well as nonfunctional 
requirements in Section A.4.3, partially come from Smith and Chen (2004). 
Smith and Chen (2004) listed all requirements that are common for mesh 
generation systems. They also considered the difference between meshes in 
term of variabilities. However, the mesh generations analyzed by Smith and 
Chen (2004) are targeted at full FEA applications. PMGT only manages the 
geometric information about the mesh, not other FEA related information, 
such as boundary condition and material property. Hence, only commonalities 
that is meaningful for PMGT are selected. Variabilities with parameters of 
variation that are suitable for PMGT are also considered. Other part of the 
requirements are obtained from Dr. Smith. 

New functional requirements, RCinstruction (F9) and Help (F16) are 
added. F9 is unique to PMGT and F16 facilities the non-functional require­
ments Usability (N6) . 

We specify both functional requirements and non-functional require­
ments in the tables. In each table, the field Description gives a brief de­
scription of this requirement. It tells what PMGT should do to fulfill this 
requirement. There are two potential sources, shown in the Source field, for 
each requirement. One source is from Smith and Chen (2004) , and the other 
comes from Dr. Smith. If the requirement is from Smith and Chen (2004), 
then this field will show the commonality number, with a prefix C and the 
associated variability, shown by a prefix V. Where applicable, Related Data 
Definitions and Related Theoretical Models gives the numbers of related data 
definitions and the numbers of related theoretical models, respectively. These 
two field only appear for functional requirements. The Binding Time field ei­
ther shows scope time or run time. Scope time means that this requirement is 
determined when the SRS is written. Run time means that this requirement is 
determined when the system is running. History records the time of creating 
and changing of the requirements. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Fl 
RefiningMesh 
PMGT should have capabilities for 
refining an existing mesh. 
I. rO Rc = REFINE 1\ 

Refined(MOVT, MIN) 
Cl, V3 
D20, D22, D23 
TMl 
Scope time 
Created- June, 2005. 
Modified - October, 2005. Change 
the name from "ImprovingMesh" 
to "RefiningMesh". 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

F2 
CoarseningMesh 
PMGT should have capabilities for 
coarsening an existing mesh. 
I.rORc = COARSEN 1\ 

Coarsened(MOVT, MIN) 
Cl, V3 
D20, D22, D24 
TM2 
Scope time 
Created- October, 2006. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F3 
RefiningOrCoarsening 
PMGT can either refine a given 
mesh to a refined mesh, or coarsen 
a mesh to a coarsened mesh. How­
ever, PMGT cannot do both re­
fining and coarsening at the same 
time. 
Cl, V3 
D20 , D22, D23, D24 
TMl, TM2 
Run time 
Created- October, 2006. 

F4 
Mesh Type 
The mesh generated by PMGT is 
unstructured. 
Cl, V6 
N/A 
N/A 
Scope time 
Created - June, 2005. 
Modified - October , 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F5 
ElmShape 
The shape of the elements in both 
input and output meshes are trian­
gles. 
Vel, c2: CellT I 
c1 E MIN 1\ c2 E MOUT : 
#cl = 31\ Area(cl) > 01\ 
#c2 = 31\ Area(c2) > 0 
Cl, V9 
D4, D5 
TMl, TM2 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Take 
out the requirement for generating 
quadrilateral meshes. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

F6 
DomainDimension 
The computational domain is in 2D 
space. 
Cl, V13 
N/A 
TMl, TM2 
Scope time 
Created - June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F7 
Conformal 
Both input and output meshes are 
conformal. 
Conformal(MIN) 1\ 

Conformal( MOUT) 
Cl, V18 
D16 
N/A 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Take 
out the requirement for generating 
non-conformal meshes. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

F8 
InputDefini tion 
The input of PMGT should be pro­
vided by the embedding applica­
tion. 
C8 
D7, D20, D22 
TMl, TM2 
Scope time 
Created - June, 2005. 
Modified-October 2005. Change 
the name from "Input" to ((Input­
Definition" to clarify that this re­
quirements is about the source of 
the input. 
Modified - October, 2006. Field 
for ((Related Data Definitions" and 
((Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F9 
RCinstruction 
The Instruction on how to re­
fine/coarsen a mesh includes the 
instruction of whether to refine or 
coarsen the mesh and an individ­
ual instruction for each element of 
the the mesh to indicate refining, 
coarsening, or no change. 
Dr. Smith 
D20, D21, D22 
TMl, TM2 
Scope time 
Created- June, 2005 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

FlO 
OutputStorage 
The output of PMGT is stored in 
memory or in files or in both mem­
ory and files. 
Cl2, Dr. Smith 
N/A 
N/A 
Run time 
Created- June, 2005. 
Modified - October 2005. Change 
the name from "Output" to "Out­
putStorage" to clarify that this re­
quirements is about the storage of 
the output. 
Modified - October 2006. Add the 
requirement of storing the output 
mesh in files or both memory and 
files. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

Fll 
VertexUniqueiD 
Each vertex in the output file has a 
unique identifier. 
C2 
N/A 
N/A 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

137 



... _ 
;; i ; 

Master Thesis - Wen Yu -McMaster- Computing and Software 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F12 
Elm UniqueiD 
Each element in the output file has 
a unique identifier. 
C3 
N/A 
N/A 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

F13 
Elm Topology 
The topology of an element in the 
output file is given by the connec­
tivity of its set of vertices. 
C4 
N/A 
N/A 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

F14 
Out Elm Order 
The element information in output 
files is listed in ascending order. 
C13, V34 
N/A 
N/A 
Scope time 
Created- June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

F15 
Out VertexOrder 
The vertex information, such as the 
coordinates, in output files is listed 
in ascending order. 
C14, V35 
N/A 
N/A 
Scope time 
Created - June, 2005. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 
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Requirements Number 
Requirements N arne 
Description 

Source 
Related Data Definitions 
Related Theoretical Models 
Binding Time 
History 

Fl6 
Help 
Helps on documenting the interface 
and the functionality of each func­
tion should be provided. 
Dr. Smith 
N/A 
N/A 
Scope time 
Created- June, 2005. 
Modified - October 2005. Add the 
requirement of documenting func­
tionality of each function. 
Modified - October, 2006. Field 
for "Related Data Definitions" and 
"Related Theoretical Models" are 
added. 

A.4.3 Non-functional Requirements 

All non-functional requirements listed in Smith and Chen (2004) are selected 
except for Cl6, which is solution tolerance, since a mesh refined/coarsened 
by different algorithms may have different solutions, but all of these solutions 
can still be valid. All potential output meshes are valid as long as the out­
put meshes are covering/ covered up meshes of the original mesh, and they 
are refined/ coarsened according to the RCinstruction. The resulting mesh is 
difficult to measure in terms of solution tolerance. Three new non-functional 
requirements, which are LookAndFeel (N5), Usability (N6), and Maintainabil­
ity (N7), are added. These requirements are mentioned in Lai (2004). 

PMGT is difficult to validate. One reason is that the solution for re­
fining/ coarsening a mesh is unknown, as mentioned above. The other reason 
is that it is difficult to write validatable requirements, especially for nonfunc­
tional requirements. For example, what is the proper way for specifying the 
requirement of Usability (N6) of PMGT? On the one hand, that the software 
should easy to use is not validatable. On the other hand, that a person should 
be able to use the software in two days is validatable. However, the measure­
ment, two days, often lacks a justifiable rationale. 

The approach to validate this kind of requirements are to compare it 
with other software with similar functionality. Phrases that are in italics and 
capitalized, such as MANPROP, represent constant defined in Section A.8. 
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Usually, these constants come from other applications with similar functional­
ities. For example, the Usability requirement of PMGT is presented as follows: 

This system should be easy to use. Users with the background 
specified in Section A.3.2 should take LEARNT/ME to reproduce 
an example mesh, which is specified by the test case TC5 in the 
Appendix D. 

First, more general requirement is given. Then, a suggestion to reproduce an 
example mesh is specified. The constant LEARNT/ME is defined as the time 
to produce the same mesh for users with the same background using AOMD. 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Nl 
Performance 
Refining/ coarsening a mesh using 
multiple processors should be faster 
than when using a single proces­
sor. In addition, the performance 
of PMGT should be comparable 
with that of similar applications. 
The execution time to refine an ex­
ample mesh, which is specified by 
the test case TC5 in the Appendix 
D. 
C15, V39 
Scope time 
Created- June, 2005. 

N2 
Precision 
The number of decimal digits 
should agree with the IEEE stan­
dard for floating-point numbers. 
C17, V41 
Scope time 
Created- June, 2005. 

