
IMPROVING THE QUALITY OF

A PARALLEL MESH GENERATION TOOLBOX

A DOCUMENT DRIVEN METHODOLOGY

FOR

IMPROVING THE QUALITY OF

A PARALLEL MESH GENERATION TOOLBOX

By

WEN YU, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Wen Yu, January 2007

MASTER OF SCIENCE (2007)

COMPUTING AND SOFTWARE

McMaster University

Hamilton, Ontario

TITLE: A Document Driven Methodology for Improving The Quality of a

Parallel Mesh Generation Toolbox

AUTHOR: Wen Yu, B.Sc. (McMaster University)

SUPERVISOR: Dr. Spencer Smith

NUMBER OF PAGERS: xxii, 216

11

Abstract

.,
Scientific computing software has had considerable success in producing ef-

ficient and correct numerical results. However other software qualities, such

as usability, maintainability, testability, flexibility, and reusability, are often

neglected. Presented in this work is our proposed solution to improve the

quality of scientific computing software by using a document driven software

engineering methodology. A parallel mesh generation toolbox (PMGT) is de­

veloped to illustrate our approach.

This thesis proposes to improve quality via a methodology that con­

sists of a sequence of design steps and documents, including the following: a

Software Requirements Specification (SRS), a Module Guide (MG), a Module

Interface Specification (MIS), and a Summary of Validation Testing Report

(SVTR). Where applicable, mathematical notation is used in these documents

to make them as formal as possible. This formality improves the documents

by making them less ambiguous and more validatable; therefore , the correct-

ness and testability of the software are improved. The proposed methodology

also requires that the traceability between the documents listed above, and the

traceability between these documents and code be explicitly specified. This al-

lows for verification of completeness and consistency and facilitates systematic

change management.

Quality is also promoted during the implementation stage. For in-

stance, a new modification is proposed to Rivara's longest side bisection al-

gorithm. The modified algorithm improves the quality of usability, without

iii

()

sacrificing reliability. A new coarsening algorithm inspired by Oliver-Gooch is

also proposed. Instead of decimating vertices by collapsing the edges, the new

algorithm uses edge collapse to decimate the cells.

The proposed methodology promotes testing as an important way to

improve software quality. However, due to the lack of an expected answer,

testing the correctness of PMGT is difficult. To overcome this challenge, the

method promoted in our work is automated testing to verify the known prop­

erties of a correct solution, such as checking for conformality and for boundary

closure.

IV

Acknowledgements

First of all, I would like to express my sincere thanks and deep appreciation

to Dr. Spencer Smith , my supervisor, for his constant support and encour­

agement. He shared so many great ideas with me and carefully corrected my

mistakes and typos. This thesis would not be what it is without him. He is

one of the nicest professors I have ever met.

I am grateful to Dr. Qiao and Dr. Khedri for reviewing of this thesis

and giving me valuable feedbacks and suggestions.

Of course, I am thankful to my parents for their support and endless

love. I wish their happiness and good health. I hope that they enjoy their

retirement life in China.

Thanks to (alphabetically) Fang Cao , Huarong Chen, Ahmed H. ElSheikh,

Dai Tri Man Le, John McCutchan, Jin Tang, Shu Wang, Qian Yang, Munira

Yusufu, Yun Zhai, Haijun Zou, and many others in the Computing and Soft­

ware department, for their friendship.

Last but not least, I would like to give my special thanks to my hus­

band, Kelvin, and my son, Mike, for their care and support. They have been

such a blessing in my life.

Hamilton , Ontario, Canada

January, 2007

v

Wen Yu

Contents

Abstract 111

Acknow ledgernents v

List of Figures XV

List of Tables XIX

1 Introduction 1

1.1 What is Quality Software? 3

1.2 Challenges in Scientific Computing Software 5

1.3 Mesh Generation Tools 8

1.4 Software Engineering Methodologies. 10

1.4.1 The Waterfall Model . 11

1.4.2 The Prototype Model . 11

1.4.3 The Evolutionary Development Model 13

1.5 Proposed Methodologies for the Development of PMGT . 15

2 Software Requirements 19

Vll

2.1 Software Requirements Elicitation . 21

2.2 Software Requirements Analysis . . 22

2.3 Software Requirements Documentation 23

2.3.1 Reference Material 25

2.3.2 Introduction 25

2.3.3 General System Description 26

2.3.4 Specific System Requirements 26

2.3.5 Other System Issues 33

2.3.6 Traceability Matrix . 33

2.3.7 List of Possible Changes in the Requirements 34

2.3.8 Values of Auxiliary Constants 34

2.4 Software Requirements Verification 34

3 Design 39

3.1 Architectural Design 40

3.1.1 Decomposition of the System into Modules . 41

3.1.2 Verifying the Decomposition 45

3.1.3 Use Relation. 48

3.2 Detailed Design . 50

3.2.1 Template 51

3.2.2 Examples 53

4 Implementation 61

4.1 The Data Structures 62

4.1.1 The Current Approach 63

viii

4.1.2 The Data Structure for PMGT

4.2 The Algorithms

4.2.1 Refining

4.2.2 Coarsening

4.3 The Programming Language

4.4 Other Decisions

65

69

69

76

80

81

4.4.1 Decisions about Parallelism 81

4.4.2 Decisions about the System 82

4.5 Software Technologies Used to Assist the Implementation 84

5 Testing

5.1 The Scope of the Testing

5.2 Test Cases

5.3 Results and Analysis

5.3.1 Selected Results .

5.3.2 Analysis

6 Conclusions and Future Work

6.1 Contributions

6.2 Future Work

Bibliography

87

87

90

91

91

92

101

102

106

108

A Software Requirements Specification for a Parallel Mesh Gen-

eration Toolbox 115

A.1 Reference Material 116

lX

A.l.1 Table of Symbols, Abbreviations and Acronyms 116

A.l.2 Index of Requirements 117

A.2 Introduction 118

A.2.1 Purpose of the Document 118

A.2.2 Scope of the Software Product . 118

A.2.3 Terminology Definition 119

A.2.4 Organization of the Document . 122

A.3 General System Description 122

A.3.1 System Context . . . 123

A.3.2 User Characteristics 124

A.3.3 System Constraints . 124

A.4 Specific System Requirements 124

A.4.1 Problem Description . 125

A.4.2 Solution Characteristics Specification 126

A.4.3 Non-functional Requirements 140

A. 5 Other System Issues 143

A.5.1 Open Issues . 144

A.5.2 Off-the-shelf Solutions 144

A.5.3 Waiting Rooms 144

A.6 Traceability Matrix 144

A. 7 List of Possible Changes in the Requirements 145

A.8 Values of Auxiliary Constants 145

B Module Guide for a Parallel Mesh Generation Toolbox 151

B.1 Introduction 152

X

B.2 Anticipated and Unlikely Changes

B.2.1 Anticipated Changes

B.2.2 Unlikely Changes

B.3 Module Hierarchy

B.4 Connection Between Requirements and Design

B.5 Module Decomposition

B.5.1 Hardware-Hiding Module .

B.5.2 Behavior-Hiding Module

B.5.3 Software Decision Module

B.6 Traceability Matrix

B.6.1 Traceability Matrix for Requirements

B.6.2 Traceability Matrix for Anticipated Changes

B. 7 Use Hierarchy between Modules

153

153

154

154

155

156

157

159

159

161

162

164

164

C Module Interface Specification for a Parallel Mesh Generation

Toolbox 167

C.1 Introduction 168

C.2 Template .. 168

C.2.1 Module Name 169

C.2.2 Uses 169

C.2.3 Interface Syntax . 169

C.2.4 Interface Semantics 170

C.3 Module Decomposition 171

C.4 MIS of Vertex Module 171

C.4.1 Module Name: Vertex (MP) 171

Xl

C.4.2 Uses 171

C.4.3 Interface Syntax . 172

C.4.4 Interface Semantics 173

C.5 MIS of Edge Module ... 174

C.5.1 Module Name: Edge (MP) 174

C.5.2 Uses 174

C.5.3 Interface Syntax . 174

C.5.4 Interface Semantics 175

C.6 MIS of Cell Module 176

C.6.1 Module Name: Cell (MP) 176

C.6.2 Uses 176

C.6.3 Interface Syntax . 176

C.6.4 Interface Semantics 177

C.7 MIS of Mesh Module . . . 178

C.7.1 Module Name: Mesh (MP) . 178

C.7.2 Uses 178

C.7.3 Interface Syntax . 178

C.7.4 Interface Semantics 179

C.8 MIS of Service Module . . 182

C.8.1 Module Name: Service 182

C.8.2 Uses 182

C.8.3 Interface Syntax . 183

C.8.4 Interface Semantics 183

C.9 MIS of Input Format Module 185

xii

C.9.1 Module Name: Input Format

C.9.2 Uses

C.9.3 Interface Syntax.

C.9.4 Interface Semantics

C.10 MIS of Output Format Module

C.10.1 Module Name: Output Format

C.10.2 Uses

C.10.3 Interface Syntax .

C.10.4 Interface Semantics

C.ll MIS of Refining Module .

C.l1.1 Module Name: Refining

C.11.2 Uses

C.11 .3 Interface Syntax.

C .11.4 Interface Semantics

C.12 MIS of Coarsening Module

C.12.1 Module Name: Coarsening .

C.12.2 Uses

C.12.3 Interface Syntax .

C.12.4 Interface Semantics

D The Summary of Validation Testing Report for a Parallel

185

185

185

186

187

187

187

187

188

189

189

189

189

190

191

191

191

191

192

Mesh Generation Toolbox 193

D.1 Introduction 194

D .1.1 Purpose of the Document

D.l.2 Scope of the Testing ..

xiii

194

194

D.l.3 Organization of the Document . 194

D.2 Testing PMGT .. 194

D.2.1 Test Cases 195

D.2.2 Traceability Matrix for SRS 198

D.2.3 Traceability Matrix for MG 200

D.3 Results and Analysis 200

D.3.1 Testing Results 201

D.3.2 Analysis 204

xiv

List of Figures

1.1 A Mesh of Lake Superior. Image from Shewchuk (Last Access:

January, 2006) .. 8

1.2 Waterfall Model . 12

1.3 Spiral Model. Image from Beohm (1988) 14

3.1 Uses Hierarchy among Modules 49

4.1 Halfedge Data Structure. Image from OpenMesh (Last Access:

January, 2006) 66

4.2 Halfedge Data Structure for PMGT. 68

4.3 An Illustration of the Refining Algorithms 70

4.4 An Illustrat ion of the Pure Longest Side Bisection Algorithm

Proposed by Rivara and Inostroza (1995) 73

4.5 An Illustration of the Backward Longest Side Bisection Algo-

rithm Proposed by Rivara (1997) 74

4.6 An Illustration of the Coarsening Algorithm used by Ollivier-

Gooch (2003)

5.1 Input 1

XV

77

93

5.2 Output 1 of TCI

5.3 Output 2 of TC1

5.4 Output 3 of TC1

5.5 Input of TC6

5.6 Output of TC6

5.7 Speedup for Different Numbers of Processors .

A.1 System Context Diagram

B. I Use Hierarchy among Modules .

D .1 Output of TC6

D.2 Speedup for Different Numbers of Processors .

D.3 Input 1 .

D.4 Input 2 .

D.5 Input 3.

D.6 Input 4.

D.7 Input 5 .

D.8 Output 1 of TC1

D.9 Output 2 of TC1

D.IO Output 3 of TCI

D.11 Output 1 of TC2

D.12 Output 2 of TC2

D.13 Output 3 of TC2

D.14 Output 1 of TC3

D.l5 Output 2 of TC3

XVl

93

94

94

96

97

98

123

165

204

205

206

206

207

207

208

208

209

209

•210

210

211

212

212

D.16 Output 3 of TC3 213

D.17 Output 1 of TC4 213

D.18 Output 2 of TC4 214

D.19 Output 3 of TC4 214

D.20 Output 4 of TC4 215

D.21 Output 1 of TC5 215

D.22 Output 2 of TC5 216

D.23 Output 3 of TC5 216

xvii

List of Tables

1.1 Software Quality Factors. Table modified from McCall et al.

(1997)

2.1 An Example Functional Requirement

2.2 An Example Nonfunctional Requirement

2.3 Traceability Matrix (PART I): Goals, Assumptions, Theoretical

4

31

32

Models, Data Definitions, and Requirements (I) 36

2.4 Traceability Matrix (PART I): Goals, Assumptions, Theoretical

Models , Data Definitions, and Requirements (II) . 37

3.1 Module Hierarchy 43

3.2 Traceability Matrix: Modules and Requirements 46

3.3 Traceability Matrix: Modules and Anticipated Changes 47

3.4 Exported Access Programs of the Mesh Module 55

3.5 Exported Access Programs of the Service Module 57

3.6 Exported Access Programs of the Refining Module 59

4.1 Traceability Matrix: Classes and Modules 85

5.1 Test Case1 92

XlX

5.2 Test Case 6 .

5.3 Traceability Matrix: Test Cases and Requirements .

5.4 Traceability Matrix: Test Cases and Modules

A.1 A Glance at the SHARCNET System

95

99

100

125

A.2 Traceability Matrix (PART I): Goals, Assumptions, Theoretical

Models, Data Definitions, and Requirements (I) 146

A.3 Traceability Matrix (PART I): Goals, Assumptions, Theoretical

Models, Data Definitions , and Requirements (II) 147

A.4 Traceability Matrix (PART II): Data Definitions and Require­

ments (I) . 148

A.5 Traceability Matrix (PART II): Data Definitions and Require-

ments (II) 149

A.6 Traceability Matrix (PART III): Requirements 149

B.1 Module Hierarchy 156

B.2 Traceability Matrix: Modules and Requirements 163

B.3 Traceability Matrix: Modules and Anticipated Changes 164

C.1 Module Hierarchy 172

C.2 Exported Access Programs of the Vertex Module 173

C.3 Exported Access Programs of the Edge Module 175

C.4 Exported Access Programs of the Cell Module . 177

C.5 Exported Access Programs of the Mesh Module 179

C.6 Exported Access Programs of the Services Module . 183

C.7 Exported Access Programs of the Input Format Module. 186

XX

C.8 Exported Access Programs of the Output Format Module. 188

C.9 Exported Access Programs of the Refining Module 190

C.10 Exported Access Programs of the Coarsening Module 191

D.1 Thaceability Matrix: Test Cases and Requirements . 199

D.2 Thaceability Matrix: Test Cases and Modules 201

XXl

Chapter 1

Introduction

Many physical problems of importance to scientists and engineers are modeled

as a set of Partial Differential Equations (PDEs). In most practical cases, it is

necessary to solve the PDEs numerically. Numerical methods to solve PDEs

frequently require that the domain of interest be divided into a mesh, which is

a set of small, simple elements (shapes) that cover the computational domain.

In some applications, a single mesh is generated and used many times; in

this case, the processing time spent on mesh construction is not critical and a

relatively slow, sequential algorithm suffices (Ruppert, 1993). However, some

applications need adaptive meshing, which requires that the meshes be gen­

erated once and then modified many times. For instance, adaptive meshing,

which involves many mesh changes, is used for reliable Finite Element Analy­

sis (FEA) using a posterrori error estimation (Zienkiewicz et al., 2005). The

increased mesh interaction for adaptive meshing means an increased need for

speed in managing the mesh data. This suggests employing parallel processing

1

MasteT Thesis - Wen Yu - McMasteT- Computing and SoftwaTe

techniques. Although generating a mesh using multiple processors is compli­

cated, it can offer considerable speed-up over sequential processing. In addi­

tion, some FEA applications are implemented on multiple processors. If the

adaptive mesh can be generated in multiple processors as well, the mesh data

can remain on the local processors. Using local processors in this way has the

potential to significantly reduces overall computation time.

While considerable effort has been spent on research on mesh generation

algorithms to improve efficiency and correctness, other qualities of mesh gener­

ation software, such as usability, maintainability, testability, flexibility, porta­

bility, and reusability, can still be improved. Software engineering method­

ologies have been adopted successfully across a broad spectrum of industry

applications to achieve high quality software. However, software engineering

methodologies are rarely applied to developing scientific computing software,

including mesh generation software. This thesis addresses this past neglect

by motivating, justifying and illustrating how the quality of a parallel mesh

generation toolbox (PMGT) can be improved by using software engineering

methodologies.

This chapter provides introductory information about the thesis. Soft­

ware quality is defined in Section 1.1. The characteristics of scientific com­

puting software that contribute to the challenge of developing quality software

are summarized in Section 1.2. Current mesh generation tools are investigated

and summarized in Section 1.3. The basic knowledge of software engineering

methodologies is provided in Section 1.4. Finally, the proposed methodology

for developing PMGT is introduced in Section 1.5.

2

Master Thesis - Wen Yu -McMaster- Computing and Software

1.1 What is Quality Software?

Quality of software is often defined as "meeting requirements" (Lewis and

Veerapollai, 2004; Copeland, 2003; CSTE, 2006). With this meaning, quality

is a binary state; that is, it is a quality product or not. However, this definition

has its limitations. A limitation of this definition can be seen by considering

two different software programs, s1 and s2 . Program s 1 can perform a task in

one hour, while s2 can perform the same task in two hours. All other features
0

of two program are assumed to be the same. Intuitively, s 1 would be said

to have higher quality than s2 , even if Efficiency is not a requirement of the

software. However, using the definition of "meeting requirements ," s 1 and s2

would be of the same quality. This is not the consequence that one would

expect. In addition, a binary value should not be used to define the quality

of software. The same example software s 1 and s2 can be used to illustrate

the limitation of a binary definition. Suppose the requirement of Efficiency is

specified as "execution time of the software should be less than three hours."

Then, by the binary definition, the quality of the two example programs is the

same, but this contradicts our intuition.

Pressman (1999) and Ghezzi et al. (2003) give different points of view

from the "meeting requirements" definition given above about the quality of

software. Both definitions include two categories of quality, which are prod-

uct qualities and process qualities. The product qualities are measured by

how well the software conforms to both explicit requirements , which are "re-

quirements" from users , and implicit requirements, such as the desire for good

maintainability. The classical quality factors proposed by McCall et al. (1997)

3

Master Thesis - Wen Yu -McMaster- Computing and Software

Factors Definition
Correctness Extent to which a program satisfies its specifications

and fulfills the user's mission objectives.
Reliability Extent to which a program can be expected to perform

its intended function with the required precision.
Efficiency The amount of computing resources and code required

by a program to perform a function.
Integrity Extent to which access to software or data by unau-

thorized persons can be controlled.
Usability Effort required for learning, operating, preparing input,

and interpreting the output of a program.
Maintainability Effort required for locating and fixing an error in an

operational program.
Testability Effort required in testing a program to ensure that it

performs its intended function and how well the pro-
gram performs its function.

Flexibility Effort required in modifying an operational program.
Portability Effort required to transfer software from one configu-

ration to another.
Reusability Extent to which a program can be used in other ap-

plications - related to the packaging and scope of the
functions that programs perform.

Interoperabili ty Effort required to couple one system with another.

Table 1.1: Software Quality Factors. Table modified from McCall et al. (1997)

•

that are used to measure the qualities of software are listed in Table 1.1. Al-

though the table lists the qualities of a program, these qualities will also apply

to other software products, such as a source code library. In the case of a

source code library, the definitions would have to be slightly modified. For

instance, usability would now refer to the effort required for a programmer to

use the library.

The definition of quality for software products adopted in this thesis is

as follows:

4

Master Thesis - Wen Yu -McMaster- Computing and Software

The quality of a software product is the degree to which the soft­

ware conforms to the software quality factors.

Since the common "requirements" of software include one or more software

quality factors, this definition is, in fact, an extension of the definition of

"meet requirements." The "requirements" may not include all the factors.

However, the factors still provide a assessment of the quality. The "require­

ments" provide the stakeholders' judgment on which of the qualities are most

important and how to measure and evaluate whether the important qualities

have been met. Achieving product quality is the ultimate goal. However, a

process must be followed to improve the chance of achieving product quality.

Studying the quality of the process is outside the scope of this thesis.

1.2 Challenges in Scientific Computing Soft-

ware

The quality factors listed in Table 1.1 are general. These factors do not have

equal importance between different types of software. For example, Efficiency

(QF3) in time is critical for a real-time application. However, it is usually

not as important for a word processing application. The important factors for

scientific computing software are proposed to be the following:

• QF 1: Correctness

• QF2: Reliability

• QF3: Efficiency

5

Master Thesis - Wen Yu -McMaster- Computing and Software

• QF4: Usability

• QF5: Maintainability

• QF6: Testability

• QF7: Flexibility

• QF8: Portability

• QF9: Reusability

Scientific computing software, as a special class of software, has its own

characteristics. Some of the characteristics that make achieving the above

qualities a challenge for scientific computing software are summarized below.

1. Unknown Solution Challenge

The answers for most scientific computing problems are unknown. Most

scientific computing software is built to solve problems that are difficult

or impossible to solve without the software. Hence, the software is the

only possible way that the solution to the problem can be achieved.

Judging the Correctness (QFl) of scientific computing software is more

difficult than for other classes of software due to the lack of expected

answers.

2. Real Number Representation Challenge

Most real numbers cannot be represented exactly on a computer. Float­

ing point numbers are used to approximate real numbers. However,

this approximation can cause problems. A well-known example is the

6

Master Thesis - Wen Yu -McMaster- Computing and Software

American Patriot Missile battery in Dharan, Saudi Arabia that failed

to track and intercept an incoming Iraqi Scud missile during the Gulf

War (Cirincione, 1992). The challenge of approximating real numbers

makes it difficult to achieve Correctness (QFl) and Reliability (QF2).

Using more storage for floating point numbers can help to some extent

because it improves the precision of the computer representation of the

real numbers. However, this decision has a tradeoff as it can potentially

lower the Efficiency (QF3) of the software.

3. Nonfunctional Requirement Challenge

As for other classes of software, for scientific computing software, non­

functional requirements are as important as functional requirements, and

nonfunctional requirements are difficult to properly specify and measure.

For example, it is difficult to specify the usability requirement of soft­

ware. This challenge will be explained in greater detail in Chapter 2.

4. Parallel Computation Challenge

Scientific computing problems often deal with large amounts of calcu­

lation. Some scientific computing software takes advantage of parallel

computation to improve the Efficiency of the software. However, us­

ing multi-processor usually lowers the Usability (QF4), Maintainability

(QF5), and Portability (QF8), since communication between processors

must be considered. The Reliability (QF2) can potentially be reduced be­

cause of the errors introduced during the communication between proces­

sors.

7

Master Thesis - Wen Yu -McMaster- Computing and Software

1.3 Mesh Generation Tools

Meshing is the process of decomposing a spatial domain into smaller and sim­

pler elements. Common shapes of elements are triangles and quadrilaterals

for a two dimensional domain, and tetrahedra or hexahedra for a three dimen-

sional domain. Since the shape of the domain of the mesh may be irregular ,

unstructured meshes, which can discretize the domain more naturally than

structured meshes, are of particular interest. An example mesh of Lake Supe-

rior is shown in Figure 1.1.

Figure 1.1: A Mesh of Lake Superior. Image from Shewchuk (Last Access:
January, 2006)

Owen (1998) surveyed 94 mesh generation software packages. Most of

the software on his list was developed by the people who intend to use it.

The advantage of this is that they are experts in the application area; hence,

they understand the requirements of the software well. However, they usually

lack knowledge of software methodologies, which can cause problems in the

8

Master Thesis - Wen Yu -McMaster- Computing and Software

current approach to developing mesh software. First, mesh generation soft­

ware is often developed by modifying an existing program. This approach

demonstrates the importance of the requirement of reuse for mesh generation

software. However, this "copy and paste" method for code reusing results

in the growth of the software in unexpected ways. It is often the situation

that the existing code has more functionality than one expects or desires. By

adding more functionality, the code becomes bigger and bigger. This makes

achieving the quality of Efficiency (QF3) difficult. A second problem with the

current approach to developing mesh generation software is that it results in

many similar mesh generation software packages. For instance, of the 94 soft­

ware packages surveyed by Owen (1998), 61 of them generate triangle meshes,

and 43 of them use the Delaunay Algorithm. These numbers illustrate that

although the requirement of reuse exists in mesh generation software devel­

opment , it is not fulfilled very well. The fact is that Reusability (QF9) of

current mesh generation software is rarely achieved. The third problem with

the current approach is that the documentation of many mesh generators is in­

complete, ambiguous, or even non-existent (Cao, 2006). Cao (2006) observed

that among 120 papers available on Owen (Last Access: January, 2006) from

2002 to 2004 , only 3 papers talk about the design of mesh generators. Without

proper documentation, software is not only difficult to understand and main­

tain, it is also hard to validate and extend. As a consequence, the resulting

software has poor quality in terms of Usability (QF4), Maintainability (QF5),

Testability (QF6), and Reusability (QF9).

9

Master Thesis - Wen Yu -McMaster- Computing and Software

1.4 Software Engineering Methodologies

Software Engineering is the application of a systematic, disciplined, quantifi­

able approach to the development, operation, and maintenance of software

(IEEE, 1990). Using software engineering methodologies that relate to soft­

ware development can improve the quality of software. The debate by soft­

ware developers has switched from whether software engineering methodologies

should be used to which methodologies are best for software development.

All software development can be characterized as a problem solving loop

in which four distinct stage are encountered: status quo, problem definition,

technical development, and solution integration (Pressman, 1999). Pressman

(1999) gives explanations of each stage as follows: i) Status quo "represents

the current state of affairs" (Raccoon, 1995); ii) problem definition identi­

fies the specific problem to be solved; iii) technical development solves the

problem through the application of some technology; and, iv) solution inte­

gration delivers the results to those who requested the solution in the first

place. The development strategy that software engineers use is often referred

to as a process model. Among many models proposed by software engineer­

ing researchers, the waterfall model, prototype model, and evolutionary model

attract much of the attention.

This section gives an introduction to the above models. Determining

the development model is an important decision that will effect all other sub­

sequent decisions. Other aspects of software engineering methodologies will

be introduced in the rest of the thesis.

10

Master Thesis - Wen Yu -McMaster- Computing and Software

1.4.1 The Waterfall Model

The waterfall model was originally proposed by Royce (1970). The major

stages of this model are requirements, design, implementation, verification,

and maintenance, as illustrated in Figure 1.2. This model treats the process

of developing software as a sequence of stages; therefore, the waterfall model

is sometimes called the linear sequential model. The criteria of finishing a

stage is the completion of the documentation for this stage. The waterfall

model was the first systematic approach to developing software. It is a widely

used model and is still the reference model for most software engineering text­

books and standard industry practices (Pressman, 1999; Ghezzi et al., 2003).

However, this model has its difficulties. Lack of feedback is its most notable

dis ad vantage.

1.4.2 The Prototype Model

The prototyping model emphasizes communication between customers and

software developers. The prototype developers build services as a mechanism

for identifying software requirements. There is no requirement for the quality

of the prototype, and the prototype should be discarded if it does not meet the

software quality criteria. However, in many cases, the poor quality prototype

is built and carried forward to become real software.

11

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements

Design

Implementation

Verification

Maintenance

Figure 1.2: Waterfall Model

12

Master Thesis - Wen Yu- McMaster- Computing and Software

1.4.3 The Evolutionary Development Model

The evolutionary model is based on an observation that requirements often

change as development proceeds. Extending the waterfall model, the evolu­

tionary model incorporates the iterative philosophy of the prototype model,

and adds iterative feedbacks from later iterations to previous iterations. Two

examples of this type of model are the spiral model and the incremental model.

1.4.3.1 The Spiral Model

In contrast to the waterfall model, which is also called a document-driven

model, the spiral model use risk as the criterion to terminate each iteration.

Proposed by Beohm (1988), this model is called a risk-driven model. Figure 1.3

shows a picture of the spiral model. As the development proceeds, the software

engineers move around the spiral in a clockwise direction. Cost and schedules

are adjusted based on the risk analysis. This approach has its drawbacks. It is

very difficult to manage the development processes under control. The success

of this approach heavily depends on the success of the risk analysis. If a major

risk is not uncovered and managed, problems are very likely occur.

1.4.3.2 The Incremental Model

Like the prototype model, the incremental model is also based on the waterfall

model. Like the spiral model, the scope of the software is increased after each

iteration. The incremental model applies the waterfall model to each iteration.

Each linear sequence produces a deliverable increment of the software. When

an incremental model is used, the first increment is often a core product. That

13

Master Thesis - Wen Yu - McMaster- Computing and Software

:e;,~n:llMI~
·Uii.iE.C:"iiM£S.
Al..TEiRNA'Tllt'E!l,
CQt4.:n~AitH:l

r·········-·-·-··········\
; PLAillm:xr ;

l. ~~~~~~ -_)

C'UMU~ATlVE
i~();~1

IIW.XU~i'i$$
rHRQlJG~
S';!'lli'\'S

,/ "'"''' ································· ,.,

i t\IA;~.I)ATf:
! ~\i.ii:RNM!\te't>
! mamn ..
! R~O~Vt ~1$K:S . \ .. ,, _____________________ ,.)

Figure 1.3: Spiral Model. Image from Beohm (1988)

is , basic requirements are addressed, but many supplementary features (some

known, others unknown) remain undelivered (Pressman, 1999). No prototypes

are involved in this model. Each time the software is delivered as real soft-

ware. The disadvantage of delivering a poor quality prototype is eliminated.

A complete document is the criterion for terminating each stage in each itera-

tion. With the information hiding principle (Parnas et al., 1984) in mind, the

functionalities and corresponding documents may not need to change, or may

change very little.

