OBJECT-ORIENTED LITERATE PROGRAMMING

OBJECT-ORIENTED LITERATE
PROGRAMMING

By
MiING YU ZHAO, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree of

Master of Science
Department of Computing and Software

McMaster University

© Copyright by Ming Yu Zhao, August 2007

ii

MASTER OF SCIENCE (2007) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE: Object-Oriented Literate Programming

AUTHOR: Ming Yu Zhao, B.Sc. (Dalian University of Technology)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: x, 179

Abstract

During the past decades, programming methodology has seen an improvement by
structured programming and object-oriented programming (OOP), leading to soft-
ware that is more reliable and easier to develop. However, software engineers are still
dealing with problems in processing associated documentation. Literate programming
was introduced by Donald Knuth in the early 80’s as an approach to produce pro-
grams together with their documentation in a way that is aimed at consumption by
humans rather than by compilers. However, dated and complex features, dependence
on formatting and programming language, and a lack of methodology prevented the
method from gaining in popularity.

In this thesis, we propose an approach to “integrate” OOP with literate pro-
gramming in order to present and document the whole design in a consistent and
maintainable ‘way. In our approach, both program code and corresponding documen-
tation are generated from the same source. The resulting documentation consists
of code chunks with detailed explanations, as well as automatically generated class
diagrams with varying levels of detail. A tool, Spark, has been developed and applied
to the design of a Transit Information System from requirement analysis to testing.
Spark was also used in its own development.

iii

Acknowledgements

I would like to give my sincere thanks to my supervisor, Dr. Emil Sekerinski, for his
thoughtful guidance, constant encouragement and generous support throughout my
study.

In addition, I am indebted to my examination committee, Dr. Ned Nedialkov and
Dr. Jacques Carette, who have each taken time to offer suggestions and guidance to
improve this work. Also, thanks to Mr. Jian Xu, Mr. Daniel Zingaro, as well as other
friends, who have helped me in the passed two years.

Especially, special thanks go to my wife, Ru Wei, for her love, understanding and

support and to my parents, who taught me how to navigate my life.

iv

Contents

Abstract iii
Acknowledgements iv
1 Introduction 1
1.1 Why Object-Oriented Literate Programming 1
1.2 Confribublons . « « ¢« - : & « 5 v 4 % 58 o 4 % 58 84 5 & 58 % % % » & 3
1.3 Structure of the Thesis 3
2 Related Work 5
2.1 Object-Oriented Programming 5
211 Classand Objecto v ot mom v 5

2.1.2 Inheritance 6

e - - - o 7

2.1.4 Garbage Collection 8

2.1.5 Object-Oriented Approaches 9

2106 LolliimeS. 5 o v s m o s v s 5 0 8l8 5 55 5 v b B B w8 FE S b &4 15

22 Literate Propfamiming . o « « o v a s w o s s v w #s w3 % 5% 5 5 5 8 18
221 AABDBAEE . . . « x o 5 s 5 6 8 68w B e e s B E ek Ak 19

2.2.2 Disadvantages 21

28 OUMIMAYY « « 5 5 5 65 o« 5 % 6 5 65 555 8 & 5.6 8 8 5 % 55388585 22
3 Object-Oriented Literate Programming 24
F1 OVErview . « « s « s v 5 s c 5 5 s o 4 a5 25 6 % 605 &5 % &8 55 5 &5 24
3.2 Document Formatting Languages 26

A%

vi CONTENTS
3.3 Programming Languages 28
< 1 O 29
38 BAIfOrS . o c v 00 v s 5 95 s wa w w68 B 6 b 6B B s & B E S s E EH & T 30
3.6 Reference Developing Process 31

3.6.1 Analysis 31
382 DEHIBN o + « 6 5 5 0 2 8 4 % & 2 v ow n s A ¥ e e Hea s a 32
3.6.3 Implementing 33
B304 Testig, + s s s s v o m s 26 6w 55 5 55 55 50 %5 685 a s 33
3.7 OHRBEAAEY . o o« s ¢ v s 60 % 62 69 B85 A B ES b @ &5 VR & oy - 34

4 Transit Information System Case Study 35

4.1 Transit Information System 35
4.1.1 Requirements, 35
412 AnOverview i 36
4.1.3 Dictionary 36
4.1.4 Identifying Class 38
4.1.5 Identifying Operations 39
4.1.6 Consulting The Library of Model 39
4.1.7 Applying Design Patterns 39
4.1.8 Algorithms Design 44
4.1.9 Automatic Code Listing 71
2130 TeBtng . « « c v s s s 56 3 s BB I s RE I E R BRFH L A E O 3 & 2 72

5 Implementation 75
51 Introduction i i i e e e 75
5.2 Graphic Notation describer 76
o Dromb EBE . .52 2682t 2852 SR ER BB E R AR E T A H L B w u 78
54 BackEnd 100
By NEEbIRE - < 2 n e a6 S RE EREES PNEE DB AP I S RT PR m e o 109

5.5.1 Usability Testing 109
558 Tk Tesbing . » « s 2 s s s s s s s s s s mw o5 2@ &4 & 5 4 110
5.5.3 Integration Testing 115
554 OyslemiTeBling « + w5 v 0 s e s s ko w s B2 TR B B E & w8 115

CONTENTS vii

6 Conclusion and Future Work 116
A Installation 118
A1 Perl e 118
A2 Graphviz.. 118
et DBEHIINE o 6 o 5 5 % 6% 5 5 5 % B E & B ® BD B G EEEN R B RS E S 119
B PYEHON « & 5 5 5 5 5 % % 5 66 2 5 5 86 5 a6 & o w o mmommm o ommwe 119
A5 SmartEiffel 119
B Source Code of Case Study 120
C Generated Code of Case Study 150
D Reference Manual of Spark 170
D1 CodeBloek TAE « » « 5 5 0 6 % 56 54 58 3 66 & 84 « & & 55 5 9 5 3 170
D.2 Graphic Notation Setting 170
D.3 Program Code Quotation. 171
E Document Structure of AsciiDoc 172

F Syntax of Dot 174

List of Figures

2:1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4
9.9

The initial structure of the duck game 15
The refined structure using strategy design pattern 16
Dual usage of a WEB file (adapted from [24]) 19
An example of automatic class diagram. 25
Overview of OOLP environment 26
The Workflow of Spark 29
Object model of transit information system. 37
The attributes of class HPTA_TRANSIT_INFO 40
Class CONNECTION_FINDER 41
Classdatabase 41
The hirarchy of databases 44
The attributes of FILE_.DATABASE 45
The hierarchy of class CONNECTION_FINDER 50
The attributes of class KNOT 50
The methods of class HPTA_TRANSIT_INFO 59
The methods of class ROUTE 66
The methods of class STAFF . . ¢ « « v ¢ ¢ e s 6 s s s a s s 55 5 & s 71
Top-level structure for Spark 76
Top-level structure for Spark front end 78
The structure of Module parseCode 81
Top-level structure for Spark backend 100
Vertical testing 114

LIST OF FIGURES ix

2.6
5.7
5.8
5.9

Horigontal tegbififf - < - o » 2 s s s s s v i s s s s s g s e a5 5 4 114
Method only testing 115
Attribute only testing oo 115
Concise form testing, 115

5.10 Brief formtesting L L Lo oo o 115

List of Tables

5.1 The block structure of graphic notation describer.
E.1 The block structure of AsciiDoc.

F.1 Abstract grammar for the dot language

Chapter 1

Introduction

1.1 Why Object-Oriented Literate Programming

Although object-oriented programming (OOP) is common in the area of computer
software development, it is only one of evolutionary extensions to get to a software
revolution [10]. The past several decades saw the development from early imperative
programming through to OOP and from unstructured programming to structured
one. Each programming paradigm and every progress has shortened the gap between
human beings and machines, the real world and computer software [36, 40]. However,
none of them escape the limitation of instructing a computer what to do. To make
a further progress, we propose a new approach, object-oriented literate programming
(OOLP), which combines the benefits of both OOP and literate programming and
is assured with automated support. Such an approach is desirable for the following

reasons:

e Language-independence: Donald Knuth’s literate programming encourages
programmers to concentrate on explaining to human beings what they want a
computer to do, which does lead to significantly better documentation. How-
ever, the fact that it fails to employ new programming techniques and its
doomed complex features and language-dependence made one still wait for a
better alternative [38]: in spite of the support of tools such as CWEB [25],
noweb [38], FunnelWeb [1], FWEB [27], and OCAMAWEB [29], the depen-
dence on certain programming language or documentation formatting language

1

1. Introduction

is predeterminate. Our approach is more flexible: software engineers can choose
their favorites, both programming languages, like Eiffel [32], Lime [41], Java,
or C#, and formatting languages, such as ETEX [26, 33], AsciiDoc [2], and
DocBook [45).

Consistent, accurate, and readable documentation: it is hard to say
that any software application without qualified documentation is valuable, be-
cause documentation absences, errors and even omissions can undoubtedly lead
to disasters for both end-users and successive software engineers. In fact, all
software development projects must generate a large amount of associated docu-
mentation; a high proportion of software process costs is incurred in producing
documentation. In our approach, any change in program code can affect its
documentation directly and every algorithm, even a single variable, is discussed
properly. This kind of work of literature makes reading technical documentation
fun.

Automated tools support: one of the main benefits of this approach is the
ability to use software tools to analyze program code and generate design dia-
grams. With such tool support, we not only hope for an increase in development
speed, but also for progression towards a more standardized form of documen-
tation.