141 



Master Thesis - Wen Yu - McMaster- Computing and Software 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

N3 
Exception 
Run-time exception handling 
should check at least the following 
exceptions: division by zero, re­
dundant vertices, redundant edges, 
redundant cells. 
C18, V42 
Scope time 
Created - June, 2005 

N4 
Portability 
PMGT should build on a platform 
with access to SHARCNET or on a 
the system that has similar archi­
tecture to SHARCNET. The mem­
ory capacity should be MEMCAP. 
C19, V37, V38 
Scope time 
Created - June, 2005 

N5 
LookAndFeel 
PMGT should follow the program­
ming conventions of the language in 
which the application is coded in. 
Dr. Smith 
Scope time 
Created- June, 2005 
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Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

Requirements Number 
Requirements N arne 
Description 

Source 
Binding Time 
History 

N6 
Usability 
This system should be easy to use. 
Users with the background speci­
fied in Section A.3.2 should take 
LEARNTIME to reproduce an ex­
ample mesh, which is specified in 
the Appendex D. 
Dr. Smith 
Scope time 
Created- June, 2005 

N7 
Maintainability 
The system should be developed 
in the way that the effort spent 
to maintain the system or to add 
in features would be minimum. 
The redevelopment time to add a 
new algorithm to coarsen meshes in 
PMGT should be MANPROP. 
Dr. Smith 
Scope time 
Created- June, 2005 

Other System Issues 

This section includes some other supporting information that might contribute 
to the success or failure of the system development. The following factors are 
considered: 

• Open issues are statements of factors that are uncertain and might make 
significant difference to the system. 

• Off-the-shell solutions are existing systems and/or components bought 
or borrowed. They could be the potential solutions. 

• Waiting rooms provide a blueprint of how the system will be extended. 
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A.5.1 Open Issues 

There are no open issues for PMGT at this stage. 

A.5.2 Off-the-shelf Solutions 

The following programs may be used in PMGT. 

• AOMD: a mesh management library (or database) that is able to provide 
a variety of services for mesh users (SCOREC, Last Access: January, 
2006). 

A.5.3 Waiting Rooms 

Here, we list the possible changes that can affect the extension of the system. 
These changes are related to the assumptions specified in Section A.4.2. 

1. PMGT may produce both structured and unstructured meshes. 

2. PMGT may produce both conformal and nonconformal meshes. 

3. The elements of input and output mesh may be of a shape other than 
triangles. 

4. The system may deal with invalid input mesh. 

5. The system may accommodate a mixed mesh. 

6. The system may accommodate a hybrid mesh. 

7. The system may deal with a 3D problem domain. 

A.6 Traceability Matrix 

The traceability matrix defined in this section gives a big picture of the associa­
tions among goals, assumptions, data definitions, theoretical models, and func­
tional requirements. Goals are ideal general models. After assumptions are 
applied, . these goals are restricted to problems that can be solved by PMGT. 
Data definitions and theoretical models are used to describe the requirements. 
The matrix is too big to fit one page. For the sake of clarity, it is split into 
three parts in five tables, which are Table A.2, Table A.3, Table A.4, Table 
A.5, and Table A.6. In addition, only items that have a relation with items 
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in the same part are listed. If there is a .,/in a cell, it means that if the goal, 
or the assumption, or the theoretical model, or the data definition, or the re­
quirement in the corresponding column changes, the assumption, or the data 
definition, or the theoretical model, or the requirement in the corresponding 
row should also change. 

A.7 List of Possible Changes in the Require­
ments 

The system might evolve to accommodate the following changes in the future. 
These changes will add additional goals to the software library. 

1. The input of PMGT may include material properties. 

2. The input of PMGT may include boundary conditions. 

A.8 Values of Auxiliary Constants 

The constants given in this section are used to validate some nonfunctional 
requirements. The compatible software chosen is AOMD. However, other soft­
ware can also be used as long as the other software has the required function­
alities to validate the given requirement. 

LEARNT/ME The time that reproduce the same example as 
that specified in nonfunctional requirement N6 using 
AOMD. 

MANPROP The redevelopment time to add the same algorithm 
as that specified in the nonfunctional requirement N7, 
using AOMD. If the algorithm is already in AOMD, 
the the time that AOMD took to add it. 

RSPTIME The execution time to refine the same mesh as 
that specified in nonfunctional requirement Nl using 
AOMD. 

MEMCAP The typical memory capacity of a machine on SHAR­
CNET. 
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I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21 
Al .( .( .( 

A2 .( .( .( 

A3 .( .( .( 

A4 .( .( .( 

A5 .( .( .( .( 

A6 .( .( .( 

Dl .( .( .( 

D2 .( .( 

D3 .( .( 

D4 .( .( .( .( 

D5 .( .( .( .( 

D6 .( .( .( .( 

D7 .( .( 

D8 .( .( .( 

D9 .( .( .( 

DlO .( .( .( .( 

Dll .( .( 

D12 .( .( .( .( 

D13 .( .( .( 

D14 .( .( .( 

D15 .( .( .( .( 

D16 .( .( .( .( 

D17 .( .( .( .( 

D18 .( .( 

D20 .( .( 

D21 .( .( 

D22 .( .( 

D19 .( .( .( .( 

D23 .( 

D24 .( 

Table A.2: Traceability Matrix (PART I): Goals , Assumptions, Theoretical 
Models, Data Definitions , and Requirements (I) 
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I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21 
Fl .( .( 

F2 .( .( 

F3 .( .( .( .( 

F4 .( 

F5 .( .( .( .( .( .( 

F6 .( .( .( .( .( 

F7 .( .( .( 

F8 .( .( .( .( 

F9 .( .( .( .( 

FlO .( .( 

F16 .( .( 

Table A.3: Traceability Matrix (PART I): Goals, Assumptions, Theoretical 
Models, Data Definitions, and Requirements (II) 
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I Dl I D2 I D3 I D4 I D5 I D6 I D7 I D8 I D9 I DlOI D111 D12l 

Dl ./ 
D2 ./ ./ 
D3 ./ ./ 
D4 ./ ./ 
D5 ./ ./ 
D6 ./ ./ ./ 
D7 ./ ./ 
D8 ./ ./ ./ 
D9 ./ ./ ./ ./ 
DlO ./ ./ ./ 
D11 ./ ./ ./ ./ 
D12 ./ ./ ./ ./ ./ 
D13 ./ ./ ./ ./ 
D14 ./ ./ 
D15 ./ ./ ./ 
D16 ./ ./ ./ ./ ./ ./ 
D17 ./ ./ ./ ./ 
D18 ./ ./ ./ 
D19 ./ ./ ./ ./ 
D20 
D21 ./ 
D22 
D23 
D24 

I I I I I I~ I I I I I I 
Fl 
F2 
F3 ./ 
F5 ./ ./ 
F7 
F8 ./ 
F9 

Table A.4: Traceability Matrix (PART II) : Dat a Definit ions and Requirements 
(I) 
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I D13l D14l D15l D16l D17l D18l D19l D20I D2ll D22l D23l D24l 
D13 ./ 
D14 ./ ./ 
D15 ./ ./ ./ 
D16 ./ 
D17 ./ 
D18 ./ ./ ./ ./ 
D19 ./ ./ ./ 
D20 ./ 
D21 ./ ./ 
D22 ./ ./ ./ 
D23 ./ ./ ./ ./ ./ 
D24 ./ ./ ./ ./ ./ 

Fl ./ ./ ./ 
F2 ./ ./ ./ 
F3 ./ ./ ./ ./ 
F5 
F7 ./ 
F8 ./ ./ 
F9 ./ ./ ./ 

Table A.5: Traceability Matrix (PART II) : Data Definitions and Requirements 
(II) 

I Fl I F2 I F6 I F8 I FlO I N6 
F3 ./ ./ 
F5 ./ 
F9 ./ 
Fll ./ 
F12 ./ 
F13 ./ 
F14 ./ 
F15 ./ 
F16 ./ 

Table A.6: Traceability Matrix (PART III): Requirements 
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Appendix B 

Module Guide for a Parallel 
Mesh Generation Toolbox 
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B.l Introduction 

Decomposing a system into modules is a commonly accepted approach to 
developing software. A module is a work assignment for a programmer or 
programming team. The basic principle of the decomposition used here is the 
information hiding principle (Parnas et al., 1984). According to Parnas et al. 
(1984), 

• System details that are likely to change independently should be the 
secrets of separate modules. 

• Each data structure is used in only one module. 

• Any other program that requires information stored in a module's data 
structures must obtain it by calling access programs belonging to that 
module. 

After completing the first stage of the design, the Software Require­
ments Specification (SRS), the Module Guide (MG) for the PMGT was devel­
oped. The M G specifies the modular structure of the system and is intended 
to allow both designers and maintainers to easily identify the parts of the 
software. The potential readers of this document are as follows: 

• New project members: This document can be a guide for a new project 
member to easily understand the overall structure of the PMGT and 
quickly find the relevant modules they are searching for. 

• Maintainers: The hierarchical structure of the module guide improves 
the maintainers' understanding when they need to make changes to the 
system. It is important for a maintainer to update the relevant sections 
of the document after changes have been made. 

• Designers: Once the module guide has been written, it is can be used to 
check for consistency, feasibility and flexibility. Designers can verify the 
system in various ways, such as consistency among modules, feasibility 
of the decomposition, and flexibility of the design. 

