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ABSTRACT 

This thesis defends the use of genetic algorithms (GA) to solve the maximum number of 

repetitions in a binary string. Repetitions in strings have significant uses in many 

different fields, whether it is data-mining, pattern-matching, data compression or 

computational biology 14]. Main extended the definition of repetition, he realized that 

in some cases output could be reduced because of overlapping repetitions, that are 

simply rotations of one another [10]. As a result, he designed the notion of a run to 

capture the maximal leftmost repetition that is extended to the right as much as 

possible. Franek and 5myth independently computed the same number of maximum 

repetition for strings of length five to 35 using an exhaustive search method. Values 

greater than 35 were not computed because of the exponential increase in time 

required. Using GAs we are able to generate string with very large, if not the maximum, 

number of runs for any string length. The ability to generate strings with large runs is an 

advantage for learning more about the characteristics of these strings. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

A genetic algorithm (GA) is a robust optimization technique which simulates the natural 

processes of evolution. It finds near-optimum solutions to very complex problems 

through the exploitation of a population of points in search spaces. As such, GAs differ 

from other methods likr~ exhaustive search, in that, they work with coded parameters 

and obey stochastic trarnsition rules. Although a random process in appearance, the 

search for better performing points is based on values obtained from an objective 

function defining the problem. In addition to having a sound mathematical foundation, 

GA's appeal to natural evolution and genetics makes it particularly attractive for solving 

a complex optimization problem. 

This thesis defends the use of genetic algorithms (GAs) to solve the maximum number of 

repetitions in a binary string in three parts. 

In the first part, Chapter 2, briefly supplies a background and an understanding of the 

terminology for the genetic operators. The diversity and types of optimization problems 

which GAs have been handling is shown through a quick glance at the advantages of 

GAs. The chapter concludes with an example of a simple GA thoroughly explained. 
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The second part presents the problem. It starts with a rigorous definition of strings and 

repetition being given. The idea of 'runs' are also introduced. Using the definition of 

strings and the idea of 1runs, previously done research on the problem are shown and 

explained. 

The last part discusses how GAs are applied to the problem showing that: 

• GAs can be used to solve the problem, which means it does converge on the 

maximum number of runs, and 

• The current conjectures for maximum number of runs are not contradicted. 

The thesis concludes with a summary of accomplishments. Results are reiterated and 

an outlook for the future research for the algorithm and the problem area are 

suggested. 

1.2 Exhaustive Search 

For discrete problems in which no efficient solution method is known, it might be 

necessary to systematically enumerate all possible candidates for the solution and to 

check whether each candidate satisfies the problem's statement. Such a trivial but very 
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general problem-solving technique of exhaustive examination of all possibilities is 

known as exhaustive sec1rch, direct search, or the "brute force" method. 

Brute-force search is simple to implement and will always find a solution if it exists. 

However, its cost is proportional to the number of candidate solutions, which, in many 

practical problems, tends to grow very quickly as the size of the problem increases. 

Therefore, brute-force search is typically used when the problem size is limited, or when 

there are problem-specific heuristics that can be used to reduce the set of candidate 

solutions to a manageable size. 

The method is also usecl when the simplicity of implementation is more important than 

speed. This is the case, for example, in critical applications where any errors in the 

algorithm would have very serious consequences or when using a computer to prove a 

mathematical theorem. Brute-force search is also useful as "baseline" method when 

benchmarking other algorithms. 

1.2.1 Implementing the brute-force search 

In order to apply brute-force search to a specific class of problems, one must implement 

four procedures, first, next, valid, and output. These procedures take as a parameter, 

the data P for the particular instance of the problem that is to be solved, and do the 

following: 

7 
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1. first (P): generatE~ a first candidate solution for P. 

2. next (P, c): generate the next candidate for P after the current one c. 

3. valid (P, c): check whether candidate cis a solution for P. 

4. output (P, c): use the solution c of Pas appropriate to the application. 

Figure 1.1: Brute-Force Search Algorithm 

c = first(P.I 
while (c!=nu/1) { 

if valid(P, c) then output(P,c) 

c == next(P,c) 

} 

The next procedure must also tell when there are no more candidates for the instance P, 

after the current one c. A convenient way to do that is to return a "null candidate". 

Likewise the first procedure should return null if there are no candidates at all for the 

instance P. The brute-force method is then expressed by the algorithm in Figure 1.1. 

1.3 Simulated Annealing 

Simulated annealing is a natural optimization method that simulates thermal annealing 

which is a process aime!d at obtaining the perfect crystallizations by attaining a slow 

enough temperature reduction to give atoms the time to attain the lowest energy state. 

This was first presented by Kirkpatrik et al for solving hard combinatorial optimization 
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problems [18]. The dis;3dvantage of this probabilistic approach is a large amount of 

computation time for obtaining a near-optimal solution [19]. 

Simulated annealing is the process in which a substance is heated_ above its melting 

temperature and then gradually cooled to produce the crystalline lattice which 

minimizes its energy probability distribution. This crystalline lattice, composed of 

millions of atoms perfectly aligned, is a beautiful example of nature finding an optimal 

structure. However, if the temperature is decreased too quickly, flaws in the crystal can 

be locked in. The slow temperature decrease allows these flaws to "work themselves 

out" forming a much better crystal. The key to crystal formation is carefully controlling 

the rate of change of temperature. 