Object-oriented: programming in an object-oriented language, like Java, is
neither a necessary nor sufficient condition for being object-oriented; the key
is the object-oriented design technique [5]. This approach maintains the con-
cepts and techniques of OOP, so programs still may be seen as a collection
of cooperating objects, which makes the code characterized by flexibility and
maintainability, as opposed to traditional view in which a program may be seen

as a list of instructions to the computer.

Simplicity: it is because of the feature of language-independence that little
extra training is needed. Experienced programmers can begin their OOLP im-
mediately with their favorite OOP language, like Eiffel, and documentation
formatting language, say IXTEX; as to beginners, they can choose the simplest

1. Introduction 3

but powerful enough ones and get jobs done perfectly in a short term. In addi-
tion, there is no extra cost needed on other application software or equipments;
a text editor is good enough. Configurable, platform-independent and open-
source text editors such as VIM [35] and Emacs [7], are perfect for our job.

1.2 Contributions

My contributions include:
e design a scheme to combine OOP and literate programming,
e design and implement Spark, a set of tools supporting this technique,
e propose a reference development process,
e develop a case study, Transit Information System, in the way of OOLP.

OOQOLP, as well as Spark, is an ongoing research project and many aspects are
likely to evolve over time. Therefore, the design of schemes and the implementation
of Spark should be as general as possible. The code of Spark is written entirely in
perl [11, 44], which is good at text processing. Graphviz [14, 20] is employed to
produce diagrams, since we want to avoid looking deeply into layout algorithms.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

e Chapter 2 surveys the related work on object-oriented techniques, and literate
programming. Both advantages and limitations of them are discussed.

e Chapter 3 introduces OOLP by describing its features and predominance as
well as its supporting tools, Spark.

e Chapter 4 studies the case of Transit Information System, which is developed
entirely in the way of OOLP.

e Chapter 5 focuses on the implementation and testing of Spark.

1. Introduction

e Chapter 6 draws the conclusions of our work, in addition to discussing future
work.

Chapter 2

Related Work

In this chapter, a survey of the existing work on both object-oriented techniques and
literate programming implementations is developed where both its advantages and
disadvantages are analyzed.

2.1 Object-Oriented Programming

After the 1990s, OOP became a mainstream technique in software development.
It is widely used successfully in various applications including compiler, graphics,
user interfaces, databases, object-oriented languages, computer-aided design systems,
games, and control system [39]. Basing on abstraction, encapsulation, and poly-
morphism, OOP has more predominance than traditional approaches on reliability,
modularity, compatibility, portability, and efficiency [31]. As studied in detail in sub-
sequent sections, object-oriented techniques, some of which come from previously
established paradigms, can significantly improve these quality factors, which is why
it is so attractive.

2.1.1 Class and Object

In OOP, rather than just a list of instructions to the computer, an executing program
may be seen as a collection of cooperating objects, which distinguishes object-oriented
approach from other non-object-oriented methods [12]. Objects could be anything,
including not only the entities, such as a student, an university, a hospital and a car,

)

6 2. Related Work

but also the abstract concept, such as a plan and an event, so the models or programs
conceived in such a natural way are more understandable.

As the smallest module of programs, an object is equipped with essential attributes
and behaviors and becomes active by executing one of its methods, in which it may
change its state or send messages to other objects, which in turn invokes the execution
of the corresponding methods of those objects. Compare to structured methods, they
focus on functional decomposition; once a complex program has been decomposed
into some programmable sub-functions, the software certainly will work mechanically
just like an assembly line. It is very likely that in order to produce some new “parts”,
developers have to reconstruct a new “assembly line” for both new “parts” and old
ones or maintain two or more “assembly lines” for all at the same time. The following
workload and risk of new bugs could be a disaster for everybody concerned. While
for object-oriented methods, developers only need to prepare some new class(es) for
such an extension. Unfortunately, in practice the changes of whole workflow are more
common than the ones of concrete methods used to process certain object. Hence,
object-oriented programs can enjoy better extendibility and stability.

However, rather than the object, the class is the central concept of OOP. A class
is a kind of abstract data type equipped with a possibly partial implementation,
through which classes establish the necessary link with software construction — design
and implementation. Much of the power of the object-oriented method, such as
inheritance, encapsulation, and polymorphism, derives from this concept.

2.1.2 Inheritance

In OOP, inheritance is a strong conceptual relation that can hold between classes:
a class may be an extension, specialization or combination of others. It is common
that new software expands on previous developments, but problems of repetition and
variation are largely ignored by traditional design methods. Writing the same code
over and over again means not only waste of time, but also the risk of incoming
inconsistencies and errors. With the support of inheritance, one class (subclass)
can introduce itself by capturing the striking commonalities that exist within one or
more mature classes (superclass) and adding the many differences that characterize

individual cases.

2. Related Work 7

The advantages of inheritance also cover a faster modifying mechanism: by in-
heritance, any modification in high level can affect the other related parts of system
immediately. In addition, inheritance divides a system into different abstract levels,
where developers can focus on them one by one without the bother of trivial details
at the very beginning.

When a class inherits its members from more than one ancestor class, this is
called multiple inheritance, which is a debatable feature. Generally speaking, multiple
inheritance make the ancestor relation complex, so any change made in a certain
ancestor may result in some unexpected effects on its successors and a compiler has
to face the problem of processing those identical members. Nevertheless, there are
still some object-oriented programming languages, such as Eiffel, C++, and perl, that
support multiple inheritance with different ways. Eiffel will automatically join the
members with same name and implementation together if they are not renamed by
the programmer explicitly. C++ requires the programmer to state the inheritance
path in detail. Perl uses the list of classes to inherit from as an ordered list. These
contrast with Java and C#, which allow classes to inherit from multiple interfaces
rather than multiple inheritance; this results in no ambiguity.

2.1.3 Assertion

For software programmers, reliability refers to the correctness and robustness of soft-
ware. In order to improve reliability, assertions, boolean expressions, usually written
as annotations are employed to specify what a system behavior is supposed to do
rather than how it does. The use of assertion dates back to Hoare’s 1969 paper
on formal verification [22]. A correctness formula (also called Hoare triple) is an
expression of the form

P {Q} R (2.1)

where () denotes a program; P and R, the properties of @), are called precondition
and postcondition respectively. However, it is only a mathematical notation used to
constrain the properties of programs.

Design by Contract (DBC) proposed by Meyer as a trademark of Eiffel is a formal
technique for dynamically checking specification violation during runtime [31]. The
main idea behind DBC is that a client and a supplier, the elements of a software

8 2. Related Work

system, collaborate with each other according to a “contract”. For example, suppose
method M of class C provides a certain functionality needed by class D. Then, class
D, the client, must fulfil a certain requirement, the precondition of method M, before
invoking method M and as a result, class C, the provider, must ensure a certain
property on the exit of method M, its postcondition. That is:

e precondition constrains the client, so it is an obligation for the client and a
benefit for the supplier.

e postcondition constrains the supplier, so it is an obligation for the supplier and
a benefit for the client.

Only precondition and postcondition are not enough, because they are used to
describe the properties of individual methods. For the global states of a class, Eiffel
supports the concept of class invariant. An assertion I is a correct class invariant for
class C if and only if it meets the following two conditions:

e every constructor of C, when applied to arguments satisfying its precondition in
a state where the attributes have their default values, yields a state satisfying I

e every exported method of C, when applied to arguments satisfying its precon-
dition and a state satisfying I, yields a state satisfying I

Assertions used in preconditions, postcondition, and invariant express the seman-
tic constraints on a class, so it is possible for us to define formally what it means for

the class to be correct.

2.1.4 Garbage Collection

Garbage collection (GC) as one of automatic memory management techniques is used
in most good object-oriented environments. The main idea is that a garbage collector,
a facility included in the runtime system for a programming language, takes care of
both detecting and reclaiming unreachable objects. With this technique, software
developers do not need to worry about memory wasted on useless objects created by
their software any more, so the reliability and timeliness of software products will
surely benefit from it. GC was invented by John McCarthy around 1959 to solve

2. Related Work 9

the problems of manual memory management in his Lisp programming language [30].
The basic principle of how a mark and sweep garbage collector works is:

e mark phase, staring from the origins, follows references recursively to traverse
the active part of the structure, marking as reachable all the objects it encoun-
ters

e sweep phase traverses the whole memory structure, reclaiming unmarked ele-
ments and erasing all the marks

Classical garbage collectors are inactive as long as there is enough memory avail-
able for the application. Its advantage is that it causes no overhead before the collector
is triggered and a serious potential drawback is that a complete mark-sweep cycle may
take a long time — especially in a virtual memory environment. Therefore, GC is
rarely used on embedded or real-time systems.

To pursue better performance, some techniques were employed. First of all, en-
dow developers with some control over the activation and deactivation of collector
cycles. If a system contains a time-critical section, which mush not be subject to
any unpredictable delay, the developer may put a “stop sign” at the beginning of the
section and show a “green light” at the end; and at any point where the application is
known to be idle, the developer may ask collector to work immediately. In addition,
ones also use generation scavenging, the philosophy behind which is that the more
garbage collection cycles an object has survived, the better chance it has of surviving
many more cycles or even remaining forever reachable. Although this technique helps
through lessen the frequency of collector cycles on “old” objects, there remains a
need to perform full collections occasionally. Parallel collection, one of the practical
solutions for GC, requires two separate threads: the application and the collector.
During the execution of an object-oriented system, the application creates as many
new objects as it needs; the collector free them continuously according to the principle
mentioned above.