The rest of the document is organized as described in the following. Sec­
tion B.2lists the anticipated and unlikely changes of the software requirements. 
Section B.3 summarizes the module decomposition that was constructed ac­
cording to the likely changes. Section B.4 specifies the connections between 
the software requirements and the modules. Section B.5 gives a detailed de­
scription of the modules. Section B.6 includes two traceability matrices. One 
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checks the completeness of the design against the requirements provided in 
the SRS. The other shows the relation between anticipated changes and the 
modules. Section B. 7 describes the use relation between modules. 

B.2 Anticipated and Unlikely Changes 

This section lists possible changes to the system. According to the likeliness of 
the change, the possible changes are classified into two categories. Anticipated 
changes are listed in Section B.2.1, and unlikely changes are listed in Section 
B.2.2. 

B.2.1 Anticipated Changes 

Anticipated changes are the source of the information that is to be hidden 
inside the modules. Ideally, changing one of the anticipated changes will only 
require changing the one module that hides the associated decision. The ap­
proach adapted here is called design for change. 

ACl: The data structure and algorithms for implementing the virtual mem­
ory of the system. 

AC2: The data structure and algorithms for implementing the interface be­
tween the file and the system. 

AC3: The data structure and algorithms for implementing the interface be­
tween the keyboard and the system. 

AC4: The data structure and algorithms for screen display. 

AC5: The format and structure of the initial input mesh. 

AC6: The format and structure of the output mesh. 

AC7: The mechanisms for validating the input and output meshes. 

AC8: The data structure of a vertex. 

AC9: The data structure of an edge. 

AClO: The data structure of a cell. 

ACll: The data structure of a mesh. 
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AC12: The algorithms for refining a mesh. 

AC13: The algorithms for coarsening a mesh. 

AC14: The shape of a cell, which is initially assumed to be a triangular. 

B.2.2 Unlikely Changes 

The module design should be as general as possible. However, a general system 
is more complex. Sometimes this complexity is not necessary. Fixing some 
design decisions at the system architecture stage can simplify the software 
design. If these decision should later need to be changed, then many parts of 
the design will potentially need to be modified. Hence, it is not intended that 
these decisions will be changed. 

UCl: Input/Output devices (Input: File and/or Keyboard, Output: File, 
Memory, and/or Screen). 

UC2: There will always be a source of input data external to the PMGT 
software. 

UC3: Output data are displayed to the output device. 

UC4: The goal of the system is refining or coarsening a mesh. 

UC5: The type of the mesh is unstructured. 

UC6: The representation of an edge is a set of vertices. 

UC7: The representation of a cell is a set of vertices. 

UC8: A Cartesian coordinate system is used. 

B.3 Module Hierarchy 

This section provides an overview of the module design. Modules are summa­
rized in a hierarchy decomposed by secrets in Table B.l. The modules listed 
below, which are leaves in the hierarchy tree, are the modules that will actually 
be implemented. 

Ml: Virtual Memory Module 

M2: File Read/Write Module 
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M3: Keyboard Input Module 

M4: Screen Display Module 

M5: Input Format Module 

M6: Output Format Module 

M7: Service Module 

M8: Vertex Module 

M9: Edge Module 

MlO: Cell Module 

Mll: Mesh Module 

M12: Refining Module 

M13: Coarsening Module 

Note that M1, M2, M3 and M4 are commonly used modules and are already 
implemented by the operating system. They will not need to be implemented 
again for PMGT. 

B.4 Connection Between Requirements and De-. 
stgn 

The design of the system is intended to satisfy the requirements developed in 
the SRS. In this stage, the system is decomposed into modules. The connection 
between requirements and modules is listed in Table B.2. However, some 
connections are not obvious. The explanation below has the purpose of making 
these connections clear. The software requirements are documented in the 
SRS. They are also listed starting on page 162 for convenience. 

The functionalities of refining a mesh (F1), and coarsening a mesh 
(F2) are achieved directly by M12 and M13, respectively. The functional re­
quirement MeshType (F4) is related to the representation of mesh, which is 
contained in M9, M10, and Mll. The algorithms for refining (M12) and coars­
ening (M13) also depend on the MeshType requirement. Another connection 
worth mentioning relates to the DomainDimension requirement (F6). All geo­
metric information for the mesh, including dimension information, is stored in 
MS. Algorithms in M12 and M13 also relate to the dimension of the domain. 
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Level 1 Level 2 Level 3 Level 4 

Hardware-
Extended Virtual Memory 

Hiding 
Computer Module Module 

File Read/Write 
Module 

Module 
Device Interface Keyboard Input 
Module Module 

Screen Display 
Module 

Behavior- Input Format Mod-
Hiding ule 
Module Output Format 

Module 
Service Module 

Vertex Module 
Software 

Mesh Data Module 
Entity Module Edge Module 

Decision Cell Module 
Module Mesh Module 

Algorithm Module 
Refining Module 
Coarsening Module 

Table B.l: Module Hierarchy 

Some nonfunctional requirements , such as Performance (N1) and Main­
tainability (N7), are related to the overall quality of the system. These qualities 
depend on the implementation of all of the modules. The Precision require­
ment depends on modules related to calculation, which are the module M8, 
M9, MlO, Mll, M12 and Ml3. 

B.5 Module Decomposition 

Modules are decomposed according to the principle of ((information hiding" 
proposed by Parnas et al. (1984). The Secrets field in a module decomposition 
is a brief statement of the design decision hidden by the module. The Services 
field specifies what the module will do without documenting how to do it. 
For each module, a suggestion for the implementing software is given under 
the Implemented By title. If the entry is OS, this means that the module 
is provided by the operating system or by standard programming language 
libraries. PMGT means the module will be implemented by the PMGT soft-
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ware. Only leaf modules in the hierarchy have to be implemented. If a dash 
( - ) is shown, this means that the module is not a leaf and will not have to be 
implemented. Whether or not this module is implemented depends on the pro­
gramming language selected. This decomposition is inspired by Chen (2003) . 
The decomposition of the mesh data module is partly based on ElSheikh et al. 
(2004). One difference between the current design and ElSheikh et al. (2004) 
is that ElSheikh et al. (2004) has an explicit module for incidence and adja­
cency information. However, it is believed that where and how to store this 
information is an implementation decision that should be abstracted away at 
the design stage. 

B.5.1 Hardware-Hiding Module 

Secrets: The data structure and algorithm used to implement the virtual 
hardware. 

Services: Serves as a virtual hardware used by the rest of the system. This 
module provides the interface between the hardware and the software. 
So, the system can use it to display outputs or to accept inputs. 

Implemented By: -

B.5.1.1 Extended Computer Module 

Secrets: The number of processors, the instruction set of the computer, and 
the computer's capacity for performing concurrent operations. 

Services: Provides an instruction set including the operations on application­
independent data types, sequence control operations, and general I/0 
operations. 

Implemented By: -

B.5.1.1.1 Virtual Memory Module (Ml) 

Secrets: The hardware addressing methods for data and instructions in real 
memory. 

Services: Presents a uniformly addressable virtual memory. 

Implemented By: OS 
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B.5.1.1.2 File Read Write Module (M2) 

Secrets: The data structure and algorithms for implementing the interface 
between the file and the system. 

Services: Provides an interface between the storage of the system and the IO 
devices. 

Implemented By: OS 

B.5.1.2 Device Interface Module 

Secrets: Characteristics of the present devices not likely to be shared by 
replacement devices. 

Services: Provides virtual devices to be used by the rest of software. 

Implemented By: -

B.5.1.2.1 Keyboard Input Module (M3) 

Secrets: The data structure and algorithms for implementing the interface 
between the keyboard and the system. 

Services: Retrieves the user inputs from the keyboard and communicates the 
information with other parts of the system. 

Implemented By: OS 

B.5.1.2.2 Screen Display Module (M4) 

Secrets: The data structure and algorithms to display graphics and text on 
the screen. 

Services: Provides an interface between the system and the screen so the 
system can display information on the screen through the use of programs 
in the module. 

Implemented By: OS 
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B.5.2 Behavior-Hiding Module 

Secrets: The contents of the required behaviors. 

Services: Includes programs that provide externally visible behavior of the 
system as specified in the software requirements specification (SRS) doc­
uments. This module serves as a communication layer between the 
hardware-hiding module and the software decision module. The pro­
grams in this module will need to change if there are changes in the 
SRS. 

Implemented By: -

B.5.2.1 Input Format Module (M5) 

Secrets: The format and structure of the initial input mesh. 

Services: Converts the input mesh to the data structured used in PMGT. 

Implemented By: PMGT 

B.5.2.2 Output Format Module (M6) 

Secrets: The format and structure of the output mesh. 

Services: Converts the output mesh to an output file . 

Implemented By: PMGT 

B.5.2.3 Service Module (M7) 

Secrets: The algorithm for validating meshes. 

Services: Checks if the input and output meshes are valid. 

Implemented By: PMGT 

B.5.3 Software Decision Module 

Secrets: The design decision based on mathematical theorems , physical facts , 
or programming considerations. The secrets of this module are not de­
scribed in the SRS. 
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Services: Includes data structure and algorithms used in the system that do 
not provide direct interaction with the user. 

