
TESTING OF GRAMMARS FOR TOP-DOWN
PARSERS

TESTING OF GRAMMARS FOR TOP-DOWN
PARSERS

By
ASMA M PARACHA

MS (Computer Eng.)

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Applied Science

McMaster University
© Copyright by Asma M Paracha, December 2008

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

MASTER OF APP lED SCIENCES (2008)
(Computing and Software)

TITLE: Testing Grammars For Top-down Parsers

McMaster University
Hamilton, Ontario

AUTHOR: Asma M. Paracha, M.S. (Sir Syed University of Eng. and Tech.)

SUPERVISOR: Professor Frantisek Franek

NUMBER OF PAGES: ix, 88

11

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Abstract

During the past decades, the complexity of compilers has grown much and so

has the importance of testing them. Compiler is essentially a software tool, and

hence its testing should fulfill all the software testing criteria. Testing is the

process of finding errors in an application by executing it. It is one of the essential

and most time consuming phases of software development. Hence a lot of effort

is directed to fully automate this process, making it more reliable, repeatable,

less time consumi g, less boring, and less expensive. Test cases for compiler

should be generated so that they cover all possible valid and invalid input

conditions. One of the major problems in generating test cases is the

completeness of coverage, and the potentially unfeasible size of the generated

test data. The test data for compilers should ideally cover all the syntax and

semantic rules of t e language in all possible combinations and in all possible

contexts. When generating test cases for a compiler, the grammar act as the

foundation as it defines the language for which the compiler is being built. In this

research we addre sed the issue of automatic generation of test data for parsers

by implementing Purdom's algorithm in Java and C++ and generating test data

for MAGS compiler.

iii

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Acknowledgments

I cannot praise enough my supervisor Dr. Frantisek F. Franek who has been a

source of inspiration and leading light during the course of my thesis. It would

have been impossible to bring the project to the stage where it now stands,

without his guidance and moral support. The time spent with him has been an

experience, and I hope that it would help me in the challenging life lying ahead.

Finally, without the love, support, and prayers of my parents, husband, and my

loving kids, I could not have put my best in this project and I am truly grateful to

them.

IV

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables ix

Chapter 01

Introduction 1

Chapter 02

Grammar and Languages 5

2.1 Different Types of Grammar 6

2.2 Ambiguity in Grammar 7

2.3 Syntactic Metalanguage 8

2.4 BNF Notatio 9

2.4.1 BNF Example 10

2.5 Context- Free Languages 11

Chapter 03

Parsing 13

3.1 Top-down Parsers 14

3.2 Predictive Parsing 16

3.2.1 LL(1) Parsing 17

3.2.2 LL(1) Grammars 19

3.3 Bottom-up Parser 21

3.3.1 LR Parsing 22

v

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

3.3.2 LR Grammars

Chapter 04

23

Compiler Validation 25

4.1 Translation Validation 25

4.2 Translation Validation of Optimizing Compilers 28

4.3 Validation Test Approach 30

4.4 Certifier Approach 35

Chapter 05

Compiler Test Case Generation Methods 38

5.1 Compiler Testing 38

5.2 Different Types of Compiler Testing 39

5.3 Selection of Testing Method 40

5.4 Test Case Generation Methods 41

5.5 Assessment Criteria of Test Case Generation Method 43

5.6 A brief Survey of Test Cases Generation Methods 44

Chapter 06

Purdom's Algorithm and Its Implementation 50

6.1 Purdom's Algorithm 52

6.2 Power & Malloy's reformulation of Purdom's Algorithm 53

6.3 Our implementation of Purdom's Algorithm 53

6.3.1 Phase I (Sortest Terminal String) 55

6.3.2 Phase II (Shortest Derivation Algorithm) 57

6.3.3 Phase Ill (Sentence Generation Algorithm) 57

6.4 Some of the sentences Generated By Our Implementation of 59
Purdom's Algorithm

Chapter 07

VI

M.A.Sc Thesis - Asma M Paracha - McMaster - Computing & Software, 2008

Conclusion 62

Appendix A List of Terminals of the final LL(1) grammar for MAS 63
Language

Appendix B List of Non-Terminals of the final LL(1) grammar for MACS 64
Language

Appendix C The final LL(1) Grammar for MACS language 65

Appendix D The pseudo code of the three phases of our implementation 74
of Purdom's algorithm

References 85

Vll

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

List of Figures

3.1 A schematic architecture of a typical compiler .. 13

3.2 Top-down parse tree .. 15

3.3 Hierarchy of unambiguous grammars ... 21

3.4 LR parsing architecture 23

4.1 The concept of translation validation .. 26

4.2 Refinement as completion of Mapping Diagram ... 29

4.3 The overview of certifying compiler .. 36

5.1 Phases of compiler testing .. .42

6.1 Working of our implementation of Purdom's algorithm 54

vii

M.A.Sc Thesis - Asma M Paracha - McMaster - Computing & Software, 2008

List of Tables

2.1 Context-free Grammar. 12

6.1 Sentences generated by the algorithm 61

lX

Chapter 01

Introduction

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

During the past decades, the complexity of compilers has grown much and so

has the importance of testing them. Compiler is essentially a software tool and

hence its testing should fulfill all the software testing criteria. The test data for

compilers should ideally cover all the syntax and semantic rules of the language

in all possible combinations and in all possible contexts. One of the major

problems in generating test cases is to ensure the completeness of coverage and

the potentially unfeasible size of the generated test data. If upon executing a test

case, the output matches the excepted one (including the error messages

generated), then t e compiler passed the test. On the other hand, if the

generated output and/or errors if applicable do not match, the compiler has errors

and should be corrected.

Compilation is the process of transformation of the source program written

in a source (input) language to a program in an target (output) language.

Typically, (since the advent of Algol 68 language), the syntax of a source

language is specified by means of a formal context-free grammar. The grammar

than is the main input for the test-case-generation process. A grammar not only

defines a language, it also provides a basis for deriving elements of that

language, thus in software engineering terms, the grammar is considered both a

specification and a program.

To generate a sentence in top-down manner in a language using a

grammar, we begin with the start symbol S of the grammar and apply production

rules interpreted as left-right rewriting rules in some sequence until we are only

left with a sentential form containing only terminal symbols. This process is

known as syntax analysis, or more commonly as parsing. This process may
1

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

generate a tree whose root is the start symbol S, whose internal nodes are

labelled by non-terminals and whose leaves (terminal nodes) are labelled by

terminals (often referred to as tokens). The children of an internal node A in the

tree correspond precisely to the symbols on the RHS (right-hand side) of a

production rule wit A as its LHS (left-hand side) symbol. Such a tree is known as

a parse tree. Note that often more concise form of parse trees are used, so­

called syntax trees.

Testing a grammar for errors is difficult. A grammar should be tested to

verify that it defines the intended language and that it is complete in the sense

that every non-terminal has some terminal derivation. Detecting errors in the

grammar at an early stage is very important as the construction of the compiler

depends on it.

It is important to remark on the relationship of a programming language

and its grammar or grammars: no context-free grammar can define a

programming language fully as it cannot capture the context-sensitive aspects,

or, even if it could, it would make the grammar prohibitively big and unwieldy.

Thus most of context-sensitive aspects and some other aspects (e.g. a

requirement that a variable be defined/declared before it is used) are left to

semantic analysis phase of compilation and is not dealt with at the syntax level.

Our thesis focuses on checking of LL(1) grammars for MACS and

generating test data for MACS compilers' parsers. MACS is an object oriented

language created by Prof. Franek for his forthcoming book on compilers; its

syntax is similar to C++ and Java, but somehow simpler. There are two versions

of MACS compiler, one programmed in C++ and the other programmed in Java.

The C++ MACS compiler has a bison-generated bottom-up MACS parser based

2

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

on a LALR grammar. The Java MAGS compiler has a JavaCC-generated top­

down MAGS parser based on an LL(1) grammar.

In this project, we have implemented the Purdom's algorithm to (a) test for

completeness the various LL(1) grammars as generated from MAGS LALR

grammar, and (b) to generate short MAGS programs as test data for the JavaCC­

generated MAGS top-down parser.

While researching the history of Purdom's algorithm, we came across a

number of difficulties, as there is very little literature available for Purdom's

algorithm, though t e algorithm is referred to and cited quite often. The algorithm

was designed by Purdom [29] in 1972 and only a very high-level logic in

imperative style description was given. In the original description it is not clear

when the algorithm is to stop generating sentences or how the two main routines,

the parsing and the referee routine, communicate. Some work was done later on

by Malloy and Power [21 ,22] and they described the Purdom's algorithm in a

more structured separated into three phases. Our implementation is based on

their reformulation of the algorithm into the phases. However, their reformulation

has also some problems and discrepancies in the third and the most important

phase, which generates the sentences. Our main contribution is in implementing

the third phase of the algorithm in a different way and successfully generating

test data (i.e. short MAGS programs).

The thesis is structured in the following way. In Chapter 2 we present an

overview of context-free grammars and formal languages and introduce the BNF

notations for grammars. In Chapter 3 we present a brief overview of parsing

techniques (both top-down and bottom-up) with focusing more on top-down

predictive parsing and LL(1) grammars. Chapter 4 deals with the software

engineering perspective of compiler validation, while Chapter 5 discusses

3

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

compiler (validation) testing, including a survey on test-generation methods.

Chapter 6 includes the main contribution, the high-level description of our

implementation of Purdom's algorithm. The last chapter presents a conclusion. In

the appendices, the final LL(1) MACS grammar is given.

The code of our implementation of Purdom's algorithm is posted on Prof.

Franek's web site (h ttp: I lwww. cas .mcmaster. cal -franek)

4

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

Chapter 02

Grammar and Languages

A grammar is a set of construction rules defining which sequences of tokens

(terminals) are valid: any sequence built in accordance with the rules is deemed

valid, otherwise it is not. A sequence of lexemes is valid if the sequence of

corresponding tokens is valid (tokens can be viewed as names of classification

groups, while lexemes can be viewed as members of these classification groups

- for instance a token INTEGER can have many lexemes, e.g. "2" or "27" or

"1234567689"). A programming language defined by a grammar is simply the set

of all possible valid sequences of lexemes. Context-free grammars are used to

define the syntax of programming languages (which is dealt with by a parser

component of a compiler); semantics of the language is beyond the scope of the

grammar (and is dealt with by a specialized component of a compiler). A

language can be defined by more than one grammar [11).

A formal grammar is defined as four-tuple (N, T, S, P) where N and Tare

disjoint sets of symbols known as terminals (or tokens) and non-terminals

respectively, Sis a distinguished element of N known as the start symbol. The

set of production rules a-+ JJ (or productions) p ~ (NuT)* X (N u n* (i.e.

a~ (NUT)* and JJ ~(NUT)*). E designates and empty sequence of symbols

and a rule a D E is called and epsilon rule or a null rule.

The language defined by such a grammar consists of all valid sequences

of tokens called sentences. A sentence is valid if it can be derived from S by a

sequence of applications of productions interpreted as left-right rewrite rules (the

symbols on the LHS are replaced by the symbols on the RHS). In parsing, we

5

M.A.Sc Thesis - Asma M Paracha- McMaster- Computing & Software, 2008

are interested in "identifying chain of derivation steps that produce valid

sequences of terminals strings known as the sentences of the language" [28].

2.1 Different Types of Grammar

It is necessary to define a language in terms of a (finite) grammar- a relatively

small set of production rules, as it is impossible to list or define the potentially

infinite set of all valid sentences.

Formal grammars were divided into a number of different classes by

Chomsky in 1956. his is known as Chomsky hierarchy [7].

• Type-0 Grammar (Unrestricted grammar): is a formal grammar with no

(additional) restrictions. Unrestricted grammars define languages that can

be accepted by a Turing machine. Such languages are also known as "re­

cursively enumerable languages".

• Type-1 Grammar (Context-sensitive grammar): is a formal grammar

with production rules of the form aAP 7 ayp , where A e N, and a, p,

y E (N U Tf and y ¢£.A rule A 7 E is allowed as long as A does not occur

on the RHS of any other production. A language generated by a type-1

grammar is a context sensitive language, such languages are recognized

by linear bounded automata.

• Type-2 Grammar (Context-free grammar): is a formal grammar with pro-

duction rules are of the form A 7 y , where A E N and y E (N U n·. The

languages generated by context-free grammars are accepted by non-de­

terministic pushdown automata. Type-2 grammars are the theoretical

basis for the syntax of most programming languages.

6

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• Type-3 Grammar (Regular grammar): is a formal grammar with produc­

tions of the form A 7 a or A 7 aB, where A, B e N and a e T. The lan­

guages generated by regular grammars are referred to as regular lan­

guages and are recognized by finite state automata. Regular languages

are commonly used to define search patterns in text and lexical structures

(tokens) of programming languages. Regular languages can also be

defined by regular expressions.

2.2 Ambiguity in Grammar

A grammar that has more than one parse tree (or, equivalently, has two or more

derivations) for a sentence is said to be ambiguous. A language generated by an

ambiguous grammar is an ambiguous language.