1.4 Ant Colony 

Another method of natural optimization is the ant colony optimization algorithms. This 

algorithm was proposed by Dorigo et al that had been aspired by the foraging behavior 

of ant colonies [20]. This algorithm tries to imitate the natural behavior of ants in 

finding the shortest distance between their nests and food sources. Ants exchange 

information about good routes through a chemical substance called pheromone. 

In nature, ants start off wandering around randomly. Upon finding food, they return to 

their colony while laying down pheromone trails. If other ants find such a path, they are 

likely not to keep traveling at random, but instead follow the trail returning and 
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reinforcing it if they eventually find food. Over time, the pheromone trail would start to 

evaporate thus reducing its attractive strength. The more time it takes for an ant to 

travel down the path and back again, the more time the pheromones have to evaporate. 

A short path, by comparison gets marched over faster, and thus the pheromone density 

remains high as it is laid on the path as fast as it can evaporate. 

Thus, when one ant fincls a good path from the colony to a food source, other ants are 

more likely to follow that path, and positive feedback eventually leaves all the ants 

following a single path. The idea of the ant colony algorithm is to mimic this behavior 

with "simulated ants" walking around the graph which represents the problem to be 

solved. 

10 
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CHAPTER 2: CiENETIC ALGORITHM 

2.1 Introduction to Genetic Algorithms 

Genetic algorithms (GAs) find their roots in Darwin's principles of evolution and in 

simple notions of genetics. Although it has been studied as early as the 1960s, modern 

genetic algorithms only started in 1975 with the publication of the book Adaptation in 

Natural and Artificial System by J.H. Holland [7]. In this chapter an explanation of this 

natural optimization algorithm is shown thoroughly using the same format as R.l. 

Haupts and S.E. Haupts in their book Practical Genetic Algorithms [6]. We first describe 

the genetic algorithms and then list the useful features of GAs. Finally we demonstrate 

an actual GA by using an example and explaining all its members. 

Genetic algorithms are an optimization and search technique. In this chapter, GAs are 

defined and their mechanics explained using a simple genetic algorithm in Section 2.3. 

The power of this optlimization technique resides with its method of exploiting and 

exploring the search space. A GA encodes a potential solution to a specific problem on a 

simple chromosome-like data structure known as a chromosome or an individual. At 

first, a GA randomly creates a population of individuals (potential solutions) and GA 

operators are applied to these individuals to find the best solution or evolve to a state 

that maximizes the "fitness" of the individuals. 

11 



M.Sc. Thesis- Kelvin Cha,n McMaster University- Computing & Software 

GAs use vocabulary borrowed from natural genetics. So we need a bit of biological 

background on heredity at the cellular level. A gene is a basic unit of heredity. An 

organism's genes are ~:arried on one of a pair of chromosomes in the form of 

deoxyribonucleic acid more commonly known in the short form DNA. Each cell of the 

organism contains the same number of chromosomes. Genes often occur with two 

functional forms in the chromosomes, each representing a different characteristic. Each 

of these forms is known as allele. For instance, a human may carry one allele for brown 

eyes in one chromosome and another for blue eyes in the other chromosome. The 

combination of alleles on the chromosomes determines the traits of the individual. The 

trait observed is the phe·notype, but the combination of alleles is the genotype. 

We thus talk about individuals which are chromosomes, genotypes, strings in a 

population, and genes which are features. 

Each individual represt:!nts a potential solution to the problem; the meaning of a 

particular individual is defined externally by the user. An evolution process running on 

a population of chromosomes corresponds to a search through a space of potential 

solutions. 

The population undergoes a simulated evolution. At each generation the relatively 

"good" solutions reproduce, while the relatively "bad" solutions die. To distinguish 

between different solutions, we use a fitness or an objective function which plays the 

12 
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role of an environment [12]. Usually, the evaluation function is either called a fitness 

function if the individual with a maximum evaluation is desired, or called a cost function 

if the individuals with a minimum evaluation are desired. We can easily change a 

maximizing problem into a minimizing problem by simply changing the sign of the 

evaluation function. 

2.2 The Advantage of Genetic Algorithms 

Genetic algorithms are cl class of general purpose, domain independent, search methods 

which strike a remarkable balance between exploration and exploitation of the search 

space. GAs can be used in image processing, numerical function optimization, 

combinatorial optimization, machine learning [2][3]. GAs outperform other searching 

optimization methods when solving very complex problem such as combinatorial 

optimization problems and highly constrained engineering problems. GAs belong to the 

class of probabilistic algorithms, yet they are very different from random algorithms as 

they combine elements of directed and stochastic search. Because of this, GAs are also 

more robust than existi11g directed search methods. 

Some advantages of GAs are (6]: 

• Optimize with continuous or discrete variables, 

• Does not requin:! derivative information, 

• Simultaneously searches from a wide sampling of cost surface, 
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• Deals with a large number of variables, 

• Is well suited for parallel computers, 

• Optimized variables with extremely complex cost surfaces (they can jump out of 

a local minimum), 

• Provides not only a single solution but a list of optimum solutions, 

• May encode the variables so that the optimization is done with the encoded 

variables, and 

• Works with numerically generated data, experimental data, or analytical 

functions. 

GAs have been quite successfully applied to optimization problems like wire routing, 

scheduling, adaptive control, game playing, cognitive modeling, transportation 

problems, traveling salesman problems, optimal control problems, etc. 

