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Abstract 

The work in this thesis is to develop a tool for calculating the pa­

rameters corresponding to certain theoretical model of dielectric relaxation 

phenomena and then doing the curve fitting using the result after fetching the 

data from the user. To our best knowledge, this the first such tool to calculate 

the parameters corresponding to certain theoretical model of dielectric relax­

ation phenomena while the user only need to provide the experimental data. 

The parameters are calculated by using a nonlinear least square algorithm im­

plemented in Matlab and a nonlinear function minimizer available in Matlab. 

The way to do the curve fitting is not by the traditional way such as cubic 

spline but by calculating the simulated data using the chosen model and the 

calculated result for the parameters. 

The available mathematical models include all of popular theoretical 

models, the Cole-Davidson (DC), the Kohlrausch-Williams-Watts (KWW), 

the Havriliak-Negami (HN) and the model proposed by R. Hilfer (FD). 

There are two ways to calculate the parameters for each model as men­

tioned before. The result returned by this system may not be unique. Es­

pecially if the frequency range of data is not wide enough, the result would 

most likely be non-unique. Since the iterative method is used in the system, 

it is suggested that the user provides the initial values for the system with his 

best knowledge or background for the data and the tested sample related to 

dielectric relaxation process. 

It is normal if there is a part having worse fitting than the other parts. 
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One of reasons could be the mathematical model's defect, which the model 

does not work for that part. For the further information, please contact me 

by email at zouhaijun at yahoo.com. 
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Chapter 1 

Introduction and Background 

Information 

This chapter introduces the basic knowledge necessary for reading this thesis, 

including a summary of the dielectric relaxation process, a list of symbols, 

and a description of important concepts and definitions. Following this a 

brief literature review is presented about the dielectric relaxation process and 

its data processing. The main par~ of this chapter is to discuss the issues 

of current methods about parameters calculation and data fitting, and the 

traditional way to do curve fitting. Finally, the chapter introduces a new 

method for data fitting and parameters calculation developed in the thesis. 
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1.1 Introduction 

1.1.1 Dielectric Relaxation 

Dielectric relaxation is the momentary delay in the dielectric constant of a 

material. This is usually caused by the delay in molecular polarization when 

a changing electric field is applied to a dielectric medium inside capacitors or 

between two large conducting surfaces. Dielectric is an adjective that does 

not conduct electricity or is a noun representing a dielectric substance us­

able for insulating things referred from the Oxford paperback dictionary [1]. 

The dielectric relaxation process is widely used in materials science, chem­

istry, physics, electrical engineering, mechanical science and health science. 

To study the micro-structure of the tested material, which may include solids, 

liquids or some other insulator such as patient's tissue, many scientists use a 

dielectric relaxation process to get some data that reflect the micro-structure 

of the tested material by conducting experiment measure with some equip­

ment such as radio frequency (RF) Impedance analyzer. The scientists may 

do some analysis on the data to get some characteristic parameters while the 

material's property is characterized by these parameters so that they can com­

pare several different materials, same kind of materials with different sample 

preparation procedure. It is interesting and important how to analyze the 

dielectric relaxation data by doing the data fitting and calculating the param­

eters corresponding to certain model. An efficient algorithm or program for 

the data fitting or the calculating of parameters is very helpful for the research 
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in the fields above. Before we discuss that, let us briefly discuss some terms 

of dielectric relaxation borrowed from materials science. 

The measurement or the experiment procedure may vary from different 

scientists to different equipments. However, there are only two kinds of data 

returned by experiments: time domain and frequency domain. For example, 

the relaxation consists in the recovery of strain on removal of stress, which 

implies therefore a time dependence, typically for the case by suddenly apply­

ing and then after a while by suddenly removing a steady stress. This is the 

basis for time domain, which leads to data in time domain. Here is another 

example in dielectric relaxation. Relaxation also consists in the recovery of the 

shape of molecules of an insulator, which a sinusoidal electric field is applied 

to. This example implies therefore a frequency dependence. This is the basis 

for frequency domain leading to the data in frequency domain. The relation­

ship between the data in time domain and frequency domain will be discussed 

in Chapter Two. The work in this thesis only focuses in the data in frequency 

domain. 

Now let us briefly introduce some characteristic parameters of the data 

in frequency domain borrowed from materials science. They include the fol­

lowing: 

• The fractional stretched exponential parameter for time-invariant 

• The relaxation time of a time-dependent property 

• The limited low frequency permittivity or 'instantaneous' susceptibility 

19 
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" The limited high frequency permittivity or static susceptibility 

() The isothermal susceptibility, which is difference between static suscep­

tibility and instantaneous susceptibility. 

where one model may have more fractional stretched exponential parameters 

while another model may have more parameters for relaxation time. Different 

models may have different characteristic parameters. Because the physical 

meaning of these terms does not affect the system, we do not explain them in 

detail here. 
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1.1.2 Symbols, Concepts and Definitions 

Abbreviations and Acronyms 

DC The model discussed by Cole Davidson [2] 

HN The model discussed by Havriliak-Negami [2] 

KWW The model discussed by Kohlrausch-Williams-Watts [2] 

FD The model obtained from the theory of fractional dynamics [2] 

fre The list of frequencies as the independent variables from the input 

TD The time domain measurement 

FrD The frequency domain measurement 

Table 1.1: Abbreviations and Acronyms 

Table of Symbols 

Her is the table for some symbols used in this thesis at Table 1.2. 
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w 

x*(w) 

Xo 

Xoo 

E*(w) 

Eo 

Eoo 

(3 

Tf3 

T'Y 

a 

TH 

'Y 

Ta 

T' Q 

f.1 

X' 

X" 

E' 

E" 

Circular frequency of the alternated voltage applied to the tested material 

Dynamic susceptibility normalized by corresponding isothermal susceptibility 

Static susceptibility 

Instantaneous response from the material 

Complex frequency-dependent dielectric susceptibility 

Static susceptibility for dielectric relaxation 

Instantaneous response from the material for dielectric relaxation 

Single stretching exponent for the model of KWW, 0 < (3 < 1 

Relaxation time for the model of KWW 

Relaxation time for the model of DC 

One single stretching exponent for the model of HN or FD, 0 < a < 1 

Relaxation time for the model of HN 

One single stretching exponent for the models of DC or HN, 0 < 'Y < 1 

Relaxation time for the model of FD 

Second relaxation time for the model of FD 

-i *W,i2 = -1 

The real part of the input data 

The imaginary part of the input data 

The real part of the input data for dielectric relaxation 

The imaginary part of the input data for dielectric relaxation 

Table 1.2: Symbol Table 
22 
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Concepts, Definitions and Goal 

This section introduces some concepts and definitions used in this thesis. 

• The input (experimental) data is a matrix having three columns. In 

this thesis, we only discuss the input data for dielectric relaxation. The 

first column is a list of frequencies, which are independent variables of 

dielectric relaxation data. The second column is a list of real part of 

dielectric relaxation data, which are obtained through the measurement. 

The third column is a list of imaginary part of dielectric relaxation data, 

which are also obtained through the measurement. 

• The simulated (generated) data is a matrix having three columns. It is 

a special input data with an extra header. The extra header is the first 

two rows of the matrix, where the information about the parameter's 

values and the model that is used to generate the data is stored. 

• The data fitting in this work: The data fitting includes two parts. One 

part is to do the data fitting for the real part of the data, i.e. the second 

column of the input data, with the independent variables, which are 

frequencies. The other part is to do the data fitting for the imaginary 

part of the data, i.e. the third column of the input data, with the 

independent variables, which are frequencies. The data fittings for two 

parts are carried out simultaneously in this work rather than separately. 

• The least-square estimation of nonlinear parameters for a model: The 

values of nonlinear parameters for a theoretical model are estimated in 
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the least-square manner so that the value returned by the theoretical 

model is the closest to the experimental data with respect to the same 

independent variable, i.e. the sum of squares of differences between 

experimental data and their approximation is the least. 

• The fractional stretched exponential parameter for time-invariant: is one 

of parameters for a model. There might be only one fractional stretched 

exponential factor for one model or two fractional stretched exponential 

factors for the other model. However, its function is same for all models, 

which is to justify the data returned by a model. Simply speaking, its 

function is just to modify the shape of curves including the curve for the 

real part of the data and the curve for the imaginary part of the data. 

• The relaxation time of a time-dependent property: is also one of pa­

rameters for a model. In most cases, there is one relaxation time for a 

model. Sometimes, there are two relaxation times for a model such as 

FN model. This parameter plays very important role in a model. This 

parameter affects the shape of the curve and the location of the peak for 

the curve of the imaginary data. 

• The limited high frequency permittivity or 'instantaneous' susceptibility, 

c00 , is the minimum value of the real part of the data if there existed an 

equipment without limitation. It is usually unknown due to the limita­

tion of the equipment. 

• The limited low frequency permittivity or static susceptibility, c0 , is the 
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maximum value of the real part of the data if there existed an equipment 

without limitation. It is also usually unknown due to the limitation of 

the equipment. 

• The curve: The curve we discuss here includes two parts. One part is 

the curve of the real part of the data plotted as a function of frequency. 

The first column of data, frequency, as the abscissa and the real part of 

the data, the second column of data, as the ordinate. This curve should 

have many data points having the value of E0 , and then monotonously 

decrease, finally reach the value of E00 • Due to the limitation of equip­

ment, a limited number of data points and the limited frequency range 

of measurement, this curve most likely only has the part that decreases 

monotonously. The other part of the curve is the curve of the imaginary 

part of the data plotted as a function of frequency. The first column of 

data, frequency, as the abscissa and the imaginary part of the data, the 

third column of data, as the ordinate. This curve should look like normal 

distribution curve but usually the curve is not symmetrical. Due to the 

same reason as the curve of the real part, the curve for some tested ma­

terial may not include the peak but only have monotonously-increased 

part or only have monotonously-decreased part. Here is an example of 

the curve Figure 1.1. 

• The goal: Since the dielectric relaxation process is widely used in mate­

rials science, chemistry, physics, electrical, mechanical science and even 
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Figure 1.1: The Sample Curve 

health science. It is interesting and important how to analyze the di-

electric relaxation data by doing the data fitting and calculating the 

parameters corresponding to certain model. An efficient algorithm or 

program for data fitting or calculation of parameters is very helpful for 

research in the fields above. The goal of this work is to develop a tool 

to eliminate the limitation of testing equipment such as the limited fre-

quency range of measurement as much as possible by doing the data 

fitting to show the other part of curve that cannot be acquired by do-

ing the measurement and return the characteristic parameters for the 

tested material, which are very helpful for researchers to compare dif-

ferent materials. This tool will help researchers to save time to handle 
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their experimental data because the current methods for data fitting and 

parameters acquiring cost a great amount of time, which you can see in 

the following section of literature review. 
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1.2 Literature Review 

There are many papers discussing how to do data fitting of dielectric relax­

ation. 

D. L. Misell and R. J. Sheppard discussed the method using de-convolution 

techniques to dielectric data. Although the de-convolution procedures can be 

used to analyze the dielectric data by deriving a distribution function rep­

resenting the molecular process, it was not discussed how to fit the data and 

return the parameter's values because the method even did not require a model 

for the number of dispersions [3). It is not a method to get the parameter's 

values and see the fitting result. 

C. T. Moynihan, L. P. Boesch and N. L. Laberge presented a method 

using an approximate expression of the Fourier transform for the decay func­

tion. The criteria used for the fit is that the calculated curve should match the 

targeted curve in maximum height, and they should also coincide at the two 

half height's positions. The method had to consider the width of the imag­

inary curve at half-height and the half height position on the low frequency. 

However, the method can only handle a special input data, which have to 

contain a peak in the imaginary part [4). 

Paul K. Dixon, Lei Wu, and Sidney R. Nagel found that the primary 

relaxation for all the liquids, over the entire frequency and temperature range, 

can be collapsed into a single scaling curve [7). Some forms were introduced 

to scale the dielectric data. However, the scaling required some parameter's 
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values, which usually are unknown, and also required that the imaginary part 

of the input data has to contain a peak. 

8. Gabriel, R. W. Lau and C. Gabriel programmed the model in terms 

of multiple Cole-Cole dispersion into a Microsoft Excel spreadsheet (The Cole­

Cole dispersion is also a model to describe dielectric relaxation. However, we 

will not do the fitting for this model simply because it is not so popular). 

A systematic procedure was followed in which the main parameters of the 

model were fitted. It was suitable when the data to be fitted span several 

orders of magnitude, creating a bias towards fitting the low frequency data 

and rendering the fit insensitive to the high frequency parameters. However, 

the whole fitting process was visual and requires an understanding of the Cole­

Cole function and appreciation of the correlation between parameters [8]. 

E. Tuncer and 8. M. Gubanski used the Monte Carlo Method to ob-

tain relaxation time distribution and compare non-linear spectral function fits. 

They used a pre-distribution of relaxation times, reconstructed the original 

data by an ideal model called single Debye relaxation to describe dielectric 

relaxation and used a box constraint, least squares algorithm. However, single 

Debye relaxation is not a practical but an ideal model for dielectric relaxation 

[9]. 

In the paper of dielectric spectroscopy data treatment: I. Frequency 

domain, N Axelrod et al. introduced a method based on a penalized maximum 

likelihood approach. They also suggested using the fast Fourier transforms and 

a suitable interpolation technique. They used much mathematical techniques. 
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For example, they had to solve the mathematically ill-posed problem. To 

get smooth parameter estimation, they need to introduce some penalty term 

to the cost function in the parameter minimization problem, together with a 

constraint condition. They just transfer dielectric spectroscopy data analysis 

problem to the continuous optimization problem by setting up an objective 

function, introducing penalty function and some constraints [10]. 

