
Solving Maximum Number of Run

Ulsing Genetic Algorithm

Solving Maximum Number of Run

Using Genetic Algorithm

BY

KELVIN CHAN, M.Sc

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

For the Degree

Master of Science

MCMASTER UNIVERSITY

G;l Copyright by Kelvin Chan, 2008

ii

MCMASTER UNIVERSITY

MASTER OF SCIENCE (2008)

(COMPUTER SCIENCE)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

Solving Maximum Number of Run Using Genetic Algorithm

CHAN, KELVIN

SUPERVISOR: DR. IVAN BRUHA

NUMBER OF PAGES: V, 53

iii

ABSTRACT

This thesis defends the use of genetic algorithms (GA) to solve the maximum number of

repetitions in a binary string. Repetitions in strings have significant uses in many

different fields, whether it is data-mining, pattern-matching, data compression or

computational biology 14]. Main extended the definition of repetition, he realized that

in some cases output could be reduced because of overlapping repetitions, that are

simply rotations of one another [10]. As a result, he designed the notion of a run to

capture the maximal leftmost repetition that is extended to the right as much as

possible. Franek and 5myth independently computed the same number of maximum

repetition for strings of length five to 35 using an exhaustive search method. Values

greater than 35 were not computed because of the exponential increase in time

required. Using GAs we are able to generate string with very large, if not the maximum,

number of runs for any string length. The ability to generate strings with large runs is an

advantage for learning more about the characteristics of these strings.

iv

ACKNOWLEDGElVIENTS

First and foremost, I would like to thank Dr. I. Bruha, my supervisor, for all his support.

This thesis could not have been completed with his help and guidance. I would also like

to give special thanks to Dr. F. Franek, his help throughout the thesis was important to

its success.

Hamilton, Ontario, Cana,da Kelvin Chan

March 2008

v

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

TABLE OF CONTENTS

ABSTRACT ...•...•..•...............•.•..........•.................................... IV

ACKNOWLEDGEMENT:) ••.•.•..•••••.•••.••...•••.••..•••.•.•..••..•••..••.•••••••..•••..••..••.••••..••..••..••.••.•• V

TABLE OF CONTENTS••••..•.•••.•......••..••..••....•••.••••••••..•••••••.•••••..•••••.•.•..••••..•..••••.......... 1

LIST OF FIGURES ..•.•••...•...••..••..•••.•••••••••••..•••••••..•••.•••••••...•..••..•.•.••••.••••••....•.•••..•..••••..••.. 3

LIST OF TABLES •.•..•..•. ..•••.•..•••...••...•••.•..•.•..••.•••••.•.••...••••••••••..••••.....•••••.•..••......••...••.•.... 4

1 CHAPTER 1: INTRCJDUCTION••..........•.. 5

1.1 OVERVIEW ••••••••. •• 5
1.2 EXHAUSTIVE SEAHCH ••• 6

1.2.1 Implementing the brute-force search ... 7
1.3 SIMULATED ANNEALING ••• 8
1.4 ANT COLONY ••••.•• 9

2 CHAPTER 2: GENE'TIC ALGORITHM .. 11

2.1 INTRODUCTION TO GENETIC ALGORITHMS ••• 11
2.2 THE ADVANTAGE OF GENETIC ALGORITHMS ••• 13
2.3 SIMPLE BINARY EXAMPLE OF GENETIC ALGORITHMS •• 14

2.3.1 Representation .. 16
2.3.2 Evaluations Function ... 16
2.3.3 Initial Population ... 17
2.3.4 Selection :.: .. 18
2.3.5 Crossover ... 20
2.3.6 Mutation ... 21
2.3. 7 The Next Generation ::' : ... 22
2.3.8 Convergence .. 24

2.4 THREE EVOLUTIONARY APPROACHES •• 25

3 CHAPTER 3: THE flROBLEM ..•.. 27

3.1 STRING ••• 27
3.2 REPRESENTATION •••••••••••••••••••••••••••••• ; ••••••••• ~: •• 28
3.3 RUNS ••• 29

3.3.1 Definition of Runs .. 29
3.3.2 The Maximal-Number of Runs Function ... 31

3.4 CURRENT THEOF:IES AND PROOFS •• 32

4 CHAPTER 4: THE IMPLEMENTATIONS AND EXPERIMENTAL RESULTS 34

4.1 IMPLEMENTATION VS. EXISTING INFORMATION ••• 34
4.1.1 Comparisons .. 34
4.1.2 Results from Different Evolutionary Approaches .. 36

1

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

4.1.3 Population Size .. 39
4.1.4 Termination Condition .. 40

4.2 IMPLEMENTATION FOR UNKNOWN VALUES .. 42
4.3 EXPERIMENTAL RESULTS ... 44

5 CHAPTER 5: CONCLUSION ... 47

5.1 CONCLUSION ... 47
5.2 FUTURE WORK ... 48

BIBLIOGRAPHY .•••••.........•....•.•.•.. , •....•............••.......•........••.....•••..•............••...•............. 50