2.3 Simple Binary Example of Genetic Algorithms 

A genetic algorithm (GA) for a particular problem must have the following five 

components: 

1. A genetic representation for potential solutions to the problem, 

2. A way to create an initial population of potential solutions, 

3. An evaluation function that rates the solutions in terms of their "fitness", 

14 
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4. Genetic operators that alter the composition of children, and 

5. Values for various parameters that the genetic algorithm uses (population size, 

crossover rate, mutation rate, etc.) 

Figure 2.1 Flowchart of a Genetic Algorithm 

Generate Initial 
Popula!fon 
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The process of a simple genetic algorithm is shown as the flowchart in Figure 2.1. We 

explain every process in this flowchart with an implementation of a simple binary 

genetic algorithm. 

Let us use a binary genetic algorithm to design an example. Suppose we have a string of 

length ten that consists of 1's and O's and we want to maximize the number of 1's in it. 

We would have a fitness function that is shown in Figure 2.2. 

Figure 2.2 Samplle Code for Fitness Function 

int fitness(string genome) { 

} 

2.3.1 Representatit()D 

forint i=1 to genome.width { 

} 

if genome.gene(i) = 1 then 
score= score+ 1; 

return score; 

To solve this problem as a GA, we first consider the representation of the potential 

solution; from the definition of our problem it is clear that a ten bit binary string is a 

perfect representation of the solutions. 

2.3.2 Evaluations l~unction 

Since the problem wants the string to have the most 1's, we can define the evaluation 

function as the numbe1· of 1's in the string. The value of this function is not the value of 

16 
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the binary number, for this evaluation function fitness(10000000) = fitness(00000001) = 

1, it does not care about the position of the 1's. 

2.3.3 Initial Populaition 

The initialization process is very simple; we create a population of chromosomes, where 

each chromosome is a binary vector of eight bits. All ten bits for each chromosome are 

initialized randomly. In this example we set the population at four, and we keep the 

population size fixed, during the whole process. 

Our initial population is: 

51= 0100101101 

52 = 1001011111 

53 = 0101101010 

54= 1111100100 

The fitness function fitness() evaluates them as following: 

fitness(S1) = 5 

fitness(S2) = 7 

fitness(S3) = 5 

fitness(S4) = 6 

The chromosome 52 is the best of the four chromosomes since it has the highest fitness 

value among them. 

17 
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2.3.4 Selection 

In this step we choose better individuals for reproduction, so hopefully they will 

produce an even better offspring. The new offspring will replace the "unfit11 individuals. 

There are many different techniques that a genetic algorithm can use to select the 

individuals to be copied over to the next generation, but listed below are some of the 

most common methods. Some of the methods are mutually exclusive but some can be 

used in combination as it will be shown in our research [8]. 

1. Elitist Selection 

The most fitted members of each generation are guaranteed to be selected. 

Most GAs do nCit use pure elitism but instead use a modified version of elitist 

selection where the single or a few best are copied into the next generation just 

in case nothing better is generated. 

2. Rank Selection 

Each individual in the population is assigned a numerical rank based on its fitness 

and selection is based on this ranking rather than absolute difference in fitness. 

The advantage of this method is that it can prevent very fit individuals from 

gaining dominance early at the expense of less fit ones, which would reduce the 

population's genetic diversity and get stuck in a local minima, which might 

hinder attempts to find an acceptable solution. 
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3. Tournament Selection 

Individuals are chosen at random from the population and are placed into 

competition against each other. The best individuals, the individuals with the 

higher fitness, from the population are chosen to be reproduced. 

4. Roulette Wheel Selection 

A form of fitness-proportionate selection in which the chance of an individual's 

being selected is proportional to the amount by which its fitness is greater or less 

than its competi'mrs' fitness. Conceptually, this can be represented as a game of 

roulette, each individual gets a slice of the wheel, but more fit ones get larger 

slices than less fit ones. The individual is chosen by whichever the wheel lands 

on each time. 

5. Steady-State Selection 

The offspring of the individuals selected from each generation goes back into the 

pre-existing gene pool, replacing some of the less fit members of the previous 

generation. Some individuals are retained between generations, so that there is 

a guarantee that good potential solutions are kept in the population. 

6. Parallel Migration 

A selection method with multiple, independent population. Each population 

evolves independently but each generation some individuals migrate from one 

19 



M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software 

population to another. The migration algorithm is deterministic; each 

population migrates a fixed number of its best individuals to its neighbor. The 

master population is updated after each generation with the best individuals 

from each population. 

2.3.5 Crossover 

Crossover is the creation of one or more offspring from the parents selected in the 

pairing process. In single point crossover~ a crossover point is selected randomly 

between the first and the last bits of the parent1
S chromosomes. Table 2.1 shows the 

pairing and crossover process for the problem at hand1 where "1 11 is the crossover point. 

Table 2.1 Initial Population with the first generation 

Chromosomes Parent Chromosomes Offspring 
81 01001 1 01101 o 1 oo 1 1 11111 
82 1 oo 1 o 1 11111 10010 1 01101 
83 0101101 1 010 0101101 1 100 
84 11111 oo 1 1 oo 11111 oo I o 1 o 

The first parent passes its binary code to the left of the crossover point to the first 

offspring. In the same manner1 the second parent passes its binary code to the left of 

the same crossover point to the second offspring. Next1 the binary code of the right of 

the crossover point of the first parent goes to the second offspring and second parent 

passes its code to the first offspring. Consequently the offspring contains portions of 

the binary codes of both parents. 
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2.3.6 Mutation 

Mutation is performed on a bit-by-bit basis. It randomly alters the bits in the 

chromosome with the small probability Pm. Every bit, in all chromosomes in the whole 

population, has an equal probability to undergo mutation, i.e. change from 0 to 1 or 

vice-versa. Increasing the number of mutation increases the algorithm's freedom to 

explore outside the current region of variable space. We proceed in the following way. 