D. Wasylyshyn introduced a way to manually calculate a set of pa­

rameters for KWW model. Specifically, Wasylyshyn normalized the dielectric 

relaxation data by the factor of wr0 such that the peak of imaginary part of 

the curve, seen at the second part of Figure 1.1, corresponded with the peak 

of the tabulated values described in the data tables in the paper [13]. The 

height of peak was normalized by N" = E" / (c 0 - c 00 ) until the N" peak height 

matched the peak height of the tabulated data. Then a suitable value of j3 

was selected so that the N" peak matched the peak of the tabulated values. 

Finally after values of To, j3 and & were known, the value of c00 was adjusted 

to let the curve of N• match the tabulated values. It is obvious that there is 

much work by following the method to get the values of a set of parameters 

for KWW model [12]. And also it requires the experimental data including a 

peak too. 

Now let us introduce our method, which is easy to use with some back­

ground of dielectric relaxation. It does the least square fitting and parameters 

calculation together and shows the fitting result by plotting the curve. 
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1.3 Introduction of Our Method 

Our method is an iterative method. The system first reads the data from the 

user and asks the user to choose the model. The system lets the user choose 

the part of the data that is required to do the best fitting. The user provides 

the initial values for a set of parameters. Then the system will automatically 

return a set of parameters and the fitting error. The developed system also 

provides the visual fitting result of image and the file of the fitting result. The 

system provides two different ways to fit the data. The first way uses the 

algorithm introduced in [15). The second way uses a Matlab built in function 

as a minimizer by constructing an objective function. Since the system returns 

a set of parameters and the fitting result is unlikely unique [4), the initial values 

for a set parameters, the frequency range of data and the selected data are 

critical to get the best fit. The user may select a suitable way to do the data 

fitting based on the factors above and the chosen model. It will be discussed 

in detail how to choose a suitable wa,y in Chapter Three. 

Compared with those methods briefly introduced in the section of liter­

ature review, from a user's point of view, our method does not need to worry 

about whether the input data have the peak or not. It does not need to get 

the position of half-height of the curve. It does not need to normalize the 

data. There is not any manual computation before doing data fitting. The 

user does not need to reconstruct data. For example, the user does not need 

to build an objective function or penalty function. The user does not need to 
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scale the data. The system is able to handle very large range of data and cover 

data having several decade's range. And the user does not need to learn many 

mathematical skills to fit data but some background of dielectric relaxation 

property to choose the initial values for the unknown parameters. 

1.4 Thesis Structure 

Chapter 2 discusses the theorems including dielectric relaxation, mechanical 

relaxation, and their models. It also discusses the fitting techniques and least 

squares method. Chapter 3 will present our numerical software and system 

design. It emphasizes the applied algorithm, system design and its design prin­

ciple, data generation and the applied techniques. Chapter 4 discusses some 

experiments and testing for the system including two different ways of generat­

ing the simulated data, testing four subsystems based on different models and 

the experimental result. Finally, we talk about the conclusion and the future 

work for the system, such as how to do the more complicated data fitting and 

the condition for choosing the initial values. 
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Chapter 2 

Theorems 

This chapter presents some theorems regarding dielectric relaxation, mechani­

cal relaxation and their mathematical models, KWW, DC, HN and FD. Since 

the work done here is about data fitting and estimation of nonlinear parame­

ters, the data fitting techniques, linear least square and nonlinear least square 

methods will also be discussed in this chapter. 
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2.1 Theories of Relaxation 

Relaxation is a property that reflects the recovery of strain after the applied 

stress is removed. There are two ways to do the measurement. If a steady stress 

is applied to the tested material suddenly and then is removed suddenly after 

a while, this is the time domain measurement. The other way, which is used 

more often, is called the frequency domain measurement. It is a measurement 

by applying to the tested material a harmonically varying stress of an angular 

frequency w such as a sinusoidal electric field rather than a steady stress. 

However, we will not discuss how to do the measurement. We assume the 

data are ready to use when using this tool. There is a relation between the 

tested material's response under the time domain(TD) measurement and the 

tested materials's response under the frequency domain(FrD) measurement, 

i.e. TD responses j(t) and FrD responses x(w), X"(w) are Fourier transforms 

of one another seen in the following mathematical equations: 

x(w) = 100 

f(t)cos(wt)dt 

X"(w) = 100 

j(t)sin(wt)dt 

f(t) = (2/'Tr) 100 

x(w)cos(wt)dw 

f(t) = (2/'Tr) 100 

X"(w)sin(wt)dw 

The subject of relaxation covers all types of stress relief including di-

electric, mechanical, photo-conductive, chemical stress and so on [18). We only 

talk about dielectric relaxation and mechanical relaxation. 
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2.1.1 Dielectric Relaxation 

The science of dielectrics is multidisciplinary. To fully understand it, knowl­

edge of physics, chemistry, materials science and electrical engineering is re­

quired. Different researchers may be interested in different part of dielectric 

relaxation. For example, some engineers may be interested in the dielectric loss 

and electrical strength. Some engineers may be interested in the movement 

of charge. Chemists may use dielectric relaxation as a handle on molecular 

dynamics by doing TD measurement or FrD measurement [18]. 

There are five different principal dielectric functions currently present­

ing dielectric information. 

• The complex permittivity. 

• The dielectric modulus. 

• The complex capacitance. 

• The admittance of the sample. 

• The impedance of the sample. 

There are two most common ways to present the data. 

• Plots of the real and imaginary parts either in logarithmic or in linear 

coordinates as a function of frequency on a logarithmic presentation. 

• Plots of the imaginary part against the real component. 
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As mentioned in Chapter One, the complex permittivity and plots of 

the real and imaginary parts in linear coordinates as a function of frequency 

on a logarithmic presentation are selected in this thesis. 

One of measurements to obtain the data is to place the sample between 

two capacitor plates. A electric field is applied to the two capacitor plates [12]. 

Then the tested sample will be polarized and cause instantaneous and time 

dependent charge build up on the capacitor plates. We can obtain the data 

by measuring the the build up of surface charge. If the electric field is not 

constant, the Boltzmann superposition principle is applied. After a long series 

of formula reduction with some new definition by treating the superposition 

principle in the dynamic manner, we can end up with the following equation: 

(2.1) 

where 5t(x) is the Laplace transform of x, and N; is the normalized complex 

dielectric permittivity. 

2.1.2 Mechanical Relaxation 

The reason we discuss mechanical relaxation here is because it is analogous 

to the dielectric case. For example, there are very similar principal functions 

currently presenting mechanical information: the complex mechanical compli-

ance and the shear modulus, with respective to the complex permittivity and 

the dielectric modulus. There are also two most common ways to present the 

data just like what the dielectric data. In this thesis, however, we only focus 
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on the dielectric relaxation. 

Moreover, we also can end up with very similar equation by treating 

the superposition principle in the dynamic manner: 

(2.2) 

where Sf(x) is the Laplace transform of x, Ju and JR are analogue to E0 and 

E00 , and Nj is the normalized complex mechanical compliance. 

After we briefly introduced the mechanical relaxation, now we intro-

duce the principal types of dielectric functions or models, which also apply to 

mechanical relaxation, in the next section. 

2.2 Introduction of Four Models 

The left-handed side of all of the coming equations is: 

(2.3) 

2.2.1 Model of KWW, High Frequency Part, when I 

J-lT(3 I>> 0 

Introduced By R.Hilfer in [2] 

(2.4) 

where H f3 ( x) is defined by the series 

H ( ) = ~ r(JJk + 1) -k 

{3 X ~ r(k + 1) X 
(2.5) 

where J-L = -27ri x frequency and frequency is the independent variable. 
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2.2.2 Model of KWW, Low Frequency Part, when 

Introduced By R.Hilfer in [20] 

(2.6) 

where H 13 (x) is defined by the series 

H () = ~r((k+1)/f3) k+l. O<f3<_1 
(3 X 6 {Jf ( k + 1) X ' 

(2.7) 

where J1 = -27ri x frequency and frequency is the independent variable. 

2.2.3 Model of DC 

Introduced By R.Hilfer in [2] 

(2.8) 

where J1 = -27ri x frequency and frequency is the independent variable. 

2.2.4 Model of HN 

Introduced By R.Hilfer In [2] 

where J1 = -27ri x frequency and frequency is the independent variable. 
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2.2.5 Model of FD 

Introduced By R.Hilfer in [2] 

(2.10) 

where J.1- = -27fi x frequency and frequency is the independent variable. 

2.3 Least Squares Data Fitting 

The used data fitting techniques are actually a technique in least square man-

ner to minimize simulated data and the experimental data. The work done 

here first meant implementing four different models in Matlab so that those 

implemented models are able to return accurate data with respect to the pro-

vided parameters. Then we constructed an objective function by combining 

each of four models with the experimental data in least squares manner. Fi-

nally we used the nonlinear least square algorithm introduced in [15] to return 

approximated estimation of parameters based on the experimental data. We 

also used the Matlab build-in function fminsearch() as a minimizer to call 

the objective function. These two ways are both able to return approximated 

estimation of parameters. 
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40 



Chapter 3 

Numerical Software and System 

Design 

This chapter presents numerical software design of the developed software. It 

will cover the algorithms used in the system, software requirements, system 

architecture, design principle, data generation and finally numerical techniques 

applied to the software to improve its accuracy, efficiency and robustness. It 

is the main part of the thesis. 
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3.1 Algorithms 

3.1.1 Background 

Usually in data fitting, a theoretical model is existing and the analyst is at­

tempting to determine either how well the input data match the theoretical 

model in order to test how good the theoretical model is or to get the values 

for the parameters of the models such that the results produced by the theo­

retical model fit the input data. In our case, we need to determine the values 

of the parameters of the theoretical models. We know that four different mod­

els are in the complex number field and the values for the parameters of the 

theoretical models are in the real number field. If we work on the complex 

number field, the results returned by the system are most likely also complex 

numbers which are not what we expect. Some scientists [2] do the fitting on 

the real part and the imaginary part separately. This method returns two sets 

of values for the parameters of the model for the real part of data and the 

imaginary part of data respectively and may not fit two parts of data with 

the same set of values for the parameters of the model at the same time. Our 

method takes the consideration of both the real part and the imaginary part 

and fits the two parts of data at the same time. Since the input of the system 

is a set of data and the number of unknown parameters are 4 or 5 depending 

on different models, the problem of finding the values for the parameters of 

the model is over-determined. So we consider using the most commonly used 

algorithm for the least square regression. 
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3.1.2 Algorithm 

We know that four available models are nonlinear models introduced in the last 

chapter. We use nonlinear least squares approximation. The main idea of the 

least squares algorithm is that we are seeking some values for the parameters 

of the chosen model so that the chosen model will return values as close as 

possible to the experimental data with respective to the same independent 

variables. 

Suppose we have the experimental data consist of N triples as the 

following: 

where Xi, Yi and zi are representing frequency, E' and E". For the mean­

ing of e and E", see the Table 1.2. 

To evaluate how close the simulated data returned by the chosen model under 

certain values of the parameters are to the experimental data, the residual for 

each data point is defined as follows: Suppose f is the chosen model, a and 

b are values returned by the chosen model f, which are respectively real part 

and imaginary part of simulated data point corresponding to the experimental 

data point (xk, Yk, zk) and i is the symbol of imaginary unit of complex number, 

then we have: 

Realresidualk =I Yk- a I 

Imagresidualk =I Zk- b I 
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As we mentioned in section 3.1.1, our method takes the consideration of both 

the real part and the imaginary part and fits the two parts of data at the same 

time. We defined the sum of the squares of the residuals as the following: 

N-1 

sumofsquare = ~(Realresidualz + Imagresidual~) (3.1) 
k=O 

Then the system will minimize the value of sumo f square using the least 

squares technique or some available minimizers. When the system minimizes 

the value of sumo f square, the system returns the approximate values for the 

parameters of the chosen model which the system does the best to return. 

3.1.3 Method I and Method II 

The developed system uses two different methods to obtain the estimation of 

unknown parameters. One method is a least squares algorithm, the other is 

a method using the Matlab built-in function fminsearch(). The first method 

runs faster than the second method while the second method is more robust 

than the first one, which is seen in the next chapter of testing. The comparison 

between these two methods is seen at the Table 4.67 and the Table 4.68 in 

Chapter 4. 

Algorithm for Least Squares Estimation of Nonlinear Parameters 

This algorithm is introduced by Donald W. Marquardt [15]. This algorithm 

gets the least squares estimation of nonlinear parameters by calculating the 

derivatives with respect to some unknown parameters. These derivatives are 

used to direct the converging direction. This algorithm uses the Taylor series 
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through the linear terms to expand the chosen model. This algorithm performs 

an optimum interpolation between the Taylor series method and steepest de­

scent method. So each iterative step the algorithm calculates the derivatives 

to make sure they are less than zero. The iteration will stop when the deriva­

tives are zero. Because we know in order to minimize sumofsquare (3.1), the 

derivatives with respective to all of unknown parameters in the model must 

be zero. It is well known that the gradient method is not a method with a 

scale invariant [14]. This algorithm uses the scaling technique to improve the 

numerical aspects of computing procedure. The developed system utilizes the 

finite differentiation method to estimate the derivatives at each data point for 

all of unknown parameters. Since it is an iterative method, the initial values 

for all of unknown parameters are required. For more detail, see [15]. 