APPENDIX A: MAXIMUM NUMBER OF RUNS FROM 5 TO 35 52

2

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

List of Figures

FIGuRe 1.1: BRUTE-FoRce SEARcH AtGoRJTHM ... s
FIGURE 2.1 FLOWCHART OL= A GENETIC ALGORITHM .. 15

FIGURE 2.2 SAMPLE CODE FOR FITNESS FUNCTION .. 16

FIGURE 2.3 BESTVS. AVERAGE INDIVIDUAL ... 24

FIGURE 4.1 ExHAUmVE V!i, GENETIC ALGORITHM SEARCH RESULTS .. 3S

FIGURE 4.2 ACCURACY OF THE THREE DIFFERENT EVOLUTIONARY APPROACHES 37

FIGURE 4.3 RUN-TIMES COMPARISON OF THE THREE EVOLUTIONARY APPROACHES 38

FIGURE 4.4 CoMPARING THE ACCURACY OF POPULATION SIZE OF 10, 100, AND 1000 40

FIGURE 4.5 COMPARING Jl;CCURACY OF GENETIC ALGORITHMS FOR GENERATIONS OF SIZE 50000,

150000, 250000, J'ND 500000 .••••••.•••••••..••...•.•.••..•....•••••..•••..•••.•••..••....•......••....•••.• 41

FIGURE 4.6 RUN-TIMES 01: GENETIC ALGORITHMS FOR GENERATIONS OF SIZE 50000, 150000,

250000, AND SOOCJI00 ••• 42

. (

3

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

List of Tables

TABLE 2.1 INITIAL POPULJ,TION WITH THE FIRST GENERATION •• .. 20

TABLE 2.2 POPULATION AFTER CROSSOVER AND MUTATION IN THE SECOND GENERATION •••••••••••••••• 22

TABLE 2.3 POPULATION AFTER CROSSOVER AND MUTATION IN THE THIRD GENERATION 23

TABLE 2.4 POPULATION AfTER CROSSOVER AND MUTATION IN THE FOURTH GENERATION •••••••••••••••• 23

TABLE 2.5 POPULATION AnER CROSSOVER AND MUTATION IN THE FIFTH GENERATION ••••••••••••••••••••23

TABLE 2.6 POPULATION AfTER CROSSOVER AND MUTATION IN THE SIXTH GENERATION 23

TABLE 2.7 POPULATION AlTER CROSSOVER AND MUTATION IN THE SEVENTH GENERATION 24

TABLE 4.11NITIAL RESULTS •• 43

TABLE 4.2 THE NEXT GENI:RATIONS OF RESULTS ... 45

TABLE 4.3 RESULTS FOR FUTURE RESEARCH • .. 45

4

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

CHAPTER 1: INTRODUCTION

1.1 Overview

A genetic algorithm (GA) is a robust optimization technique which simulates the natural

processes of evolution. It finds near-optimum solutions to very complex problems

through the exploitation of a population of points in search spaces. As such, GAs differ

from other methods likr~ exhaustive search, in that, they work with coded parameters

and obey stochastic trarnsition rules. Although a random process in appearance, the

search for better performing points is based on values obtained from an objective

function defining the problem. In addition to having a sound mathematical foundation,

GA's appeal to natural evolution and genetics makes it particularly attractive for solving

a complex optimization problem.

This thesis defends the use of genetic algorithms (GAs) to solve the maximum number of

repetitions in a binary string in three parts.

In the first part, Chapter 2, briefly supplies a background and an understanding of the

terminology for the genetic operators. The diversity and types of optimization problems

which GAs have been handling is shown through a quick glance at the advantages of

GAs. The chapter concludes with an example of a simple GA thoroughly explained.

5

M.Sc. Thesis- Kelvin Chcm McMaster University- Computing & Software

The second part presents the problem. It starts with a rigorous definition of strings and

repetition being given. The idea of 'runs' are also introduced. Using the definition of

strings and the idea of 1runs, previously done research on the problem are shown and

explained.

The last part discusses how GAs are applied to the problem showing that:

• GAs can be used to solve the problem, which means it does converge on the

maximum number of runs, and

• The current conjectures for maximum number of runs are not contradicted.

The thesis concludes with a summary of accomplishments. Results are reiterated and

an outlook for the future research for the algorithm and the problem area are

suggested.

1.2 Exhaustive Search

For discrete problems in which no efficient solution method is known, it might be

necessary to systematically enumerate all possible candidates for the solution and to

check whether each candidate satisfies the problem's statement. Such a trivial but very

6

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

general problem-solving technique of exhaustive examination of all possibilities is

known as exhaustive sec1rch, direct search, or the "brute force" method.

Brute-force search is simple to implement and will always find a solution if it exists.

However, its cost is proportional to the number of candidate solutions, which, in many

practical problems, tends to grow very quickly as the size of the problem increases.

Therefore, brute-force search is typically used when the problem size is limited, or when

there are problem-specific heuristics that can be used to reduce the set of candidate

solutions to a manageable size.

The method is also usecl when the simplicity of implementation is more important than

speed. This is the case, for example, in critical applications where any errors in the

algorithm would have very serious consequences or when using a computer to prove a

mathematical theorem. Brute-force search is also useful as "baseline" method when

benchmarking other algorithms.

1.2.1 Implementing the brute-force search

In order to apply brute-force search to a specific class of problems, one must implement

four procedures, first, next, valid, and output. These procedures take as a parameter,

the data P for the particular instance of the problem that is to be solved, and do the

following:

7

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

1. first (P): generatE~ a first candidate solution for P.

2. next (P, c): generate the next candidate for P after the current one c.

3. valid (P, c): check whether candidate cis a solution for P.

4. output (P, c): use the solution c of Pas appropriate to the application.

Figure 1.1: Brute-Force Search Algorithm

c = first(P.I
while (c!=nu/1) {

if valid(P, c) then output(P,c)

c == next(P,c)

}

The next procedure must also tell when there are no more candidates for the instance P,

after the current one c. A convenient way to do that is to return a "null candidate".

Likewise the first procedure should return null if there are no candidates at all for the

instance P. The brute-force method is then expressed by the algorithm in Figure 1.1.

1.3 Simulated Annealing

Simulated annealing is a natural optimization method that simulates thermal annealing

which is a process aime!d at obtaining the perfect crystallizations by attaining a slow

enough temperature reduction to give atoms the time to attain the lowest energy state.

This was first presented by Kirkpatrik et al for solving hard combinatorial optimization

8

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

problems [18]. The dis;3dvantage of this probabilistic approach is a large amount of

computation time for obtaining a near-optimal solution [19].

Simulated annealing is the process in which a substance is heated_ above its melting

temperature and then gradually cooled to produce the crystalline lattice which

minimizes its energy probability distribution. This crystalline lattice, composed of

millions of atoms perfectly aligned, is a beautiful example of nature finding an optimal

structure. However, if the temperature is decreased too quickly, flaws in the crystal can

be locked in. The slow temperature decrease allows these flaws to "work themselves

out" forming a much better crystal. The key to crystal formation is carefully controlling

the rate of change of temperature.

1.4 Ant Colony

Another method of natural optimization is the ant colony optimization algorithms. This

algorithm was proposed by Dorigo et al that had been aspired by the foraging behavior

of ant colonies [20]. This algorithm tries to imitate the natural behavior of ants in

finding the shortest distance between their nests and food sources. Ants exchange

information about good routes through a chemical substance called pheromone.

In nature, ants start off wandering around randomly. Upon finding food, they return to

their colony while laying down pheromone trails. If other ants find such a path, they are

likely not to keep traveling at random, but instead follow the trail returning and

9

M.Sc. Thesis- Kelvin Cha1n McMaster University- Computing & Software

reinforcing it if they eventually find food. Over time, the pheromone trail would start to

evaporate thus reducing its attractive strength. The more time it takes for an ant to

travel down the path and back again, the more time the pheromones have to evaporate.

A short path, by comparison gets marched over faster, and thus the pheromone density

remains high as it is laid on the path as fast as it can evaporate.

Thus, when one ant fincls a good path from the colony to a food source, other ants are

more likely to follow that path, and positive feedback eventually leaves all the ants

following a single path. The idea of the ant colony algorithm is to mimic this behavior

with "simulated ants" walking around the graph which represents the problem to be

solved.