14

Master Thesis - Wen Yu- McMaster- Computing and Software

1.5 Proposed Methodologies for the Develop­

ment ofPMGT

While software development methodologies have been applied successfully for

many applications, development of scientific computing software, including

mesh generation software, still focuses primarily on the "programming" stage.

PMGT is a library tool that will be called by other applications, such as FEA

software. It is designed to be built on the Shared Hierarchical Academic Re­

search Computing Network (SHARCNET) , where SHARCNET is structured

as a "cluster of cluster" designed to meet the computational needs of high

performance computing researchers. PMGT is developed in this thesis to il­

lustrate the use of software engineering methodologies to improve the quality

of scientific computing software.

The quality factors that are important for PMGT include all quality

factors for scientific computing software except for Portability (QF8), since

PMGT is designed for a specific system. However, SHARCNET is constantly

being improved. Hence, Portability (QF8) is desired if possible.

A scientific computing toolbox, like PMGT, has the following charac­

teristics: i) embedded in another applications; ii) no direct interaction with

the end users; and, iii) can start with a simple set of requirements and grad­

ually add components. Given these characteristics, the incremental process

model was chosen as the basis to developing PMGT. There are two iterations

for the development of the software. The output of the first iteration does not

involve parallelism. During the second iteration, some functionalities are im-

15

Master Thesis - Wen Yu -McMaster - Computing and Software

plemented using parallel algorithms. The process model used for developing

PMGT is actually a modified incremental model. The modifications are as

follows:

1. Feedback from later stages are added to previous stages in each iteration.

That is, within each iteration, if significant problems due to decisions

made during previous stages were discovered, then the decisions from the

previous stages are modified before proceeding. The earlier a problem is

found , the lower the cost to fix it. Adding feedback from later stages to

previous stages can reduce the cost of a problem and thus improve the

overall quality of the software, since the saved resource can be used for

improving quality.

2. Commonality analysis was performed before the software requirements

activities, where a commonality analysis is a process to study shared

features or attributes among similar software to find possibilities for de­

velopment of the software as a program family. The advantages of devel­

oping programs as a family are discussed in Dijkstra (1972) and Parnas

(1976, 1978). The commonality analysis for mesh generation software

has been discussed in Chen (2003) ; Smith and Chen (2004) , and Cao

(2006) .

Four documents are generated during the development of PMGT, namely

the Software Requirements Specification (SRS), the Module Guide (MG) , the

Module Interface Specification (MIS) and the Summary of Validation Testing

Report (SVTR) . These documents can improve the Usability (QF4) of PMGT

16

Master Thesis - Wen Yu -McMaster- Computing and Software

since they specify what PMGT do in different level of abstraction. Mathemat­

ical notation is used in the documents. It can improve the Correctness (QFl)

and Testability (QF6) since it makes the SRS and the MIS unambiguous and

validatable. Traceability matrices are also developed. These matrices can im­

prove the Correctness (QFl), Maintainability (QF5), and Flexibility (QF7) of

PMGT. The use relations of modules can improve the Testability (QF6) and

Reusability (QF9), and the modification of algorithm can improve the Effi­

ciency (QF3) and Usability (QF4). The automation of the correctness testing

can improve the Usability (QF4) of PMGT.

The remainder of this thesis illustrates how software engineering method­

ologies are applied to the development of PMGT to improving the quality of

the software. The organization of the rest of the thesis is as follows. Chap­

ter 2 reviews the software requirements activities of PMGT. Chapter 3 outlines

the architecture design of PMGT and gives more detail on the design of the

software. Chapter 4 discusses implementation issues. Chapter 5 summarizes

validation testing on PMGT. Chapter 6 provides conclusions from the thesis

and addresses some extensions that can be studied in the future. In addi­

tion, the documentation for the SRS, MG, MIS, and SVTR are appended as

appendices A, B, C, and D, respectively.

17

Master Thesis - Wen Yu -McMaster- Computing and Software

18

Chapter 2

Software Requirements

Although the qualities of software have been defined in the previous chapter,

a metric is still needed to measure them. Like other engineering disciplines,

software engineering should provide measurement to assess the quality of soft­

ware. Software requirements can tell which of the qualities are most important

and how to measure and evaluate whether the important qualities have been

met. A software requirement is: i) a condition or capability needed by a user

to solve a problem or achieve an objective; ii) a condition or capability that

must be met or possessed by a system or system component to satisfy a con­

tract , standard, specification, or other formally imposed document; or, iii) a

documented representation of a condition or capability as in the above two

definitions (IEEE, 2000).

Software requirements can improve the following software qualities:

• Correctness (QFl): The process of writing software requirements, espe­

cially formal software requirements , helps the user understand what they

19

Master Thesis - Wen Yu - McMaster- Computing and Software

actually want to build.

• Usability (QF4): Software requirements provide the information of what

the software can do. This information introduces the functionality of

the software. The documentation of the functionality make the software

easier to use.

• Maintainability (QF5): With the software requirements, maintainers can

discover and locate errors by comparing the requirements with what

the software actually does. Therefore, the software becomes easier to

maintain.

• Testability (QF6): Software requirements serve as a contract between

developers and testers. Without unambiguous and validatable software

requirements, it is difficult to test the software.

• Reusability (QF9): The software can only be reused if what the software

does is known. This information is easier to obtain by directly reading

software requirements document than by deciphering the code.

Usually software requirements activities include software requirements

elicitation, software requirements analysis, software requirements documenta­

tion, and software requirements verification. Software requirements elicitation

facilitates the understanding of what the software is supposed to do. The soft­

ware analysis is the process of refining and modeling the requirements. Soft­

ware elicitation and software analysis are necessary for producing the software

requirements document. The software requirement verification checks whether

20

Master Thesis - Wen Yu -McMaster - Computing and Software

the requirements are consistent and complete. In some case requirements ver­

ification is considered part of the analysis stage. However, it is separated in

the current work to highlight the importance of verification step.

This chapter describes how these activities are conducted to develop

PMGT. In Section 2.1, Section 2.2, Section 2.3, and Section 2.4, the activities

of software requirements elicitation, software requirements analysis, software

requirements documentation, and software requirements verification are spec­

ified, respectively. A complete SRS for PMGT is provided in Appendix A.

2.1 Software Requirements Elicitation

Requirements elicitation is the process of discovering the requirements for a

system by communication with customers, system users and others who have a

stake in the system development (Sommerville and Sawyer, 1997). The start­

ing point for the current work was Smith and Chen (2004), which provides

a set of software requirements that are common to mesh generation software.

They also considered the differences between mesh generators in term of there

variabilities. Smith and Chen (2004) significantly reduced the time and effort

necessary to gather the requirements from stakeholders. However, the system

analyzed by Smith and Chen (2004) was targeted at Finite Element Analysis

(FEA) applications. PMGT, on the other hand, only manages the geomet­

ric information about the mesh, not other FEA related information , such as

boundary conditions and material properties. Hence, only commonalities from

Smith and Chen (2004) that are meaningful for PMGT were selected.

21

Master Thesis - Wen Yu -McMaster- Computing and Software

2.2 Software Requirements Analysis

Traditionally, requirements analysis methods are placed into two categories:

structured analysis and object-oriented analysis. A limitation of both cate­

gories is that these methods associate requirements analysis with programming

languages. Structured analysis relates to structured programming languages

and object-oriented analysis relates to object-oriented programming languages.

Focusing on specific class of programming languages brings the design decision

to the early stage of the development. This invalidates the basic principles of

software requirements that the software requirements should be abstract and

methodology independent.

Goal-based methods are concerned with the use of goals for eliciting

and analyzing requirements (van Lamsweerde, 2001). This kind of analysis is

abstract since it does not favor any class of programming languages; hence,

it gives more freedom for the later stage of development. PMGT used ideas

from goal-based method for analyzing software requirements.

The first step of analysis is identifying the goals of PMGT. These goals

are too general to be easily implemented as software, especially for the first

iteration of the development. For example, a goal for PMGT may be to "refine

a given mesh into a new mesh according to the provided information on which

elements need to be refined." Without some restrictions (assumptions), such

as the dimension of the input mesh, it would be impossible to develop the

software. Hence, the goals need to be refined step by step to find requirements

that are concrete enough to fit the scope of the software to be developed.

Also, goals are usually expressed in natural language, and natural language

22

Master Thesis - Wen Yu- McMaster- Computing and Software

is inherently ambiguous. During the refinement, mathematical notations and

terms are introduced to make the requirements validatable and unambiguous.

2.3 Software Requirements Documentation

A Software Requirements Specification (SRS) is a document containing a com­

plete description of what the software will do, without describing how it will

do it (Davis, 1990). According to their formality, methods for document­

ing requirements are categorized into informal methods, formal methods, and

semi-formal methods. By using informal methods, software requirements are

expressed in natural language. Most requirements documents in industry use

informal methods due to the understandability of natural language. However,

natural language is inherently ambiguous; hence, the requirements are difficult

to validate. In contrast to informal methods, formal methods use languages

designed for specification, such as Z, to document the requirements. The use

of formal techniques can reduce the ambiguity of the requirements. However,

this kind of method is not widely used due to understandability challenges and

high cost. Semi-formal methods, such as UML, try to keep a balance between

informal methods and formal methods. Semi-formal methods are easier to un­

derstand and develop than formal methods. However, problems of verification

and validation of requirements still exist.

There is no universally accepted way of documenting requirements. A

combination of informal methods and formal methods is used to document the

software requirements of PMGT. For each requirement, plain English is used

23

Master Thesis - Wen Yu - McMaster- Computing and Software

for description. In addition, formal mathematical/logical expressions are used

where applicable to improve the Testability (QF6) of PMGT. The format of

the mathematical notations and terms are borrowed from Gries and Schneider

(1993), as explained in Appendix A.

The template proposed by Lai (2004); Smith and Lai (2005); Smith

et al. (2007) is used as a basis for the current SRS. Lai's template modified

the general software requirements templates documented in IEEE (1998) and

in Robertson and Robertson (2001). Lai's template was designed for the spe­

cific case of engineering mechanics software. Solving a engineering mechanics

problem begins with generating theoretical models for the problem and then

instantiating these models. The step of instantiating the model was removed

for documenting PMGT, since PMGT is a general tool involving only a few

mathematical equations. There is no need to instantiate the theoretical mod­

els, as the theoretical models already have the correct level of abstraction.

Data constraints, which are part of Lai 's template, are also not considered to

be necessary in the current work. The complete SRS for PMGT is in Appen­

dix A. Note that the SRS should be updated when the software requirements

change. Sections of the SRS for PMGT are as follows:

1. Reference Material

2. Introduction

3. General System Description

4. Specific System Requirements

5. Other System Issues

24

Master Thesis - Wen Yu -McMaster- Computing and Software

6. Traceability Matrix

7. List of Possible Changes in the Requirements

8. Values of Auxiliary Constants

Each of these sections is described m more detail below, including exam­

ples where appropriate. Sections of Reference Material, Introduction, General

System Description, and Specific System Requirements give introductions of

PMGT in different perspectives, and improve the Usability (QF4) of PMGT.

2.3.1 Reference Material

This section includes tables of symbols , abbreviation and acronyms. These

tables helps reduce the ambiguity of the document. For instance, a reader

can refer to the table after reading the goal statements to see that MIN and

MOUT are the symbols used for the input and output meshes, respectively.

The reference material section also includes an index of requirements, to facil­

itate users quickly finding the requirements they need.

2.3.2 Introduction

This section gives an overview ofthe SRS for PMGT. First, the purpose of the

documents is provided. Second, the scope of PMGT is identified. Third, some

terminology about software engineering and mesh generation are defined. As

mentioned in Section 1.3, most of mesh generation software is not developed

by software engineers. Readers of the SRS for PMGT may not have essential

knowledge of software engineering. Hence, including terminology about both

25

Master Thesis - Wen Yu -McMaster- Computing and Software

software engineering and mesh generation is necessary. Finally the organiza­

tion of the document is summarized.

2.3.3 General System Description

This section describes the general information about the system. The in­

terfaces between the system and its environment are defined first. Then the

characteristics of potential users are discussed. At end of this section, some sys­

tem constraints are described. This software is intended to be used on Shared

Hierarchical Academic Research Computing Network (SHARCNET). How­

ever, SHARCNET is constantly improving and changing its system. There­

fore, it is important to design the software to only need the basic features of

SHARCNET, and not to focus on details of SHARCNET. Abstracting away

the detailed system constraints makes it possible for PMGT to be used in

other systems similar to SHARCNET, which improves the Portability (QF8)

ofPMGT.

2.3.4 Specific System Requirements

This section describes the system requirements in detail. After the problem is

clearly and unambiguously stated, some solution characteristics are specified.

Non-functional requirements are also included in this section. This section is

the major section of the SRS. Goals , assumptions, theoretical models, data

definitions, and software requirements are all specified here.

A goal is an objective that the system under consideration should

achieve (van Lamsweerde, 2001). One of goals of PMGT is

26

Master Thesis - Wen Yu -McMaster- Computing and Software

Gl: Given a mesh MIN and instructions I on how to refine the

mesh, PMGT should generate a refined mesh MOUT according to

the instructions I .

MIN and MOUT represent an input and an output mesh respectively, and I

represents instructions on how a mesh should be refined/ coarsened.

An assumption reduces the scope of the software. One example as­

sumption of PMGT is

• Al: PMGT focuses on a 2D domain.

• A4: The input and output meshes are conformal.

• A5: The elements of input and output meshes are triangles.

Usually, the software is extended by relaxing one or more assumptions. In­

cluding assumptions in the SRS can make adding more functionality to the

software easier by tracing from assumptions to requirements and then, in a

later step, to modules.

Theoretical models refine the goals in two aspects. First , this refine­

ment makes the goals more concrete by applying assumptions to the goals.

Second, the refinement makes the goals more unambiguous by expressing the­

oretical models more formally. A theoretical model that refines G 1 follows.

TMl: Refining Mesh

Input: MIN: MeshT , I : RCinstructionT,

Output: MOUT: MeshT

The following behavior is specified:

27

Master Thesis - Wen Yu -McMaster- Computing and Software

That is , the output mesh is a refined version of the input mesh.

Theoretical models, such as TMl, are more formal than the goals. How­

ever, they can be difficult to understand. Data definitions help by defining

terms used in the theoretical models and requirements. Some of data defini­

tions used to define TMl are introduced as follows:

RCinstrctionT (D22) is defined as

RCinstructionT :=tuple of (rORc: InstructionT, clnstr: set of

CellinstructionT)

where InstructionT :={REFINE, COARSEN, NOCHANGE},

and Cell!nstructionT :=tuple of (cell: CellT, instr: InstructionT)

Refined(MO UT, MIN) (D23) is defined as

Refined: MeshT x MeshT x RCinstructionT~~

Refined(m', m: MeshT, rc: RCinstructionT) -

rc.rORc =REFINE A ValidMesh(m) A ValidMesh(m') A

CoveringUp(m', m) A # m' 2:: # m

All data definitions used in D23 are formally defined in the SRS. However, for

the presentation in this chapter, it is not necessary to formally define all of

the definitions. Some data definitions used to define D23 and data definitions

used later in this section are explained informally as follows :

• VertexT: type of vertices;

• EdgeT: type of edges;

28

Master Thesis - Wen Yu -McMaster- Computing and Software

• Cell T: type of cells;

• MeshT: type of meshes, which is a set of Cell T;

• Vertices: a function that returns the vertices in a mesh;

• Edges: a function that returns the edges in a mesh;

• Boundary Vertices: a function that returns the set of boundary vertices;

• BoundaryEdges: a function that returns the set of boundary edges;

• ValidCell: a boolean function that returns true if the cell is a triangle;

• Bounded: a boolean function that returns true if the boundary edges

form a closed polygon;

• No!nterior!ntersect: a boolean function that returns true if a point in

space is inside only one cell of the mesh;

• OnEdge: a boolean function that returns true if a vertex is on the line

segment between two vertices (exclusive) of an edge.

In the data definition D23, ValidMesh (D18) is a boolean function to check if

a mesh is valid, which is defined as

ValidMesh: MeshT -+ Iffi

ValidMesh(m: MeshT) _ (V e: EdgeT I e E Edges(m): ValidEdge(e))

1\ (V c: CellT I c Em: ValidCell(c)) 1\

Bounded(m) 1\ Conformal(m)l\ No!nteriorlntersect(m)

29

<i.

Master Thesis - Wen Yu -McMaster- Computing and Software

CoveringUp (D19) is a boolean function to check if two meshes cover up one

another, which is defined as

CoveringUp: MeshT x MeshT --+ 1B\

CoveringUp(ml, m2: MeshT) - V vl, v2: VertexT I

vl E Boundary Vertice(ml) 1\ v2 E Boundary Vertices(m2):

(::3 bl, b2: EdgeT I bl E BoundaryEdges(ml) 1\

b2 E BoundaryEdges(m2):

(OnEdge(vl, b2) V vl E b2) 1\ (OnEdge(v2, bl) V v2 E bl))

Conformal (D16) is a a boolean function to check if a mesh is conformal, which

is defined as

Conformal: MeshT --+ 1B\

Conformal(m: MeshT) - V cl, c2: CellT I c1 Em 1\ c2 E m

1\ c1 =/=- c2 :

(::3 e: EdgeT I e E Edges(m) : (::3 v: VertexT I v E Vertices(m):

(cl n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (• OnEdge(v , e))))

The detailed data definitions can be found in the SRS.

The theoretical models can then be further refined to the functional

requirements of the software. For each goal, assumption, theoretical model,

data definition, and requirement, a name and a unique number are assigned

for readability of the SRS , and for Usability (QF4) of PMGT.

All functional and nonfunctional requirements are specified in a tabu­

lar form. An example functional requirement is shown in Table 2.1. In each

table, the field Description gives a brief description of this requirement. It

30

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F1
RefiningMesh
PMGT should have capabilities for
refining an existing mesh.
I.rORc = REFINE 1\

Refined(MOUT, MIN)
C1, V3
D20, D22, D23
TM1
Scope time
Created- June, 2005.
Modified - October, 2005. Change
the name from "ImprovingMesh"
to "RefiningMesh."
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" were
added.

Table 2.1: An Example Functional Requirement

tells what PMGT should do to fulfill this requirement. There are two paten-

tial sources, shown in the Source field, for each requirement. One source is

from Smith and Chen (2004), and the other comes from Dr. Smith. If the

requirement is from Smith and Chen (2004), then this field will show the com-

monality number, with a prefix C and the associated variability, shown by a

prefix V. Where applicable, Related Data Definitions and Related Theoretical

Models give the numbers of the related data definitions and the numbers of

the related theoretical models, respectively. These two field only appear for

functional requirements. The Binding Time field either shows scope time or

run time. Scope time means that this requirement is determined when the

SRS is written. Run time means that this requirement is determined when

31

Master Thesis - Wen Yu -McMaster- Computing and Software

the system is running. History records the time and details of creating and

changing the requirement.

An example nonfunctional requirement (NFR) is shown in Table 2.2.

An NFR has similar fields to a functional requirement. However, there is no

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Nl
Performance
Refining/ coarsening a mesh using
multiple processors should be faster
than when using a single proces­
sor. In addition, the performance
of PMGT should be comparable
with that of similar applications.
The execution time to refine an ex­
ample mesh, which is specified in
Appendix D, should be RSPTIME.
C15, V39
Scope time
Created- June, 2005.

Table 2.2: An Example Nonfunctional Requirement

Related Data Definitions and Related Theoretical Models, since there are no

such relations. As mentioned Section 1.2, Nonfunctional Requirement Chal­

lenge exists in scientific computing software, including PMGT. NFRs are dif-

ficult to formally document and test. In the case of PMGT, an attempt was

make to give a criterion for each NFR so that it is possible to test whether

the requirement has been met. For example, in the Description of the non-

functional requirement Nl, the criterion is quantified by giving a constant

RSPTIME, which will be specified in Section 2.3.8. The quantifying of the

requirements improves the Testability (QF6) of PMGT.

32

Master Thesis - Wen Yu -McMaster- Computing and Software

2.3.5 Other System Issues

This section includes some other supporting information that might contribute

to the success or failure of the system development. Open issues, off-the-shell

solutions, and waiting room items are considered here. In particular, the wait­

ing room items relate to relaxing the assumptions introduced in Section 2.3.4.

The waiting room provides a blueprint of how the system will be extended,

and hence it improves the Flexibility (QF7) of the software.

2.3.6 Traceability Matrix

This section shows the traceability matrix. This matrix gives the associations

among goals, assumptions, data definitions, theoretical models , and functional

and nonfunctional requirements. A portion of the matrix is shown in Table

2.3 and Table 2.4. This matrix can be used for improving the Maintainability

(QF5) , and Flexibility (QF7) of PMGT. For example, if one of the goals of

PMGT changes, all of the assumptions, most of data definitions, one of the

theoretical models, and most of functional requirements would change. On

the other hand, if the assumption that "the input and output meshes are

conformal" (A4) changes, only the data definition D16 and the requirement

F7, which relate to comformality , would change. Another use of the matrix is

to improve the Correctness (QFl) of PMGT since the matrix ensures that the

initial goals are correctly transferred into the software requirements. Other

uses of the traceability matrices are specified in Section 2.4.

33

Master Thesis - Wen Yu -McMaster- Computing and Software

2.3. 7 List of Possible Changes in the Requirements

The system might evolve to accommodate some changes in the future. These

changes will add additional goals to the software library. For example, the

input of PMGT may change to include material properties. Including this

information improves the Flexibility (QF7) of PMGT.

2.3.8 Values of Auxiliary Constants

The constants given in this section are used to make some of the nonfunctional

requirements validatable. These constant are defined to quantify the nonfunc­

tional requirements by comparing them to a similar software product, such

as AOMD (SCOREC, Last Access: January, 2006). For example RSPTIME

is defined as the execution time to refine the same mesh as that specified in

nonfunctional requirement Nl using AOMD. It is noticed that these constants

are for specific system. As mentioned previously, this quantifiable requirement

improves the Testability (QF6) of PMGT.

2.4 Software Requirements Verification

An important part of the requirement analysis is verifying the requirements

for completeness and consistency. A traceability matrix can helps with this

activity. For example, the traceability matrix checks for completeness since if

there is no check mark (./) in a cell associated with a goal, or a assumption,

or a theoretical model in the corresponding column, it means the goal or the

assumption, or the theoretical model is not address by any software require-

34

Master Thesis - Wen Yu -McMaster- Computing and Software

ment. Hence, the software requirements are not complete. The traceability

matrix can also partially check the consistency of the requirements document.

If there are no entries in the column associated with a data definition, it means

the data definition is not useful and should not appear in the document. If

there are no data definitions in columns associated with a theoretical model

in a row, this model should be checked carefully to see if there are any po­

tential deficiencies in the software requirements, potentially due to software

requirements analysis problems.

35

Master Thesis - Wen Yu -McMaster- Computing and Software

I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21

Al ./ ./ ./
A2 ./ ./ ./
A3 ./ ./ ./
A4 ./ ./ ./
A5 ./ ./ ./ ./
A6 ./ ./ ./

Dl ./ ./ ./
D2 ./ ./
D3 ./ ./
D4 ./ ./ ./ ./
D5 ./ ./ ./ ./
D6 ./ ./ ./ ./
D7 ./ ./
D8 ./ ./ ./
D9 ./ ./ ./
DlO ./ ./ ./ ./
Dll ./ ./
D12 ./ ./ ./ ./
D13 ./ ./ ./
D14 ./ ./ ./
D15 ./ ./ ./ ./
D16 ./ ./ ./ ./
D17 ./ ./ ./ ./
DIS ./ ./
D20 ./ ./
D21 ./ ./
D22 ./ ./
D19 ./ ./ ./ ./
D23 ./
D24 ./

Table 2.3: Traceability Matrix (PART I): Goals, Assumptions, Theoretical
Models, Data Definitions, and Requirements (I)

36

Master Thesis - Wen Yu -McMaster- Computing and Software

I Gl I G2 I AI I A2 I A3 I A4 I A5 I A6 I TMII TM21
Fl ./ ./
F2 ./ ./
F3 ./ ./ ./ ./
F4 ./
F5 ./ ./ ./ ./ ./ ./
F6 ./ ./ ./ ./ ./
F7 ./ ./ ./
F8 ./ ./ ./ ./
F9 ./ ./ ./ ./
FlO ./ ./
Fl6 ./ ./

Table 2.4: Traceability Matrix (PART I) : Goals , Assumptions, Theoretical
Models, Data Definitions, and Requirements (II)

37

Master Thesis - Wen Yu -McMaster- Computing and Software

38

Chapter 3

Design

According to the process model for PMGT proposed in Section 1.5, once soft­

ware requirements have been analyzed and specified, software design follows.

Software design is defined as decomposing the software into modules, describ­

ing what each module is intended to do and specifying the relationship among

the modules (Ghezzi et al., 2003). A module is defined as a "work assign­

ment," as proposed by Parnas (1972). Instead of "a portion of a program,"

this definition includes in software design the activities that occur before pro­

gramming. Because the module decomposition of PMGT does not assume

any programming language, a different class of programming language will

potentially change the implementation. The independence of PMGT from the

specific programming language means that the Reusability (QF9) of the design

is improved.

The principle applied for design is information hiding. According to

this principle, system details that are likely to change independently should

39

Master Thesis - Wen Yu -McMaster- Computing and Software

be hidden in different modules (Parnas et al., 1984). The information hiding

principle allows both designers and maintainers to easily identify the parts of

the software that they want to consider without needing to know irrelevant

details. The Maintainability (QF5) and Flexibility (QF7) of the software are

thus improved. The process of module decomposition can proceed in different

ways, such as top-down or bottom-up. The top-down process decomposes the

system by stepwise refinement from higher levels of abstraction to lower levels

of abstraction. In contrast, bottom-up decomposition first defines modules

and then iteratively combines these modules into higher level components.

Like the design of most software, the strategy used here is a combination of

top-down and bottom-up design.

Applying the top-down strategy, the whole design of PMGT is decom­

posed into an architectural design, which will be specified in Section 3.1, and

a detailed design, which will be introduced in Section 3.2.

3.1 Architectural Design

Software architecture is the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system (Shaw and

Garlan, 1995). The overall structure is illustrated in Section 3.1.1. The com­

pleteness and consistency of this structure are verified in Section 3.1.2. The

use relation is shown in Section 3.1.3. The architectural design is documented

in the MG, which is appended in Appendix B.

40

Master Thesis - Wen Yu -McMaster- Computing and Software

3.1.1 Decomposition of the System into Modules

By hiding details that are likely to change independently in different modules,

PMGT is easier to maintain and extend. For example, if one of algorithms that

refines the input mesh changes, only the modules that hide the information

on how to refine a mesh need to change. It is not likely that the modules that

hide the information on how to coarsen a mesh need to change. This design

for change approach is adopted throughout the architectural design of PMGT.

There are two steps for designing the architecture of PMGT. In the

first step, anticipated changes are identified. These changes should not impact

the basic functionality of PMGT in that the goals of the software should not

be affected. The list of anticipated changes can improve the Flexibility (QF7)

of PMGT since this list helps to find modules to be changed when software

requirements change. Several examples of anticipated changes (from Appendix

B) are as follows:

• AC7: The mechanisms for validating the input and output meshes.

• ACll: The data structure of a mesh.

• AC12: The algorithms for refining a mesh.

• AC14: The shape of a cell, which is initially assumed to be a triangle.

Ideally, all anticipated changes should be independent of one another, so that

one change can be hidden inside one module. When a change occurs, only the

module that hides the change needs to be modified.

41

"

Master Thesis - Wen Yu -McMaster- Computing and Software

Unlikely changes are also listed. If one of these changes occurs , the

design of PMGT makes no obligation that adapting to this change will only

require small modifications. Some unlikely changes include the following:

• UC5: The type of the mesh is unstructured.

• UC6: The representation of an edge as a set of vertices.

• UC8: A Cartesian coordinate system is used.

An unstructured mesh is more complex than a structured one. Therefore , it

is not likely to adapt unstructured mesh software to structured mesh software

because of the greater generality of the unstructured mesh. Hence, the type

of unstructured mesh is an unlikely change (UC5). Another example of an

unlikely change is the change of the representation of an edge (UC6). This

change will affect all of the data structure modules. Unlike the design pro­

posed by ElSheikh et al. (2004), the coordinate system is also assumed to be

an unlikely change (UC8). Putting UC8 into the anticipated changes category

would make the software more general. However, this generality would be at

the price of complexity. A design decision was made to consider the UC8 to

be an unlikely change because this decision reduces the complexity of PMGT.

Listing unlikely changes helps one set realistic goals for Flexibility (QF7) be­

cause it explicitly identifies those maintenance tasks that would not be likely

nor feasible.

After identifying likely and unlikely changes, the system was decom­

posed into modules. A bottom-up strategy was used for the decomposition to

facilitate the principle of information hiding. Each module accommodates one

42

Master Thesis - Wen Yu -McMaster- Computing and Software

(or more) anticipated changes. These modules were iteratively combined to

form higher level modules until the whole system was constructed, as shown in

Table 3.1. The level 1 decomposition into hardware-hiding module, behavior­

hiding module and software decision module was inspired by Parnas et al.

(1984) .

Level 1 Level 2 Level 3 Level 4

Hardware-
Extended Virtual Memory

Hiding
Computer Module Module

File Read/Write
Module

Module
Device Interface Keyboard Input
Module Module

Screen Display
Module

Behavior- Input Format Mod-
Hiding ule
Module Output Format

Module
Service Module

Vertex Module
Software

Mesh Data Module
Entity Module Edge Module

Decision Cell Module
Module Mesh Module

Algorithm Module
Refining Module
Coarsening Module

Table 3.1: Module Hierarchy

Each module has its secrets and provides services to the other modules.