Method Calling the Matlab built-in Function Fminsearch() 

This Matlab built-in function fminsearch() is a method of multidimensional 

unconstrained nonlinear minimization (Nelder-Mead). It is available in Mat­

lab 7.0. It is used to minimize the sumof square of the difference between 

simulated data and the experimental data. For more detail of Nelder-Mead 

algorithm, see [22]. 
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3.2 System Design 

This section discusses the scope of the software product, software requirements 

and system architecture. 

3.2.1 Scope of the Software Product 

The main usage of the software product is to discover the dielectric relaxation 

properties of a tested material while a material properties are characterized by 

the parameters. The developed software does the least squares fitting for the 

available exper,imental data of the tested material and calculates the unknown 

parameters for the tested material. This software could be a tool to predict 

the behavior of the tested material by getting the material properties from the 

experimental data. 

3.2.2 Software Requirements 

Here are several software requirements for the developed system: 

• The user provides the experimental data to the system. 

• The experimental data consist of three parts, the independent variable is 

frequency or logarithm of frequency only, while the dependent variables 

are real components and imaginary components of dielectric relaxation 

property. 

• The system allows the user to decide which part data is the most impor­

tant or the most accurate and then select the required data by providing 
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the lower bound and upper bound of the frequency and visible curve. 

• The system allows a user to choose a model. 

• The system also asks the user to provide the initial values for the set of 

unknown parameters by observing the visible curve. In order to input 

the initial values easily for the user, the system sets the unit of relaxation 

time T as microsecond [msec], 10-6 second. 

• After doing the calculation, the system returns the output including 

values for the unknown five or four parameters of the tested material 

and a report. 

• The report records the following information: the chosen model, the 

values of parameters, the values of terminated criteria- the fitting error, 

and the simulated data with the corresponding experimental data. 

• The system terminates if the system reaches the maximum iterative 

times. 

• Finally the system draws the fitting curve to show how well the visual­

ization of fitting is. 

• The system is implemented using Matlab. 
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3.2.3 System Architecture 

Based on the requirements in the last section, we designed the following mod­

ules: main module to start the system, model selection module, data storage 

module, data preprocessing module, data selection module, data processing 

module, curve drawing module and output module. Our design principle is 

behavior hiding. The concept of behavior hiding fetches from Mesh generator 

modules guide introduced by Dr. Smith in 2006 [16]. Here are the detailed 

information including module name, service, secret, expected changes and the 

prefix for all modules. 

Main Module 

Module name 

Module service 

Module secret 

Main module 

Main control, starting the whole system 

The way how to call modules 

Expected changes Which modules should be called 

Prefix Dr 

Model Selection, Data Reading and Preprocessing 

1. Model selection module: 

Module name 

Module service 

Module secret 

Model selection module 

Let the user select the suitable model 

The way how to select a model 

Expected changes The number of models available 

Prefix Msel 
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2. Data storage module: 

Module name Data storage module 

Module service Store data, change formalism of data 

get the lower and upper bound of selected data 

Module secret The way how to provide services 

Expected changes How to implement these services using different languages 

Prefix Dat 

3. Data preprocessing module: 

Module name Data preprocessing module 

Module service 'fransfer the input data to the data accepted by 

the model, i.e. the independent variable is frequency only 

Module secret The way how to transfer the data to ones 

accepted by the system 

Expected changes The way how to transfer the data 

Prefix Dpre 

4. Data selection module: 

Module name Data selection module 

Module service Select part of the data 

Module secret How data is selected from the sequence of data 

Expected changes How many parts of the data can be selected 

Prefix Dsel 
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Data Processing 

Module name 

Module service 

Module secret 

Data processing module 

Handle data to calculate the output parameters 

The algorithm how to do it 

Expected changes The algorithm 

Prefix Dpm 

Report System and Fitting Curve Drawing 

1. Curve drawing module: 

Module name 

Module service 

Module secret 

Curve drawing module 

Draw the fitting curve 

The method how to draw a curve 

Expected changes Which curve drawing functions will be called 

Prefix Cdr a 

2. Output module: 

Module name Output module 

Module service Write results to output file 

Module secret The method how to do it 

Expected changes More models available, right now only KWW, DC, HN and FD 

Prefix Out 
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3.3 Data Generation and Checking 

A part from the developed system, we also developed another system to gen­

erate data to test the program. The system has two modules as follows: 

1. Data generation module: 

Module name 

Module service 

Module secret 

Data generation module 

Generate the data based on the selected model 

and values of parameters 

The way how to generate the simulated data 

Expect~d changes Available methods to generate the simulated data 

Prefix Gen 

2. Data checking module: 

Module name Data checking module 

Module service Return values of parameters of the simulated data 

Module secret How to return the values 

Expected changes How to store values for those parameters 

Prefix Che 

The system first reads the input file from the current directory. The 

input file is obtained from Journal of Research of the National Bureau of Stan­

dards [13]. Each input file is corresponding to a particular value for j3. The 

system generates the simulated data with respective to the values of param­

eters T13 , Eo, E00 , a list of frequencies provided by the user and the particular 

value for j3 according to the input file. The explanation of the parameters is 
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seen in Table 1.2. The simulated data generated from the Journal of Research 

of the National Bureau of Standards are based on the model of KWW and will 

be the simulated data to test the program since we know the result returned 

by the tested system should be. There are the other four different ways to 

generate the data by using four available models introduced in Chapter Two 

and providing the values for parameters to the model. 

This system records the values of parameters, and which the chosen 

model is used to generate the data, at the first two rows of data for the 

generated data. 

The system also provides the way to see which model is used and the 

values of the parameters the model uses to generate the data by displaying 

the first two rows of data. 

For example, if we choose KWW model to generate data, suppose 

KWW is represented as -1, the values of parameters {3, Tf3, Eo, and E00 and 

a list of frequencies are 0.5, 1 [msec], 5 and 2 respectively, and the list of fre­

quencies is the vector, which the values of elements are monotonously increased 

from 1.591549430918953 x 103 to 6.366197723675814 x 104 and usually avail­

able from the experimental data, then the first two rows of the generated data 

are the following: 

5. OOOOOOOOOOOOOOOe-0 1 1. 000000000000000e+00 0 .000000000000000e+00 

5 .OOOOOOOOOOOOOOOe+OO 2. OOOOOOOOOOOOOOOe+OO -l.OOOOOOOOOOOOOOOe+OO 

52 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

And the generated data are the following: 

Frequencies Real part, e Imaginary part f" 

5. OOOOOOOOOOOOOOOe-0 1 1.000000000000000e+00 O.OOOOOOOOOOOOOOOe+OO 

5.000000000000000e+OO 2.000000000000000e+00 -1. OOOOOOOOOOOOOOOe+OO 

1. 5915494309 18953e+03 4. 996450400000000e+00 5. 964000000000001 e-02 

3.18309886183 7907 e+03 4.986318519173119e+OO 1.173438824448000e-O 1 

4. 77 4648292756860e+03 4.970754836777365e+OO 1. 718324 729076224e-O 1 

6.366197723675814e+03 4.951095272939271e+00 2 .224458886823872e-O 1 

7.9577 4 7154594 767 e+03 4.928465813386232e+00 2.690537564 7 49919e-01 

1.591549430918953e+04 4. 795921 987532930e+00 4.490299797170239e-01 

2.387324146378430e+04 4.661437259759429e+00 5.6531954627 43827 e-01 

3.183098861837907e+04 4.538418922469724e+00 6.430251652619502e-01 

3.9788735 77297384e+04 4.4285 76445242227 e+OO 6.965981701657942e-01 

4. 77 4648292756860e+04 4.330826245416617e+00 7.343737895185591e-01 

5.570423008216338e+04 4.243555245822341e+00 7.613874532696657e-01 

6.3661 97723675814e+04 4.165222885950977 e+OO 7.808252886739697 e-01 

From the generated data above, we can get the values of parameters and the 

chosen model because the first two rows record the values of parameters, 0.5, 

1[msec], 5, 2 for {3, Tf3, Eo, E00 and the chosen model since -1 represents KWW 

model (The slot of the first row and the third column is reserved for the 

theoretical model having five parameters). The system just simply displays 

the parameter's values and the chosen model by getting the information from 

53 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

the first two rows. The remain part, which is from the third row to the last 

row, is the generated data where the first column is a list of frequencies, the 

second column is a list of e and the third column is a list of E" (for the meaning 

of symbols, see the table 1.2). If we draw a curve for the data, we will get the 

half part of curve in the Figure 1.1. 
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3.4 Accuracy, Efficiency and Robustness 

There are four available models, DC, HN, FD and KWW models discussed in 

chapter Two. DC, HN, and FD models are all in the form of one term. It is 

not too difficult to implement them in Matlab. However, KWW model is a 

sum of series seen in the next page. Because it is impossible to require infinite 

terms, a care need to be taken to implement this important model. Before we 

discuss that, let us review this important model. 

Here is the model of KWW introduced in chapter Two. It includes two 

parts: 

• High frequency part when I P,Tf3 I>> 0: 

where H 13 ( x) is defined by the series 

H ( ) = ~ r(,Bk + 1) -k 

f3 X 2o r(k + 1) X 

• Low frequency part when I P,Tf3 1~ 0: 

where H 13 ( x) is defined by the series 

H (x) = ~ r((k + 1)/,B) xk+I. 0 < ,B < 1 
13 ~ ,ar(k + 1) ' -

k=O 

where p, = -2?Ti x frequency and frequency is the independent variable. 

(2.5) 

(2.7) 

From this model, we know that it includes two parts, low frequency 

part and high frequency part. When I P,Tf3 1~ 0, the system should use low 
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frequency part to do the calculation while the system should use high frequency 

part to do the calculation when I J1Tf3 I>> 0. Unfortunately, the condition of 

I J1Tf3 1~ 0 is ambiguous. It does not tell us what the threshold is exactly 

since the threshold is the place or point of beginning according to American 

Heritage Dictionary [17]. After we did many experiments, we know that, with 

a very small frequency value closed to zero, the model of KWW, low frequency 

part, the equation (2.5), works and reflects the dielectric relaxation property 

correctly. But when the value of frequency increases and exceeds the threshold, 

the model of KWW, low frequency part, the equation (2.5) diverges, returns 

very large value and does not reflect dielectric relaxation property any more. 

Similarly, with very large frequency value, the model of KWW, high frequency 

part, the equation (2. 7) works and reflects the dielectric relaxation property 

correctly. When the value of frequency decreases and exceeds threshold, the 

model of KWW, high frequency part, the equation (2.5) diverges, returns very 

large value and does not reflect dielectric relaxation property any more. It is 

also turned out by the experiments that the threshold in term of frequency 

for the model of KWW, high frequency part is less than that for the model of 

KWW, low frequency part, which means there is overlap of frequency range 

or a common frequency range where both parts work and reflect the dielectric 

relaxation property correctly and simultaneously. So we need to take care of 

not only how to implement the model of KWW as a sum of series, but also 

how to switch two parts of the model precisely and efficiently. Before we do 

that, let us discuss one of components in KWW model, gamma function. 
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3.4.1 Introduction of Gamma Function 

The definition of gamma function for the argument in real number is the 

following: 

r(x) = 100 

e:-le-tdt 

= (x- 1) 100 

tx-2e-tdt 

= (x- 1)r(x- 1) 

However, for the equation (3.2), x cannot be equal to one. 

If xis an integer n = 1, 2, 3, ···,then 

r(n) = (n- 1)! 

(3.2) 

(3.3) 

When x changes from 0 to 1.4616, the gamma function monotonously 

decreases from I nf to the minimum value of 0.8856. Then the gamma function 

becomes monotonously increased and the slope of the curve becomes greater 

and greater. Here is the Table 3.1 with some particular values returned by 

gamma function with respective to some particular values of x. Here is the 

Figure 3.1 for Gamma function r(x). 

3.4.2 Scaling and Gamma Function Decomposition 

From the previous subsection, we know when x is greater than or equal to 

172, r( x) will overflow in double precision. Since we use Matlab to implement 

the system, r(k + 1) overflows when k is greater than or equal to 171. From 
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Gamma function 
15r---.---.---.---.---.---,---.----.---.--~ 
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Figure 3.1: The Curve of Gamma Function r(x) 

X r(x) 

0 Inf 

1 1 

1.4616 0.8856 

2 1 

3 2 

171 7.2574 X 10306 

172 overflow in double precision 

Table 3.1: Special Gamma Function Values 
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the equation (2.5) and the equation (2.7) we know f(k + 1) is part of the 

divider. So the value of each term in the equation (2.5) and the equation (2.7) 

will become zero when k is greater than or equal to 171 if we calculate each 

term by calling the Matlab built-in function f(x) directly. After we did many 

experiments, it turned out that when frequency becomes smaller and smaller 

the equation (2.5) converges more and more slowly. And the required value 

for k to let the (2.5) return accurate values will exceed 171 when frequency 

is small enough. So we should not implement equation (2.5) by calling the 

Matlab built-in function f(x) directly. To let the value of k exceed 171 and 

also avoid the large intermediate value, we apply scaling technique and decom-

pose f(x) function to implement the model of KWW. Before we explore the 

relationship between two parts of the model of KWW, we need to discuss how 

to apply scaling technique and decomposition of f(x) to the model of KWW, 

high frequency part and low frequency part. 