10

M.Sc. Thesis- Kelvin Cha1n McMaster University- Computing & Software

CHAPTER 2: CiENETIC ALGORITHM

2.1 Introduction to Genetic Algorithms

Genetic algorithms (GAs) find their roots in Darwin's principles of evolution and in

simple notions of genetics. Although it has been studied as early as the 1960s, modern

genetic algorithms only started in 1975 with the publication of the book Adaptation in

Natural and Artificial System by J.H. Holland [7]. In this chapter an explanation of this

natural optimization algorithm is shown thoroughly using the same format as R.l.

Haupts and S.E. Haupts in their book Practical Genetic Algorithms [6]. We first describe

the genetic algorithms and then list the useful features of GAs. Finally we demonstrate

an actual GA by using an example and explaining all its members.

Genetic algorithms are an optimization and search technique. In this chapter, GAs are

defined and their mechanics explained using a simple genetic algorithm in Section 2.3.

The power of this optlimization technique resides with its method of exploiting and

exploring the search space. A GA encodes a potential solution to a specific problem on a

simple chromosome-like data structure known as a chromosome or an individual. At

first, a GA randomly creates a population of individuals (potential solutions) and GA

operators are applied to these individuals to find the best solution or evolve to a state

that maximizes the "fitness" of the individuals.

11

M.Sc. Thesis- Kelvin Cha,n McMaster University- Computing & Software

GAs use vocabulary borrowed from natural genetics. So we need a bit of biological

background on heredity at the cellular level. A gene is a basic unit of heredity. An

organism's genes are ~:arried on one of a pair of chromosomes in the form of

deoxyribonucleic acid more commonly known in the short form DNA. Each cell of the

organism contains the same number of chromosomes. Genes often occur with two

functional forms in the chromosomes, each representing a different characteristic. Each

of these forms is known as allele. For instance, a human may carry one allele for brown

eyes in one chromosome and another for blue eyes in the other chromosome. The

combination of alleles on the chromosomes determines the traits of the individual. The

trait observed is the phe·notype, but the combination of alleles is the genotype.

We thus talk about individuals which are chromosomes, genotypes, strings in a

population, and genes which are features.

Each individual represt:!nts a potential solution to the problem; the meaning of a

particular individual is defined externally by the user. An evolution process running on

a population of chromosomes corresponds to a search through a space of potential

solutions.

The population undergoes a simulated evolution. At each generation the relatively

"good" solutions reproduce, while the relatively "bad" solutions die. To distinguish

between different solutions, we use a fitness or an objective function which plays the

12

M.Sc. Thesis- Kelvin Cha1n McMaster University- Computing & Software

role of an environment [12]. Usually, the evaluation function is either called a fitness

function if the individual with a maximum evaluation is desired, or called a cost function

if the individuals with a minimum evaluation are desired. We can easily change a

maximizing problem into a minimizing problem by simply changing the sign of the

evaluation function.

2.2 The Advantage of Genetic Algorithms

Genetic algorithms are cl class of general purpose, domain independent, search methods

which strike a remarkable balance between exploration and exploitation of the search

space. GAs can be used in image processing, numerical function optimization,

combinatorial optimization, machine learning [2][3]. GAs outperform other searching

optimization methods when solving very complex problem such as combinatorial

optimization problems and highly constrained engineering problems. GAs belong to the

class of probabilistic algorithms, yet they are very different from random algorithms as

they combine elements of directed and stochastic search. Because of this, GAs are also

more robust than existi11g directed search methods.

Some advantages of GAs are (6]:

• Optimize with continuous or discrete variables,

• Does not requin:! derivative information,

• Simultaneously searches from a wide sampling of cost surface,

13

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

• Deals with a large number of variables,

• Is well suited for parallel computers,

• Optimized variables with extremely complex cost surfaces (they can jump out of

a local minimum),

• Provides not only a single solution but a list of optimum solutions,

• May encode the variables so that the optimization is done with the encoded

variables, and

• Works with numerically generated data, experimental data, or analytical

functions.

GAs have been quite successfully applied to optimization problems like wire routing,

scheduling, adaptive control, game playing, cognitive modeling, transportation

problems, traveling salesman problems, optimal control problems, etc.

2.3 Simple Binary Example of Genetic Algorithms

A genetic algorithm (GA) for a particular problem must have the following five

components:

1. A genetic representation for potential solutions to the problem,

2. A way to create an initial population of potential solutions,

3. An evaluation function that rates the solutions in terms of their "fitness",

14

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

4. Genetic operators that alter the composition of children, and

5. Values for various parameters that the genetic algorithm uses (population size,

crossover rate, mutation rate, etc.)

Figure 2.1 Flowchart of a Genetic Algorithm

Generate Initial
Popula!fon

15

M.Sc. Thesis- Kelvin Chc1n McMaster University- Computing & Software

The process of a simple genetic algorithm is shown as the flowchart in Figure 2.1. We

explain every process in this flowchart with an implementation of a simple binary

genetic algorithm.

Let us use a binary genetic algorithm to design an example. Suppose we have a string of

length ten that consists of 1's and O's and we want to maximize the number of 1's in it.

We would have a fitness function that is shown in Figure 2.2.

Figure 2.2 Samplle Code for Fitness Function

int fitness(string genome) {

}

2.3.1 Representatit()D

forint i=1 to genome.width {

}

if genome.gene(i) = 1 then
score= score+ 1;

return score;

To solve this problem as a GA, we first consider the representation of the potential

solution; from the definition of our problem it is clear that a ten bit binary string is a

perfect representation of the solutions.

2.3.2 Evaluations l~unction

Since the problem wants the string to have the most 1's, we can define the evaluation

function as the numbe1· of 1's in the string. The value of this function is not the value of

16

M.Sc. Thesis- Kelvin Cha1n McMaster University- Computing & Software

the binary number, for this evaluation function fitness(10000000) = fitness(00000001) =

1, it does not care about the position of the 1's.

2.3.3 Initial Populaition

The initialization process is very simple; we create a population of chromosomes, where

each chromosome is a binary vector of eight bits. All ten bits for each chromosome are

initialized randomly. In this example we set the population at four, and we keep the

population size fixed, during the whole process.

Our initial population is:

51= 0100101101

52 = 1001011111

53 = 0101101010

54= 1111100100

The fitness function fitness() evaluates them as following:

fitness(S1) = 5

fitness(S2) = 7

fitness(S3) = 5

fitness(S4) = 6

The chromosome 52 is the best of the four chromosomes since it has the highest fitness

value among them.

17

M.Sc. Thesis- Kelvin Cha1n McMaster University- Computing & Software

2.3.4 Selection

In this step we choose better individuals for reproduction, so hopefully they will

produce an even better offspring. The new offspring will replace the "unfit11 individuals.

There are many different techniques that a genetic algorithm can use to select the

individuals to be copied over to the next generation, but listed below are some of the

most common methods. Some of the methods are mutually exclusive but some can be

used in combination as it will be shown in our research [8].