Implemented By: -

B.5.3.1 Entity Module 

Secrets: The data structure of a mesh entity, including vertex, edge, and cell. 

Services: Stores the complete mesh information generated, and also provides 
programs to import and export the mesh information. 

Implemented By: -

B.5.3.1.1 Vertex Module (M8) 

Secrets: The data structure of a vertex. 

Services: Stores the complete vertex information generated and provides pro­
grams to import and export the vertex information. The operations on 
vertices are also included in this module. 

Implemented By: PMGT 

B.5.3.1.2 Edge Module (M9) 

Secrets: The data structure of an edge. 

Services: Stores the complete edge information generated and provides pro­
grams to import and export the edge information. The operations on 
edges are also included in this module. 

Implemented By: PMGT 

B.5.3.1.3 Cell Module (MlO) 

Secrets: The data structure of a cell. 

Services: Stores the complete cell information generated and provides pro­
grams to import and export the cell information. The operations on cells 
are also included in this module. 

Implemented By: PMGT 
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B.5.3.1.4 Mesh Module (Mll) 

Secrets: The data structure of a mesh. 

Services: Stores the complete mesh information generated and provides pro­
grams to import and export the cell information. The operations on 
meshes are also included in this module. 

Implemented By: PMGT 

B.5.3.2 Mesh Algorithm Module 

Secrets: Algorithms for refining and coarsening a mesh. 

Services: Refining and coarsening a mesh. 

Implemented By: -

B.5.3.2.1 Refining Module (M12) 

Secrets: Algorithms for refining a mesh. 

Services: Refining a mesh. 

Implemented By: MPGT 

B.5.3.2.2 Coarsening Module (M13) 

Secrets: Algorithms for coarsening a mesh. 

Services: Coarsening a mesh. 

Implemented By: MPGT 

B.6 Traceability Matrix 

A traceability matrix can be used for checking the completeness of the current 
design. In this section, there are two matrices, the traceability matrix for re­
quirements and the traceability matrix for anticipated changes. The module 
names and their corresponding numbers are can be found in Section B.3 
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B.6.1 Traceability Matrix for Requirements 

The traceability matrix in Table B.2 makes a connection between the modules 
and the requirements. Modules are listed in the first row and requirements 
are listed in the first column. If a module, say A, satisfies a requirement, say 
B, and A is in j-th column and B in i-th row, then there is a check mark 
/in the cell of the i-th row and the j-th column. There is a special column 
"Doc." It represents the documentation of PMGT. the "Doc" entry is used to 
fulfill the requirement Help (F16). The names of the requirements and their 
corresponding numbers are listed below for convenience. 

Fl: RefiningMesh 

F2: CoarseningMesh 

F3: RefiningOrCoarsening 

F4: Mesh Type 

F5: ElmShape 

F6: DomainDimension 

F7: Conformal 

F8: lnputDefinition 

F9: RCinstruction 

FlO: OutputStorage 

Fll: Vertex U niqueiD 

Fl2: ElmUniqueiD 

F13: Elm Topology 

Fl4: OutElmOrder 

Fl5: Out VertexOrder 

Fl6: Help 

Nl: Performance 

N2: Precision 
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N 3: Exception 

N4: Portability 

N5: LookAndFeel 

N6: Usability 

N7: Maintainability 

I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Mq Ml~ Mq Docl 
Fl ./ 
F2 ./ 
F3 ./ ./ 
F4 ./ ./ ./ ./ ./ 
F5 ./ ./ 
F6 ./ ./ ./ 
F7 ./ ./ ./ 
F8 ./ ./ 
F9 ./ ./ 
FlO ./ ./ ./ 
Fll ./ 
F12 ./ 
F13 ./ 
F14 ./ 
F15 ./ 
F16 ./ 
Nl ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N2 ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N3 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N4 ./ ./ ./ ./ ./ ./ ./ 
N5 ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N6 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 
N7 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 

Table B.2: Traceability Matrix: Modules and Requirements 
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B.6.2 Traceability Matrix for Anticipated Changes 

The traceability matrix in Table B.3 illustrates the relationship between mod­
ules and anticipated changes listed in Section B.2. If there is a ..fin an entry 
of the matrix, the change specified in that row is hidden in the module of the 
corresponding column. 

AC1 .._( 

AC2 .._( 

AC3 .._( 

AC4 .._( 

AC5 .._( 

AC6 .._( 

AC7 .._( 

AC8 .._( 

AC9 .._( 

AC10 .._( 

AC11 .._( 

AC12 .._( 

AC13 .._( 

AC14 .._( .._( 

Table B.3: Traceability Matrix: Modules and Anticipated Changes 

B.7 Use Hierarchy between Modules 

In this section, the uses hierarchy between modules is provided. Parnas (1978) 
said of two programs A and B that A uses B if correct execution of B may be 
necessary for A to complete the task described in its specification. That is , A 
uses B if there exist situations in which the correct functioning of A depends 
upon the availability of a correct implementation of B. Figure B.1 illustrates 
the use relation between the modules. It can be seen that the graph is a 
directed acyclic graph (DAG). Each level of the hierarchy offers a testable and 
usable subset of the system, and modules in the higher level of the hierarchy 
are essentially simpler because they use modules from the lower levels. 
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Figure B.l: Use Hierarchy among Modules 
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Appendix C 

Module Interface Specification 
for a Parallel Mesh Generation 
Toolbox 
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C.l Introduction 

One of the advantages of decomposing the system into modules is that each 
module can be developed independently. However, the secret and services 
of each module does not provide enough information for parallel coding. A 
document specifying the interface of each module, called the Module Interface 
Specification (MIS), is needed. An MIS of a particular module is not only used 
as a guide by the programmers that are responsible for coding this module, but 
also by programmers that will use this module. An MIS is abstract because it 
describes what the module will do, but not how to do it. 

This MIS describes the services of the corresponding modules specified 
in the document "Module Guide for a Mesh Generator." A state machine MIS 
is used. Note that some of the modules have multiple projections. In this case, 
variables listed in section state variables give the format of all states for all 
of the created objects. The idea of multiple projection is also used in Bauer 
(1995). By using projections, the change of state variables is applicable to the 
particular object associated with this module. In this system, this particular 
kind of modules includes the module Vertex, Edge, Cell, and Mesh. 

The rest of the document is organized as follows. Section C.2 describes 
the MIS template used in this document. Section C.3 copies the module hi­
erarchy from Module Guide document for convenience. Section C.4, Section 
C.5, Section C.6, Section C.7, Section C.8, Section C.ll, Section C.12 give 
the MISs for the Vertex Module, Edge Module, Cell Module, Mesh Module, 
Service Module, Refining Module, and Coarsening Module, respectively. 

C.2 Template 

This section gives the template used in this document. This template is modi­
fied version of the MIS template presented in Ghezzi et al. (2003) and Hoffman 
and Strooper (1999). According to this template, each module is modeled as 
a finite state machine. It has a set of state variables, inputs, outputs, and 
transitions. In the case that an exception conditions become true, an excep­
tion is raised by the associated access program. If an access program has an 
output, then Output is specified. If an access program changes states vari­
ables, a Transition is specified. The inputs of the access program are listed as 
arguments. 

The discrete mathematics notation used here follows that introduced 
by Gries and Schneider (1993). This notation is explained in the SRS. A dot 
notation is used in two cases. One is for referring to a field in a tuple, and the 
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other is for referencing the access program of a module. 
The whole template is composed of four parts. First, the name of the 

module is given. Second, constants, data types, and access programs that are 
used by this module, but defined outside of this module, are listed. Third, the 
syntax of the interface is specified. Finally, the semantics of the interface is 
described. The template is described in the rest of this section. 

C.2.1 Module Name 

If "(MP)" is appended to the name of the module, it means that this module 
has multiple projections. 

C.2.2 Uses 

This section lists constants, data types, and access programs that are defined 
outside of this module. The format of each imported item is specified after 
each header. 

C.2.2.1 Imported Constants 

Uses ( module name ) Imports ( resource constants list ) 

C.2.2.2 Imported Data Types 

Uses ( module name ) Imports ( resource data type list) 

C.2.2.3 Imported Access Programs 

Uses ( module name ) Imports ( resource access program list) 

C.2.3 Interface Syntax 

This section defines the syntax of the module interface. The interface indicates 
the services that the module provides. Other modules can only access this 
module through this interface. Other information inside the module is the 
secret that it hides from other modules. Changing the internal design of a 
module will not affect the way that other modules use this module. The 
format of each exported items is specified after each header. 

169 



Master Thesis - Wen Yu -McMaster- Computing and Software 

C.2.3.1 Exported Constants 

constant name : type of the constant 

C.2.3.2 Exported Data Types 

data type name := structure of the data type 

C.2.3.3 Exported Access Programs 

The exported access programs are listed in the tabular format shown below. 
In this software, exceptions are handled inside the access r;outine by displaying 
error messages and terminating the program. 

I Routine Name I Input I Output I Exceptions I 

C.2.4 Interface Semantics 

The semantics of the interface is introduced in this section. The components of 
this section include state variables, state invariants, access program semantics, 
etc. 