• Here is the technique or solution the system takes to calculate the coef-

ficients for the model of KWW, high frequency part, equation ( 2.5): 

x(p,) = 1- H(3( -(P,T(3)f3); 0 < (3 ~ 1 high frequency part 

where H f3 ( x) is defined by the series 

H ( ) = ~ r((Jk + 1) -k 

(3 X 2o f(k + 1) X 
(2.5) 

where p, = -27ri x frequency and frequency is the independent variable. 
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Because 

r(,Bk + 1) = r(k + 1), where, k = 0, 0 < ,B:::; 1 

r(,Bk + 1) :::; r(k + 1), where, k = 1, 0 < ,B:::; 1 

r(,Bk + 1) :::; r(k + 1), where, k > 1, 0 < ,B:::; 1 

so we have 

r(,Bk + 1) :::; f(k + 1), where, k = 0, 1, 2, ... '0 < ,B:::; 1 

the system does the following scaling and decomposition according to 

the equation (3.2): 

r(,Bk + 1) = (IT ,Bk- n)( r(,Bk- (m- 1))) (3.4) 
f ( k + 1) n=O k - n f ( k - ( m - 1)) 

where m = L,Bkj 

For example, suppose ,B = 0.3 and k = 180, if we calculate the following 

term directly 

f(,Bk + 1) 
r(k + 1) 

r(o.3 x 180 + 1) 
r(181) 

-
2.3084 X 1071 

Inf =O 

But if we apply the technique (3.4), we have the following: 

53 
r(,Bk + 1) - (IJ 54- n ) r(54- 53) - -258 

f(k + 1) - n=O 180- n f(180- 53) - 1.
1491 

X 10 

Here is the detailed algorithm to calculate the left hand sided of the 

equation (3.4): 

The inputs are ,B and k 

1. betak = ,Bk. 
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2. m = lbetakj. 

3 "f k ( 1) 172 lt _ (Tim-1 (3k-n)(r(,Bk-(m-1))) 
· 1 - m- < ' resu - n=O k-n r(k-(m-1)) . 

4. else result = 0. 

5. return result. 

The reason decomposing the gamma function until n = ( m - 1) is to 

avoid the term: 

r({3k- m) 

being Inf. Because we know it is possible for {3k = m and r(O) = Inf. 

Before the system does the decomposition above, the system will see 

whether the value of k- ( m -1) > 172 or not. If it is the c~e, the system 

will return the value of the coefficient with zero because anyway r(k-

(m- 1)) = Inj, which is a part of the divider. Although (;,ft:/;;:~1W) 

can be in the range, we do not do further decomposition. The reason we 

stop decomposing (i.~k_-/;::~1W) is that r( x) becomes very unstable and 

it is not continuous any more when x ::;: 0 and {3k - ( m - 1) ::;: 0 if we 

do the decomposition for (g:~/;;:1W) seen at the Figure 3.1. 

Why this scaling and decomposition can solve the problem? It is because 

all of intermediate terms including (TI:::-01 f3:~n) and ( rg:~~~1W) are 

less than one when {3 < 1. 

However, when {3 > 1, the equation (3.4) is not correct any more because 

one of the dividers, k- n, may be equal to zero in the equation (3.4). 

Because when {3 > 1, then k ::;: m, k- n may be equal to zero when 
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n changes from 0 to m - 1. We will have the detailed in the coming 

subsection 3.4.5. 

• Here is the technique or solution the system takes to calculate each term 

for the model of KWW, low frequency part, equation (2.7): 

x(J-L) = 1 + H{3( -(J-LT[3)) low frequency part 

where Hf3(x) is defined by the series 

H ( ) = ~ f((k + 1)/ ,B) xk+l. 0 < (3 < 1 
{3 X ~ ,Bf(k + 1) ' -

k=O 

(2.7) 

where f-L = -27ri x frequency and frequency is the independent variable. 

Since when X 2: 2, r(x) increases monotonously, then 

k+1 
r(-,8-) > ,Bf(k + 1), where, k 2: 1, 0 < ,B:::; 1 

and by drawing the curve for the function 

1 
y = r(,B)- ,Bf(1), 0 < ,B:::; 1, where, f(1) = 1, 

it is easy to see 

1 
r(fi) 2: ,Bf(1),0 < ,B:::; 1,where,f(l) = 1. 

So we know from the property of gamma function above, 

k+1 
r( ----:a-) 2: ,Br(k + 1), where, k = 0, 1, 2, ... '0 < ,B:::; 1, 

and only when ,B = 1, they are equal. 

62 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

According to this, the system does the following scaling and decomposi-

tion according to the equation (3.2): 

k 

r((k + 1)/ m xk+l( -1)k =(IT ( -x)((k + 1)/ (3- n) )r((k + 1)/ (3- k)x 
(3f(k+1) n=l k+1-n 

(3.5) 

of course, when k = 0, the system calculated (3.5) directly as follow: 

r((k + 1)/(3) xk+l(-1)k = r(1/(3)xj(3 
(3f(k + 1) 

For example, suppose (3 = 0.5, k = 86 and x = 1, if we calculate the 

following term directly 

r((k + 1)/ (3) xk+l( -1)k = r((86 + 1)/0.5) 
(3f(k + 1) 0.5f(87) 

2f(174) 
r(87) 

Inf = Inf 
2.4227 X 10130 

But if we apply the technique (3.5), we have the following: 

86 
r( (k + 1) I (3) xk+l ( -1)k = (IT ( (86 + 1)/0.5- n) )r( (86+ 1) /0.5-86) = 

(3f(k + 1) n=l 86 + 1- n 

7.2315 X 1050 
X f(88) = 1.5242 X 10183 

The example for when (3 2:: 1 is similar to the example above. But in 

this case the system returns a very small number rather than 0 since 

r((k + 1)/(3) is less than r(k + 1). 
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3.4.3 Horner's Rule, Series Handling and Truncations 

To speed up the system, we also apply the Horner's rule when we implement 

the theoretical model. Now let us discuss how to apply the Horner's rule 

and how to truncate a infinite series such that the model will return accurate 

values. 

Horner's Rule 

The Horner's rule is a rule for polynomial computation. It is a rule which both 

reduces the number of necessary multiplications and results in less numerical 

instability due to potential subtraction of one large number from another. The 

rule simply factors out powers of x, giving [23] 

Horner's Rule and Series Handling for the Model of KWW, High 

Frequency Part, Equation (2.5) 

We know that the equation (2.5) is a polynomial and the equation (3.4) is 

used to calculate coefficients for the polynomial more precisely according to 

the analysis in the previous section. We also know that coefficients for the 

polynomial (2.5) are always same as long as the value of j3 is same. And when 

the value of k increases, the coefficient for the polynomial rg::N decreases. So 

we calculate all of coefficients of the polynomial for a particular j3 until the new 

calculated coefficient is equal to zero. We only calculate them one time. And 

then construct a vector which elements are coefficients for the polynomial. We 
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just use these coefficients to calculate the simulated data in the range of high 

frequency part. When we calculate the simulated data in the range of high 

frequency part, we apply the Horner's rule and the scalar-vector multiplication 

to improve the performance while the scalar is one of the coefficients and the 

vector is the - (J.LT f3 )f3. This way by calculating all of coefficients at the same 

time will improve the accuracy for the high frequency part and also save much 

execution time from comparison to the value of intermediate term and the 

program will not be composed of many if statements. 

Here is a piece of algorithm: 

1. m = length(coeff); 

2. kwwterm = coeff(m); 

3. for k=m-1:-1:1 

4 .... kwwterm = kwwterm.jxm + coeff(k); 

5. end; 

where coeff is the vector which elements are coefficients for the polynomial, 

xm is the -(J.LTf3)f3, Tf3 is the relaxation time, J.L = -27ri x frequency and 

frequency is the independent variable in the range of high frequency part. 

The n~ason that such design can save the execution time is because 

most of data points are in the range of high frequency part and they have the 

same vector which elements are coefficients of the polynomial for a common 

{3. 
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Series Handling and Truncations for the Model of KWW, Low Fre-

quency Part, Equation (2.7) 

We know that the experimental data are most likely in high frequency part 

if using the model of KWW. We know how to let the model return accurate 

result in the range of high frequency part. However, we can not tell whether or 

not the intermediate simulated data corresponding to the same independent 

variable frequency as the experimental data have are also most likely in the 

range of high frequency part in each single iterative step. The intermediate 

simulated data we discuss here is the simulated data generated by the chosen 

model using the intermediate values for the parameters in the iterative steps 

in the nonlinear least squares algorithm. We have to make sure they are also 

accurate if where they are located is changed from the range of high frequency 

part to the range of low frequency part. Otherwise, we cannot confirm that the 

result returned by the system is correct or the system may not work correctly 

and only return the wrong result because it does not follow the correct path to 

converge the result. We have to make sure the model of KWW, low frequency 

part is also able to return accurate result though it is not called all the time 

but occasionally. Before we do the design for it, we do the following analysis. 

Firstly, we do the following approximation, 

r((k + 1)/ !3) k+l ~ .!.( (k + 1) _ 1)( (k + 1) _ 2)· .. (k 1)( )k+I 
er ( k + 1) x f3 f3 f3 + x · 

(3.6) 

And suppose we have the following geometric series, 
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in term of the truncated tail from the last term to the current term, we have 

a1 ( = bn = verylastTerm), a2(= bn_1 ), · · ·, an-(i-l)( = bi = currentTerm), · · ·, 

since it is a geometric series, we have 

n-(i-1) ( (" ) 1) 
""' aj = a1 (1 - q n- z-l + ) = verylastTerm- currentTerm 
~ 1-q 1-q ' 
J=1 

(3.7) 

So if we set 

1 (k + 1) (k + 1) I ~( b - 1)( b - 2)· · · (k + 1)(x)k+1 1~1 (1- (x))tolerance I 

or 

I currenTerm 1~1 (1- (x))tolerance I, 

since the series eventually converges, we suppose verylastTerm closed to zero, 

and in our case q = x, then we have, 

n 
""'ai = verylastTerm- currentTerm = 
~ 1-q 
i=1 

I 
verylastTerm- currentTerm I I currentTerm I l 

= ~ < to erance 
1-x 1-x -

then we will know the truncation error for the particular data point will be less 

than tolerance according to the formula (3.7) since the sum of the truncated 

tail is less than tolerance. 

After doing the truncation above, the system solves the issue of oo 

terms for the model of KWW, low frequency part, equation (2.7) and the 

model of KWW, low frequency part is able to return accurate result. The 

chosen default truncation error' tolerance, in the system is w-6 . 
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However, since the theoretical model of KWW, low frequency part and 

high frequency part are different, we have to provide a robust way for the 

system to find threshold such that the system can switch between two parts 

of KWW model automatically and precisely. Now let us describe the model 

switch method. 

3.4.4 Models Switch Method 

Although we know the experimental data are most likely in high frequency 

part if using the model of KWW, we are still not sure the simulated data cor­

responding to the initial values for unknown parameters are in high frequency 

part or not. Based on the fact that the model of KWW, low frequency part, 

equation (2.7) only covers really small portion of frequency range, we did the 

following design in the system. 

The design here is based on the assumption that the experimental data 

are sorted in frequency. At the beginning, the system will use the model 

of KWW, low frequency part, equation (2.7) to calculate the simulated data 

corresponding to the values for unknown parameters. The system will auto­

matically determine whether the current data point is threshold or not. The 

method to find threshold from the low frequency part to the high frequency 

part in the system is to let system use the model of KWW, low frequency 

part, equation (2.7) to calculate the simulated data point for each data point 

until the real part of simulated data point returned by the system is any of 

Jnj,NaN, less than zero or greater than 1. If the real part of simulated data 
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point is any of Inf, NaN, less than zero or greater than 1, the system will 

treat it as the threshold and then switch the model of KWW from low fre­

quency part to high frequency part and also recalculate the simulated data 

point at the threshold, the current data point. When the system uses the 

model of KWW, low frequency part, equation (2.7) to calculate the simulated 

data corresponding to the values for unknown parameters, the system will see 

whether the current data point is threshold or not for each data point by the 

means of lazy evaluation. Fortunately, it does not consume too much exe­

cution time for this step since the low frequency part is the small portion of 

the full range of frequency. The system also detects the following case and 

return the invalid value to signal the program to switch model if the system 

use the model of KWW, low frequency part, equation (2.7) to calculate the 

simulated value for current data point, which the system should use the model 

KWW, high frequency part, equation (2.5). When the system used the model 

of KWW, high frequency part, equation (2.5), the system uses scalar and vec­

tor multiplication to calculate the remainder of simulated data, the whole high 

frequency part together as we described in the section 3.4.3. 

3.4.5 Improving Correctness and Robustness 

As we mentioned in the section 3.4.2, the system may encounter doing the 

calculation by dividing some term by zero. So it is also important to apply 

some techniques to improve the correctness and robustness for the model of 

KWW and the algorithm. So let us discuss some applied techniques in the 
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system to improve correctness and robustness here. 

Techniques Applied to the Model of KWW, High Frequency Part 

1. When (3 > 1, the decomposition of (3.4) may lead to being divided by 

zero. In order to make the program more robust, the system will check 

whether the factor is zero or not. If the factor is zero, the system will 

let the factor become the minimum value that the Matlab can present 

precisely to keep the computation on going. The system takes 10-16 • 

At this point, we do not consider the precision much here. No matter 

what the system returns, the system just discards the result since it is 

not what the user want. The purpose to replace zero with the minimum 

value is to keep the system doing the calculation and improving the 

system's robustness. we do not care the result any more. If the system 

eventually converges the satisfied result, that is good and the user will 

take the result. Otherwise the user can run the system again with better 

initial values. 