Only the leaves in the hierarchy have to be implemented. The higher level

modules are conceptual. They are used to facilitate reading of the MG for

understanding the design. Some of the leaf modules, such as the leaves in the

"Hardware Hiding Modules," are commonly used in many different software

43

Master Thesis - Wen Yu -McMaster- Computing and Software

projects. These module are usually implemented by the operating system or

through the libraries of the implementing programming language.

In the MG, in addition to Secrets and Services, there is an Implemented

By field for each module. If the entry in this field is OS, then this module is

assumed to already be implemented. PMGTmeans this module will be imple­

mented by PMGT. If a dash (-) is shown, this means that this module does

not need to be implemented. Whether this module is implemented depends on

the programming language used. For example, if an imperative programming

language is used, the higher level modules will not likely be implemented. How­

ever, if inheritance exists in the implementing programming language, such as

in an 00 language, the higher level modules can be implemented as super

classes. As mentioned previously, the decomposition of PMGT is independent

of programming language. Examples of module decomposition are illustrated

as follows:

• M4: Screen Display Module

Secrets: The data structure and algorithms to display graphics and text

on the screen.

Services: Provides an interface between the system and the screen so

the system can display information on the screen through the use

of programs in the module.

Implemented By: OS

• Behavior-Hiding Module

Secrets: The contents of the required behaviors.

44

Master Thesis - Wen Yu -McMaster- Computing and Software

Services: Includes programs that provide externally visible behavior

of the system as specified in the software requirements specifica­

tion (SRS) documents. This module serves as a communication

layer between the hardware-hiding module and the software deci­

sion module. The programs in this module will need to change if

there are changes in the SRS.

Implemented By: -

• M12: Refining Module

Secrets: Algorithms for refining a mesh.

Services: Refining a mesh.

Implemented By: PMGT

3.1.2 Verifying the Decomposition

The decomposition can be verified for consistency and completeness by consid­

ering the traceability matrices. The traceability matrix between modules and

requirements is shown in Table 3.2. M followed by a number is the number of

a module. F followed by a number is a number of a functional requirement. N

followed by a number is the number of a nonfunctional requirement. There is

also a special column "Doc," which represents the documentation of PMGT.

No empty row in the table means that all requirements of PMGT are fulfilled

by one or more modules; that is, the design is complete. No empty column

means that all modules are necessary to implement one or more requirements;

that is, the design is consistent.

45

Master Thesis - W en Yu -McMaster- Computing and Software

I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Mq Ml~ Mq Docl
Fl ./
F2 ./
F3 ./ ./
F4 ./ ./ ./ ./ ./
F5 ./ ./
F6 ./ ./ ./
F7 ./ ./ ./
F8 ./ ./
F9 ./ ./
FlO ./ ./ ./
Fll ./
F12 ./
F13 ./
F14 ./
F15 ./
F16 ./
Nl ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N2 ./ ./ ./ ./ ./ ./ ./ ./ ./
N3 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N4 ./ ./ ./ ./ ./ ./ ./
N5 ./ ./ ./ ./ ./ ./ ./ ./ ./
N6 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N7 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./

Table 3.2: Traceability Matrix: Modules and Requirements

The traceability matrix improves Maintainability (QF5) and Flexibility

(QF7). For example, if the requirement that "PMGT should have capabilities

for refining an existing mesh" (Fl) changes, then only the "Refining Module"

(M12) would need to change since from the traceability matrix only M12 is

associated with Fl. Another example is that if the requirement that the shape

of the elements in a mesh is triangular (F5) changes, then only the service

module (M7), which hides the information on how to validate a mesh, and the

46

Master Thesis - Wen Yu -McMaster- Computing and Software

I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Ml~ Ml~ Mq
ACl .(

AC2 .(

AC3 .(

AC4 .(

AC5 .(

AC6 .(

AC7 .(

AC8 .(

AC9 .(

AClO .(

ACll .(

AC12 .(

AC13 .(

AC14 .(.(

Table 3.3: 'Iraceability Matrix: Modules and Anticipated Changes

cell module (MlO), which hides the information on the data structure of a cell,

would need to change. The matrix also can improve the Correctness (QFl) of

PMGT since the matrix ensures that the software requirements are correctly

transferred into the modules.

The matrix in the functional requirements area is sparse; that is, chang-

ing one of functional requirements will not change too many modules. On the

other hand, changing one of the nonfunctional requirements means changing

many modules. This demonstrates that nonfunctional requirements are asso-

ciated with qualities of the system, not specific functions.

Another traceability matrix is the matrix between modules and antic-

ipated changes , as shown in Table 3.3. As in Table 3.2 , M followed by the

number is the number of a module. AC followed by a number is a number

of an anticipated change. Except for AC14 (anticipated change for the shape

47

Master Thesis - Wen Yu - McMaster- Computing and Software

of cells) , M7 (service module), and MlO (cell module), which have multiple

associations , the rest of the anticipated changes and modules have single as­

sociations. For each module, there is only one anticipated change associated

with it; that is , the module is simple since it only have one secret (anticipated

change). For each anticipated change, there is usually only one module asso­

ciated with is; that is , the module is as independent as possible, since each

secret is only hidden in one module. Changing one anticipated change usu­

ally only requires changing one module. For example, if the data structure

of a mesh (ACll) changes , then the mesh module (Mll) would change, since

from Table 3.3 ACll associates with Mll. Decomposing PMGT to simple and

independent modules promotes Testability (QF6), Maintainability (QF5) and

Flexibility (QF7).

3.1.3 Use Relation

Software design includes relationship among modules. The use relation for

PMGT is shown in Figure 3.1. Parnas (1978) said of two programs A and B

that A uses B if correct execution of B may be necessary for A to complete the

task described in its specification. That is, A uses B if there exist situations in

which the correct functioning of A depends upon the availability of a correct

implementation of B. It can be seen that the graph is a directed acyclic graph

(DAG). Each level of the hierarchy offers a testable and usable subset of the

system. This improves the Testability (QF6) and Reusability (QF9) of PMGT.

For example, the mesh module (together with vertex module, edge module, and

cell module) is a subset of the system. The design and the implementation

48

Master Thesis - Wen Yu -McMaster- Computing and Software

Figure 3.1: Uses Hierarchy among Modules

49

Master Thesis - Wen Yu -McMaster- Computing and Software

of this subset can be reused since it does not use other modules. Another

example is that the coarsening module and output format module can be

removed, and the remaining subset is still very useful. Modules in the higher

level of the hierarchy are essentially simpler because they use modules from

the lower levels, thus the Maintainability (QF5) of PMGT is improved. The

design is easily understood due to its simplicity; therefore, the Usability (QF4)

of PMGT is improved.

3.2 Detailed Design

Figure 3.1 gives the uses relations between modules. However, these relations

do not give enough information for each module to be developed independently.

The syntax and semantics of the access routines for each module are still

needed. The detailed design of PMGT being described in this section provides

this information by specifying the interface of each module. A document that

provides the detailed design, called the Module Interface Specification (MIS),

is appended in Appendix C. The detailed design is less abstract than the

architectural design in the last section. However, it is still abstract because

it describes what the module will do, but not how to do it. A state machine

MIS is used. Note that some of the modules have multiple projections, as

used for example in Bauer (1995). In this case, state variables give the format

of all states for all of the created objects. The change of state variables is

applicable to the particular object associated with this module. Before giving

some examples to illustrate the detailed design of PMGT in Section 3.2.2,

50

Master Thesis - Wen Yu -McMaster- Computing and Software

the template for documenting the MIS for each module is first introduced in

Section 3.2.1.

3.2.1 Template

The template used to document the MIS for each module is a modified version

of the MIS template presented in Ghezzi et al. (2003) and of that presented

in Hoffman and Strooper (1999). According to the adopted template, each

module is modeled as a finite state machine. It has a set of state variables,

inputs, outputs, and transitions. In the case that some conditions do not hold,

an exception is raised by the access program that detects the exception. If an

access program has an output, then Output is specified. If an access program

changes states variables, a Transition is specified. The inputs of the access

program are listed as arguments. The mathematical notations used in the

MIS follow that introduced by Gries and Schneider (1993), as illustrated in

the SRS document in Appendix A. The whole template is composed of four

parts as follows:

1. Module Name: This section gives the name of the module.

2. Uses: This section lists constants, data types, and access programs that

are defined outside of this module. The format of each imported item is

specified as

Uses (module name) Imports (resource constants/data_typejaccess_program

list)

The associations with other modules are listed when the use of the other

51

Master Thesis - Wen Yu - M eM aster - Computing and Software

modules is necessary to document the MIS. It is not necessarily the same

as the uses relation in Section 3.1.3. For example, in the examples listed

in Section 3.2.2 , the refining modules uses is ValidMesh and Covering Up

functions defined in the Service module to specifying the assumptions

and semantics of the access program. However, the Service module is

not used to fulfill the functionality of the refining module. Hence, there

is no uses relation between the refining module and the service module.

On the other hand, it is obvious that the refining module will use the

add Cell function to refine a mesh. However, this function is not used by

the refining module for specifying the semantics of the access program

of the refining module. Hence, the addCell function is not imported by

the refining module in the MIS document.

3. Interface Syntax: This section defines the syntax of the module interface.

The interface indicates the services that the module provides. Other

modules can only access this module through this interface. The other

information inside the module is the secret that it hides from other mod­

ules. Changing this internal information will not affect the way that

other modules use this module. This section includes the exported con­

stants, exported data types, and exported access programs. Each access

program has a name, input list, output list, and exceptions.

4. Interface Semantics: This section introduces the semantics associated

with the above syntax. It includes i) state variable; ii) assumption;

iii) access program semantics; iv) local functions; v) local data types;

52

Master Thesis - Wen Yu -McMaster- Computing and Software

vi) local constants; and, vii) considerations. The access program seman­

tics include possible exceptions, possible outputs , and possible transi­

tions . The semantics should be as formal as possible to improve the

Testability (QF6) of PMGT. When necessary and appropriate, an Eng­

lish explanation is included to help readers understand the meaning of

the mathematical notation. The natural language explanation improves

the Usability (QF4) of PMGT. Both assumptions in the interface seman­

tics and exceptions in the access program semantics specify abnormal sit­

uations. However, exceptions and assumptions serve different purposes.

When an assumption does not hold, the software makes no guarantee

on the behavior. On the other hand, when an exception occurs, the

software is obligated to handle it. Local functions, local data types, and

local constants are used to facilitate the expression of the interface se­

mantics. The considerations section includes other issues related to the

MIS of this module that could not be covered in the other parts.

3.2.2 Examples

The detailed design of each module is documented according to the template in

Section 3.2.1. As shown in Table 3.1, the system is decomposed into three mod­

ules in Level 1. Hardware-Hiding Module is implemented outside of PMGT

and not included in the examples. Service Module, which belongs to Behavior­

Hiding Module is selected as one of examples. Software Decision Module is

the most important module. Hence, two example modules that belong to the

Software Decision Module are illustrated here. One is the Mesh Module, which

53

Master Thesis - Wen Yu -McMaster- Computing and Software

is for the data structure of the mesh, and the other is Refining Module, which

is for one of the algorithms. These three examples that illustrate the idea of

the detailed design are provided in the section that follows. If an MIS sub­

section does not have content, then this section is excluded to save space. In

addition, not all of the semantics of the access programs are listed to simplify

the presentation. The full details for these example can be found in Appendix

c.

3.2.2.1 Mesh Module

• Imported Data Types:

Uses Vertex Module Imports VertexT

Uses Edge Module Imports EdgeT

Uses Cell Module Imports CellT

• Exported Data Types: MeshT := set of Cell T

• Exported Access Programs: The exported access programs for the mesh

module are listed in Table 3.4.

• State Variables: m: set of Cell T

• Invariant: #m ~ 0

• Assumptions: initMesh() is called before any other access routines.

• Access Program Semantics:

- initMesh()

54

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine N arne Input Output Exceptions
initMesh
get Mesh MeshT

numOfCells N
add Cell CellT MeshT Cell Exist

delete Cell CellT CellNotExist
onEdge VertexT, EdgeT lffi

belongToCell EdgeT , CellT lffi
inside VertexT , CellT lffi

vertices set of Vert exT

edges set of EdgeT
boundary Edges set of EdgeT

boundary Vertices set of VertexT

Table 3.4: Exported Access Programs of the Mesh Module

* Transition

m:=0

- addCell(c: CellT)

* Exception

c E m ===> CellExist

* Transition

m := mU {c}

- onEdge(v: VertexT, e: EdgeT)

* Description

Returns true if a vertex v is on the line segment between two

vertices (exclusive) of the edge e.

* Output

:J v1, v2: VertexT I

v 1 E e /\ v2 E e /\ v 1 =/= v2 /\ v =/= v 1 /\ v =/= v2 :

55

Master Thesis - Wen Yu -McMaster - Computing and Software

(vl.x < v.x:::; v2.x 1\

(v.y- vl.y)j(v.x- vl.x) = (v2.y- vl.y)j(v2.x- vl.x))

- belongToCell(e: EdgeT, c: CellT)

* Description

Returns true if an edge e belongs to a cell c.

* Output

V v: VertexT I v E e : v E c

- edges()

* Description

Returns a set of all edges of the mesh

* Output

{vl,v2: VertexT I (Vc: CellT IcE m:

vl E c/\v2 E c/\vl =1- v2): {vl,v2}}

- boundaryEdges()

* Description

Returns the set of boundary edges of the mesh

* Output

{ b: EdgeT I b E edges() 1\

(#{c: CellT I c Em 1\ belongToCell(b, c): c} · · 1): b}

3.2.2.2 Service Module

• Imported Data Types:

Uses Vertex Module Imports VertexT

56

Master Thesis - Wen Yu -McMaster- Computing and Software

Uses Edge Module Imports EdgeT

Uses Cell Module Imports CellT

Uses Mesh Module Imports MeshT

• Imported Access Programs:

Uses Mesh Module Imports onEdge(), inside(),

vertices(), edges(), boundaryEdges(), boundaryVertices()

• Exported Data Types:

InstructionT :={REFINE, COARSEN, NOCHANGE}

CellinstructionT :=tuple of (cell: CellT, instr: InstructionT)

RCinstructionT :=tuple of

(rORc: InstructionT, clnstru: set of CellinstructionT)

• Exported Access Programs:

The exported access programs for the services module are listed in Table

3.5.

Routine N arne Input Output Exceptions
isValidMesh MeshT :Ia
covering Up MeshT x MeshT :Ia

Table 3.5: Exported Access Programs of the Service Module

• Access Program Semantics

- isValidMesh(m: MeshT)

* Description

Returns true if the cells of the mesh are bounded, conformal,

and if any two cells are not overlapping.

57

Master Thesis - Wen Yu -McMaster- Computing and Software

* Output

Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m)

- coveringUp(ml: Meshi , m2: Meshi)

* Description

Returns false if any boundary vertex of one mesh is not on a

boundary edge of another mesh. Otherwise, return true.

* Output

\t'vl, v2: Vertexi, I

vl E boundaryVertices(ml) 1\ v2 E boundaryVertices(m2):

(:J bl, b2: Edgei I bl E boundaryEdges(ml) 1\

b2 E boundaryEdges(m2):

(onEdge(vl, b2) V vl E b2) 1\ (onEdge(v2, bl) V v2 E bl))

• Local Functions

- Valid Cell: Cell I ---+ 1B

ValidCell(c: Celli) - #c = 3 1\ Area(c) 2: 0

- Bounded: Meshi ---+ 1B

Bounded(m: Meshi) = \1 v: Vertexi I v E boundaryVertices(m):

(#{e: Edgei I e E boundaryEdge(m) 1\ vEe: e} = 2)

- Conformal: Meshi ---+ 1B

Conformal(m: Meshi) - \1 cl, c2: Celli I

c1 E m 1\ c2 E m 1\ c1 -=1- c2 :

(:J e: Edgei I e E eges(m): (:J v: Vertexi I v E vertices(m):

(cl n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (• onEdge(v, e))))

58

Master Thesis - Wen Yu - McMaster- Computing and Software

- Nointeriorlntersect: MeshT ~ lB

Nointeriorlntersect(m: MeshT) - 'V cl, c2: CellT I

clEm/\ c2Em/\ cl=/=c2:

('V v: VertexT I inside(v, cl): -, inside(v, c2))

3.2.2.3 Refining Module

• Imported Data Types:

Uses Mesh Module Imports MeshT

Uses Service Module Imports

InstructionT, CellinstructionT, RCinstructionT

• Imported Access Programs:

Uses Service Module Imports isValidMesh(), coveringUp()

• Exported Access Programs: The exported access programs for vertex

module is listed in Table 3.6.

Routine Name Input Output Exceptions
refining MeshT x RCinstructionT MeshT

Table 3.6: Exported Access Programs of the Refining Module

• Assumptions: isValidMesh(m) and i.rORc =REFINE

for input m: MeshT and i :RCinstructionT

• Access Program Semantics:

- refining(m: MeshT, i: RCinstructionT)

59

Master Thesis - Wen Yu -McMaster- Computing and Software

* Output

m'

such that

ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\

#m' ~ #m

60

Chapter 4

Implementation

The system implementation is the transformation of the design to a work prod­

uct. The implementation phase is very important in the software development

life cycle because it produces an executable version of the system. Most of

the quality factors mentioned in Section 1.1 are reflected through this work

product.

Unlike other phases in the software development life cycle, which are

very simple or completely missing in scientific computing software , the imple­

mentation is always part of scientific computing software. However, even when

the implementation is the sole component, it is not always done well. One of

reasons for poor quality scientific computing software is that most scientific

computing software, including mesh generation software, is written by scientist

and most scientists have simply never been shown how to program efficiently

(Wilson, 2006) .

The implementation is the final step of the refinement from abstract to

61

Master Thesis - Wen Yu -McMaster- Computing and Software

concrete. The major decisions relating to the implementation of PMGT are

the data structure, algorithms, and programming language. A considerable

effort has been spent on studying the data structures and algorithms for mesh

generation. This thesis is not intended to develop a brand new data structure

or algorithm for mesh generation. Instead, considerations are given to choose

(with minor modifications if necessary) proper data structure and algorithms

to fit the scope of PMGT and to improve the qualities of PMGT. The selection

of the data structure, the algorithms, and the programming language for the

serial version of PM G T are discussed in Section 4.1, Section 4. 2, and Section

4.3, respectively. Other decisions related to the implementation of PMGT,

such as the decisions about parallelism and the system, are discussed in Section

4.4. This chapter also includes an introduction to the software technologies

used to improve the quality of PMGT in Section 4.5.

4.1 The Data Structures

A mesh can be represented by a list of cells, and each cell can be represented

by a list of vertices. This data structure that is used for representing meshes

in the previous chapters is simple and easy to understand (with meshes as sets

of cells, cells as sets of vertices and vertices as tuples of real numbers). · Itis

a good choice for representing a mesh during the software requirements and

design stages since they are abstract and understandability is of high impor­

tance. However, in practice, this data structure is too inefficient. Although the

geometrical information (the positions of the vertices) is given, the topological

62

Master Thesis - Wen Yu -McMaster- Computing and Software

information needs to be more detailed. Whenever information, like what cells

are adjacent to a particular cell, is needed, searching the entire list will be

necessary. On the other hand, if all geometrical and topological information

are stored, too much space will be required. A compromise must be made

to keep a balance between understandability, which relates to Maintainability

(QF5) and Flexibility (QF7), and Efficiency (QF3). In this section potential

mesh data structures are surveyed in Section 4.1.1. The data structure that

PMGT uses is illustrated in Section 4.1.2.

4.1.1 The Current Approach

Berti (2000) names two kinds of relations among mesh entities: incidence

relations and adjacency relations, which are widely used in the mesh generation

community. This thesis adopts this naming convention. An incidence relation

is a relation between the different classes of mesh entities, such as a relation

between a cell and one of its edges. The edge is called an incident edge of the

cell, and the cell is called the incident cell of the edge. An adjacency relation

is a relation between the same class of mesh entities, such as two cells. For

instance, one cell can be adjacent to another cell.

The data structures of a polygonal mesh, in which the shape of cells is a

polygon, are mainly divided into two categories, face-based data structures and

edge-based data structures. In two dimensional space, a face is a cell. For each

kind of data structure, geometric information is stored; that is, a list of vertices

is stored. The difference comes from what and how the topological information

is stored; that is, what and how the incidence relation and adjacency relation

63

Master Thesis - Wen Yu -McMaster- Computing and Software

is stored.

Face-based data structures store, for each face, the incident vertices,

and its neighboring faces. Navigating around each vertex can be made by vis­

iting all surrounding faces. The "Triangle" mesh generation software (Shew­

chuk, Last Access: January, 2006) uses a face-based data structure. Face-based

data structures are more efficient for a mesh in which the shape of faces is the

same due to the use of an array to store the adjacent faces. However, it is

not efficient for a mixed mesh, in which the shape of cells may vary, since the

number of adjacent faces may vary.

Edge-based data structures store an incident vertex, an incident face

and its neighboring edges for each edge. A good example of edge-based data

structures is the halfedge data structure, as illustrated in Figure 4.1. The

halfedge data structure has its name because instead of storing the edges of

the mesh, halfedges are stored. As the name implies, a halfedge is a half of

an edge and is constructed by splitting an edge down its length. The two

half-edges make up an edge pair. Half-edges are directed. A halfedge is called

an outgoing halfedge of a vertex if the vertex is the starting point of the edge.

On the other hand, a halfedge is called an incoming halfedge of a vertex if

the vertex is the target point of the edge. The two halfedges of a pair have

opposite directions, and each halfedge is called the opposite halfedge of the

other. Different halfedge data structures vary in some minor details. The

halfedge data structure used by OpenMesh (Last Access: January, 2006) is

illustrated in Figure 4.1. The numbers refer to the following (where f.-* means

has an attribute of):

64

Master Thesis - Wen Yu -McMaster- Computing and Software

1. Vertex ~ one outgoing halfedge

2. Face~ one halfedge

3. Half edge ~ target vertex

4. Halfedge ~ its face

5. Halfedge ~ next halfedge

6. Halfedge ~ opposite halfedge (implicit)

7. Halfedge ~ previous halfedge (optional)

As shown by Figure 4.1, in this data structure, each vertex stores one out­

going halfedge's information. There is more than one outgoing halfedge for a

vertex. It does not matter which outgoing halfedge is stored since searching

for adjacent outgoing edges for an edge can be done in both a clockwise and

counterclockwise order. Each face stores one incident halfedge of the face.

Again this incident halfedge can be any halfedge that is incident to the face

since a search can be performed on halfedges that are incident to the face.

In the edge-based data structure the size of the storage is fixed. There­

fore, it is more efficient for a mixed mesh than a face-based data structure,

since a fixed size array may be used.

4.1.2 The Data Structure for PMGT

Although PMGT can only deal with triangular mesh, it is likely to be extended

to accommodate quadrilateral mesh since 90% of the FEA applications deal

65

Master Thesis - Wen Yu- McMaster - Computing and Software

2

Figure 4.1: Halfedge Data Structure. Image from OpenMesh (Last Access:
January, 2006)

66

Master Thesis - Wen Yu -McMaster- Computing and Software

with quadrilateral meshes (Cao, 2006). Hence, an edge-based data structure

is chosen to improve the Flexibility (QF7) of PMGT. The data structure for

PMGT is based on the halfedge data structure used by OpenMesh (Last Ac­

cess: January, 2006). The two differences are as follows:

1. Instead of arbitrary outgoing halfedge stored for a vertex, the first outgo­

ing halfedge is stored. The first outgoing halfedge of a boundary vertex

is the outgoing halfedge whose opposite halfedge is a boundary halfedge.

A boundary halfedge is a halfedge whose incident face is undefined. The

first outgoing halfedge of a non-boundary vertex can be any outgoing

halfedge of the vertex.

2. Instead of an arbitrary halfedge stored for a cell, the halfedge with longest

distance between the start vertex and the target vertex is stored.

A simple mesh is shown in Figure 4.2. There are 5 vertices (vl- v5),

16 halfedges (hl- h16) , and 4 cells (cl- c4). vl , v2, v3 , and v4 are boundary

vertices, while v5 is not a boundary vertex. h2, h8, h12 , and h16 are boundary

edges since the incident cell of these half edges are undefined (the space that is

outside of the input domain). Other halfedges are not boundary edges. The

first outgoing halfedge of vertex vl is hl since the opposite halfedge of hl is h2,

and h2 is a boundary halfedge. The first outgoing halfedge of vertex v5 can be

any one of the halfedges h5, h4, hlO , or h14. By changing the arbitrary halfedge

stored for a vertex to the first halfedge, any outgoing halfedges can be found

during only one iteration. The longest halfedge of cell c1 is hl. By changing

the arbitrary halfedge stored for a cell to the longest halfedge, looking for the

67

Master Thesis - Wen Yu -McMaster- Computing and Software

h5 h6

c1 c4

v5

0
h14

c2 c3

h9 h10

v3

Figure 4.2: Halfedge Data Structure for PMGT.

68

Master Thesis - Wen Yu -McMaster- Computing and Software

longest halfedge, which is needed for one of the refining algorithms introduced

in Section 4.2, can be done in constant time. Both of above changes improve

the Efficiency (QF3) of PMGT.

4.2 The Algorithms

According to the SRS, PMGT has two functionalities, refining and coarsening

a given mesh. Since PMGT deals with a triangular mesh, only algorithms for

triangular meshes are discussed. The algorithms used by PMGT for refining

and coarsening a given mesh are given in Section 4.2.1 and Section 4.2.2,

respectively.

4.2.1 Refining

The following three principle methods are commonly used for triangle refine­

ment.

• Edge bisection. An example of this method is longest edge (side) bisec­

tion. The triangle that is marked for refinement is first bisected by the

longest edge into two and if non-conformity (that is , the intersection of

any two cells in the mesh is other than one of the following: a vertex, or

an edge or empty) still persists , the mesh is further refined to maintain

the conformity.

• Point insertion: Usually the point is inserted at the centroid of an ex­

isting element. After insertion, the mesh can be refined by dividing the

triangle into three triangles.

69

Master Thesis - Wen Yu -McMaster- Computing and Software

• Template: One example is to decompose a single triangle into four similar

triangles by inserting a new vertex, usually at the midpoint of its edges.

If non-conformity exist, then the mesh is further refined to maintain the

conformity.

(a)

(c) (d)

Figure 4.3: An Illustration of the Refining Algorithms

An illustration of above three algorithms is shown in Figure 4.3. A

simple input mesh with 2 cells is shown in sub-figure (a). The cell 1 is meshed

for refinement while cell 2 is not. The sub-figure (b) is the result of refining

(a) using longest edge bisection algorithm. Note that the cell 2 is also refined

to maintain conformity. How to refine the cell 2 depends on the algorithm.

For simpleness the cell 2 is only divided into two cells. The sub-figure (c) is

70

Master Thesis - Wen Yu -McMaster- Computing and Software

the result of refining (a) using point insertion algorithm. There is no non­

conformity problem involved; therefore, cell 2 is not refined. The sub-figure

(d) is the result of refining (a) using one of the template algorithms, which

inserts three points at the midpoints of three edges. The cell 2 is refined to

maintain conformity, and the cell 2 is divided into two cells, as for the longest

edge bisection algorithm.

All of above algorithms can fulfill the refining requirement provided in

the SRS. Due to the limited resource, only the point insertion algorithm and

the longest edge bisection algorithm were implemented. The point insertion

algorithm used by PMGT is the same as that describing above. However, the

longest edge bisection algorithm used by PMGT is different. In the above

input mesh, the edge that is the longest edge of cell 1 is not the longest edge

of cell 2. Simply dividing cell 2 into two cells, as shown in Figure 4.3, often

reduces the minimum angle of the mesh. The minimum angle of a mesh is the

smallest value among the smallest angles of the cells in the mesh. Usually, the

greater the minimum angle, the better the quality of a mesh. The better the

quality of a mesh, the closer the mesh representing the domain. The closer

the mesh representing the domain, the more accurate the result of using the

mesh to solve a particular problem. Although there is no requirement for the

minimal angle of the refined mesh, improving the quality of the refined mesh

can improve the Reliability (QF2) of PMGT.

Rivara and Inostroza (1995) and Rivara (1997) proposed algorithms to

solve the problem of reducing the minimum angle of the mesh. Rivara's al­

gorithms are basically divided into two categories, pure longest side bisection

71

Master Thesis - Wen Yu -McMaster- Computing and Software

algorithm and backward longest side bisection algorithm, respectively. Accord­

ing to Rivara and Inostroza (1995) and Rivara (1997), the pure longest side

bisection is outlined as follows, where T represents a mesh and t represents a

cell:

Longest-side-bisection (T,t)

Perform a longest-side bisection of t

(Let P be the point generated)

While P is non-conforming then do

Find the neighbor t* of t (by the side containing P)

Longest-side-bisection (T,t*)

The above algorithm is recursive. The first action, which is Perform

a longest side bisection of t, is just dividing t into two triangles by

adding an edge connecting P with the opposite vertex of the longest side.

Figure 4.4 illustrates the algorithm. The sub-figure (a) is the initial mesh with

cell t to be refined. The points 1 and 2 in sub-figure (b) are two intermediate

non-conformal generated points. The sub-figure (c) is the final mesh for the

algorithm. The sub-figure (d) is the simplified version of the above algorithm,

which will be introduced later.