2.1.5 Object-Oriented Approaches

In contrast with structured approaches, which focus on functional decomposition
from the perspective of “input-process-output”, many object-oriented approaches

10 2. Related Work

have been derived from these exceedingly popular object-oriented techniques dis-
cussed above. Each of them has introduced a set of new modelings or notations. The
rest of this section presents summarily five popular ones: Responsibility-Driven De-
sign (RDD) [46], Object Modeling Technique (OMT) [39], Business Object Notation
(BON) [43], Catalysis [13], and Vienna Development Method (VDM++) [16].

RDD

RDD, conceived by Rebecca Wirfs-Brock in 1990, is a shift from thinking about
objects as data plus algorithms to thinking about objects as roles plus responsibilities.
In a responsibility-based model, objects play specific roles and occupy well-known
positions in the application architecture, which is a smoothly-running community of
objects. Each object is accountable for a specific portion of the work and all objects
collaborate in clearly-defined ways, contacting with each other to fulfill the larger goals
of the application. By creating such a “community of objects,” and assigning specific
responsibilities to each, developers build a collaborative and flexible model of their
application. On the other hand, developing consistent control styles for similar parts
of the application may reduce the maintenance costs and incorporating flexibility
into the design at specific “flex points” allows for planned extensions. Therefore,
responsibilities are a good way to think about the behaviors of complex software

systems. RDD consists of the following steps:

e create a CRC (Class, Responsibility, Collaborator) card for each candidate class,
which usually is a noun with a small well-defined set of responsibilities

e identify and assign the responsibilities to candidate classes by asking what this
class’s objects need to know and what steps towards accomplishing each goal
these objects should be responsible for

e find collaborations for candidate classes by asking what other objects need those

result
e build inheritance hierarchies for all classes if necessary.

e identify subsystems by drawing the collaborations graph and then looking for
strongly coupled classes

2. Related Work 11

e construct protocols for each class

e implementing design

OMT

OMT, developed circa 1991 by Rumbaugh, Blaha, Premerlani, Eddy and Lorensen,
is one of popular object-oriented development methods today. It is primarily used
by system and software developers supporting full life-cycle development, targeting
object-oriented implementations. Because of its simple core notation, OMT has
proven easy to understand, to draw, and to use. So it continues to be successful
in various application domains, such as telecommunication, transportation, and com-
pilers. OMT consists of the following phases:

e analysis phase: understand and model the application and the domain within
which it operates by formal models: the object model specifies what it happens
to, the dynamic model specifies when it happens, and functional model specifies
what happens.

— object model: capture the static structure of a system by showing the ob-
jects in the system, relationships between these objects, and the attributes
and operations that characterize each class of objects

— dynamic model: describe the control flow, interactions, and operating se-
quences of the system and consist of multiple state diagrams

— functional model: describe computations within a system
e system design phase: determine the overall architecture of the system

— organize the system into subsystems
— identify concurrency
— allocate subsystems to processors and tasks

— handle the boundary conditions and the system resources, especially the
permanent data.

— choose software control implementation

12 2. Related Work

e object design phase: determine the full definitions of the classes and associations
used in the implementation, as well as the interfaces and algorithms of the

methods used to implement operations.

e implementation phase: discuss the specific details for implementing a system
using programming languages and database management systems.

BON

BON, developed in the early 1990s by Jean-Marc Nerson and Kim Walden, is a means
of extending the higher-level concepts of Eiffel into the realm of analysis and design
aided by a set of graphical notations. These graphical notations do not include the
associations, multiplicities, and state-charts that can be found in nearly all object-
oriented analysis and design notations today. BON consists of informal charts, static
architecture, class interfaces, dynamic scenarios and nine standard tasks are grouped

into three parts:
e gather analysis information

— delineate system borderline
— list candidate classes

— select classes and group into clusters
e describe the gathered structure

— define classes
— sketch system behavior

— define public features
e design a computational model

— refine system
— generalize

— complete and review system

2. Related Work 13

Catalysis

Catalysis coined by Desmond D’Souza and Alan Cameron Wills is a method for
component-based and object-oriented software development. It provides a strongly
coherent set of techniques for business analysis and system development using Unified
Modeling Language UML) and is characterized by following:

e Traceability from business models to code

e Precision, with clear unambiguous models and documents

Component Based Development

Reuse of designs, specifications, problem domain models, and even architec-
tures

Scalability from small to large teams and projects

Process that is flexible yet repeatable, with multiple “routes”

Catalysis believes that these is no single process that fits every project: each
one has different starting points, goals, and constraints. Therefore, it provides a
list of process patterns that help developers plan a project appropriately to their
situation [13].

VDM++

VDM++ is extended by Nico Plat, Paul Mukherjee and, later, Marcel Verhoef from
VDM. It employs a formal notation to complement and enhance object-oriented class
models and its development process consists of the following ten steps:

1. determine the purpose of the model.
2. read the requirements.
3. analyze the functional behavior from the requirements.

4. extract a list of possible classes or data types and operations. Create a dictio-
nary.

14 2. Related Work

5. sketch out representations for the classes using UML class diagrams. This in-
cludes the attributes and the associations between classes. Transfer this model
to VDM++ and check its internal consistency.

6. sketch out signatures for the operations. Again, check the model’s consistency
in VDM++. The development is continued by adding operation signatures (the
formal parameters and the result) at the class diagram level.

7. complete the class or data type definitions by determining potential invariant
properties from the requirements and formalizing them. To make the model
more comprehensive, it is a good idea to review the model to check coverage of
the requirement. Document important properties or constraints as invariants.
Before being able to validate the model created so far it is also necessary to
consider how to construct instances of the different classes. In VDM++, con-
structors are simply written as operations with the same name as the class in
which they are defined.

8. complete the operation definition by determining pre- and postcondition and
operation body, modifying the type definition if necessary.

9. validate the specification using systematic testing and rapid prototyping. Three

methods are used here:

(a) integrity properties are formal descriptions of system properties that can
be generated automatically by VDMTools.

(b) VDMTools supports validation using conventional testing techniques, in-
cluding features to enable test coverage documentation directly at the
VDM++ level.

(c) validation can be made executing models together with other code, e.g., a
graphical front end.

10. implement the model manually or using automatic code generators that produce

directly compilable code in C++ or Java.

2. Related Work 15

2.1.6 Critiques

We have introduced some object-oriented techniques and five object-oriented ap-
proaches. However, it is not necessarily followed by a reusable, robust, modifiable,
and maintainable software applications. The rest of this section explains several other
issues that contribute to a satisfying software applications.

Design Patterns

The work of designing a good object-oriented software is easy to say, but difficult to
do [18, 19]. Although design patterns may introduce some more classes through dele-
gation and inheritance, they do provide partial solutions to some common problems,
including analysis [17, 28], system design [6], middleware [34], process modeling [3],
dependency management [15], and configuration management [4]. Let us take the
strategy design pattern for instance. Suppose that there is a requirement of a duck
pond simulation game, which can show a large variety of duck species swimming and
making quacking sounds. Basing the standard object-oriented techniques and ap-
proaches discussed above, developers may naturally define one Duck superclass from
which all other duck types inherit as shown in Figure 2.1. Since all ducks quack and
swim, the superclass takes care of their implementations, while every subclass has to
be responsible for implementing its own display function.

Duck
quack()
swim()

display()

WoodDuck CombDuck -
display(){ display(){
lIshow wood duck l/show comb duck i
} }

Figure 2.1: The initial structure of the duck game

16 2. Related Work

Unfortunately, the extendibility of such a design structure is not satisfying. What
will happen if here come two new requirements: let all existed ducks fly and add
some rubber ducks, which can neither quack nor fly? Apparently, inheritance and
overriding can not be the answer, because the specification will keep changing and
developers will be forced to keep an eye on and possibly override fly method and quack
method for every new subclass; trying to declare some interfaces, such as Flyable and
Quackable, for the changes must lead to a mass of duplicate code.

The strategy design pattern seems to be a key to such a problem. The main idea
of it is to decouple a policy-deciding class from a set of mechanisms so that differ-
ent mechanisms can be changed transparently from a client. In other words, all the
“problematic” behaviors, such as quack and fly, should be taken out of the super-
class and then assigned to the specific duck according to concrete circumstances (see
Figure 2.2). In this way, all the concrete strategies like FlyWithWings, FlyNoWay,
Quark, and Mute can be substituted at runtime and new behaviors also can be added

without modifying the other parts.

Duck <<interface>>
FlyBehavior
FlyBehavior flyBehavior <
QuackBehavior quackBehavior <> S0
swim() — e — L . e — |
display() | »
quack() FlyWithWings FlyNoWay
fly()
; fly({ fly(Of
sefFlyBehavior() z " .
setQuackBehavior() ;llmplement flying ;/do nothing
<<interface>>
£ QuarkBehavior
quark()
WoodDuck CombDuck I
display({ display(){ A
// show wood duck // show comb duck ESSA I |
} } £ i
|
RubberDuck Dk Muts
- quark(){ quark(){
display(){ 2 g
J/show rubber duck ;llmplement quark ;/do nothing
}

Figure 2.2: The refined structure using strategy design pattern

Through the example above, we can say that knowing the object-oriented basics,

2. Related Work 17

abstraction, encapsulation, polymorphism, and inheritance, as well as some popular
approaches do not make one a good object-oriented designer. As practical object-
oriented experience, design patterns show designers how to build systems with better
qualities: reusability, extensibility, and maintainability, not concrete program code.
More and more good patterns are going to be discovered by the following principles:

e Encapsulate what varies.

e Favor composition over inheritance.

Program to interfaces, not implementations.

Strive for loosely coupled designs between objects that interact.

Classes should be open for extension but closed for modification.

Depend on abstractions rather than concrete classes.

A class should have only one reason to change.