Since grammar plays such an important role in compiler construction ,

ambiguity of the grammar is undesirable as it causes difficulty in understanding

the semantics of the language and causes troubles in parsing (as the parsing

must be unambiguous). Thus, ambiguity should be removed from the grammar at

an early stage. U fortunately, the general question of whether a grammar is

unambiguous is undecidable, i.e. there is no algorithm that can determine the

ambiguity of a given grammar.

Following is an example of an ambiguous grammar (this is a well-know

problem of dangling else, C stands for condition, S stands for statement) .

S 7 ifC then S

S 7 ifC then S else S

7

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

S ~ other

Consider a sentence if C then if C then S else S. It has two possible

derivations, if C th n (if C then S else S) and if C then (if C then S) else S .

The degree of ambiguity of a sentence is the number of its distinct parse

trees. A grammar has a bounded ambiguity if there is a bound b on the degree of

ambiguity of any sentence of the grammar [1 0]. Two grammars are said to be

equivalent if they define the same language. It is often possible to find an

equivalent unambiguous grammar, however there are so-called unambiguous

inherently ambiguous languages for which no unambiguous grammars can be

found (for example, { a"bmcmdn I n, m > 0 } u { a"b"cmdm I n, m > 0 } is a well­

known context-free inherently ambiguous language).

2.3 Syntactic Metalanguage

The notation for defining I describing the syntax of a language in terms of the

production rules is called Syntactic Metalanguage. Every rule contains a non­

terminal and one of its possible terminal string derivations. For a clear formal

description and definition, a standard syntactic metalanguage is required. Major

functions of a syntactic metalanguage are:

• It names the various syntactic components of the language (i.e.; terminals

and non-terminals).

• It describes the valid sequences of symbols (i.e. valid sentences).

• It gives the syntactic structure of any sentence of the language.

In the absence of a standard metalanguage, a programming language definition

8

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

must start first by defining the metalanguage, which requires a lot of effort and

may causes many problems. There have been a number of syntactic

metalanguages used and standardized over the years:

• COBOL (ISO 1989: 1985)

• BNF (Used for Algol60)

• Obsolete FORTRAN 77 (ISO 1539-1980)

• POSIX (ISO/IEC 9945-2:1993)

A syntactic metala guage should satisfy a number of objectives such as:

1. to be concise: the languages can be defined briefly and can be easier to

understand.

2. to be precise and formal: the rules it defines are unambiguous and can be

parsed or processed by a computer program.

3. to be natural: the format and notations used are simple to understand for

people other than the language designers.

4. to be general: the notation can be used to define different languages.

5. to be simple and self-describing.

6. to be linear: the syntax structure can be expressed as a single stream of

characters [37].

2.4 BNF Notation

The Backus-Naur Form devised by John Backus and shortly after improved by

Peter Naur in 1963 to define the grammar for Algol 60 programming language is

the most commonly used syntax metalanguage for context-free grammars. BNF

is a formal mathematical way to define the grammar; it can help remove

9

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

ambiguity and also can aid in building a parser for the language. There is also an

extended version (EBNF) that introduces a better notation for repetitive

structures (such as lists) and options, both require inn BNF additional rules.

The meta-symbols of BNF are:

meaning "is defined as"

meaning "or"

< > angle brackets used to surround syntax rule names (non-terminals)

as the terminal symbols which are written exactly as they are

to be represented.

A BNF rule defining a non-terminal has the form:

non-terminal ::=a sequence consisting of terminals or non-terminals

separated by the meta-symbol 1 .

In some versions of BNF grammar, literal terminals may be enclosed by single

quotes, rather than using <> surrounding the non-terminals, or ::= is replaced by

the symbol -7 , this is the version we are using throughout this thesis. White

space (blanks, tabs, newlines) is treated differently in different versions of BNF -

some use a special character for it, while others do not.

2.4.1 BNF Example

S -7 '-' FN I FN

FN -7 DL I DL '.' DL

DL -7 D D DL

o -7 'O' '1' I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9'

10

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

Valid sentences generated by this BNF grammar would consist of (unsigned)

whole numbers. Below is a sample derivation of 3:

S ~ FN ~ DL ~ D ~ 3

2.5 Context- Free Languages

Context-free languages are the most important class of formal languages for both

linguistics and computer science. The standard formalization of such languages

is based on a rewriting system known as context-free phrase structure

grammar first introduced by Noam Chomsky in 1950's [7] to reconstruct the

practice of much earlier traditional and structuralist syntactic description [8].

However, Chomsky introduced the term "type-2 grammar" for context-free

languages, the description was discussed above.

The grammars that can be expressed using BNF are exactly the context­

free grammars. They are called context-free because the substitution of the LHS

symbol of a production by the RHS sequence of grammar symbols of the

production is always permitted, regardless of the context in which the symbol is

embedded within the sentence [32].

As stated above, the context-free languages are exactly the ones

accepted by non-deterministic push-down automata. A non-deterministic

pushdown stack automaton is a non-deterministic automaton with a last in, first

out (also referred to as stack) memory access.

Below is an example of a context-free grammar (Table 2.1) and the

resulting context-free language.

11

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

S ~A B
S ~AS B
A~ 'a'
B ~ 'b'

Table 2.1 Context-free Grammar

The language defined by the grammar of Table 2.1, L(G) = {a" b" I n ~ 1 }.

(Note: this is a well-known example of a context-free grammar that is not

regular).

12

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

Chapter 03

Parsing

Syntax analysis (or more commonly parsing) is the activity of checking whether a

given sentence (in the form of token sequence as generated by the lexical

analyzer) belongs to the language and, frequently, generating a parse tree for the

sentence. It determines whether the input data (source program) has some pre­

determined structure. The parser is the component of a compiler that performs

this activity. A schematic architecture of a typical compiler with the major

components indicated is given in Fig. 1.

The parsing requires a grammar to be defined (according to which the

parsing is performed). The rules of the grammar specify the patterns of valid

sentences for the language. Rules can be recursive if they somehow refer back

to themselves, in particular left-recursive rule is a rule where the LHS non­

terminal and the first (leftmost) RHS symbol are the same.

Source
=-~~ program

Lexical
Analyzer

token

call for
token

Parser

Manager

Parse
tree

sym I
tabl eiata

Compiler
Middle and
Back End

Figure 3.1 A schematic architecture of a typical compiler

13

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

In a sense, t e parser is the most important component of an interpreter or

compiler. It is responsible for performing syntactic analysis on a stream of input

tokens. After receiving an input token stream, the parser verifies that it confirms

to the syntax of the language or report an error if it does not, moreover it should

also recover the errors in order to continue processing. Output of the parser is

very often a parse or syntax tree which is used as an input to other components

of the interpreter or compiler [30]. There are two main kinds of parsers:

• Top-down parsers

• Bottom-up parsers

3.1 Top-down Parsers

Top-down parsing checks if a sentence belongs to a language by constructing

the parse tree from the root (which is the start symbol) and applying productions

forward to expand non-terminals into strings of symbols. For every node "n" in

the tree, the following two steps are performed by the parser:

• For node n, labelled with a non-terminal A, select one of the productions

for A and construct children nodes of n for the symbols on the RHS of the

production used.

• Find the next node at which a sub-tree is to be constructed.

The above steps are implemented during a single left to right scan of the input

string [1].

Consider the following grammar G:

14

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

E~ E+TI E-T IT

T~T*FIT/FIF

F ~ num I .id

where E is the start symbol, E, T, and F are non-terminals and + , * , I , num

and .id are terminals. Starting with E and generating a parse tree for a sentence

.id + num * .id (see Fig. 3.2) the following sequence of leftmost (the leftmost

non-terminal is the one always being rewritten) derivations takes place:

T l l F
F •

• num

id
id

Figure 3.2 Top-down Parse Tree

E => E + T => T + T => F + T => id + T => id + F * T => .id + num * T =>

.id + num * F => .id + num * .id

15

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

While generating the parse tree for the given string, the current token

being scanned is referred as the lookahead symbol. Initially the lookahead is the

first symbol, i.e. the leftmost symbol of the input. When we get a terminal at a

node n which matches with the lookahead symbol, we progress both in the parse

tree and the input. The next token in the string will become our new lookahead

and we move to the next child of node n and so on.

At any stage in top-down parsing, selecting a production rule is a trial­

and-error method, if the production gives us the string we have, we select it, and

otherwise we backtrack and select another rule. In special classes of grammars,

so-called LL(k) grammars, the backtracking can be avoided as by investigating

the next k tokens a production can be selected unambiguously, such parsing is

referred to as predictive parsing. Very often though, the term predictive parsing is

really applied only to parsing of LL(1) grammars.

In the term LL(k), the first L stands for "scanning left to right" (meaning that

the input is scanned from left to right to produce tokens), the second L stands for

parsing corresponding to the leftmost derivations, while k stands for the number

of token lookahead.

Top-down parsers are easier to code manually and to debug. They have

smaller code and can include the lexical analyzer and hence tokenize quickly. On

the other hand, they are slow in backtracking and are unable to handle left

recursive rules of the form A ~A a .

3.2 Predictive Parsing

It is better to design a grammar for which the parser does not have to use
16

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

backtracking or large lookahead. Top-down parsing without backtracking and

lookahead is known as predictive parsing. It can only to a special class of

grammars. Such grammars must have the following features such as:

• given an input token a and a non-terminal A to be replaced, it can be de­

termined unequivocally which production A will lead to a string beginning

with a.

• no two productions lead to strings with the same starting terminal symbol

for the same input token to avoid lookahead and backtracking.

• No production is has left-recursion, as it would lead to infinite loops in

parsing.

Predictive parsing is best to use for languages with keywords such as if,

while or begin which immediately identifies the construct. If a grammar is not

suitable for predicti te parsing, we may be able to transform it to an equivalent

form that might be more suitable. Since ambiguity in grammars will lead to

duplicate entries in predictive parsing tables; we have to remove ambiguity from

the grammar to do predictive parsing.

3.2.1 LL(1) Parsing

LL(k) parsing for larger k's is generally not use in practice because the slowdown

of such parsers grows exponentially with k. Therefore we are confining ourselves

to only LL(1) parsing and LL(1) grammars. The MACS grammars used in our

thesis were all LL(1) .

There are two ways to implement LL(1) parsers, as a recursive descent

program (and that i~• what JavaCC provides), or a non-recursive implementation
17

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

using a parsing table.

For recursiV£l descent parsers, the principle of turning the productions to

code is fairly simple and straightforward: each non-terminal corresponds to a

procedure, each ru le with non-terminal A as its LHS is interpreted as a part of

definition of the pro edure A. For each symbol of a of the rule A -7 a, a terminal

corresponds to looking at and/or consuming the next token, while each non­

terminal corresponds to calling the procedure of that name. Thus a rule

A -7 B b ... becomHs a "definition" of the procedure A that first calls procedure B

and then calls for next token and checks whether it is b ...

The non-recursive LL(1) parsers consist of a parsing table, a stack, and

input buffer with thB sentence to be parsed. The parsing table is pre-computed,

its columns are labelled by terminals (including a special symbol indicating the

end of input- ofte the null character if the input is in the form of C strings), its

rows are labelled by non-terminals. Each entry in the table for a terminal t and

non-terminal A, is either error or a single production A -7 a. The meaning and

use of the table is: "if non-terminal A is on the top of the stack and if current token

is t, if the table entry at column t and row A is error, then the string being parsed

is syntactically incorrect, otherwise use the production A -7 a in that entry to

rewrite A by its RHS (i.e. pop A from the stack, and push on the stack one by one

the symbols of a in reverse order).

Initially, the stack contains at the bottom the end-of-input terminal and the

start non-terminal. The whole parsing algorithm can be summarized as:

• Let A be at top of the stack and a be the current input token, if A= a = E,

the parser stops.

• If A is a terminal, pop the stack and move to the next input symbol.

18

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• If A is a non--terminal, use the current token to lookup in the parsing table

what to do (either error, or a production to be used).

The parsing table i ~; built using two functions related to the underlying grammar

G. They are:

FIRST(A): Lt~t A be a string of grammar symbols, FIRST(A) is the set of

terminals that begin the strings derived from A. If there is a rule A=>* E,

then E will be in FIRST (A) as well, i.e. more formally FIRST(A) = { a 1 ::Ia

a~* aa}

FOLLOW(A): For non-terminal A, it is the set of terminals that can appear

immediately to the right of A in some sentential form, i.e. more formally

FOLLOW(A) = { a I ::Ia, ~ S =>* aAa~ } [32].

3.2.2 LL(1) Grammars

Now we can formalize the definition of LL(1) grammars. Set

Lookahead(A 7 81 82 ... 8n) = U { FIRST(81) I 81 =>* E} u X

where X= FOLLOVv(A) if 81 82 ... 8n ~* E, otherwise X is empty.

A grammar G is LL.(1) if for any two productions A ---? a and A ---? ~ such that

a ¢ ~~ Lookahead(J!1 ---? a) n Lookahead(A ---? ~) = 0 .

A grammar can be LL (1) if and only if the following conditions hold: whenever

two distinct productions A---? a and A---?~ exist, the following properties hold:

• For any terminal symbol a, both a and p should not derive strings that be­

gin with a.