1. Elitist Selection

The most fitted members of each generation are guaranteed to be selected.

Most GAs do nCit use pure elitism but instead use a modified version of elitist

selection where the single or a few best are copied into the next generation just

in case nothing better is generated.

2. Rank Selection

Each individual in the population is assigned a numerical rank based on its fitness

and selection is based on this ranking rather than absolute difference in fitness.

The advantage of this method is that it can prevent very fit individuals from

gaining dominance early at the expense of less fit ones, which would reduce the

population's genetic diversity and get stuck in a local minima, which might

hinder attempts to find an acceptable solution.

18

M.Sc. Thesis- Kelvin Chc1n McMaster University- Computing & Software

3. Tournament Selection

Individuals are chosen at random from the population and are placed into

competition against each other. The best individuals, the individuals with the

higher fitness, from the population are chosen to be reproduced.

4. Roulette Wheel Selection

A form of fitness-proportionate selection in which the chance of an individual's

being selected is proportional to the amount by which its fitness is greater or less

than its competi'mrs' fitness. Conceptually, this can be represented as a game of

roulette, each individual gets a slice of the wheel, but more fit ones get larger

slices than less fit ones. The individual is chosen by whichever the wheel lands

on each time.

5. Steady-State Selection

The offspring of the individuals selected from each generation goes back into the

pre-existing gene pool, replacing some of the less fit members of the previous

generation. Some individuals are retained between generations, so that there is

a guarantee that good potential solutions are kept in the population.

6. Parallel Migration

A selection method with multiple, independent population. Each population

evolves independently but each generation some individuals migrate from one

19

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

population to another. The migration algorithm is deterministic; each

population migrates a fixed number of its best individuals to its neighbor. The

master population is updated after each generation with the best individuals

from each population.

2.3.5 Crossover

Crossover is the creation of one or more offspring from the parents selected in the

pairing process. In single point crossover~ a crossover point is selected randomly

between the first and the last bits of the parent1
S chromosomes. Table 2.1 shows the

pairing and crossover process for the problem at hand1 where "1 11 is the crossover point.

Table 2.1 Initial Population with the first generation

Chromosomes Parent Chromosomes Offspring
81 01001 1 01101 o 1 oo 1 1 11111
82 1 oo 1 o 1 11111 10010 1 01101
83 0101101 1 010 0101101 1 100
84 11111 oo 1 1 oo 11111 oo I o 1 o

The first parent passes its binary code to the left of the crossover point to the first

offspring. In the same manner1 the second parent passes its binary code to the left of

the same crossover point to the second offspring. Next1 the binary code of the right of

the crossover point of the first parent goes to the second offspring and second parent

passes its code to the first offspring. Consequently the offspring contains portions of

the binary codes of both parents.

20

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

2.3.6 Mutation

Mutation is performed on a bit-by-bit basis. It randomly alters the bits in the

chromosome with the small probability Pm. Every bit, in all chromosomes in the whole

population, has an equal probability to undergo mutation, i.e. change from 0 to 1 or

vice-versa. Increasing the number of mutation increases the algorithm's freedom to

explore outside the current region of variable space. We proceed in the following way.

For each chromosome in the current population and for each bit within the

chromosome:

• Generate a random number r from the range [0 ... 1]

• If r < Pm, mutate the bit.

Let us set Pm = 0.1, now the population size is 4, every chromosome has ten bits,

0.1x4x10 = 4, so four bits will be mutated. The mutated bits in Table 2.2 are shown in

bold, italics.

An alternative way of mutation is to think of a whole population as a two dimensional

array pop[npop, nblts], where npop is the population size, nbits is the length of each

chromosome, in which each row represents a chromosome, and each column

21

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

represents a gene. Thus a random number generator creates pairs of random integers

(mrow, mcol) that correspond to the rows and columns of the mutated bits.

Table 2.2 Population after Crossover and Mutation in the second generation

Population after Mating Population After Mutation New Fitness Value
0 1 0 0 1 1 1 1 1 1 010 001 1 1 1 1 6
1001001101 0101101100 5
0101101100 1011001101 6
1 1 1 1 1 0 0 0 1 0 1101100011 6

We can use the following computer code to find the rows and columns of the mutated

bits.

nmut = round (Npop * Nblts * Pm)

nrow =round (rand(1, Pm) * Npop + 1)

ncol = round (rand(1,Pm) * Nbits)

//number of mutations

//row of the bits to be mutated

//column of the bits to be mutated

nmut =round (Npop * Nblts * Pm) =round (4*10*0.1) = 4

So, mutations occur three times, the following pairs were randomly selected.

nrow = [1 3 4 4] ncol = [4 3 3 10]

2.3. 7 The Next Generation

After the mutation takes place, the fitness associated with the offspring and mutated

chromosomes are calculated in the third column in Tables 2.2 to 2.7. The process

described is iterated. For example, the population at the end of the next generation is

22

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

show in Table 2.3, Table 2.4, Table 2.5, Table 2.6, and Table 2.7, respectively. We took

the population in Table 2.2 as the starting population of the second generation.

Table 2.3 Population after Crossover and Mutation in the third generation

Population after Mating Population After Mutation New Fitness Value
0101101100 0101101100 5
0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 6
1011001101 1 1 1 1 1 0 1 1 0 1 8
1101100011 1101101001 6

Table 2.4 Population after Crossover and Mutation in the fourth generation

Population after Mating Population After Mutation New Fitness Value
0101101100 0101101101 6
0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 5
1101101101 1 1 0 1 1 1 1 1 0 1 8
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9

Table 2.5 Population after Crossover and Mutation in the fifth generation

Population after Mating Population After Mutation New Fitness Value
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 7
0101001101 0 1 0 1 0 1 1 1 0 1 6
1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9

Table 2.6 Population after Crossover and Mutation in the sixth generation

PoQ_ulation after Mating Pogulation After Mutation New Fitness Value
0 1 0 1 0 0 1 1 1 1 0101011101 6
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 7

23

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

2.3.8 Convergence

The number of generations evolve depends on whether an acceptable solution is

reached or a set number of iterations is exceeded. After a while, all the chromosomes

and associated costs would become the same if it were not for the mutations. At this

point of the algorithm it should be stopped.

Table 2.7 Population after Crossover and Mutation in the seventh generation

Po2_ulation after Mating Population Mter Mutation New Fitness Value
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7
0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7
0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 9
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10

Figure 2.3 Best vs. Average Individual

Best vs. Average Fitness
12

10

cu 8
:I

~
6 Ul

Ul cu
c
il: 4

_._Best Individual
2

~Average Fitness

0

1 2 3 4 5 6 7

Number of Generations

24

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Most genetic algorithms keep track of the population statistics in the form of a

population mean and minimum cost. As shown in Table 2.7, for our example after the

seventh generations the global maximum fitness was found to be 10. This maximum

fitness was found in

4
Initial

Population

+ 4
Fitness. Evaluations

per Generation

* 7
Number of

Generations

= 32

fitness functions evaluations or checking 28/(210
) * 100 = 2. 7% of the population. Figure

2.3 shows a plot of the algorithm convergence in terms of the best and average fitness

of each generation.