Software Documentation

Software documentation is written text that accompanies and explains computer soft-
ware. Its absence, insufficiency, or inconsistency means the loss of the partial or even
total previous effort, because the program will undergo modifications due to errors or
changes of requirements and reuses in other software applications. All large software
development projects, irrespective of application, generate a large amount of associ-
ated documentation, mainly including the project plan, quality plan, requirements
specification architecture description, design documentation, technical documenta-
tion, user manuals and test plan [42].

OOP did achieve a major improvement in the analysis and design of software, but
it also suffers the problems coming from the consistency and readability of software
documentation. The reason of that comes mainly from the documentation mechanism
itself. Like traditional programming paradigms, OOP separates most documentation,
such as design documentation and architecture description, from code, so it is hard to
keep all this pivotal documentation up-to-date and synchronized. Especially for large
projects and plus the time pressure, the inconsistency of documentation gets worse.

18 2. Related Work

On the other hand, although technical documentation, which is used to explain class
as well as its members, data structures and algorithms, is embedded within the source
code as comments and may be supported by automatic documentation tools, such
as doxygen [21], Javadoc, and TwinText [37], it is always short and organized in an
order suitable for compilers rather than human beings.

In addition, software documentation without graphical notations is neither ex-
pressive nor appealing. In fact, most popular programming approaches today have
their own set of graphical notations used to create an abstract model for their tar-
get software systems, which, especially the complex ones, enhance the importance of
graphical notion. Usually, these notions are constructed by developers manually and
then included into the corresponding software documentation. So incomplete changes
may lead to inconsistency, which is the reason for other readers’ misunderstanding.

2.2 Literate Programming

Introduced by Donald Knuth in the early 80’s, literate programming is an approach
that combines a programming language with a formatting language, thereby making
programs more robust, more portable, and more easily to maintain than programs
written only in one high-level language [9, 24, 38]. Its main idea is to treat a pro-
gram as a work of literature, which is used to explain to human beings what it let
a computer do rather than to instruct a computer what to do. The program is also
viewed as a hypertext document, rather like the World Wide Web. By contrast with
other programming paradigms, the program source code is embedded into documen-
tation rather than the other way and the practitioner of literate programming needs
to manipulate two kinds of languages simultaneously, neither of which can provide
significantly better documentation of programs by itself.

The first published literate programming environment is WEB [23], which uses
Pascal as its underlying programming language and TEX [26] for typesetting of the
documentation. Pascal makes it possible to specify the algorithms formally and un-
ambiguously, while TEX provides typographic tools to explain the local structure of
such parts. The structure of WEB program may be thought of as a “web” that is
made up of many interconnected modules, which may contain the actual program
source code, abbreviations for the code, and description of the code. All the modules

2. Related Work 19

should be subdivided until their functionality is easily understandable. In WEB, the
“bilinguist” writes such a program that serves as the source language for two differ-
ent system routines as shown in Figure 2.3. Besides WEB, other implementations
of this concept are CWEB [25], FWEB [27], noweb [38], FunnelWeb [1], and OCA-
MAWESB [29]. Some of them are different versions of WEB for documenting specific
programming languages, such as C++ and Fortan, while others are documentation
formatting language independent, such as noweb, and FWEB.

T]Jx
& TeX — DVI
=

WEB

z \
PASCAL

Figure 2.3: Dual usage of a WEB file (adapted from [24])

2.2.1 Advantages

As an efficient way to combine source code and its documentation, literate program-
ming enhances the quality of programs. Its programs are characterized by flexible
programming order, lossless factoring, better readability and better maintainability.

Flexible Programming Order

In literate programming, a program consists of some modules, which can be organized
in arbitrary order without the constrain coming from compilers. So a programmer
can choose the order best suited to explaining to human beings what he or she want
a computer to do. In other words, this principle encourages the author of a literate
program to take the time to consider each fragment of the program in its proper

20 2. Related Work

position. The reordering is especially useful for encapsulating tasks such as input
validation, debugging, and printing output fit for humans.

Factoring

Traditionally, a function is the smallest ordered list of computer instructions and the
compiler requires the full text of its algorithm to be held together continuously. This
is the reason that overweighed code chunks can be found everywhere. To improve
this situation, Knuth introduced a decomposition facility into the meta-language.
With this technique, the definition can be broken into constituent parts without the
extra cost for defining new functions. Therefore, every part of any algorithm can be
discussed in detail sufficiently.

Readability

Knuth believes that a program should be regarded as a work of literature. By such a
literary style of writing, programmers enjoy the freedom to discuss the design decisions
as well as constraints that may lead to certain intricacies in their implementation. A
program presented in book form is certainly characterized by better readability.

Maintainability

Since factoring and literary style endow programmers with the ability to describe
their algorithms as well as the trade-offs in detail fully, every reader, including the
author, can understand the program totally at any time. When an alteration is
required, it should be fairly obvious which part of the “book” needs to be modified.
Similarly, the description concerning such a alteration will be used as a reference for

other maintenance or development later.

In a word, maximized factoring, detailed description and literate sequence bring
literate programs better readability, which in turn makes the programs easer to be

maintained.

2. Related Work 21

2.2.2 Disadvantages

We have introduced Knuth'’s literate programming as well as its advantages. It turns
out to be a good approach to produce better documentation and to improve the qual-
ity of software, but literate programming has not become a mainstream technique in
software development yet. The reasons for this reside in the fact that writing literate
programs requires additional time in comparison to writing “illiterate” programs and
the limitation of language-dependence.

Time Overhead

There are following several issues that contribute to the time overhead. Literate
programmers need longer time to learn before staring to work than traditional pro-
grammers do. Besides specific programming language and compare to Javadoc and
TwinText, which are Source Code Documentation Tools rather than literate program-
ming tools, they have to learn to install and configure the set of applications that
support literate programming. Additionally, the harder part is learning how to prop-
erly write literate programs. So the longer learning curve of literate programming is
a challenge to the beginners’ patience.

Literate programming forces programmers to develop software applications us-
ing a completely different perspective, where the developers should first make their
thoughts clear to everybody. In order to fulfil this requirement, only the ability of
programming is obviously insufficient. It is because there are too many choices of
expression way, order, and factoring extend to choose that literate programmers have
to sacrifice time for the best.

In addition to programming errors, two new types of errors are introduced by this
technique: WEB structural errors and formatting errors. The former are those caused
by the incorrect use of the WEB’s own language required to define the structure of
a program. Since both Weave and Tangle routines use such structure as an input,
this kind of error can the be propagated into programming and formatting language
errors. Formatting errors are those caused by the misuse of formatting language.
Similarly, these errors could affect other parts of a program.

For literate programmers, there is only one way to obtain the executable program.
They have to run the Tangle routine over the WEB file first and then compile the

22 2. Related Work

output. If there exist any programming errors, they can not be found until executable
program is built. In order to correct them, developers have to go back to the WEB
file, make changes, then run the Tangle, and compile the output again.

Language-dependence

The first published literate programming environment is WEB [24], introduced by
Donald Knuth in 1981; this system uses TEX as the document formatting language
and PASCAL as the programming language. It is true that as long as a person knows
both of the underlying languages, there is no trick at all to learning WEB, but what
does it mean for those who do not know these two languages or for the circumstance
that the underling languages do not suit for the programming of the target project?

In the section “The WEB System” of his Computer Journal article, Knuth ad-
dressed that the same principles would apply equally well if other languages were
substituted: instead of TEX one could use a language like Scribe or Troff; instead
of PASCAL, one could use ADA, ALGOL, LISP, COBOL, FORTRAN, APL, C, or
even assembly language. However, all the literate programming systems derived from
WEB depend on one or both underlying languages. CWEB is created by Donald
Knuth and Silvio Levy as a follow up to Knuth’s WEB, using the C programming
language instead of PASCAL. OCAMAWERB is a CWEB like literate programming
tool, which is a combination of the MATLAB [8] language and ETEX. Although
noweb, FunnelWeb, and FWEB, can work with multiple programming languages,
they still depends on their document formatting language respectively.

2.3 Summary

As a software application development approach in mainstream, object-oriented pro-
gramming improve the quality of program, which includes reliability, modularity, com-
patibility, portability, and efficiency. The reason for this resides in the object-oriented
techniques, such as class, object, inheritance, polymorphism, and abstraction. Its
improvement on documentation and design approach as well as supporting tool is
not satisfying. On the other hand, literate programming could produce significantly
better documentation and improve the quality of software. However, its inevitable

2. Related Work 23

time overhead and language-dependence prevent literate programming from being a
mainstream technique in software development.

Chapter 3

Object-Oriented Literate

Programming

The previous chapters explored the the goals of OOLP and related research. In this
chapter, we take a closer look at OOLP from the perspectives of its key aspects and

supporting tools.

3.1 Overview

Nothing concerning OOLP is intrinsically new; what we have done is combined a
number of ideas that have been in the field for a time. All of these techniques have
their own advantages. By applying them systematically in a slightly new way, we
propose a new programming paradigm — OOLP, which is anatomized in the following
sections.

The practitioner of OOLP can be regarded as an essayist whose main tasks are to
break the whole program into little pieces and to order or reorder them for pursuing
the best suited to explaining what this software is doing. Every algorithm, even a
single variable, is discussed properly in its natural place. In this way, the program
and its documentation, including diagrams, are always consistent with each other.
On the other hand, it still can be viewed as a collection of loosely connected objects,
each of which is responsible for a certain specific task, which is a natural way for
human beings to cognise the world. Therefore, this kind of works of literature is

24

3. Object-Oriented Literate Programming 25

characterized by readability, reusability, flexibility, and maintainability.