2. When m < 2, where m = LfJkJ, the decomposition of (3.4) is also not 

correct because there is not common factor and if k=O, (3 * k/k =I (3. 

When m < 2, the system will calculate the (2.5) directly or if k >= 172 

let the returned value be zero. 

3. When calculating the coefficient of polynomial using the decomposition 

of (3.4), if the value for (3 > 1, the coefficient using the decomposition 

(3.4) will not converge to zero leading to a infinity loop. The system will 
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force the coefficient become zero to avoid the infinite loop by detecting 

whether the absolute value of difference between k and m is larger than 

171 and using the gamma function's property where the gamma function 

f(x) overflows when x > 171. In this way, the system can share the same 

code for the calculation for the case either when (3 ~ 1 or (3 < 1. 

Techniques Applied to the Model of KWW, Low Frequency Part 

After we perform many experiments, it is found that the threshold in term of 

frequency for the model of KWW, from low frequency part to high frequency 

part is different from threshold in term of frequency for the model of KWW, 

from high frequency part to low frequency part. The previous one is greater 

than the latter one in term of frequency, which means there is overlap between 

the model of KWW, low frequency part and high frequency part, or we can 

say, there is a common frequency range where both parts of the model of 

KWW work. Moreover it is more precise or accurate using low frequency part 

than using high frequency part in the overlap area. So the system uses the 

model of KWW, low frequency part until it does not work any more, which 

was described in the section 3.4.4. 
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Techniques Applied to the Algorithm for Least Squares Estimation 

of Nonlinear Parameters 

1. In the algorithm introduced by Donald W. Marquardt [15], a special 

matrix is required as follows: 

Pnxk=(ofi) k ob·' i=1,2,3,···,n, j=1,2,3,···, 
J 

where n is the number of data points available, k is the number of un-

known parameters, f is the function or model and b is the set of unknown 

parameters. 

However it is not easy to get the derivative for the functions of models 

available. To get the special matrix above, the system took the finite 

differentiation method to approximate the derivative by calculating the 

slope of each data point with its perturbed data point. 

2. We know that it is the complex number operation when applying the 

algorithm [15] to our particular topic. So the returned vector of b intra-

duced in the algorithm (15] is most likely the vector with some complex 

number elements, which are supposed to be real numbers. So the sys-

tem called the Matlab built-in function reaLm to ignore their imaginary 

parts such that the returned vector of 6 is in the real number field. The 

reason we can ignore the imaginary parts is that the imaginary parts are 

less than one percent of the corresponding real parts we found when we 

perform the experiments. Moreover, even if the imaginary parts are not 

less than one percent of the corresponding real parts, according to the 
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gradient methods, any proper method must result in a correction vector 

whose direction is within 90 degree of the negative gradient of (} [15], 

the angle of real parts and complex vector must be within 90 degree. So 

we can ignore the imaginary part by sacrificing the speed of convergence 

to make sure the returned values for those unknown parameters are real 

number. 

3. There are two different ways to terminate the program: the first is reach­

ing a local optimal solution when the derivative becomes zero and the 

other is reaching the maximum iteration times. If the system reaches 

the maximum iteration times, the system will notice the user that the 

maximum iteration times is reached and suggest the user the answer may 

not be correct and the user can choose new initial values to recalculate 

them again. 
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Chapter 4 

Experiments 

This chapter discusses the testing using thirty sets of data and different meth­

ods. The testing results will be shown as siXty tables. The contents for each 

table include initial values of unknown parameters, true values of unknown pa­

rameters, the parameter values returned by the system, the fitting error and 

the iterative times. This chapter firstly discusses the procedure how to carry 

out an experiment, how to choose the initial values, how to generate data and 

then does the comparison between the true values and the parameter values 

returned by the system. Finally there are discussion and result. 
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4.1 Procedure to Carry Out an Experiment 

The procedure to carry out an experiment is the following: 

1. Type the name of the input file containing the experimental data. 

2. Type the name of the output file where the result will be written. 

3. Tell the system that the format of the independent variable, frequency of 

the experimental data is logarithmic value of frequency or frequency. The 

developed system can only handle these two kinds of the independent 

variables, logarithmic value of frequency and frequency. 

4. Check the drawn curve and get some valuable information from it such 

as the location of the peak. It is helpful to choose the initial values. 

5. Determine which part of the curve that need the best fit by providing 

lower bound and upper bound. 

6. Choose a model to fit the data. The available models are KWW, DC, 

HN and FD. 

7. Choose a method to fit the data. The available methods are by using 

the algorithm introduced in the paper [15), named after method I and by 

calling the Matlab built-in function fminsearch(), named after method 

II. 

8. Provide the initial values for the unknown parameters after observing the 

curve drawn by the system. We will have the discussion how to choose 
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the initial values for the unknown parameters in the coming section. 

9. Observe the intermediate results and final result on screen shown by the 

system. 

10. Wait for the system writes the result into the output file and draws the 

fitting curve to finish the whole calculation. 

When we follow the procedure above, the most difficult step is how to 

guess the initial values for the unknown parameters with the user's background 

and knowledge of the experimental data and the hidden information from the 

curve for the experimental data drawn by the system. The curve drawn by 

the system here which is discussed in the section 1.1.2 includes two parts. 

One part is the curve of the real part of the experimental data plotted as a 

function of frequency. The first column of the experimental data, frequency, as 

the abscissa and the real part of the experimental data, the second column of 

experimental data, as the ordinate. The other part of the curve is the curve of 

the imaginary part of the experimental data plotted as a function of frequency. 

The first column of the experimental data, frequency, as the abscissa and the 

imaginary part of the experimental data, the third column of the experimental 

data, as the ordinate. There is an example of a fitting curve, Figure 4.1. Now 

let us discuss how to choose the initial values for the unknown parameters. 
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4.2 Method to Choose the Initial Values 

It is important to choose the initial values when using an iterative method. 

Better initial values lead to the correct result with less execution time. The 

system may not return the correct result with the weak initial values. Here is 

the discussion how to choose the initial values forT, a, (3, /,Eo and E00 • Let us 

start to discu~s how to choose the initial value for the parameter T. Its value 

is usually the most difficult to guess. 

4.2.1 Method to Choose the Initial Value ofT 

From [13], we know that: 

1 
T=k*--; 

!max 

where k is a constant depending on the testing material and f max is the coor-

dinate value of frequency where the peak of the curve of the imaginary part 

of the experimental data plotted as a function of frequency is located. When 

the value of f max is greater, the value of T is less. 

For the model only having one parameter T, such as KWW, DC and 

HN, if the logarithmic value of frequency is around 5 to 6, then the value of 

T would probably be around 1 microsecond [msec]. If the logarithmic value 

of frequency is around 6 to 7, then the value of T would probably be around 

0.1 microsecond [msec]. If the logarithmic value of frequency is around 4 to 

5, then the value ofT would probably be around 10 microsecond [msec]. If no 

peak occurs, the user may guess the initial value of T by combining two parts 
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of the curve to determine where the peak would be. 

For the model having two parameters of T, such as FD, we know one T 

means one peak in the curve of the imaginary part of the experimental data 

plotted as a function of frequency and two TS mean two peaks in the curve. 

The latter does not mean the overlap of these two peaks also includes two 

peaks. The curve may only show one peak. Then we need to guess two values 

ofT based on the location of the only one peak using the equation above. It is 

more difficult to guess the initial values for the model having two parameters 

of T than for those models only having one parameter T. 

4.2.2 Method to Choose the Initial Value of a, f3 and 'Y 

There is not a robust or efficient way to guess the initial values of a, f3 and 

r· The range of a, f3 and r theoretically is from 0 to 1. And usually most of 

time the practical range of a, f3 and r is from 0.2 to 0. 75. The system will 

provide the default value for them, which is 0.5, if the user does not know how 

to choose them. If there are two parameters among a, f3 and r in the model, 

such as HN model, the user may choose the values, 0.4 and 0.6 such that the 

range from 0.2 to 0.75 may be divided into three approximately equal spaces. 

4.2.3 Method to Choose the Initial Value of Eo and E00 

There is also not a robust or efficient way to guess the initial values of Eo 

and E00 • The system will provide the default values for them, which are the 

maximum value of the real part data and minimum value of the real part data, 
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if the user does not know how to choose them. 

However, the default values are usually far away from the true values 

for Eo and E00 due to the limitation of experimental equipment. Here is the 

second way to choose the initial values for Eo and E00 : the default value of Eo 

added by some value for Eo and the default value E00 reduced by some value 

for E00 • 

And usually the system will always return some approximate values for 

these two parameters if the user tries any values first. Then the user may use 

the values returned by the system as the initial values. This is the third way 

to choose the initial values for Eo and E00 • 
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4.3 Data Generation and Test Plan 

First thing we need to do is to prepare the input data to test the system. 

After the input data are ready, we just follow the procedure to do the testing. 

When we do the testing, we do not cut any part of the input data or we may 

say we ask the system to do the fitting for the whole data. The testing results 

are shown as tables. The table contents include initial values for the unknown 

parameters, true values of the unknown parameters, the returned values from 

the system, the fitting error and the iterative times. The fitting error is defined 

as the sumo f square, introduced in the equation 3.1, divided by how many data 

points. The simulated data in the equation 3.1 used to calculate sumof square 

is generated by using the values for the unknown parameters returned by the 

system such that we know how good the data fitting is. And the true values of 

the unknown parameters are the true values for the parameters with respect 

to the input data that the system is supposed to return. We will have discuss 

about how we get these true values for the unknown parameters in the following 

section. 

4.3.1 Data Generation 

To prepare the input data for testing, we need to provide the values for the 

parameters of the chosen model. Then we can use the developed system, which 

is used to generate data, to generate the input data to test the system. The 

provided values for parameters of the chosen model and the chosen model will 
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be recorded at first two rows of the generated data as we discuss in chapter 3. 

We treat the provided values for parameters of the chosen model as the true 

values for the parameters with respect to the generated data. If the data point 

are enough and the system works properly, the system is supposed to return 

the provides values for parameters. However, like what we discuss before, the 

answer or the result to the same input data may not be unique. The true 

values for the parameters are just references to see how close to them the 

values for the parameters returned by the system is. There are totally five 

ways to generate the input data. One is the way from N.B.S data tables while 

the other four ways are from four available models. We will generate thirty 

sets of the input data to test the system. 

Data Generation from N.B.S Data Tables 

There are eight sets of data generated from N .B.S data tables introduced by 

Menachem Dishon, George H. Weiss and John T. Bendler [13]. The reason 

why we generate eight sets of data is the following: we choose two typical 

values for the parameter {3 and then choose two different values for each of 

other three parameters r[msec], Eo and E00 such that there are always at least 

two sets of data where only one parameter has different value between them. 

Then there should be only five sets of the input data. Here is the table as an 

example at Table 4.66. 

However, after we check the N.B.S data tables, we found that each of 

N.B.S data table is corresponding to one {3 value. We decide not to use only 
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one N .B.S data table to generate data. So we decide generate four sets of the 

input data for both of N.B.S data tables by using two different data tables 

from N.B.S. 

Data Generation from Available Models 

There are four models available. They are KWW model, DC model, HN model 

and FD model. We chose different sets of values of parameters for each model 

such that there are always at least two sets of data where only one parameter 

has different value between them. Similar to the case of N.B.S data tables, if 

there are four parameters in the model such as the models of KWW and DC, 

then there are five sets of data for each of them. If there are five parameters 

in the model such as the models of HN and FD, then there are six sets of data 

for each of them. We used the implemented theoretical models to generate the 

data using the different sets of values of parameters. 

4.3.2 Test Plan 

After thirty sets of the input data are ready to use, we use the model of 

KWW to fit the input data generated from N.B.S data tables and from the 

model of KWW and we use the model of DC, HN and FD to fit the input 

data generated from the model of DC, HN and FD respectively. We use two 

different methods, which are the method by using the algorithm introduced in 

the paper[15], named after method I, and the method by calling the Matlab 

built-in function fminsearch(), named after method II, to fit the input data. 
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The way how to choose the initial values is just following the section 4.2.2 

about how to choose the initial values. The testing results as sixty tables are 

shown at the end of this chapter. 
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4.4 Discussion and Results 

This discussion includes two parts. One is the discussion about the testing 

using the simulated data without noise, the other is the discussion about the 

testing using the simulated data with some artificial noise. 

4.4.1 Discussion of Testing Using Simulated Data with­

out Noise 

We know that there are eight sets of data from N .B.S data tables, respecting to 

Tables 4.1-4.8 and 4.31-4.38, five sets of data from KWW model, respecting to 

Tables 4.9-4.13 and 4.39-4.43, five sets of data from DC model, respecting to 

Tables 4.14-4.18 and 4.44-4.48, six sets of data from HN model, respecting to 

Tables 4.19-4.24 and 4.39-4.54, and six sets of data from FD model respecting 

to Tables 4.25-4.30 and 4.55-4.60. From sixty tables at the end ofthis chapter, 

we can see that there are eight calculations which error is 10-6 when using 

the method I. They are Table 4.1, Table 4.8, Table 4.21, Table 4.23, Table 

4.25, Table 4.27, Table 4.28 and Table 4.30. The errors of other twenty two 

calculations are less than 10-6 • Among eight calculations which error is w-6 , 

there are two cases which data were generated from N.B.S data tables and 

used KWW model to fit the data, two cases which data were generated from 

HN model and used HN model to fit the data and four cases which data were 

generated from FD model and used FD model to fit the data. Firstly, we may 

say that the simulated data generated from FD model are most difficult to 
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fit even using the FD model itself to fit because there are four cases which 

the fitting error is 10-6 using the simulated data generated from FD model. 