In Rivara (1997) , a non-recursive version of the longest side bisection

algorithm, called backward longest side bisection algorithm, is proposed as

follows:

Backward_Longest-Side-Bisection(T,t)

While t remains without being bisected do

72

Master Thesis - Wen Yu -McMaster- Computing and Software

(a)

(c) (d)

Figure 4.4: An Illustration of the Pure Longest Side Bisection Algorithm Pro­
posed by Rivara and Inostroza (1995)

Find the LSPP(t)

If t*, the last triangle of the LSPP(t), is a

terminal boundary triangle, bisect t*

Else bisect the (last) pair of terminal triangles

of the LSPP(t)

The longest side propagation path of a triangle t(O), LSPP(t(O)) , is

defined as the ordered list of all the triangles { t(O), t(1) , t(2) , .. . , t(n- 1), t(n)},

such that t (i) is the neighbor triangle of t (i- 1), by the longest-side of t (i - 1) ,

for i = 1, 2, ... , n. The algorithm is illustration in Figure 4.5. The sub-figure

73

Master Thesis - Wen Yu -McMaster- Computing and Software

(a) (b)

(d)

Figure 4.5: An Illustration of the Backward Longest Side Bisection Algorithm
Proposed by Rivara (1997)

(a) is the initial mesh with tO to be refined. In Figure 4.5, LSP P(tO) =

{tO, tl, t2, t3}. The LSP P(tO) is not further expanded because the longest

edges of t2 and t3 are the same edge. The sub-figure (b) and (c) illustrate the

first 2 steps, and the sub-figure (d) is the final mesh. The new vertices have

been enumerated in the order that they were created.

In both the pure longest side bisection algorithm and the backward

longest side bisection algorithm, a cell may be refined more than once. How-

ever, PMGT does not need to be that complicated. To make the PMGT

easier to understand and easier to implement, refining each cell in the mesh

74

Master Thesis - Wen Yu -McMaster- Computing and Software

once is enough. In Rivara and Inostroza (1995), a simplified version of the

pure longest side bisection algorithm is proposed. The result of this simplified

version, which is shown in sub-figure (d) of Figure 4.4, is what PMGT desires.

However, it is achieved in Rivara and Inostroza (1995) in a complicated way.

By modifying the backward longest side bisection algorithm a new algorithm

that creates a simpler resulting mesh can be achieved in an elegant way. The

new longest edge bisection algorithm used by PMGT is as follows.

procedure Refining(m: mesh)

begin

for each cell c in m do

if c is marked to be refined

find the LSPP(c)

while LSPP(c) is not empty do

c' := the last triangle of the LSPP(c)

mark c' to no-change

remove c' from LSPP(c);

if LSPP(c) is empty then

else

bisect c'

c'' :=the last triangle of the LSPP(c)

mark c'' to no-change

remove c'' from LSPP(c)

if c' is a terminal boundary triangle then

bisect(c')

75

end

Master Thesis - Wen Yu -McMaster- Computing and Software

c' :=a new cell that adjacent to c''

bisect-pair(c' ,c'')

if c'' = c then

break

else

c''' the last triangle of the LSPP(c)

cc :=a new cell adjacent to c'''

add cc to the end of the path LSPP(c)

In the above algorithm, the procedure bisect-pair (c' , c' ') divides adja­

cent cells c' and c' ' into two cells respectively by adding a vertex v in the

midpoint of the common edge e of c' and c ' ' , and adding edges connecting

v and the opposite vertices of e. The final mesh after applying this algorithm

to the initial mesh shown in the sub-figure (a) of the Figure 4.4 is the mesh

shown in the sub-figure (d).

4.2.2 Coarsening

Most mesh coarsening algorithms deal with vertices or edges; that is, either

vertice are removed (vertex decimation) (Guillard, 1993; Miller et al., 1997;

Ollivier-Gooch, 2003), or edges are removed (edge decimation) (Gueziec, 1995;

Ollivier-Gooch, 2003). However, as the SRS shows , PMGT coarsens a given

mesh by removing cells. Hence, an existing algorithm needs to be modified to

be used by PMGT.

Note that Ollivier-Gooch (2003) IS listed in both vertex decimation

76

Master Thesis - Wen Yu -McMaster- Computing and Software

and edge decimation. The reason is that it dicusses an algorithm of vertex

decimation. However, an edge decimation algorithm is used to remove a vertex.

The algorithm is illustrated by Figure 4.6. The left half of the Figure shows a

vertex 0, which is to be removed from the mesh, and its immediate neighbors

in the mesh. Vertex 0 will be removed by sliding it along the edge 02 to vertex

1. In the process, cells 6021 and 6032 are removed, as are edges 01, 02 and

03. The resulting mesh fragment is shown in the right half of Figure 4.6.

2

4
4

3
3

Figure 4.6: An Illustration of the Coarsening Algorithm used by Ollivier­
Gooch (2003)

Since the vertex decimation can be done by using an edge decimation

algorithm, it is conjectured that cell decimation can also be done by using an

77

Master Thesis - Wen Yu -McMaster- Computing and Software

edge decimation algorithm. In fact , the algorithm illustrated above results in

two cells being removed. The idea of coarsening algorithm used by PMGT

is that a cell, which needs to be removed, and one of its adjacent cell, which

also needs to be removed , are removed by removing the edge that is incident

to both cells. As far as we know, this idea has not been formally proposed

elsewhere. The new algorithm is described below.

procedure Coarsen(m: mesh)

begin

for each cell c in m do

if c is marked to be removed then

for each cell c' that is adjacent to c do

if c' is marked to be removed then

for each vertex v that is an end point of the

edge e that is incident to both c and c' do

v' := another end point of e

if legalRemove(v, e) then

for each cell cc that is incident

to v do

mark cc to no-change

for each edge eee that is incident

to v do

if (eee is incident to c

or eee is incident to c') then

delete eee;

78

end

Master Thesis - Wen Yu -McMaster - Computing and Software

for each edge ee that is incident

to v do

update the end point of v to v'

delete e

delete c, c'

delete v

In above algorithm the function legalRemove (v, e) return true if sliding the

vertex v along the edge e to vertex v' is legal. This function can be described

as follows:

function legalRemove(v: vertex, e: edge)

begin

end

for each cell c that is incident to v do

if c is not incident to e then

for each pair (vi, v2), in which

vi, v2 are other two vertices

that are incident to c do

return true;

if v,vi,v2 are in counterclockwise order then

v' = another vertex that is incident to e

if v' ,vi,v2 are not in counterclockwise order then

return false

79

Master Thesis - Wen Yu - McMaster- Computing and Software

4.3 The Programming Language

To choose a programming language to implement PMGT, a programming

paradigm must be selected first . A programming paradigm is a way of concep­

tualizing what it means to perform computation and how tasks to be carried

out on a computer should be structured and organized (Floyd, 1979). There

are four basic programming paradigms, namely imperative programming (Pas­

cal, C), objected oriented programming (C++, Java), functional programming

(Haskell, Ocaml), and logic programming (Prolog, Mercury). Functional pro­

gramming languages do not fit for PMGT, since PMGT is intended for indus­

trial practitioners and functional programming language is more the domain

of academics. Logic programming languages also do not seem appropriate

for PMGT as the application domain of logic programming language focuses

on expert system and automated theorem proving, not on scientific comput­

ing applications. Imperative programming languages are a good candidate

for PMGT since they are the most widely used programming languages, . and

because they have the advantage of faster implementations and better tool

support (Grabmuller and Hofstedt, 2003). Object oriented (00) program­

ming languages are also an option because 00 can lead to more maintainable

programs, since 00 programs consist of small self contained parts (classes).

In addition , the 00 aspect of inheritance enables the programmer to make

new versions of a program by only programming the differences between the

existing program and the new program.

Although the Efficiency (QF3) of PMGT is important, the overall qual­

ity of PMGT is more desirable. The 00 programming paradigm is selected

80

Master Thesis - Wen Yu -McMaster- Computing and Software

to improve the Flexibility (QF7), Maintainability (QF5) and the Reusability

(QF9) of PMGT. Between the most widely used 00 programming languages,

C++ and Java, C++ was chosen. The reason is that in addition to the fact

that the C++ is faster than Java in general, C++ is commonly used by mesh

generation software developers and by those in scientific computing commu­

nity. Using C++ to implement PMGT can make the communication with

other mesh generation developers easier; therefore, improving the Usability

(QF4) of PMGT.

4.4 Other Decisions

This section discusses other decisions that relate to the implementation of

PMGT. PMGT has the ability to manipulate meshes by taking advantage of

parallelism. Section 4.4.1 discusses the decisions made for the parallel version

of PMGT. Section 4.4.2 discusses the decisions that relate to the system.

4.4.1 Decisions about Parallelism

PMGT has two versions, a serial version and a parallel version. The use of

multiprocessors in the parallel version is to improve the Efficiency (QF3) of

PMGT since in general, the use of multiprocessors will reduce the execution

time.

The data structure for the two versions are similar, except that there

is parallel information, such as global id for each cell, given for the parallel

version of PMGT. Due to the limited resource of time, only one algorithm is

81

Master Thesis - Wen Yu -McMaster- Computing and Software

implemented in the parallel version. The implemented algorithm is the point

insertion algorithm for refining a mesh. There is no conformality problem

in this algorithm; therefore, no communication is necessary among processors

during the refinement. The programming language for implementing the paral­

lel version of PMGT is MPI, since C++ is binded in MPI. The parallel version

of PMGT could be written in a complicated language that is design specifically

for parallel computation, such Charm++ (Koenig, 2003). However, Usability

(QF4) of PMGT would not be promoted by this decision.

Before performing refinement the entire initial mesh is loaded into the

local memory of each processor and then partitioned according to the number

of processors. The reason for this is to simplify the algorithm. The increased

loading is not considered to be a problem since the initial mesh is assumed to

be simple, thus it will not need much space. The other option would be to

first partition the mesh and then only information related to each processor

would be stored in that processor. In this case, the space needed to store the

mesh would be reduced for each processor. However, the time needed to get

its portion for each processor would be increased and more programming time

would have to be committed to writing routines to partition vertices, edges,

and cells.

4.4.2 Decisions about the System

Some decision relates to the system as specified below to improve the qualities

of PMGT.

• For each entity (including vertex, edge, or cell), an id, which is not men-

82

Master Thesis - Wen Yu -McMaster- Computing and Software

tioned in the MIS, is stored to improve the Flexibility (QF7) of PMGT,

since the id can be implemented by different data structures, such as

index for array, pointer for linked list. For parallel version, there are two

parts of an Id, global id and local id.

• An array (or vector in the language of C++) is used to implement the

lists of entities of a mesh in PMGT. To improve the Efficiency (QF3) of

PMGT, before a entity is deleted, it is switched to the end of the list.

Hence, deleting an entity only needs constant time. Adding an entity

(to the end of the list) takes constant time, too.

• Real numbers are approximated by IEEE double precision floating-point

number. This decision can improve Reusability (QF9) of PMGT since

this implementation is widely used by most software.

• Use comments in the code, such as header information for all files, and

frequently use "ReadMe. txt" to explain the usage of the software. These

coding style can improve the Usability (QF4) of PMGT.

• The implementation of PMGT is targeted at SHARCNET. However, it

can execute on Linux/Unix/Mac operating system with g++ complier

for the serial version. For the parallel version, the g++ compiler and

MPI library ar~ needed. The serial version could easily be adopted to

the Windows OS with minor modification. Implementing PMGT so that

it can be used for more environments than just SHARCNET improves

the Portability (QF8) of PMGT.

83

Master Thesis - Wen Yu -McMaster - Computing and Software

4.5 Software Technologies Used to Assist the

Implementation

Software engineering technologies were used through the implementation of

PMGT to improve the software qualities. These technologies can improve

the overall quality of software development process, as well as the software

product.

• Version Control. Version control combines procedures and tools to man­

age different versions of configuration objects that are created during the

software engineering process (Pressman, 1999). Version control is done

for the entire development of PMGT. Although version control is impor­

tant in the stage of software requirements, design, and testing, it is most

valuable in the implementation, since more modification is involved in

this stage. One of the advantages of version control is to easily diagnose

errors by comparing incorrect versions of code to correct versions of code.

Therefore, version control improves Maintainability (QF5). The version

control program used by PMGT is subversion.

• Makefile. A makefile can replace several commands, which can be error

prone; therefore, the adopting of using a makefile improves the Correct­

ness (QFl) of PMGT.

• Namespace. Using namespaces can avoid name conflict and unnecessary

access of protected data and routines; therefore, this decision was make

to improve the Correctness (QFl) of PMGT.

84

Master Thesis - Wen Yu -McMaster- Computing and Software

• Traceability Matrix. A traceability matrix of classes and modules can be

used to check the completeness and consistency of the implementation

against the design. The class-module traceability matrix of PMGT is

shown in Figure 4.1. Only the modules that are implemented in PMGT

are shown in the matrix. It is can be seen that classes and modules

have a one to one relation. This promotes the Reusability (QF9) and

the Maintainability (QF5) of PMGT. The definition of access routines

in the vertex module (M8) , the edge module (M9), and the cell module

(MlO) can be found in the file "Entity.h". The definition of the access

routines in the input format module (M5), the output format module

(M6), and the mesh module (Mll) can be found in the file "Mesh.h".

The definition of the access routines in the refining module (Ml2) and

the coarsening module (M13) can be found in the file "Algorithms.h".

The definition of access routines in the service module (M7) can be found

in the file "tester.h".

I M5 I M6 I M71 M8 I M9l Mlq Mq Ml~ Mq
Input Class ./
Output Class ./
Service Class ./
Vertex Class ./
Edge Class ./
Cell Class ./
Mesh Class ./
Refining Class ./
Coarsening Class ./

Table 4.1: Traceability Matrix: Classes and Modules

85

Master Thesis - Wen Yu -McMaster- Computing and Software

86

Chapter 5

Testing

In general, the purpose of testing is to measure and improve software qualities,

which are defined in Section 1.1. However, due to limited resources of time, it

is difficult to test PMGT against all of the quality factors. Like other scientific

computing software, Correctness (QFl) and Efficiency (QF3) are among the

most important quality factors of PMGT. The testing of PMGT focuses on

validating the correctness and efficiency of PMGT. First, the details of what

is included in the tests are discussed in Section 5.1. Then, the test cases with

respect to the scope of the test are specified in Section 5.2. Finally, the result

are recorded and analyzed in Section 5.3. The full details about the validation

tests for PMGT are in Appendix D.

5.1 The Scope of the Testing

One of the most challenging aspects of testing the Correctness (QFl) of PMGT

is that the actual output mesh for a specific input mesh is unknown. The

87

Master Thesis - Wen Yu -McMaster- Computing and Software

unknown solution is a challenge that is common to most scientific computing

software, as mentioned in Section 1.2. In fact, in other scientific computing

software, such as software to solve ordinary or partial differential equations,

the challenge is even more pronounced because a unique true solution is being

sought. Mesh generation software is different because the notion of a unique

true solution does not apply, but it is still necessary to compute a valid solution

of the required quality. Moreover, there is still the challenge of the lack of an

expected sol uti on for comparison purposes. The lack of an expected solution

makes PMGT difficult to test for correctness. Without a known solution,

we can still test properties of the calculated solution that we know must be

true. One way to test the Correctness (QFl) of PMGT is to see whether the

output mesh is a refined or coarsened mesh of the input mesh. According to

the SRS, the characteristics of a refined mesh relate to the data definition of

Refined (D23) and that of a coarsened mesh relate to the data definition of

Coarsened (D24). The data definitions D23 and D24 are defined in the SRS.

In both definitions, the output mesh needs to be a valid mesh (D18) and the

input mesh and output mesh covers up each other (D19) . In addition, other

requirements that are common to a mesh, such as that a mesh conforms to

the Euler Equation, should also be met.

To improve the Usability (QF4) of PMGT, the correctness test is au­

tomated. The follows lists the automated correctness validation test require­

ments (ACVTRs) of PMGT:

• The area of each element is greater than zero (referring to D5).

• The boundary of the mesh is closed. (referring to D15).

88

Master Thesis - Wen Yu - McMaster- Computing and Software

• The mesh is conformal (referring to D16).

• The intersection of any two elements is empty (referring to D17).

• The input mesh and output mesh CoveringUp each other (referring to

D19).

• The length of each edge is greater than zero. (This is required by the

definition of a mesh, which is defined in the SRS.)

• The vertices of each element are listed in a counterclockwise order. (The

counterclockwise order of the vertices for each element is not necessary

for implementing PMGT. However, it is adopted by most meshing and

FEA software. PMGT uses this convention.)

• The output mesh conforms to the Euler Equation. (This requirement is

not documented in the SRS. However, any mesh should implicitly satisfy

the equation nc + nv- ne = 1, where nc is the number of cells, nv is the

number of vertices, and ne is the number of edges.)

Since the output mesh can be displayed on the screen, the output

meshes can also be visually checked to ensure that the following visual cor­

rectness validation tests requirements (VCVTRs) are met:

• No vertex is outside of the input domain.

• No vertex is inside of a cell.

• No dangling points or edges are present.

89

Master Thesis - Wen Yu -McMaster- Computing and Software

• All cells are connected.

• The mesh is conformal.

Some of the VCVTRs overlap with the ACVTRs. This redundancy provides

increased confidence in case one testing method fails to catch an error. Both

ACVTRs and VCVTRs improve the Testability (QF6) of PMGT.

For the efficiency test, no comparison with other software, such as

AOMD, is done, due to the limited resource of time to spend on testing and

the difficulty of using other mesh generation software. Only the execution

time of PMGT is considered. In particular, the execution of parallel version

of refinement with different numbers of processor, and the execution time for

the serial version of refinement are measured.

5 . 2 Test Cases

" In the validation test on PMGT, there are five test cases for testing correctness

of the serial version. The test cases TCl, TC2, and TC3 refine a given mesh by

refining some specific cells and then coarsen it by coarsening the refined cells.

The difference among these three test cases is different algorithms or different

input meshes . This refining and coarsening process may be performed several

times. The test case TC4 refines and coarsens meshes according to the sizes

of the cells, which are defined as the length of the shortest edges of the cells.

The test cases TC5 repeatedly refines the given mesh by refining the specified

cells until the required number of refinements is reached. The test case TC6

tests both the correctness of the parallel version and the efficiency of PMGT.

90

Master Thesis - Wen Yu - McMaster- Computing and Software

This test case refines all cells in the mesh several times. To test the execution

time, different the numbers of processor are used for the parallel version, and

the same algorithm for the parallel version is used for the serial version.

The test cases TC2, TC3 , TC4, and TC5 use the longest edge bisection

algorithm that is defined in Page 75 for refinement. This longest edge bisection

algorithm is call Refining for short. The test cases TCl and TC6 use the point

insertion algorithm that is mentioned in Section 4.2.1 for refinement. This

point insertion algorithm is called Spliting for short. The coarsening algorithm

used is defined on Page 78.

5.3 Results and Analysis

The details of the test results are given in Appendix D. To illustrate the test

process the results for two selected test cases are produced here. The analysis

of the the result is also included here. The analysis discusses the speedups of

different numbers of processors and the traceability matrices.

5.3.1 Selected Results

Two test cases are selected to illustrate the test results. One is the test case

TCl. The input mesh is showed in Figure 5.1. The refining and coarsening

criterion is that the cells that intersect with the vertical line, x = 0.6, are

Split once, then the cells of the new mesh that intersect with the vertical line

are coarsened once. When the splitting and coarsening is done, the vertical

line is moved to the right one unit (x = x + 1.0), and another Splitting and

91

Master Thesis - Wen Yu - McMaster- Computing and Software

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

TC1
SplitCS
Figure 5.1
ACVTRs and VCVTRs listed in
Section 5.1 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure 5.2, 5.3, 5.4
Passed

Table 5.1: Test Case1

coarsening is performed. This procedure is until no cells intersect with the

vertical line. The test cast TC1 is illustrated in Table 5.1.

The other selected test case is TC6, which is shown in Table 5.2. This

test case tests both the correctness and speed of PMGT. The input mesh is

shown in Figure 5.5. This test simply splits all cells of the mesh 4 times. It is

done in both the serial version and the parallel version with different numbers

of processors. The execution time of setting the cells to be refined and splitting

the cells is measured. The time spent on input and output is not included.

5.3.2 Analysis

All of the test cases conform to the ACVTRs and VCVTRs listed in Section

5.1. The test result of TC6 show that when the number of cells increased, the

execution time increased, and when the number of processors increased, the

execution time decreased. That is, this test is passed. Figure 5.7 show the

speedup when using different numbers of processors. The speedup is defined

92

Master Thesis - Wen Yu -McMaster- Computing and Software

Original Mesh

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure 5.1: Input 1

Mesh for "newVertices1 .dat" and "newCells1.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure 5.2: Output 1 of TC1

93

Master Thesis - Wen Yu -McMaster - Computing and Software

8

7

-1

-2

0

8

7

_,

-2

0

2

2

Mesh for "newVertices15.da1" and "newCells15.da1"

4 6 8 10 12 14

Figure 5.3: Output 2 of TCl

Mesh for "newVertices28.dat" and "newCells28.dat"

4 6 8 10 12 14

Figure 5.4: Output 3 of TCl

94

as

Master Thesis - Wen Yu -McMaster- Computing and Software

Test Case Number TC6
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

SplitM
Figure 5.5
ACVTRs and VCVTRs listed in
Section 5.1 are met
Execution time increases as the
number of cells increases. Execu­
tion time decreases as the number
of processors increases.
Execution time as indicated in Fig­
ure 5.6
The mesh is too dense to be shown.
Passed

Table 5.2: Test Case 6

T1
Speedup(n) = Tn

Where T1 is the execution time of the serial version, and Tn is the execution

time of the parallel version with n processors. In general, Speedup(n) <

n. However, for PMGT, when the number of cells is greater than 2700,

Speedup(n) > n, which represents a super linear speedup. Since the algo-

rithms used for the serial version and the parallel version are the same, the

super linear speedup is probably due to the cache effect. That is, when the

numbers of processors increases, the size of the accumulated caches from dif-

ferent processors also increases. With the larger accumulated cache size, more,

or even all, core data set can fit into the caches and the memory access time

reduces dramatically. This may explain the extra speedup in addition to the

speedup from parallelization of the computation.

In the traceability matrix for software requirements, if a test case tests

95

Master Thesis - Wen Yu- McMaster- Computing and Software

Original Mesh

Figure 5.5: Input of TC6

the functionality of a software requirement, there will be a check mark on

the cell for the corresponding test case and software requirement. In each

row of the traceability matrix for software requirements (Table 5.3), if the

requirement in that row defines the correctness or the speed of the software,

one or more cells in this row are checked. Otherwise, all cells in the row are

empty. Table 5.3 shows that the test cases developed assist with validating

the correctness and speed of the software.

Similar to Table 5.3, the traceability matrix for the modules (Table

5.4) shows that the test cases validate the modules that are associated with

correctness and speed.

96

Master Thesis - Wen Yu -McMaster- Computing and Software

Test Result of Efficiency Test
600.------.-----.------.------.------.------.-----.------o=-----.

00
Q)
E

f=

500

400

§ 300
5
0
Q)

tlj

200

100

1000 2000

~serial

3000 4000 5000 6000 7000 8000 9000
Number of Cells

Figure 5.6: Output of TC6

97

Master Thesis - Wen Yu -McMaster - Computing and Software

Speedup for Different Number of Processors
14r-----~----~r-----~----~------~-----.------T------r----~

12

10

8
c.
::1
"0
(J)
(J)
c.
(f) np=4

6

4

np=2

2

0~----~----~------~----~------~----~------~----~----~
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Cells

Figure 5. 7: Speedup for Different Numbers of Processors

98

Master Thesis - Wen Yu -McMaster - Computing and Software

I TCI I TC2 I TC3 I TC4 I TC5 I TC6 I
Fl ./ ./ ./ ./ ./ ./
F2 ./ ./ ./ ./
F3 ./ ./ ./ ./ ./ ./
F4 ./ ./ ./ ./ ./
F5 ./ ./ ./ ./ ./
F6 ./ ./ ./ ./ ./
F7 ./ ./ ./ ./ ./
F8 ./ ./ ./ ./ ./ ./
F9 ./ ./ ./ ./ ./ ./
FlO ./ ./ ./ ./ ./
Fll ./ ./ ./ ./ ./
Fl2 ./ ./ ./ ./ ./
Fl3 ./ ./ ./ ./ ./
Fl4 ./ ./ ./ ./ ./
Fl5 ./ ./ ./ ./ ./
Fl6
Nl ./
N2
N3
N4
N5
N6
N7

Table 5.3: Traceability Matrix: Test Cases and Requirements

99

Master Thesis - Wen Yu -McMaster- Computing and Software

I TCl I TC2 I TC3 I TC4 I TC5 I TC6 I
Ml ,(,(,(,(,(,(

M2 ,(,(,(,(,(,(

M3 ,(,(,(,(,(,(

M4 ,(,(,(,(,(,(

M5 ,(,(,(,(,(,(

M6 ,(,(,(,(,(,(

M7 ,(,(,(,(,(

M8 ,(,(,(,(,(,(

M9 ,(,(,(,(,(,(

MlO ,(,(,(,(,(,(

Mll ,(,(,(,(,(,(

M12 ,(,(,(,(,(,(

M13 ,(,(,(,(

Table 5.4: Traceability Matrix: Test Cases and Modules

100

Chapter 6

Conclusions and Future Work

Correctness and efficiency are important for scientific computing software.

Other software quality factors, such as those discussed in Chapter 1, also

contribute to the software quality, but they are often neglected by develop­

ers of scientific computing software. Software engineering methodologies can

improve the overall quality of software by considering all software quality fac­

tors during the software development process. However, scientific computing

software is usually developed by domain experts, who often lack knowledge of

software engineering methodologies; therefore, these methodologies are seldom

adopted by scientific computing software development community. As a re­

sult, there is still room for improvement in the quality of scientific computing

software. This thesis attempts to provide an example of developing quality

scientific computing software, PMGT, using software engineering methodolo­

gies. Hopefully, our work can attract domain experts' interests in developing

quality scientific computing software using software engineering methodolo-

101

Master Thesis - Wen Yu -McMaster- Computing and Software

gies, such as document driven development. Moreover, the challenges posed

for developing scientific software may attract some software engineers to turn

their attention toward research on adapting existing methodologies for scien­

tific computing software applications .

In this final chapter of the thesis , the contributions are first summarized

in Section 6.1. This is followed by suggested future work in Section 6.2.

6.1 Contributions

In addition to the toolbox itself, our work illustrates that a document driven

methodology can improve the overall quality of scientific computing software.

This section provides a summary of the relevant software qualities and how

the proposed methodology was used to improve them. These qualities relate

to the quality factors listed in Section 1.2.

1. Correctness (QFl): The correctness of PMGT is improved by

• the requirements document (SRS);

• the use of a makefile, which can reduce errors in the implementation;

• the use of a namespace, which can avoid naming conflicts in the

implementation;

• the correctness validation testing;

• the traceability matrices, since these matrices can be used to ensure

that decisions propagate properly through the project.

2. Reliability (QF2): The reliability of PMGT is improved by

102

Master Thesis - Wen Yu -McMaster- Computing and Software

• the use of the longest edge refining algorithm, which can improve

the minimum angle of the mesh.

3. Efficiency (QF3)

• the use of the halfedge data structure, in which the outgoing halfedge

of a vertex is the first outgoing halfedge and the halfedge of a cell

is the longest halfedge;

• the use of arrays to implement the list of mesh entities;

• the use of multiprocessors in the parallel version of PMGT.

4. Usability (QF4): All of the documents can improve the usability of

PMGT since these documents explicitly tell the reader what PMGT

can do at different level of abstraction. In particular, the documents

improve the usability of PMGT by:

• assigning names and unique numbers for items, such as goals, data

definitions, software requirements, and modules;

• decomposition of the system into modules since the decomposition

can make PMGT easier to understand;

• the English explanations for the mathematical notations in the se­

mantics of the access routines;

• the selection of C++ programming language, which is widely used

by mesh generation software developers;

• the use of the popular MPI library to implement the parallel version

of PMGT;

103

Master Thesis - Wen Yu -McMaster- Computing and Software

• style adopted for coding, including header information for all files

and frequent use of ReadMe.txt files;

• the automation of the correctness validation tests.

5. Maintainability (QF5): In addition to the use of traceability matrices,

which facilitate locating errors, the maintainability of PMGT is improved

by

• the SRS, which one can use for finding possible errors;

• the decomposition of the system into simple and independent mod­

ules;

• the design of the data structure, which is easy to understand;

• the selection of an 00 programming languages, which encapsulates

and facilitates finding errors;

• the use of version control, which keeps the history of the develop­

ment;

6. Testability (QF6): Unambiguous and validatable software requirements

documented in the SRS is the key issue for testability of PMGT. In

particular, the testability of PMGT is improved by:

• the quantifying of the software requirements;

• the use of formal mathematics in the SRS;

• the decomposition of the system into simple and independent mod­

ules;

104

Master Thesis - Wen Yu -McMaster- Computing and Software

• the formality of the semantics of the access routines in the MIS;

• the use of the Automated Correctness Validation Testing Require­

ments (ACVTRs).

7. Flexibility (QF7): The traceability matrices improve the flexibility of

PMGT, since when the software needs to be changed, it is can be done

by tracing from the goal down to the file which contains the appropriate

module. In addition, the flexibility of PMGT is improved by

• the waiting rooms in the SRS, which lists the most likely changes

of PMGT;

• the decomposition of the system into simple and independent mod­

ule;

• the lists of anticipate and unlikely changes, which can help to find

modules that are likely to change, or explicitly identify those main­

tenance tasks that would not be likely nor feasible;

• the design of the data structure, which is easy to understand and

extend to accommodate a mixed mesh;

• the selection of an 00 programming languages, which makes it easy

to change and to add new members;

• the use of id field for each mesh entities within the implementation.