From Figure 2.3 we can see that at the end of the seventh generation, the algorithm is

able to find the best fitness value of 10. The average fitness value is also increased from

initial value of 5.75 to the final value of 8.25.

2.4 Three Evolutionary Approaches

Our experiments would use three different evolutionary approaches to demonstrate our

results. First, we used crossover as a !Jas.e .algorithm to compare results to see if

conjectures described in the previous section indeed hold true. This simple genetic

algorithm uses the basic crossover technique to evolve the population of binary string.

It uses non-overlapping populations, that means no string from previous population is

past directly to the next population. Thi~ method was mainly used to confirm that

25

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

genetic algorithms will in fact converge to generate a good solution for this problem.

We also use it as a basis for comparing the other approaches that we will be testing.

The steady-state algorithm is used to test the conjecture that strings which are good will

in turn create strings with better results. The steady-state compares this by keeping

better percentage of the population into the next generation. If the conjecture holds

then it should converge faster with better runs. Each generation the algorithm creates

an entirely new population of individuals by selecting from the previous population then

mating to produce the new offspring for the new population. This process continues

until the algorithm's terminating criteria are met, in this case the number of

generations.

Lastly, we used a parallel migrating technique with the previous steady-state algorithm.

With the multiple populations the convergent should be even faster than just a normal

steady-state algorithm. This approach has multiple, independent populations and was

theorized to results in a faster conversion of the populations to the strings with rich runs

because of its ability to do multiple evolutions every generation.

26

M.Sc. Thesis- Kelvin Chan

CHAPTER3:THEPROBLEM

3.1 String

McMaster University- Computing & Software

Strings are generally defined to be sequence of characters for example letters,

numerals, symbols and punctuation marks. The simplest examples of strings are English

words, which is a concatenation of the English alphabet [5]. Any string can be described

as a sequence of elements drawn from a particular set. That set is called an alphabet.

The members of the alphabet are referred to as the letters. Going back to the example

of English it is evident that there are 26 letters in the alphabet. The size of the alphabet

is referred to as its cardinality. We will be using a binary alphabet throughout this thesis

to explain and demonstrate various ideas. A commonly used binary alphabet in

computer science is known as a binary string. It is a combination of 'O's and '1's, used to

denote the two states of on and off.

Computer information storage and processed by computers is a combination for these

two symbols. For instance, in a comp~te~ system, all the files, memory contents, 1/0

signals, all can be viewed as strings drawn from the set {0,1}. Here are some everyday

examples of strings [17]:

• A text file, whose elements are ASCII characters.

• A stream of bits beamed from a space vehicle.

27

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

• A DNA sequence, composed by four letters A, C, G and T, standing for adenine,

cytosine, guanine, and thiamin respectively.

• A computer program, expressed as wor,ds and separators (semicolon, colon, etc.)

An important characteristic of each string is its length, which is the number of

characters in it. The length can be any natural number, zero or any positive integer. A

particularly useful string for some programming applications is the empty string, which

is a string containing no characters and thus having a length of zero. A substring is any

contiguous sequence of characters in a string.

A string is usually expressed as one-dimensional arrays:

x: array[i ... n]

In this case the length of string xis defined as nand denoted by lxl.

3.2 Representation

Repetitions in strings have significant uses in many different fields, whether it is data

mining, pattern-matching, data compression or computational biology [5]. They play an

essential role in both practice and theory.

28

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

The simplest form of a repetition is a square. If there exists some integers p and i such

that:

x[i ... i + p - 1] = x[i + p ... i + 2p - 1]

then, we say that x[i ... i + 2p- 1] is a square of period p [5].

We represent a repetition with a common notation as a triple (i,p, r) for the given

string x = x[1 ... n]. The positive integers i, p, and rare the position, the period and

the exponent, respectively. For example given the string 101010001, the following

• repetitions exists (1,2,3), (2,2,2), and (6,1,3). ·

3.3 Runs

3.3.1 Definition of Runs

I

Main extended the definition of repetition, he realized that in some cases output could

be reduced because of overlapping repetitions, which are simply rotation of one

i

another [12]. As a result he designed the notion of a run to capture the maximal

leftmost repetition that is extended to the right as much as possible. As an example the

string 101010001, previously described to have repetitions (1,2,3) can easily infer that

the repetition (2,2,2) exists. Formally a run in a string x can be represented as 4-tuple

(i, p, r, m) where (i, p, r) is a repetition as defined above and moreover [18]:

29

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

• The generator x[i ... i + p- 1] is not a repetition (the maximality condition);

• The initial square part of the run x[i ... i + p- 1] = x[i + p ... i + 2p - 2] is left

maximal i.e. x[i - 1 ... i + p- 2] =1= x[i + p- 1 ... i + 2p- 2] (the non left

extensibility condition);

• r is a maximal exponent, i.e. a maximal r such that x[i ... i + p -1] =

x[i + p ... i + 2p- 1] = ··· = x[i + (r- 1)p ... i + rp- 1];

• m <pis the tail of run, i.e. a maximal m such that x[i + rp ... p + rp + m] is a

proper prefix of the generator (the non right-extensibility condition).

It can also be written as:

x[i ... i + lulr + lu' 1- 1] = u7 u'

where i is the starting position, u is the generator, lui is the period, lu'l is the tail (and

hence u' prefix of u), r is the exponent (often referred to as the power) [20].

As an example, the runs in the string 11010010010 is:

• Period 1:

• Period 2:

• Period 3:

11010010010: (1,1,2,0), (5,1,2,0), (8,1,2,0)

11010010010 : (2,2,2,0)

11010010011 : (3,3,2,2)

30

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

3.3.2 The Maximal-Number of Runs Function

Let R(x) denote the number of runs in a string x, then we define the maximal-number

of-runs function p(n) by:

p(n) = max{R(x):lxl =n},where lxl isthelengthofthestringx.

We shall call the function p(n), the max-run function for short. Not much is known

about the max-run function, but the following properties are shown to be true by

Franek and Yang [5]:

• For any n, p(n + 1) ~ p(n).

• For any n, p(n + 2) ~ p(n) + 1.

• For any n, p(n + 1) ::; p(n) + liJ, wher.e liJ is i rounded down

• For some n, p(n + 1) = p(n).

• For some n, p(n + 1) ~ p(n) + 2.

