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Abstract 

We propose a data-driven estimation algorithm in survival mixture model. The objective of 

this study is to provide an alternative fitting procedure to the conventional EM algorithm. 

The EM algorithm is the classical ML fitting of the parametric mixture model. If the initial 

values for the EM algorithm are not properly chosen, the maximizers might be local or 

divergent. Traditionally, initial values are given manually according to experience or a grid­

point search. This is a heavy burden for a high-dimensional data sets. Also, specifying the 

ranges of parameters for a grid-point search is difficult. To avoid the specification of initial 

values, we employ the random partition. Then, improvement of fitting is adjusted according 

to model specification. This process is repeated a large number of times, so it is computer­

intensive. The large repetitions makes the solution more likely to be the global maximizer, 

and it is driven purely by the data. We conduct a simulation study for three cases of 

two-component Log-Normal, two-component Weibull, and two-component Log-Normal and 

Wei bull, in order to illustrate the effectiveness of the proposed algorithm. Finally, we apply 

our algorithm to a breast cancer study data which follows a cure model. The program is 

written in R. It calls existing R functions, so it is flexible to use in regression situations where 

model formula must be specified. 
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Chapter 1 

Introduction 

1.1 Survival Analysis 

The very early work of survival analysis arose in mortality research in the 17th century. 

Since Edmond Halley (seeM. Greenwood (1938)) published the first life table, this method 

has been applied widely by actuaries, statisticians and biomedical researchers. During World 

War II, this method was used to study the reliability of military equipment. After that, the 

method was developed further and applied to study the "lifetime" of industrial devices and 

the survival time of patients. Also, "survival analysis" was named by cancer researchers. 

In recent decades, survival analysis has become one of the major methods of analysis in 

medicine, environmental health, marketing and industry. 

Imagine that, for a researcher working in health science, there is a project to study the 

effectiveness of a new treatment for a disease, such as cancer. The main variable of interest 

is the number of days that the patients survive. The explanatory variables are age, gender, 

the initial performance status, etc. In addition, there must be one necessary variable for 

survival analysis: a variable indicating if the patients are dead, alive, or contact has been 
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lost. 

For different research areas, the variables of interest are different. In diabetes research, 

the variable of interest might be the time from the diagnosis of diabetes to the time of the 

development of diabetic retinopathy in the patients. 

The engineering sciences have made a great contribution to the development of survival 

analysis. The most popular research in this area is the lifetime of a product. This is about 

the product reliability analysis, such as the lifetime of televisions, computers, tires, etc. 

In social sciences, researchers might be interested in analyzing job changes in modern 

cities during a specific time period. The number of months after which individuals change 

their jobs is the variable of interest in this case. 

Certainly, the application areas of survival analysis are diverse, including the areas of 

biomedical, social sciences, engineering, economics, etc. It is difficult to give a proper defini­

tion of survival analysis. But it is obvious that survival analysis focuses on lifetime, survival 

time and failure time data. 

Normally, the "survival time" is defined for convenience before the survival analysis. 

Death or failure is called an "event", so models of death or failure are termed time-to-event 

models. Survival time means a period of time from the start to the time an event happens. 

Survival analysis deals with death in biological organisms, failure in mechanical systems, 

reliability in engineering and duration in economics. In the case of biological analysis, death 

is clear, but for other areas, failure is not always unambiguous. It is necessary to define 

events early. 

In this thesis, we only consider death or failure that happens just once for each subject. 

We exclude the case of recurring event or repeated event models. 

It is easy now to identify the questions that survival analysis tries to answer: 
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• the proportion of a population which will survive a certain time; 

• the rate of those who are alive in a study or treatment group; 

• the potential causes of death; 

• the way the particular characteristics change the odds of survival, and so on. 

Censoring is a particular phenomenon in survival analysis. It arises from the fact that 

some subjects do not have events recorded; survival times may be unknown for a group 

of subjects in a study. This leads to the term "censoring". The observation that involves 

censoring is called a censored observation. Also, the time variable of interest in the censored 

observation is called "censored time" instead of "survival time". Censored time records the 

time from the start of the study to the time the observation cannot be observed any longer. 

During this period, no events occur. If an observation is non-censored, it gives exact survival 

information about the subject. 

Right censoring, left censoring and interval censoring are three kinds of censoring. We 

focus on the right censoring which is much easier to understand. When right censoring 

occurs, it means that the event time is longer than the censored time: the study is closed or 

the subject is lost from follow-up. A right-censored observation means that it only contains 

partial information since the subject does not have an event during the time when the subject 

is in the study. There are two kinds of right censoring: fixed-right censoring and random­

right censoring. If no event occurs for a subject until the end of study, then it is called 

fixed-right censoring. If no event occurs and the subject is lost to observation before the 

end of study, then it is called random-right censoring. It is random because this censoring is 

determined by the censoring mechanism and not by the researcher. Right censoring has two 

types of censoring mechanisms. Type 1 censoring mechanism means that the observation 

time is fixed. The censored indicator can tell if the events do not happen before the fixed 

observation time. Type 2 censoring mechanism means that the study stops when there is a 
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specified number of events happening. 

start of Study End of Study 

A ~ 
i B ----+ 

e 

F -----+ ;:::, 
00 c 

Study Duration 

Figure 1.1: Censoring Illustration 

We illustrate three subjects A, B and C in Figure 1.1, and they have the same study 

duration. Assume this is a study of the survival of heart transplant patients who are followed 

up for a half year. The event here is death, and the variable of interest is "survival time". 

Not all patients die within the half year study period. Subject A dies before the end of study. 

This event can be observed during the study. This data point is not a censored observation 

(non-censored). The follow-up study is lost for subject B before the end of study. We do not 

know if this patient is alive or dead. Although the patient may die before the end of study, 

we cannot observe this event. This is called random-right censoring because the censoring is 

regarded as random. Nobody knows which patients will not come into hospital for checkups 

before the study. Subject C is alive until the end of study. This censoring is called fixed-right 

censoring. Although this patient might die two years after surgery, the death cannot be 

observed during this half year study. 

Let T be a random lifetime variable, for both continuous and discrete models, the survival 
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function will be as: 

S(t) = Pr(T ~ t) = Jt" f(x)dx 

S(t) = Pr(T ~ t) = 2:: j(tj) 
j:t/?:.t 

where t ~ 0 is the observed lifetime. 

(Continuous Model) 

(Discrete Model) 
(1.1) 

There are a number of theoretical distributions used to approach the survival models. 