8. Portability (QF8): The portability of PMGT is improved by

• the system constraints that are specified in the SRS, which states

to not focus on details of SHARCNET;

105

Master Thesis - Wen Yu -McMaster- Computing and Software

• the decision made during the implementation that PMGT can be

executed on Linux/Unix/Mac operating systems.

9. Reusability (QF9) The Reusability of PMGT is improved by

• the SRS since what the software does can be easily obtained from

the SRS;

• the decomposition of the system into simple and independent mod­

ules;

• the definition of module as work assignments;

• the selection of 00 programming languages, which allows encapsu­

lation;

• the implementation of the approximation of real numbers as IEEE

double precision floating point numbers, which is a choice widely

adopted by software developers.

6.2 Future Work

The results of our work encourage further research in the field of using software

engineering methodologies to improve quality of scientific computing software.

The suggested investigations needed to evaluate the effectiveness of our work

are as follows:

• Add more algorithms to enable PMGT to generate meshes with different

requirements. One example of these requirements is generating meshes

whose minimum angle is greater than a given angle.

106

Master Thesis - Wen Yu -McMaster- Computing and Software

• Embed PMGT in a real application, such as a finite element application.

• Test PMGT against more requirements and quality factors.

• Add unit testing for PMGT.

• Compare PMGT to other mesh generation software.

• Modify the service module to allow automated testing as desired by the

user, even at run time.

• Add a mechanism dealing with load balancing when communication is

needed between processors to refine/coarsen a mesh in parallel.

• Develop a tool to help maintain consistency between the documents

107

Master Thesis - Wen Yu -McMaster- Computing and Software

108

Bibliography

Brian Bauer. Documenting complicated programs. Technical Report CRL
Report 316, Department of Computing and Software, McMaster University,
1995.

Barry W. Beohm. A spiral model for software development and enhancement.
In Computer, volume vol. 21, no. 5, pages pp.61 - 72, May 1988.

Guntram Berti. Generic components for grid data structures and algorithms
with C++. In First Workshop on C++ Template Programming, Erfurt,
Germany, October 10 2000.

Blackpawn. Point in triangle test, Last Access: January, 2006. URL
http : //www.blackpawn.com/texts/pointinpoly/default.html.

Fang Cao. A program family approach to developing mesh generators. Master's
thesis, McMaster University, April 2006.

Chien-Hsien Chen. A software engineering approach to developing mesh gen­
erators. Master's thesis, McMaster University, Novermber 2003.

Joseph Cirincione. The performance of the patriot missile in the gulf war,
October 1992.

Lee Copeland. A Practioner's Guide to Software Test Design. Artech House
Publisher, 2003.

CSTE. 2006 Guide to the CSTE COMMON BODY OF KNOWLEDGE. Qual­
ity Assurance Institute , 2006.

Alan M. Davis. Software Refquirements: Analysis and Specification. Prentice
Hall Inc., 1990.

E. W. Dijkstra. Structured Programming, Chapter Notes on Structured Pro­
grammzng. Academic Press, London, 1972.

109

Master Thesis - Wen Yu- McMaster- Computing and Software

A. H. ElSheikh, S. Smith, and S. E. Chidiac. Semi-formal design of reliable
mesh generation systems. Adv. Eng. Softw., 35(12):827-841, 2004. ISSN
0965-9978.

Robert W. Floyd. The paradigms of programming. Commun. ACM, 22(8):
455-460, 1979. ISSN 0001-0782.

W. Randolph Franklin. Pnpoly point inclusion m
polygon test, Last Access: January, 2006. URL
http://www.ecse.rpi.edu/Homepages/wrf/Research/ShortJNotes/
pnpoly. html.

Pascal Jean Frey and Paul-Louis George. Mesh generation Application to
Finite Elements. Hermes Science Europe ltd., 2000.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Funcamentals of software
Engineering. Pearson Education, Inc., Upper Saddle River, New Jersey
07458, 2003.

Martin Grabmi.iller and Petra Hofstedt. Thrtle: A Constraint Imperative Pro­
gramming Language. In Frans Coenen, Alun Preece, and Ann Macintosh,
editors, Twenty-third SGAI International Conference on Innovative Tech­
niques and Applications of Artificial Intelligence, number XX in Research
and Development in Intelligent Systems, Cambridge, UK, December 2003.
British Computer Society, Springer-Verlag. ISBN 1-85233-780-X.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer-Verlag New Yourk, Inc., 1993.

Andre Gueziec. Surface simplification with variable tolerance. In Second An­
nual Intl. Symp. on Medical Robotics and Computer Assisted Surgery (MR­
CAS '95}, pages 132-139, November 1995.

H. Guillard. Node-nested multi-grid with delaunay coarsening, 1993.

Daniel Hoffman and Paul Strooper. Software Design, Automated Testing and
Maintenance. International Thomson Computer Press, 1999.

IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE
Computer Society, Washington, DC, USA, 1990.

IEEE. IEEE Guide for Developing System Requirements Specifications. IEEE
Computer Society, Washington, DC, USA, 1998.

110

Master Thesis - Wen Yu -McMaster- Computing and Software

IEEE. IEEE Recommended Practice for Software Requirements Specifications.
IEEE Computer Society, Washington, DC, USA, 2nd edition, 2000.

Gregory Allen Koenig. An efficient implementation of Charm++ on Vir­
tual Machine Interface. Master's thesis, University of Illinois at Urbana­
Champaign, 2003 .

Lei Lai. Requirements documentation for engineering mechanics software:
Guidelines, template and a case study. Master's thesis, McMaster University,
Sept. 2004.

William E Lewis and Cunasakaran Veerapollai. Software testing and continu­
ous quality improvement 2nd ed. CRC Press LLC, 2004.

J. McCall, P. Richards, and G. Walters. Factors in Software Quality. NTIS
AD-A049-014, 015 , 055, Novermber 1997.

Miller , Talmor, and Teng. Optimal good-aspect-ratio coarsening for unstruc­
tured meshes. In SODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Analysis of Discrete Algo­
rithms), 1997.

Carl F. Ollivier-Gooch. Coarsening unstructured mesh by edge constraction.
International Journal for Numerical Methods in Edgineering, 57(3):391-414,
May 2003.

OpenMesh. Openmesh, Last Access: January, 2006. URL
http://www.openmesh.org/.

Steven J. Owen. A survey of unstructured mesh generation technology. In
Proceedings 7th International Meshing Roundtable, Dearborn, MI, October
1998. doi: www.andrew.cmu.edu/userjsowen/survey.

Steven J. Owen. Meshing research corner, Last Access: January, 2006. URL
http://www.andrew.cmu.edu/user/sowen/mesh.html.

D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of
complex systems. In ICSE '84: Proceedings of the 7th international confer­
ence on Software engineering, pages 408- 417, Piscataway, NJ, USA, 1984.
IEEE Press. ISBN 0-8186-0528-6.

David L. Parnas. On the criteria to be used in decomposing system into mod­
ules. Communications of th ACM, vol. 15, No. 12:pp.1053- 1058, December
1972.

111

Master Thesis - Wen Yu -McMaster- Computing and Software

David L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, 1976.

David L. Parnas. Designing software for ease of extension and contraction.
In ICSE '78: Proceedings of the 3rd international conference on Software
engineering, pages 264-277, Piscataway, NJ, USA, 1978. IEEE Press. ISBN
none.

Roger S. Pressman. Software Engineering, A Practitioner's Approach, fourth
Edition. McGraw-Hill , 1999.

L.B.S. Raccoon. The chaos model and the chaos life cycle. In ACM Software
Engineering Notes , volume vol. 20 , no. 1, pages pp.55 - 66, January 1995.

M. Rivara and P. Inostroza. A discussion on mixed (longest side midpoint in­
sertion) delaunay techniques for the triangulation refinement problem, 1995.

Maria-Celilia Rivara. New longest-edge algorithms for the refinement and/or
improvement of unstructured triangulation. International Journal for Nu­
merical Methods in Engineering, 40:3313-3324, 1997.

James Robertson and Suzanne Robertson. Volere requirements specification
template, 2001.

W.W. Royce. Managing the development of large software system: Concepts
and techniques. In Proc. ICSE. Computer Society Press, August 1970.

Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh
generation. In SODA '93: Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, pages 83-92, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics. ISBN 0-89871-313-7.

SCOREC. Algorithm oriented mesh database, Last Access: January, 2006.
URL http: I /www. scorec. rpi . edu/AOMD/.

SHARCNET. Shared hierarchical academic research computing network, Last
Access: January, 2006. URL www. sharcnet. ca.

Mary Shaw and David Garlan. Formulations and formalisms in software ar­
chitecture. In Jan van Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, volume 1000 of Lecture Notes in Computer Sci­
ence, pages 307-323. Springer-Verlag, 1995.

112

Master Thesis - Wen Yu -McMaster- Computing and Software

Jonathan Shewchuk. Triangle, a two-dimensional quality mesh
ator and delaunay triangulator, Last Access: January, 2006.
http://www.cs.cmu.edu/quake/triangle.html.

gener­
URL

S. Smith and C. H. Chen. Commonality analysis for mesh generation system.
Technical Report CAS-04-10-ss, Department of Computing and Software,
McMaster University, 2004.

W . Spencer Smith and Lei Lai. A new requirements template for scientific com­
puting. In J. Ralyte, P. Agerfalk, and N. Kraiem, editors, Proceedings of
the First International Workshop on Situational Requirements Engineering
Processes - Methods, Techniques and Tools to Support Situation-Specific Re­
quirements Engineering Processes, SREP'OS, pages 107-121, Paris, France,
2005. In conjunction with 13th IEEE International Requirements Engineer­
ing Conference.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for
engineering computation: A systematic approach for improving software
reliability. Reliable Computing, Special Issue on Reliable Engineering Com­
putation, 13:83-107, 2007.

Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company,
1992.

Ian Sommerville and Pete Sawyer. Requirements Engineering A Good Practice
Guide. John Wiley and Sons, 1997.

Axel van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the fifth IEEE International Symposium on Require­
ments Engineering, pages 249-263. IEEE Computer Society, Washington,
DC , USA, 2001.

Gregory V. Wilson. Where's the real bottleneck in scientific computing: Sci­
entists would do well to pick up some tools widely used in the software
industry. American Scientist, 94(1), January- Febrary 2006.

0 . C. Zienkiewicz, R. L Taylor, and J. Z. Zhu. The Finite Element Method
Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 6th edition,
2005.

113

MasteT Thesis - Wen Yu - McMasteT- Computing and SoftwaTe

114

Appendix A

Software Requirements
Specification for a Parallel Mesh
Generation Toolbox

115

Master Thesis - Wen Yu -McMaster- Computing and Software

A.l

A.l.l

A.l.l.l

n
[2*

K

A.1.1.2

lD
2D
3D
FEA
HPC
PDE

Reference Material

Table of Symbols, Abbreviations and Acronyms

Symbols

a closed bounded domain in JR2

a mesh covering the domain bounded by f2
a simple shape, such as a line segment in lD, a triangle
or a quadrilateral in 2D, or a tetrahedron or hexahe­
dron in 3D

an input mesh

an output mesh
instructions on how a mesh should be
refined/ coarsened

Abbreviations and Acronyms

One Dimensional Space
Two Dimensional Space
Three Dimensional Space
Finite Element Analysis

PMGT
SHARCNET

High Performance Computing
Partial Differential Equation
Parallel Mesh Generation Toolbox
Shared Hierarchical Academic Research Computing
Network

SRS
AOMD

Software Requirements Specification
Algorithm Oriented Mesh Database

116

Master Thesis - Wen Yu -McMaster- Computing and Software

A.1.2 Index of Requirements

CoarseningMesh, 132
Conformal, 135

DomainDimension, 134

ElmShape, 134
ElmTopology, 138
ElmUniqueiD, 138
Exception, 142

Help, 140

InputDefinition, 135

LookAndFeel, 142

Maintainability, 143
MeshType, 133

OutElmOrder, 139
OutputStorage, 137
OutVertexOrder, 139

Performance, 141
Portability, 142
Precision, 141

RCinstruction, 136
RefiningMesh, 132
RefiningOrCoarsening, 133

Usability, 143

VertexUniqueiD, 137

117

Master Thesis - Wen Yu -McMaster- Computing and Software

A.2 Introduction

This section gives an overview of the Software Requirements Specification
(SRS) for a Parallel Mesh Generation Toolbox (PMGT). First, the purpose of
the document is provided. Second, the scope of PMGT is identified. Third,
some terminology for software engineering and mesh generation are defined.
Finally, the organization of the document is summarized. The Table of Sym­
bols, Abbreviation and Acronyms, and Index of Requirement are given at the
beginning of the SRS.

A.2.1 Purpose of the Document

This SRS provides a black-box description of PMGT. The intended audiencP.
of the SRS is the development team and the users of PMGT.

A.2.2 Scope of the Software Product

PMGT provides a library that will be embedded into a larger application, such
as a finite element analysis (FEA) program.

• The input of PMGT is an existing mesh MIN with instructions I pro­
vided by the user on how the mesh should be refined/ coarsened.

• PMGT refines/coarsens MIN according to the supplied instructions I
on how the mesh should be refined/ coarsened.

• PMGT will take advantage of parallel computation.

• The output of PMGT is a refined/coarsened mesh MOUT.

Note that depending on the given instruction, PMGT can either refine or
coarsen the given mesh, but cannot do both at the same time. That is, any
individual transition from MIN to MOUT will only do one of refining or
coarsening. The embedding application will have access to reading the mesh
information, such as information on the position of vertices and on the vertices
that define a given element. However, the application cannot directly change
any mesh data, except for the information indicating which elements should
be refined/ coarsened.

118

Master Thesis - Wen Yu -McMaster- Computing and Software

A.2.3 Terminology Definition

This subsection provides the definitions for terminology used in the SRS. There
are two classes of terminology. One relates to software engineering, and the
other relates to mesh generation. The definitions are listed in alphabetical
order.

A.2.3.1 Software Engineering Related Terminology

Constraint: A statement that expresses measurable bounds for an element or
function of the system. That is, a constraint is a factor that is imposed
on the solution by force or compulsion and may limit or modify the
design changes. (IEEE, 1998)

Context: The boundaries between the system that we intend to build and the
people, organizations, other system and pieces of technology that have
a direct interface with the system. (Robertson and Robertson, 2001)

Functional Requirements: Functional requirements define precisely what
input are expected by the software, what outputs will be generated by the
software, and the details of relationships that exist between those inputs
and outputs. In short , functional requirements describe all aspects of
interface between the software and its environment (that is, hardware,
humans, and other software). (Davis, 1990)

Goal: Goals capture, at different levels of abstraction, the various objectives
the system under consideration should achieve. (van Lamsweerde, 2001)

Non-functional Requirements: Non-functional requirements define the over­
all qualities or attributes to be exhibited by the resulting software sys­
tem. (Davis , 1990)

Requirements: A software requirement is: i) a condition or capability needed
by a user to solve a problem or achieve an objective; ii) a condition or
capability that must be met or possessed by a system or system com­
ponent to satisfy a contract , standard, specification, or other formally
imposed document; or, iii) a documented representation of a condition
or capability as in the above two definitions. (IEEE, 2000)

Software Engineering: Software Engineering is the application of a system­
atic, disciplined, quantifiable approach to the development, operation,
and maintenance of software. (IEEE, 1990)

119

Master Thesis - Wen Yu - McMaster- Computing and Software

Software Requirements Specification: A Software Requirements Specifi­
cation (SRS) is a document containing a complete description of what
the software will do without describing how it will do it. (Davis, 1990)

System: An interdependent group of people, objects, and procedures consti­
tuted to achieve defined objectives or some operational role by perform­
ing specified functions. (IEEE, 1998)

System Context: System Context documents the relationships between the
system being specified and other human and computer systems. (Som­
merville , 1992)

User: The person, or persons, who operate or interact directly with the prod­
uct. (IEEE, 2000)

A.2.3.2 Mesh Generation Related Terminology

Cell: Another name for an element, as defined in page 120.

Conformal Mesh: A conformal mesh is a mesh (defined on page 121) follow­
ing the definition of a mesh, with the addition of the following property:
The intersection of two elements in the mesh fl* is either the empty set,
a vertex, an edge or a face (when the dimension is 3). (Frey and George,
2000)

Connectivity: There are two types of connectivity, one for the mesh and one
for a mesh element:

1. "The connectivity of a mesh is the definition of the connection be­
tween its vertices." (Frey and George, 2000)

2. "The connectivity of a mesh element is the definition of the connec­
tions between the vertices at the element level." (Frey and George,
2000)

Domain: The area or volume that is to be discretized. The domain is some­
times referred to as the computational domain. (Smith and Chen, 2004)

Edge: An edge is a line segment between two vertices.

Element : The original domain is discretized into smaller, usually simpler,
shapes called elements. The typical shapes for elements in 1D is a line,
in 2D is a triangle or a quadrilateral, and in 3D a tetrahedron or a
hexahedron. Elements are also called cells. (Smith and Chen, 2004)

120

Master Thesis - Wen Yu -McMaster- Computing and Software

Embedding Application: The software that uses PMGT.

Face: A face is a maximal connected subset of the plane without vertices
inside the subset. In 2D, a face is a cell.(Frey and George, 2000)

Hybrid Mesh: A mesh is said to be hybrid if it includes some elements with
a different spatial dimension. (Frey and George, 2000)

Mesh: In Smith and Chen (2004), a mesh is defined as follows:
Let n be a closed bounded domain in lR or IR2 or JR3 and let K be an
element. A mesh of n, denoted by n*, has the following properties:

1. n ~ U(KIK En*: K), where U is first closed and then opened

2. the length of every element K, of dimension 1, in n* is greater than
zero

3. the interior of every element K, of dimension 2 or greater, in n* is
nonempty

4. the intersection of the interior of two elements is empty

The only difference between above definition and the definition given
by Frey and George (2000) is that equality (=) had been changed to
approximate equality (~).

Mesh Generation: The automatic mesh generation problem is that of at­
tempting to define a set of elements to best describe a geometric do­
main, subject to various element size and shape criteria. (Smith and
Chen, 2004)

Mixed Mesh: A mesh is said to be mixed if it includes some elements of a
different geometric nature. (Frey and George, 2000)

Structured Mesh: The mesh in which the local organization of the grid
points and the form of the grid cells do not depend on their position
but are defined by a general rule. There is a pattern to the topology
that repeats. Frey and George (2000) say, "a mesh is called structured if
its connectivity is of the finite difference type." They go on to remark,
"Peculiar meshes other than quad or hex meshes could have a structured
connectivity. For instance, one can consider a classical grid of quads
where each of them are subdivided into two triangles using the same
subdivision pattern."

121

Master Thesis - Wen Yu -McMaster- Computing and Software

Topology: "The topology of a mesh element is the definition of this element
in terms of its faces and edges, these last two being defined in terms of
the element's vertices." (Frey and George, 2000)
The topology of a mesh is the set of topologies of its constitute mesh
elements.

Unstructured Mesh: The mesh whose element connectivity of the neigh­
bouring grid vertices varies from point to point. Any mesh that is not
structured is an unstructured mesh. (Smith and Chen, 2004)

Vertices: The locations that define the shape of the cells. In ID the vertices
are the end-points of the elements. For 2D and 3D elements the vertices
correspond to the location in space that defines the intersection of the
edges of an element. (Smith and Chen, 2004)

A.2.4 Organization of the Document

This SRS follows the template introduced by Lai (2004). Lai's template targets
an SRS for scientific computing software. In particular, the example shown is
for engineering mechanics software, such as software to analyze beams. In the
current work, Lai's template is modified to fit PMGT, which is a more general
purpose software. For example, the instanced model section of Lai's template
is removed since PMGT is not designed for solving a specific physical problem.

Section A.2 (this section) is an introduction to the SRS. The rest of the
document is arranged as follows. Section A.3 provides the general information
about the system. Section A.4 is the major part of the SRS. All functional
requirements and non-functional requirements of the software are presented
in this section. Section A.5 discusses some other system issues. Section A.6
gives a traceability matrix that summaries the association of each requirement
with goals, assumptions, theoretical models and data definitions introduced in
A.4. This SRS also contains the list of possible changes in the requirements
and values of auxiliary constants. The references are listed at the end of this
document.

A.3 General System Description

This section describes the general information about the system. The inter­
faces between the system and its environment are defined first. Then the
characteristics of potential users are discussed. At end of this section, some
system constraints are described.

122

Master Thesis - Wen Yu -McMaster- Computing and Software

A.3.1 System Context

The software to be built is a library tool that will be called by other ap­
plications. There is no direct interaction between the system and the end
users. Users of the embedding application, such as an FEA program, provide
some parameters directly to the FEA program. Some of these parameters are
passed to PMGT by the FEA program. The interface between PMGT and
the embedding application should only show what PMGT can do and hide the
information about how to do it. Therefore, users who are not experts in mesh
generation or in parallel processing will be able to use this toolbox.

PMGT

Output

Figure A.l: System Context Diagram

Figure A.l shows the context that PMGT will normally fit into. A circle
represents an external entity outside the system, an embedding application in
this case. The rectangle is the system itself. Arrows represent the data flows
between them.

The input: MIN xI
The output: MOUT.

123

Master Thesis - Wen Yu -McMaster- Computing and Software

PMGT has the following function:

A mesh MIN and some refining/coarsening instructions I are given.

PMGT generates a refined/coarsened mesh MOUT according to
the instructions I.

A.3.2 User Characteristics

The target user group of PMGT includes both software designers, who intend
to embed this library in their applications, and theoreticians, who are involved
in parallel mesh generation. A user of PMGT is expected to be familiar with
the notion/knowledge of mesh creation. PMGT is a library used by other ap­
plications. Therefore, users should not be novices in terms of software design.
The prerequisite software design knowledge are equivalent to that of a senior
undergraduate student in science or engineering who took an introductory
course on programming. For example, they should be comfortable with com­
pilation of the programming language in which PMGT is written, be familiar
with embedding a library in their software, etc.

A.3.3 System Constraints

This system is intended to be built on the Shared Hierarchical Academic Re­
search Computing Network (SHARCNET). SHARCNET is structured as a
((cluster of clusters" across South Central Ontario, designed to meet the com­
putational needs of researchers in a diverse number of research areas and to
facilitate the development of leading-edge tools for high performance comput­
ing (HPC) grids.

Large production clusters, located at the Universities of Western On­
tario, Guelph and McMaster, house over 400 HP /Compaq Alpha processors
and large symmetric multiprocessor computers. Windsor and Wilfrid Laurier
host smaller development clusters (8 processors), which enable researchers to
develop and test code before moving to one of the larger clusters. A glance
of SHARCNET systems is shown in Table A.l. Note that the network is con­
stantly being updated. Detailed information can be found at SHARCNET
(Last Access: January, 2006).

A.4 Specific System Requirements

This section describes the system requirements in detail. After the problem is
clearly and unambiguously stated, some solution characteristics are specified.

124

Master Thesis - Wen Yu- McMaster- Computing and Software

System Make Type CPUs OS
bala Compaq Cluster 8 Red Hat Linux 7.2
cat Unknown Cluster 162 Red Hat Linux 8
goblin Sun Cluster 56 Fedora Core 2
hammerhead Compaq Cluster 112 Red Hat Linux 7. 2
idra Compaq SC Cluster 128 Thu64
mako HP Cluster 16 Fedora Core 2
tiger Compaq Cluster 8 Red Hat Linux 7.2
typhon Compaq SMP 16 Thu64
wobbe Unknown Cluster 193 Red Hat Linux 8
TOTALS 699

Table A.1: A Glance at the SHARCNET System

Non-functional requirements are also included in this section. The symbol:= is
used to indicate type definition. The notation for set building and expressions
used in this section follows Gries and Schneider (1993). To define the notation,
first let x be a list of dummies, t a type, R a predicate, E an expression, *
an operator, and P a predicate. Notation {x : t I R : E} represents a set of
values that result from evaluating E[x := v] in the state for each value v in t
such that R[x := v] holds in that state. Expression (*X : t I R : P) denotes
the application of operator * to the values P for all x in t for which range R
is true.

A.4.1 Problem Description

The problems (goals) specified in this subsection represent ideal general mod­
els. The problems are simplified by introducing some assumptions , which are
listed in Section A.4.2.

A.4.1.1 Background Overview

Many physical problems of importance to scientists and engineers are modeled
as a set of Partial Differential Equations (PDEs). In most practical cases, it
is necessary to solve the PDEs numerally. Numerical methods to solve PDEs
frequently require that the domain of interest be divided into a mesh, which is
a set of small, simple elements that cover the computational domain. In some
applications , a single mesh is generated and used many times; in this case
the processing time spent on mesh construction is not critical and a relatively
slow, sequential algorithm suffices (Ruppert , 1993). However, some applica-

125

Master Thesis - Wen Yu -McMaster- Computing and Software

tions need adaptive meshing, which requires that the meshes be generated
once and then modified many times. For instance, adaptive meshing is used
for reliable Finite Element Analysis (FEA) using a posterrori error estimation
(Zienkiewicz et al., 2005). The increased mesh interaction for adaptive meshing
means an increased need for speed of managing the mesh data which suggest
employing parallel processing techniques. Although generating a mesh using
multiple processors is complicated, it can offer considerable speed-up over se­
quential processing. In addition, some FEA applications are implemented on
multiple processors. If the adaptive mesh can be generated in multiple proces­
sors as well, the mesh data can remain on the local processors. Potentially,
time to be used will be significantly reduced.

A.4.1.2 Goal Statements

There are two related goals for PMGT.

Gl: Given a mesh MIN and instructions I on how to refine the mesh, PMGT
should generate a refined mesh MO UT according to the instructions I.

G2: Given a mesh MIN and instructions I on how to coarsen the mesh,
PMGT should generate a coarsened mesh MOUT according to the in­
structions I.

A.4.2 Solution Characteristics Specification

The goals stated in the last section are too general to achieve. In this section,
the assumptions are specified first to reduce the scope of the software. Second,
the theoretical models for the goals are described. Third, data definitions
are given to assist with defining the theoretical models. Finally, the system
behaviour is summarized.

A.4.2.1 Assumptions

Al: PMGT focuses on a 2D domain.

A2: The input and output meshes are bounded.

A3: The input and output meshes are unstructured.

A4: The input and output meshes are conformal.

A5: The elements of input and output meshes are triangles.

126

Master Thesis - Wen Yu -McMaster- Computing and Software

A6: The initial mesh is valid.

A.4.2.2 Theoretical Model

The theoretical models corresponding to the goals given in Section A.4.1 de­
scribes the relationship between the input mesh (MIN) and the output mesh
(MOUT). The meshes are assumed to be embedded in a 2D space.

TMl: Refining Mesh

Input: MIN: MeshT, I: RCinstructionT

Output: MOUT: MeshT

The following behavior is specified:

That is , the output mesh is a refined version of the input mesh.

TM2: Coarsening Mesh

Input: MIN: MeshT, J: RCinstructionT

Output: MOUT: MeshT

The following behavior is specified:

That is, the output mesh is a coarsened version of the input mesh.

A.4.2.3 Data Definitions

The data definitions below are organized so that a definition listed in the
beginning may be used to define a data item listed after it.

VertexT (Dl): A vertex is represented by two real numbers, which are its
x coordinate and y coordinate. More formally,
VertexT :=tuple of (x : JR, y: JR).

EdgeT (D2): An edge is represented by a set of VertexT. More formally,
EdgeT := set of VertexT.

127

Master Thesis - Wen Yu - McMaster - Computing and Software

ValidEdge (D3): An edge is valid if the edge is a line segment (that is, the
set has two elements). More formally,
ValidEdge: EdgeT ~ lffi
ValidEdge(e: EdgeT) - #e = 2

CellT (D4): A cell is represented by a set of VertexT. More formally,
CellT :=set of VertexT

Area (D5): The area of a triangle whose apexes are elements of a cell. More
formally,
Area: CellT ~ lR
Area(c: CellT) - :Bvl, v2, v3: VertexT I vl E c 1\ v2 E c 1\ v3 E c
1\ vl =:J v2 1\ v2 =:J v3 1\ v3 =:J vl :

1
1
2 * lvl.x * v2.y- v2.x * vl.y +

v2.x * v3.y- v3.x * v2.y +
vl.x * v3.y- v3.x * vl.yl

ValidCell (D6): A cell is valid if the cell is a triangle (that is , the set has
three elements) and the area of the triangle is greater than zero. More
formally,
Valid Cell: Cell T ~ lffi
ValidCell(c: CellT) - #c = 3/\ Area(c) 2: 0

MeshT (D7): A mesh is represented by a set of cells. More formally,
MeshT := set of CellT.