Class diagrams are used in nearly all object-oriented analysis and design methods
today. They can present readers a clear and intuitive view of the system structure. All
existing literate programming tools would require developers to draw them by hand.
In OOLP, Spark allows them (see Figure 3.1) to be generated automatically and
inserted around the corresponding code part. Such automatic feature of Spark not
only lightens developers’ workload, but also ensures the consistence of class diagrams
with the program code.

ght
bt

TeeNode
Set TreeSet \
p :iteger
s :setof nteger a :bookan
Set) ki~ — — — - TreSet) T b
add kantegen) add kntegen) TreeNode f:nteger)
has{dteger) :bookan hasfx:nteger) :bookan add kntegey)
has kdnteger) :bookan
addToChiH

Figure 3.1: An example of automatic class diagram.

Like WEB, the programming environment of OOLP itself is chiefly a combination
of two other languages: (1) a documentation formatting language and (2) a program-
ming language. The difference is that programmers can choose their favorite or most
suitable combination of these two kinds of languages. The main point is to let the
practitioners of OOLP enjoy the power of the inherently bilingual tool, and get rid
of the limitation of language-dependence.

In OOLP, the documentation formatting language provides tools to explain the lo-
cal structure of documentation parts and to build the documentation that describes
the program clearly and that facilitates program maintenance, while the program-
ming language makes it possible to specify the algorithms formally and to obtain a
machine-executable program. In addition, the supporting tool, Spark, is responsible

26 3. Object-Oriented Literate Programming

DOC TOOLS
PIC
OOLP
Sp 4
—— REL
COMPILER

Figure 3.2: Overview of OOLP environment

> DOC

for reconstructing compiler-acceptable code files, inserting continuous program code
back to documentation, and building graphical notations.

3.2 Document Formatting Languages

Since OOLP dose not fix on any specific document formatting language, a programmer
can choose anyone from the popular text based document generation systems, such
as AsciiDoc [2], BTEX, and DocBook [45]. The main point is that the target source
file can be edited by arbitrary text editor platform-independently and that Spark can
parse and process the target source file.

Let us look at this process in slightly more detail. Suppose AsciiDoc is used as the
document formatting language and we have written an OOLP program and put it into
a computer text file called EXAMPLE.TXT. The concrete syntax of AsciiDoc can be
found in Appendix E. To generate hardcopy documentation for the program, we can
run asciidoc.py, which is an executable program that takes the file EXAMPLE.TXT
as input and produces another file as output. By setting different command line
parameters, we can ask AsciiDoc to produce several predefined back end outputs, in-
cluding DocBook, HTML, LinuxDoc, and BTEX. Take the KTEX output for example,
after running the following command, we can have a file EXAMPLE.TEX as output.

3. Object-Oriented Literate Programming 27

asciidoc.py —unsafe —backend=Ilatex EXAMPLE. TXT

Then we run the IXTEX processor, which takes EXAMPLE.TEX as input and produces
EXAMPLE.PDF as output.

pdflatex EXAMPLE. TEX

By default, AsciiDoc produces plain HTML 4.01 file. We can simply run the following
command,

asciidoc.py EXAMPLE. TXT

Then, we will get a file named EXAMPLE.HTML.

To use AsciiDoc, we need to setup the environment first (see Appendix A).

The process is the same for other document formatting languages, but the features
of OOLP are denoted a little differently. For example, a piece of program code is listed
in AsciiDoc as following:

feature {ANY}
STAFF...match (id: INTEGER): BOOLEAN is
require
id >= 0
do
Result := id = number
end

In DocBook, the same code goes as following;:

<programlisting>
feature {ANY}
STAFF...match (id: INTEGER): BOOLEAN is
require
id >= 0
do
Result := id = number
end
</programlisting>

In KTEX, it is listed as following:

28 3. Object-Oriented Literate Programming

\begin{verbatim}
feature {ANY}
STAFF...match (id: INTEGER): BOOLEAN is
require
id >= 0
do
Result := id = number
end
\end {verbatim}

Graphic notations are included in different ways too. For example, in AsciiDoc,
a picture is included as following;:

image: :hpta_transit_info.jpgl[Object Modell
//$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE QVERTICAL

“hpta_transit_info.jpg” is the picture’s name and followed by its attribute, “Object
Model”. “//” denotes a comment line, which will be omited by AsciiDoc com-
piler, but Spark considers it as a setting of the diagram: HPTA_TRANSIT_INFO,
DATABASE and FILE_DATABASE are explained as the classes included in this dia-
gram; QVERTICAL means that the diagram must be drawn vertically. Other settings
are discussed in Charter 5.

In DocBook, the same picture is included as following;:
<figure><title>Object Model</title>
<graphic fileref="hpta_transit_info.jpg"></graphic>

<!--$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE QVERTICAL -->
</figure>

In BTEX, it is included as following:

\includegraphics [width=100mm, height=65mm]{hpta_transit_info.jpg}
%$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE QVERTICAL

3.3 Programming Languages

In OOLP, programmers can also choose their programming language from multiple
popular candidates, such as Java, C#, Eiffel, Lime, and C++. In principle, any pro-
gramming language, like PASCAL, Basic, and even assembly language, is eligible for
being such a candidate, but in this paper, we only focus on object-oriented program-

ming languages.

3. Object-Oriented Literate Programming 29

Since in literate programming, the continuous program written in certain pro-
gramming language has been broken into sections and ordered best for explaining to
human beings, the traditional process of “compile, load, and go” has been slightly
lengthened to “reassemble, compile, load, and go”.

3.4 Spark

Spark consists of two parts: front end and back end. The front end takes an OOLP
program as input and produces a number of program source code files as well as one
graphic notation script file; the back end takes the graphic notation script file as input
and produces a number of DOT files, which are used to feed GraphViz. GraphViz
generates all the diagram files upon the request (see Figure 3.3). This structure
decouples the programming language parsing from the algorithm of diagram layout
so that different mechanisms can be changed transparently from each other.

Figure 3.3: The Workflow of Spark

Two issues contribute to the fact that Spark gets rid of the limitation of the
language-dependence in all existing literate programming tools. First, Spark focuses
only on the code blocks and picture blocks and considers the other parts in OOLP
programs as comments. In other words, as long as the document formatting language
can work well by itself, Spark can accept it. Second, by providing different front

30 3. Object-Oriented Literate Programming

ends, Spark can be easily extent to adapt to various programming languages (see
Appendix D).

It is because Spark parses program code partially that it can help to debug the
program. Spark generates graphic notation automatically. This not only lightens the
workload of developers, but also ensures the consistence of diagrams with code. The
usage of Spark is simple, i.e. the front end followed by the OOLP program file. For
example, the front end for Eiffel is chose and the program is still EXAMPLE.TXT,
then the command is:

perl sparkf-eiffel.pl EXAMPLE. TXT

3.5 Editors

All the supporting tools are independent software and can be either embedded into
any extensible edit platform as plug-ins or called under OS shells, So there is no
specific requirement for its editor. In this paper, as an example we choose VIM,
which is a highly configurable text editor built to enable efficient text editing platform-
independently. In what it follows we will show how to build a integrated development
environment (IDE) by using the supporting tools as well as VIM.

vim EXAMPLE. TXT

To make the work easier, we can define a new command for VIM as following:
:command Spark :!perl sparkf.pl %

Then as long as finishing editing the OOLP program in VIM, we can switch to the

command mode and input the new command set above as following:
:Spark

Whenever the command, Spark, is invoked, it begins to parse the current source file,
and then both program code files and graphic notation files have been generated
immediately if no errors. In this way, we can call the compiler to compile the source
code and use other document formatting language tools to produce the consistent

document.

3. Object-Oriented Literate Programming 31

3.6 Reference Developing Process

Basing the existing object-oriented approaches such as RDD, OMT, BON, Catalysis
and VDM++ (see Section 2.1.5), we propose a reference developing process, of which
each step is discussed in details in the rest of this section.

3.6.1 Analysis

In object-oriented software development, this phase takes the input of a fuzzy, min-
imal, possibly inconsistent target specification and produces the output of a un-
derstanding, complete, consistent description of essential characteristics and behav-
ior. The final product, object, distinguishes object-oriented analysis from other ap-
proaches, such as structured analysis and Jackson’s method [12].

Creating a Dictionary

The correctness of understanding the main terms used in the requirements is the key
to get the correct model of the target system, so the dictionary must be as detailed
and rigorous as possible. The potential classes and types identified in the dictionary
could then form the basis of a class diagram, whereas the potential operations might
be described as use cases. This idea comes from VDM++.

Identifying Classes

Object-oriented software consists of classes, which describes a group of objects with
similar properties, common behavior, common relationships to other objects. So the
main task of this step is to find out all classes from the dictionary constructed and
keep the number of entities in the initial model as small as possible at the same time.
The principles are listed as following;:

e Omit those nouns, if they are irrelevant with the purpose of the system.
e Model those nouns as attributes, if they have only trivial functionality.

e Create an overall class to represent the entire system so that the precise rela-
tionships between the different classes and their associations can be expressed
there.

32 3. Object-Oriented Literate Programming

e Whenever an association is introduced consider its multiplicity and give it a
role name.

e Try to keep encapsulation by the modifiers such as private and protected.

e Document important properties or constraints as invariants.

Sketching Operations

An operation is a function or transformation that may be applied to or by objects
in a class. The aim of this step is to try to describe all the operations listed in the
dictionary with signature (parameters and result) and formal specification (pre- and
postcondition). Then, assign them to the classes identified respectively. This idea
comes from BON, Catalysis, and VDM++.