For each chromosome in the current population and for each bit within the 

chromosome: 

• Generate a random number r from the range [0 ... 1] 

• If r < Pm, mutate the bit. 

Let us set Pm = 0.1, now the population size is 4, every chromosome has ten bits, 

0.1x4x10 = 4, so four bits will be mutated. The mutated bits in Table 2.2 are shown in 

bold, italics. 

An alternative way of mutation is to think of a whole population as a two dimensional 

array pop[npop, nblts], where npop is the population size, nbits is the length of each 

chromosome, in which each row represents a chromosome, and each column 
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represents a gene. Thus a random number generator creates pairs of random integers 

(mrow, mcol) that correspond to the rows and columns of the mutated bits. 

Table 2.2 Population after Crossover and Mutation in the second generation 

Population after Mating Population After Mutation New Fitness Value 
0 1 0 0 1 1 1 1 1 1 010 001 1 1 1 1 6 
1001001101 0101101100 5 
0101101100 1011001101 6 
1 1 1 1 1 0 0 0 1 0 1101100011 6 

We can use the following computer code to find the rows and columns of the mutated 

bits. 

nmut = round (Npop * Nblts * Pm) 

nrow =round (rand(1, Pm) * Npop + 1) 

ncol = round (rand(1,Pm) * Nbits) 

//number of mutations 

//row of the bits to be mutated 

//column of the bits to be mutated 

nmut =round (Npop * Nblts * Pm) =round (4*10*0.1) = 4 

So, mutations occur three times, the following pairs were randomly selected. 

nrow = [1 3 4 4] ncol = [4 3 3 10] 

2.3. 7 The Next Generation 

After the mutation takes place, the fitness associated with the offspring and mutated 

chromosomes are calculated in the third column in Tables 2.2 to 2.7. The process 

described is iterated. For example, the population at the end of the next generation is 
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show in Table 2.3, Table 2.4, Table 2.5, Table 2.6, and Table 2.7, respectively. We took 

the population in Table 2.2 as the starting population of the second generation. 

Table 2.3 Population after Crossover and Mutation in the third generation 

Population after Mating Population After Mutation New Fitness Value 
0101101100 0101101100 5 
0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 6 
1011001101 1 1 1 1 1 0 1 1 0 1 8 
1101100011 1101101001 6 

Table 2.4 Population after Crossover and Mutation in the fourth generation 

Population after Mating Population After Mutation New Fitness Value 
0101101100 0101101101 6 
0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 5 
1101101101 1 1 0 1 1 1 1 1 0 1 8 
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9 

Table 2.5 Population after Crossover and Mutation in the fifth generation 

Population after Mating Population After Mutation New Fitness Value 
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 7 
0101001101 0 1 0 1 0 1 1 1 0 1 6 
1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7 
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9 

Table 2.6 Population after Crossover and Mutation in the sixth generation 

PoQ_ulation after Mating Pogulation After Mutation New Fitness Value 
0 1 0 1 0 0 1 1 1 1 0101011101 6 
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7 
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9 
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 7 
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2.3.8 Convergence 

The number of generations evolve depends on whether an acceptable solution is 

reached or a set number of iterations is exceeded. After a while, all the chromosomes 

and associated costs would become the same if it were not for the mutations. At this 

point of the algorithm it should be stopped. 

Table 2.7 Population after Crossover and Mutation in the seventh generation 

Po2_ulation after Mating Population Mter Mutation New Fitness Value 
0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7 
0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 7 
0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 9 
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 

Figure 2.3 Best vs. Average Individual 
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Most genetic algorithms keep track of the population statistics in the form of a 

population mean and minimum cost. As shown in Table 2.7, for our example after the 

seventh generations the global maximum fitness was found to be 10. This maximum 

fitness was found in 

4 
Initial 

Population 

+ 4 
Fitness. Evaluations 

per Generation 

* 7 
Number of 

Generations 

= 32 

fitness functions evaluations or checking 28/(210
) * 100 = 2. 7% of the population. Figure 

2.3 shows a plot of the algorithm convergence in terms of the best and average fitness 

of each generation. 

From Figure 2.3 we can see that at the end of the seventh generation, the algorithm is 

able to find the best fitness value of 10. The average fitness value is also increased from 

initial value of 5.75 to the final value of 8.25. 

2.4 Three Evolutionary Approaches 

Our experiments would use three different evolutionary approaches to demonstrate our 

results. First, we used crossover as a !Jas.e .algorithm to compare results to see if 

conjectures described in the previous section indeed hold true. This simple genetic 

algorithm uses the basic crossover technique to evolve the population of binary string. 

It uses non-overlapping populations, that means no string from previous population is 

past directly to the next population. Thi~ method was mainly used to confirm that 
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genetic algorithms will in fact converge to generate a good solution for this problem. 

We also use it as a basis for comparing the other approaches that we will be testing. 