Smyth et al also presented a set of conjectures about p(n) [18]:

• p(n) < n.

• p(n- 1) ::; p(n) ::; p(n- 1) + 2.

• p(n) is attained by a cube-free binary string.

31 .

M.Sc. Thesis- Kelvin Chan t McMaster University- Computing & Software

Up until now none of these simple conjectures has been proven or refuted.

3.4 Current Theories and Proofs

In the early 1980s, there were three different repetition algorithms proposed [1,9,11],

all of them executed in O(n logn) in the worst case. It was shown in 2000 by Kolpakov

and Kucherov that the number of runs was linear in the length of the input string [15].

Franek and Smyth independently computed the same values for n = 5, ... ,35 giving all

run-maximal strings, which is shown in Appendix A. The exhaustive searches ended at

string lengths of 35 because of the enormous computational time required for a brute

force method search.

Although computational values require linear time to calculate, there have been many

who has been trying to prove the conjecture p(n) < n theoretically. "Recently, there

has been a flurry of results concerning the upper bound of p(n): first Rytter set the

upper bound of p(n)to 5n, which was subsequently improved by Puglisi, Simpson, and

Smyth to 3.48n and also by Rytter himself to 3.44n. Recently, Crochemore and llie

pushed the upper bound down to 1.6n, indicating that a further computer analysis can

obtain an upper bound as low as 1.18n." [S]

32

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Furthermore, evidence exists such that for an infinite family of strings of increasing

lengths [5]:

lim (p(n)) = 3
n->oo n 1 + ...[5

which creates a lower bound. This follows that the most recent theoretical bound is:

3 .
f?'n < p(n) < 1.18n

1 + V:J

In the following chapter, the use of genetic algorithms will provide a quicker method to

generate strings with length greater than 35 to further support the conjectures made in

the previous sections.

33

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

CHAPTER 4: THE IMPLEMENTATIONS AND
EXPERIMENTAL RESULTS

4.1 Implementation vs. Existing Information

4.1.1 Comparisons

The performance evaluation of the max-run problem is based on the algorithm's ability

to find the optimal solution for a given string length. Previously, results have been

calculated and verified independently by various different studies, as stated in the

previous chapter. The results computed were of string length 5 to 35 using an

exhaustive search method. Results were computed up to string length of 35 and

creased because of the exponential growth in run-time required to calculate the

different combinations of strings~ We hypothesis that by using genetic algorithms to

solve this problem we would be able to get a good solution because of its ability to

traverse large populations of solutions while converging on a good solution, and its

ability to jump out of local minima. Using the previously computed results as a base we

compared our genetic algorithm.

Our first generation of genetic algorithm has been created using a simple crossover

technique to observe the characteristics of its results. The population used in our

research is a set of binary string, strings with only zeros and ones. We used a set

number of generations as our termination condition because we wanted to confirm that

the population of strings will in fact' converge to a set of strings with the maximum

34

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

number of runs. The fitness function used in our case is an algorithm that, obviously,

calculates the number of runs in any given string.

Figure 4.1 Exhaustive vs. Genetic Algorithm Search Results

30

25

Ill
c 20 :II a::
ale 15 nl

:E
0 10 :aa:

5

0

Exhaustive "s. Genetic Algorithm Results

• Brute Force Results

CJ GA Results

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Length of Strings

To prove that genetic algorithms do in fact generate a string with maximum number of

runs, we used the above simplf.il ,g,enetic algorithm to generate a set of solutions for the

strings of length 5 to 35. Comparing those results with the results that were found from

independent research previously done, we found that it does indeed generate a set of

max-runs.

In Figure 4.1, we have shown the max-runs of string lengths from 5 to 35. The darker

area is the results for the exhaustive search and the lighter grey area is the percentage

that the genetic algorithm is able to get the correct solution. As we can see the results

35

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

work well at the lower lengths because almost 100% of the time the genetic algorithm is

able to find the right solution while the larger lengths slowly become worst and at string

length of 35 only about half of the time does it result in the correct max-run.

Although we have shown that the genetic algorithm actually does produce results that

are comparable to using an exhaustive search method we have also shown that it does

not always guarantee that the best solutions with the most runs every time will be

generated. Evidence of this characteristic can be seen at the string length 20, in Figure

4.1 even though the results were good in the vicinity of that string length, the results did

really poorly.

From the results in Figure 4.1 we can observe that genetic algorithms do indeed work to

solve the max-run problem. It converges with certain probability. It is theorized that

with different parameters much better solutions can be generated as it will be discussed

in the following sections.

4.1.2 Results from Different Evolutionary Approaches

Although we used genetic algorithms to solve this problem, there are still many

different combinations of evolutionary approaches as we discussed in Chapter 2. In our

experiments we used three different types of approaches. The first was just the

traditional crossover algorithm, the second approach we used was a steady-state

36

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

algorithm in conjunction with the crossover' technique and the last approach was

integrating the previous technique with parallel migration.

Figure 4.2 Accuracy of the Three Different Evolutionary Approaches

Accuracy of Different Approaches

-crossover

- • Steady-State

- - Parallel

5 10 15 20 25 30 35

Lengths of Strings

\

The three approaches have the following results shown in Figure 4.2 and 4.3, where 4.2

describes the accuracy of each type of algorithm used and 4.3 shows the run-time,

which was done on a lntel 11 Core™ 2 CPU with 1.83 GHz and 1GB of RAM.

From Figure 4.2, we can see the solution between the three different approaches.

Although the results look very similar we can first of all notice that the crossover

approach starts to produce bad results much quicker than the other two. Besides that

the steady-state and parallel migrating population approach have similar results. The

similarity might be due to the fact that it uses the comparable steady-state algorithm.

37

M.Sc. Thesis - Kelvin Chan McMaster University- Computing & Software

Figure 4.3 Run-Time Comparisons ofthe Three Evolutionary Approaches

GA Algorithm Average Run-Times
1400

1200 • , I

VI
'til 1000 c
8 800 Ql

"' .E 600

, ,. ...
J ,

A -crossover
Ql

,; 400
1-

200

0

_, --- ~
~·-·

~"~·

- • Steady-State

- - Parallel

5 10 15 20 25 30 35

Lengths of Strings

Both the steady-state and the parallel migrating population approach received similar

percentages of getting the max-run but it took a lot longer to calculate one then the

other as Figure 4.3 show. Although two of the three approaches seem to steadily

increase in run-time as the string length increases the parallel migrating population

increases in run-time exponentially faster. While genetic algorithms are much quicker

than the exhaustive search, the exponential growth in the parallel algorithm suggests

that just using the steady-state algorithm without parallel migration would be a

preferable choice.

Just using the steady-state algorithm seems to be a good algorithm both generating a

good set of solutions and in terms of run-time. In the following sections we look at

38

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

other factors to further improve the chances of generating the maximum number of

runs in a set length of string.