OnEdge (D8): Checks if a vertex is on the line segment between two vertices
(exclusive) of an edge. More formally,
OnEdge: VertexT x EdgeT ~ lffi
OnEdge(v: VertexT, e: EdgeT) :3 vl, v2: VertexT I
v 1 E e 1\ v2 E e 1\ v 1 =:J v2 1\ v =:J v 1 1\ v =:J v2 :
(vl.x < v.x::::; v2.x 1\

(v.y- vl.y)j(v.x- vl.x) = (v2.y- vl.y)j(v2.x- vl.x))

BelongToCell (D9): Checks if an edge belongs to a cell. More formally,
BelongToCell: Vert exT x Cell T ~ lffi
BelongeToCell(e: EdgeT, c: Cell T) - V v: Vert exT I v E e : v E c

Inside (DlO): Checks if a point (of type VertexT) is inside of a cell. The
inside checking is false if the point is on an edge of the cell or the point is
a vertex of the cell. (The algorithm to check if a point is inside a polygon
is from Blackpawn (Last Access: January, 2006).) More formally,

128

Master Thesis - Wen Yu - McMaster- Computing and Software

Inside: VertexT x CellT --* Iffi
Inside(v: VertexT, c: CellT) - :3 vl, v2, v3: VertexT I
vl E c/\v2 E c/\v3 E c/\v1 I= v21\v2 I= v31\v3 I= vl:
((v.y- vl.y) * (v2 .x- vl.x)- (v .x- vl.x) * (v2.y- vl.y)) *
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) > 01\
((v .y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2 .y)) *
((v .y- v3.y) * (vl.x- v3.x)- (v.x- v3.x) * (vl.y- v3.y)) > 0

Vertices (Dll): A set of all vetices of the mesh. More formally,
Vertices: MeshT --* set of VertexT
Vertices(m: MeshT) = { v: VertexT I (\/ c: CellT I c E m: v E c) : v}

Edges (D12): A set of all edges of the mesh. More formally,
Edges: MeshT --* set of EdgeT
Edges(m: MeshT) = {v1, v2: VertexT I (\/c: CellT IcE m :
v1 E c/\v2 E c/\v1 I= v2): {v1 , v2}}

BoundaryEdges (D13): A set of edges are boundary edges if they form a
boundary of a mesh. More formally,
BoundaryEdges: MeshT --* set of EdgeT
BoundaryEdges(m: MeshT) _ {b: EdgeT I bE Edges(m) 1\
(#{c: CellT I c Em/\ BelongToCell(b, c): c} = 1): b}

BoundaryVertices (D14): A set of boundary vertices of the mesh. More
formally,
Boundary Vertices: MeshT --* set of Vert exT
Boundary Vertices(m: MeshT)
{ v: Vert exT I v E BoundaryEdges(m): v}

Bounded (D15): A mesh is bounded if the boundary edges form a closed
polygon(all vertices of boundary edges belong to exactly two boundary
edges). More formally,
Bounded: MeshT --* Iffi
Bounded(m: MeshT) - \lv: VertexT I v E BoundaryVertices(m):
(#{e: EdgeT I e E BoundaryEdge(m) 1\v E e : e} = 2)

Conformal (D 16): In 2D, a mesh is conformal if the intersection of any two
cells is either a vertex or an edge or empty. More formally,
Conformal: MeshT --* Iffi
Conformal(m: MeshT) -Vel, c2: CellT I c1 Em 1\ c2 Em 1\ c1 I= c2:
(::le: EdgeT I e E Eeges(m): (::lv : VertexT I v E Vertices(m):
(cl n c2 = e v c1 n c2 = v V c1 n c2 = 0) 1\ (• OnEdge(v, e))))

129

Master Thesis - Wen Yu -McMaster - Computing and Software

N olnteriorlntersect (D 1 7): N olnteriorlntersect is true if a point in space
(of type VertexT) is inside only one cell of the mesh. More formally,
Nolnteriorlntersect: MeshT ----+ Jffi
Nolnteriorlntersect(m: MeshT) -Vel, c2: CellT I
c1 E m/\c2 E m/\cl =/= c2: (Vv: VertexT I Inside(v, ci): ---, Inside(v,c2))

ValidMesh (Dl8): A mesh is valid if the mesh is bounded, conformal, and
any point is only inside one cell. More formally,
ValidMesh: MeshT ----+ Jffi
ValidMesh(m: MeshT) - (Ve: EdgeT I e E Edges(m): ValidEdge(e))
1\ (Vc: CellT I c Em: ValidCell(c)) 1\

Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m)

CoveringUp (D19): True if two meshes covering up each other, that is, if
all endpoints of the boundary edges of one mesh are on the boundary
edges or are end points of the boundary edges of another mesh. More
formally,
CoveringUp: MeshT x MeshT ----+ Jffi
CoveringUp(ml, m2: MeshT) - Vvl, v2: VertexT , I
vl E Boundary Vertice{ml) 1\ v2 E Boundary Vertices(m2):
(::Jbl, b2: EdgeT I bl E BoundaryEdges(m1) l\b2 E BoundaryEdges(m2):
(OnEdge(v1, b2) Vvl E b2)/\ (OnEdge(v2, bl) Vv2 E bl))

lnstructionT (D20): The type of instructions is defined as:
InstructionT :={REFINE, COARSEN, NOCHANGE}

CelllnstructionT (D21): The type of instructions on a cell is defined as:
CellinstructionT:= tuple of (cell: Cell T, instr: InstructionT)
(For each cell, there is an instruction for refining, coarsening, or no change.)

RCinstructionT (D22): The type of instructions on a mesh is defined as:
RCinstructionT:= tuple of (rORc: InstructionT, clnstr: set of CellinstructionT)
(For each mesh, there is an instruction on whole mesh, and there are set
of instruction on each cell.)

Refined (D23): True if a mesh M' is a refined mesh of a mesh M. More
formally
Refined: MeshT x MeshT x RCinstructionT ----+ Jffi
Refined(m', m: MeshT , rc: RCinstructionT) _
rc.rORc =REFINE 1\ ValidMesh(m) 1\ ValidMesh(m') 1\

CoveringUp(m', m) A#m' ~ #m

130

Master Thesis - Wen Yu -McMaster- Computing and Software

Coarsened (D24): True if a mesh M' is a coarsened mesh of a mesh M.
More formally
Coarsened: MeshT x MeshT x RCinstructionT ----+ lB
Coarsened(m', m: MeshT, rc: RCinstructionT) =
rc.rORc = COARSEN 1\ ValidMesh(m) 1\ ValidMesh(m ') 1\

CoveringUp(m', m) A#m' :::; #m

A.4.2.4 System Behaviour

System Behaviour, shown through functional requirements, defines what the
software should do. The functional requirements, as well as nonfunctional
requirements in Section A.4.3, partially come from Smith and Chen (2004).
Smith and Chen (2004) listed all requirements that are common for mesh
generation systems. They also considered the difference between meshes in
term of variabilities. However, the mesh generations analyzed by Smith and
Chen (2004) are targeted at full FEA applications. PMGT only manages the
geometric information about the mesh, not other FEA related information,
such as boundary condition and material property. Hence, only commonalities
that is meaningful for PMGT are selected. Variabilities with parameters of
variation that are suitable for PMGT are also considered. Other part of the
requirements are obtained from Dr. Smith.

New functional requirements, RCinstruction (F9) and Help (F16) are
added. F9 is unique to PMGT and F16 facilities the non-functional require­
ments Usability (N6) .

We specify both functional requirements and non-functional require­
ments in the tables. In each table, the field Description gives a brief de­
scription of this requirement. It tells what PMGT should do to fulfill this
requirement. There are two potential sources, shown in the Source field, for
each requirement. One source is from Smith and Chen (2004) , and the other
comes from Dr. Smith. If the requirement is from Smith and Chen (2004),
then this field will show the commonality number, with a prefix C and the
associated variability, shown by a prefix V. Where applicable, Related Data
Definitions and Related Theoretical Models gives the numbers of related data
definitions and the numbers of related theoretical models, respectively. These
two field only appear for functional requirements. The Binding Time field ei­
ther shows scope time or run time. Scope time means that this requirement is
determined when the SRS is written. Run time means that this requirement is
determined when the system is running. History records the time of creating
and changing of the requirements.

131

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Fl
RefiningMesh
PMGT should have capabilities for
refining an existing mesh.
I. rO Rc = REFINE 1\

Refined(MOVT, MIN)
Cl, V3
D20, D22, D23
TMl
Scope time
Created- June, 2005.
Modified - October, 2005. Change
the name from "ImprovingMesh"
to "RefiningMesh".
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

F2
CoarseningMesh
PMGT should have capabilities for
coarsening an existing mesh.
I.rORc = COARSEN 1\

Coarsened(MOVT, MIN)
Cl, V3
D20, D22, D24
TM2
Scope time
Created- October, 2006.

132

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F3
RefiningOrCoarsening
PMGT can either refine a given
mesh to a refined mesh, or coarsen
a mesh to a coarsened mesh. How­
ever, PMGT cannot do both re­
fining and coarsening at the same
time.
Cl, V3
D20 , D22, D23, D24
TMl, TM2
Run time
Created- October, 2006.

F4
Mesh Type
The mesh generated by PMGT is
unstructured.
Cl, V6
N/A
N/A
Scope time
Created - June, 2005.
Modified - October , 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

133

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F5
ElmShape
The shape of the elements in both
input and output meshes are trian­
gles.
Vel, c2: CellT I
c1 E MIN 1\ c2 E MOUT :
#cl = 31\ Area(cl) > 01\
#c2 = 31\ Area(c2) > 0
Cl, V9
D4, D5
TMl, TM2
Scope time
Created- June, 2005.
Modified - October, 2006. Take
out the requirement for generating
quadrilateral meshes.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

F6
DomainDimension
The computational domain is in 2D
space.
Cl, V13
N/A
TMl, TM2
Scope time
Created - June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

134

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F7
Conformal
Both input and output meshes are
conformal.
Conformal(MIN) 1\

Conformal(MOUT)
Cl, V18
D16
N/A
Scope time
Created- June, 2005.
Modified - October, 2006. Take
out the requirement for generating
non-conformal meshes.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

F8
InputDefini tion
The input of PMGT should be pro­
vided by the embedding applica­
tion.
C8
D7, D20, D22
TMl, TM2
Scope time
Created - June, 2005.
Modified-October 2005. Change
the name from "Input" to ((Input­
Definition" to clarify that this re­
quirements is about the source of
the input.
Modified - October, 2006. Field
for ((Related Data Definitions" and
((Related Theoretical Models" are
added.

135

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F9
RCinstruction
The Instruction on how to re­
fine/coarsen a mesh includes the
instruction of whether to refine or
coarsen the mesh and an individ­
ual instruction for each element of
the the mesh to indicate refining,
coarsening, or no change.
Dr. Smith
D20, D21, D22
TMl, TM2
Scope time
Created- June, 2005
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

136

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

FlO
OutputStorage
The output of PMGT is stored in
memory or in files or in both mem­
ory and files.
Cl2, Dr. Smith
N/A
N/A
Run time
Created- June, 2005.
Modified - October 2005. Change
the name from "Output" to "Out­
putStorage" to clarify that this re­
quirements is about the storage of
the output.
Modified - October 2006. Add the
requirement of storing the output
mesh in files or both memory and
files.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

Fll
VertexUniqueiD
Each vertex in the output file has a
unique identifier.
C2
N/A
N/A
Scope time
Created- June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

137

... _
;; i ;

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F12
Elm UniqueiD
Each element in the output file has
a unique identifier.
C3
N/A
N/A
Scope time
Created- June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

F13
Elm Topology
The topology of an element in the
output file is given by the connec­
tivity of its set of vertices.
C4
N/A
N/A
Scope time
Created- June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

138

Master Thesis - Wen Yu- McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

F14
Out Elm Order
The element information in output
files is listed in ascending order.
C13, V34
N/A
N/A
Scope time
Created- June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

F15
Out VertexOrder
The vertex information, such as the
coordinates, in output files is listed
in ascending order.
C14, V35
N/A
N/A
Scope time
Created - June, 2005.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

139

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Related Data Definitions
Related Theoretical Models
Binding Time
History

Fl6
Help
Helps on documenting the interface
and the functionality of each func­
tion should be provided.
Dr. Smith
N/A
N/A
Scope time
Created- June, 2005.
Modified - October 2005. Add the
requirement of documenting func­
tionality of each function.
Modified - October, 2006. Field
for "Related Data Definitions" and
"Related Theoretical Models" are
added.

A.4.3 Non-functional Requirements

All non-functional requirements listed in Smith and Chen (2004) are selected
except for Cl6, which is solution tolerance, since a mesh refined/coarsened
by different algorithms may have different solutions, but all of these solutions
can still be valid. All potential output meshes are valid as long as the out­
put meshes are covering/ covered up meshes of the original mesh, and they
are refined/ coarsened according to the RCinstruction. The resulting mesh is
difficult to measure in terms of solution tolerance. Three new non-functional
requirements, which are LookAndFeel (N5), Usability (N6), and Maintainabil­
ity (N7), are added. These requirements are mentioned in Lai (2004).

PMGT is difficult to validate. One reason is that the solution for re­
fining/ coarsening a mesh is unknown, as mentioned above. The other reason
is that it is difficult to write validatable requirements, especially for nonfunc­
tional requirements. For example, what is the proper way for specifying the
requirement of Usability (N6) of PMGT? On the one hand, that the software
should easy to use is not validatable. On the other hand, that a person should
be able to use the software in two days is validatable. However, the measure­
ment, two days, often lacks a justifiable rationale.

The approach to validate this kind of requirements are to compare it
with other software with similar functionality. Phrases that are in italics and
capitalized, such as MANPROP, represent constant defined in Section A.8.

140

Master Thesis - Wen Yu -McMaster- Computing and Software

Usually, these constants come from other applications with similar functional­
ities. For example, the Usability requirement of PMGT is presented as follows:

This system should be easy to use. Users with the background
specified in Section A.3.2 should take LEARNT/ME to reproduce
an example mesh, which is specified by the test case TC5 in the
Appendix D.

First, more general requirement is given. Then, a suggestion to reproduce an
example mesh is specified. The constant LEARNT/ME is defined as the time
to produce the same mesh for users with the same background using AOMD.

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Nl
Performance
Refining/ coarsening a mesh using
multiple processors should be faster
than when using a single proces­
sor. In addition, the performance
of PMGT should be comparable
with that of similar applications.
The execution time to refine an ex­
ample mesh, which is specified by
the test case TC5 in the Appendix
D.
C15, V39
Scope time
Created- June, 2005.

N2
Precision
The number of decimal digits
should agree with the IEEE stan­
dard for floating-point numbers.
C17, V41
Scope time
Created- June, 2005.

141

Master Thesis - Wen Yu - McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

N3
Exception
Run-time exception handling
should check at least the following
exceptions: division by zero, re­
dundant vertices, redundant edges,
redundant cells.
C18, V42
Scope time
Created - June, 2005

N4
Portability
PMGT should build on a platform
with access to SHARCNET or on a
the system that has similar archi­
tecture to SHARCNET. The mem­
ory capacity should be MEMCAP.
C19, V37, V38
Scope time
Created - June, 2005

N5
LookAndFeel
PMGT should follow the program­
ming conventions of the language in
which the application is coded in.
Dr. Smith
Scope time
Created- June, 2005

142

A.5

Master Thesis - Wen Yu -McMaster- Computing and Software

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

Requirements Number
Requirements N arne
Description

Source
Binding Time
History

N6
Usability
This system should be easy to use.
Users with the background speci­
fied in Section A.3.2 should take
LEARNTIME to reproduce an ex­
ample mesh, which is specified in
the Appendex D.
Dr. Smith
Scope time
Created- June, 2005

N7
Maintainability
The system should be developed
in the way that the effort spent
to maintain the system or to add
in features would be minimum.
The redevelopment time to add a
new algorithm to coarsen meshes in
PMGT should be MANPROP.
Dr. Smith
Scope time
Created- June, 2005

Other System Issues

This section includes some other supporting information that might contribute
to the success or failure of the system development. The following factors are
considered:

• Open issues are statements of factors that are uncertain and might make
significant difference to the system.

• Off-the-shell solutions are existing systems and/or components bought
or borrowed. They could be the potential solutions.

• Waiting rooms provide a blueprint of how the system will be extended.

143

Master Thesis - Wen Yu- McMaster- Computing and Software

A.5.1 Open Issues

There are no open issues for PMGT at this stage.

A.5.2 Off-the-shelf Solutions

The following programs may be used in PMGT.

• AOMD: a mesh management library (or database) that is able to provide
a variety of services for mesh users (SCOREC, Last Access: January,
2006).

A.5.3 Waiting Rooms

Here, we list the possible changes that can affect the extension of the system.
These changes are related to the assumptions specified in Section A.4.2.

1. PMGT may produce both structured and unstructured meshes.

2. PMGT may produce both conformal and nonconformal meshes.

3. The elements of input and output mesh may be of a shape other than
triangles.

4. The system may deal with invalid input mesh.

5. The system may accommodate a mixed mesh.

6. The system may accommodate a hybrid mesh.

7. The system may deal with a 3D problem domain.

A.6 Traceability Matrix

The traceability matrix defined in this section gives a big picture of the associa­
tions among goals, assumptions, data definitions, theoretical models, and func­
tional requirements. Goals are ideal general models. After assumptions are
applied, . these goals are restricted to problems that can be solved by PMGT.
Data definitions and theoretical models are used to describe the requirements.
The matrix is too big to fit one page. For the sake of clarity, it is split into
three parts in five tables, which are Table A.2, Table A.3, Table A.4, Table
A.5, and Table A.6. In addition, only items that have a relation with items

144

Master Thesis - Wen Yu -McMaster- Computing and Software

in the same part are listed. If there is a .,/in a cell, it means that if the goal,
or the assumption, or the theoretical model, or the data definition, or the re­
quirement in the corresponding column changes, the assumption, or the data
definition, or the theoretical model, or the requirement in the corresponding
row should also change.

A.7 List of Possible Changes in the Require­
ments

The system might evolve to accommodate the following changes in the future.
These changes will add additional goals to the software library.

1. The input of PMGT may include material properties.

2. The input of PMGT may include boundary conditions.

A.8 Values of Auxiliary Constants

The constants given in this section are used to validate some nonfunctional
requirements. The compatible software chosen is AOMD. However, other soft­
ware can also be used as long as the other software has the required function­
alities to validate the given requirement.

LEARNT/ME The time that reproduce the same example as
that specified in nonfunctional requirement N6 using
AOMD.

MANPROP The redevelopment time to add the same algorithm
as that specified in the nonfunctional requirement N7,
using AOMD. If the algorithm is already in AOMD,
the the time that AOMD took to add it.

RSPTIME The execution time to refine the same mesh as
that specified in nonfunctional requirement Nl using
AOMD.

MEMCAP The typical memory capacity of a machine on SHAR­
CNET.

145

Master Thesis - Wen Yu - McMaster- Computing and Software

I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21
Al .(.(.(

A2 .(.(.(

A3 .(.(.(

A4 .(.(.(

A5 .(.(.(.(

A6 .(.(.(

Dl .(.(.(

D2 .(.(

D3 .(.(

D4 .(.(.(.(

D5 .(.(.(.(

D6 .(.(.(.(

D7 .(.(

D8 .(.(.(

D9 .(.(.(

DlO .(.(.(.(

Dll .(.(

D12 .(.(.(.(

D13 .(.(.(

D14 .(.(.(

D15 .(.(.(.(

D16 .(.(.(.(

D17 .(.(.(.(

D18 .(.(

D20 .(.(

D21 .(.(

D22 .(.(

D19 .(.(.(.(

D23 .(

D24 .(

Table A.2: Traceability Matrix (PART I): Goals , Assumptions, Theoretical
Models, Data Definitions , and Requirements (I)

146

Master Thesis - Wen Yu -McMaster- Computing and Software

I Gl I G2 I Al I A2 I A3 I A4 I A5 I A6 I TMll TM21
Fl .(.(

F2 .(.(

F3 .(.(.(.(

F4 .(

F5 .(.(.(.(.(.(

F6 .(.(.(.(.(

F7 .(.(.(

F8 .(.(.(.(

F9 .(.(.(.(

FlO .(.(

F16 .(.(

Table A.3: Traceability Matrix (PART I): Goals, Assumptions, Theoretical
Models, Data Definitions, and Requirements (II)

147

Master Thesis - Wen Yu -McMaster- Computing and Software

I Dl I D2 I D3 I D4 I D5 I D6 I D7 I D8 I D9 I DlOI D111 D12l

Dl ./
D2 ./ ./
D3 ./ ./
D4 ./ ./
D5 ./ ./
D6 ./ ./ ./
D7 ./ ./
D8 ./ ./ ./
D9 ./ ./ ./ ./
DlO ./ ./ ./
D11 ./ ./ ./ ./
D12 ./ ./ ./ ./ ./
D13 ./ ./ ./ ./
D14 ./ ./
D15 ./ ./ ./
D16 ./ ./ ./ ./ ./ ./
D17 ./ ./ ./ ./
D18 ./ ./ ./
D19 ./ ./ ./ ./
D20
D21 ./
D22
D23
D24

I I I I I I~ I I I I I I
Fl
F2
F3 ./
F5 ./ ./
F7
F8 ./
F9

Table A.4: Traceability Matrix (PART II) : Dat a Definit ions and Requirements
(I)

148

Master Thesis - Wen Yu - McMaster- Computing and Software

I D13l D14l D15l D16l D17l D18l D19l D20I D2ll D22l D23l D24l
D13 ./
D14 ./ ./
D15 ./ ./ ./
D16 ./
D17 ./
D18 ./ ./ ./ ./
D19 ./ ./ ./
D20 ./
D21 ./ ./
D22 ./ ./ ./
D23 ./ ./ ./ ./ ./
D24 ./ ./ ./ ./ ./

Fl ./ ./ ./
F2 ./ ./ ./
F3 ./ ./ ./ ./
F5
F7 ./
F8 ./ ./
F9 ./ ./ ./

Table A.5: Traceability Matrix (PART II) : Data Definitions and Requirements
(II)

I Fl I F2 I F6 I F8 I FlO I N6
F3 ./ ./
F5 ./
F9 ./
Fll ./
F12 ./
F13 ./
F14 ./
F15 ./
F16 ./

Table A.6: Traceability Matrix (PART III): Requirements

149

Master Thesis - Wen Yu -McMaster- Computing and Software

150

Appendix B

Module Guide for a Parallel
Mesh Generation Toolbox

151

Master Thesis - Wen Yu -McMaster- Computing and Software

B.l Introduction

Decomposing a system into modules is a commonly accepted approach to
developing software. A module is a work assignment for a programmer or
programming team. The basic principle of the decomposition used here is the
information hiding principle (Parnas et al., 1984). According to Parnas et al.
(1984),

• System details that are likely to change independently should be the
secrets of separate modules.

• Each data structure is used in only one module.

• Any other program that requires information stored in a module's data
structures must obtain it by calling access programs belonging to that
module.

After completing the first stage of the design, the Software Require­
ments Specification (SRS), the Module Guide (MG) for the PMGT was devel­
oped. The M G specifies the modular structure of the system and is intended
to allow both designers and maintainers to easily identify the parts of the
software. The potential readers of this document are as follows:

• New project members: This document can be a guide for a new project
member to easily understand the overall structure of the PMGT and
quickly find the relevant modules they are searching for.

• Maintainers: The hierarchical structure of the module guide improves
the maintainers' understanding when they need to make changes to the
system. It is important for a maintainer to update the relevant sections
of the document after changes have been made.

• Designers: Once the module guide has been written, it is can be used to
check for consistency, feasibility and flexibility. Designers can verify the
system in various ways, such as consistency among modules, feasibility
of the decomposition, and flexibility of the design.

The rest of the document is organized as described in the following. Sec­
tion B.2lists the anticipated and unlikely changes of the software requirements.
Section B.3 summarizes the module decomposition that was constructed ac­
cording to the likely changes. Section B.4 specifies the connections between
the software requirements and the modules. Section B.5 gives a detailed de­
scription of the modules. Section B.6 includes two traceability matrices. One

152

Master Thesis - Wen Yu -McMaster- Computing and Software

checks the completeness of the design against the requirements provided in
the SRS. The other shows the relation between anticipated changes and the
modules. Section B. 7 describes the use relation between modules.

B.2 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of
the change, the possible changes are classified into two categories. Anticipated
changes are listed in Section B.2.1, and unlikely changes are listed in Section
B.2.2.

B.2.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden
inside the modules. Ideally, changing one of the anticipated changes will only
require changing the one module that hides the associated decision. The ap­
proach adapted here is called design for change.

ACl: The data structure and algorithms for implementing the virtual mem­
ory of the system.

AC2: The data structure and algorithms for implementing the interface be­
tween the file and the system.

AC3: The data structure and algorithms for implementing the interface be­
tween the keyboard and the system.

AC4: The data structure and algorithms for screen display.

AC5: The format and structure of the initial input mesh.

AC6: The format and structure of the output mesh.

AC7: The mechanisms for validating the input and output meshes.

AC8: The data structure of a vertex.

AC9: The data structure of an edge.

AClO: The data structure of a cell.

ACll: The data structure of a mesh.

153

Master Thesis - Wen Yu -McMaster- Computing and Software

AC12: The algorithms for refining a mesh.

AC13: The algorithms for coarsening a mesh.

AC14: The shape of a cell, which is initially assumed to be a triangular.

B.2.2 Unlikely Changes

The module design should be as general as possible. However, a general system
is more complex. Sometimes this complexity is not necessary. Fixing some
design decisions at the system architecture stage can simplify the software
design. If these decision should later need to be changed, then many parts of
the design will potentially need to be modified. Hence, it is not intended that
these decisions will be changed.

UCl: Input/Output devices (Input: File and/or Keyboard, Output: File,
Memory, and/or Screen).

UC2: There will always be a source of input data external to the PMGT
software.

UC3: Output data are displayed to the output device.

UC4: The goal of the system is refining or coarsening a mesh.

UC5: The type of the mesh is unstructured.

UC6: The representation of an edge is a set of vertices.

UC7: The representation of a cell is a set of vertices.

UC8: A Cartesian coordinate system is used.

B.3 Module Hierarchy

This section provides an overview of the module design. Modules are summa­
rized in a hierarchy decomposed by secrets in Table B.l. The modules listed
below, which are leaves in the hierarchy tree, are the modules that will actually
be implemented.

Ml: Virtual Memory Module

M2: File Read/Write Module

154

Master Thesis - Wen Yu- McMaster- Computing and Software

M3: Keyboard Input Module

M4: Screen Display Module

M5: Input Format Module

M6: Output Format Module

M7: Service Module

M8: Vertex Module

M9: Edge Module

MlO: Cell Module

Mll: Mesh Module

M12: Refining Module

M13: Coarsening Module

Note that M1, M2, M3 and M4 are commonly used modules and are already
implemented by the operating system. They will not need to be implemented
again for PMGT.

B.4 Connection Between Requirements and De-.
stgn

The design of the system is intended to satisfy the requirements developed in
the SRS. In this stage, the system is decomposed into modules. The connection
between requirements and modules is listed in Table B.2. However, some
connections are not obvious. The explanation below has the purpose of making
these connections clear. The software requirements are documented in the
SRS. They are also listed starting on page 162 for convenience.

The functionalities of refining a mesh (F1), and coarsening a mesh
(F2) are achieved directly by M12 and M13, respectively. The functional re­
quirement MeshType (F4) is related to the representation of mesh, which is
contained in M9, M10, and Mll. The algorithms for refining (M12) and coars­
ening (M13) also depend on the MeshType requirement. Another connection
worth mentioning relates to the DomainDimension requirement (F6). All geo­
metric information for the mesh, including dimension information, is stored in
MS. Algorithms in M12 and M13 also relate to the dimension of the domain.

155

Master Thesis - Wen Yu -McMaster- Computing and Software

Level 1 Level 2 Level 3 Level 4

Hardware-
Extended Virtual Memory

Hiding
Computer Module Module

File Read/Write
Module

Module
Device Interface Keyboard Input
Module Module

Screen Display
Module

Behavior- Input Format Mod-
Hiding ule
Module Output Format

Module
Service Module

Vertex Module
Software

Mesh Data Module
Entity Module Edge Module

Decision Cell Module
Module Mesh Module

Algorithm Module
Refining Module
Coarsening Module

Table B.l: Module Hierarchy

Some nonfunctional requirements , such as Performance (N1) and Main­
tainability (N7), are related to the overall quality of the system. These qualities
depend on the implementation of all of the modules. The Precision require­
ment depends on modules related to calculation, which are the module M8,
M9, MlO, Mll, M12 and Ml3.

B.5 Module Decomposition

Modules are decomposed according to the principle of ((information hiding"
proposed by Parnas et al. (1984). The Secrets field in a module decomposition
is a brief statement of the design decision hidden by the module. The Services
field specifies what the module will do without documenting how to do it.
For each module, a suggestion for the implementing software is given under
the Implemented By title. If the entry is OS, this means that the module
is provided by the operating system or by standard programming language
libraries. PMGT means the module will be implemented by the PMGT soft-

156

Master Thesis - Wen Yu -McMaster- Computing and Software

ware. Only leaf modules in the hierarchy have to be implemented. If a dash
(-) is shown, this means that the module is not a leaf and will not have to be
implemented. Whether or not this module is implemented depends on the pro­
gramming language selected. This decomposition is inspired by Chen (2003) .
The decomposition of the mesh data module is partly based on ElSheikh et al.
(2004). One difference between the current design and ElSheikh et al. (2004)
is that ElSheikh et al. (2004) has an explicit module for incidence and adja­
cency information. However, it is believed that where and how to store this
information is an implementation decision that should be abstracted away at
the design stage.

B.5.1 Hardware-Hiding Module

Secrets: The data structure and algorithm used to implement the virtual
hardware.

Services: Serves as a virtual hardware used by the rest of the system. This
module provides the interface between the hardware and the software.
So, the system can use it to display outputs or to accept inputs.

Implemented By: -

B.5.1.1 Extended Computer Module

Secrets: The number of processors, the instruction set of the computer, and
the computer's capacity for performing concurrent operations.

Services: Provides an instruction set including the operations on application­
independent data types, sequence control operations, and general I/0
operations.

Implemented By: -

B.5.1.1.1 Virtual Memory Module (Ml)

Secrets: The hardware addressing methods for data and instructions in real
memory.

Services: Presents a uniformly addressable virtual memory.

Implemented By: OS

157

Master Thesis - Wen Yu- McMaster- Computing and Software

B.5.1.1.2 File Read Write Module (M2)

Secrets: The data structure and algorithms for implementing the interface
between the file and the system.