The steady-state algorithm is used to test the conjecture that strings which are good will 

in turn create strings with better results. The steady-state compares this by keeping 

better percentage of the population into the next generation. If the conjecture holds 

then it should converge faster with better runs. Each generation the algorithm creates 

an entirely new population of individuals by selecting from the previous population then 

mating to produce the new offspring for the new population. This process continues 

until the algorithm's terminating criteria are met, in this case the number of 

generations. 

Lastly, we used a parallel migrating technique with the previous steady-state algorithm. 

With the multiple populations the convergent should be even faster than just a normal 

steady-state algorithm. This approach has multiple, independent populations and was 

theorized to results in a faster conversion of the populations to the strings with rich runs 

because of its ability to do multiple evolutions every generation. 
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CHAPTER3:THEPROBLEM 

3.1 String 

McMaster University- Computing & Software 

Strings are generally defined to be sequence of characters for example letters, 

numerals, symbols and punctuation marks. The simplest examples of strings are English 

words, which is a concatenation of the English alphabet [5]. Any string can be described 

as a sequence of elements drawn from a particular set. That set is called an alphabet. 

The members of the alphabet are referred to as the letters. Going back to the example 

of English it is evident that there are 26 letters in the alphabet. The size of the alphabet 

is referred to as its cardinality. We will be using a binary alphabet throughout this thesis 

to explain and demonstrate various ideas. A commonly used binary alphabet in 

computer science is known as a binary string. It is a combination of 'O's and '1's, used to 

denote the two states of on and off. 

Computer information storage and processed by computers is a combination for these 

two symbols. For instance, in a comp~te~ system, all the files, memory contents, 1/0 

signals, all can be viewed as strings drawn from the set {0,1}. Here are some everyday 

examples of strings [17]: 

• A text file, whose elements are ASCII characters. 

• A stream of bits beamed from a space vehicle. 
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• A DNA sequence, composed by four letters A, C, G and T, standing for adenine, 

cytosine, guanine, and thiamin respectively. 

• A computer program, expressed as wor,ds and separators (semicolon, colon, etc.) 

An important characteristic of each string is its length, which is the number of 

characters in it. The length can be any natural number, zero or any positive integer. A 

particularly useful string for some programming applications is the empty string, which 

is a string containing no characters and thus having a length of zero. A substring is any 

contiguous sequence of characters in a string. 

A string is usually expressed as one-dimensional arrays: 

x: array[i ... n] 

In this case the length of string xis defined as nand denoted by lxl. 

3.2 Representation 

Repetitions in strings have significant uses in many different fields, whether it is data­

mining, pattern-matching, data compression or computational biology [5]. They play an 

essential role in both practice and theory. 
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The simplest form of a repetition is a square. If there exists some integers p and i such 

that: 

x[i ... i + p - 1] = x[i + p ... i + 2p - 1] 

then, we say that x[i ... i + 2p- 1] is a square of period p [5]. 

We represent a repetition with a common notation as a triple (i,p, r) for the given 

string x = x[1 ... n]. The positive integers i, p, and rare the position, the period and 

the exponent, respectively. For example given the string 101010001, the following 

• repetitions exists (1,2,3), (2,2,2), and (6,1,3). · 

3.3 Runs 

3.3.1 Definition of Runs 

I 

Main extended the definition of repetition, he realized that in some cases output could 

be reduced because of overlapping repetitions, which are simply rotation of one 

i 

another [12]. As a result he designed the notion of a run to capture the maximal 

leftmost repetition that is extended to the right as much as possible. As an example the 

string 101010001, previously described to have repetitions (1,2,3) can easily infer that 

the repetition (2,2,2) exists. Formally a run in a string x can be represented as 4-tuple 

(i, p, r, m) where (i, p, r) is a repetition as defined above and moreover [18]: 
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• The generator x[i ... i + p- 1] is not a repetition (the maximality condition); 

• The initial square part of the run x[i ... i + p- 1] = x[i + p ... i + 2p - 2] is left 

maximal i.e. x[i - 1 ... i + p- 2] =1= x[i + p- 1 ... i + 2p- 2] (the non left­

extensibility condition); 

• r is a maximal exponent, i.e. a maximal r such that x[i ... i + p -1] = 

x[i + p ... i + 2p- 1] = ··· = x[i + (r- 1)p ... i + rp- 1]; 

• m <pis the tail of run, i.e. a maximal m such that x[i + rp ... p + rp + m] is a 

proper prefix of the generator (the non right-extensibility condition). 

It can also be written as: 

x[i ... i + lulr + lu' 1- 1] = u7 u' 

where i is the starting position, u is the generator, lui is the period, lu'l is the tail (and 

hence u' prefix of u), r is the exponent (often referred to as the power) [20]. 

As an example, the runs in the string 11010010010 is: 

• Period 1: 

• Period 2: 

• Period 3: 

11010010010: (1,1,2,0), (5,1,2,0), (8,1,2,0) 

11010010010 : (2,2,2,0) 

11010010011 : (3,3,2,2) 
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3.3.2 The Maximal-Number of Runs Function 

Let R(x) denote the number of runs in a string x, then we define the maximal-number­

of-runs function p(n) by: 

p(n) = max{R(x):lxl =n},where lxl isthelengthofthestringx. 

We shall call the function p(n), the max-run function for short. Not much is known 

about the max-run function, but the following properties are shown to be true by 

Franek and Yang [5]: 

• For any n, p(n + 1) ~ p(n). 