Constructing Initial Model

An object model captures the static structure of a system by showing the objects
in the system, relationships between the objects and the attributes and operations
that characterize each class of objects. This model provides an intuitive graphic
representation of a system and is valuable for communicating with customers. This
idea comes from OMT and VDM++; Spark supports the automatic generation of this

model.

3.6.2 Design

During analysis, the focus is on what needs to be done. During design, decisions are
made about how the problem will be solved better. This goal can be approached more
efficiently by employing the successful experience such as existing business models and

design patterns.

Consulting Existing Business Models

A business model is the object model that has been employed successfully in a certain
actual project. Such well-found business model can bring us not only the speed
of development, but also the quality of software product, after all it have passed

3. Object-Oriented Literate Programming 33

the enough arguments and testing. So as long as a business model can meeting
the requirements of the target system entirely or partially, we should replace the
initial model generated in analysis with it entirely or partially. This idea comes from
Catalysis.

Applying Design Patterns

We can not expect to find out everything in our library; in more cases, we need
construct a new one. Then, what kind of design is good design? This question is
ignored by most existing object-oriented approaches. We recommend design patterns,
which can provide the answer (see Section 2.1.6). In this step, many new classes may
be introduced into the current model, but this is we have to pay for the design with
better flexibility, extensibility and reliability.

3.6.3 Implementing

The goal of Analysis and design is to bridge the gap between the real world and com-
puter domain; the goal of this portion is discuss the specific details for implementing
a system using programming languages. By the aid of Spark and literate tools, one
can debug the program and view the document freely.

3.6.4 Testing

Testing is the process used to measure the quality of developed computer software.
Since software is developed by human beings, it is inevitable that there exist some
errors. Therefore, testing must be conducted for every computer software.

In order to cover the correctness, completeness, security, reliability, usability and
portability of software, one needs to perform the following tests:

e Usability testing, which tries to find faults in the user interface design of the
system.

e Unit testing, which tries to find faults in participating objects.

e Integration testing, which is the activity of finding faults when testing the
individually tested components together.

34 3. Object-Oriented Literate Programming

e System testing, which tests the entire system.

— Functional testing, which tests the requirements.
— Performance testing, which checks the design goals.

— Acceptance testing, which check the system against the project agree-
ment and is done by the customer.
3.7 Summary
This chapter has introduced the following major features of OOLP and Spark:

e Including program code and graphic notations in various document formatting
languages.

Setting graphic notations

Setting up the developing environment.

Using Spark to generate graphic notation files and program code.

Constructing OOLP IDE with VIM.

A reference developing process

Chapter 4

Transit Information System Case
Study

In this chapter, by an example, Transit Information System, we demonstrate how
to use the technique of OOLP in developing software. The source code is listed in
Appendix B. The rest of this chapter that follow is the actual output of an OOLP
program file.

4.1 Transit Information System

4.1.1 Requirements

In this project, we are asked to develop an information system for a local train and
bus service. Our customer, HPTA (Happy Passenger Transit Authority), has no clear
picture what it should do, except to increase customer satisfaction and make traveling
more attractive. All the information we have goes as follows:

e It will be used by passengers as well as by HPTA staff.
e Selected staff members would be allowed to update the information.

e Passengers should be able to enter their start and destination, a desired time,
and get a bunch of possible connections.

e Connections can be direct or with changing busses or trains.

35

36 4. Transit Information System Case Study

e For each bus and train station, the information like opening hours and accessi-

bility is maintained.

e Users can browse a list of all bus and train routes or check the details of a
certain route..

e Some bus stops and train stops are conjoint, but some not.
e Trains have two-digit numbers and busses have three-digit numbers.

e Connections between trains and busses must have at least five minutes for the
change.

For simplicity, we assume that detours and delays do not occur, stops are never
skipped.

4.1.2 An Overview

The following picture (Figure 4.1) is the object model of transit information sys-
tem. As the root class, HPTA_TRANSIT_INFO controls the whole system from
the beginning to the end. Class DATABASE is a deferred class, whose subclasses,
such as class FILE_DATABASE, are responsible for maintaining system data. Class
CONNECTION_FINDER is also a deferred class, whose subclasses, such as class
PRIME_FINDER, are responsible for finding the possible connections.

The purpose of the application is to maintain the system information, including
local train or bus service and the status of staffs, and provide users current public

transit service information, including possible connections and routes.

4.1.3 Dictionary

To understand the main terms used in the requirements, we create a dictionary as

following:

e passenger: a person, who want to get his or her destination by bus or train.

e staff: a person, who works for HPTA.

4. Transit Information System Case Study

HPTA_TRANS I'_NFO

m ake

set_database fiew_database DATABASE)
dekta_m enu

update_m enu

m enu

set_finderfiew_fhderCONNECTDN_FNDER)

DATABASE

m n_tan_moute_num :NTEGER
m ax_bus mute_num :NTEGER
max_tmn_route_num :NTEGER
m n_bus_moute_num : NTEGER

Do Dmnins e CONNECTDN_FNDER

find_staffhum :NTEGER) tan_the :NTEGER

add_mute new__moute ROUTE) bus tihe : NTEGER

get_next_trai_mute oute RO UTE) change_tin e : NTEG ER

:’:—‘”“"ﬂ:“m S get_connectbn (base DATABASE jstartdesthaton S TR NG st @ SN TEG ER)
_bcked

add_staffhew_staffS TAFF)
get_next bus_mute (oute ROUTE)
do_save

delete_staff(staffsS TAFF)
delete_rmute goute RO UTE)

FILE_DATABASE
fe_nam e :STRNG
get_fist_bus _moute
get_next tran_mute goute RO UTE) P B N MO ER
fnd_mute um INTEG ER) desie_tin e : NTEG ER
8_bcked
a Staffhew__staffs TAFF) v.t.’::xl-x-s'x‘k'rn"n\m INTEGER)
L ma

g:"‘j_’:,’:‘-”“‘—"'“"' Ote ROTTE) add_node PraN TEG ER jsS TAT D N jttnum SNTEGER)

. get._connectbn_m es thdexNTEG ER)
:;:”"“'" TEIRGER) i _busfum INTEGER)

add_bus_tmh_station tbase DATABASE mam e STR NG stin e :NTEG ER)
:..bk. I GOV RO TR get_connecton (base DATABASE startdesthaton STRING jtihn e INTEGER)
i P _tmh hum NTEGER)

f"q— u‘:""“:‘_"”\f:::brm find_neighbordbase DATABASE snSTR NG priNTEGER)
s _busum NTEGER)
get_fmt_tan_mute
delete_sta ffSaffs TAFF)

‘bus_mutes/ tan_mwutes pbyees p_list.
KNO T
num ber : NTEG ER

ROUTE
~ pem anent : NTEG ER
B DEE INTRGER STAFF tentative : NTEG ER
get_num ber pred : NTEGER
password :STRNG
2dd_statbn ew_nam 8 ,access,cpen_hounmat spSTRNG) oy e Sl o e
< get tine
m atch um INTEGER) do_save (e TEXT_FILE_W RITE) pse S ——
get_fist_station match (AINTEGER) pe. INTEGER
m ake ium INTEG ER) bgh passwd STR NG) ”U‘:‘a revalie)
do_save (fle TEXT_F ILE_W R ITE) m ake (H:NTEG ER passwd STR NG) i gsepral
get_next_statin (statbnl STATD N) [uG saton
rem ove_statbn am e STR NG) SSCEh® (alie NTRG ER)
m ake (sn S TATD N mum ,Las,prxNTEGER)
set_status valle:NTEGER)

set_staton (valile STATDN)

STATD N

open :STRNG
accessbiity :STRNG
nam e :STRNG

m ake hew_nam e,new_opennew_accSTRNG)
do_save (fle TEXT_FILE_W RITE)

show

get_acc

get_open

at
m atch ametham e STR NG)

Figure 4.1: Object model of transit information system.

38 4. Transit Information System Case Study

e start: a station, where a passenger begin his or her journey.
e destination: a station to which a passenger is going or directed.

e desired time: an interval, within which one want get to the destination from
the start.

e connection: a sequence of stations.
e bus: a long motor vehicle for carrying passengers, usually along a fixed route.

e train: a series of connected railroad cars pulled or pushed by one or more
locomotives.

e route: a course for buses or trains to travel from one station to another.
e opening hour: a time, at which the first vehicle departs.

e accessibility: a description of the running status of a station.

e update: a change of system information.

e browse: a display of the information of all routes.

e check: a detail show of a certain route information.

4.1.4 Identifying Class

The following classes are identified from the requirements.

end

[class HPTA_TRANSIT.INFO

Class HPTA_TRANSIT_INFO is identified as a class of the entire system.

class STAFF
feature {NONE}
number: INTEGER

STAFTF is a class with attributes employee number and password. The require-
ments state that selected staff members would be allowed to update the system.

4. Transit Information System Case Study 39

class STATION

feature {NONE}
name: STRING
open: STRING
accessibility : STRING

STATION is a class with attributes name, opening hour, and accessibility.

¢lass ROUTE
feature {NONE}
number: INTEGER.
stops: LINKED.LIST [STATION]

end

ROUTE is a class with attributes station list and route number.

4.1.5 Identifying Operations

All three operations listed in the dictionary belong naturally in the class
HPTA_TRANSIT_INFO, because they are dependent on the interface of the system.

e login should belong in class STAFF, because it keep the secret of a certain staff.

4.1.6 Consulting The Library of Model

There is no suitable business model in our existing library, so we have to build this
system from the beginning.