The exponential distribution is a basic model for survival time, which is a special case of the 

Weibull distribution. Log-Normal and Log-Logistic distributions are also widely used. All 

these distributions mentioned above actually belong to the parametric Log-Location-Scale 

model with pdf (probability density function): 

1 (y- u) f(y;u,b) = -,;fo -b- , -oo<y<oo (1.2) 

where u ( -oo < u < oo) and b > 0 are location and scale parameters, fo(-) is a specified pdf 

on ( -oo, oo), respectively the survival function has the form: 

(
y-u) S(y;u,b) =So -b- , -00 < y < oo, (1.3) 

where So(-) is a fully-specified survival function defined on ( -oo, oo). 

Survival analysis has nonparametric, parametric and semiparametric analysis methods. 

We focus on parametric methods. In survival analysis, the major variable of interest is the 

time of survival. Also, there are some explanatory variables or covariates such as domestic 

information, environmental conditions, and treatment indicators which give more information 

and may be correlated with the variable of interest. It is common to consider the regression 

model to study the explicit relationship through the parameters. Given a vector of covariates 

x, the distribution of the dependent variable of interest Y can be specified. The survival 

function of this regression model associated with x is defined as: 

S(y I x) =So ( Y- :(x)) , (1.4) 
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where the scale parameter b does not depend on x (this is a simplified assumption), the loca-

tion parameter u is a linear function of x with unknown coefficients, and for the standardized 

random variable Z = (Y- u)jb, the survival function So(z) with u = 0, b = 1 is called the 

standard form of the distribution. 

1.2 Mixture of Survival Models and Research Objectives 

In many statistical applications, the observations are taken from multiple subpopulations. 

The simple model, assuming data from one population, is not always appropriate and may 

lead to wrong inference. Thus, the mixture models would be considered to better describe 

the real situation. 

The mixture model allows us to combine the samples from different subpopulations but 

without membership information. Usually, the subpopulation is called mixture component 

or component. If the number of components is finite, the models are called finite mixture 

models. 

The probability mixture model is a probability distribution that is a convex combination 

of other probability distributions. Suppose we have n individual subjects in the mixture 

data set, Yi, · · · , Yn denote a random sample of size n, where lj is a p-dimensional random 

vector. Assume the whole population can be divided into K subpopulations, meaning that 

this data set has K components. Let ai be the weight for the ith component so that a1 +a2+ 

· · · + aK = 1. We use f(yj) to denote the pdf of the observation j and fi(Yj) to denote the 

chance that the observation j is from component i. Then the density f(yj) of lj is defined 

as a weighted sum of its component distributions: 

K 

f(yj) = 'Ladi(Yj), (i = 1, · · · ,K;j = 1, · · · ,n), (1.5) 
i=l 

where the weights a1, · · · , aK (0 < ai < 1) are the mixing proportions. 
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If the probability models are from a parametric family, say with pdf f(yj; Oi), the density 

function is then: 
K 

f(yj; "Ill) = L adi(Yi; Oi), (1.6) 
i=l 

where 8/s are the unknown parameters, and "Ill= (at,··· , aK, 81 , · · · , (}K ). Our work here 

only focuses on the parametric mixture model. Then the survival function for the parametric 

survival mixture model is: 
K 

S(ti; "Ill)= LaiSi(tj;Oi), (1.7) 
i=l 

where Si(t; Oi) denotes the survival function of the ith component. 

Typically, the parameters and the number of components are all unknown. From the 

data, we must determine or know the number of components, and estimate the parameters 

of each component distribution. The component data of mixture models can be regarded as 

missing. Each observation belongs to. one subpopulation, thus has a membership. However, 

this membership is missing. Therefore, the estimation of mixture models becomes a missing 

data problem. The most common estimation approach for missing data is EM (Expectation 

Maximization) method. 

It is possible that the population is composed of multiple subpopulations in parametric 

survival analysis. This leads to the parametric mixture survival analysis. For example, when 

studying diseases with a multi-stage progression where, in each stage, survival time can be 

modelled with different parameters or different models. 

The very early work of parametric mixture survival modelling was done by Boag (1949). 

The models are based on the standard failure time densities using ML (Maximum Likelihood) 

to estimate cured proportion and death rate. In recent years, Chen (1985) applied Bayesian 

analysis of a two-component mixture survival model for the cancer patient analysis. Marin 

et al. (2005) fitted the Weibull mixture model with an unknown number of components to 

the right-censored survival data. 
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When doing parametric mixture survival modelling, two important things are required. 

One is finding out the optimal number of components, the other is fitting the models. There 

are two steps for completing the second task: 

• Define suitable models for the data 

• Estimate parameters of the models from the data 

Suppose we have a censored data set of the cancer patients study. The variable of interest 

is the survival years after surgery and the only one covariate is the tumour size of the patients 

before the surgery. The data set has two components. We use the parametric mixture survival 

modelling analysis method. Two component models, model 1 and model 2, have the same 

Log-Normal distribution with different parameters. Figure 1.2 illustrates the scatter plot of 

data from a two-component parametric mixture survival model. The solid diamonds indicate 

the data points from model 1. The triangles indicate the data points from model 2. Imagine 

we lose the membership information. The points included in the ellipse might be from model 

1 or from model 2. It is hard to judge their membership virtually. This kind of phenomenon 

raises difficulties in fitting the mixture models. The error of misclassification cannot be 

avoided. Normally, it depends on how the mixture models overlap. The bigger the overlap, 

the bigger the error. 

In this thesis, we study the parametric mixture survival models based on Weibull and 

Log-Normal distributions. The introduction of these distributions and survival models is in 

Section 2.1. In Section 2.2, we show the detailed steps of the estimation algorithm about 

how we are fitting the mixture survival models. The simulation study in Chapter 3 provides 

three cases to show how we simulate the mixture survival data set and the model fitting 

results. Chapter 4 is an application of this estimation algorithm. 

Since the classic paper of Pearson (1894) on the moments-based fitting of a mixture model, 
I 
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Figure 1.2: Scatter Plot of Data from a Two-Component Parametric Mixture Survival Model 
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many researchers have been involved in looking for the mixture model approach methods until 

the EM algorithm of Dempster et al. (1977) suggested an iterative reweighting scheme to 

compute MLE (Maximum Likelihood Estimator). The EM algorithm has become classical 

statistical inference method for solving the classification problems of mixture survival models 

with the advent of high-speed computers. This iterative computation of MLE ensures the 

likelihood values increasing monotonically. However the EM algorithm has some weaknesses. 

The convergence is slow. And, as we know, the EM algorithm requires some initial values 

of parameters. In practice, the initial values are chosen by experience. Normally, we first 

make the range of values for each parameter. Then we try every combination of those values 

as starting values. This kind of initial value choice does not work for high dimensional 

data since the combination could be very large. Furthermore, the different starting values 

can lead to quite different estimates in the context of fitting mixture models of exponential 

components; see Seidel, Mosler and Alker (2000a,b). A poor choice in the starting values 

makes the convergence slower. Also, the matter could be even worse. The sequence of the 

estimates may diverge. Here, this data-driven algorithm attempts to fit the mixture model 

with easier and more reasonable initial value choices and faster convergence. 