Secondly, it should be HN data model since there are two cases which fitting 

error is w-6 using the simulated data generated from HN model. The reasons 

for these may be the following: 

• There are six parameters for both HN model and FD model, which in­

crease more difficulty to fit the data and lead to multi-fitting results 

when the range of data is not enough. 

• There are two relaxation times T in the FD model, which means the 

data generated from FD model have two peaks and overlap into one 

peak when the data only have one peak. This increases the difficulty for 

the user to choose suitable initial values for these relaxation times T. 

• In either HN model or FD model, there are two parameters which play 

similar role used to modify the shape of the curve in each of model. In 

HN model, they are a and I· In FD model, they are T and r'. These 

increase the difficulty to choose initial values for them. And the initial 

value for relaxation time T, which magnitude is around microsecond, 

w-6
, is more difficult to decide than the initial value for a and 1, which 

range is only from 0.2 to 0. 7 practically. 

And then we may say, the data generated from N.B.S data tables, 

KWW model and DC model are easier for a user to fit than those of HN 

model and FD model by observing the results from sixty tables at the end of 
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this chapter since there are only two cases which error is 10-6 when using the 

algorithm in [15], method I. 

There is no calculation which fitting error is greater or equal to 10-6 

when using the method II. This means the subsystem using the method II 

works better than the subsystem using the method I in term of the fitting 

error. However, it is shown by the experiments that the subsystem using the 

method II runs more slowly than the subsystem using the method I seen at 

Table 4.67 and Table 4.68. The results returned by the system for the data 

generated from N.B.S data tables, KWW model and DC model are very closed 

to the true values. Although the fitting errors are all less than 10-6 for HN 

model and FD model, the results showed in the Tables 4.50, 4.51, 4.54, 4.57 

and 4.60 are not so close to the true values. The result shown in the Table 4.51 

even worse and far away from the true values. However, the simulated data 

returned by the system still matched the input data very well in the fitting 

error by observing the curves drawn by the system. This meant they were good 

fittings in term of fitting error. This .showed that the result to the data fitting 

for KWW model and DC model, which have only four parameters, is more 

likely unique than those of HN model and FD model having five parameters. 

Comparison between Method I and Method II is seen at Table 4.67 and 

Table 4.68. 

Although there are so many cases, which fitting error is 10-6 when 

using method I, the curves drawn by the system showed that the simulated 

data returned by the system matched the input data in the fitting error very 

87 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

EpslonReaJCurve 
15 

14 , .. 

13 , I • • • , • • , • , • , • 

a; .. 12 .. . . . . . . . . . . . . . . a: 
c: 
0 

~ 11 ............ ... 
w 

10 

9 .. 

B 
3 4 5 6 7 8 9 10 

logtO(Irequency)[Hz] 

EpslonlmagineCurve 
2 

-+- simulated data 
0 experiment data 

1.5 .. 
c: ·c;, 

"' E 1 ;:: 
0 
(ij 
c. 
w 

0.5 ······ 

0 
3 4 5 6 7 B 9 10 

log! O(frequency)[Hz] 

Figure 4.1: The Fitting Curve for the Table 4.1 

well, which meant they were good fittings, too. Here is the fitting curve for 

the Table 4.1 at Figure 4.1, which fitting error is 10-6 • 

Here is the program script Figure 4.2 for the experiment regarding to 

the Table 4.1. 

4.4.2 Discussion of Testing Using Simulated Data with 

Artificial Noise 

This section is the discussion about the testing using some previous generated 

data with some artificial noise generated with Matlab function randn() to test 

the system for remedying the shortage of experimental data. The results are 
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Figure 4.2: The Program Script for the Table 4.1 
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available at Tables 4.61 to Table 4.65 with the corresponding fitting curves. 

Firstly, Let us discuss how to quantify the relative error adding to the 

simulated data through the artificial noise. 

For each column of the input data to the system, we have the original 

data x and the data with noise xx. To quantify the relative error, first find 

the vector of the difference between x and xx; that is, 

e = (x- xx), 

then we reduce this vector to one scalar value using the norm of the vector. 

To make this a relative error, we divide it by the norm of x; that is, 

error =II e II/ II x II 

We add the artificial noise to the real part of the simulated data and 

the imaginary part of the simulated data separately. Here are what we add: 

For the data used for Table 4.61, we add 0.79% noise and 3.77% noise 

into the real part and imaginary part of the simulated data respectively. 

For the data used for Table 4.62, we add 2.21% noise and 9.90% noise 

into the real part and imaginary part of the simulated data respectively. 

For the data used for Table 4.63, we add 2.69% noise and 8.00% noise 

into the real part and imaginary part of the simulated data respectively. 

For the data used for Table 4.64, we add 1.67% noise and 10.65% noise 

into the real part and imaginary part of the simulated data respectively. 

Secondly, Let us see how well the results are returned by the system. 
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From the Table 4.61, we can see that returned values are 0.499604, 

0.101681, 15.014866 and 7.989935 respectively to the true values with 0.5, 0.1, 

15 and 8. The relative error for unknown parameters is 0.07%, 1.68%, 0.1% 

and 0.12% respectively. 

From the Table 4.62, we can see that returned values are 0.305919, 

1.002758, 4.999919 and 2.020259 respectively to the true values with 0.3, 1, 

5 and 2. The relative error for unknown parameters is 1.97%, 0.27%, 0.001% 

and 1.01% respectively. 

From the Table 4.63, we can see that returned values are 0.501162, 

0.998743, 4.948217 and 2.000990 respectively to the true values with 0.5, 1, 5 

and 2. The relative error for unknown parameters is 0.23%, 0.12%, 1.04% and 

0.05% respectively. 

From the Table 4.64, we can see that returned values are 0.490221, 

0.991036, 5.980375 and 3.988693 respectively to the true values with 0.5, 1, 6 

and 4. The relative error for unknown parameters is 2.0%, 0.9%, 0.33% and 

0.28% respectively. 

From the previous discussion, we know that the percentage change in 

the fitted parameters relative to the percentage noise added into the simulated 

data is acceptable. The fitted parameters are not changed very much in the 

presence of reasonable noise, which suggests that the algorithm does not suffer 

from sensitivity problems, at least for the testing here. 

Combining the discussion of testing using the simulated data without 

artificial noise with the discussion of testing using the simulated data with 
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artificial noise, we may say the algorithm used by the developed system here 

does not suffer from sensitivity problems. 
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4.5 Testing the System with the Method I and 

the Model of KWW 

There are 13 testing results using Method I for this section. Eight of thirteen 

testings used data generated from N.B.S tables, the other five testings used 

data generated from the model of KWW. 

4.5.1 Using Data Generated from N.B.S Data Tables 

There are eight tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

KWW. The table also records the fitting error and the iterative times for the 

testing. There are eight sets of data with respective to each of eight tables. 

They are Data 1, 2, 3, 4, 5, 6, 7 and 8, generated from N.B.S tables. Each of 

data 2, 3 and 4 only has one parameter except f3 with different value compared 

to data 1 respectively. Each of data 6, 7 and 8 only has one parameter except 

f3 with different value compared to data 5 respectively. There are only two 

different values for {3. One is for data 1, 2, 3 and 4, the other is for data 5, 6, 

7 and 8. 
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Table 4.1: Computation for Data 1 with Method I 

Data 1 f3 T[msec] Eo Eoo 

Initial values 0.4 0.2 13 7 

True values 0.5 0.1 15 8 

Returned values 0.499918 0.100010 14.999365 8.001801 

Error 0.000001 Iterative times 4 

Table 4.2: Computation for Data with Different Values of T to Data 1 

Data 2 f3 T[msec] Eo Eoo 

Initial values 0.39 0.0092 14.7 7.56 

True values 0.5 0.01 15 8 

Returned values 0.500209 0.010002 14.999521 8.000790 

Error 0.000000 Iterative times 2 

Table 4.3: Computation for Data with Different Values of Eo to Data 1 

Data 3 f3 T[msec] Eo Eoo 

Initial values 0.7 0.4 11 7 

True values 0.5 0.1 10 8 

Returned values 0.499944 0.099989 10.000058 8.000065 

Error 0.000000 Iterative times 4 
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Table 4.4: Computation for Data with Different Values of E00 to Data 1 

Data 4 (3 r[msec] Eo Eoo 

Initial values 0.8 0.5 18 7 

True values 0.5 0.1 15 11 

Returned values 0.500156 0.100053 14.999706 11.000598 

Error 0.000000 Iterative times 6 

Table 4.5: Computation for Data 5 with Method I 

Data 5 (3 r[msec] Eo Eoo 

Initial values 0.5 0.5 default default 

True values 0.3 1 5 2 

Returned values 0.299847 0.999290 4.999534 2.000298 

Error 0.000000 Iterative times 3 

Table 4.6: Computation for Data with Different Values of r to Data 5 

Data 6 (3 r[msec] Eo Eoo 

Initial values 0.6 0.7 default default 

True values 0.3 2 5 2 

Returned values 0.300016 2.000039 4.999987 2.000064 

Error 0.000000 Iterative times 4 
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Table 4.7: Computation for Data with Different Values of Eo to Data 5 

Data 7 {3 r[msec] Eo Eoo 

Initial values 0.5 1 7.1 1.9 

True values 0.3 1 7 2 

Returned values 0.299979 0.999659 6.999852 2.000446 

Error 0.000000 Iterative times 3 

Table 4.8: Computation for Data with Different Values of E00 to Data 5 

Data 8 {3 r[msec] Eo Eoo 

Initial values 0.7 3 '8 4 

True values 0.3 1 5 3 

Returned values 0.300467 0.996654 5.000134 3.002701 

Error 0.000001 Iterative times 3 

4.5.2 Using Data Generated from the Model of KWW 

There are five tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

KWW. The table also records the fitting error and the iterative times for each 

testing. There are five sets of data with respective to each table. They are 

Data 9, 10, 11, 12 and 13, generated by the model of KWW. Each of data 10, 
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11, 12 and 13 only has one parameter with different value compared to data 9 

respectively. 

Table 4.9: Computation for Data 9 with Method I 

Data 9 (3 T[msec] Eo Eoo 

Initial values 0.5 1.05 5.1 default 

True values 0.5 1 5 2 

Returned values 0.499858 1.012288 5.006555 2.001018 

Error 0.000000 Iterative times 1 

Table 4.10: Computation for Data with Different Values ofT to Data 9 

Data 10 (3 T[msec] Eo Eoo 

Initial values 0.7 3 default default 

True values 0.5 2 5 2 

Returned values 0.499999 1.999636 4.999966 2.000003 

Error 0.000000 Iterative times 3 

Table 4.11: Computation for Data with Different Values of Eo to Data 9 

Data 11 (3 T[msec] Eo Eoo 

Initial values 0.75 1.0 6 1.6 

True values 0.5 1 7 2 

Returned values 0.500000 0.999938 6.999963 2.000000 

Error 0.000000 Iterative times 3 
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Table 4.12: Computation for Data with Different Values of E00 to Data 9 

Data 12 f3 T[msec] Eo Eoo 

Initial values 0.66 2.4 default default 

True values 0.5 1 5 1.7 

Returned values 0.500426 0.995416 4.997588 1.699923 

Error 0.000000 Iterative times 3 

Table 4.13: Computation for Data with Different Values of f3 to Data 9 

Data 13 f3 T[msec] Eo Eoo 

Initial values 0.5 3 default default 

True values 0.3 1 5 2 

Returned values 0.299891 0.998384 5.000047 2.000126 

Error 0.000000 Iterative times 4 

4.6 Testing the System with the Method I and 

the Model of DC 

There are five tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

DC. The table also records the fitting error and the iterative times for each 
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testing. There are five sets of data with respective to each table. They are 

Data 14, 15, 16, 17 and 18, generated by the model of DC. Each of data 15, 

16, 17 and 18 only has one parameter with different value compared to data 

14 respectively. 

Table 4.14: Computation for Data 14 with Method I 

Data 14 "( T[msec] Eo Eoo 

Initial values default 1.5 default default 

True values 0.5 1 6 4 

Returned values 0.499356 1.000384 5.999862 4.000128 

Error 0.000000 Iterative times 2 

Table 4.15: Computation for Data with Different Values ofT to Data 14 

Data 15 "( T[msec] Eo Eoo 

Initial values 0.25 0.5 7.1 2.89 

True values 0.5 0.1 6 4 

Returned values 0.499671 0.100193 6.000011 4.000166 

Error 0.000000 Iterative times 4 
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Table 4.16: Computation for Data with Different Values of Eo to Data 14 

Data 16 I T[msec] Eo Eoo 

Initial values 0.2 2.3 8.5 3.5 

True values 0.5 1 8 4 

Returned values 0.499995 0.999973 8.000005 4.000005 

Error 0.000000 Iterative times 5 

Table 4.17: Computation for Data with Different Values of E00 to Data 14 

Data 17 I T[msec] Eo Eoo 

Initial values 0.7 1.8 default default 

True values 0.5 1 6 2 

Returned values 0.499827 1.000563 5.999996 2.000079 

Error 0.000000 Iterative times 4 

Table 4.18: Computation for Data with Different Values of 1 to Data 14 

Data 18 I T[msec] Eo Eoo 

Initial values 0.7 2 7.2 2.8 

True values 0.3 1 6 4 

Returned values 0.299906 0.998026 6.000013 4.000160 

Error 0.000000 Iterative times 4 
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4. 7 Testing the System with the Method I and 

the Model of HN 

There are six tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

HN. The table also records the fitting error and the iterative times for each 

testing. There are six sets of data with respective to each table. They are 

Data 19, 20, 21, 22, 23 and 24, generated by the model of HN. Each of data 

20, 21, 22, 23 and 24 only has one parameter with different value compared to 

data 19 respectively. 