4.1.7 Applying Design Patterns

According to the requirements, our application needs to keep all system information
and to calculate possible connections. There exist so many different methods for these
two tasks. Hence, we apply the strategy design pattern. We declare two deferred

classes
deferred class DATABASE
end
and
[[defm'red class CONNECTION_FINDER]
ond

Then, we define two private members in class HPTA_TRANSIT_INFO denoted
by the class name followed by three dots as following:

40

4. Transit Information System Case Study

foature {NONE}
HPTA_TRANSITINFO...db: DATABASE

finder: CONNECTION.FINDER

i.e.

HPTA_TRANSITI_NFO

db:

DATABASE

finder :CONNECTDN_FNDER

Figure 4.2: The attributes of class HPTA_ TRANSIT_INFO

In this way, we can add new algorithms easily and even change mechanisms at

runtime with the following private methods:

i
feature {NONE}

require

new.finder /= Void
do

finder := new.finder
ensure e

finder = new_finder
end

HPTA_.TRANSIT.INFO... set_finder (new_finder: CONNECTION_FINDER) is

and

feature {NONE}
HPTA.TRANSIT.INFO. .. set_.databas

new._database /= Void
do
db := new._database

db = new.database
end

e(new.database:

DATABASE)

is

Their preconditions require that the new comers are not invalid and their post-
conditions ensure that the private member db and finder are set correctly.

Class CONNECTION_FINDER describes the interface that is common to all con-

crete mechanisms as following:

4. Transit Information System Case Study 41

CONNECTDN_FNDER

get,_connectn dbase DATABASE ;startdestnaton STR NG ;tin e:NTEGER)

Figure 4.3: Class CONNECTION_FINDER

.
feature {HPTA_.TRANSIT.INFO}
CONNECTION.FINDER.. . .
get.connection (dbase: DATABASE; start, destination: STRING; time: INTEGER): STRING is
require
start /= Void
destination /= Void
time >= 0
dbase /= Void
deferved
end

Class DATABASE describes the interface that is common to all concrete data
maintain mechanisms as following:

DATABASE

get_first bus_mute

m ake

find_staffhum :INTEGER)
add__mute hew_mute ROUTE)
get_next_tain_mwute (mute ROUTE)
find_mute hum INTEG ER)
get,_first train__mwute

is_bcked

add_staffhew__staffiS TAFF)
get_next bus mute (oute ROUTE)
do__save

delkete_staff(staffiS TAFF)
delkete_mute mute ROUTE)

Figure 4.4: Class database

feature {HPTA.TRANSITINFO, CONNECTION.FINDER}
DATABASE. .. get.first_bus_.route: ROUTE is
deforred
end

This method can return the first bus route object and is used by class
HPTA_TRANSIT_INFO and class CONNECTION_FINDER only. Together with the
following method, its clients can browse all bus routes one by one.

42 4. Transit Information System Case Study

feature {HPTA_TRANSIT.INFO, CONNECTION.FINDER}
DATABASE. .. get.next.bus_.route(route: ROUTE): ROUTIE is
deferred = :
and

Similarly, we can browse all train routes by the following two methods:

foature {HPTA_TRANSIT_INFO, 'CONNEC’I‘ION.FINDER}
DATABASE... get _first_train_.route: ROUTE is
deferved
end

and

feature {HPTA.TRANSIT_INFO, CONNECTION.FINDER}
DATABASE. .. get_next_train.route (route: ROUTE): ROUTE is
deforved ,
end

Browsing all staff information is not necessary, but we need to find given staff
object by the following method.

feature {HPTA_.TRANSIT.INFO, CONNECTION.FINDER}
beqiiee 0
num > 0
deferred

and

This method can return an STAFF object, whose employee number equals to the
parameter num. It is because all employee number start from 1 that the precondition
is added.

For convenience, we also provide a route finding method as follows:

feature {HPTA.TRANSIT.INFO, CONNECTION._FINDER}
reguire
num >= min_train_.route_num
num <= max.bus_.route.num
deoferred
ond

The following method is the creation of class DATABASE and invoked by class
HPTA_TRANSIT_INFO only.

In order to update system information, class DATABASE also requires the inter-
faces of adding and deleting as following:

4. Transit Information System Case Study 43

foature {HPTA_.TRANSIT.INFO}
DATABASE. .. add.route (new.route: ROUTE) is
require
new.route /= Void
deforreod
end

and

feature {HPTA_.TRANSIT.INFO}
DATABASE. .. delete.route (route: ROUTE) is
require
route /= Void
deferred
end

These two methods can add or delete a certain route to or from this system
respectively and is called by class HPTA_TRANSIT_INFO only.

Similarly, class HPTA_TRANSIT_INFO also can add or delete a certain staff by
the following two methods:

feature {HPTA_TRANSITINFO}
DATABASE. .. add_staff (new.staff: STAFF) is
reguire
new.staff /= Void
deferred
end

and

feature {HPTA_.TRANSIT.INFO}
DATABASE. .. delete.staff (staff: STAFF) is
require
staff /= Void
deferred
end

As long as some system information is updated, DATABASE object must be
informed to save the change by the following method.

feature {HPTA_.TRANSIT.INFO}
DATABASE... do.save is
deferred
end

According to the requirements, only selected members can update the system.
We define that when the database is locked, only the user, who knows both employee
number and password, can conduct an update.

feature {HPTA_TRANSIT.INFO}
DATABASE. .. is.locked : BOOLEAN is
deferred
end

44 4. Transit Information System Case Study

The subclasses of these two deferred classes implement each concrete behavior
mentioned above.
The following four constants are used to point out the bound of route number

foature {NONE}
DATABASE. .. max_bus_route_.num: INTEGER is 999
min_bus_.route_.num: INTEGER is 100
max.train.route.num: INTEGER is 99

min_train_.route.num: INTEGER is 10

4.1.8 Algorithms Design
File Database

For simplicity, we save the system information in a file named ”sys_info.txt”. So we
define a subclass of class DATABASE, FILE_DATABASE as following:

class FILE.DATABASE
inherit DATABASE
foature {NONE}
file_name: STRING is ”sys_info.txt”
end

i.e.

DATABASE

£\

I FILE_DATABASE |

Figure 4.5: The hirarchy of databases

class FILE_DATABASE keep bus routes, train routes and staffs with
LINKED_LIST as following:

feature {NONE}
FILEDATABASE... train.routes: LINKED.LIST [ROUTE]
bus.routes: LINKED.LIST [ROUTE]
employees: LINKED.LIST [STAFF]

now, class FILE_DATABASE becomes:
The creation of FILE_DATABASE is method make

L(create FILE.DATABASE. .. make

The main task of make is to initialize this three list

4. Transit Information System Case Study

45

FILE_DATABASE

fie_name :STRNG

em pbyees : LNKED_LIST STAFF]
bus_mutes :LNKED_LIBSTROUTE]
tan_mutes :LNKED_LISTROUTE]

Figure 4.6: The attributes of FILE_ DATABASE

-
feature {HPTA.TRANSIT.INFO}
FILE DATABASE. .. make is
do
create employees.make
create bus.routes.make
create train-.routes.make
load
ensure
employees /= Void
bus.routes /= Void
train.routes /= Void
end

and to load the system information for that file:

e

feature {NONE}
FILELDATABASE. .. load is
local
input_string : STRING
text_file.read : TEXT.FILE READ
text_file.write : TEXT.FILEWRITE
split : ARRAY[STRING]
new.staff: STAFF
route : ROUTE
do
create text.file.read.connect.to(file.name)
if text_file.read.is.connected then
from text_file.read.read_line
until text_-file_.read .end.of_input
loop
if text_file_.read.last_string.upper = 1 then
inspect text.file.read.last_string.first.to_upper
when ’S’ then
text_file.read .read_line
input.string := text.file.read.last_string.twin
split := input_string.split
create new.staff.make (split.first.to_integer, split.last)
employees.add_last (new.staff)
when 'B’, 'T’' then
text_file.read .read_line
input_string := text.file.read.last.string.twin
split := input.string.split
route := find.route(split.item(4).to.integer)
if route = Void then
create route.make(split.item(4).to.integer)

46 4. Transit Information System Case Study

By the following method, one can get the specific route object.

Similarly, using the following method, one can get the staff with such employee
number:

4. Transit Information System Case Study 47

i:= G4l
end
if i <= employees.upper then
staff := employees.item (i)
end
Reosult := staff
end

By the following four methods, one can browse all train routes and bus routes:

e

feature {HPTA_.TRANSITINFO, CONNECTION.FINDER}
FILE DATABASE... get_first_.bus.route: ROUTE is

local
route: ROUTE
do
if not bus.routes.is.empty then
route := bus.routes. first
end o
Result := route
end
get_next_bus_route(route: ROUTE): ROUTE is
require
bus_routes.index.of (route) > 0
local
next.route : ROUTE
do
if bus.routes.index.of(route) < bus.routes.upper then
next-route := bus.routes.item(bus.routes.index.of (route)+1)
end
Result := next.route
end
get._first.train_.route: ROUTE is
local
route: ROUTE
do
if not train.routes.is.empty then
route := train.routes.first
end
Result := route
end
get.next.train.route(route: ROUTE): ROUTE is
require
train_.routes.index.of (route) > 0
local
next.route : ROUTE
do
if train_.routes.index.of(route) < train.routes.upper then
next.route := train.routes.item(train.routes.index.of(route)+1)
end
Result := next.route
end

By the following method, HPTA_TRANSIT_INFO object can add an arbitrary
route to this database

-
feature {HPTA.TRANSIT.INFO}
FILEDATABASE. .. add.route (new.route: ROUTE) is
do

if is.bus(new.route.get.number) then
bus.routes.add._last (new_route)

elseif is-train(new.route.get.number) then
train.routes.add.last (new.route)

end

48 4. Transit Information System Case Study

By the following method, HPTA_TRANSIT_INFO object can add a staff to this
database

By the following method, HPTA_TRANSIT_INFO object can remove an arbitrary
route from this database

By the following method, HPTA_TRANSIT_INFO object can remove a staff from
this database

In FILE_DATABASE, as long as employees is not empty, this database is locked,
which means you have to log in before updating.