Decision tree learning is another widely used technique for classification. The classifica­

tion model is a tree, called a decision tree. It provides a highly effective structure within 

which you can predict the classes of new cases or instances. For example, due to the high 

cost of ICU (intensive-care unit), the patients who may survive less than a month are given 

higher priority. A decision tree can be built for helping to decide whether to put a new 

patient in ICU. However, decision trees do not work very well in cases which need to identify 

an unknown variable. 
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Chapter 2 

Parametric Survival Models and 

Data-Driven Estimation Algorithm 

2.1 Introduction to Parametric Survival Models 

The survival function is called survivor function or survivorship function in biological survival 

analysis. It is also known as reliability function in mechanical survival analysis. Let T be 

a single nonnegative continuous random variable which represents the survival time of the 

subject with cumulative distribution function (cdf) F(t) on the interval [0, oo]. The cdf ofT 

is: 

F(t) = Pr(T::; t) =lot f(x)dx, (2.1) 

where f(x) denotes the probability density function (pdf) ofT. We then define the survival 

function as: 

S(t) = Pr(T ~ t) = loo f(x)dx = 1- F(t). (2.2) 

EverysurvivalfunctionS(t)ismonotonicallydecreasingwithS(O) = 1andS(oo) =lim S(t) = 
t-+oo 

0. Thus, the survival function is the probability that the time of event (e.g., death) occurs 
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later than some specified time t. 

h(t) denotes the hazard function and is defined as follows: 

h(t) = l
. Pr(t 5. T < t + 6t IT 2': t) 
Ill 

.6t-->O 6t 
f(t) 
S(t) 

d 
- dt log S(t). 

This functidn gives the instantaneous survival rate conditional on survival at timet. 

(2.3) 

(2.4) 

(2.5) 

Many parametric families are applied in survival analysis. It is common to select statis-

tical distributions which have nonnegative support since survival times are nonnegative. In 

this paper, three commonly used distributions are considered. 

2.1.1 The Exponential Distribution 

Probability Density Functions 

' 

\ t=2 

0 2 3 4 

Hazard Functions 

q ·····················-~·':':·~---·············································· "' 

q ... 
~,_ ________ A_=_0-.5-------------1 

q 
0 

0 2 3 4 

Figure 2.1: Exponential pdf and hazard function 
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The pdf, survival function and hazard function are: 

f(t) 

S(t) 

h(t) 

\ ->.t = Ae , 

->.t e , 

.>.. 

t > 0, .>. > 0, (2.6) 

(2.7) 

(2.8) 

Exponential distribution was widely used in the early survival analysis since it allows for a 

simple statistical method. However, its application is limited because of the constant hazard 

function. 

2.1.2 The Weibull Distribution 

Probability Density Functions Hazard Functions 

q 

q 
C) 

' i 
! 
/ 

~·-~' 

0 

C) 

2 3 4 0 2 

Figure 2.2: Weibull pdf and hazard function (.>. = 1) 

The pdf, survival function and hazard function are: 

f(t) .>.f3(.>.t)f3-l exp[-(.>.t)f3], t > 0, .>. > 0, {3 > 0, 

S(t) exp[-(.>.t)f3], 

h(t) = .>.{J(.>.t)f3-l. 
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The Exponential distribution is a special case of Weibull distribution when j3 = 1. 

2.1.3 The Log-Normal Distribution 

Probability Density Functions Hazard Functions 

q 
N 

..., 

""! 
'lJ" 

<") 

g q ..... =1.5 

/' ......... 
~ 

"' 
am 0.5 

..., f ci : 

0 
ci 0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 2.3: Log-Normal pdf and hazard function (J.L = 0) 

The pdf and survival function are: 

f(t) 1 [ 1 (logt- f.L) 2
] 

(27r)l/2at exp -2 a ' t > 0, - oo < f.L < oo, a > 0, (2.12) 

S(t) = 1 _ <I> ( log t - J.L), 
a 

(2.13) 

where t > 0 and the standard normal distribution function: 

-lx 1 -z2/2 <I>(x) - ( )l/2 e dz. 
-oo 27r 

The hazard function is given as formula (2.3). It has the value 0 at t = 0, increase to a 

maximum, and then decrease, finally approaching 0 as t ~ oo. 
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2.1.4 Regression for a Parametric Survival Model 

Regression is a statistical model investigating the relationship between a dependent variable 

(response variable) and the variables (covariates, explanatory variables, predictors). Specif-

ically, it relates covariates to the mean of response. Let T be a random variable of survival 

time, if Y = log T has a Location-Scale distribution, then T = exp(Y) has a Log-Location­

Scale distribution. As introduced in Section 1.1, the pdf (1.2) and survival function (1.4), 

the survival function for T is: 

= So (logtb- u) S*(t; a, {3) 

= B0[(tfa).aJ, 

(2.14) 

(2.15) 

where a= exp(u),{J = b-1 and for 0 < w < oo,S0(w) = S0 (logw). T given a:: corresponding 

to (1.3) has the form: 

S(t I a::)= SO[(tja(x)).B], t ~ 0, (2.16) 

where a= exp(u(x)),{J = b-1 , and S0(t) = S0 (logt). 

Suppose for a study, there are p covariates. Denote a:: = (x1, · · · , xp)' as the covariate 

vector, and {3 asap x 1 vector. Then the survival function of exponential distribution given 

a:: is: 

S(t I a::)= exp[-.X(a::)t], (2.17) 

The location parameter u depends on a:: and u(a::) = {31x, where {3 is the regression coefficient 

vector. A function of parameter .X conditional on a:: is: .X(a::) = exp(f3'a::). 

The purpose of fitting a regression model includes prediction, examining the relationship 

between variables, and testing hypotheses. It is necessary to specify the relationship between 

the expectation E(T I a::) and the linear predictor {31x. The following is the form for each 
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distribution mentioned above with specification u(:z:) = f3':z:: 

E(T I :z:) = exp(f3':z:) (Exponential) 

E(T I :z:) = exp(f3':z:)r(1 + 1/{3) (Weibull) (2.18) 

E(T I :z:) = exp(f3':z: + o-2 /2) (Log- Normal) 

2.2 Parameter Estimation: A Data-Driven Algorithm 

Normally, there are two missions for the model fitting of survival mixture: getting the optimal 

number of cpmponents and estimating the parameters for each component model. This data­

driven estimation algorithm focuses on the second mission: parameter estimation. 