19

M.ASc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• At most one of a and 13 can derive an empty string.

• If 13 =>* £, then a does not derive any string that begins with a terminal

from FOLLO\N (A). [32]

Let us consider a grammar G with the set of terminals T = { a, +, *, (,) }
and the set of non-terminals N = { T, E, F } with E being the starting non-terminal,

and the set of production rules given as: P = { E ~ T 1 E + T, T ~ F 1 T * F,

F ~ a 1 (E) } . If we generate the parsing table for this grammar, it will

contain duplicate entries, or equivalently the Lookahead sets will not be disjoint :

Lookahead (E ~ T) = { a, (}

Lookahead (c ~ E + T) = { a, (}

Lookahead (T ~ F) = { a, (}

Lookahead (T ~ T * F) = { a, (}

Lookahead (1= ~ a) = { a }

Lookahead (F ~ (E)) = { (}

(conflict with previous)

(conflict with previous)

Therefore the gram ar G is not an LL(1) grammar. However, we can convert it to

an equivalent LL(1) !~rammar G': T' = {a,+,*, (,) }, N' = { T ,E ,F ,T', E' },

P' = { E ~ T E', E' -~ + T E' I E , T ~ F T' , T' ~ * F T' I E , F ~ a I (E) }.

For this grammar($ denotes the special end-of-input symbol):

Lookahead(E ~ T E') = { a, (}

Lookahead(E' ~ + T E') = { + }

Lookahead(E' ~ E) = {) , $ }

Lookahead(T ~ F T') = {a, (}

Lookahead(T' ~ * F T') = { *}
20

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

Lookahead(T' ~ E) = { +,) , $ }

Lookahead(F ~ a) = { a }

Lookahead(F ~ (E)) = { (}

3.3 Bottom-up Parser

The bottom-up parsers are also known as LR parsers. Parsing starts from some

pre-defined state and moves to another state (or stays in the same state)

depending upon the next available token. If the parser ended in the some pre­

defined state, parsing is successful otherwise it signals an error. Bottom-up

parsers are usually implemented as a series of states, encoded in lookup tables.

Bottom-up parsers are fast and can handle left recursion. They can be

used for parsing of a larger class of grammars and translation schemes (see

Fig. 3.3 below), so software tools for automatic generation of parsers from

grammars tend to be more of the bottom-up variety.

Figme 3.3 Hierarchy of unambiguous grammars

21

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Bottom-up parsers also have a lot of disadvantages such as:

• They have fixed tokenization (i.e. it is virtually impossible to have the scanner

and parser built as a single component, while top-down parser often can).

• They are extremely hard to debug and the code size is very large.

• Tail recursion is handled very poorly and inefficiently.

• Cannot predict the execution of semantic actions.

3.3.1 LR Parsing

LR parsers use tl1e shift I reduce technique. Their major disadvantages

encompass (a) the construction of the parsing table and (b) the size of the

parsing table. All typical LR parsers have the same architecture, only the parsing

table is language specific. A typical LR parser consists of an input buffer, a stack,

stack table, a parsing table, and an output buffer. The stack table contains

actions for every terminal in each state and the goto statement for the non­

terminals. The stack contains pairs consisting of value and state; initially the

stack table has state 0. The action table for each state has four possible values:

1. Shift and move to state n

2. Reduce using rule number n

3. Error

4. Accept

The parser reads the current state (at the top of the stack) and the current

terminal (the next clvailable terminal) . It looks for the associated action for the

terminal and the sta' e.

22

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• If the action is shift, the parser will push the current terminal and the new

state onto the stack.

• A reduce action will pop a suitable number of symbols off the stack, make the

state the one now on top of the stack and push the non-terminal of rule n on

the stack, followed by the state specified for the non-terminal into the goto

part of the stack table.

• Error will cause the parse to move in error handling state.

• Accept, the pars<:!r will accept the grammar.

Figure 3.4 below depicts a typical architecture of an LR parser.

Input

I a1 I -I a1 I I a1 I

sm

I I >\,
LR

I Parsing Program I
sm-1

x m-1

l 0 ,
Stack action part goto part

state for for
terminals non-terminals

LR Parsing Table

Figure 3.4 LR Parsing architecture

3.3.2 LR Grammars

Output

23

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

LR(k) grammars that can parsed by an LR parser. The first L in the designation

means "scanning ·he input from left to right", while the second R in the

designation signifies that the parsing follows the rightmost derivation in reverse,

and k again signifies the number of lookahead tokens. The LR(1) class of

grammar is bigger and includes all LL(1) grammars (see Figure 3.3) . Most of the

programming languages have LR (1) grammar [11]. LR grammar define more

languages in comparison to LL grammars, because they have more stringent

requirements for selecting the production rules: in LL(k) parsing we select the

rule by looking the first k tokens whereas in LR(k) parsing, the selection is

postponed till we helVe seen all of what is derived from that right side with k input

tokens [32].

24

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Chapter 04

Compiler Validation

The algorithmic aspects of compilation (termination and complexity) have been

well studied, but not much attention is paid to its semantic correctness, the fact

that the compiler should preserve the meaning of programs. In other terms, the

correctness of compilers is generally established only through validation testing.

This is adequate for compiling low-assurance software: what is tested is the

executable code produced by the compiler, therefore compiler bugs are detected

alongside the application bugs. This is not adequate for high-assurance and/or

critical software w ich must be validated using formal methods; for such

software, the sourc(~ code of the application is verified. Therefore, any bugs in

the compiler used to transform the source code into the executable module can

invalidate the guarantee obtained by formal verification of the source. To

establish strong guarantees that the compiler can be trusted not to change the

behavior of the program (i.e. its semantics), it is necessary to apply formal

methods to the compiler itself. Several approaches in this direction have been

investigated, including translation validation, credible compilation, proof-carrying

code, and type-preserving compilation.

4.1 Translation Validation

Compiler verification is a complex task as it provides a proof in advance that the

compiler always produces a correct output that implements the source code.

However, it also discourages even minor modifications of the compiler, since with

every change regardless its size, the proof obligations must be re-established.

This may in fact impede the compiler design [27].

25

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Translation validation proves the correctness of each individual

compilation rather than the correctness of the compiler itself. Each individual

translation is followed by a validation phase which confirms that the code

produced implements the source language correctly. Research shows that

proving the correct ess of compilations is a far more tractable problem than

proving the correct ess of the compiler itself. The validation tool produces a

proof script after every run of the compiler. The proof generated by the validation

tool can be checke independently, for even greater assurance, by existing proof

checkers [36].

t------11~ Counter Example

Bad

Analyzer
t----~ Proof Script

OK NotOK
Fault Indication

Fig re 4.1: The concept of Translation Validation

The whole process of translation validation is shown in Figure 4.1 (see [27]). The

source and target programs are given as input to the analyzer which compares

them and either generates a proof script if it finds proper correspondence

between the two and will gives a counter example if both the two input doesn't

26

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

agree. The counter example gives the scenario in which both the two inputs are

different and signals an error in the compiler. The proof script generated will then

be tested by a proof checker to provide complete guarantee of the compiler.

The framework needed to fully automate the translation validation process
must include [27] :

1. A common semc; ntic framework for representing both the source code and the

generated target code.

2. The notion of "c:orrect implementation" must be formalized as a refinement

relation based on the common semantic framework.

3. A syntactic-simulation-based proof method which can be automated to verify

that the produced output implements the source code properly, by comparing

the models of target and source codes.

4. Automation of the proof generation method which should successfully

generate a proof script.

5. An additional proof checker which examines the generated proof script and

gives the final confirmation of the translation.

The validation task of transformation is influenced by translators and thus

is becoming more and more difficult with the growing complexity and availability

of optimization methods used by the translators. A tool developed for translation

validation called C\/T (code validation tool), managed to automatically verify

translations involvin~J about 10,000 lines of source code in about 10 minutes [33].

However, the success critically depends on restrictions such as source and target

programs with sin~]le external loop, and allowing a very limited set of

optimizations.

27

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

4.2 Translation Validation of Optimizing Compilers

The compilation cycle begins when the compiler receives a source program, it

then translates it into an intermediate code, the compiler then applies a series of

optimizations on this code, starting with architecture independent optimizations

(such as common expression elimination, loop-invariant hoisting, etc.), and then

architecture dependent ones (such as register allocation and instruction

scheduling). These optimizations usually take up to 15 passes in some

compilers. Translation validation provides either a proof script confirmation or an

unsuccessful validation with a counter example after each optimization pass.

Simulation is used 'o confirm that the general approach of showing the correct

correspondence between the target and source code is based on refinements. A

refinement mapping is established to show how the relevant variables of source

code correspond to appropriate target variables or expressions. Proof obligations

are developed for each such refinement. Sometimes it is necessary to introduce

auxiliary variables at selected points in the program. The proof obligations are

then shown to be va lid under the assumption of the auxiliary invariants.

Using the formalism of Transition Systems (TS's) (see [33]), this strategy

in general terms is the first to give common semantics to the source and target

codes. Every computation of T corresponds to some computation of S with

matching values of the corresponding variables is the statement of the notion of

refinement, of a target code T being a correct implementation of a source codeS.

In Figure. 4.2, the process of refinement is presented as completion of a mapping

diagram [33] [34] [35].

28

M .. A..Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Semantic Mapping

(Sem(S))

~
·l Refinement

Semantic mapping

Figure 4.2: Refinement as completion of Mapping Diagram

In some debugging modes, supported by most compilers where only minor

optimization or no optimization is performed, the proof that the target code

refines the source program is reduced to the proof of the validity of a set of

automatically generated verification conditions; proof obligations [34][35], which

are implications in fi rst order logic. In such cases we are required to establish the

validity of the set o· verification conditions only. The proof obligations are in a

restricted form of first order logic called educational formulae, using uninterrupted

functions to represent all arithmetical operations under the realistic assumption

that only restricted optimization is applied to arithmetic expressions. Research

has been conducted to show the feasibility of building a tool for checking the

validity of such formulae. Such tool is based upon finding small domain

instantiations of the educational formulae and then using 8001-based

representation to check for validity [35]. With the optimization turned on, the

validating tool will need additional information specifying which optimizing

transformations have been applied in each translation. This additional information
18DD = Binary Decision Diagram

29

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

can be provided either by the compiler or can be inferred by a set of heuristics

and analysis techn iques. Essential information can be provided in the form of

program annotatio which can be used by the validation tool to form invariant

assertions at selected control points. Loop tiling, loop distribution and fusion, and

loop interchange are structure-modifying optimization techniques and are more

challenging catego1y of optimizations. Since there are often no control points

where the states of the source and target programs can be compared, it is often

impossible to app ly the refinement-based rules for this class. Reordering

transformations are the permutation rules which can be defined for a large class

of these optimizations that allow for their elective translation validation. The

structure preserving methodology can deal with loop unrolling, however loop

unrolling naturally falls into the category of reordering transformation and can be

dealt with by the permutation rule.

4.3 Validation T£Jst Approach

Compiler validation is done to confirm that the compiler implements the particular

programming language correctly. Standard tests are available for testing

programming languages such as FORTRAN, Algol, COBOL and Pascal, and in

particular ADA. While developing a standard set of validation tests, there are a

number of issues to be taken in account [12]:

• How many tests should be enough? Should a few, fairly large tests be

sufficient, or a lot of small tests?

• How to minimize the effort needed to test a compiler using different test

structures?

• What is the best way of designing high quality tests and what are good

measures of validation test quality?

• A test might serve different purposes, which of those are to be

30

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

emphasized depending upon how the tests are structured and used?

• How to consider the variety of implementation options permitted by the

standards while designing tests, such as the number of levels of numeric

precision ancl the ranges of values associated with each level?

Addressing some of the above given issues:

Number and size of tests: There are two different approaches while considering

the number and size of tests, each has its own advantages and disadvantages.

• Few large tests: It is easier to prepare and submit few large tests to the

compiler. Once the validation test is submitted the team has to wait for its

completion. "hey do not have to go through the burden of submitting a

number of srnall tests to the compiler, get the results, record the results,

and then repeat the same cycle for another small test. Often there are new

tests to track and modify, and with few large sets this task is simplified.

The results can be analyzed more efficiently as all of them are available at

the same time. In addition, the processing overhead would be smaller. The

biggest disadvantage is error tracking. Besides that, any error (deliberate

or otherwise) in such a test may cause a failure to compile the test

program. This eliminates all of the negative cases from inclusion into the

large test. Moreover, this approach requires a fairly extensive amount of

manual intervention during at least the first attempt to validate the

compiler.

• Many small tests: The main advantage of using many small, mutually

independent tests where each test is responsible of validating of a single

feature of the language, lies in the fact that we can use a layered

approach to the testing. Whenever new features are added to the

programming language, new testes are developed and are added to the

existing suite as a new layer. In this case the first layer will do the
31

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

necessary setup and then call smaller tests themselves, which are

considered elS a second layer. Failure of any one of the tests does not

have any effect on the usability of the others. This eliminates the validation

of the test suite altogether and all the effort can be directed to the

validation of the compiler. The major disadvantage of having a large

number of smaller tests is the failure to test the compiler's code-handling

capacity (i.e. whether the compiler is capable of executing large programs

or programs with large number of symbol references).