• For any n, p(n + 2) ~ p(n) + 1. 

• For any n, p(n + 1) ::; p(n) + liJ, wher.e liJ is i rounded down 

• For some n, p(n + 1) = p(n). 

• For some n, p(n + 1) ~ p(n) + 2. 

Smyth et al also presented a set of conjectures about p(n) [18]: 

• p(n) < n. 

• p(n- 1) ::; p(n) ::; p(n- 1) + 2. 

• p(n) is attained by a cube-free binary string. 
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Up until now none of these simple conjectures has been proven or refuted. 

3.4 Current Theories and Proofs 

In the early 1980s, there were three different repetition algorithms proposed [1,9,11], 

all of them executed in O(n logn) in the worst case. It was shown in 2000 by Kolpakov 

and Kucherov that the number of runs was linear in the length of the input string [15]. 

Franek and Smyth independently computed the same values for n = 5, ... ,35 giving all 

run-maximal strings, which is shown in Appendix A. The exhaustive searches ended at 

string lengths of 35 because of the enormous computational time required for a brute­

force method search. 

Although computational values require linear time to calculate, there have been many 

who has been trying to prove the conjecture p(n) < n theoretically. "Recently, there 

has been a flurry of results concerning the upper bound of p(n): first Rytter set the 

upper bound of p(n)to 5n, which was subsequently improved by Puglisi, Simpson, and 

Smyth to 3.48n and also by Rytter himself to 3.44n. Recently, Crochemore and llie 

pushed the upper bound down to 1.6n, indicating that a further computer analysis can 

obtain an upper bound as low as 1.18n." [S] 
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Furthermore, evidence exists such that for an infinite family of strings of increasing 

lengths [5]: 

lim (p(n)) = 3 
n->oo n 1 + ...[5 

which creates a lower bound. This follows that the most recent theoretical bound is: 

3 . 
f?'n < p(n) < 1.18n 

1 + V:J 

In the following chapter, the use of genetic algorithms will provide a quicker method to 

generate strings with length greater than 35 to further support the conjectures made in 

the previous sections. 
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CHAPTER 4: THE IMPLEMENTATIONS AND 
EXPERIMENTAL RESULTS 

4.1 Implementation vs. Existing Information 

4.1.1 Comparisons 

The performance evaluation of the max-run problem is based on the algorithm's ability 

to find the optimal solution for a given string length. Previously, results have been 

calculated and verified independently by various different studies, as stated in the 

previous chapter. The results computed were of string length 5 to 35 using an 

exhaustive search method. Results were computed up to string length of 35 and 

creased because of the exponential growth in run-time required to calculate the 

different combinations of strings~ We hypothesis that by using genetic algorithms to 

solve this problem we would be able to get a good solution because of its ability to 

traverse large populations of solutions while converging on a good solution, and its 

ability to jump out of local minima. Using the previously computed results as a base we 

compared our genetic algorithm. 

Our first generation of genetic algorithm has been created using a simple crossover 

technique to observe the characteristics of its results. The population used in our 

research is a set of binary string, strings with only zeros and ones. We used a set 

number of generations as our termination condition because we wanted to confirm that 

the population of strings will in fact' converge to a set of strings with the maximum 
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number of runs. The fitness function used in our case is an algorithm that, obviously, 

calculates the number of runs in any given string. 

Figure 4.1 Exhaustive vs. Genetic Algorithm Search Results 
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To prove that genetic algorithms do in fact generate a string with maximum number of 

runs, we used the above simplf.il ,g,enetic algorithm to generate a set of solutions for the 

strings of length 5 to 35. Comparing those results with the results that were found from 

independent research previously done, we found that it does indeed generate a set of 

max-runs. 

In Figure 4.1, we have shown the max-runs of string lengths from 5 to 35. The darker 

area is the results for the exhaustive search and the lighter grey area is the percentage 

that the genetic algorithm is able to get the correct solution. As we can see the results 
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work well at the lower lengths because almost 100% of the time the genetic algorithm is 

able to find the right solution while the larger lengths slowly become worst and at string 

length of 35 only about half of the time does it result in the correct max-run. 

Although we have shown that the genetic algorithm actually does produce results that 

are comparable to using an exhaustive search method we have also shown that it does 

not always guarantee that the best solutions with the most runs every time will be 

generated. Evidence of this characteristic can be seen at the string length 20, in Figure 

4.1 even though the results were good in the vicinity of that string length, the results did 

really poorly. 

From the results in Figure 4.1 we can observe that genetic algorithms do indeed work to 

solve the max-run problem. It converges with certain probability. It is theorized that 

with different parameters much better solutions can be generated as it will be discussed 

in the following sections. 

4.1.2 Results from Different Evolutionary Approaches 

Although we used genetic algorithms to solve this problem, there are still many 

different combinations of evolutionary approaches as we discussed in Chapter 2. In our 

experiments we used three different types of approaches. The first was just the 

traditional crossover algorithm, the second approach we used was a steady-state 
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algorithm in conjunction with the crossover' technique and the last approach was 

integrating the previous technique with parallel migration. 

Figure 4.2 Accuracy of the Three Different Evolutionary Approaches 
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The three approaches have the following results shown in Figure 4.2 and 4.3, where 4.2 

describes the accuracy of each type of algorithm used and 4.3 shows the run-time, 

which was done on a lntel 11 Core™ 2 CPU with 1.83 GHz and 1GB of RAM. 