C.2.4.1 State Variables 

This section lists the state variables in the format of variable name: type 

C.2.4.2 Assumption 

Any assumption about this module are specified here. 

C.2.4.3 Invariant 

Predicates that should always hold before and after each access routine in the 
module. 

C.2.4.4 Access Program Semantics 

This section includes possible exceptions, possible outputs, and possible tran­
sitions. The contents of this section should be as formal as possible. When 
necessary and appropriate, an English explanation is included to help readers 
understand the meaning of some the mathematical notations. 
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C.2.4.5 Local Functions 

Functions used to facilitate the expression of the interface semantics. 

C.2.4.6 Local Data Types 

Data types used to facilitate the expression of the interface semantics. 

C.2.4. 7 Local Constants 

Constants used to facilitate the expression of interface semantics. 

C.2.4.8 Considerations 

Other issues related to the MIS of this module, but not covered in the other 
parts of the document. 

C.3 Module Decomposition 

PMGT is decomposited into the modules listed in Table C.l. Note that 
only the leaf modules are implemented. The Virtual Memory Module, File 
Read/Write Module, Keyboard Input Module, and Screen Display Module are 
implemented by the operating system and programming language libraries. 
More information on the modular decomposition of the PMGT can be found 
in the MG document. 

C.4 MIS of Vertex Module 

C.4.1 Module Name: Vertex (MP) 

C.4.2 Uses 

C.4.2.1 Imported Constants 

None 

C.4.2.2 Imported Data Types 

None 
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Level 1 Level 2 Level 3 

Hardware-
Extended Virtual Memory 

Hiding 
Computer Module Module 

File Read/Write 
Module 

Module 
Device Interface Keyboard Input 
Module Module 

Screen Display 
Module 

Behavior- Input Format Mod-
Hiding ule 
Module Output Format 

Module 
Service Module 

Software 
Mesh Data Module 

Entity Module 
Decision 
Module Mesh Module 

Algorithm Module 
Refining Module 
Coarsening Module 

Table C.l: Module Hierarchy 

C.4.2.3 Imported Access Programs 

None 

C.4.3 Interface Syntax 

C.4.3.1 Exported constants 

None 

C.4.3.2 Exported Data Types 

VertexT := tuple of (x: IR, y: IR) 

C.4.3.3 Exported Access Programs 

Level 4 

Vertex Module 
Edge Module 
Cell Module 

The exported access programs for the vertex module are listed in Table C.2. 
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Routine Name Input Output Exceptions 
initVertex lR,lR 
get Vertex Vert exT 

Table C.2: Exported Access Programs of the Vertex Module 

C.4.4 Interface Semantics 

C.4.4.1 State Variables 

X: JR 
y: lR 

C.4.4.2 Invariant 

None 

C.4.4.3 Assumptions 

init Vertex() is called before any other access routine. 

C.4.4.4 Access Program Semantics 

C.4.4.4.1 initVertex(xl : JR, yl: JR) 

• Transition 
x := xl 
y := yl 

C.4.4.4.2 getVertex() 

• Output 
(x,y) 

C.4.4.5 Local Functions 

None 

C.4.4.6 Local Data Types 

None 
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C.4.4. 7 Local Constants 

None 

C.4.4.8 Considerations 

None 

C.5 MIS of Edge Module 

C.5.1 Module Name: Edge (MP) 

C.5.2 Uses 

C.5.2.1 Imported Constants 

None 

C.5.2.2 Imported Data Types 

Uses Vertex Module Imports VertexT 

C.5.2.3 Imported Access Programs 

None 

C.5.3 Interface Syntax 

C.5.3.1 Exported constants 

None 

C.5.3.2 Exported Data Types 

EdgeT := set of VertexT 

C.5.3.3 Exported Access Programs 

The exported access programs for the Edge module are listed in Table C.3. 
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Routine Name Input Output Exceptions 
initEdge VertexT, VertexT Equal Vertices 
get Edge EdgeT 

Table C.3: Exported Access Programs of the Edge Module 

C.5.4 Interface Semantics 

C.5.4.1 State Variables 

e: set of VertexT 

C.5.4.2 Invariant 

#e=2 

C.5.4.3 Assumptions 

initEdge() is called before any other access routine. 

C.5.4.4 Access Program Semantics 

None 

C.5.4.4.1 initEdge(start: VertexT, end: VertexT) 

• Exception 
start = end ===? EqualVertices 

• Transition 
e: = {start, end} 

C.5.4.4.2 getEdge() 

• Output 
e 

C.5.4.5 Local Functions 

None 

C.5.4.6 Local Data Types 

None 
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C.5.4. 7 Local Constants 

None 

C.5.4.8 Considerations 

None 

C.6 MIS of Cell Module 

C.6.1 Module Name: Cell (MP) 

C.6.2 Uses 

C.6.2.1 Imported Constants 

None 

C.6.2.2 Imported Data Types 

Uses Vertex Module Imports VertexT 

C.6.2.3 Imported Access Programs 

None 

C.6.3 Interface Syntax 

C.6.3.1 Exported constants 

None 

C.6.3.2 Exported Data Types 

Cell T := set of Vert exT 

C.6.3.3 Exported Access Programs 

The exported access programs for the cell module are listed in Table C.4. 
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Routine N arne Input Output Exceptions 
initCell VertexT, VertexT, Vert exT Equal Vertices 
get Cell CellT 

Table C.4: Exported Access Programs of the Cell Module 

C.6.4 Interface Semantics 

C.6.4.1 State Variables 

c: set of VertexT 

C.6.4.2 Invariant 

#c= 3 

C.6.4.3 Assumptions 

initCell() is called before any other access routine. 

C.6.4.4 Access Program Semantics 

None 

C.6.4.4.1 initCell(vl: VertexT, v2: VertexT, v3: VertexT) 

• Exception 
vl = v2 V v2 = v3 V v3 = vl ==? EqualVertices 

• Transition 
c := {vl, v2, v3} 

C.6.4.4.2 getCell() 

• Output 
c 

C.6.4.5 Local Functions 

None 

C.6.4.6 Local Data Types 

None 
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C.6.4.7 Local Constants 

None 

C.6.4.8 Considerations 

None 

C.7 MIS of Mesh Module 

C.7.1 Module Name: Mesh (MP) 

C.7.2 Uses 

C.7.2.1 Imported Constants 

None 

C.7.2.2 Imported Data Types 

Uses Vertex Module Imports VertexT 
Uses Edge Module Imports EdgeT 
Uses Cell Module Imports CellT 

C.7.2.3 Imported Access Programs 

None 

C.7.3 Interface Syntax 

C.7.3.1 Exported constants 

None 

C.7.3.2 Exported Data Types 

MeshT := set of Cell T 

C.7.3.3 Exported Access Programs 

The exported access programs for the mesh module are listed in Table C.5. 
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Routine N arne Input Output Exceptions 
initMesh 
get Mesh MeshT 

numOfCells N 
add Cell CellT CellExist 

delete Cell CellT CellN otExist 
on Edge VertexT, EdgeT lB 

belongToCell EdgeT , CellT lB 
inside VertexT , CellT lB 

vertices set of VertexT 
edges set of EdgeT 

boundary Edges set of EdgeT 
boundary Vertices set of VertexT 

Table C.5: Exported Access Programs of the Mesh Module 

C. 7.4 Interface Semantics 

C.7.4.1 State Variables 

m: set of Cell T 

C.7.4.2 Invariant 

#m;:::o 

C.7.4.3 Assumptions 

initCell() is called before any other access routine. 

C. 7 .4.4 Access Program Semantics 

C.7.4.4.1 initMesh() 

• Transition 
m:=0 

C.7.4.4.2 getMesh() 

• Output 
m 
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C.7.4.4.3 numOfCells() 

• Output 
#m 

C.7.4.4.4 addCell(c: CellT) 

• Exception 
c E m ==} CellExist 

• 'fransition 
m := mU {c} 

C. 7 .4.4.5 deleteCell( c: Cell T) 

• Exception 
c tt m ==? CellN otExist 

• 'fransition 
m := m\{c} 

C.7.4.4.6 onEdge(v: VertexT, e: EdgeT) 

• Description 
Returns true if a vertex v is on the line segment between two vertices 
(exclusive) of the edge e. 

• Output 
:3v1 , v2: VertexT I 
v 1 E e 1\ v2 E e 1\ v 1 =1- v2 1\ v =1- v 1 1\ v =1- v2 : 
(vl.x < v.x:::; v2.x 1\ 

(v.y- vl.y)/(v.x- vl.x) = (v2.y- vl.y)/(v2.x- vl.x)) 

C.7.4.4.7 belongToCell(e: EdgeT, c: CellT) 

• Description 
Returns true if an edge e belongs to a cell c. 

• Output 
Vv: VertexT I vEe: v E c 
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C.7.4.4.8 inside(v: VertexT, c: CellT) 

• Description 
Returns true if a vertex v is inside a cell c. (The algorithm is adopt from 
Franklin (Last Access: January, 2006).) 