Classes of tests: Tests are classified according to the general nature of their

criteria for passage or failure. This classification has been used for validation of

ADA compilers and is generally recognized as ADA Conformity Assessment Test

Suite (A CATS) [12]. According to ACATS, there are six classes of tests:

1. Class A tes· s are passed if no errors are detected at compile time.

Although these tests are constructed to be executable, no checks can be

performed at run time to see if the test objective has been met; this is what

distinguishes Class A tests from Class C tests. For example, a Class A test

might guard against superset implementations by checking for keywords

of other lang1.-1ages (those not already reserved in the source language), to

ensure that they are not treated as reserved words by the compiler being

tested. Although execution of such a test sheds no additional light on

whether the test has been passed, it is usually convenient since all other

tests (except Class B tests) are executable.

2. Class B tests are negative tests which contain illegal statements. They

are considered passed if all the errors they contain are detected at the

compile time . They do contain some legal statements which should

compile without problems with the compiler.

32

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

3. Class L tests consist of illegal programs whose errors need not be

detected until link time. They are passed if errors are detected prior to

initiating exe~;ution of the main program.

4. Class C tests consist of executable self-checking programs. They are

passed if they complete execution and do not report failure.

5. Class D tests are capacity tests. Since there are no firm criteria for the

number of identifiers permitted in a compilation, the number of units in a

library, etc., there are no clear pass/fail criteria.

6. Class E tests are constructed when ambiguities are discovered in the

standard; they determine how an implementation has interpreted the

ambiguity. The results of these tests do not determine the validity of a

compiler, but provide information that helps the users of the compiler and

the government keep track of how implementers are "voting" on the

interpretation .

It has been noted that negative tests (i.e. tests which deliberately contains

errors in themselves) have proved to be more valuable in detecting compiler

deviations; it has been reported [12] that more implementation errors were

detected with Class B tests than Class C tests. Of course, illegal programs are

needed to detect supersets. The above classification of tests indicate the breadth

of test coverage, thereby helping the automation of test results analysis.

In practice it is impossible to write test cases which are same for all

compilers and detect all possible errors. Writing test cases for compiler should

33

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

undertake the knowledge of the code implementing the compiler. With these

resources limitation, we should concentrate on writing such test cases which

when passed give the user the confidence that the remaining errors will only

rarely occur in practice.

The validation process

The main objective in compiler validation is to design test, tools and procedures

to minimize the manual effort needed to validate a compiler. The compiler

validation procedure consists of the following steps:

• Gather the clata needed to customize the test for the compiler under

validation.

• Generate the implementation-dependent versions of test. The file names

and tests should be according to the compiler's environment and so as the

commands needed to submit the tests to the compiler.

• Compile and execute the tests and collect results for future analysis.

• Analyze and summarize the test results.

• Document all the results and any special tool used for testing the compiler.

This information would be useful when the compiler will be retested.

Three different environments are present for validating compilers.

• Validation erw ironment

Tests are prepared for execution and validation results are analyzed.

• Compiler environment

Tests are co piled and the executable code is then transported to the

target computer for execution. In some implementations separately

compiled codes are also linked with the tests.

34

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• Execution e11vironment

Test programs are executed on the target computer

The validation environment supports all testing activities. There are

specialized tools available to help reduce the efforts required to perform a

validation.

4.4 Certifier Approach

Certifying compiler is a method to ensemble the compiler and the certifier

together, so that the optimizing compiler will translate a strongly typed

programming language into assembly language program and the certifier will

either produce a formal proof of type safety or a counter example pointing to a

potential violation by the assembly language target program [25], [9].

The method as a number of advantages:

1. Easier to implement as compare to formal verification of the compiler, as

most of the compiler changes do not require to change the certifier and

also verifying the correctness of the result is easier than to verify the

correctness of the computation.

2. The method can be applied to any optimizing compiler as the optimization

is independe t of the certifier design.

3. The method can be applied to certify other properties besides type safety

of target language and can be applied to the compilation of any type safe

language.

4. It improves he effectiveness of compiler testing as it confirms the

35

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

correctness of each compilation and for each test case ,it statically signals

compilation errors which otherwise might take several executions to

detect.

5. The most practical method to automatically generate the safety proofs for

a proof carrying code system for type safety.

From an abstract point of view, the certifying compiler is like a pipe

comprising a compiler and a certifier. The compiler produces the assembly code

along with the code annotations and type specifications. Other tasks done by the

compiler includes global register allocation with spilling and coalescing which

causes a register within a single code block to be used to store different values

types, and global optimizations. Therefore to verify that target programs are

memory safe and ~fpe safe is very difficult. Code annotation helps the certifier to

understand the cocle and not to pay much attention to the optimization to verify

the memory and type safety.

Fi!~- 4.3: The Overview of a Certifying Compiler

The certifier subsystem is itself a combination of three subsystems: the

verification conditio generator (VCGen), the prover, and the proof checker, as in

Figure 4.3 (see [25]).

36

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

The VCGen can be executed on a function-at-a-time basis and can be

implemented as an efficient single pass through the program due to the code

annotations and typing specifications. It generates safety predicate for each

function in the code, each of these predicates have proofs if the functions are

type and memory safe. They use code annotations and type specifications while

scanning the assembly language program. The prover uses the first order logic

predicate and produces a formal proof.

In the last stage, a simple proof checker takes the safety predicate and the

resulting proof as input, to verify the validity of the proof against its safety

predicate and to judge that the compiler output is memory-safe and type-safe.

Hence for a system that uses Proof-Carrying Code to enable the safe execution

of entrusted mobile code, certifying compiler can serve as an automatic front­

end.

37

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Chapter 05

Compiler Test Case Generation Methods

5.1 Compiler Testing

A compiler is a computer program that accepts a source program and produces

either compiler error messages or an object code corresponding to the valid

source program. Due to the complexity of the compiler as a program, checking

the conformity of a compiler to its specifications is a complex task. Since

compilers are freqw~ntly used, their verification is critical for the correct creation

and execution of ot er programs. Prior to its release, it is tested to show that it

correctly implements the particular programming language.

The aim of compiler testing is to verify that the compiler implementation

conforms to its spedfications, which is to generate an object code that faithfully

corresponds to the language semantic and syntax as specified in the language

documentation. Finding an optimal and complete test suite that can be used in

the testing process is often an exhaustive task. Various methods have been

proposed for the generation of compiler test cases. A lot of research has been

done on testing compilers, most of which has addressed compilers for classical

programming languages such as Fortran, Pascal, or Algol.

The most commonly used technique for testing compilers is functional

testing. A series of independent test cases are designed to test individually all the

functional features of the language. Each test case is designed to test a limited

functionality of the language, which simplifies the process of testing by focusing

on a single objective and minimizing the interactions between the language

38

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

features. Unexpected interactions between the different features cause

compilation problems. In the following sections, we will classify different types of

compiler testing.

5.2 Different Types of Compiler Testing

Testing is the process of finding errors by executing a program. Testing does not

ensure the absence of bugs in a program, nevertheless, it signals the presence

of such. This helps develop some degree of confidence that the compiler

behaves correctly for some input data. There are two different test execution

strategies used for testing software.

• In Static Testing, the source code is inspected without running it. The

code can be read or reviewed for error without executing it by the

developer its«3lf. It mainly checks the syntax of the code.

• Dynamic Testing is a process of finding errors by executing the software

using a set of test data in a controlled test environment. The actual

outcome is then compared with the expected outcome.

Compilers are tested mostly using the dynamic strategies. There are two different

categories of test cases for the dynamic test execution strategy

• White Box Test Generation

White box testing is done based on the complete knowledge of the internal

structure of the program. Test cases are developed with prior knowledge of the

implementation detcitils. Test data are generated on the basis of program logic,

structural control, and using data flow techniques. Test cases are prepared for

each transition and state change in the code. The test cases generated are in

39

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

close correspondence with the code, so minor changes in the code require

changes in the test cases as well. This technique is also known as Glass box

testing. Frequently used methods that fall under the white box purview are: logic

coverage testing, statement coverage, and decision coverage.

• Black Box Test Generation

In black box testing it is the desired output that is verified; the test data are

generated without the knowledge of the actual implementation details of the code

solely from the software specifications. Its main focus is on the program features

and its external behavior. In case of compiler testing, this type of testing is done

to confirm certain features of the compiler according to the language

specifications. It is used to certify the conformance of the compiler to the

language standard definition, which is an increasingly important issue in the

marketability of the compiler. Frequently used methods that come under black

box test purview are: specification-based testing, equivalence partitioning, and

boundary value analysis.

In practice, i t is almost impossible to perform exhaustive white box or

black box testing. It is a better approach to develop a reasonable testing strategy

that makes use of both techniques. A strict test can be develop using certain

black box oriented test case design methodologies and then supplementing

these test cases with white box oriented methods [4] [3] [13].

5.3 Selection of Testing Method

While selecting a method for compiler testing, we have to keep these issues

under consideration:

• Test Case Generation Strategy: Selection of the systematic method of
40

M.A.Sc Thesis - Asma M Paracha- McMaster- Computing & Software, 2008

test cases.

• Test Selection Strategy: Selection of subset of generated test cases.

Test cases which reveal maximum errors can be selected from a large set

of automatically generated test cases.

• Test Execution Strategy: Suitable strategy for executing the selected test

cases.

• Test Specification Language: The language used for the formal

description of the test cases.

• Test result Analysis: How the output obtained after the test and the

expected output be compared, analyzed and a test verdict is obtained.

• Test Coverage and Metrics: The extent to which the software

functionalities are covered. Ideally test cases should cover all the syntax

and semantir: details of the compiler under test and produce all possible

compile and runtime errors.

• Test Case Correctness: The verification of the validity of the test case

design.

5.4 Test Case Gt~neration Methods

The creation of an effective set of tests can be a substantial task involving the

analysis of a thousand combinations of cases, to develop manually such test

cases for all possib e combinations of the language features is very laborious. A

possible solution is to find ways how to generate these cases automatically. In

the context of comp'ler testing, according to [24], a test case consists of:

1. A test purpose or test case description.

2. A test input consisting of a source program for which the behavior of the

compiler under test is verified.

41

M .A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

3. An expected output which may include a reference to an output file or

error file.

When test cases are executed, they should give clear and unambiguous

results. They should be complete, i.e. should cover all the syntax and semantic

details of the language and should signal all possible type of errors. The testing

process starts with a grammar which is an input to a program generator. The

generator creates test programs and the expected output. The test program is

then processed by the compiler and the compiled code is executed. The actual

output and the expected one generated from the source code are then

compared. The compiler is said to have passed the test case if both of these

output matches, and, if applicable, the error messages match the expected error

messages as specified in the test case expected output details. The different

stages of compiler testing are shown in Figure 4.1 [5].

~mmma~t----i~Jll>•~est Case

---1•8 Actual Oulput

\ ') ~enerato
1---------t• est Resu

Compiler
Test Suite

Test case getneration ~ +-- Dynamic test ~
& selec ·ion execution

Figure 5.1 Phases of compiler testing

Analysis

Test Report

42

M.A.Sc Thesis- Asma M Paracha - McMaster- Computing & Software, 2008

5.5 Assessment Criteria of Test Case Generation Method

Various methods are available for the generation of test data for compilers. There

are a number of metrics on the basis of which we can decide which method is

best to use. They are:

• Type of Grammar: Different generation methods are available for

context-free, regular dynamic, attributed, enhanced context-free and

context-free parametric grammars.

• Data Definition Coverage: The test cases developed should cover all the

data definitions defined in a programming language.

• Syntax CovtJrage: The generated test case should cover all the syntax of

the language for which the compiler is written. The generator should

produce both the syntactically correct and incorrect codes.

• Semantic Coverage: It should cover all the semantics of the language

and should generated both semantically correct and incorrect programs.

• Extent Of Automation: The testing of compliers is the most suitable

automation area, as the test case generation methods should be relatively

easy to automate as the test data have very good specification (in the

form of the grammar).

• Type of Language: The methods can be used for a range of different

languages.

• Implementation and Efficiency: The method should be efficient as well

as easy to implement.

• Test Case Correctness: The method should generate correct test cases.

• Concurrenc~r en Exception Handling: It should be applicable to

compilers for concurrent languages and should cover the exception

handling feature of the underlined language.

43

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

5.6 A brief Survey of Test Cases Generation Methods

• 1970, Hanford: He defined a syntax machine which automatically

generates ra11dom test cases for any programming language. However, he

implemented it with a dynamic grammar (context-free grammar that can

modify itself) to generate data for PU1 compilers. The method produced

meaningless yet syntactically valid programs. It concentrates on modular

and procedu ral languages like FORTRON and PU1. Compiler reliability

related to problems such as infinite loops, abnormal termination or

diagnosing non-existent syntax errors can be checked [13].

• 1972, Purdom: He used a syntax-directed method to generate test

sentences for a parser. Purdom's algorithm generates small sentences

efficiently with the goal to use each production rule at least once [29].