As shown by the outline flowchart (Figure 2.4), Self Start and Partition are the two 

main parts of this algorithm. Figure 2.5 and 2.6 are the detailed flowcharts of these two main 

procedures. Self Start is a randomly-starting routine for the initial value choice. Partition 

is a routine for membership determination and parameter estimation. Boundary Check 

checks ifthe input is proper or supported by this program. Graphic & Numerical Report 

supply the screen graphics during the model fitting procedure and the model fitting results, 

such as the membership, proportion, log-likelihood, etc .. There are two loops (loop 1 and 

loop 2) in this estimation algorithm. loop 1 is an inner loop within Partition (See Figure 

2.6). It runs in order to get more precise estimates under the same initial values. loop 2 

is an outer loop including Self Start and Partition (See Figure 2.4). It tries to give more 

accurate estimation by getting some different initial values. The routine survreg () of R 

is used for the survival model fitting. This is a regression routine for parametric survival 

models. The default method used in fitting models is the iteratively reweighted least squares 

method (IRLS). 

Let Y = (T, E, X), where Tis the random variable of survival time, E is the censoring 

event, and X is the covariate vector. Suppose a sample of size n is Y~, · · · , Yn, where 
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Yj = (Tj, Ej, Xj) is a random vector. The pdf is f(Yj), where Yj is the observed value of 

the random vector Yj. We define Xj to be the observed covariate vector, tj to be the jth 

observed life-time. K is the number of components. fh, · · · , (JK are the unknown parameters 

of the K component models. a1, · · · , aK are the weights or proportions. 

This algorithm requires proper inputs. The following lists four important inputs. 

• data: the censored data set including response variable (T) and covariates (x). The 

response variable is a continuous numerical variable which is the survival time. The 

covariates could be numerical or nominal. 

• K: the number of components must be a positive integer. 

• distributions: the parametric distributions for component models which must be 

supported by R. 

• formulae: the survival regression formulae for component models. 

Aside from these, there are some optional inputs with default values, such as the numbers 

of loops. The following is the step-by-step explanation of the estimation algorithm. 

• Step 1: Self Start 

This is a random starting procedure yielding the initial values from. the subset of the 

data. 

(1) Select a random sub-sample 

A sub-sample with size m is randomly selected from the whole sample data. If the 

covariate vector x has p dimensions, then the sub-sample size cannot be smaller 

than (p + 1) x K. 

(2) Partition the sub-sample 

The sub--sample is equally partitioned into K groups, e.g., assign each data point 
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a membership. For example, for a case of K = 2, n = 500, we select m = 200 

observations from the sample as the sub-sample. Then, the first 100 observations 

are assigned to group 1. The group 2 will include the remaining 100 observations. 

Here we assume that the m = 200 random observations are not sorted. 

(3) Proportion calculation 

After the membership assignment, the proportion of the K groups is calculated 

based on the sub-sample data set. The initial proportions forK= 2 are 0.5 and 

0.5. 

( 4) Model fitting 

The parameters, eio)' ... ' efP' are estimated for each specified model. This pa­

rameter estimation procedure is essentially a least squares linear regression algo­

rithm since the major distributions of survival data can be "transformed" to linear 

properly. In this project, a parametric survival regression procedure survreg in R 

is used. The method to be used in fitting the model is IRLS, which is a numer­

ical algorithm for minimizing any specified objective function using a standard 

weighted least squares method. 

The output of the Self Start includes the estimated proportions a1, · · · , aK, and 

the estimated parameters O'io), · · · , ifJJ:). 

• Step 2: Partition 

This step refines the estimated parameters for each component model and adjusts the 

membership for every observation. 

(1) Determination of the membership for each observation 

First of all, we calculate the pdf values for each observation based on the estimated 

parameters of the mixture models. This means that each observation can have 

K possible density values: fi(Yi), · · · , fK(Yi), i = 1, · · · , n. Then, we multiply 
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the calculated proportions of the K models by the pdf values to get the weighted 

probabilities for each observation. These probabilities indicate the likelihood that 

one observation belongs to the K component models. We assign the membership 

of one observation to the model which has the highest probability. 

For example, for the mixture model of K = 2, if the jth observation (tj, x) is 

uncensored, then it has 81 ( tj; x) and 82( tj; x) possibilities to the first and second 

components respectively. The membership of the jth observation is assigned to 

the first component if S1(tj;x) ~ S2(tj;x), otherwise it is assigned to the second 

component. Furthermore, we may penalize the small groups or highlight the small 

groups by using aiSi(tj;x) or a;1Si(tj;x). In our study, we penalize the small 

groups using the former formula. 

(2) Proportion calculation 

According to the membership from the previous step, the proportion of the K 

models is recalculated. We only need to compute (K -1) proportions, since there 

is a constraint that the sum of all proportions is 1. For the case of K = 2, if the 

sample size is 250 and the number of observations belonging to group 1 is 100, 

then the proportion of group 1 is a1 = 100/250. The proportion of group 2 should 

(3) Likelihood calculation 

A likelihood function is the probability for the occurrence (e.g., the data set). The 

general likelihood function of the parametric model is defined as: 

n 

L((} J Yl, · · · , Yn) =II f(yj; 0), (2.19) 
j=l 

where fi:yj; 0) is the parametric form of pdf f(Yj)· For the right-censored data, 
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the general likelihood function is defined as: 

n 

L((J I Yl." · 'Yn) =II J(tj; 0)8
i S(tj+; 0)1

-'\ 

j=1 

(2.20) 

where 8 is the censoring indicator. 8j = 0 means that the jth unit is survived until 

the end of the study. S(tj+) is the same as Pr(Tj > tj)· If S(t) is continuous at 

tj, S(tj+) equals S(tj). 

The general likelihood function of mixture models is defined as: 

(2.21) 

In this case, for the mixture survival models, two kinds of likelihood functions L1 

and L2 are used in practice. They have forms as follows: 

(2.22) 

(2.23) 

where ai is the estimated proportion of the ith group and a1 + ih + · · · + aK = 1, 

Oi is the estimated parameter vector for the ith group, n1 + n2 + · · · + nK = n. 

The log-likelihood function is defined as l(O) = logL. We define Q = -logL1 

or Q = - log L2. The ML (the minimum Q) is the criterion used for the model 

selection. As shown above, L1 is the penalized approximation of likelihood L 0 , 

L2 is the usual approximation of likelihood Lo. In practice, there are no big 

differences between them, when ai's are not dramatically different. 

(4) Model selection 

A batch of fitted mixture models are selected in this step. The fitted results 

include the estimated parameters, membership, log-likelihood, and proportions. 