• Output 
Jvl, v2, v3: Vert exT I 
vl E c A v2 E c A v3 E c A vl =/:. v2 A v2 =/:. v3 A v3 =/:. vl : 
((v.y- vl.y) * (v2.x- vl.x)- (v.x- vl.x) * (v2.y- vl.y)) * 
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) > 0 A 
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) * 
((v.y- v3.y) * (vl.x- v3.x)- (v.x- v3.x) * (vl.y- v3.y)) > 0 

C.7.4.4.9 vertices() 

• Description 
Returns the set of all the vertices of the mesh. 

• Output 
{v: VertexT I (Vc: CellT IcE m: v E c): v} 

C.7.4.4.10 edges() 

• Description 
Returns the set of all the edges of the mesh 

• Output 
{vl,v2: VertexT I (Vc: CellT IcE m: vl E c A v2 E c A vl =/:. v2): 
{ vl, v2}} 

C.7.4.4.11 boundaryEdges() 

• Description 
Returns a set of boundary edges of the mesh 

• Output 
{b: EdgeT I bE Edges() A 

(#{c: CellT IcE m A belongToCell(b, c): c}=l):b} 
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C.7.4.4.12 boundaryVertices() 

• Description 
Returns a set of boundary vertices of the mesh. 

• Output 
{v: VertexT I v E boundaryEdges(): v} 

C.7.4.5 Local Functions 

C.7.4.6 Local Data Types 

None 

C. 7 .4. 7 Local Constants 

None 

C.7.4.8 Considerations 

None 

C.8 MIS of Service Module 

C.8.1 Module Name: Service 

C.8.2 Uses 

C.8.2.1 Imported Constants 

None 

C.8.2.2 Imported Data Types 

Uses Vertex Module Imports VertexT 
Uses Edge Module Imports EdgeT 
Uses Cell Module Imports CellT 
Uses Mesh Module Imports MeshT 

C.8.2.3 Imported Access Programs 

Uses Mesh Module Imports onEdge(), inside(), 
vertices(), edges(), boundaryEdges(), boundary Vertices() 
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C.8.3 Interface Syntax 

C.8.3.1 Exported constants 

None 

C.8.3.2 Exported Data Types 

InstructionT :={REFINE, COARSEN, NOCHANGE} 
CellinstructionT:= tuple of (cell: Cell T, instr: InstructionT) 
RCinstructionT := tuple of 
(rORc: InstructionT, c!nstru: set of CellinstructionT) 

C.8.3.3 Exported Access Programs 

The exported access programs for the services module are listed in Table C.6. 

Routine N arne Input Output Exceptions 
is ValidMesh MeshT ]ffi 

covering Up MeshT x MeshT ]ffi 

Table C.6: Exported Access Programs of the Services Module 

C.8.4 Interface Semantics 

C.8.4.1 State Variables 

None 

C.8.4.2 Invariant 

None 

C.8.4.3 Assumptions 

None 

C.8.4.4 Access Program Semantics 

C.8.4.4.1 isValidMesh(m: MeshT) 
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• Description 
Returns true if cells of the mesh are bounded, conformal, and non over­
lapping. 

• Output 
Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m) 

C.8.4.4.2 coveringUp(ml:MeshT, m2: MeshT) 

• Description 
Returns false if any boundary vertex of one mesh is not on a boundary 
edge of another mesh. Otherwise, return true. 

• Output 
\lvl,v2: VertexT I 
vl E boundaryVertice(ml) 1\ v2 E boundaryVertices(m2) : 
(3 bl, b2: EdgeT I bl E boundaryEdges(ml) 1\ b2 E boundaryEdges(m2): 
(onEdge(vl, b2) V vl E b2) 1\ (onEdge(v2, bl) V v2 E bl)) 

C.8.4.5 Local Functions 

• ValidEdge: EdgeT ---> 1BI 
ValidEdge(e: EdgeT) = #e = 2 

• Area: Cell T ---> lR 
Area(c: CellT)- I:vl,v2,v3: VertexT I vl E c/\v2 E c/\v3 E c 
1\ v 1 i- v2 1\ v2 i- v3 1\ v3 i- v 1 : 

1
1
2 * lvl.x * v2.y- v2.x * vl.y + 

v2.x * v3.y- v3.x * v2.y + 
vl.x * v3.y- v3.x * vl.yl 

• ValidCell: CellT ---> 1BI 
ValidCell(c: CellT) - #c = 3 1\ Area(c) ~ 0 

• Bounded: MeshT ---> 1BI 
Bounded(m: MeshT) = \lv: VertexT I v E boundaryVertices(m): 
(#{e: EdgeT I e E boundaryEdge(m) 1\v E e: e} = 2) 

• Conformal: MeshT ---> 1BI 
Conformal(m: MeshT) =Vel, c2: Cell T I c1 E m 1\ c2 Em 1\ c1 #- c2 : 
(3e: EdgeT I e E edges(m) : (3v : VertexT I v E vertices(m) : 
( c1 n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (-. onEdge ( v, e)))) 
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• Nolnteriorlntersect: MeshT ----+ 1ffi 
Nolnteriorlntersect(m: MeshT) Vcl , c2: CellT I 
c1 E m/\c2 E m/\cl =/= c2: (\lv: VertexT I inside(v, cl):-, inside(v, c2)) 

C.8.4.6 Local Data Types 

None 

C.8.4. 7 Local Constants 

None 

C.8.4.8 Considerations 

None 

C.9 MIS of Input Format Module 

C.9.1 Module Name: Input Format 

C.9.2 Uses 

C.9.2.1 Imported Constants 

None 

C.9.2.2 Imported Data Types 

Uses Embedding Application Imports InputFormatT 

C.9.2.3 Imported Access Programs 

None 

C.9.3 Interface Syntax 

C.9.3.1 Exported constants 

None 

C.9.3.2 Exported Data Types 

None 
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C.9.3.3 Exported Access Programs 

The exported access programs for the input format module are listed in Table 
C.7. 

Routine Name Input Output Exceptions 
convertinput InputForrnatT MeshT 

Table C. 7: Exported Access Programs of the Input Format Module 

C.9.4 Interface Semantics 

C.9.4.1 State Variables 

None 

C.9.4.2 Invariant 

None 

C.9.4.3 Assumptions 

None 

C. 9 .4.4 Access Program Semantics 

C.9.4.4.1 convertlnput(m: InputFormatT) 

• Output 
m' such that 
m' is of type MeshT and m and m' are equivalent. 

C.9.4.5 Local Functions 

None 

C.9.4.6 Local Data Types 

None 

C.9.4. 7 Local Constants 

None 
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C.9.4.8 Considerations 

• Semantics of access programs in this module heavily depend on the for­
mat of the input mesh. At this stage, this information is missing. Un­
known data types InputFormatT is used to represent the data structures 
of input mesh. English is used to describe the semantics. 

C.lO MIS of Output Format Module 

C.lO.l Module Name: Output Format 

C.l0.2 Uses 

C.l0.2.1 Imported Constants 

None 

C.l0.2.2 Imported Data Types 

Uses Embedding Application Imports OutputFormatT 

C.10.2.3 Imported Access Programs 

None 

C.10.3 Interface Syntax 

C.10.3.1 Exported constants 

None 

C.10.3.2 Exported Data Types 

None 

C.10.3.3 Exported Access Programs 

The exported access programs for the output format module are listed in Table 
C.8. 
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Routine N arne Input Output Exceptions 
convert Output MeshT OutputFormatT 

Table C.8: Exported Access Programs of the Output Format Module 

C.10.4 Interface Semantics 

C.10.4.1 State Variables 

None 

C.10.4.2 Invariant 

None 

C.10.4.3 Assumptions 

None 

C.10.4.4 Access Program Semantics 

C.10.4.4.1 convertOutput(m: MeshT) 

• Output 
m' such that 
m' is of type OutputFormatT and m and m' are equivalent. 

C.10.4.5 Local Functions 

None 

C.10.4.6 Local Data Types 

None 

C.10.4. 7 Local Constants 

None 
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C.10.4.8 Considerations 

• Semantics of access programs in this module heavily depend on the for­
mat of the requirements of the output. At this stage, this information 
is missing. Unknown data type OutputFormatT are used to represent 
the data structures of input and output. English is used to describe the 
semantics. 