4.1.3 Population Size

For every GA, a very important part of the algorithm is the population. This represents

the solution to the problem and can affect the outcome significantly. In this problem

we have described that we will be using a set of binary strings. We have however not

described the size of the population that we have used. The size of the population is

basically the number of potential solution we have at each evolution of the algorithm.

In Figure 4.4 shows the population size of ten, a hundred, and a thousand are shown.

We have done a simple test to show that as in most cases when GAs are used, the

bigger the population is, the better the solutions there will be. The simple reason

behind this is that there are more potential solutions to the problem and there is less

likelihood that the solution would be caught in local minima. As in every increase of the

population there is a significant improvement to the chances of resulting in the max-

run.

39

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Figure 4.4 Comparing the Accuracy of Population Size of 10, 100, and 1000.

Population Comparison
120.00%

100.00%
Ill c 80.00% ::. a:

= 60.00%
~ - • Ten
0 40.00%
~

-Hundred --20.00% - - Thousand

0.00%

5 10 15 20 25 30 35

Length of Strings

4.1.4 Termination Condition

One of the most common, and necessary, variable parameter in a genetic algorithm is

the terminating condition. In our research we used a set of fixed number of generations

as the terminating condition, this has allowed us to observe the results and strengthen

our conjectures. We compared the results to the original set of data, verified by the

exhaustive search, to confirm our hypothesis that GAs do in fact converge. We know

that from our initial results that a crossover GA with 50,000 generations and a

I'

population size of 100 does indeed converge to the right solutions, but does the number

of generations change the results. It is commonly acknowledged since GAs are based on

evolution the more generations there will be the better the results should be.

40

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Figure 4.5 Comparing Accuracy of Genetic Algorithms for Generations of Size
50000, 150000, 250000, and 500000.

Ill c
~
:IC
1'0
:iE
'0
~

Accuracy .of Genetic Algorithms for
Different Number of Generations

120%

100%
~,

"
80% ... ,

~, ''""' -- 50000 60% ,

40% - • 150000

20% -250000

0% ••••••• 500000

5 10 15 20 25 30 35

Length of Strings

Using the same crossover GA we tried to ,experiment with different number of

generations to see what the. best results would be. From our initial observation we

noticed that although GAs do not guarantee a max-run, the results do converge. The

results in Figure 4.5 confirms that although not all of the population converges to the

max-run as the number of generations grows the percentage of the results are

significantly improved. Similar to increasing the size of the population, the more

generations of evolutions there is, the more strings would be produced and the

likelihood of max-run strings coming up would be better. It also shows that at some

point if enough evolutions on a population is done that population would be optimal

and produce a max-run.

41

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Figure 4.6 Run-Times of Genetic Algorithms for Generations of Size 50000,

150000, 250000, and 500000.

4500
4000

-8 3500
c 3000 B
3(2500
.5 2000
Cll 1500 E
I= 1000

500
0

Run-Times for
Different Number of Generations

....
..

.. .
.. ..

.... /

.··

~-··_,..

.. ...

--
~:..:..~-----
5 10 15 20 25 30 35

Length of Strings

- -5oooo
-. 150000

-250000

••••••• 500000

The results prove that as the number of generations increase so does the percentage of

max-run. This has caused the problem of the exponential increase in time required.

Although the amount of time required at this stage is still minimal compared to doing

exhaustive search, larger applications of this problem might require a lot more time.

4.2 Implementation for Unknown Values

The results from the previous section have shown that genetic algorithm can

unquestionably be applied to this problem of generating strings that are rich with runs.

It also has provided evidence to further support current conjectures about strings that

are rich with runs.

42

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

The reason behind using GAs was the fact that exhaustive searches take too long and

after string length 35 it was no longer feasible to exhaustively go through every

combinations of strings. Our GAs solution provided an alternative way that will generate

potential solutions for any length that is required.

Table 4.11nitial Results.

String Best
Strings With Max-Run

Length Max-Run

so 40 11011001101100110110101101001011010110100101101011
51 41 100100110010011001000100110010011001000100110010011
52 42 1101011010010110101101001011010011001000100110010011
53 43 11010110100101101011010010100101101001010011001010010
54 45 001011010010110101101001011010110101101001011010110100
55 46 1101011010010110101101001011010010110101101001011010011
56 47 00101001011010010110101101001011010010110101101001011010
57 47 110110100101101001010010110100101101001010010110100101100
58 48 0101101001011010110100101101011010011010110100101101011010
59 so 00101101001011010110100101101011001011010110100101101011010
60 49 110100101101011010010110101100110110011011101100110110011011

We used the steady-state evolutionary GA, as stated before to be the best, to generate

a set of solutions for string of length 50 to 60. We continued to use a population of a

hundred and a hundred thousand generations as the terminating state. As stated in the

previous chapters there are a few conjectures that have not been proven or refuted.

The following are these conjectures that are used to examine our results.

• p(n) < n.

• p(n- 1) < p(n) < p(n- 1) + 2.

• p(n) is attained by a cube-free binary string.

43

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

The results are shown in Table 4.1. From the initial results of the max-run we have seen

that it does not satisfy some of the conjectures stated by Smyth et al. For example the

strings at length 51 and 52 are not cube-free binary strings, they both contain a set of

cubed zeros. These faults have been highlighted in the results. Also at length 60, clearly

the max-run of 49 is not adequate. As it has been proven before we know that:

For any n, p(n + 1) ~ p(n).

Thus p{60) ~ p{59) = 50.

With these results not satisfying our conjectures we decided to do some further testing.

4.3 Experimental Results

Upon further investigation, we decided to increase the number of generations

previously used since it has been proven to increase the accuracy of generating the max

run. So using the same algorithm as the previous genetic algorithm we altered the

terminating condition to check its convergences. We changed the terminating condition

such that the algorithm checks and compares the best strings in the last 50 generations

and compared it to the percentage changed, if there is no change then the genetic

algorithm exits with the current population being the solution. This indeed created a set

44

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

of better solution, the results in Table 4.2 generated by the new algorithm does conform

to all the conjectures declared by Smyth et al.

Table 4.2 The Next Generations of Results.

String Best
Strings With Max-Run

Length Max-Run

so 41 00101001011010010100101101011010010110101101001011
51 42 110101101001011010110100101101001010010110100101101
52 43 0010110100101101001010010110100101101001010010110100
53 43 11010110100101101011010010100101101001010011001010010
54 45 001011010010110101101001011010110101101001011010110100
55 46 1101011010010110101101001011010010110101101001011010011
56 47 00101001011010010110101101001011010010110101101001011010
57 48 001010010110100101001011011010010110100101001011010010100
58 49 1101001010010110100101001011010010110100101001011010010100
59 so 00101101001011010110100101101011001011010110100101101011010
60 51 110101101001011010110100101100101101001011010110100101101011

Although there is no guarantee that these newly generated strings have the best max-

runs values the likelihood is very high. We believe that these results are the best values

because they were generated by a genetic algorithm and it conforms to the three

conjectures Smyth et al states.