After ea·~h inner loop, we have one fitted mixture model. Whether this model is 
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saved or not, a saving rule can be followed. The rule is saving those models which 

have large log-likelihood values (small Q values). We define Q8 to be the smallest 

one, Qc to be the current one and f to be the prescribed critical value. Three 

cases are considered for comparing the Qc and Q 8 : 

- If Qc = Qs, then this fitted model will be saved. 

- If Qc > Q 8 + f, then this fitted model will not be saved. 

- If Qc < Q8 , then this fitted model can be saved. Also, Qc becomes the new 

Q 8 • Comparing the new Qs with the Q values of the saved models, we drop 

the model if its Q value is larger than the new Q8 +f. 

(5) Plotting 

This step produces the 2D scatter plots of the covariate and the corresponding 

predict responses and the observed responses. It works only if the model has one 

covariate. These plots give a quick visual check of the model fitting results. 

(6) Model fitting 

This step is the same as the Model fitting in Step 1 (Self Start). The only difference 

iS that the membership for each observation is determined by the calculation 

above, not a random assignment. Also, the data is the whole sample data set, not 

the sub-sample. 

The Partition step repeats many times such that a batch of fitted mixture models 

can be saved for estimating the final mixture model. Let Mz be the zth fitted mixture 

model, fkl) be the kth component. The following lists the batch of models. 

M(l): ll) 
1 ' 

ll) 
2 ' 

!~) 

M(2): /2) 
1 ' 

l2) 
2 ' 

/il 

M(L): lL) 
1 ' 

lL) 
2 ' 

Jifl 
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Chapter 3 

Simulation Study 

A simulation study can empirically verify the estimation algorithm. By comparing the true 

models and the fitted models, we will understand how well the estimation algorithm works. 

Given the parameters of true models, we specify the covariates randomly, then generate the 

response variable according to the models; this is the procedure of simulating the data set. 

The data-driven algorithm is then performed for the simulated data sets. 

3.1 Model Specification and Data Generation 

In this simulation study, several conditions need to be given before starting the data gener­

ation procedure. These conditions include the number of components K, the sample sizes 

for each model, the distributions of the K component models, the formulae of the linear 

predictor, the parameters of the true models, and the covariate attributes which are the type 

of covariate and the range of values (e.g., a continuous covariate within [0, 1] range). The 

following three steps give the detailed description. 

1. Covariate generation 
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According to the given conditions, sample size and covariate attribute, the covariate 

data is generated group by group using the random data generation function of R. 

2. Response generation 

For each model, depending on the given distribution, formula and parameters of the 

true model, and the generated covariates in the last step, the corresponding response 

variable is generated in this step. The regression linear transformation formula is: 

u(x) = {3X. For the three basic survival models, the given parameters should be: 

rate A for Exponential distribution, the variable's logarithm mean p, and variance a 

for Log-Normal distribution, scale A and shape {3 for Weibull distribution. Combining 

with the generated covariates, the response variable can be generated randomly by the 

random number generation functions of R: rexp(), rweibullO, rlnormO. 

3. Censoring event generation (right-censored) 

The main idea of generating the censored observations is to mimic the reality. The first 

step is generating the random uniform numbers within specified ranges. The range 

could be related with the expected values calculated based on the generated data set 

and the given parameters. The second step is comparing the generated response values 

with the random uniform numbers. If the response value is larger, then this observation 

is said to be a right-censored observation, otherwise uncensored. The advantage of this 

method is the avoidance of giving a fixed proportion of the censored observations. 

Three cases Case 1, 2 and 3 are studied in this simulation study. We choose two components 

of the mixture model and one covariate for each case for simplification. Table 3.1 gives the 

component distributions, sample sizes, and parameters of the true models. For each case, 

we run 1000 times and get the histograms of the fitted parameters. We describe Case 1 to 

explain how this simulation procedure works. In this case, both components (Component 1 

and 2) are Log-Normal distributions. The sample sizes of Component 1 and 2 are 650 and 
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Table 3.1: Parameters of True Models 

Case K Component Distn's Sample Size Parameters 

Log-Normal 650 f3o = 2, !31 = -1.3, a= 0.15 
Case1 2 

Log-Normal 450 f3o = 1, !31 = -0.35, a = 0.1 

Wei bull 650 f3o = 1. 75, f31 = -0.6, shape {3 = 2.2 
Case2 2 

Wei bull 450 f3o = 0. 7, {31 = -0.25, shape {3 = 1.1 

Log-Normal 650 f3o = 1.5,{31 = -1.3,a = 0.1 
Case3 2 

Wei bull 450 f3o = 0.8, f31 = -0.4, shape {3 = 1.5 

450. The linear regression transformation formula is: u(x) = {30 + f31x. The parameters of 

the true models are: 

• Component model1: 

f3o = 2, {31 = -1.3, a= 0.15 

• Component model 2: 

f3o = 1, {31 = -0.35, a = 0.1 

The following are the detailed steps of response generation: 
I 

1. Generate 650 observations (x1) for Component 1 using R function runif 0 

2. Generate 450 observations (x2) for Component 2 using R function runifO 

3. Calculate the variable's logarithm mean for Component 1: log J.£1 = 2 + ( -1.3) x x1 

4. Generate responses for Component 1 using R function rlnorm(650,logJ.£1,0.15) 

5. Calculate the variable's logarithm mean for Component 2: log J.£2 = 1 + ( -0.35) x x2 

6. Generate responses for Component 2 using R function r lnorm ( 450, log J.£2 , 0 . 1) 
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Then, we calculate the expectation values through the formula: exp(logJ.£ + a 2/2). In this 

case, we use these values to calculate the range of generated uniform random numbers for 

censoring. The lower bound is one times the expectations. The upper bound is three times 

the expectations. Comparing the random numbers with the generated responses, we defined 

that the censoring event happens if the random number is the bigger one. An assumption is 

that all the observations with survival time that is smaller than one times the expectations 

are considered to have complete records, namely, non-censored observations. Finally, we 

combine those covariates, responses and expectations together to be the simulation data set. 

3.2 Statistical Analysis and Discussion 

Normally, the given true parameters can affect the fitted results. For example, in Case 1, if 

the given true variance is smaller, the fitted models are closer to the true models. Similarly, 

in Case 2, the smaller the given true shape parameter, the closer the fitted models are to 

the true models. Figure 3.1 and 3.2 show the scatter plots of data, the true models (the red 

points) and the fitted models (the blue points). In fact, the two fitted models also affect each 

other. 

As shown in Figure 3.3, and 3.4, it is obvious that the model fitting results are biased for 

the given true values indicated by red lines. This leads to the motivation of bias reduction 

in finite mixture model fitting. For the single component model fitting, Zhang et al. (2006) 

considered that the bias can be modeled as the function of the sample size and the censoring 

level, and is mainly dependent on the latter for the estimation of Weibull shape parameter. 