C.ll MIS of Refining Module 

C.ll.l Module Name: Refining 

C.11.2 Uses 

C.11.2.1 Imported Constants 

None 

C.11.2.2 Imported Data Types 

Uses Mesh Module Imports MeshT 
Uses Service Module Imports 
InstructionT, CellinstructionT, RCinstructionT 

C.11.2.3 Imported Access Programs 

Uses Service Module Imports is ValidMesh{) 1 coveringUp() 

C.11.3 Interface Syntax 

C.11.3.1 Exported constants 

None 

C.l1.3.2 , Exported Data Types 

None 

C.11.3.3 Exported Access Programs 

The exported access programs for the refining module are listed in Table C.9. 
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Routine N arne Input Output Exceptions 
refining MeshT, RCinstructionT MeshT 

Table C.9: Exported Access Programs of the Refining Module 

C.11.4 Interface Semantics 

C.11.4.1 State Variables 

None 

C.11.4.2 Invariant 

None 

C.11.4.3 Assumptions 

isValidMesh(m) and i.rORc =REFINE 
for input m: MeshT and i: RCinstructionT 

C.l1.4.4 Access Program Semantics 

C.11.4.4.1 refining(m: MeshT, i: RCinstructionT) 

• Output 
m' 
such that 
ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\ #m' 2: #m 

C.11.4.5 Local Functions 

None 

C.11.4.6 Local Data Types 

None 

C.11.4.7 Local Constants 

None 

C.11.4.8 Considerations 

None 
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C.12 MIS of Coarsening Module 

C.12.1 Module Name: Coarsening 

C.12.2 Uses 

C.12.2.1 Imported Constants 

None 

C.12.2.2 Imported Data Types 

Uses Mesh Module Imports MeshT 
Uses Service Module Imports 
InstructionT, CellinstructionT, RCinstructionT 

C.12.2.3 Imported Access Programs 

Uses Service Module Imports is ValidMesh(), covering Up() 

C.12.3 Interface Syntax 

C.12.3.1 Exported constants 

None 

C.12.3.2 Exported Data Types 

None 

C.12.3.3 Exported Access Programs 

The exported access programs for the coarsening module are listed in Table 
C.10. 

Routine Name Input Output Exceptions 
coarsening MeshT, RCinstructionT MeshT 

Table C.10: Exported Access Programs of the Coarsening Module 
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C.12.4 Interface Semantics 

C.l2.4.1 State Variables 

None 

C.12.4.2 Invariant 

None 

C.l2.4.3 Assumptions 

isValidMesh(m) and i.rORc = COARSEN 

for input m: MeshT and i: RCinstructionT 

C.12.4.4 Access Program Semantics 

C.12.4.4.1 coarsening(m: MeshT) 

• Output 
m' 
such that 
ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\ #m' :s; #m 

C.12.4.5 Local Functions 

None 

C.12.4.6 Local Data Types 

None 

C.12.4.7 Local Constants 

None 

C.12.4.8 Considerations 

None 
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D.l Introduction 

This section gives an overview of the Testing Summary for a Parallel Mesh 
Generation Toolbox (PMGT). First, the purpose of the document is provided. 
Second, the scope of the testing is identified. Third, the organization of the 
document is summarized. 

D .1.1 Purpose of the Document 

This document specifies validation tests for a PMGT. The results of the tests 
and analysis are also provided. The intended audience is testers who are going 
to test the system and developers who are going to maintain the software. 
Note that test document is dynamic in the sense that it should be updated 
when the development of the system proceeds. 

D .I. 2 Scope of the Testing 

In general, the purpose of testing is to help produce quality software. Due 
to limits on the time available for testing, the scope of the testing of PMGT 
is restricted to test the most important test factors. Like other scientific 
computing software, correctness and efficiency are considered to be the two 
most important test factors for PMGT. For efficiency testing, the focus is on 
execution time rather than on storage. 

D.1.3 Organization of the Document 

Section D.1 (this section) is an introduction to the report. Section D.2 shows 
what is going to be tested and the coverage of the testing, with respect to the 
software requirements and the software design. Section D.3 gives the result of 
the testing and the analysis . 

D.2 Testing PMGT 

Test cases are listed in Section D. 2.1. The detailed information for these test 
cases can be found in Section D.3. The traceability matrix in Section D.2.2 
shows the association between test cases and the functional and nonfunctional 
requirements that are specified in the Software Requirements Specification 
(SRS) document. Similarly, a traceability matrix for test cases and the leaf 
modules as introduced in the Module Guide (MG) as shown in Section D.2.3. 
Tracking these relations is useful for developing and maintaining the software. 
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D.2.1 Test Cases 

The correctness validation test is designed for verifying the functional require­
ments RefiningMesh (F1), CoarseningMesh (F2), ElmShape (F5), and Con­
formal (F7). Other requirements for correctness are trivial and are satisfied 
obviously. For example, since the vertices are stored in an array, the Out­
VertexOrder (F15) requirement is met by outputting the vertices in the order 
as the order of them in the array. The tests are against above requirements 
are automated. The automated validation tests requirements (ACVTRs) are 
listed in Section D .2.1.1. Since the output mesh also can also be displayed 
on screen, it can be checked manually. The visual correctness validation tests 
requirements (VCVTRs) are listed in Section D.2.1.2. The test cases are in 
Section D.2.1.3. 

D.2.1.1 Automated Correctness Validation Tests Requirements 

A list of ACVTRs follows. All test cases should pass these tests. Some test 
cases relate to data definitions defined in the SRS. In these cases the related 
data definition defined is shown as Dx, where x is the number of the associated 
data definition given in the SRS. 

• The area of each element is greater than zero (referring to D5). 

• The boundary of the mesh is closed. (referring to D15). 

• The mesh is conformal (referring to D16). 

• The intersection of any two elements is empty (referring to D17). 

• The input mesh and output mesh CoveringUp each other (referring to 
D19). 

• The length of each edge is greater than zero. (This is required by the 
definition of a mesh, which is defined in the SRS.) 

• The vertices of each element are listed in a counterclockwise order. (The 
counterclockwise order of the vertices for each element is not necessary 
for implementing PMGT. However, it is adopted by most meshing and 
FEA software. PMGT uses this convention.) 

• The output mesh conforms to the Euler Equation. (This requirement is 
not documented in the SRS. However, any mesh should implicitly satisfy 
the equation nc + nv - ne = 1, where nc is the number of cells, nv is the 
number of vertices, and ne is the number of edges.) 
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D.2.1.2 Visual Correctness Validation Tests Requirements 

The output meshes should also be visually checked to ensure that the following 
VCVTRs are met. 

• No vertex is outside of the input domain. 

• No vertex is inside of a cell. 

• No dangling points or edges are present. 

• All cells are connected. 

• The mesh is conformal. 

Some of the VCVTRs overlap with the ACVTRs. This redundancy provides 
increased confidence in case one testing method fails to catch an error. 

D.2.1.3 Test Cases 

The test cases developed involve testing meshes against the above require­
ments. In each test case, except the last one, the input mesh is refined and 
then coarsened. Two algorithms for refining are used. One algorithm is called 
Split. It splits one cell into three by adding a point in the centroid of the 
triangle and connecting the added point to the three original vertices. The 
other algorithm is simply call Refine. It refines the original mesh by longest 
edge bisection. 

The name of each test case includes three parts. For example, test case 
AxxC B N means that the test uses Axx algorithm for refining, where Axx 
equals Split or Refine. The letter C indicates that coarsening is performed. 
If the Cis missing, the input mesh is not coarsened. B is the number of refine­
ments before coarsening. If B is S, the mesh is refined once and then coarsen 
once. If the B is M, the mesh is refined multiple time before coarsening. N is a 
number. If theN is omitted, it means only one of this kind of test performed. 
Otherwise the same test procedures is used several times on different input 
meshes. The reason for using the same procedure is that the topology of the 
output meshes may differ for different input meshes. 

• Test Case SplitCS (TCI): This test case tests the correctness of PMGT. 
The input mesh is shown in Figure D.3. The refining and coarsening 
criterion is that the cells intersected with the vertical line, x = 0.6, are 
Split once, then the cells of the new mesh that intersect with the vertical 
line are coarsened once. When the splitting and coarsening is done, the 
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vertical line is moved to the right one unit (x = x + 1.0), and another 
Splitting and coarsening is performed. This procedure is repeated until 
no cells intersect with the vertical line. 

• Test Case RefineCSJ (TC2): This test case tests the correctness of 
PMGT. The input mesh is the same as TCl, which is shown in Fig­
ure D.3. There is a vertical line at x = 0.6. The refining and coarsening 
criterion is that the cells that intersect with the vertical line are refined 
once, then the cells of the new mesh that intersect with the vertical 
line are coarsened once. When the refining and coarsening are done, 
the vertical line is moved to the right one unit, and another refining 
and coarsening is performed. This procedure is repeated until no cells 
intersect with the vertical line. 

• Test Case RefineCS2 (TC3): This test case tests the correctness of 
PMGT. The refining and coarsening criterion, vertical line function, and 
the test procedure are the same as test case TC2. However, the input 
mesh is different. The input mesh is showed in Figure D.4. 

• Test Case RefineCM (TC4): This test case tests the correctness of 
PMGT. The input mesh is shown in Figure D.5. There is a vertical 
line at x = 0.5. The refining and coarsening criterion is the size of the 
cells. The size of the cell is measured by the length of the longest edge 
of the cell. The cells that intersect with the vertical line are refined until 
the criterion is met. When the refining is done, the vertical line is moved 
to the right 0.6 unit (x = x + 0.6) , and another refinement is performed. 
After five refinements are done, the cells to be left of the vertical line by 
up to 2 units are coarsened, until the coarsening criterion is met. The 
refining and coarsening are stopped when the vertical line moves to a 
position outside of the domain. 