Table 4.3 Results for Future Research.

String Length Best Max-Run

so 41
75 61

100 84
125 102
150 125
175 146
200 166

45

String Length

225
250
275
300
325
350

Best Max-Run

184
203
227
244

264
284

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

With the genetic algorithm configured to a reasonable setting we calculated the

following set of data for 50 to 350 at an interval of 25.

Previous research has mapped out the performance of strings up to 35 but with our

algorithm, further research can be done to form more concrete conjectures about runs

for binary strings.

46

M.Sc. Thesis- Kelvin Chan

CHAPTER 5: CONCLUSION

5.1 Conclusion

McMaster University- Computing & Software

Genetic algorithms are versatile and can be applied to many different problems. It's

important to understand that the functioning of such an algorithm does not guarantee

success. These algorithms are nevertheless extremely efficient and are especially useful

for solving problems with large sample spaces. In this thesis we have applied genetic

algorithms to solve an interesting problem of generating strings with large quantity of

runs.

The information we have on "Max Run Strings", which are strings with the maximum

number of runs for its length, are very limited. We have discussed the details of the

upper and lower bound of runs. We have also looked at the conjectures on these

strings which were presented by Smyth et al about p(n):

• p(n) < n.

• p(n- 1) < p(n) $ p(n- 1) + 2.

• p(n) is attained by a cube-free binary string.

With the information from previously done research by Franek and Yang, we were able

to verify and conclude that our genetic algorithms does solve the problem. It also has

behaviors we would expect this algorithm is suppose to have. Although this method of

47

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

finding "Max Run Strings" does not always produce the desired results, it does provide

at least a string with large amount of runs, which narrows the sample space that we

need to traverse.

This thesis demonstrates genetic algorithms have the ability to be able to solve the

problem. It also provides a means to generate strings with large amount of runs

previously unable to. Finally and most importantly, we were able to verify conjectures

made by Smyth et al and no contradictions to previously done research were found.

5.2 Future Work

In our work we have been able to generate a set of strings that conform to the

conjectures previously made. This is only the beginning of using genetic algorithm to

solve problems in stringology. There are more work that can be done in both

stringology and genetic algorithm. In the field of genetic algorithm, the following areas

are suggested for continued research ...

• Application of genetic algorithm on large sets of combinatory strings for

purposes of data-mining.

• Experimentation for using genetic algorithm to generate strings with large runs

needed for test cases of critical systems

48

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Further study in stringology using genetic algorithms can also be done to achieve ...

• A better upper and lower bound on the number of runs by using better genetic

algorithms to have faster convergence and better solutions.

• More conjectures and how these strings are generated by using the generated

strings we have currently produced.

• A better understanding if binary strings do indeed produce the maximum

amount of runs. This can be done by using a fixed length string that is non-binary

with the genetic algorithm to verify that the converging solutions with large runs

are binary.

49

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Bibliography

1. Apostolico, A. and Preparata, F. P. "Optimal off-line detection of repetitions in a
string." Theoretical Computer Science Volume 22, pp.297-315, 1983.

2. Branke J. "Evolutionary Approaches to Dynamic Optimization Problems
Updated Survey." In: GECCO Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, pp.27-30, 2001.

3. Bruha, I. and Kralik, P. "Embedding a Genetic Algorithm in Attribute-based Rule
Inducing Learning." Soft Computing (SOC0-99), Symposium ICSC (International
Computer Science Conventions, Canada), Genova, Italy, pp. 631-635, 1999.

4. Crochemore, M. "An Optimal Algorithm for Computing the Repetitions in a
Word." Volume 12, Number 5, pp. 244-250, 1981.

5. Dorigo, M. and Di Caro, G. "The Ant Colony Optimization Meta-Heruistic". WSES
International Conference on Evolutionary Computation (EC'01). McGraw Hill,
London, pp.11-32. 1999.

6. Franek, F., Simpson, R. J. and Smyth, W.F. "The Maximum Number of Runs in a
String." 2003.

7. Franek, F. and Yang, Q. ''An Asymptotic Lower Bound for the Maximal Number
of Runs in a String." World Scientific Publishing Company Volume 19 Issue 1, pp.
195-203, 2008.

8. Haupt, R.L., and Haupt, S.E. Practical Genetic Algorithms, Second Edition, John
Wiley & Sons, Inc., 2004.

9. Holland, J.H. ''Adaptation in Natural and Artificial Systems." Ann Arbor: The
University of Michigan Press, 1975.

10. Main, M. G. "Detecting leftmost maximal' periodicities." Discrete Applied Maths,
pp. 145-153, 1989.

11. Main, M.G. and Lorentz, Richard J. "An d(n log n) Algorithm for finding all
repetitions in a string." Journal of Algorithms Volume 5, pp.422-432, 1984.

12. Marczyk, Adam. Genetic Algorithms and Evolutionary Computation,
http://www.talkorigins.org/fags/genalg/genalg.html, 2004.

so

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

13. Michalewicz, X. Genetic Algorithms+ Data Structures = Evolution Programs
Springer Verlag, New York, Third Edition, 1996.

14. Kirkpatrick, S. C.D. Gelatt, M.P. Vecchi. "Optimization by Simulated Annealing."
Science Volume 220, No.4598, pp. 671-680. 1983.

15. Kolpakov, R. and Kucherov, G. "On maximal repetitions in words." Journal of
Discrete Algorithms, pp.159-186, 2000.

16. Simon, J., Luling, R. and Diekmann R. "Applied Simulated Annealing." Lecture
Notes in Economics and Mathematical Systems, Volume 396. Springer-Verlag,
pp.17-44. 1993.

17. Smyth, B. Computing Patters in Strings Addsison Wesley, 2003.

18. Smyth, W.F .. "Repetitive perhaps, but certainly not boring." Theoretical
Computer Science Volume 249, pp.289-303, 2000.

19. Wikipedia, the free encyclopedia. http:/ /en.wikipedia.org/wiki/Brute
force_search. 2008.

20. Yang, Q. "Lower and Upper Bounds for Maximum Number of Runs." 2007.

51

M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software

Appendix A: Maximum Number of Runs from 5 to 35

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
22
21
20
23
24
25
26
27
28
29
30
31
32
33
34
35

Maximum # o Runs

52

2
3
4
5
5
6
7
8
8
10
10
11
12
13
14
16
15
15
17
18
19
20
21
22
23
24
25
26
27
27
28