• 1974, Seaman: The main idea was to compare the results. Programs

were compiled on different compilers and the results were then matched.

The test program was first executed on the checker with the WRITE

statement writing all the variables and then the values were read by

running READ operation with the optimizer. Any change in the values

would signal an error. Decisions were based on some biasing factors.

Changing them would affect the area that was in the focus. Another

approach was the use of program generator, which makes decisions on

the coded source constructs on the basis of pseudo-random numbers.

The generator keeps track of the values of variables declared in the

program it is generating, and generates comparison operation between

these variables and the constants that represent the values the variables

ought to have [5].

44

M A.Sc Thesis - Asma M Paracha - McMaster - Computing & Software, 2008

• 1976, Wichmann and Jones: The method proposed by them can detect

any significant error in the syntax, but is unable to do semantic testing.

They used a large set of small programs, with each of them having some

unusual features to test the rarely executed parts of the compiler code.

Two differenf: types of tests are used: exhaustive tests that check every

part of the compiler, and the second type of tests will ensure the size

limits, these tests are not exhaustive. The method can check the depth of

nested constructs such as procedures, loops, and blocks. The tests cases

ware executed on four different Algol 60 compilers [5].

• 1978, Duncan and Hutchison: An attributed-grammar based method was

proposed for generating semantically correct test data. Test cases were

generated to test how the program handles certain classes of input data

instead of checking the sections of code. Test cases were based on

program specification. Context sensitive information needed to generate

semantically correct data was provided by the attributes. The method also

makes a selection of test cases according to various criteria. Passing

information during the test cases generation becomes explicit by including

an appropriate attribute in the grammar [5].

• 1979, Baue1· and Finger: They used regular grammar to generate

complete tes t cases for finite state control programs. In this system they

used an augmented finite state automaton model (FSA). A test sequence

was generated to test the system thoroughly by giving the FSA model. The

test cases described a sequence of stimuli to be applied to the system

under the test and the corresponding required results. The test case

generation scheme was implemented in a component called the test plan

45

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

generator (rPG).The number of test sequences generated depended

upon a number of factors such as: number of function states, number of

stimulus types, and the cyclic nature of the system specification [5].

• 1980, Celen\tano et al: An automatic sentence generator was defined on

the basis of the language to be compiled. The language definition was

given by a g ammar in extended BNF, which was further augmented with

actions to ensure contextual harmony e.g. between data definitions and

use of identifiers. First, all sentences correct with respect to the given

context-free grammar were generated to verify the syntax analyzer

(parser) of the compiler. Purdom's algorithm was used to generate the

sentences. To further test the deep control structure of the grammar, the

sentences went through stepwise refinements, resulting complete

compilable programs. The refinements are controlled by rewriting rules

enriched by a parameter passing mechanism. The generator was tested

with PLZ, Mlt~IPL, and some other languages (6].

• 1982, Bazzichi and Spadaforahi: The compiler was tested by compilable

programs which were generated automatically by a test generator. The

main idea Clf the generator was to produce programs with all the

grammatical constructs of the source language. The methods generated

both correct and incorrect programs to check the performance and

efficiency of different compilers for the same language. The input to the

generator is a grammar given in a tabular form. The generated test

programs cold check different parts of the compiler, such as the lexical

analyzer (sc~1nner), the syntax analyzer (parser), the semantic analyzer,

the diagnostic and the error handling routine. Some significant results

were obtained for Pascal (2].

46

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• 1985, Mandl: This method was used successfully in designing some of

the tests for Ada compiler validation capacity (ACVC) test suites. It is a

method which yields the informational equivalent of exhaustive testing at a

fraction of the cost for testing compilers. Random selection of test cases is

a better approach than the exhaustive testing. In order to achieve the high

level of conformity the non-exhaustive test procedure should be selected

carefully. It was made explicit what conditions would render such a

procedure satisfactory - perhaps even as satisfactory as the exhaustive

testing. The method proposed is one that used the properties of

orthogonal Latin squares (a special kind of combinatorial designs, an n x n

Latin square is a 2-dimensional integer array where each row has entries

1, 2, ... , n and each column has entries 1, 2, ... , n). For k variables each

admitting n values, choose a set of k - 2 orthogonal n X n Latin squares

and implement that. Instead of the total number nk of test cases, only n2

combinations are needed [21].

• 1989, Homer and Schooler: A test case generator TCG for large

compilers whose modules communicate through complex graph structured

intermediate representation. The input to the generator was a context-free

grammar and the output was a program generating sentences of the

grammar. The TCG was implemented as a C language processor and

used to produce large tests stressing certain language features [14].

• 1989, Wichmann and Davies: A test suite was given for testing the

syntax and semantics of Pascal. The test generator PPG (Pascal Program

generator) was implemented in Pascal and produces Pascal validation

suites. It generates self-checking correct programs on the basis of

parameters given as input. A machine independent pseudo-random

number generator was used to help in getting some degree of
47

M A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

repeatability. PPG works in a host target environment. The host would run

PPG and t e results were transferred to target either before or after

completion depending upon the type of compiler used [31].

• 1990, Maurer: Discussed data generator generators, in particular a

generator bused on the DGL (data generation language) [22] [23]. Its

takes an enhanced test grammar as the input and generates tests

according to the grammar. The test cases are generated by using the

starting symbol of the input grammar. When a test production is selected ,

it is scanned from left to right and all non-terminals are replaced by data.

Alternatives are selected at random. Rules can be specified to choose

alternatives und to assign weights to them. A successful application of the

method to compiler testing depends on data structures of the language.

The method is easier to apply to C, while not so other languages.

• 1991, Denm~y: A meta-interpreter was designed for Prolog using the

language itself. There was a number of problems working with Prolog

specification such as recursion, evaluation of predicates, etc.; the

interpreter handled all such problems using a deterministic automaton.

The meta-interpreter defines paths through the specification to be used as

test cases. The specification automaton was generated dynamically as it

executes the specification by translating Prolog's goal reduction states to

the automaton states. Equivalence classes provide a basis for good test

coverage and avoid wasting time on tests that are essentially equivalent.

As test cases are being generated , the interpreter checks to see whether

their equivalence class has already been used [5].

• 1992, Liyuan1 and Guangjun: In their work, they used Purdom's algorithm

to generate test cases automatically. They modified it to work with a

48

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

grammar for the programming language Jovial, and to produce Jovial

programs that can be used to test Jovial compiler. A series of functional

modules is set up to solve the context sensitive problem in program

generating p ocesses. The program generated are guaranteed to be short

in length. The grammar can modify itself to generate programs with syntax

error necessary for complete compiler testing [15].

• 1993, Kawata et al: presented a test program generator TPGEN. It

generates E1xecutable programs with self-checking code. Given a

grammar, it ~1enerates a program by selecting production rules at random

or in particular order specified by the user. When selecting the rules at

random, the variables or functions defined in the declaration part will not

coincide with those defined in execution portion. This problem is overcome

by using a system function to store and retrieve information about

declared variables [16].

Most of thesH methods are fully automated, but Celentano et al.'s method

is only partially au tomated and the method by Wichmann and Jones is not

automated at all. Generally, these methods considered . real-life programming

languages such as ADA, Fortran and Pascal. They mostly concentrates on the

syntactic features a d constructs of the respective programming languages. But

none of them have clearly addressed the testing of the most critical, advanced

features of modern languages. Also, most methods do not consider whether the

compiler under test deals with the data declaration parts of the test programs

properly. Therefore. these methods are more appropriate for simple syntax

testing and they need to be extended to deal with complex semantics of

languages [5].

49

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Chapter 06

Purdom's Algorithm and Its Implementation

In the previous chapters we discussed various reasons and methods of compiler

testing. The most suitable is functional testing (having a test case for each

lang~age feature) with structural coverage (each statement, branch or path in the

program is to be traversed a least once). Thus, the most viable method of

compiler testing so far is by generating a series of test cases (source programs),

which are hand-wrilten and for each of them the correct behavior of the compiler

is verified.

For a parser. its flowchart is the same as the structure of the syntax chart

of the language - traversing all branches in the syntax chart is equivalent to

traversing all branc es of the syntax analyzer. In addition, all table-driven parsers

(e.g. bottom-up parsers) have a fixed control structure and all the information

regarding the parsing of the language is stored in the table, which are thus the

real target of testin t~· For recursive-descent parsers, the situation is much closer

to the usual software testing and the the parser must be tested for both, the

parsing and the processing. Test preparation effort depends on the language size

and the size of tables, and increases as their sizes increases. The parser has to

be available in source form to perform structural testing.

An importan t aspect of compiler testing is that there are several distinct

levels of correctness to be considered.

50

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• Lexical Correctness

• Syntactical/Context-Free Correctness

• Compile-time Correctness

• Run-Time Correctness

• Logical Correctness

For the first three levels of correctness we have to generate test cases, while the

other two can be done during compiler verification.

It is important to generate test cases for the first three levels as:

• Lexically correct programs are used to verify the syntax related diagnostics.

• Syntactically correct program exercise the diagnostics concerning the

correspondence between declaration and use of variables.

• Compile-time c rrect programs verify the correctness of behavior of parser

and code generCitors.

The method for generating test data should fulfill the following objectives:

• The method should depend on the source language, yet should be

independent of the compiler. It should also produce incorrect programs as

well.

• The method should produce a set of test programs meeting some

completeness criteria, rather than a randomly selected set [6].

Generating sentences is the first step in testing. These sentences are to

be correct with re:spect to the given context-free grammar, but may be
51

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

incompatible with other features of the language such as variable declaration,

use of identifiers etc. Execution of these test cases will verify the syntax analyzer

(parser) of the compiler and also help test the diagnostic capabilities of the

compiler to some e)dent by executing the contextually incompatible programs.

6.1 Purdom's Algorithm

Purdom in 1972 oroposed a method for testing parsers automatically by

generating test prOf) rams on the basis of the grammar with the objective of using

each grammar rule at least once. The additional objective was to generate the

sentences efficiently and as short as possible. According to him, a set of

sentences using all the grammar rules is a good candidate for exercising most of

the parser code or tables. As all programming languages are context sensitive,

this method only confirms the syntactical aspect and there is no guarantee that

these programs wil execute correctly. Purdom's algorithm focuses on verifying

the parser's correctness, not interested in checking the efficiency, performance,

and other aspects [i~9].

Purdom's algorithm takes a context free grammar as input. It starts the

generating process with the starting symbol S of the grammar. It keeps rewriting

the non-terminals with RHS of matching rules and until all the non-terminals are

eliminated and replaced by terminals. The algorithm follows the same pattern as

a parsing algorithm with the difference that instead of recognizing tokens in the

input string, it generates tokens for the output. This can be seen in the following

high-logic description of the algorithm.

1. Push the S on the stack.

2. While the star;k is non empty, repeat:

• Pop the topmost element
52

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• If this element is a terminal, match it with the input.

• If it is a non-terminal, choose a rule for the non-terminal, and push the

symbols from the RHS of the rule onto the stack, in reverse order [19].

6.2 Power & Malloy's reformulation of Purdom's Algorithm

The original Purdom's algorithm presented in 1972 was described in a very

imperative style and was very difficult to understand and implement. Power and

Malloy reformulated the whole process and presented it in a very structured

manner in three distinct phases . We have implemented their reformulation with

an important modification of the third phase [18] [19].

6.3 Our implemt~ntation of Purdom's Algorithm

We used Purdom's algorithm to test the various LL(1) grammars for MACS and

to generate test cases for MACS parsers. The final LL(1) grammar for MACS is

given in appendix A The grammar has 77 terminals, 90 non-terminals, and 301

productions.

Since it was anticipated that we would be working with various MACS

grammars, it was desirable to make the grammar as input to the algorithm. Thus

both our implementations, in Java and C++ follow the same architecture. The

grammar is first input as three separate ASCII text files -the first (terms. as c)

listing all terminals, the second {non te rms . as c) listing all terminals, and the

third {rules. as c) listing all productions. This seemed more flexible as no

specific notation distinguishing terminals from non-terminals is needed (though

all MACS grammars we worked with adhered to the standard that terminals were

names in upper cctses). These three files are input into the first component,

Grammar that processes the input files into a proper Java (or C++) class. The

program Grammar thus generates Java or C++ code to be used by the

53

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

implementation of Purdom's algorithm, the program Purdom. This simplified the

design and coding of Purdom, as we could work with a nice and rich class

describing the input grammar. Every time the input grammar changed, all we

needed was to run Grammar with the new grammar, generate a new grammar

class and recompile Purdom with the new class.

Purdom is then executed and it generates MAGS terminal sequences

(sentences). These are manually transformed to syntactically correct MAGS

programs by replacing tokens with lexemes, they are the test data for MAGS

parser. The whole process is schematically depicted in Figure 6.1.

Purdom's algorithm

must be compiled together

.......... !
:

i tokens
! replaced by

·················1 lexemes

! (manuaO

Figure 6.1 Working of our implementation of Purdom's algorithm

1. terms . asc contains the list of all the terminals in the language,

one symbol per line (i.e. the newline is used as a separating

charaGter between them).