Table 4.19: Computation for Data 19 with Method I 

Data 19 a 'Y T[msec] Eo Eoo 

Initial values 0.2 0.6 1.5 default default 

True values 0.3 0.7 1 6 4 

Fteturned values 0.300084 0.699280 1.001741 5.999853 3.999923 

Error 0.000000 Iterative times 5 
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Table 4.20: Computation for Data with Different Values ofT to Data 19 

Data 20 a ' T[msec] Eo Eoo 

Initial values 0.33 0.66 0.23 6.3 4 

True values 0.3 0.7 0.1 6 4 

Returned values 0.305677 0.641133 0.133702 5.995452 3.968593 

Error 0.000000 Iterative times 4 

Table 4.21: Computation for Data with Different Values of Eo to Data 19 

Data 21 a ' T[msec] Eo Eoo 

Initial values 0.3 0.8 2 8 3 

True values 0.3 0.7 1 7 4 

Returned values 0.288612 0.761091 0.762138 7.028075 4.016047 

Error 0.000001 Iterative times 5 

Table 4.22: Computation for Data with Different Values of E00 to Data 19 

Data 22 a ' T[msec] Eo Eoo 

Initial values 0.25 0.8 0.1 7 2 

True values 0.3 0.7 1 6 2 

Returned values 0.298102 0.710974 0.946816 6.004842 2.004730 

Error 0.000000 Iterative times 5 
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Table 4.23: Computation for Data with Different Values of a to Data 19 

Data 23 a I r[msec] Eo Eoo 

Initial values 0.25 0.68 1.5 default default 

True values 0.5 0.7 1 6 4 

Returned values 0.506941 0.681826 1.055397 5.993776 3.998985 

Error 0.000001 Iterative times 3 

Table 4.24: Computation for Data with Different Values of 1 to Data 19 

Data 24 a I r[msec] Eo Eoo 

Initial values 0.4 0.6 1.5. default default 

True values 0.3 0.6 1 6 4 

Returned values 0.304805 0.577715 1.120708 5.993001 3.993315 

Error 0.000000 Iterative times 3 

4.8 Testing the System with the Method I and 

the Model of FD 

There are six tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

FD. The table also records the fitting error and the iterative times for each 
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testing. There are six sets of data with respective to each table. They are 

Data 25, 26, 27, 28, 29 and 30, generated by the model of FD. Each of data 

26, 27, 28, 29 and 30 only has one parameter with different value compared to 

data 25 respectively. 

Table 4.25: Computation for Data 25 with Method I 

Data 25 0! T[msec] r' [msec] Eo Eoo 

Initial values 0.55 0.7 1.3 6.1 3.9 

True values 0.3 0.3 0.8 6 4 

Returned values 0.301950 0.276007 0.792622 5.999996 4.000041 

Error 0.000001 Iterative times 6 

Table 4.26: Computation for Data with Different Values of T to Data 25 

Data 26 0! T[msec] r'[msec] Eo Eoo 

Initial values 0.6 0.5 1.3 6.1 3.9 

True values 0.3 0.5 0.8 6 4 

Returned values 0.294137 0.617030 0.824889 6.000267 4.000039 

Error 0.000000 Iterative times 5 
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Table 4.27: Computation for Data with Different Values of Eo to Data 25 

Data 27 a T[msec] r'[msec] Eo Eoo 

Initial values default 0.5 0.9 default default 

True values 0.3 0.3 0.8 7 4 

Returned values 0.295490 0.361339 0.820414 7.000186 4.000237 

Error 0.000001 Iterative times 2 

Table 4.28: Computation for Data with Different Values of E00 to Data 25 

Data 28 a T[msec] T'[msec] Eo Eoo 

Initial values default 0.5 0.9 default default 

True values 0.3 0.3 0.8 6 3 

Returned values 0.295489 0.361341 0.820415 6.000186 3.000237 

Error 0.000001 Iterative times 2 

Table 4.29: Computation for Data with Different Values of a to Data 25 

Data 29 a T[msec] r'[msec] Eo Eoo 

Initial values default 0.5 0.9 default default 

True values 0.6 0.3 0.8 6 4 

Returned values 0.600284 0.299861 0.799894 6.000009 4.000043 

Error 0.000000 Iterative times 3 
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Table 4.30: Computation for Data with Different Values of T
1 

to Data 25 

Data 30 a T[msec] /[msec] Eo Eoo 

Initial values 0.5 0.2 0.5 default default 

True values 0.3 0.3 0.6 6 4 

Returned values 0.300381 0.287523 0.598196 5.999973 3.999996 

Error 0.000001 Iterative times 4 

4.9 Testing the System with the Method II 

and the Model of KWW 

There are 13 testing results using Method II for this section. Eight of thirteen 

testings used data generated from N.B.S tables, the other five testings used 

data generated from the model of KWW. 

4.9.1 Using Data Generated from N.B.S Data Tables 

There are eight tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

KWW. The table also records the fitting error and the iterative times for the 

testing. There are eight sets of data with respective to each of eight tables. 

They are Data 1, 2, 3, 4, 5, 6, 7 and 8, generated from N.B.S tables. Each of 

data 2, 3 and 4 only has one parameter except f3 with different value compared 
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to data 1 respectively. Each of data 6, 7 and 8 only has one parameter except 

{3 with different value compared to data 5 respectively. There are only two 

different values for {3. One is for data 1, 2, 3 and 4, the other is for data 5, 6, 

7 and 8. 

Table 4.31: Computation for Data 1 with Method II 

Data 1 {3 T[msec] Eo Eoo 

Initial values default 1.5 default default 

True values 0.5 0.1 15 8 

Returned values 0.499985 0.100000 15.000036 7.999954 

Error 0.000000 Iterative times 335 

Table 4.32: Computation for Data with Different Values of T to Data 1 

Data 2 {3 T[msec] Eo Eoo 

Initial values default 1.5 default default 

True values 0.5 0.01 15 8 

Returned values 0.499980 0.010000 15.000039 7.999954 

Error 0.000000 Iterative times 300 
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Table 4.33: Computation for Data with Different Values of Eo to Data 1 

Data 3 {3 r[msec] Eo Eoo 

Initial values 0.7 1.5 12 6 

Thue values 0.5 0.1 10 8 

Returned values 0.500015 0.099982 9.999980 8.000004 

Error 0.000000 Iterative times 193 

Table 4.34: Computation for Data with Different Values of E00 to Data 1 

Data 4 {3 r[msec] Eo Eoo 

Initial values 0.7 1 15.5 10 

Thue values 0.5 0.1 15 11 

Returned values 0.499977 0.100003 15.000032 10.999973 

Error 0.000000 Iterative times 272 

Table 4.35: Computation for Data 5 with Method II 

Data 5 {3 r[msec] Eo Eoo 

Initial values 0.7 3 7 1 

Thue values 0.3 1 5 2 

Returned values 0.300006 1.000052 5.000002 2.000025 

Error 0.000000 Iterative times 244 
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Table 4.36: Computation for Data with Different Values ofT to Data 5 

Data 6 f3 T[msec] Eo Eoo 

Initial values 0.7 5 7 1 

True values 0.3 2 5 2 

Returned values 0.300004 2.000007 4.999992 2.000028 

Error 0.000000 Iterative times 221 

Table 4.37: Computation for Data with Different Values of Eo to Data 5 

Data 7 f3 T[msec] Eo Eoo 

Initial values 0.7 4 9 0.5 

True values 0.3 1 7 2 

Returned values 0.300011 1.000048 6.999992 2.000070 

Error 0.000000 Iterative times 311 

Table 4.38: Computation for Data with Different Values of E00 to Data 5 

Data 8 f3 T[msec] Eo Eoo 

Initial values 0.7 5 7 1 

True values 0.3 1 5 3 

Returned values 0.300008 1.000002 4.999987 3.000024 

Error 0.000000 Iterative times 433 
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4.9.2 Using Data Generated from the Model of KWW 

There are five tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

KWW. The table also records the fitting error and the iterative times for each 

testing. There are five sets of data with respective to each table. They are 

Data 9, 10, 11, 12 and 13, generated by the model of KWW. Each of data 10, 

11, 12 and 13 only has one parameter with different value compared to data 9 

respectively. 

Table 4.39: Computation for Data 9 with Method II 

Data 9 {3 T[msec] Eo Eoo 

Initial values 0.2 0.1 8 0.51 

True values 0.5 1 5 2 

Returned values 0.499987 1.000021 5.000010 2.000004 

Error 0.000000 Iterative times 291 

Table 4.40: Computation for Data with Different Values of T to Data 9 

Data 10 {3 T[msec] Eo Eoo 

Initial values 0.2 0.9 9 1 

True values 0.5 2 5 2 

Returned values 0.500001 1.999956 4.999990 1.999996 

Error 0.000000 Iterative times 242 
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Table 4.41: Computation for Data with Different Values of Eo to Data 9 

Data 11 (3 r[msec] Eo Eoo 

Initial values 0.1 5 10 0.1 

'Irue values 0.5 1 7 2 

Returned values 0.499994 1.000006 7.000074 1.999980 

Error 0.000000 Iterative times 472 

Table 4.42: Computation for Data with Different Values of E00 to Data 9 

Data 12 (3 r[msec] Eo Eoo 

Initial values 0.2 5 default default 

'Irue values 0.5 1 5 1.7 

Returned values 0.500008 0.999960 4.999962 1.699998 

Error 0.000000 Iterative times 143 

Table 4.43: Computation for Data with Different Values of (3 to Data 9 

Data 13 (3 r[msec] Eo Eoo 

Initial values 0.7 5 7 1 

'Irue values 0.3 1 5 2 

Returned values 0.299994 1.000026 5.000021 1.999983 

Error 0.000000 Iterative times 196 
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4.10 Testing the System with the Method II 

and the Model of DC 

There are five tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

DC. The table also records the fitting error and the iterative times for each 

testing. There are five sets of data with respective to each table. They are 

Data 14, 15, 16, 17 and 18, generated by the model of DC. Each of data 15, 

16, 17 and 18 only has one parameter with different value compared to data 

14 respectively. 

Table 4.44: Computation for Data 14 with Method II 

Data 14 '"Y T[msec] Eo Eoo 

Initial values default 3 default default 

True values 0.5 1 6 4 

Returned values 0.499993 0.999973 6.000021 3.999984 

Error 0.000000 Iterative times 160 
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Table 4.45: Computation for Data with Different Values ofT to Data 14 

Data 15 '"'! r[msec] Eo Eoo 

Initial values 0.2 1.5 default default 

Thue values 0.5 0.1 6 4 

Fteturned values 0.499984 0.099999 5.999999 3.999960 

Error 0.000000 Iterative times 226 

Table 4.46: Computation for Data with Different Values of Eo to Data 14 

Data 16 '"'! r[msec] Eo Eoo 

Initial values default 5 default default 

Thue values 0.5 1 8 4 

Fteturned values 0.500000 0.999966 8.000000 3.999990 

Error 0.000000 Iterative times 193 

Table 4.47: Computation for Data with Different Values of E00 to Data 14 

Data 17 '"'! r[msec] Eo Eoo 

Initial values 0.1 2.5 7 0.8 

Thue values 0.5 1 6 2 

Fteturned values 0.500008 0.999958 6.000025 2.000012 

Error 0.000000 Iterative times 214 
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Table 4.48: Computation for Data with Different Values of 1 to Data 14 

Data 18 I T[msec] Eo Eoo 

Initial values 0.7 2.5 7.2 3.1 

True values 0.3 1 6 4 

Returned values 0.300014 0.999944 5.999995 4.000033 

Error 0.000000 Iterative times 191 

4.11 Testing the System with the Method II 

and the Model of HN 

There are six tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

HN. The table also records the fitting error and the iterative times for each 

testing. There are six sets of data with respective to each table. They are 

Data 19, 20, 21, 22, 23 and 24, generated by the model of HN. Each of data 

20, 21, 22, 23 and 24 only has one parameter with different value compared to 

data 19 respectively. 
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Table 4.49: Computation for Data 19 with Method II 

Data 19 Q I T[msec] Eo Eoo 

Initial values 0.2 0.6 2.5 default default 

True values 0.3 0.7 1 6 4 

Returned values 0.300001 0.699993 1.000030 5.999997 3.999999 

Error 0.000000 Iterative times 501 

Table 4.50: Computation for Data with Different Values of T to Data 19 

Data 20 Q 'Y T[msec] Eo Eoo 

Initial values 0.4 0.8 0.25 6.5 3.8 

True values 0.3 0.7 0.1 6 4 

Returned values 0.300984 0.691938 0.103732 5.998659 3.996584 

Error 0.000000 Iterative times 638 

Table 4.51: Computation for Data with Different Values of Eo to Data 19 

Data 21 Q 'Y T[msec] Eo Eoo 

Initial values 0.2 0.6 1.5 8.1 2.7 

True values 0.3 0.7 1 7 4 

Returned values 0.303756 0.679036 1.100330 6.991092 3.992120 

Error 0.000000 Iterative times 198 
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Table 4.52: Computation for Data with Different Values of E00 to Data 19 

Data 22 Q I T[msec] Eo Eoo 

Initial values 0.22 0.56 1.5 6.5 1.5 

True values 0.3 0.7 1 6 2 

Returned values 0.300001 0.699997 1.000008 5.999995 2.000000 

Error 0.000000 Iterative times 486 

Table 4.53: Computation for Data with Different Values of a to Data 19 

Data 23 Q I T[msec] Eo Eoo 

Initial values 0.3 0.6 2.5 7.2 3.8 

True values 0.5 0.7 1 6 4 

Returned values 0.499995 0.700009 0.999977 6.000005 3.999999 

Error 0.000000 Iterative times 363 

Table 4.54: Computation for Data with Different Values of 1 to Data 19 

Data 24 Q I T[msec] Eo Eoo 

Initial values 0.2 0.6 2.2 7 3.5 

True values 0.3 0.6 1 6 4 

Returned values 0.301965 0.589376 1.058080 5.997468 3.995791 

Error 0.000000 Iterative times 644 
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4.12 Testing the System with the Method II 

and the Model of FD 

There are six tables. Each table is corresponding to a set of data and the 

testing using this set of data. Each table records initial values, true values and 

returned values by the system for all of unknown parameters for the model of 

FD. The table also records the fitting error and the iterative times ~or each 

testing. There are six sets of data with respective to each table. They are 

Data 25, 26, 27, 28, 29 and 30, generated by the model of FD. Each of data 

26, 27, 28, 29 and 30 only has one parameter with different value compared to 

data 25 respectively. 