The commonly used criteria are not adequate for mixture model fitting, since estimating the 

proportion is a very difficult problem. Actually, the larger the sample size, the more precise 

the estimates. This method doesn't work in real cases since the large sample yields a high 

cost. In our simulation study, we consider this method. Comparing the results between the 
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small and large sample, the improvement is obvious. See Table 3.2. 

Table 3.2: Comparison of Estimates for Small and Large Sample Sizes 

Difference With True Parameter 
Case Component Sample Size 

f3o- /Jo !31 - /31 a - (;- or {3 - /3 

650 0.0140 -0.0144 -0.0093 
Component 1 

Case1 
3500 0.0067 -0.0069 -0.0059 

450 -0.0418 0.0419 -0.0276 
Component 2 

2500 -0.0393 0.0392 -0.0270 

650 0.9872 -0.3503 1.0226 
Component 1 

Case2 
3500 0.2070 -0.0592 0.6011 

450 -0.8761 0.3015 -0.5842 
Component 2 

2500 -0.0695 0.0001 -0.0755 

There are two different component distributions in Case 3, Log-Normal for Component 1 

and Weibull for Component 2. Figure 3.5 shows that each histogram has two peaks. Checking 

the final batch of mixture models, we find that some estimated parameters are not only far 

away from the true parameters, but also far away from the estimated parameters of both fitted 

models. For example, we give ten results for each fitted model in Table 3.3. Comparing with 

the true parameters in Table 3.1, we can find the big differences in the estimated parameters 

of the fourth, seventh, eighth, and ninth fitted models. In this case, this phenomenon arises 

since the pdf for each point could be invariant under different distributions. The overlap 

makes this more serious. Somehow, it is hard to say which distribution is better for fitting a 

data set between Log-Normal and Weibull. In practice, we simply drop those fitted results. 

Another phenomenon, the interchanging of component labels, happens in Cases 1 and 

2. It leads to the lack of identifiability. That is, although the class of mixtures may be 
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identifiable, the parameters and proportions are not. This could be handled by the imposition 

of an appropriate constraint, see McLachlan and Peel {2000). In practice, we compare the 

coefficients to classify our batch of models. Unfortunately, this method does not work very 

well for high-dimension data analysis. 

Table 3.3: Fitting Results of Case 3 

Component 1: Log-Normal Component 2: Weibull 

fJo !31 a- /3o /31 shape /3 

1 1.506 -1.301 0.106 0.758 -0.393 1.479 

2 1.500 -1.296 0.109 0.737 -0.378 1.542 

3 1.500 -1.300 0.101 0.734 -0.365 1.562 

4 0.437 -0.411 0.862 1.534 -1.291 10.859 

5 1.490 -1.299 0.112 0.807 -0.410 1.463 

6 1.500 -1.298 0.104 0.774 -0.402 1.439 

7 0.242 -0.279 0.905 1.525 -1.291 10.296 

8 0.349 -0.374 0.803 1.536 -1.294 9.525 

9 0.543 -0.459 0.905 1.499 -1.271 8.879 

10 1.474 -1.284 0.120 0.754 -0.363 1.473 
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Chapter 4 

Application to Breast Cancer Data 

We apply this data-driven estimation algorithm for a breast cancer study. The data set 

named as Ma5 is from the Clinical Trials Group of the National Cancer Institute of Canada 

{NCIC CTG). This study is a randomized trial of CEF (Cyclophosphamide, Epirubicin, 

Fluorouracil) chemotherapy compared with CMF (Cyclophosphamide, Methotrexate, Fluo-

rouracil) in pre- or perimenopausal women with node positive breast cancer. Like all other 

clinic trials, the purpose is to study how well a new treatment works in people so that the 

doctors can decide if the new treatment is worth adapting or not. 

In 1976, CMF was first approved to treat women with breast cancer and was soon widely 
I 

used. In another important CEF study, it was established for increasing the dose-intensity of 

chemotherapy and epirubicin was less cardiotoxic than doxorubicin with no loss of anti tumour 

efficacy. From 1989 to 1993, NCIC CTG conducted this comparison study and followed up 

for 10 years, see Levine et al. {2005) for a detailed introduction of the patient population 

and treatment regimens. 

A total of 710 patients were observed during this study period, and 409 were censored. 

There are 12 variables in the data set, including the personal records: patient ID and age; the 
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variables of interest: survival time and event; the pathological records and therapy methods: 

tumour size, partial or total mastectomy, arm (CMF or CEF), etc.. Table 4.1 gives the 

detailed variable descriptions. 

We conduct a data check first. For simplification, we drop off 77 observations with missing 

values. Finally, 633 patients remain in our study and 361 are censored. The correlation of 

any pair of variables does not seem to be strong. See Table 4.2. 

Levine (1t al. (2005) did the relapse-free survival (RFS) and overall survival (OS) analysis 

based on all patients and subgroups, such as nodal subgroups and estrogen receptor (ER) 

status. Also, they performed Cox model, and a failure-free survival analysis as a sensitivity 

analysis. Their study shows that the benefit of CEF compared with CMF is maintained in 

the Ma5 trial. With long-term follow up, rates of secondary leukemia were unchanged from 

the original Ma5 study, while rates of congestive heart failure were slightly higher in the 

CEF group (1.1% of patients, versus 0.3% in the CMF group). The acceptable side effects 

rate mentioned that there could be some patients who might not have obvious effects under 

CMF. A question arises as to how those patients should be classified. It is impossible to 

solve this question relying on the information we already have. For example, the "Age" is 

one covariate in our data set. It could have a large effect for one group of patients, a small 

effect for the other group of patients. But we cannot simply classify the patients by "Age", 

since the patient age of those groups overlap. This is the motivation for the mixture model 

study. 