From Figure 4.2, we can see the solution between the three different approaches. 

Although the results look very similar we can first of all notice that the crossover 

approach starts to produce bad results much quicker than the other two. Besides that 

the steady-state and parallel migrating population approach have similar results. The 

similarity might be due to the fact that it uses the comparable steady-state algorithm. 
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Figure 4.3 Run-Time Comparisons ofthe Three Evolutionary Approaches 
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Both the steady-state and the parallel migrating population approach received similar 

percentages of getting the max-run but it took a lot longer to calculate one then the 

other as Figure 4.3 show. Although two of the three approaches seem to steadily 

increase in run-time as the string length increases the parallel migrating population 

increases in run-time exponentially faster. While genetic algorithms are much quicker 

than the exhaustive search, the exponential growth in the parallel algorithm suggests 

that just using the steady-state algorithm without parallel migration would be a 

preferable choice. 

Just using the steady-state algorithm seems to be a good algorithm both generating a 

good set of solutions and in terms of run-time. In the following sections we look at 
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other factors to further improve the chances of generating the maximum number of 

runs in a set length of string. 

4.1.3 Population Size 

For every GA, a very important part of the algorithm is the population. This represents 

the solution to the problem and can affect the outcome significantly. In this problem 

we have described that we will be using a set of binary strings. We have however not 

described the size of the population that we have used. The size of the population is 

basically the number of potential solution we have at each evolution of the algorithm. 

In Figure 4.4 shows the population size of ten, a hundred, and a thousand are shown. 

We have done a simple test to show that as in most cases when GAs are used, the 

bigger the population is, the better the solutions there will be. The simple reason 

behind this is that there are more potential solutions to the problem and there is less 

likelihood that the solution would be caught in local minima. As in every increase of the 

population there is a significant improvement to the chances of resulting in the max-

run. 
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Figure 4.4 Comparing the Accuracy of Population Size of 10, 100, and 1000. 
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4.1.4 Termination Condition 

One of the most common, and necessary, variable parameter in a genetic algorithm is 

the terminating condition. In our research we used a set of fixed number of generations 

as the terminating condition, this has allowed us to observe the results and strengthen 

our conjectures. We compared the results to the original set of data, verified by the 

exhaustive search, to confirm our hypothesis that GAs do in fact converge. We know 

that from our initial results that a crossover GA with 50,000 generations and a 

I' 

population size of 100 does indeed converge to the right solutions, but does the number 

of generations change the results. It is commonly acknowledged since GAs are based on 

evolution the more generations there will be the better the results should be. 
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Figure 4.5 Comparing Accuracy of Genetic Algorithms for Generations of Size 
50000, 150000, 250000, and 500000. 
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Using the same crossover GA we tried to ,experiment with different number of 

generations to see what the. best results would be. From our initial observation we 

noticed that although GAs do not guarantee a max-run, the results do converge. The 

results in Figure 4.5 confirms that although not all of the population converges to the 

max-run as the number of generations grows the percentage of the results are 

significantly improved. Similar to increasing the size of the population, the more 

generations of evolutions there is, the more strings would be produced and the 

likelihood of max-run strings coming up would be better. It also shows that at some 

point if enough evolutions on a population is done that population would be optimal 

and produce a max-run. 
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Figure 4.6 Run-Times of Genetic Algorithms for Generations of Size 50000, 

150000, 250000, and 500000. 
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The results prove that as the number of generations increase so does the percentage of 

max-run. This has caused the problem of the exponential increase in time required. 

Although the amount of time required at this stage is still minimal compared to doing 

exhaustive search, larger applications of this problem might require a lot more time. 

4.2 Implementation for Unknown Values 

The results from the previous section have shown that genetic algorithm can 

unquestionably be applied to this problem of generating strings that are rich with runs. 

It also has provided evidence to further support current conjectures about strings that 

are rich with runs. 
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The reason behind using GAs was the fact that exhaustive searches take too long and 

after string length 35 it was no longer feasible to exhaustively go through every 

combinations of strings. Our GAs solution provided an alternative way that will generate 

potential solutions for any length that is required. 

Table 4.11nitial Results. 

String Best 
Strings With Max-Run 

Length Max-Run 

so 40 11011001101100110110101101001011010110100101101011 
51 41 100100110010011001000100110010011001000100110010011 
52 42 1101011010010110101101001011010011001000100110010011 
53 43 11010110100101101011010010100101101001010011001010010 
54 45 001011010010110101101001011010110101101001011010110100 
55 46 1101011010010110101101001011010010110101101001011010011 
56 47 00101001011010010110101101001011010010110101101001011010 
57 47 110110100101101001010010110100101101001010010110100101100 
58 48 0101101001011010110100101101011010011010110100101101011010 
59 so 00101101001011010110100101101011001011010110100101101011010 
60 49 110100101101011010010110101100110110011011101100110110011011 

We used the steady-state evolutionary GA, as stated before to be the best, to generate 

a set of solutions for string of length 50 to 60. We continued to use a population of a 

hundred and a hundred thousand generations as the terminating state. As stated in the 

previous chapters there are a few conjectures that have not been proven or refuted. 

The following are these conjectures that are used to examine our results. 

• p(n) < n. 

• p(n- 1) < p(n) < p(n- 1) + 2. 