2. non t e rms. asc contains the non- terminals of the language, also

54

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

one S)rmbol per line.

3. rules . asc is the list of all production rules. The LHS symbol of

the very first rule listed is assumed to be the starting non-terminal

S. Rules are in the following format: LHS non-terminal, followed by

colon (:), followed by terminals and non-terminals of the RHS

separated by at least one white space. The rule is terminated by

semicolon. (;).An epsilon rule has: followed by;

The regular expression describing a rule

<terminal> 1
:

1
(<terminal> 1 <non-terminal>) * I • I ,

The algorithm (Purdom) is divided into three phases with five subroutines.

All the array names used for holding the intermediate results are kept unchanged

through all three phases (e.g. the array called SLEN in all routines of phase I is

the same array SLEN used in all routines of phase II). The division of the whole

algorithm into three separate phases along the ideas of Power & Malloy makes it

easier to describe, understand, and analyze the algorithm. The arrays with the

intermediate result thus function as the connection (coupling) between the

phases. However, 1he division into three separate phases has some negative

impact on the execution speed.

In the following sections we describe the high-level logic of the phases.

6.3.1 Phase I (Shortest Terminal String)

In the first phase of Purdom's algorithm, three arrays SLEN, RLEN, and SHORT

are computed.

• SLEN: is an array containing entries for all symbols of the grammar (i.e.

terminals and non-terminals). For each non-terminal, the array is initialized
55

MA Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

with oo (implemented as a maximal integer value), while for each terminal it

is initialized with 1 (it will remain unchanged).

(In the original description of the algorithm by Purdom, the length of the

corresponding lexeme was to be used, we opted for this compromise, not

knowing the actual lengths of lexemes. For instance, for the terminal

COMMA we know that the length of the lexeme ', ' will always be 1. On

the other hand, the lexemes for ID can be of any length and so we would

not know hovv to assign the lengths to the terminaiiD .)

The algorith starts rewriting non-terminals using the production rules to

discover the shortest length of derivation. At the end of this phase we will have

the shortest length of string for each grammar symbol.

• SLEN: No. of steps in the derivation + Number of characters in the string

(All other len gths in the algorithm are also calculated using this formula).

• RLEN: Array containing entries for each rule, each entry gives the length

of the shortest string which we get using that rule. Again the length is the

sum of the s eps taken in the derivation and the number of terminals in the

resulting string.

• SHORT: For each non-terminal we maintain an array such that it contains

the production number, which gives us the shortest string.

We can check some aspects of the grammar being used by the end of

phase 1: if after the phase I is completed, any entry of SLEN is oo or if any entry of

SHORT contains ·-1 , it is an indication that the grammar is ambiguous or

incomplete. There are some productions that are never used for deriving

56

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

(terminal) strings or some non-terminals have no associated rules. It is one of the

unique methods to detect these errors in a context-free grammar.

6.3.2 Phase II (Shortest Derivation Algorithm)

Second phase uses the SLEN and RLEN computed in the previous phase and

produces two new arrays, DLAN and PREV, to be used by the final phase.

• OLEN: for each non-terminal, it gives the length of the shortest string used

it in its derivation.

• PREV: conta ins the rule number to be used to introduce a non-terminal in

the shortest string derivation. Values are calculated for all non-terminals

except for the starting symbol.

For the starting symbol S the PREV should be set to -1, as it cannot be

introduced by any rule, all other entries of OLEN should be same as SLEN. At the

end of this phase, DLEN should not be oo for any non-terminal and PREV should

not be equal to -1, except for the starting symbolS. If this happens, the grammar

is incorrect.

6.3.3 Phase Ill (Sentence Generation Algorithm)

In the third phase, the sentences for the given language are generated. First, the

starting symbol is pushed on the stack, and then as long as the stack contains

any elements, the Hlgorithm keeps popping the top of the stack and rewriting it

using a production rule.
57

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

6.3.3.1 Choose a Rule

One of the goals of the algorithm is to use all the production rules at least once.

The reformulation given by Brain and Malloy [18] [19] uses the production rules in

sequence, which gives the maximum length strings.

Our modification uses the rules on the basis of the values in PREV and

SHORT; whenever the algorithm finds a rule with a low value of PREV or

SHORT, it replaces the existing one with it giving at the end the minimum length

sentences.

For a non-terminal A, if a rule A ~ a that has not yet been used exists,

then it is chosen. H more than one such rule exist, then the one with the lowest

values of PREV and SHORT is chosen. Otherwise, if a derivation

A ~ a -+ V1BV2 exists such that B is a non-terminal not on the stack and a rule

B ~ 13 exists that 1ad not been used, then it uses the production A ~ a, which

will then be rewritten using any of the a rules.

For each non-terminal on the stack, the algorithm maintains the following arrays:

• ONST: contains the occurrences of non-terminals on the stack. At the end

it should be zero, their should not be any unused symbol on the stack.

• MARK: for each rule it contains either true or false, but at end of this

phase all the entries should be true, which shows that each and every rule

had been u~;ed at least once, the main requirement of Purdom's algorithm.

58

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

• ONCE: for each non-terminal it contains one of the following values:

READY: the production number previously in ONCE has been used

and the next time this non-terminal will be rewritten using a different

production.

UNSURE: the value of ONCE calculated in the last loop is not certain

- for some non-terminals it is the production number used to

introduce that symbol in shortest string derivation and for some non­

terminals th is is not true.

FINISHED: t e non-terminal has been rewritten using all possible

productions and cannot be used in any other way.

INTEGER: contains the number of the production used to rewrite the

symbol in some useful derivation.

In our implementation, we used an integer array for ONCE where the

following values are represented as:

Ready -1

Unsul'e

Finished

Integer

-2

-3

from 0 to onwards are the rules numbers.

6.4 Some of the sentences Generated By Our Implementation

of Purdom's Algorithm

1. Void A. a(A a1, const A b);

2. void A.a(bool b);

3. public void A.a,A.b;

4. class A;

5. class ao
6. class a extends A;

7. class a{}

59

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

8. A.B();

9. main(canst str,.ng n a){}

10. public shared void A.a;

11. public canst vo ;d A. a;

12. private void A. a;

13. private shared void A.a;

14. private canst void A.d;

15. shared void A. c.r;

16. shared public lt'Oid A.a;

17. shared private void A. a;

18. shared canst void A. a;

19. canst void A. a;

20. canst public void A. a;

21. canst private void A. a;

22. canst shared void A. a;

23. main({})

Purdom's gr-!nerated Sentences MACS Test Cases Syntactically Semantically

Correct Correct
VOID CLASSNAME_DOT ID_LP CLASSNAME ID void A.a(A a1 , constA b); X X

COMMA CONST CLASSNAME ID RP SEMICOL
VOID CLASSNAME_DOT ID_LP BOOL ID RP void A.a(bool b); X X

SEMICOL
PUBLIC VOID CLASSNAME_DOT ID COMMA public void A.a,A.b;

CLASSNAME DOT ID SEMICOL
CLASS CLASSNAME SEMICOL class A; X X
CLASS ID LB RB class aO X X
CLASS ID EXTENDS CLASSNAME SEMICOL class a extends A; X X
CLASSNAME DOT CLASSNAME LP RP SEMICOL A.B(); X X
MAIN LP CONST STr~ING LS RS ID RP LB RB main{ canst string [] a){ } X X
PUBLIC SHARED VOID CLASSNAME_DOT ID public shared void A. a; X

SEMICOL
PUBLIC CONST VOID CLASSNAME_DOT ID public const void A.a; X

SEMI COL
PRIVATE VOID CLASSNAME DOT ID SEMICOL private void A. a; X
PRIVATE SHARED VOID CLASSNAME_DOT ID private shared void A. a; X

SEMICOL

60

M.A.Sc Thesis- Asma M Paracha- McMaster- Computing & Software, 2008

PRIVATE CONST VOID CLASSNAME_DOT ID private canst void A.d; X

SEMI COL
SHARED VOID CLASSNAME DOT ID SEMICOL shared void A. a; X
SHARED PUBLIC VOID CLASSNAME_DOT ID shared public void A. a; X

SEMICOL
SHARED PRIVATE VOID CLASSNAME_DOT ID shared private void A. a; X

SEMI COL
SHARED CONST VOID CLASSNAME_DOT ID shared canst void A.a; X

~EMICOL
CONST VOID CLASS NAME DOT ID SEMICOL canst void A.a; X
CONST PUBLIC VOID CLASSNAME_DOT ID canst public void A. a; X

SEMI COL
CONST PRIVATE VOID CLASSNAME_DOT ID canst private void A.a; X

~EMICOL
CONST SHARED VOID CLASSNAME_DOT ID canst shared void A. a; X

SEMICOL
MAIN LP LB RB main{{}) X

Table 6.1 Sentences Generated By the Algorithm

The psuedocode of the individual phases is given Appendix D.

61

M.A Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Chapter 07

Conclusion

We implemented in Java and C++ Purdom's algorithm that generates simple

sentences of a given LL(1) grammar. The algorithm is fast and generates the

shortest sentences with the objective of using each production rule at least once.

The algorithms was used to verify completeness and unambiguity of various

LL(1) grammars for the programming language MACS, and to generate test data

for a JavaCC-base top-down MACS parser.

Though Purdom's algorithm is well-referenced in many texts of compiler

testing, there are very few implementations mentioned in literature. When they

are, no implementation details are provided. The closest come the work by

Power and Malloy, however their implementation of the third phase did not seem

to work. We thus modified the third phase significantly, producing an algorithm

generating usable test data.

We have achieved the same results with both the Java and the C++

implementations of Purdom's algorithm. The sentences generated are mostly

syntactically and semantically correct with a few exceptions which are

semantically incorrect (see Table 6.1).

The test generator only automates the input part of testing , leaving it to the

humans to check the correctness of the object code generated by the compiler.

The ideal would be to produce test programs together with the expected trace of

the results of their execution, which is a very difficult problem.

62

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Appendix A List of Terminals of the final LL(1) grammar

for MACS Language

AND, ASSIG, BOOL, BHEAK, CATCH, CHAR, CHAR_LIT, CLASS, CLASSNAME,

CLASSNAME_DOT, CLASSNAME_LP, CLASSNAME_RP, COLON, COMMA, CONST,

CONTINUE, DOT, ELSE, EQ, EXTENDS, FALSE, FLOAT, FLOAT _LIT, FOR, GE, GOTO,

GT, GTGT, ID, IDOF, ID._COLON, ID_LP, IF, INT, INT_LIT, LB, LE, LP, LS, LT, LTLT, MAIN_LP,

MINUS, MINUSMINUS, MOD, NEQ, NOREF, NOT, OR, PARENT_DOT, PARENT_LP, PASSIG,

PEEKNOTELSE, PERII/I, PLUS, PLUSPLUS, PRETURN, PRIVATE, PUBLIC, RB, RETURN, RP,

RS, SEMICOL, SHARED, SIZEOF, SLASH, STAR, STRING, STRING_LIT, TERMINATE,

THROW, TRUE, TRY, TYPEOF, VOID, WHILE

63

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Appendix B List of Non-Terminals of the final LL(1) grammar for

MACS Language

ArgType, ArgType1, Args, Args1, ArrayDim, AttrDecl, AttrDef, AttrMethodDecl, AttrMethodDecl1,

AttrMethodDecl2, AttrMethodDef, Block, Block1, CastOrPexp, Catch, Catch1, ClassBody,

ClassDeciDef, ClassDeciDef1, ClassDec1Def2, ClassMember, Cond, Cond1, ConstrDecl,

ConstrDef, Data Type, Epilog, Epilog1, Expr, Factor, Factor1, ForStm, lfStm, lfStm1, I nit,

MainSection, Method Body, Params, Params1, ParentConstr, PassingSpec, Prefix, Prefix1 0,

Prefix13, Prefix14, PrefJx20, Prefix23, Prefix24, Prefix30, Prefix31, Prefix32, Prefix34, Prefix40,

Prefix41, Prefix42, PrefJx43, Program, Program1, Prolog, Prolog1, Ref, Ref1, Ref2, Ref3, Ref4,

RefS, RefS, RetumStm, SimpleExpr, SimpleExpr1, Stm, String lit, Stringlit1, Stringlit2, Term,

Term1, Then Block, The Block1, Ustm, VarDef1, VarDef11, VarDef111, VarDef12, VarDef2,

VarDef21, VarDef211, VarDef22, VarDef3, VarDef4, WhileStm

64

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

Appendix C The final LL(1) Grammar for MACS language

Program: MAIN_LP MainSection Program1;

Program: CLASSNAME_DOT ConstrDecl Program1;

Program: CLASS ClassDeciDef Program1;

Program: PUBLIC Prefix1 0 AttrMethodDecl Program1;

Program: PRIVATE Prefix20 AttrMethodDecl Program1;

Program: SHARED Prefix30 AttrMethodDecl Program1;

Program: CONST Prefix40 AttrMethodDecl Program1;

Program: BOOLArrayDim AttrMethodDecl1 Program1;

Program: CHAR ArrayDim AttrMethodDecl1 Program1;