We use our data-driven estimation algorithm to fit the mixture model, and check the 

existent possibility. Deciding upon the number of components K in mixture model fitting 

is important and complicated. In this case, we try K = 1, 2, 3, 4, 5 with Log-Normal and 

Weibull distributions, and calculate the AIC (Akaike's Information Criterion) for assessing 

the component number. The form -2log L + 2d is on the use of AIC for selecting the 
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Table 4.1: Ma5 Variable Descriptions 

Name Description 

ID The identification of the patient 

Survival Number of days a patient survived 

Deadn = 1 if the patient died 

= 1 if the patient is still alive or has been lost to follow-up 

Arm = 0 if treated by CMF 

= 1 if treated by CEF 

Age Age at randomization (in years) 

Node_no = 0 if the number of positive nodes is less than or equal to 3 

= 1 if the number of positive nodes is between 4 and 10 

= 2 if the number of positive nodes is greater than 10 

Ep_recp = 0 if the number of estrogen or progesterone receptors is greater than or equal to 10 

= 1 if the number of both estrogen and progesterone receptors is less than 10 

= 2 if either the estrogen or progesterone receptor status is unknown 

Surg_no = 0 if partial mastectomy 

= 1 if total mastectomy 

In_ perf Initial performance status: 0-4 

Path..stg Pathological staging: 1-3 

Tumour Tumour size: 1-3 

Normal = 0 if normal menstruation 

= 1 if abnormal menstruation 
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Table 4.2: Ma5 Correlation 

Survival Deadn Arm Age NodeNo EpRecp SurgNo In Perf PathStg Thmour Normal 

Survival 1.000 -0.735 0.066 0.138 -0.010 -0.038 -0.028 -0.222 -0.147 -0.124 0.002 

Deadn -0.735 1.000 -0.102 -0.147 0.055 0.087 0.110 0.240 0.158 0.199 -0.031 

Arm 0.066 -0.102 1.000 0.016 0.053 -0.019 -0.021 -0.014 -0.067 -0.024 -0.022 

Age 0.138 -0.147 0.016 1.000 0.056 -0.202 0.075 -0.091 0.006 -0.049 -0.074 

NodeNo -0.010 0.055 0.053 0.056 1.000 0.009 0.024 0.007 -0.034 0.026 0.035 

EpRecp -0.038 0.087 -0.019 -0.202 0.009 1.000 0.006 0.025 0.021 0.001 -0.050 

SurgNo -0.028 0.110 -0.021 0.075 0.024 0.006 1.000 0.140 0.273 0.273 -0.045 

InPerf -0.222 0.240 -0.014 -0.091 0.007 0.025 0.140 1.000 0.219 0.186 -0.029 

PathStg -0.147 0.158 -0.067 0.006 -0.034 0.021 0.273 0.219 1.000 0.353 -0.039 

Thmour -0.124 0.199 -0.024 -0.049 0.026 0.001 0.273 0.186 0.353 1.000 0.037 

Normal 0.002 -0.031 -0.022 -0.074 0.035 -0.050 -0.045 -0.029 -0.039 0.037 1.000 

component p.umber in a mixture, where L is the likelihood of the fitted mixture model, d is 
I 

equal to th~ total number of parameters in the model, see Bozdogan and Sclove {1984) and 

Sclove {1987). For simplicity, we drop the 2 in the above form so that the form becomes 

-log L +d. Table 4.3 gives the AIC for each K. For Weibull models, the cases K = 2 and 

K = 4 could be considered. For Log-Normal models, all the cases have similar AIC except 

K=5. 

Table 4.3: AIC for Assessing Component Number 

Distribution K=1 K=2 K=3 K=4 K=5 

Wei bull 2416.40 2410.26 2415.82 2400.70 2426.04 

Log-Normal 2400.30 2404.41 2409.69 2409.63 2415.84 

As part of the fitted mixture model analysis, we compare the fitted coefficients (Table 

4.4), and the OS {overall survival) rates of the two chemotherapy regimens CMF and CEF 
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(Table 4.5, 4.6, and 4. 7). In this case, we skip the covariate selection part and add all 

covariates to the linear transformation model fitting. Table 4.1 gives the fitted coefficients of 

K = 1 and K = 2 cases. For the case K = 2, Log-Normal and Log-Normal, there are three 

covariates (Age, SurgNo, and NormaQ with opposite sign coefficients. For the case K = 2, 

Weibull and Weibull, there are six covariates (Age, NodeNo, Eprecp, SurgNo, PathStg, and 

N ormaQ with opposite sign coefficients. This means the same covariates may have different 

contributions to the location parameters in the different models. This strongly suggests the 

mixture model. 

As the description of this data-driven algorithm in Chapter 2 shows, we have a batch of 

mixture models for each K. We calculate the OS rates of CMF and CEF for each group of 

every mixture model. The average rates are used to compare with each other. We analyze 

the case of two Wei bull components. Table 4.5 is the OS rates of the 19 final mixture models 

of two Weibull components. Table 4.6 and 4. 7 are the average rates for all cases. For K = 1, 

the OS rate for CMF patients is 52.15% compared with 62.21% for CEF patients. This shows 

that the previously demonstrated benefit of CEF is maintained. But for K = 2, only one 

group shows this feature. For example, for the two Weibull components case, the group 1 

has a higher OS rate of CMF. Also, the rate difference between CMF and CEF in group 2 

is more obvious than the difference in the K = 1 case. Further medical research needs to 

be done be)[ond these data-driven results, such as the gene study of those patients. Thus, 

deep investigation could find out the characteristics to separate those patients into groups 

and the reasons why CEF does not work very well on them. 
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Table 4.4: Model Fitting Results 

Log-Normal 

K=1 

Intercept , Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

8.01 '0.28 0.03 -0.19 -0.10 -0.04 -0.07 -0.35 -0.29 0.04 

K=2, component 1 

Intercept Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

8.89 0.33 -0.005* -0.19 -0.11 -0.40* -0.07 -0.03 -0.32 0.24* 

K=2, component 2 

Intercept Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

6.96 0.19 0.08* -0.22 -0.19 0.45* -0.06 -0.68 -0.19 -0.19* 

Wei bull 

K=1 

Intercept Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

8.00 0.23 0.04 -0.18 -0.11 -0.07 -0.06 -0.29 -0.26 0.07 

K=2, component 1 

Intercept Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

9.73 0.20 -0.01 * -0.25* 0.11* -0.24* -0.04 -0.74* -0.21 -0.03* 

K=2, component 2 

Intercept Arm Age NodeNo Eprecp SurgNo InPerf PathStg Tumour Normal 

33.85 0.36 0.12* 0.32* -7.89* 0.21* -0.13 0.51* -0.14 0.62* 
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Table 4.5: Overall Survival Rates of Two Weibull Components 

Models Group 1 CMF{%) Group 1 CEF{%) Group 2 CMF{%) Group 2 CEF{%) 

1 76.10 51.47 29.34 70.76 
I 

2 
I 

76.33 51.52 26.11 70.29 

3 79.08 46.81 28.32 75.30 

4 79.87 53.99 27.33 71.53 

5 85.90 51.75 21.18 71.34 

6 83.43 51.35 18.47 72.33 

7 83.73 51.39 19.38 71.78 

8 81.40 52.82 19.48 70.30 

9 81.60 53.62 22.70 69.23 

10 83.33 49.69 23.53 75.68 

11 85.71 47.30 22.09 76.10 

12 83.53 48.25 17.95 74.39 

13 88.54 50.71 18.34 71.86 

14 91.30 54.25 13.94 70.13 

15 89.81 53.85 17.16 70.86 

16 90.38 53.47 17.06 69.94 

17 93.46 54.84 15.61 69.74 

18 92.86 46.32 8.86 74.85 

19 90.12 41.79 9.74 78.03 
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Table 4.6: Overall Survival Rates of Two Log-Normal Components 