• p(n) is attained by a cube-free binary string. 
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The results are shown in Table 4.1. From the initial results of the max-run we have seen 

that it does not satisfy some of the conjectures stated by Smyth et al. For example the 

strings at length 51 and 52 are not cube-free binary strings, they both contain a set of 

cubed zeros. These faults have been highlighted in the results. Also at length 60, clearly 

the max-run of 49 is not adequate. As it has been proven before we know that: 

For any n, p(n + 1) ~ p(n). 

Thus p{60) ~ p{59) = 50. 

With these results not satisfying our conjectures we decided to do some further testing. 

4.3 Experimental Results 

Upon further investigation, we decided to increase the number of generations 

previously used since it has been proven to increase the accuracy of generating the max­

run. So using the same algorithm as the previous genetic algorithm we altered the 

terminating condition to check its convergences. We changed the terminating condition 

such that the algorithm checks and compares the best strings in the last 50 generations 

and compared it to the percentage changed, if there is no change then the genetic 

algorithm exits with the current population being the solution. This indeed created a set 
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of better solution, the results in Table 4.2 generated by the new algorithm does conform 

to all the conjectures declared by Smyth et al. 

Table 4.2 The Next Generations of Results. 

String Best 
Strings With Max-Run 

Length Max-Run 

so 41 00101001011010010100101101011010010110101101001011 
51 42 110101101001011010110100101101001010010110100101101 
52 43 0010110100101101001010010110100101101001010010110100 
53 43 11010110100101101011010010100101101001010011001010010 
54 45 001011010010110101101001011010110101101001011010110100 
55 46 1101011010010110101101001011010010110101101001011010011 
56 47 00101001011010010110101101001011010010110101101001011010 
57 48 001010010110100101001011011010010110100101001011010010100 
58 49 1101001010010110100101001011010010110100101001011010010100 
59 so 00101101001011010110100101101011001011010110100101101011010 
60 51 110101101001011010110100101100101101001011010110100101101011 

Although there is no guarantee that these newly generated strings have the best max-

runs values the likelihood is very high. We believe that these results are the best values 

because they were generated by a genetic algorithm and it conforms to the three 

conjectures Smyth et al states. 

Table 4.3 Results for Future Research. 

String Length Best Max-Run 

so 41 
75 61 

100 84 
125 102 
150 125 
175 146 
200 166 
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String Length 

225 
250 
275 
300 
325 
350 

Best Max-Run 

184 
203 
227 
244 

264 
284 



M.Sc. Thesis- Kelvin Chan McMaster University- Computing & Software 

With the genetic algorithm configured to a reasonable setting we calculated the 

following set of data for 50 to 350 at an interval of 25. 

Previous research has mapped out the performance of strings up to 35 but with our 

algorithm, further research can be done to form more concrete conjectures about runs 

for binary strings. 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

McMaster University- Computing & Software 

Genetic algorithms are versatile and can be applied to many different problems. It's 

important to understand that the functioning of such an algorithm does not guarantee 

success. These algorithms are nevertheless extremely efficient and are especially useful 

for solving problems with large sample spaces. In this thesis we have applied genetic 

algorithms to solve an interesting problem of generating strings with large quantity of 

runs. 

The information we have on "Max Run Strings", which are strings with the maximum 

number of runs for its length, are very limited. We have discussed the details of the 

upper and lower bound of runs. We have also looked at the conjectures on these 

strings which were presented by Smyth et al about p(n): 

• p(n) < n. 

• p(n- 1) < p(n) $ p(n- 1) + 2. 

• p(n) is attained by a cube-free binary string. 

With the information from previously done research by Franek and Yang, we were able 

to verify and conclude that our genetic algorithms does solve the problem. It also has 

behaviors we would expect this algorithm is suppose to have. Although this method of 
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finding "Max Run Strings" does not always produce the desired results, it does provide 

at least a string with large amount of runs, which narrows the sample space that we 

need to traverse. 

This thesis demonstrates genetic algorithms have the ability to be able to solve the 

problem. It also provides a means to generate strings with large amount of runs 

previously unable to. Finally and most importantly, we were able to verify conjectures 

made by Smyth et al and no contradictions to previously done research were found. 

5.2 Future Work 

In our work we have been able to generate a set of strings that conform to the 

conjectures previously made. This is only the beginning of using genetic algorithm to 

solve problems in stringology. There are more work that can be done in both 

stringology and genetic algorithm. In the field of genetic algorithm, the following areas 

are suggested for continued research ... 

• Application of genetic algorithm on large sets of combinatory strings for 

purposes of data-mining. 

• Experimentation for using genetic algorithm to generate strings with large runs 

needed for test cases of critical systems 
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Further study in stringology using genetic algorithms can also be done to achieve ... 

• A better upper and lower bound on the number of runs by using better genetic 

algorithms to have faster convergence and better solutions. 

• More conjectures and how these strings are generated by using the generated 

strings we have currently produced. 

• A better understanding if binary strings do indeed produce the maximum 

amount of runs. This can be done by using a fixed length string that is non-binary 

with the genetic algorithm to verify that the converging solutions with large runs 

are binary. 
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Appendix A: Maximum Number of Runs from 5 to 35 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
22 
21 
20 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Maximum # o Runs 

52 

2 
3 
4 
5 
5 
6 
7 
8 
8 
10 
10 
11 
12 
13 
14 
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15 
15 
17 
18 
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23 
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25 
26 
27 
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