Program: FLOAT ArrayDim AttrMethodDecl1 Program1;

Program: INT ArrayDim AttrMethodDecl1 Program1 ;

Program: STRING ArrayDim AttrMethodDecl1 Program1;

Program: CLASSNAME ArrayDim AttrMethodDecl1 Program1;

Program: VOID CLASSNAME_DOT ID_LP Args SEMICOL Program1;

Program1: MAIN_LP MainSection Program1 ;

Program1: CLASSNAM E_DOT ConstrDecl Program1;

Program1: CLASS ClassDeciDef Program1;

Program1 : PUBLIC Prefix1 0 AttrMethodDecl Program1;

Program1: PRIVATE Prefix20 AttrMethodDecl Program1;

Program1: SHARED Prefix30 AttrMethodDecl Program1;

Program1: CONST Pre IX40 AttrMethodDecl Program1;

Program1: BOOLArrayDim AttrMethodDecl1 Program1;

Program1: CHAR Array Dim AttrMethodDecl1 Program1;

Program1: FLOAT ArrayDim AttrMethodDecl1 Program1;

Program1 : INT ArrayDirn AttrMethodDecl1 Program1;

Program1: STRING ArrayDim AttrMethodDecl1 Program1;

Program1 : CLASSNAME ArrayDim AttrMethodDecl1 Program1;

Program1: VOID CLASSNAME_DOT ID_LP Args SEMI COL Program1;

Program1:;

MainSection: LB MethodBody;

MainSection: CONST STRING LS RS ID RP LB MethodBody;

AttrMethodDecl: Data Type AttrMethodDecl1;

65

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

AttrMethodDecl1 : CLASSNAME_DOT AttrMethodDecl2;

AttrMethodDecl2: ID_LP Args SEMICOL;

AttrMethodDecl2: ID AttrDecl;

AttrDecl: SEMICOL;

AttrDecl: COMMA CLABSNAME_DOT ID AttrDecl;

ConstrDecl: CLASSNAME_LP Args SEMICOL;

ClassDeciDef: ID ClassDeciDef1:

ClassDeciDef: CLASSt\IAME ClassDeciDef1:

ClassDeciDef1: EXTENDS CLASSNAME ClassDeciDef2;

ClassDeciDef1: LB ClaHsBody;

ClassDeciDef1: SEMICOL;

ClassDeciDef2: LB Cla!;sBody;

ClassDeciDef2: SEMICOL;

ClassBody: ClassMember ClassBody;

ClassBody: RB;

ClassMember: CLASSI\IAME_LP ConstrDef;

ClassMember: Prefix Data Type AttrMethodDef;

DataType: BOOLArrayDim;

DataType: CHARArrayDim;

DataType: FLOAT ArrayDim;

Data Type: INT ArrayDim;

Data Type: STRING Arr<~yDim ;

Data Type: CLASSNAME ArrayDim;

DataType: VOID;

ArrayDim: LS RS ArrayDim;

ArrayDim:;

Prefix: PUBLIC Prefix1 Cl;

Prefix: PRIVATE Prefix20;

Prefix: SHARED Prefix3.0;

Prefix: CONST Prefix40;

Prefix:;

Prefix1 0: SHARED Prefix13;

Prefix10: CONST Prefix14;

Prefix10: ;

Prefix13: CONST;

66

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Prefix13: ;

Prefix14: SHARED;

Prefix14:;

Prefix20: SHARED Pref1x23;

Prefix20: CONST Prefix24;

Prefix20:;

Prefix23: CONST;

Prefix23: ;

Prefix24: SHARED;

Prefix24: ;

Prefix30: PUBLIC Prefi)c31 ;

Prefix30: PRIVATE Pref ix32;

Prefix30: CONST Prefix34;

Prefix30:;

Prefix31 : CONST;

Prefix31 :;

Prefix32: CONST;

Prefix32:;

Prefix34: PUBLIC;

Prefix34: PRIVATE;

Prefix34:;

Prefix40: PUBLIC Prefi><41 ;

Prefix40: PRIVATE Pref ix42;

Prefix40: SHARED Pref ix43;

Prefix40: ;

Prefix41: SHARED;

Prefix41 :;

Prefix42: SHARED;

Prefix42:;

Prefix43: PUBLIC;

Prefix43: PRIVATE;

Prefix43: ;

AttrMethodDef: ID I nit A ttrDef;

AttrMethodDef: ID_LP Args LB MethodBody;

AttrDef: COMMA ID I nit AttrDef;

67

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

AttrDef: SEMICOL;

ConstrDef: Args LB ParentConstr MethodBody;

ParentConstr: PARENT._LP Params SEMICOL;

ParentConstr:;

PassingSpec: AND;

PassingSpec:;

ArgType: CONST ArgType1 PassingSpec;

ArgType: BOOLArrayDim PassingSpec;

ArgType: CHAR ArrayD im PassingSpec;

ArgType: FLOAT ArrayDim PassingSpec;

ArgType: INT ArrayDim PassingSpec;

ArgType: STRING ArrayDim PassingSpec;

ArgType: CLASS NAME ArrayDim PassingSpec;

ArgType1: BOOL ArrayDim;

ArgType1: CHAR ArrayDim;

ArgType1: FLOAT Array Dim;

ArgType1: INT ArrayDim;

ArgType1: STRING ArrayDim;

ArgType1: CLASSNAME ArrayDim;

Args: RP;

Args: ArgType ID Args1 ;

Args1: RP;

Args1: COMMAArgType IDArgs1;

VarDef1 : CONST VarDef11 ;

VarDef1 : BOOL ArrayDim VarDef12;

VarDef1 : CHAR ArrayDi m VarDef12;

VarDef1: FLOAT ArrayDim VarDef12;

VarDef1: INT ArrayDim VarDef12;

VarDef1: STRING Array Dim VarDef12;

VarDef1: CLASSNAME ArrayDim VarDef12;

VarDef2: PERM VarDef;~1;

VarDef2: BOOL ArrayDim VarDef22;

VarDef2: CHAR ArrayDim VarDef22;

VarDef2: FLOAT ArrayDim VarDef22;

VarDef2: INT ArrayDim VarDef22;

68

M.ASc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

VarDef2: STRING Array Dim VarDef22;

Var0ef2: CLASSNAME ArrayOim Var0ef22;

Var0ef3: 10 I nit Var0ef4 ;

Var0ef4: COMMA 10 I nit VarDef4;

VarDef4:;

Var0ef11 : BOOL ArrayDim Var0ef111 ;

Var0ef11 : CHAR Array Dim VarDef111 ;

Var0ef11: FLOAT ArrayDim Var0ef111;

Var0ef11: INT ArrayOim VarDef111;

Var0ef11: STRING ArrayOim Var0ef111;

Var0ef11: CLASS NAME ArrayOim Var0ef111 ;

VarDef21 : BOOLArrayDim Var0ef211;

VarDef21: CHARArrayDim VarDef211 ;

VarDef21: FLOAT ArrayDim Var0ef211;

VarDef21: INT ArrayOim Var0ef211 ;

Var0ef21: STRING ArrayOim Var0ef211 ;

VarDef21: CLASSNAMEArrayOim VarDef211 ;

Var0ef12: 10 I nit Var0et4;

VarDef22: 10 In it Var0ef4;

VarDef111: 10 I nit VarDef4;

VarDef211 : 10 I nit Var0£~f4 ;

lnit: ASSIG Expr;

lnit: PASSIG Expr;

I nit: ;

MethodBody: IO_COLON UStm MethodBody;

MethodBody: SEMICOL MethodBody;

MethodBody: IF lfStm MethodBody;

MethodBody: FOR ForStm MethodBody;

MethodBody: WHILE WhileStm MethodBody;

MethodBody: GOTO 10 SEMICOL MethodBody;

MethodBody: CONTINUE SEMICOL MethodBody;

MethodBody: BREAK SEMICOL MethodBody;

MethodBody: TERMINATE SEMICOL MethodBody;

MethodBody: RETURN ReturnStm MethodBody;

MethodBody: PRETURN Expr SEMI COL MethodBody;

69

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

MethodBody: THROW Expr SEMJCOL MethodBody;

MethodBody: TRY LB MethodBody CATCH LP Catch MethodBody;

MethodBody: PERM Var0ef1 MethodBody;

MethodBody: CONST Var0ef2 Method Body;

Method Body: BOOL AnayOim Var0ef3 Method Body;

Method Body: CHAR ArrayOim Var0ef3 Method Body;

MethodBody: FLOAT ArrayOim Var0ef3 MethodBody;

MethodBody: tNT ArrayDim Var0ef3 MethodBody;

MethodBody: STRING ArrayOim Var0ef3 MethodBody;

MethodBody: CLASS NAME ArrayOim VarDef3 MethodBody;

MethodBody: RB;

Catch: 10 RP Catch1 ;

Catch1: LB Method Body;

Stm: IO_COLON UStm;

Stm: UStm;

UStm: SEMICOL;

UStm: IF lfStm;

UStm: FOR ForStm;

UStm: WHILE WhileStm;

UStm: GOTO 10 SEMICOL;

UStm: CONTINUE SEIIIIICOL;

UStm: BREAK SEMICOL;

UStm: TERMINATE SE ~JCOL;

UStm: RETURN ReturnStm;

UStm: PRETURN Expr SEMICOL;

UStm: THROW Expr SE::MICOL;

UStm: TRY LB MethodBody CATCH LP Catch;

UStm: Expr SEMICOL;

JfStm: LP Cond Then Block JfStm1 ;

lfStm1: ELSE Block;

JfStm1: PEEKNOTELSE;

ThenBiock: LB ThenBiock1 ;

ThenBiock: UStm;

ThenBiock1: RB;

ThenBiock1 : Stm ThenEIIock1 ;

70

M.ASc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Block: LB Block1;

Block: UStm;

Block1: RB;

Block1: Stm Block1;

ForStm: LP Prolog Concl1 Epilog Block;

Cond1: SEMICOL;

Cond1 : Expr SEMI COL;

Prolog: SEMICOL;

Prolog: Expr Prolog1 ;

Prolog1: SEMI COL;

Prolog1: COMMA Expr Prolog1;

Epilog: RP;

Epilog: Expr Epilog1;

Epilog1 : RP;

Epilog1 : COMMA Expr Epilog1 ;

Cond: RP;

Cond: Expr RP;

WhileStm: LP Cond Block;

ReturnStm: SEMICOL;

ReturnStm: Expr SEMICOL;

Expr: Factor;

Factor: Term Factor1 ;

Factor1: PLUS SimpleExpr Factor1;

Factor1 : MINUS Simple =xpr Factor1;

Factor1: LT SimpleExpr Factor1;

Factor1 : LE SimpleExpr Factor1 ;

Factor1 : LTLT SimpleExor Factor1 ;

Factor1: GT SimpleExpr Factor1;

Factor1 : GE SimpleExpr Factor1;

Factor1 : GTGT SimpleExpr Factor1 ;

Factor1 : AND SimpleExpr Factor1;

Factor1 : OR SimpleExpr Factor1;

Factor1 : EO SimpleExpr Factor1 ;

Factor1: NEQ SimpleExor Factor1;

Factor1 : MOD SimpleExpr Factor1 ;

71

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Factor1: ASSIG Expr;

Factor1: PASSIG Expr;

Factor1 :;

Term: SimpleExpr Term1;

Term1: STAR SimpleExpr Term1;

Term1: SLASH SimpleExpr Term1 ;

Term1:;

SimpleExpr: LP CastOrPexp;

SimpleExpr: PLUS SimpleExpr1;

SimpleExpr: MINUS SimpleExpr1;

SimpleExpr: NOT SimpleExpr1;

SimpleExpr: SIZE OF SimpleExpr1 ;

SimpleExpr: TYPE OF SimpleExpr1;

SimpleExpr: IDOF SimpleExpr1;

SimpleExpr: PLUSPLUS SimpleExpr1 ;

SimpleExpr: MINUSMINUS SimpleExpr1 ;

SimpleExpr: Ref;

SimpleExpr1 : FALSE;

SimpleExpr1 : TRUE;

SimpleExpr1 : NOREF;

SimpleExpr1 : CHAR_UT;

SimpleExpr1 : FLOAT _LIT;

SimpleExpr1: INT _LIT;

SimpleExpr1 : STRING __ LIT String lit;

SimpleExpr1 : Ref;

String lit: LS Expr Stringlit1 ;

String lit:;

Stringlit1: RS;

Stringlit1: COLON Expr RS Stringlit2;

Stringlit2: LS Expr RS;

Stringlit2:;

CastOrPexp: BOOL RP SimpleExpr1;

CastOrPexp: CHAR RP SimpleExpr1;

CastOrPexp: FLOAT RP SimpleExpr1 ;

CastOrPexp: INT RP SimpleExpr1;
72

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

CastOrPexp: STRING HP SimpleExpr1;

CastOrPexp: CLASSNJ\ME_RP SimpleExpr1;

CastOrPexp: Expr RP Hef3;

Ref: CLASSNAME_DO T Ref1 ;

Ref: PARENT _DOT Re·f1;