• Test Case RefineM (TC5): This test case tests the correctness of PMGT. 
The input mesh is shown in Figure D.6. There is an arc with radius of 
0. 7 unit going through the mesh. Cells that intersect with the arc are 
refined until the required number of refinements has been reached. 

• Test Case Split (TC6): This test case tests both the correctness and 
speed of PMGT. The input mesh is shown in Figure D.7. This test 
simply splits all cells of the mesh 4 times. It is done in both the serial 
version and the parallel version with different number of processors. The 
execution time of setting the cells to be refined and splitting the cells is 
measured. 
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D.2.2 Traceability Matrix for SRS 

In the traceability matrix for software requirements, if a test case tests the 
functionality of a software requirement, there will be a check mark on the 
cell for the corresponding test case. In each row of the traceability matrix 
for software requirements (Table D .1), if the requirement in that row defines 
the correctness or the speed of the software, one or more cells in this row 
are checked. Otherwise , all cells in the row are empty. Table D.1 shows that 
the test cases developed in Section D.2.1 assist with validating the correctness 
and speed of the software. The detailed information for each functional and 
nonfunctional requirements can be found in the SRS document. The names of 
the requirements and their corresponding numbers are listed below for conve-
mence. 

Fl: RefiningMesh 

F2: Coarsening Mesh 

F3: RefiningOrCoarsening 

F4: Mesh Type 

F5: ElmShape 

F6: DomainDimension 

F7: Conformal 

F8: InputDefinition 

F9: RCinstruction 

FlO: OutputStorage 

Fll: Vertex U niqueiD 

Fl2: Elm U niqueiD 

F13: Elm Topology 

Fl4: Out Elm Order 

F15: OutVertexOrder 

F16: Help 
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Nl: Performance 

N2: Precision 

N3: Exception 

N4: Portability 

N5: LookAndFeel 

N6: Usability 

N7: Maintainability 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FlO 
Fll 
F12 
F13 
F14 
F15 
F16 
Nl 
N2 
N3 
N4 
N5 
N6 
N7 

I TCl I TC2 I TC3 I TC4 I TC5 I T C6 I 
.( .( .( .( .( .( 

.( .( .( .( 

.( .( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

;( .( .( .( .( 

.( .( .( .( .( .( 

.( .( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( .( .( .( .( 

.( 

Table D.l : Traceability Matrix: Test Cases and Requirements 
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D.2.3 Traceability Matrix for MG 

Similar to Section D.2.2, the traceability matrix for modules (Table D.2) shows 
that the test cases validate the modules that are associated with correctness 
and speed. The names of modules appear in Table D.2 are listed below. The 
detailed information for each module can be found in the MG document. 

Ml: Virtual Memory Module 

M2: File Read/Write Module 

M3: Keyboard Input Module 

M4: Screen Output Module 

M5: Input Format Module 

M6: Output Format Module 

M7: Service Module 

M8: Vertex Module 

M9: Edge Module 

MlO: Cell Module 

Mll: Mesh Module 

M12: Refining Module 

M13: Coarsening Module 

D.3 Results and Analysis 

The results of the test cases defined in Section D.2.1.3 are listed in Section 
D.3.1. The analysis, including charts that compare the execution time of the 
parallel version to the serial version are provided in Section D.3.2. 
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I TCl I TC2 I TC3 I TC4 I TC5 I TC6 I 
Ml .( .( .( .( .( .( 

M2 .( .( .( .( .( .( 

M3 .( .( .( .( .( .( 

M4 .( .( .( .( .( .( 

M5 .( .( .( .( .( .( 

M6 .( .( .( .( .( .( 

M7 .( .( .( .( .( 

M8 .( .( .( .( .( .( 

M9 .( .( .( .( .( .( 

MlO .( .( .( .( .( .( 

Mll .( .( .( .( .( .( 

M12 .( .( .( .( .( .( 

M13 .( .( .( .( 

Table D.2: Traceability Matrix: Test Cases and Modules 

D .3.1 Testing Results 

The following tables list the testing results of each test case. The field Test 
Case Number and Test Case Name list the number and the name of each test 
case. The Input field gives the number of the figure that is the input for that 
test case, or a description of the input mesh. The Expected Output describes 
the requirements of the output mesh. The Actual Output gives the result 
of the test. The Selected Output Mesh field should give the output meshes. 
However, there are too many intermediate mesh to display, and displaying only 
the final mesh is too simple to illustrate the feature of the test case. Selected 
intermediate meshes and final mesh are included in the Actual Output field. 
The Result field indicates whether the test is passed or failed. 
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Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

TC1 
SplitCS 
Figure D.3 
ACVTRs and VCVTRs listed in 
Section D. 2 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure D.8, D.9 , D.10 
Passed 

TC2 
RefineCS1 
Figure D.3 
ACVTRs and VCVTRs listed in 
Section D.2 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure D.ll, D.12, D.13 
Passed 

TC3 
RefineCS2 
Figure D.4 
ACVTRs and VCVTRs listed in 
Section D.2 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure D.14, D.15, D.16 
Passed 
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Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

Test Case Number 
Test Case N arne 
Input 
Expected Output 

Actual Output 

Selected Output Mesh 
Result 

TC4 
RefineCM 
Figure D.5 
ACVTRs and VCVTRs listed in 
Section D.2 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure D.17, D.18, D.19, D.20 
Passed 

TC5 
RefineM 
Figure D.6 
ACVTRs and VCVTRs listed in 
Section D. 2 are met 
Summary of the correctness test: 
15 tests are performed. 
15 tests succeed. 
0 tests fail. 
Figure D.21, D.22, D.23 
Passed 

TC6 
SplitM 
Figure D.6 
ACVTRs and VCVTRs listed in 
Section D. 2 are met 
Execution time increases as the 
number of cells increases. Execu­
tion time decreases as the number 
of processors increases. 
Execution time as indicated in Fig­
ure D.1 
The mesh is too dense to be shown. 
Passed 
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Test Result of Efficiency Test 
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Figure D.l: Output of TC6 

D.3.2 Analysis 

All of the test cases conform to the ACVTRs and VCVTRs listed in Section 
D.2. The test result of TC6 show that when the number of cells increased, the 
execution time increased, and when the number of processors increased, the 
execution time decreased. That is, this test is passed. Figure D.2 show the 
speedup when using different numbers of processors. The speedup is defined 
as 

T1 
Speedup(n) = Tn 

Where T1 is the execution time of the serial version, and Tn is the execution 
time of the parallel version with n processors. In general, Speedup(n) < 
n. However, for PMGT, when the number of cells is greater than 2700 , 
Speedup(n) > n, which is a super linear speedup. Since the algorithms used 
for the serial version and the parallel version are the same, the super linear 
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Speedup for Different Number of Processors 
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Figure D.2: Speedup for Different Numbers of Processors 

speedup is probably due to the cache effect. That is, when the numbers of 
processors increases, the size of the accumulated caches from different proces­
sors also increases. With the larger accumulated cache size, more, or even all, 
core data set can fit into the caches and the memory access time reduces dra­
matically. This may explain the extra speedup in additional to the speedup 
due to parallel computation. 
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Figure D.3: Input 1 

Original Mesh 

8 

7 

-1 

-2 

0 2 4 6 8 10 12 14 

Figure D.4: Input 2 
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Figure D.5: Input 3 
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Figure D.6: Input 4 
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Figure D. 7: Input 5 

Mesh IOf "newVertices1.dat" and "newCells1 .dat" 
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Figure D.8: Output 1 of TCl 
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Mesh for "newVertices1 5.dat" and "newCells15.dat" 
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Figure D.9: Output 2 of TCl 

Mesh for "newVertices28.dat" and "newCells28.dat" 
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Figure D.lO: Output 3 of TCl 
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Mesh for "newVertices1.dat" and "newCells1.dat" 
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Figure D .11: Output 1 of TC2 

Mesh for "newVertices11.dat" and "newCells11.dat" 

8 

7 

-1 

-2 

0 2 4 6 8 10 12 14 

Figure D .12: Output 2 of TC2 
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Mesh for "newVertices28.dat" and "newCells28.dat" 
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Figure D.l3: Output 3 of TC2 
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Figure D .14: Output 1 of TC3 

Mesh for "newVertices20.dat" and "newCells20.dat" 
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Figure D.l5: Output 2 of TC3 
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Figure D.16: Output 3 of TC3 

Mesh for "newVertices2.dat" and "newCells2.dat" 
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Figure D.17: Output 1 of TC4 
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Mesh for "newVertices8.dat" and "newCells8.dat" 
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Figure D.l8: Output 2 of TC4 

Mesh for "newVertices14.dat" and "newCells14.dat" 
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Figure D.l9: Output 3 of TC4 
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Mesh for "newVertices16.da1" and "newCells16.da1" 
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Figure D.20: Output 4 of TC4 
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Figure D.21: Output 1 of TC5 
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Mesh for "newVertlces9.dat" and "newCells9.dat" 
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Figure D.22: Output 2 of TC5 

Mesh for "newVertices15.dat" and "newCells15.dat" 

Figure D.23: Output 3 of TC5 
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