Services: Provides an interface between the storage of the system and the IO
devices.

Implemented By: OS

B.5.1.2 Device Interface Module

Secrets: Characteristics of the present devices not likely to be shared by
replacement devices.

Services: Provides virtual devices to be used by the rest of software.

Implemented By: -

B.5.1.2.1 Keyboard Input Module (M3)

Secrets: The data structure and algorithms for implementing the interface
between the keyboard and the system.

Services: Retrieves the user inputs from the keyboard and communicates the
information with other parts of the system.

Implemented By: OS

B.5.1.2.2 Screen Display Module (M4)

Secrets: The data structure and algorithms to display graphics and text on
the screen.

Services: Provides an interface between the system and the screen so the
system can display information on the screen through the use of programs
in the module.

Implemented By: OS

158

Master Thesis - Wen Yu -McMaster- Computing and Software

B.5.2 Behavior-Hiding Module

Secrets: The contents of the required behaviors.

Services: Includes programs that provide externally visible behavior of the
system as specified in the software requirements specification (SRS) doc­
uments. This module serves as a communication layer between the
hardware-hiding module and the software decision module. The pro­
grams in this module will need to change if there are changes in the
SRS.

Implemented By: -

B.5.2.1 Input Format Module (M5)

Secrets: The format and structure of the initial input mesh.

Services: Converts the input mesh to the data structured used in PMGT.

Implemented By: PMGT

B.5.2.2 Output Format Module (M6)

Secrets: The format and structure of the output mesh.

Services: Converts the output mesh to an output file .

Implemented By: PMGT

B.5.2.3 Service Module (M7)

Secrets: The algorithm for validating meshes.

Services: Checks if the input and output meshes are valid.

Implemented By: PMGT

B.5.3 Software Decision Module

Secrets: The design decision based on mathematical theorems , physical facts ,
or programming considerations. The secrets of this module are not de­
scribed in the SRS.

159

0

Master Thesis - Wen Yu- McMaster - Computing and Software

Services: Includes data structure and algorithms used in the system that do
not provide direct interaction with the user.

Implemented By: -

B.5.3.1 Entity Module

Secrets: The data structure of a mesh entity, including vertex, edge, and cell.

Services: Stores the complete mesh information generated, and also provides
programs to import and export the mesh information.

Implemented By: -

B.5.3.1.1 Vertex Module (M8)

Secrets: The data structure of a vertex.

Services: Stores the complete vertex information generated and provides pro­
grams to import and export the vertex information. The operations on
vertices are also included in this module.

Implemented By: PMGT

B.5.3.1.2 Edge Module (M9)

Secrets: The data structure of an edge.

Services: Stores the complete edge information generated and provides pro­
grams to import and export the edge information. The operations on
edges are also included in this module.

Implemented By: PMGT

B.5.3.1.3 Cell Module (MlO)

Secrets: The data structure of a cell.

Services: Stores the complete cell information generated and provides pro­
grams to import and export the cell information. The operations on cells
are also included in this module.

Implemented By: PMGT

160

Master Thesis - Wen Yu -McMaster- Computing and Software

B.5.3.1.4 Mesh Module (Mll)

Secrets: The data structure of a mesh.

Services: Stores the complete mesh information generated and provides pro­
grams to import and export the cell information. The operations on
meshes are also included in this module.

Implemented By: PMGT

B.5.3.2 Mesh Algorithm Module

Secrets: Algorithms for refining and coarsening a mesh.

Services: Refining and coarsening a mesh.

Implemented By: -

B.5.3.2.1 Refining Module (M12)

Secrets: Algorithms for refining a mesh.

Services: Refining a mesh.

Implemented By: MPGT

B.5.3.2.2 Coarsening Module (M13)

Secrets: Algorithms for coarsening a mesh.

Services: Coarsening a mesh.

Implemented By: MPGT

B.6 Traceability Matrix

A traceability matrix can be used for checking the completeness of the current
design. In this section, there are two matrices, the traceability matrix for re­
quirements and the traceability matrix for anticipated changes. The module
names and their corresponding numbers are can be found in Section B.3

161

Master Thesis - Wen Yu -McMaster- Computing and Software

B.6.1 Traceability Matrix for Requirements

The traceability matrix in Table B.2 makes a connection between the modules
and the requirements. Modules are listed in the first row and requirements
are listed in the first column. If a module, say A, satisfies a requirement, say
B, and A is in j-th column and B in i-th row, then there is a check mark
/in the cell of the i-th row and the j-th column. There is a special column
"Doc." It represents the documentation of PMGT. the "Doc" entry is used to
fulfill the requirement Help (F16). The names of the requirements and their
corresponding numbers are listed below for convenience.

Fl: RefiningMesh

F2: CoarseningMesh

F3: RefiningOrCoarsening

F4: Mesh Type

F5: ElmShape

F6: DomainDimension

F7: Conformal

F8: lnputDefinition

F9: RCinstruction

FlO: OutputStorage

Fll: Vertex U niqueiD

Fl2: ElmUniqueiD

F13: Elm Topology

Fl4: OutElmOrder

Fl5: Out VertexOrder

Fl6: Help

Nl: Performance

N2: Precision

162

Master Thesis - Wen Yu -McMaster - Computing and Software

N 3: Exception

N4: Portability

N5: LookAndFeel

N6: Usability

N7: Maintainability

I M~ M~ M~ M~ M~ M~ M~ M~ M~ Mlq Mq Ml~ Mq Docl
Fl ./
F2 ./
F3 ./ ./
F4 ./ ./ ./ ./ ./
F5 ./ ./
F6 ./ ./ ./
F7 ./ ./ ./
F8 ./ ./
F9 ./ ./
FlO ./ ./ ./
Fll ./
F12 ./
F13 ./
F14 ./
F15 ./
F16 ./
Nl ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N2 ./ ./ ./ ./ ./ ./ ./ ./ ./
N3 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N4 ./ ./ ./ ./ ./ ./ ./
N5 ./ ./ ./ ./ ./ ./ ./ ./ ./
N6 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./
N7 ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./

Table B.2: Traceability Matrix: Modules and Requirements

163

Master Thesis - Wen Yu -McMaster- Computing and Software

B.6.2 Traceability Matrix for Anticipated Changes

The traceability matrix in Table B.3 illustrates the relationship between mod­
ules and anticipated changes listed in Section B.2. If there is a ..fin an entry
of the matrix, the change specified in that row is hidden in the module of the
corresponding column.

AC1 .._(

AC2 .._(

AC3 .._(

AC4 .._(

AC5 .._(

AC6 .._(

AC7 .._(

AC8 .._(

AC9 .._(

AC10 .._(

AC11 .._(

AC12 .._(

AC13 .._(

AC14 .._(.._(

Table B.3: Traceability Matrix: Modules and Anticipated Changes

B.7 Use Hierarchy between Modules

In this section, the uses hierarchy between modules is provided. Parnas (1978)
said of two programs A and B that A uses B if correct execution of B may be
necessary for A to complete the task described in its specification. That is , A
uses B if there exist situations in which the correct functioning of A depends
upon the availability of a correct implementation of B. Figure B.1 illustrates
the use relation between the modules. It can be seen that the graph is a
directed acyclic graph (DAG). Each level of the hierarchy offers a testable and
usable subset of the system, and modules in the higher level of the hierarchy
are essentially simpler because they use modules from the lower levels.

164

Maste-r Thesis - Wen Yu -McMaste-r- Computing and Softwa-re

Figure B.l: Use Hierarchy among Modules

165

Master Thesis - Wen Yu -McMaster- Computing and Software

166

Appendix C

Module Interface Specification
for a Parallel Mesh Generation
Toolbox

167

Master Thesis - Wen Yu -McMaster- Computing and Software

C.l Introduction

One of the advantages of decomposing the system into modules is that each
module can be developed independently. However, the secret and services
of each module does not provide enough information for parallel coding. A
document specifying the interface of each module, called the Module Interface
Specification (MIS), is needed. An MIS of a particular module is not only used
as a guide by the programmers that are responsible for coding this module, but
also by programmers that will use this module. An MIS is abstract because it
describes what the module will do, but not how to do it.

This MIS describes the services of the corresponding modules specified
in the document "Module Guide for a Mesh Generator." A state machine MIS
is used. Note that some of the modules have multiple projections. In this case,
variables listed in section state variables give the format of all states for all
of the created objects. The idea of multiple projection is also used in Bauer
(1995). By using projections, the change of state variables is applicable to the
particular object associated with this module. In this system, this particular
kind of modules includes the module Vertex, Edge, Cell, and Mesh.

The rest of the document is organized as follows. Section C.2 describes
the MIS template used in this document. Section C.3 copies the module hi­
erarchy from Module Guide document for convenience. Section C.4, Section
C.5, Section C.6, Section C.7, Section C.8, Section C.ll, Section C.12 give
the MISs for the Vertex Module, Edge Module, Cell Module, Mesh Module,
Service Module, Refining Module, and Coarsening Module, respectively.

C.2 Template

This section gives the template used in this document. This template is modi­
fied version of the MIS template presented in Ghezzi et al. (2003) and Hoffman
and Strooper (1999). According to this template, each module is modeled as
a finite state machine. It has a set of state variables, inputs, outputs, and
transitions. In the case that an exception conditions become true, an excep­
tion is raised by the associated access program. If an access program has an
output, then Output is specified. If an access program changes states vari­
ables, a Transition is specified. The inputs of the access program are listed as
arguments.

The discrete mathematics notation used here follows that introduced
by Gries and Schneider (1993). This notation is explained in the SRS. A dot
notation is used in two cases. One is for referring to a field in a tuple, and the

168

Master Thesis - Wen Yu -McMaster- Computing and Software

other is for referencing the access program of a module.
The whole template is composed of four parts. First, the name of the

module is given. Second, constants, data types, and access programs that are
used by this module, but defined outside of this module, are listed. Third, the
syntax of the interface is specified. Finally, the semantics of the interface is
described. The template is described in the rest of this section.

C.2.1 Module Name

If "(MP)" is appended to the name of the module, it means that this module
has multiple projections.

C.2.2 Uses

This section lists constants, data types, and access programs that are defined
outside of this module. The format of each imported item is specified after
each header.

C.2.2.1 Imported Constants

Uses (module name) Imports (resource constants list)

C.2.2.2 Imported Data Types

Uses (module name) Imports (resource data type list)

C.2.2.3 Imported Access Programs

Uses (module name) Imports (resource access program list)

C.2.3 Interface Syntax

This section defines the syntax of the module interface. The interface indicates
the services that the module provides. Other modules can only access this
module through this interface. Other information inside the module is the
secret that it hides from other modules. Changing the internal design of a
module will not affect the way that other modules use this module. The
format of each exported items is specified after each header.

169

Master Thesis - Wen Yu -McMaster- Computing and Software

C.2.3.1 Exported Constants

constant name : type of the constant

C.2.3.2 Exported Data Types

data type name := structure of the data type

C.2.3.3 Exported Access Programs

The exported access programs are listed in the tabular format shown below.
In this software, exceptions are handled inside the access r;outine by displaying
error messages and terminating the program.

I Routine Name I Input I Output I Exceptions I

C.2.4 Interface Semantics

The semantics of the interface is introduced in this section. The components of
this section include state variables, state invariants, access program semantics,
etc.

C.2.4.1 State Variables

This section lists the state variables in the format of variable name: type

C.2.4.2 Assumption

Any assumption about this module are specified here.

C.2.4.3 Invariant

Predicates that should always hold before and after each access routine in the
module.

C.2.4.4 Access Program Semantics

This section includes possible exceptions, possible outputs, and possible tran­
sitions. The contents of this section should be as formal as possible. When
necessary and appropriate, an English explanation is included to help readers
understand the meaning of some the mathematical notations.

170

Master Thesis - Wen Yu -McMaster- Computing and Software

C.2.4.5 Local Functions

Functions used to facilitate the expression of the interface semantics.

C.2.4.6 Local Data Types

Data types used to facilitate the expression of the interface semantics.

C.2.4. 7 Local Constants

Constants used to facilitate the expression of interface semantics.

C.2.4.8 Considerations

Other issues related to the MIS of this module, but not covered in the other
parts of the document.

C.3 Module Decomposition

PMGT is decomposited into the modules listed in Table C.l. Note that
only the leaf modules are implemented. The Virtual Memory Module, File
Read/Write Module, Keyboard Input Module, and Screen Display Module are
implemented by the operating system and programming language libraries.
More information on the modular decomposition of the PMGT can be found
in the MG document.

C.4 MIS of Vertex Module

C.4.1 Module Name: Vertex (MP)

C.4.2 Uses

C.4.2.1 Imported Constants

None

C.4.2.2 Imported Data Types

None

171

Master Thesis - Wen Yu -McMaster- Computing and Software

Level 1 Level 2 Level 3

Hardware-
Extended Virtual Memory

Hiding
Computer Module Module

File Read/Write
Module

Module
Device Interface Keyboard Input
Module Module

Screen Display
Module

Behavior- Input Format Mod-
Hiding ule
Module Output Format

Module
Service Module

Software
Mesh Data Module

Entity Module
Decision
Module Mesh Module

Algorithm Module
Refining Module
Coarsening Module

Table C.l: Module Hierarchy

C.4.2.3 Imported Access Programs

None

C.4.3 Interface Syntax

C.4.3.1 Exported constants

None

C.4.3.2 Exported Data Types

VertexT := tuple of (x: IR, y: IR)

C.4.3.3 Exported Access Programs

Level 4

Vertex Module
Edge Module
Cell Module

The exported access programs for the vertex module are listed in Table C.2.

172

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine Name Input Output Exceptions
initVertex lR,lR
get Vertex Vert exT

Table C.2: Exported Access Programs of the Vertex Module

C.4.4 Interface Semantics

C.4.4.1 State Variables

X: JR
y: lR

C.4.4.2 Invariant

None

C.4.4.3 Assumptions

init Vertex() is called before any other access routine.

C.4.4.4 Access Program Semantics

C.4.4.4.1 initVertex(xl : JR, yl: JR)

• Transition
x := xl
y := yl

C.4.4.4.2 getVertex()

• Output
(x,y)

C.4.4.5 Local Functions

None

C.4.4.6 Local Data Types

None

173

Master Thesis - Wen Yu -McMaster- Computing and Software

C.4.4. 7 Local Constants

None

C.4.4.8 Considerations

None

C.5 MIS of Edge Module

C.5.1 Module Name: Edge (MP)

C.5.2 Uses

C.5.2.1 Imported Constants

None

C.5.2.2 Imported Data Types

Uses Vertex Module Imports VertexT

C.5.2.3 Imported Access Programs

None

C.5.3 Interface Syntax

C.5.3.1 Exported constants

None

C.5.3.2 Exported Data Types

EdgeT := set of VertexT

C.5.3.3 Exported Access Programs

The exported access programs for the Edge module are listed in Table C.3.

174

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine Name Input Output Exceptions
initEdge VertexT, VertexT Equal Vertices
get Edge EdgeT

Table C.3: Exported Access Programs of the Edge Module

C.5.4 Interface Semantics

C.5.4.1 State Variables

e: set of VertexT

C.5.4.2 Invariant

#e=2

C.5.4.3 Assumptions

initEdge() is called before any other access routine.

C.5.4.4 Access Program Semantics

None

C.5.4.4.1 initEdge(start: VertexT, end: VertexT)

• Exception
start = end ===? EqualVertices

• Transition
e: = {start, end}

C.5.4.4.2 getEdge()

• Output
e

C.5.4.5 Local Functions

None

C.5.4.6 Local Data Types

None

175

Master Thesis - Wen Yu -McMaster - Computing and Software

C.5.4. 7 Local Constants

None

C.5.4.8 Considerations

None

C.6 MIS of Cell Module

C.6.1 Module Name: Cell (MP)

C.6.2 Uses

C.6.2.1 Imported Constants

None

C.6.2.2 Imported Data Types

Uses Vertex Module Imports VertexT

C.6.2.3 Imported Access Programs

None

C.6.3 Interface Syntax

C.6.3.1 Exported constants

None

C.6.3.2 Exported Data Types

Cell T := set of Vert exT

C.6.3.3 Exported Access Programs

The exported access programs for the cell module are listed in Table C.4.

176

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine N arne Input Output Exceptions
initCell VertexT, VertexT, Vert exT Equal Vertices
get Cell CellT

Table C.4: Exported Access Programs of the Cell Module

C.6.4 Interface Semantics

C.6.4.1 State Variables

c: set of VertexT

C.6.4.2 Invariant

#c= 3

C.6.4.3 Assumptions

initCell() is called before any other access routine.

C.6.4.4 Access Program Semantics

None

C.6.4.4.1 initCell(vl: VertexT, v2: VertexT, v3: VertexT)

• Exception
vl = v2 V v2 = v3 V v3 = vl ==? EqualVertices

• Transition
c := {vl, v2, v3}

C.6.4.4.2 getCell()

• Output
c

C.6.4.5 Local Functions

None

C.6.4.6 Local Data Types

None

177

Master Thesis - Wen Yu -McMaster- Computing and Software

C.6.4.7 Local Constants

None

C.6.4.8 Considerations

None

C.7 MIS of Mesh Module

C.7.1 Module Name: Mesh (MP)

C.7.2 Uses

C.7.2.1 Imported Constants

None

C.7.2.2 Imported Data Types

Uses Vertex Module Imports VertexT
Uses Edge Module Imports EdgeT
Uses Cell Module Imports CellT

C.7.2.3 Imported Access Programs

None

C.7.3 Interface Syntax

C.7.3.1 Exported constants

None

C.7.3.2 Exported Data Types

MeshT := set of Cell T

C.7.3.3 Exported Access Programs

The exported access programs for the mesh module are listed in Table C.5.

178

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine N arne Input Output Exceptions
initMesh
get Mesh MeshT

numOfCells N
add Cell CellT CellExist

delete Cell CellT CellN otExist
on Edge VertexT, EdgeT lB

belongToCell EdgeT , CellT lB
inside VertexT , CellT lB

vertices set of VertexT
edges set of EdgeT

boundary Edges set of EdgeT
boundary Vertices set of VertexT

Table C.5: Exported Access Programs of the Mesh Module

C. 7.4 Interface Semantics

C.7.4.1 State Variables

m: set of Cell T

C.7.4.2 Invariant

#m;:::o

C.7.4.3 Assumptions

initCell() is called before any other access routine.

C. 7 .4.4 Access Program Semantics

C.7.4.4.1 initMesh()

• Transition
m:=0

C.7.4.4.2 getMesh()

• Output
m

179

Master Thesis - Wen Yu -McMaster- Computing and Software

C.7.4.4.3 numOfCells()

• Output
#m

C.7.4.4.4 addCell(c: CellT)

• Exception
c E m ==} CellExist

• 'fransition
m := mU {c}

C. 7 .4.4.5 deleteCell(c: Cell T)

• Exception
c tt m ==? CellN otExist

• 'fransition
m := m\{c}

C.7.4.4.6 onEdge(v: VertexT, e: EdgeT)

• Description
Returns true if a vertex v is on the line segment between two vertices
(exclusive) of the edge e.

• Output
:3v1 , v2: VertexT I
v 1 E e 1\ v2 E e 1\ v 1 =1- v2 1\ v =1- v 1 1\ v =1- v2 :
(vl.x < v.x:::; v2.x 1\

(v.y- vl.y)/(v.x- vl.x) = (v2.y- vl.y)/(v2.x- vl.x))

C.7.4.4.7 belongToCell(e: EdgeT, c: CellT)

• Description
Returns true if an edge e belongs to a cell c.

• Output
Vv: VertexT I vEe: v E c

180

Master Thesis - Wen Yu -McMaster- Computing and Software

C.7.4.4.8 inside(v: VertexT, c: CellT)

• Description
Returns true if a vertex v is inside a cell c. (The algorithm is adopt from
Franklin (Last Access: January, 2006).)

• Output
Jvl, v2, v3: Vert exT I
vl E c A v2 E c A v3 E c A vl =/:. v2 A v2 =/:. v3 A v3 =/:. vl :
((v.y- vl.y) * (v2.x- vl.x)- (v.x- vl.x) * (v2.y- vl.y)) *
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) > 0 A
((v.y- v2.y) * (v3.x- v2.x)- (v.x- v2.x) * (v3.y- v2.y)) *
((v.y- v3.y) * (vl.x- v3.x)- (v.x- v3.x) * (vl.y- v3.y)) > 0

C.7.4.4.9 vertices()

• Description
Returns the set of all the vertices of the mesh.

• Output
{v: VertexT I (Vc: CellT IcE m: v E c): v}

C.7.4.4.10 edges()

• Description
Returns the set of all the edges of the mesh

• Output
{vl,v2: VertexT I (Vc: CellT IcE m: vl E c A v2 E c A vl =/:. v2):
{ vl, v2}}

C.7.4.4.11 boundaryEdges()

• Description
Returns a set of boundary edges of the mesh

• Output
{b: EdgeT I bE Edges() A

(#{c: CellT IcE m A belongToCell(b, c): c}=l):b}

181

Master Thesis - Wen Yu -McMaster- Computing and Software

C.7.4.4.12 boundaryVertices()

• Description
Returns a set of boundary vertices of the mesh.

• Output
{v: VertexT I v E boundaryEdges(): v}

C.7.4.5 Local Functions

C.7.4.6 Local Data Types

None

C. 7 .4. 7 Local Constants

None

C.7.4.8 Considerations

None

C.8 MIS of Service Module

C.8.1 Module Name: Service

C.8.2 Uses

C.8.2.1 Imported Constants

None

C.8.2.2 Imported Data Types

Uses Vertex Module Imports VertexT
Uses Edge Module Imports EdgeT
Uses Cell Module Imports CellT
Uses Mesh Module Imports MeshT

C.8.2.3 Imported Access Programs

Uses Mesh Module Imports onEdge(), inside(),
vertices(), edges(), boundaryEdges(), boundary Vertices()

182

Master Thesis - Wen Yu -McMaster- Computing and Software

C.8.3 Interface Syntax

C.8.3.1 Exported constants

None

C.8.3.2 Exported Data Types

InstructionT :={REFINE, COARSEN, NOCHANGE}
CellinstructionT:= tuple of (cell: Cell T, instr: InstructionT)
RCinstructionT := tuple of
(rORc: InstructionT, c!nstru: set of CellinstructionT)

C.8.3.3 Exported Access Programs

The exported access programs for the services module are listed in Table C.6.

Routine N arne Input Output Exceptions
is ValidMesh MeshT]ffi

covering Up MeshT x MeshT]ffi

Table C.6: Exported Access Programs of the Services Module

C.8.4 Interface Semantics

C.8.4.1 State Variables

None

C.8.4.2 Invariant

None

C.8.4.3 Assumptions

None

C.8.4.4 Access Program Semantics

C.8.4.4.1 isValidMesh(m: MeshT)

183

Master Thesis - Wen Yu -McMaster- Computing and Software

• Description
Returns true if cells of the mesh are bounded, conformal, and non over­
lapping.

• Output
Bounded(m) 1\ Conformal(m) 1\ Nolnteriorlntersect(m)

C.8.4.4.2 coveringUp(ml:MeshT, m2: MeshT)

• Description
Returns false if any boundary vertex of one mesh is not on a boundary
edge of another mesh. Otherwise, return true.

• Output
\lvl,v2: VertexT I
vl E boundaryVertice(ml) 1\ v2 E boundaryVertices(m2) :
(3 bl, b2: EdgeT I bl E boundaryEdges(ml) 1\ b2 E boundaryEdges(m2):
(onEdge(vl, b2) V vl E b2) 1\ (onEdge(v2, bl) V v2 E bl))

C.8.4.5 Local Functions

• ValidEdge: EdgeT ---> 1BI
ValidEdge(e: EdgeT) = #e = 2

• Area: Cell T ---> lR
Area(c: CellT)- I:vl,v2,v3: VertexT I vl E c/\v2 E c/\v3 E c
1\ v 1 i- v2 1\ v2 i- v3 1\ v3 i- v 1 :

1
1
2 * lvl.x * v2.y- v2.x * vl.y +

v2.x * v3.y- v3.x * v2.y +
vl.x * v3.y- v3.x * vl.yl

• ValidCell: CellT ---> 1BI
ValidCell(c: CellT) - #c = 3 1\ Area(c) ~ 0

• Bounded: MeshT ---> 1BI
Bounded(m: MeshT) = \lv: VertexT I v E boundaryVertices(m):
(#{e: EdgeT I e E boundaryEdge(m) 1\v E e: e} = 2)

• Conformal: MeshT ---> 1BI
Conformal(m: MeshT) =Vel, c2: Cell T I c1 E m 1\ c2 Em 1\ c1 #- c2 :
(3e: EdgeT I e E edges(m) : (3v : VertexT I v E vertices(m) :
(c1 n c2 = e V c1 n c2 = v V c1 n c2 = 0) 1\ (-. onEdge (v, e))))

184

Master Thesis - Wen Yu -McMaster- Computing and Software

• Nolnteriorlntersect: MeshT ----+ 1ffi
Nolnteriorlntersect(m: MeshT) Vcl , c2: CellT I
c1 E m/\c2 E m/\cl =/= c2: (\lv: VertexT I inside(v, cl):-, inside(v, c2))

C.8.4.6 Local Data Types

None

C.8.4. 7 Local Constants

None

C.8.4.8 Considerations

None

C.9 MIS of Input Format Module

C.9.1 Module Name: Input Format

C.9.2 Uses

C.9.2.1 Imported Constants

None

C.9.2.2 Imported Data Types

Uses Embedding Application Imports InputFormatT

C.9.2.3 Imported Access Programs

None

C.9.3 Interface Syntax

C.9.3.1 Exported constants

None

C.9.3.2 Exported Data Types

None

185

Master Thesis - Wen Yu - McMaster- Computing and Software

C.9.3.3 Exported Access Programs

The exported access programs for the input format module are listed in Table
C.7.

Routine Name Input Output Exceptions
convertinput InputForrnatT MeshT

Table C. 7: Exported Access Programs of the Input Format Module

C.9.4 Interface Semantics

C.9.4.1 State Variables

None

C.9.4.2 Invariant

None

C.9.4.3 Assumptions

None

C. 9 .4.4 Access Program Semantics

C.9.4.4.1 convertlnput(m: InputFormatT)

• Output
m' such that
m' is of type MeshT and m and m' are equivalent.

C.9.4.5 Local Functions

None

C.9.4.6 Local Data Types

None

C.9.4. 7 Local Constants

None

186

Master Thesis - Wen Yu- McMaster- Computing and Software

C.9.4.8 Considerations

• Semantics of access programs in this module heavily depend on the for­
mat of the input mesh. At this stage, this information is missing. Un­
known data types InputFormatT is used to represent the data structures
of input mesh. English is used to describe the semantics.

C.lO MIS of Output Format Module

C.lO.l Module Name: Output Format

C.l0.2 Uses

C.l0.2.1 Imported Constants

None

C.l0.2.2 Imported Data Types

Uses Embedding Application Imports OutputFormatT

C.10.2.3 Imported Access Programs

None

C.10.3 Interface Syntax

C.10.3.1 Exported constants

None

C.10.3.2 Exported Data Types

None

C.10.3.3 Exported Access Programs

The exported access programs for the output format module are listed in Table
C.8.

187

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine N arne Input Output Exceptions
convert Output MeshT OutputFormatT

Table C.8: Exported Access Programs of the Output Format Module

C.10.4 Interface Semantics

C.10.4.1 State Variables

None

C.10.4.2 Invariant

None

C.10.4.3 Assumptions

None

C.10.4.4 Access Program Semantics

C.10.4.4.1 convertOutput(m: MeshT)

• Output
m' such that
m' is of type OutputFormatT and m and m' are equivalent.

C.10.4.5 Local Functions

None

C.10.4.6 Local Data Types

None

C.10.4. 7 Local Constants

None

188

Master Thesis - Wen Yu -McMaster- Computing and Software

C.10.4.8 Considerations

• Semantics of access programs in this module heavily depend on the for­
mat of the requirements of the output. At this stage, this information
is missing. Unknown data type OutputFormatT are used to represent
the data structures of input and output. English is used to describe the
semantics.

C.ll MIS of Refining Module

C.ll.l Module Name: Refining

C.11.2 Uses

C.11.2.1 Imported Constants

None

C.11.2.2 Imported Data Types

Uses Mesh Module Imports MeshT
Uses Service Module Imports
InstructionT, CellinstructionT, RCinstructionT

C.11.2.3 Imported Access Programs

Uses Service Module Imports is ValidMesh{) 1 coveringUp()

C.11.3 Interface Syntax

C.11.3.1 Exported constants

None

C.l1.3.2 , Exported Data Types

None

C.11.3.3 Exported Access Programs

The exported access programs for the refining module are listed in Table C.9.

189

Master Thesis - Wen Yu -McMaster- Computing and Software

Routine N arne Input Output Exceptions
refining MeshT, RCinstructionT MeshT

Table C.9: Exported Access Programs of the Refining Module

C.11.4 Interface Semantics

C.11.4.1 State Variables

None

C.11.4.2 Invariant

None

C.11.4.3 Assumptions

isValidMesh(m) and i.rORc =REFINE
for input m: MeshT and i: RCinstructionT

C.l1.4.4 Access Program Semantics

C.11.4.4.1 refining(m: MeshT, i: RCinstructionT)

• Output
m'
such that
ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\ #m' 2: #m

C.11.4.5 Local Functions

None

C.11.4.6 Local Data Types

None

C.11.4.7 Local Constants

None

C.11.4.8 Considerations

None

190

Master Thesis - Wen Yu -McMaster- Computing and Software

C.12 MIS of Coarsening Module

C.12.1 Module Name: Coarsening

C.12.2 Uses

C.12.2.1 Imported Constants

None

C.12.2.2 Imported Data Types

Uses Mesh Module Imports MeshT
Uses Service Module Imports
InstructionT, CellinstructionT, RCinstructionT

C.12.2.3 Imported Access Programs

Uses Service Module Imports is ValidMesh(), covering Up()

C.12.3 Interface Syntax

C.12.3.1 Exported constants

None

C.12.3.2 Exported Data Types

None

C.12.3.3 Exported Access Programs

The exported access programs for the coarsening module are listed in Table
C.10.