Component Number Group CMF(%) CEF(%) 

K=1 1 52.15 62.21 

1 64.40 61.52 
K=2 

2 40.37 63.00 

1 77.18 73.02 

K=3 2 14.42 27.73 

3 72.49 85.33 

1 22.20 71.11 

2 55.22 45.62 

K=4 
3 66.15 58.78 

4 63.44 72.86 

1 21.37 47.44 

2 45.94 46.02 

K=5 
3 66.85 72.55 

4 37.70 55.38 

5 89.28 94.41 
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Table 4. 7: Overall Survival Rates of Two Wei bull Components 

Component Number Group CMF(%) CEF(%) 

K= 1 1 52.15 62.21 

1 85.08 50.80 
K=2 

2 19.82 72.34 

1 23.89 66.35 

K=3 2 49.83 53.05 

3 79.38 67.75 

1 23.03 33.25 

2 58.90 75.58 

K=4 
3 59.26 84.50 

4 67.04 58.87 

1 40.40 65.35 

2 42.96 64.62 

K=5 3 57.42 53.95 

4 56.82 55.16 

5 63.48 70.78 
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Chapter 5 

Summary 

The classic ML fitting of the parametric mixture model is the EM algorithm, which ensures 

the likelihood values increase monotonically. The problem is that the maximizers might 

be local or divergent. One reason is the initial values with which the EM algorithm starts 

may not be properly chosen. In practice, the initial values are given manually according to 

experience or grid-point search. This work is a heavy burden for high-dimensional data sets, 

for instance, it is hard to specify the ranges of parameters using grid-point search. 

The proposed data-driven estimation algorithm is easy to use for mixture survival model 

fitting, even for a high-dimensional data set. The initial value selection is not a problem, 

because the randomly self-starting avoids the selection, thus reducing the burden, especially 

for high-dimensional data sets. The estimated parameters from this algorithm can be the 

initial values for the EM algorithm; these initial values are more reliable than the manually 

chosen ones, because they come from the data. As to the repeated fitting step, it tries to find 

an improvement for the maximization, thus, it can be viewed as the replacement of theM­

step in the EM algorithm. Such a replacement is not efficient and has a high computational 

cost, but it is relatively easier to carry out because it takes advantage of existing model fitting 
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routines in R. Due to this point, the distribution of mixture component can be extended to 

all the distributions supported by R. 

The selection of the number of components is important for mixture model fitting. For 

this data-driven algorithm, we assume the component number is known before we start 

the procedure. In practice, one way to choose the proper mixture models is to try dif­

ferent component numbers, then compare their gains of target function. There are some 

information criterions, such as AIC, BBIC (Bootstrap-Based Information Criterion), CVIC 

(Cross-Validation-Based Information Criterion), BIC (Bayesian Information Criterion), etc .. 

We use the AIC in the cancer case. 

One issue in mixture model fitting is the lack of identifiability of mixture distributions. 

This phenomenon arises in our simulation study. This kind of interchanging of component 

labels could be handled by imposing some restriction, such as the order of proportion, the 

order of parameters. We don't explicitly impose any restriction here, and we just report the 

result for only one of the possible arrangements of the fitted parameters. 

Another issue in mixture model fitting is the bias reduction of parameter estimates. 

It is just like assessing the component number, important but difficult and has not been 

completely solved. We include this for future research. 
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Appendix 

R codes for survival fitting and simulation. 

# Parametric Survival Regression 
mean.Survival=function(data, para, formula, dist) 

{ 

} 

M=length (para) 
if (dist=="lognormal") 
{ 

} 

X=Model.Matrix(data, formula) 
coef=para[1:(M-1)] 
sdlog=para [M] 
linear.regressor=X %*% coef 
meanlog=linear.regressor 
Mean=exp(meanlog+(sdlog-2)/2) 

if (dist=="weibull") 
{ 

} 

X=Model.Matrix(data, formula) 
coef=para[1:(M-1)] 
shape=para [M] 
linear.regressor=X %*% coef 
scale=exp(linear.regressor) 
Mean=scale*gamma(1+1/shape) 

if (dist=="exponential") 
{ 

} 

X=Model.Matrix(data, formula) 
coef=para 
linear.regressor=X %*% coef 
rate=exp(-linear.regressor) 
Mean=!/ rate 

return(Mean) 
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# Data Generation 

{ 

} 

dataSet.Simulation.Survival = function(data.tmp, para, formula, n, dist) 

if (dist=="lognormal") sdata=dataSet.Simulation.Survival.Lognormal 
(data.tmp, para, formula, n) 

if (dist=="exponential") sdata=dataSet.Simulation.Survival.Exponential 
(data.tmp, para, formula, n) 

if (dist=="weibull") sdata=dataSet.Simulation.Survival.Weibull 

y=sdata$y 
Mean=sdata$mean 
censor.time=runif(n, Mean, 3*Mean) 
flag=(y<censor.time) 
event=as.numeric(flag) 
y[!flag]=censor.time[!flag] 
data.surv=cbind(y, event) 
return(data.surv) 

(data.tmp, para, formula, n) 

dataSet.Simulation.Survival.Lognormal=function(data.tmp, para, formula, n) 
{ 

} 

M=length (para) 
coef=para[1:(M-1)] 
sdlog=para[M] 
X = Model.Matrix(data.tmp, formula) 
Meanlog = X %*% coef 
y = rlnorm(n, Meanlog, sdlog) 
Mean = exp(Meanlog+(sdlog-2)/2) 
return(list(y=y, mean=Mean)) 

dataSet.Simulation.Survival.Weibull=function(data.tmp, para, formula, n) 
{ 

} 

M=length (para) 
coef=para[1:(M-1)] 
shape=para [M] 
X = Model.Matrix(data.tmp, formula) 
scale = exp(X %*% coef) 
y = rweibull(n, shape, scale) 
Mean = scale*gamma(1+1/shape) 
return(list(y=y, mean=Mean)) 

dataSet.Simulation.Survival.Exponential=function(data.tmp, para,formula, n) 
{ 

} 

X = Model.Matrix(data.tmp, formula) 
rate = exp(-X %*% para) 
y = rexp(n, rate) 
Mean = 1/rate 
return(list(y=y, mean=Mean)) 
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