Ref: Ref2;

Ref1 : PARENT _DOT Raf1 ;

Ref1: Ref2;

Ref2: ID Ref3;

Ref2: ID_LP Params Ref3;

Ref3: DOT Ref2;

Ref3: LS Ref4;

Ref3: PLUSPLUS;

Ref3: MINUSMINUS;

Ref3:;

Ref4: RS Ref3;

Ref4: Expr RefS;

RefS: RS Ref3;

RefS: COLON Expr RS Ref6;

Ref6: LS Expr RS;

Ref6:;

Params: RP;

Params: Expr Params1

Params1: RP;

Params1 : COMMA Exp Params1;

73

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Appendix D The pseudo code of the three phases of our

implementation of Purdom's algorithm

Phase One "Shtlrtest Terminal String"

Input: List of symbols, List of rules
Output: SLEN, RLEN, SHORT

Void lnit()

{

for (each symbols)

{

if (s is a terminal)

SLEN [s] = 1;

else

} II for

{

} II if

SLEN [s] = I NIT _MAX ;

SHORT [s] = -1 ;

for (each rule r)

{

RLEN[r] = IIIJIT _MAX ;

} II for

} II I nit()

Void ShortestTerminaiString()

.{

boolean One = trUfl ;

74

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

while(One) {

One= false;

for(each rule r) {

int sumOne = 1 ;boolean big = false;

for (each symbol s at the RHS of the production rule){

if (this is a null production)

} //for

} //while

break;

if (SLEN [s]) = = INT _MAX)

{

} //if

else{

big= true;

break;

sumOne + = SLEN [s];

} //else

} //for

if (!big and sumOne < RLEN [r]){

RLEN[r] = sumOne;

} //if

} //if

if (sumOne < SLEN [LHS[r]] {

SHORT [LHS[r]] = r;

SLEN [LHS[r]] = sumOne;

One= true;

} II ShortestTermina~String()

75

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

Phase Two "Shortest Derivation String"

Input: SLEN, RLEN

Output: OLEN PREV

void lnit(){

for (each symbols)

{

} II for

if (s is a non-terminal)

{

OLEN[s] = INIT_MAX;

PREV [r] = -1 ;

} II if

} lllnit ()

void ShortestDerivationString() {

boolean two;

two= true;

OLEN [strarting symbol S]=SLEN [LHS[first rule ro]];

while(two)

{

two= false;

for(each rule r)

{

if (RLEN[r] = = INT _MAX)

{

76

M.A.Sc Thesis -Asma M Paracha- McMaster- Computing & Software, 2008

continue;

} //if

if (OLEN[LHS[r]] = = INT _MAX)

{

continue;

} //if

if (SLEN [LHS [r]] = = INT _MAX)

{

continue;

} //if

int sumtwo;

sumtwo = Olen [LHS[r]] + RLEN [r] - SLEN [LHS[r]];

for (each symbols at the RHS of r)

{

}//for

if (s in a non-terminal){

}//if

if (sumtwo < OLEN [s])

{

twochange = true ;

OLEN [s] = sumtwo ;

PREV [s] =r;

}//if

77

M.ASc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

}//for

}//while

}//ShortestDerivaltionString()

Phase Three "Generate Sentence"

Input: PREV,SHORT

Output: Sentences

Auxiliary Functions : calcshort, load_once, process_Stack

void lnit(){

for (each symbols)

{

if (s is a non-terminal)

{

} //if

} II for

if (s is the s tarting symbol)

{

} II if

else

{

} //else

ONCE[s] =_ready;

ONST(s] = 1;

ONCE(s] =_ready;

ONST[s] = 0;

for(each rule r)

78

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

{

MARK [r 1 = _true;

} //for

} //I nit()

int calcshort (non-terminal n)

{

int prodno;

prodno = SHORT [n1;

MARK [prodno1 = _trrue;

if (ONCE[n1 ! =_finished)

{

ONCE[n1 =_ready;

}//if

return prodno;

}//calcshort()

void load_once()

{

for(all rules r)

{

} //for

if (MARK[r 1 = =_false)

{

} //if

ONCE[LHS[r]] = rule number ;

MARK[r1 =_true;

} llload_once()

79

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

boolean process_Stack(int prodno,boolean moresentence)

{

ONST [nt.ind] - -;

for (each symbol s at the RHS of rule r in reverse order)

{

Stack. Push(s);

if (s is a non-terminal)

{

} II for

boolean done= false;

return moresentence;

} II process_ Stack(

ONST[s] ++;

} II if

while(!done)

{

if (Stack. Empty ())

{

} II if

else

{

moresentence = false;

break;

nt = Stack.Pop();

if (nt is a terminal)

Print this terminal

else done = true;

} II else

} II while (!done)

80

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

void GenerateSente nee()

{

boolean done = falr.e;

boolean moresentence;

while(!done)

{

if (ONCE[Start] = =_finished)

{

break;

} II if

ONST [Start] =1 ;nt = Start;

moreentence =true;

while(moresentence)

{

int once_nt;

once_nt = ONCE[nt];

if(nt = = Start and once_nt = =_finished)

{

} II if

done= true;

break;

else if (once_nt = =_finished)

prodno = calcshort (nt);

else if (once_nt > = 0)

{

}//if

prodno = once_nt;

ONCE [nt] =_ready;

81

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

else

{

MARK[LHS[k]]= _true;

load_once();

for(each symbol s)

{

if (s ! = Start and ONCE[s] >= 0)

{

if (s is a non-terminal)

{

k = PREV[s];

while(k>=O)

{

if (ONCE [LHS[k]] > = 0)

{

else

}//if

else

{

break;

if (ONST[s)] = = 0)

{

ONCE [LHS[k]]= k;

} //if

ONCE [LHS[k]]=_unsure;

82

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

}//for

}//if

//for

for(each symbol s)

{

}//if

}//else

k=PREV[LHS[k]];

}//while

if(ONCE[s] = =_ready)

{

if(s is a non-terminal)

{

ONCE [s]= _finished;

}//if

}//if

}//if

if(nt = = Start)

break;

else if (ONCE [nt] < 0)

prod no = calcshort(nt);

else if (ONCE [nt] > = 0)

{

}

prod no = ONCE[nt];

ONCE [nt]=_ready;

}//else

moresentence=process_Stack(prodno,moresentence);

83

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

}//while(moresentence)

}//while(!done)

}//GenerateSentence()

84

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

References

[1] A. W. Appel and M. Ginsburg, Modern Compiler Implementation in C,

Cambridge Lmiversity press, 2001

[2] F. Bazzicchi and I. Spadafora, An automatic generator for compiler

testing, IEEE Trans. Soft. Eng., 8 (4) (1982), pp 343-353

[3] B. Seizer, Software testing techniques, 2nd ed. , Van Nostrand Reinhold,

New York, 1990

[4] A.S. Boujarwah and K. Saleh, Compiler test case generation: a survey

and assessment, Information and software technology, Volume 39,

Issue 9, March 1997, pp 617-625

[5] A. Boujarwah and K. Saleh, Compiler test suite: evaluation and use in

an automated environment, Information and Software Technology 36,

(10) 1994, pp 607-614

[6] A. Celentano, S. Crespi Reghizzi, P. Della Vigna, C. Ghezzi, G. Granata,

F. Savoretti, Compiler testing using a sentence generator,

Software-Practice and Experience, 10 (June 1980) pp 897-918

[7] N. Chomsky, Three models for the description of language, IRE

Transactions on Information Theory (2), 1956, pp 113-124

[8]- N. Chomsky and M.P. Schutzenberger, The algebraic theory of context­

free langucJges, In: Computer Programming and Formal Systems, North­

Holland, Amsterdam, 1963, pp 118-161

[9] C. Colby, P. Lee, G.C. Necula, F. Blau, M. Plesko, and K. Cline,

A Certifying Compiler for Java, ACM SIGPLAN Notices, 2000

[1 0] J. Earley, An Efficient Context-Free Parsing Algorithm,

Communications oftheACM, vol13(2), 1970, pp 94-102

[1 1] F. Franek, <;ompiler Design and Implementation using C++ and Java,

manuscript. April 2007 (to be published by Jones and Bartlett)

85

M.ASc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

(12] J. B. Goodenough, The Ada Compiler Validation Capability,

Proceedings of the ACM-SIGPLAN symposium on The ADA programming

language, ACM 1980, pp 1-8.

(13] K.V. Hanford, Automatic generation of test cases, IBM System Journal,

1970, pp 242-258

[14] W. Homer and R. Schooler, Independent testing of compiler phases

using a test case generator, SOFTWARE-PRACTICE AND

EXPERIENCE, VOL. 19 (1), 1989, pp 53-62

(15] JIANG Liyuan, HUANG Guangjun. An automatic system of generating

test cases for compiler. Journal of Northwestern Polytechnical

University, 1992, 10 (2), pp153-158 (In Chinese)

[16] H. KAWATA, H. SAIJO, C. SHIOYA, A practical test program generator

based on attributed grammar, Fujitsu scientific and technical journal

1993, vol. 29, no 2, pp 128-136

[17] J.S. Marr and P.K. Lawlis, Automatic Determination of Recommended

test Combi 111ations For Ada Compilers, Proceedings of the eighth

annual Washington Ada symposium & summer SIGAda meeting on Ada:

software: foundation for competitiveness, ACM, 1991, pp 77-89

[18] B.A. Malloy and J.F. Power; An interpretation of Purdom's algorithm

for automatic generation of test cases. Proceedings of 1st Annual

International Conference on Computer and Information Science, Orlando,

Florida, USA, October 3-5, 2001

(19] B.A. Malloy and J.F. Power, A Top-down Presentation of Purdom's

Sentence Generation Algorithm, Technical Report NUIM-CS-TR-2005-

04, National University of Ireland, Maynooth, 2005

[20] B.A. Malloy and J. T. Waldron, Applying Software Engineering

Techniques to Parser Design: The Development of a C# Parser, ACM

International Conference Proceeding Series; Vol. 30, pp 75-82

[21] R. Mandl, Orthogonal latin squares: an application of experiment

86

M.A.Sc Thesis - Asma M Paracha - McMaster - Computing & Software, 2008

design to compiler testing, Communications of the ACM, 28 (10) (1985),

pp 1 054-1 0513

[22] P. Maurer, Generating Test Data with Enhanced Context Free Gram­

mars, Department of Computer Science, Technical Report Number SE-2,

Baylor Unive sity, Waco, TX, 76798, 1990.

[23] P. Maurer, THE DESIGN AND IMPLEMENTATION OF A GRAMMAR­

BASED DATA GENERATOR, Department of Computer Science, Techni­

cal Report Number SE-1, Baylor University, Waco, TX, 76798, 1991

[24] G. Myers, The Art of Software Testing, Wiley, New York, 1979

[25] G. C. Necula and P. Lee, The design and implementation of a certifying

compiler, ACM SIGPLAN Notices, Volume 39, Issue 4, 2004, pp 612-625

[26] P. Oliver, Experiences in Building and Using Compiler Validation

Systems. I Merwin, R. and J. Zanca, editors, 4. FIPS Conference

Proceedings, New Jersey, AFIPS Press, June 1979, pp 1051-1057

[27] A. Pnueli , M. Siegel and E. Sigerma, Translation Validation,

Proceedings of 4th International Conference, TACAS '98, Held as Part of

the European Joint Conferences on the Theory and Practice of Software,

ETAPS'98, Lisbon, Portugal, March 28 -April4, 1998, pp 151-166

[28] J.F. Power and B.A. Malloy, Metric-Based Analysis of Context Free

Grammars, Proceedings of 8th International Workshop on Program

Comprehension, IEEE Computer Society: Los Alamitos, CA, 200, pp 171-

178

[29] P. Purdom, J Sentence Generator For Testing Parsers, BIT, vol 12, April

1972, pp 366-375

[30] J. Riehl, Grammar Based Unit Testing for Parsers, Master's Thesis,

University of Chicago, Dept. of Computer Science, 2004

[31] B. A. Wichmann and M. Davies, Experience with a Compiler Testing

Tool, Technical report, National Physical Laboratory, England (NPL

Report DITC 138/89), 1989

87

M.A.Sc Thesis - Asma M Paracha - McMaster- Computing & Software, 2008

[32] N. Wirth, Compiler Construction, Addison Wesley 1996

[33] L.Zuck, A. Pnueli, and R. Leviathan, Validation of Optimizing

Compilers, Technical Report MCS01-12, Weizmann Institute of Science

and New York University, 2001

[34] L.Zuck, A. Pnueli, Y. Fang, and B. Goldberg, VOC: A Translation

Validator for Optimizing Compilers, Proceedings of International

Workshop on Compiler Optimization Meets Compiler Verification

COCV 2002, Grenoble, France, April 13, 2002

[35] L.Zuck and A. Pnueli, Y. Fang, and B. Goldberg, VOC: A Methodology

for Transla~tion Validation of Optimizing Compilers, Journal of

Universal Computer Science, pp. 223-247, 2003.

[36] http://www.c~; .nyu.edu/validation/description.html

[37] ISO IIEC 14977: 1996 (E)

88