Routine Name Input Output Exceptions
coarsening MeshT, RCinstructionT MeshT

Table C.10: Exported Access Programs of the Coarsening Module

191

Master Thesis - Wen Yu -McMaster- Computing and Software

C.12.4 Interface Semantics

C.l2.4.1 State Variables

None

C.12.4.2 Invariant

None

C.l2.4.3 Assumptions

isValidMesh(m) and i.rORc = COARSEN

for input m: MeshT and i: RCinstructionT

C.12.4.4 Access Program Semantics

C.12.4.4.1 coarsening(m: MeshT)

• Output
m'
such that
ValidMesh(m) 1\ ValidMesh(m') 1\ CoveringUp(m', m) 1\ #m' :s; #m

C.12.4.5 Local Functions

None

C.12.4.6 Local Data Types

None

C.12.4.7 Local Constants

None

C.12.4.8 Considerations

None

192

Appendix D

The Summary of Validation
Testing Report for a Parallel
Mesh Generation Toolbox

((

193

Master Thesis - W en Yu - McMaster - Computing and Software

D.l Introduction

This section gives an overview of the Testing Summary for a Parallel Mesh
Generation Toolbox (PMGT). First, the purpose of the document is provided.
Second, the scope of the testing is identified. Third, the organization of the
document is summarized.

D .1.1 Purpose of the Document

This document specifies validation tests for a PMGT. The results of the tests
and analysis are also provided. The intended audience is testers who are going
to test the system and developers who are going to maintain the software.
Note that test document is dynamic in the sense that it should be updated
when the development of the system proceeds.

D .I. 2 Scope of the Testing

In general, the purpose of testing is to help produce quality software. Due
to limits on the time available for testing, the scope of the testing of PMGT
is restricted to test the most important test factors. Like other scientific
computing software, correctness and efficiency are considered to be the two
most important test factors for PMGT. For efficiency testing, the focus is on
execution time rather than on storage.

D.1.3 Organization of the Document

Section D.1 (this section) is an introduction to the report. Section D.2 shows
what is going to be tested and the coverage of the testing, with respect to the
software requirements and the software design. Section D.3 gives the result of
the testing and the analysis .

D.2 Testing PMGT

Test cases are listed in Section D. 2.1. The detailed information for these test
cases can be found in Section D.3. The traceability matrix in Section D.2.2
shows the association between test cases and the functional and nonfunctional
requirements that are specified in the Software Requirements Specification
(SRS) document. Similarly, a traceability matrix for test cases and the leaf
modules as introduced in the Module Guide (MG) as shown in Section D.2.3.
Tracking these relations is useful for developing and maintaining the software.

194

Master Thesis - Wen Yu -McMaster- Computing and Software

D.2.1 Test Cases

The correctness validation test is designed for verifying the functional require­
ments RefiningMesh (F1), CoarseningMesh (F2), ElmShape (F5), and Con­
formal (F7). Other requirements for correctness are trivial and are satisfied
obviously. For example, since the vertices are stored in an array, the Out­
VertexOrder (F15) requirement is met by outputting the vertices in the order
as the order of them in the array. The tests are against above requirements
are automated. The automated validation tests requirements (ACVTRs) are
listed in Section D .2.1.1. Since the output mesh also can also be displayed
on screen, it can be checked manually. The visual correctness validation tests
requirements (VCVTRs) are listed in Section D.2.1.2. The test cases are in
Section D.2.1.3.

D.2.1.1 Automated Correctness Validation Tests Requirements

A list of ACVTRs follows. All test cases should pass these tests. Some test
cases relate to data definitions defined in the SRS. In these cases the related
data definition defined is shown as Dx, where x is the number of the associated
data definition given in the SRS.

• The area of each element is greater than zero (referring to D5).

• The boundary of the mesh is closed. (referring to D15).

• The mesh is conformal (referring to D16).

• The intersection of any two elements is empty (referring to D17).

• The input mesh and output mesh CoveringUp each other (referring to
D19).

• The length of each edge is greater than zero. (This is required by the
definition of a mesh, which is defined in the SRS.)

• The vertices of each element are listed in a counterclockwise order. (The
counterclockwise order of the vertices for each element is not necessary
for implementing PMGT. However, it is adopted by most meshing and
FEA software. PMGT uses this convention.)

• The output mesh conforms to the Euler Equation. (This requirement is
not documented in the SRS. However, any mesh should implicitly satisfy
the equation nc + nv - ne = 1, where nc is the number of cells, nv is the
number of vertices, and ne is the number of edges.)

195

Master Thesis - Wen Yu -McMaster- Computing and Software

D.2.1.2 Visual Correctness Validation Tests Requirements

The output meshes should also be visually checked to ensure that the following
VCVTRs are met.

• No vertex is outside of the input domain.

• No vertex is inside of a cell.

• No dangling points or edges are present.

• All cells are connected.

• The mesh is conformal.

Some of the VCVTRs overlap with the ACVTRs. This redundancy provides
increased confidence in case one testing method fails to catch an error.

D.2.1.3 Test Cases

The test cases developed involve testing meshes against the above require­
ments. In each test case, except the last one, the input mesh is refined and
then coarsened. Two algorithms for refining are used. One algorithm is called
Split. It splits one cell into three by adding a point in the centroid of the
triangle and connecting the added point to the three original vertices. The
other algorithm is simply call Refine. It refines the original mesh by longest
edge bisection.

The name of each test case includes three parts. For example, test case
AxxC B N means that the test uses Axx algorithm for refining, where Axx
equals Split or Refine. The letter C indicates that coarsening is performed.
If the Cis missing, the input mesh is not coarsened. B is the number of refine­
ments before coarsening. If B is S, the mesh is refined once and then coarsen
once. If the B is M, the mesh is refined multiple time before coarsening. N is a
number. If theN is omitted, it means only one of this kind of test performed.
Otherwise the same test procedures is used several times on different input
meshes. The reason for using the same procedure is that the topology of the
output meshes may differ for different input meshes.

• Test Case SplitCS (TCI): This test case tests the correctness of PMGT.
The input mesh is shown in Figure D.3. The refining and coarsening
criterion is that the cells intersected with the vertical line, x = 0.6, are
Split once, then the cells of the new mesh that intersect with the vertical
line are coarsened once. When the splitting and coarsening is done, the

196

Master Thesis - Wen Yu -McMaster- Computing and Software

vertical line is moved to the right one unit (x = x + 1.0), and another
Splitting and coarsening is performed. This procedure is repeated until
no cells intersect with the vertical line.

• Test Case RefineCSJ (TC2): This test case tests the correctness of
PMGT. The input mesh is the same as TCl, which is shown in Fig­
ure D.3. There is a vertical line at x = 0.6. The refining and coarsening
criterion is that the cells that intersect with the vertical line are refined
once, then the cells of the new mesh that intersect with the vertical
line are coarsened once. When the refining and coarsening are done,
the vertical line is moved to the right one unit, and another refining
and coarsening is performed. This procedure is repeated until no cells
intersect with the vertical line.

• Test Case RefineCS2 (TC3): This test case tests the correctness of
PMGT. The refining and coarsening criterion, vertical line function, and
the test procedure are the same as test case TC2. However, the input
mesh is different. The input mesh is showed in Figure D.4.

• Test Case RefineCM (TC4): This test case tests the correctness of
PMGT. The input mesh is shown in Figure D.5. There is a vertical
line at x = 0.5. The refining and coarsening criterion is the size of the
cells. The size of the cell is measured by the length of the longest edge
of the cell. The cells that intersect with the vertical line are refined until
the criterion is met. When the refining is done, the vertical line is moved
to the right 0.6 unit (x = x + 0.6) , and another refinement is performed.
After five refinements are done, the cells to be left of the vertical line by
up to 2 units are coarsened, until the coarsening criterion is met. The
refining and coarsening are stopped when the vertical line moves to a
position outside of the domain.

• Test Case RefineM (TC5): This test case tests the correctness of PMGT.
The input mesh is shown in Figure D.6. There is an arc with radius of
0. 7 unit going through the mesh. Cells that intersect with the arc are
refined until the required number of refinements has been reached.

• Test Case Split (TC6): This test case tests both the correctness and
speed of PMGT. The input mesh is shown in Figure D.7. This test
simply splits all cells of the mesh 4 times. It is done in both the serial
version and the parallel version with different number of processors. The
execution time of setting the cells to be refined and splitting the cells is
measured.

197

Master Thesis - Wen Yu -McMaster - Computing and Software

D.2.2 Traceability Matrix for SRS

In the traceability matrix for software requirements, if a test case tests the
functionality of a software requirement, there will be a check mark on the
cell for the corresponding test case. In each row of the traceability matrix
for software requirements (Table D .1), if the requirement in that row defines
the correctness or the speed of the software, one or more cells in this row
are checked. Otherwise , all cells in the row are empty. Table D.1 shows that
the test cases developed in Section D.2.1 assist with validating the correctness
and speed of the software. The detailed information for each functional and
nonfunctional requirements can be found in the SRS document. The names of
the requirements and their corresponding numbers are listed below for conve-
mence.

Fl: RefiningMesh

F2: Coarsening Mesh

F3: RefiningOrCoarsening

F4: Mesh Type

F5: ElmShape

F6: DomainDimension

F7: Conformal

F8: InputDefinition

F9: RCinstruction

FlO: OutputStorage

Fll: Vertex U niqueiD

Fl2: Elm U niqueiD

F13: Elm Topology

Fl4: Out Elm Order

F15: OutVertexOrder

F16: Help

198

Master Thesis - Wen Yu -McMaster- Computing and Software

Nl: Performance

N2: Precision

N3: Exception

N4: Portability

N5: LookAndFeel

N6: Usability

N7: Maintainability

Fl
F2
F3
F4
F5
F6
F7
F8
F9
FlO
Fll
F12
F13
F14
F15
F16
Nl
N2
N3
N4
N5
N6
N7

I TCl I TC2 I TC3 I TC4 I TC5 I T C6 I
.(.(.(.(.(.(

.(.(.(.(

.(.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

;(.(.(.(.(

.(.(.(.(.(.(

.(.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(.(.(.(.(

.(

Table D.l : Traceability Matrix: Test Cases and Requirements

199

Master Thesis - Wen Yu -McMaster- Computing and Software

D.2.3 Traceability Matrix for MG

Similar to Section D.2.2, the traceability matrix for modules (Table D.2) shows
that the test cases validate the modules that are associated with correctness
and speed. The names of modules appear in Table D.2 are listed below. The
detailed information for each module can be found in the MG document.

Ml: Virtual Memory Module

M2: File Read/Write Module

M3: Keyboard Input Module

M4: Screen Output Module

M5: Input Format Module

M6: Output Format Module

M7: Service Module

M8: Vertex Module

M9: Edge Module

MlO: Cell Module

Mll: Mesh Module

M12: Refining Module

M13: Coarsening Module

D.3 Results and Analysis

The results of the test cases defined in Section D.2.1.3 are listed in Section
D.3.1. The analysis, including charts that compare the execution time of the
parallel version to the serial version are provided in Section D.3.2.

200

Master Thesis - Wen Yu -McMaster- Computing and Software

I TCl I TC2 I TC3 I TC4 I TC5 I TC6 I
Ml .(.(.(.(.(.(

M2 .(.(.(.(.(.(

M3 .(.(.(.(.(.(

M4 .(.(.(.(.(.(

M5 .(.(.(.(.(.(

M6 .(.(.(.(.(.(

M7 .(.(.(.(.(

M8 .(.(.(.(.(.(

M9 .(.(.(.(.(.(

MlO .(.(.(.(.(.(

Mll .(.(.(.(.(.(

M12 .(.(.(.(.(.(

M13 .(.(.(.(

Table D.2: Traceability Matrix: Test Cases and Modules

D .3.1 Testing Results

The following tables list the testing results of each test case. The field Test
Case Number and Test Case Name list the number and the name of each test
case. The Input field gives the number of the figure that is the input for that
test case, or a description of the input mesh. The Expected Output describes
the requirements of the output mesh. The Actual Output gives the result
of the test. The Selected Output Mesh field should give the output meshes.
However, there are too many intermediate mesh to display, and displaying only
the final mesh is too simple to illustrate the feature of the test case. Selected
intermediate meshes and final mesh are included in the Actual Output field.
The Result field indicates whether the test is passed or failed.

201

Master Thesis - Wen Yu - McMaster- Computing and Software

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

TC1
SplitCS
Figure D.3
ACVTRs and VCVTRs listed in
Section D. 2 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure D.8, D.9 , D.10
Passed

TC2
RefineCS1
Figure D.3
ACVTRs and VCVTRs listed in
Section D.2 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure D.ll, D.12, D.13
Passed

TC3
RefineCS2
Figure D.4
ACVTRs and VCVTRs listed in
Section D.2 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure D.14, D.15, D.16
Passed

202

Master Thesis - Wen Yu -McMaster- Computing and Software

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

Test Case Number
Test Case N arne
Input
Expected Output

Actual Output

Selected Output Mesh
Result

TC4
RefineCM
Figure D.5
ACVTRs and VCVTRs listed in
Section D.2 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure D.17, D.18, D.19, D.20
Passed

TC5
RefineM
Figure D.6
ACVTRs and VCVTRs listed in
Section D. 2 are met
Summary of the correctness test:
15 tests are performed.
15 tests succeed.
0 tests fail.
Figure D.21, D.22, D.23
Passed

TC6
SplitM
Figure D.6
ACVTRs and VCVTRs listed in
Section D. 2 are met
Execution time increases as the
number of cells increases. Execu­
tion time decreases as the number
of processors increases.
Execution time as indicated in Fig­
ure D.1
The mesh is too dense to be shown.
Passed

203

Master Thesis - Wen Yu - McMaster- Computing and Software

Test Result of Efficiency Test
600r-----r-----.-----.-----.-----.-----.-----~----~--~

500

400

~serial

200

100

1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Cells

Figure D.l: Output of TC6

D.3.2 Analysis

All of the test cases conform to the ACVTRs and VCVTRs listed in Section
D.2. The test result of TC6 show that when the number of cells increased, the
execution time increased, and when the number of processors increased, the
execution time decreased. That is, this test is passed. Figure D.2 show the
speedup when using different numbers of processors. The speedup is defined
as

T1
Speedup(n) = Tn

Where T1 is the execution time of the serial version, and Tn is the execution
time of the parallel version with n processors. In general, Speedup(n) <
n. However, for PMGT, when the number of cells is greater than 2700 ,
Speedup(n) > n, which is a super linear speedup. Since the algorithms used
for the serial version and the parallel version are the same, the super linear

204

Q.
:J

"'0
Q)
Q)
Q.

(/)

Master Thesis - Wen Yu -McMaster- Computing and Software

Speedup for Different Number of Processors
14.-----.------.-----.------------~-----.------.-----~-----.

12

10

8

6

4

OL-----~-----L----~------~----~----~------L-----~----~
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Cells

Figure D.2: Speedup for Different Numbers of Processors

speedup is probably due to the cache effect. That is, when the numbers of
processors increases, the size of the accumulated caches from different proces­
sors also increases. With the larger accumulated cache size, more, or even all,
core data set can fit into the caches and the memory access time reduces dra­
matically. This may explain the extra speedup in additional to the speedup
due to parallel computation.

205

Master Thesis - Wen Yu -McMaster- Computing and Software

Original Mesh

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D.3: Input 1

Original Mesh

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D.4: Input 2

206

Master Thesis - Wen Yu- McMaster- Computing and Software

Original Mesh

5

-1

0 2 3 4 5 6 7 8 9

Figure D.5: Input 3

Original Mesh

0 .9

0.8

0.7

0.6

0 .5

0.4

0 .3

0 .2

0.1

0
0 0 .2 0.4 0.6 0.8

Figure D.6: Input 4

207

Master Thesis - Wen Yu -McMaster- Computing and Software

Original Mesh

Figure D. 7: Input 5

Mesh IOf "newVertices1.dat" and "newCells1 .dat"

8

7

-1

-2

0 2 4 8 10 12 14

Figure D.8: Output 1 of TCl

208

Maste'r Thesis - Wen Yu -McMaster- Computing and Software

Mesh for "newVertices1 5.dat" and "newCells15.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D.9: Output 2 of TCl

Mesh for "newVertices28.dat" and "newCells28.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D.lO: Output 3 of TCl

209

Master Thesis - Wen Yu -McMaster- Computing and Software

Mesh for "newVertices1.dat" and "newCells1.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D .11: Output 1 of TC2

Mesh for "newVertices11.dat" and "newCells11.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D .12: Output 2 of TC2

210

Master Thesis - Wen Yu -McMaster- Computing and Software

Mesh for "newVertices28.dat" and "newCells28.dat"

8

7

-1

-2

0 2 4 6 8 10 12 14

Figure D.l3: Output 3 of TC2

211

Master Thesis - Wen Yu -McMaster- Computing and Software

8

7

-1

-2

8

7

-1

0

-2

0

2

2

Mesh for "newVertices9.dat" and "newCells9.dat"

4 6 8 10 12 14

Figure D .14: Output 1 of TC3

Mesh for "newVertices20.dat" and "newCells20.dat"

4 6 8 10 12 14

Figure D.l5: Output 2 of TC3

212

Master Thesis - Wen Yu -McMaster- Computing and Software

8

7

-1

-2

0

5

-1

0

2

Mesh for "newVertices28.dat" and "newCells28.dat"

4 6 8 10 12 14

Figure D.16: Output 3 of TC3

Mesh for "newVertices2.dat" and "newCells2.dat"

2 3 4 5 6 7 8 9

Figure D.17: Output 1 of TC4

213

Master Thesis - Wen Yu -McMaster- Computing and Software

Mesh for "newVertices8.dat" and "newCells8.dat"

5

-I

0 2 3 4 5 6 7 8 9

Figure D.l8: Output 2 of TC4

Mesh for "newVertices14.dat" and "newCells14.dat"

5

-1

0 2 3 4 5 6 7 8 9

Figure D.l9: Output 3 of TC4

214

Master Thesis - Wen Yu -McMaster- Computing and Software

Mesh for "newVertices16.da1" and "newCells16.da1"

5

-1

0 2 3 4 5 6 7 8 9

Figure D.20: Output 4 of TC4

Mesh for "newVertices1.da1" and "newCellsl.dat"

0.9

0 .8

0.7

0.6

0.5

0.4

0 .3

0.2

0.1

0
0 0.4 0.6 0.8

Figure D.21: Output 1 of TC5

215

Master Thesis - Wen Yu -McMaster - Computing and Software

Mesh for "newVertlces9.dat" and "newCells9.dat"

0.9

0 .8

0 .7

0.6

0 .5

0.4

0 .3

0 .2

0.1

0
0

Figure D.22: Output 2 of TC5

Mesh for "newVertices15.dat" and "newCells15.dat"

Figure D.23: Output 3 of TC5

216

9190 16

	Yu_Wen_2007_01_master0001
	Yu_Wen_2007_01_master0002
	Yu_Wen_2007_01_master0003
	Yu_Wen_2007_01_master0004
	Yu_Wen_2007_01_master0005
	Yu_Wen_2007_01_master0006
	Yu_Wen_2007_01_master0007
	Yu_Wen_2007_01_master0008
	Yu_Wen_2007_01_master0009
	Yu_Wen_2007_01_master0010
	Yu_Wen_2007_01_master0011
	Yu_Wen_2007_01_master0012
	Yu_Wen_2007_01_master0013
	Yu_Wen_2007_01_master0014
	Yu_Wen_2007_01_master0015
	Yu_Wen_2007_01_master0016
	Yu_Wen_2007_01_master0017
	Yu_Wen_2007_01_master0018
	Yu_Wen_2007_01_master0019
	Yu_Wen_2007_01_master0020
	Yu_Wen_2007_01_master0021
	Yu_Wen_2007_01_master0022
	Yu_Wen_2007_01_master0023
	Yu_Wen_2007_01_master0024
	Yu_Wen_2007_01_master0025
	Yu_Wen_2007_01_master0026
	Yu_Wen_2007_01_master0027
	Yu_Wen_2007_01_master0028
	Yu_Wen_2007_01_master0029
	Yu_Wen_2007_01_master0030
	Yu_Wen_2007_01_master0031
	Yu_Wen_2007_01_master0032
	Yu_Wen_2007_01_master0033
	Yu_Wen_2007_01_master0034
	Yu_Wen_2007_01_master0035
	Yu_Wen_2007_01_master0036
	Yu_Wen_2007_01_master0037
	Yu_Wen_2007_01_master0038
	Yu_Wen_2007_01_master0039
	Yu_Wen_2007_01_master0040
	Yu_Wen_2007_01_master0041
	Yu_Wen_2007_01_master0042
	Yu_Wen_2007_01_master0043
	Yu_Wen_2007_01_master0044
	Yu_Wen_2007_01_master0045
	Yu_Wen_2007_01_master0046
	Yu_Wen_2007_01_master0047
	Yu_Wen_2007_01_master0048
	Yu_Wen_2007_01_master0049
	Yu_Wen_2007_01_master0050
	Yu_Wen_2007_01_master0051
	Yu_Wen_2007_01_master0052
	Yu_Wen_2007_01_master0053
	Yu_Wen_2007_01_master0054
	Yu_Wen_2007_01_master0055
	Yu_Wen_2007_01_master0056
	Yu_Wen_2007_01_master0057
	Yu_Wen_2007_01_master0058
	Yu_Wen_2007_01_master0059
	Yu_Wen_2007_01_master0060
	Yu_Wen_2007_01_master0061
	Yu_Wen_2007_01_master0062
	Yu_Wen_2007_01_master0063
	Yu_Wen_2007_01_master0064
	Yu_Wen_2007_01_master0065
	Yu_Wen_2007_01_master0066
	Yu_Wen_2007_01_master0067
	Yu_Wen_2007_01_master0068
	Yu_Wen_2007_01_master0069
	Yu_Wen_2007_01_master0070
	Yu_Wen_2007_01_master0071
	Yu_Wen_2007_01_master0072
	Yu_Wen_2007_01_master0073
	Yu_Wen_2007_01_master0074
	Yu_Wen_2007_01_master0075
	Yu_Wen_2007_01_master0076
	Yu_Wen_2007_01_master0077
	Yu_Wen_2007_01_master0078
	Yu_Wen_2007_01_master0079
	Yu_Wen_2007_01_master0080
	Yu_Wen_2007_01_master0081
	Yu_Wen_2007_01_master0082
	Yu_Wen_2007_01_master0083
	Yu_Wen_2007_01_master0084
	Yu_Wen_2007_01_master0085
	Yu_Wen_2007_01_master0086
	Yu_Wen_2007_01_master0087
	Yu_Wen_2007_01_master0088
	Yu_Wen_2007_01_master0089
	Yu_Wen_2007_01_master0090
	Yu_Wen_2007_01_master0091
	Yu_Wen_2007_01_master0092
	Yu_Wen_2007_01_master0093
	Yu_Wen_2007_01_master0094
	Yu_Wen_2007_01_master0095
	Yu_Wen_2007_01_master0096
	Yu_Wen_2007_01_master0097
	Yu_Wen_2007_01_master0098
	Yu_Wen_2007_01_master0099
	Yu_Wen_2007_01_master0100
	Yu_Wen_2007_01_master0101
	Yu_Wen_2007_01_master0102
	Yu_Wen_2007_01_master0103
	Yu_Wen_2007_01_master0104
	Yu_Wen_2007_01_master0105
	Yu_Wen_2007_01_master0106
	Yu_Wen_2007_01_master0107
	Yu_Wen_2007_01_master0108
	Yu_Wen_2007_01_master0109
	Yu_Wen_2007_01_master0110
	Yu_Wen_2007_01_master0111
	Yu_Wen_2007_01_master0112
	Yu_Wen_2007_01_master0113
	Yu_Wen_2007_01_master0114
	Yu_Wen_2007_01_master0115
	Yu_Wen_2007_01_master0116
	Yu_Wen_2007_01_master0117
	Yu_Wen_2007_01_master0118
	Yu_Wen_2007_01_master0119
	Yu_Wen_2007_01_master0120
	Yu_Wen_2007_01_master0121
	Yu_Wen_2007_01_master0122
	Yu_Wen_2007_01_master0123
	Yu_Wen_2007_01_master0124
	Yu_Wen_2007_01_master0125
	Yu_Wen_2007_01_master0126
	Yu_Wen_2007_01_master0127
	Yu_Wen_2007_01_master0128
	Yu_Wen_2007_01_master0129
	Yu_Wen_2007_01_master0130
	Yu_Wen_2007_01_master0131
	Yu_Wen_2007_01_master0132
	Yu_Wen_2007_01_master0133
	Yu_Wen_2007_01_master0134
	Yu_Wen_2007_01_master0135
	Yu_Wen_2007_01_master0136
	Yu_Wen_2007_01_master0137
	Yu_Wen_2007_01_master0138
	Yu_Wen_2007_01_master0139
	Yu_Wen_2007_01_master0140
	Yu_Wen_2007_01_master0141
	Yu_Wen_2007_01_master0142
	Yu_Wen_2007_01_master0143
	Yu_Wen_2007_01_master0144
	Yu_Wen_2007_01_master0145
	Yu_Wen_2007_01_master0146
	Yu_Wen_2007_01_master0147
	Yu_Wen_2007_01_master0148
	Yu_Wen_2007_01_master0149
	Yu_Wen_2007_01_master0150
	Yu_Wen_2007_01_master0151
	Yu_Wen_2007_01_master0152
	Yu_Wen_2007_01_master0153
	Yu_Wen_2007_01_master0154
	Yu_Wen_2007_01_master0155
	Yu_Wen_2007_01_master0156
	Yu_Wen_2007_01_master0157
	Yu_Wen_2007_01_master0158
	Yu_Wen_2007_01_master0159
	Yu_Wen_2007_01_master0160
	Yu_Wen_2007_01_master0161
	Yu_Wen_2007_01_master0162
	Yu_Wen_2007_01_master0163
	Yu_Wen_2007_01_master0164
	Yu_Wen_2007_01_master0165
	Yu_Wen_2007_01_master0166
	Yu_Wen_2007_01_master0167
	Yu_Wen_2007_01_master0168
	Yu_Wen_2007_01_master0169
	Yu_Wen_2007_01_master0170
	Yu_Wen_2007_01_master0171
	Yu_Wen_2007_01_master0172
	Yu_Wen_2007_01_master0173
	Yu_Wen_2007_01_master0174
	Yu_Wen_2007_01_master0175
	Yu_Wen_2007_01_master0176
	Yu_Wen_2007_01_master0177
	Yu_Wen_2007_01_master0178
	Yu_Wen_2007_01_master0179
	Yu_Wen_2007_01_master0180
	Yu_Wen_2007_01_master0181
	Yu_Wen_2007_01_master0182
	Yu_Wen_2007_01_master0183
	Yu_Wen_2007_01_master0184
	Yu_Wen_2007_01_master0185
	Yu_Wen_2007_01_master0186
	Yu_Wen_2007_01_master0187
	Yu_Wen_2007_01_master0188
	Yu_Wen_2007_01_master0189
	Yu_Wen_2007_01_master0190
	Yu_Wen_2007_01_master0191
	Yu_Wen_2007_01_master0192
	Yu_Wen_2007_01_master0193
	Yu_Wen_2007_01_master0194
	Yu_Wen_2007_01_master0195
	Yu_Wen_2007_01_master0196
	Yu_Wen_2007_01_master0197
	Yu_Wen_2007_01_master0198
	Yu_Wen_2007_01_master0199
	Yu_Wen_2007_01_master0200
	Yu_Wen_2007_01_master0201
	Yu_Wen_2007_01_master0202
	Yu_Wen_2007_01_master0203
	Yu_Wen_2007_01_master0204
	Yu_Wen_2007_01_master0205
	Yu_Wen_2007_01_master0206
	Yu_Wen_2007_01_master0207
	Yu_Wen_2007_01_master0208
	Yu_Wen_2007_01_master0209
	Yu_Wen_2007_01_master0210
	Yu_Wen_2007_01_master0211
	Yu_Wen_2007_01_master0212
	Yu_Wen_2007_01_master0213
	Yu_Wen_2007_01_master0214
	Yu_Wen_2007_01_master0215
	Yu_Wen_2007_01_master0216
	Yu_Wen_2007_01_master0217
	Yu_Wen_2007_01_master0218
	Yu_Wen_2007_01_master0219
	Yu_Wen_2007_01_master0220
	Yu_Wen_2007_01_master0221
	Yu_Wen_2007_01_master0222
	Yu_Wen_2007_01_master0223
	Yu_Wen_2007_01_master0224
	Yu_Wen_2007_01_master0225
	Yu_Wen_2007_01_master0226
	Yu_Wen_2007_01_master0227
	Yu_Wen_2007_01_master0228
	Yu_Wen_2007_01_master0229
	Yu_Wen_2007_01_master0230
	Yu_Wen_2007_01_master0231
	Yu_Wen_2007_01_master0232
	Yu_Wen_2007_01_master0233
	Yu_Wen_2007_01_master0234
	Yu_Wen_2007_01_master0235
	Yu_Wen_2007_01_master0236