Table 4.55: Computation for Data 25 with Method II 

Data 25 a r[msec] r'[msec] Eo Eoo 

Initial values 0.2 0.4 0.9 default default 

True values 0.3 0.3 0.8 6 4 

Fteturned values 0.300002 0.300005 0.800000 6.000000 3.999999 

Error 0.000000 Iterative times 221 
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Table 4.56: Computation for Data with Different Values ofT to Data 25 

Data 26 a T[msec] /[msec] Eo Eoo 

Initial values 0.45 0.3 0.9 6.5 3.8 

True values 0.3 0.5 0.8 6 4 

Returned values 0.299995 0.500057 0.800015 6.000000 4.000001 

Error 0.000000 Iterative times 393 

Table 4.57: Computation for Data with Different Values of Eo to Data 25 

Data 27 a T[msec] /[msec] Eo Eoo 

Initial values, 0.5 0.2 1 7.2 3.85 

True values 0.3 0.3 0.8 7 4 

Returned values 0.300929 0.293719 0.797305 6.999725 3.999916 

Error 0.000000 Iterative times 121 

Table 4.58: Computation for Data with Different Values of E00 to Data 25 

Data 28 a T[msec] /[msec] Eo Eoo 

Initial values 0.1 0.5 1 7.2 2.1 

Thue values 0.3 0.3 0.8 6 3 

Returned values 0.299999 0.300017 0.800007 6.000003 2.999999 

Error 0.000000 Iterative times 568 
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Table 4.59: Computation for Data with Different Values of a to Data 25 

Data 29 a T[msec] T'[msec] Eo Eoo 

Initial values 0.5 0.2 0.6 7 2 

True values 0.6 0.3 0.8 6 4 

Returned values 0.599996 0.300014 0.800002 5.999991 3.999997 

Error 0.000000 Iterative times 308 

Table 4.60: Computation for Data with Different Values of T
1 

to Data 25 

Data 30 a T[msec] r'[msec] Eo Eoo 

Initial values 0.5 0.2 0.7 7.2 2.5 

True values 0.3 0.3 0.6 6 4 

Returned values 0.298957 0.308176 0.602587 6.000213 4.000076 

Error 0.000000 Iterative times 162 

4.13 Testing the System Using the Data with 

Some Artificial Noise 

This section uses some previous generated data with some artificial noise gen-

erated with Matlab function randn() to test the system for remedying the 

shortage of experimental data. 
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Figure 4.3: The Fitting Curve for the Table 4.61 

4.13.1 Using Data 1 with Some Artificial Noise 

Table 4.61: Computation for Data 1 with Some Artificial Noise and Method I 

{3 r[msec] Eo Eoo 

Initial values 0.4 0.2 13 7 

True values 0.5 0.1 15 8 

Returned values 0.499604 0.101681 15.014866 7.989935 

Error 0.004698 Iterative times 28 
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Figure 4.4: The Fitting Curve for the Table 4.62 

4.13.2 Using Data 5 with Some Artificial Noise 

Table 4.62: Computation for Data 5 with Some Artificial Noise and Method 

II 

/3 r[msec] Eo Eoo 

Initial values 0.7 3 7 1 

. True values 0.3 1 5 2 

Returned values 0.305919 1.002758 4.999919 2.020259 

Error 0.003633 Iterative times 190 
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Figure 4.5: The Fitting Curve for the Table 4.63 

4.13.3 Using Data 9 with Some Artificial Noise 

Table 4.63: Computation for Data 9 with Some Artificial Noise and Method I 

Data 9 {3 T[msec] Eo Eoo 

Initial values 0.5 1.05 5.1 default 

True values 0.5 1 5 2 

Returned values 0.501162 0.998743 4.948217 2.000990 

Error 0.004090 Iterative times 28 

122 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

EpslonReaiCurve 
6.5 

- simulated data 
6 * * experiment data 

a;5.5 ............ 
<D 
a: 
15 5 . . ~ . . . . . . . . ······.· 
"! 
w4.5 .......... ... 

4 .... ~ ..... • 
3.5 

3 4 5 6 7 8 9 10 
log1 O(frequency)[Hz] 

EpslonlmagineCurve 
0.8 

- simulated data 

0.6 • experiment data 

Q) 
<::: 

·~0.4 ····· . . . . . . . . . . . . . 
E 

" ~0.2 .... . . . . . . . . . . . . 
a. 
w 

• 
-0.2 

3 4 5 6 7 8 9 10 
log10(frequency)[Hz] 

Figure 4.6: The Fitting Curve for the Table 4.64 

4.13.4 Using Data 14 with Some Artificial Noise and 

Method I 

Table 4.64: Computation for Data 14 with Some Artificial Noise and Method 

I 

Data 14 'Y T[msec] Eo Eoo 

Initial values default 1.5 default default 

True values 0.5 1 6 4 

Returned values 0.490221 0.991036 5.980375 3.988693 

Error 0.004318 Iterative times 32 
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Figure 4.7: The Fitting Curve for the Table 4.65 

4.13.5 Using Data 19 with Some Artificial Noise and 

method II 

Table 4.65: Computation for Data 19 with Some Artificial Noise and Method 

II 

Data 19 a 'Y T[msec] Eo Eoo 

Initial values 0.2 0.6 2.5 default default 

True values 0.3 0.7 1 6 4 

Returned values 0.318903 0.627752 1.287524 5.960400 3.988909 

Error 0.000040 Iterative times 182 
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{3 T[msec] Eo Eoo 

0.5 1 8 4 

0.3 1 8 4 

0.5 0.1 8 4 

0.5 1 6 4 

0.5 1 8 3 

Table 4.66: The Table Illustrating How Many Sets of Data Required 
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Data Method I Method II Data Method I Method II 

Data 1 4 335 Data 16 5 193 

Data 2 2 300 Data 17 4 214 

Data 3 4 193 Data 18 4 191 

Data 4 6 272 Data 19 5 501 

Data 5 3 244 Data 20 4 638 

Data 6 4 221 Data 21 5 198 

Data 7 3 311 Data 22 5 486 

Data 8 3 433 Data 23 3 363 

Data 9 1 291 Data 24 3 644 

Data 10 3 242 Data 25 6 221 

Data 11 3 472 Data 26 5 393 

Data 12 3 143 Data 27 2 121 

Data 13 4 196 Data 28 2 568 

Data 14 2 160 Data 29 3 308 

Data 15 4 226 Data 30 4 162 

Table 4.67: Comparison of iterativetimes between Method I and Method II 
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Data Method I Method II Data Method I Method II 

Data 1 10.6200 143.6900 Data 16 0.1200 0.6900 

Data 2 05.8500 121.2600 Data 17 0.0900 0.7800 

Data 3 12.5500 108.8100 Data 18 0.1200 0.6800 

Data 4 20.7100 134.7200 Data 19 0.4300 1.9900 

Data 5 06.9200 103.0800 Data 20 0.1600 2.4000 

Data 6 09.9800 095.8900 Data 21 0.1600 0.8400 

Data 7 06.6700 114.4100 Data 22 0.1400 1.8500 

Data 8 09.1000 151.1100 Data 23 0.1000 1.4200 

Data 9 03.0100 118.1400 Data 24 0.0900 2.4300 

Data 10 09.5500 127.7500 Data 25 0.4700 0.8700 

Data 11 10.6700 178.8300 Data 26 0.1500 1.3800 

Data 12 08.9000 070.3800 Data 27 0.0900 0.4700 

Data 13 07.9300 077.0700 Data 28 0.0600 1.9500 

Data 14 00.3200 000.6700 Data 29 0.0800 1.0800 

Data 15 00.1100 000.7800 Data 30 0.1100 0.6000 

Table 4.68: Comparison of duration[seconds] between Method I and II 
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Chapter 5 

Conclusion and Future Work 

This chapter will talk about the conclusion we can draw and some future work 

worth to do after the system is developed. 
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5.1 Conclusion 

In this thesis, we have developed a software for data fitting and least square 

estimation of nonlinear parameters for models of dielectric relaxation data. 

The first thing we have done is developing four available theoretical models 

using Matlab software package. We utilize several techniques including scaling 

technique and decomposition technique to develop them precisely especially 

for the model of KWW including two parts, low frequency part and high 

frequency part, whose format is a sum of series. 

After these four theoretical models are implemented, we implement 

two different methods to do the calculation for data fitting and least square 

estimation of nonlinear parameters by utilizing these four available models. 

In order for a user to use the software, we also implement some modules 

as parts of the system to preprocess the input data, show the intermediate 

results, show the fitting curve and write the fitting result into a file. 

To test the system, we implement another system to generate some 

input data which result is known such that we know how well the result re­

turned by the system is when we do the testing using these data. We provide 

some hint in the thesis to tell the user how to choose the initial values for the 

unknown parameters. We also give the instruction or the procedure how to 

carry out an experiment for the user to use this software. 

And we have tested the system using thirty sets of the input data, 

which results are known. The testing results are shown as sixty tables since 

130 



Master Degree Thesis- H. Zou- McMaster- Computing and Software 

we used two different methods to do the calculation. It is shown that both 

of methods work very well with the appropriate initial values because both of 

methods are iterative methods. The fitting error for most of them is less than 

10-6. 

The developed software eliminates the limitation of testing equipment 

such as the limited frequency range by doing the data fitting and returns values 

for some unknown parameters. The software is very helpful for researchers 

doing the dielectric relaxation research. It saves much time for them to gain 

the values of some unknown parameters. This developed software can be used 

anywhere where four available theoretical models, the model of DC, the model 

of KWW, the model of HN and the model of FD, are applied to. 

As far as I know, the developed tool will be the first tool for researchers 

to get the values of parameters for the chosen model for dielectric relaxation 

phenomena and also for the other phenomena where four available theoretical 

models are applied to such as mechanical relaxation phenomena. 

The idea in this thesis not only could be applied to dielectric relaxation 

and mechanical relaxation but also could be applied to the other mathematical 

models where several unknown parameters need to solve in the research. This 

will save a little time for researchers to handle their data. The first thing 

to apply this idea is to implement the mathematical models as accurately as 

possible while the other thing to use some minimizers to calculate the unknown 

parameters by applying least square algorithm. 
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5.2 Future Work 

In chapter 4, we only used the simulated data to test the system due to the lack 

of real data. One of future works that we may consider is to use the real data 

to test the system before the system is deployed although some of simulated 

data are generated from National Bureau of Standards. It is clear that, in an 

experimental context in science or engineering, almost all measured quantities 

have an error because a perfect experimental apparatus does not exist [24]. If 

the system is used to handle the experimental data with error, how to handle 

these errors or noise may become future work. For example, one way to handle 

them is to us~ these errors to weight each term in the sum of the squares. It 

should be a very interesting and also important part for future works. 

Another work is about the issue regarding to the local minimum. There 

is not much discussed how to choose the initial values in this work. It might 

be worth to do further research so that the user know what kind of criteria 

that initial values should meet to let the system work otherwise the system 

would not work. 

The least squares method is the most commonly used algorithm. How­

ever, we used the sum of squares to evaluate the goodness of fit. Although 

a smaller sum of squares means a better fit, in many cases, it may be more 

popular that confidence intervals would be used to characterize the goodness 

of fit. It is worth to search better way to evaluate the goodness combining 

with visualization such as fitting curves. 
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We used Matlab to implement the system. It is also worth to implement 

a stand alone system such that it can be used in any machine no matter 

whether there is Matlab package or not. This may need to know how to use 

Matlab compiler and C compiler and how to let the system be available on 

the Internet. 

It is also a part of future works how tore-weight data if necessary. The 

developed system is to do nonlinear fits. We should not force the system to 

re-weight data because it can cause the value of the parameters to which we 

are fitting to be changed. How to provide the option and when the user should 

use the option may be interesting. 

It can be very interesting topic to explore the relationship of parameters 

of different models such that the user can get the values of parameters for 

the other model if the user knows the values of parameters of one model by 

providing mapping curves. 

That is all for the future work that I can imagine for this developed 

system. 
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