Whenever the database is changed, it have to save the new data to the specific
file by the following method:

> ‘A.'I’RANSIT_INFO} .
\ ABASE .do. sa‘vé is :

,fxle 2 wrlte TEX .FILE.WRITE

cre ats ille 2. write connect to(fxle name)
rite .is_ connected then

= employees lower

1> employees .upper

- employees 1tem(i) dg-s,&ve (file_2_write)
P ! + 1 X ‘ . :

‘ bus..routes .lower

4. Transit Information System Case Study 49

until i > bus.routes.upper

loop
bus_routes.item(i) .do_save(file_.2_write)
10 =iy

ond

from i := train.routes.lower
until i > train.routes.upper
loop
train.routes.item (i) .do.save(file.2.write)
1= 1140
end
file.2_.write.disconnect
else
io.put.string (" Update_.database_failed !%N")
end
end

-

For convenience, we define the following two methods to tell if the current route

is bus or train route:

feature {NONE}
FILEDATABASE. .. is_.train (num: INTEGER): BOOLEAN is

5

Result := num >= min.train.route.num and num <= max.train.route.num
end
is_.bus (num: INTEGER): BOOLEAN is
do
Result := num >= min.bus.route.num and num <= max.bus.route_num
end

Conditional Shortest Path

According to the requirement that connections between trains and busses must have

at least five minutes for the change, we have to consider bus station and train station

as two different stations even they share the same name. In addition, we define a

constant change_time in class CONNECTION_FINDER, whose subclasses need it.

l[

foeature {NONE} .
CONNECTIONFINDER.. .. change.time: INTEGER is 5

]

For convenience, we assume that a bus needs 2 minutes to get to the second stop
and a train needs only 1 minute. So we also define the following two members in class

CONNECTION_FINDER.

feature {NONE}
CONNECTION.FINDER. .. train.time: INTEGER is 1
bus.time: INTEGER is 2

-

PRIME_FINDER is one of the subclasses of CONNECTION_FINDER

inherit

PRIME_FINDER . . . CONNECTION.FINDER

50 4. Transit Information System Case Study

I CONNECTON_FINDER I

I PRME_FINDER I

Figure 4.7: The hierarchy of class CONNECTION_FINDER

ie.

Our first algorithm, PRIME_FINDER, is that starting from the start stations,
including both bus station and train station, we search for all direct neighbors one
after another and calculate their time respectively. In this way, as long as we found
the destination as the next neighbor or no more new neighbors before get to the
destination, our searching work is done.

To implement this algorithm, we declare list in class PRIME_FINDER

foature {NONE} - o
PRIME_FINDER ... stop.list: LINKED.LIST [KNOT] .

Every node of this list record the following information:

KNOT

station :STATDO N
num ber : WNWTEG ER
the :NTEGER
status : M TEGER
rem anent : NWTEGER
tEntatve : INTEGER
prd : INTEGER

Figure 4.8: The attributes of class KNOT

feature {INONE}
KNOT... station : ’STATION

Form the start down to the destination, as long as the station is found as a valid
neighbor, it will be set in a KNOT object by the following method.

4. Transit Information System Case Study 51

feature {PRIME_FINDER}
KNOT... set.station (value: STATION) is
do

station := value

il
{5

241

Of course, class KNOT requires PRIME_FINDER object give a non Void value.

feature {PRIME_FINDER}
KNOT... get.station: STATION is
do
Result := station

[+

end

After searching, PRIME_FINDER object can get the record of station by the
above method.

foature {NONE} :
KNOT. .. number: INTEGER

The number of KNOT object keeps the route number of the station and is set by

the following method:

feature {PRIME.FINDER}
KNOT...set_number(value: INTEGER) is
require
value >= 0
value <= 999
do
number := value
end

J

According to the requirement that train route number is a two-digit number and
bus route number is a three-digit number, we set a precondition like that for this
method.

feature {PRIME.FINDER}
KNOT...get.number: INTEGER is
do
Result := number
end

The above method can tell PRIME_FINDER object the route, to which this sta-
tion belongs.

feature {NONE}
KNOT... time: INTEGER

l.

Member time records the total time needed from start and is set by the following
method

52 4. Transit Information System Case Study

feature {PRIME.FINDER} :
KNOT...set_time (value: INTEGER) is
reguire
value >= 0
do
time := value

The time of start node is 0 and the time of destination is desire time plus one, so
here KNOT object requires a nonnegative number.

feature {PRIMEFINDER}
KNOT...get_time: INITBGER is
do
Result := time
end

The above method is used to provide time for PRIME_FINDE object.

foature {NONE} .
KNOT. .. pred: INTEGER

This member is used to record the index of last stop in this list. The pred of
start is -1. That the pred of two destination are all -1 means that there is no possible
connection between the start and the destination.

PRIME_FINDER object set this member by the following method:

i
feature {PRIME_FINDER}
KNOT...set.pred (value: INTRGER) is

pred := value

and get the value of this member by the following method:

feature {PRIME_FINDER}
KNOT...get.pred: INTEGER is
i st
Result := pred

B

Then, how can we judge if this node should be check for new neighbors? we define
the member status in class KNOT.

Lfcnture {NONE} i

If there is no more new neighbors can be found for the current station, this member
should be set as permanent, which is a constant of class KNOT;

feature {PRIME.FINDER}
KNOT. .. permanent: INTEGER is 1

4. Transit Information System Case Study 53

otherwise, member status should be set as tentative, which is another constant of
class KNOT.

{PRIME_FINDER} J

OT... tentative: INTEGER is 0

This member can be set by the following method

=
feature {PRIME.FINDER}
KNOT...set_status(value: INTEGER) is
reguire
value >= tentative
value <= permanent

and get by the following method

-
feature {PRIME_FINDER}
KNOT... get_status: INTEGER is
do
Result := status
end

Method make is the creation of class KNOT

creation {PRIME_FINDER}]

KNOT. .. make

|

and its main task is to initialize this object with the given parameters as following:

~

~
feature {PRIME.FINDER}
KNOT...make(sn: STATION; num, t, ss, pr: INTEGER) is
do
set.station (sn)
set_number (num)
set_time (t)
set.status(ss)
set_pred (pr)
end

Every node is added into the list by the following method:

p
feature {NONE}
PRIME_FINDER... add.node (pr: INTEGER; s: STATION; t, num: INTEGER) is
reguire
t=>5=:0
local
node: KNOT
do
create node.make(s, num, t, node.tentative, pr)
if 8 = Void then
node.set.status (node.permanent)
end
stop-list.add_last (node)
end

If the station is Void, then the new node will be considered as dead.

54 4. Transit Information System Case Study

The logic of possible connection finding is implemented mainly in the following
method.

foature {HPTA.TRANSIT.INFO}
PRIME_FINDER.. . . -
get_connection(dbase: DATABASE; start, destination: SIRING; time: INTEGER): STRING is
require else
stop.list .upper = 0

local :
connection, cur.station: STRING
node: KNOT L : -

i, monitor: [NI‘EGER i
is_end , break: BOOLEAN

connection := ””

desire.time := time

add-bus_train.station (dbase, destination, desire_-time+1)
add_bus._train.station (dbase, start, 0)

i=23
cur.station := start.twin

« 'nix,o‘n'itor s stpp';,list.upper'
find_neighbor (dbase, cur.station, i)
if monitor = stop._list.upper then
if stop.list.item(i) /= Void then
stop.list.item(i) .set_.status(node.permanent)
end
is_.end := True

until break or else i > stop.list.upper
ioop
if stop.list.item (i) /= Void then
node := stop.list.item(i) |
if node.get.status = npdé,,tentative and node.get_station /= Void
cur-s‘tatibn = node;"get-utation.get-name -
is_end := False ‘
break := True

end
end
if not break then
{ =4 &1
end
end

if break then
break := False
end

ond

connection := get_connection_mes(1)
connection := connection + get_connection.mes(2)

if connection.same.as(””) then

connection := "There.is.no_connection_.from_your.start”
: + " _to.your.destination.in.such.time.”

end

Result := connection

4. Transit Information System Case Study 55

(S J

The first parameter provides the source of data; the second and third parameters
are the names of start station and destination station respectively; the last parameter
is the desire time, which will be used to set the private member desire_time:

feature {NONE}
PRIME_FINDER. .. desire.time : INTEGER

At the beginning of searching, we initialize the stop.list of a PRIME_FINDER
object with four nodes, i.e. bus and train stations of destination followed by bus and
train stations of start, using the following method:

-
feature {NONE}
PRIME_FINDER... add_bus_train_.station (dbase: DATABASE; name: STRING; time: INTEGER) is
require
name /= Void
time >= 0
local
route: ROUTE
station: STATION
is.end : BOOLEAN
num: INTEGER

route := dbase.get_first.bus_route
from
until is_end ar route = Void
loop
station := route.get_first_station

from
until is.end or station = Void
oo

B

if name.same.as(station.get.name) then
is.end := True
end
if not is.end then
station := route.get.next.station(station)
end
end

if not is.end then
route := dbase.get_next.bus.route(route)
nd

(o}

end
if not is.end then
station := Void
end
it route /= Void then
num := route.get_number
olse
num := 0
end
add.node(—1, station, time, num)

station := Void
is.end := False
route := dbase.get_first_.train.route
from
until is_.end or route = Void
loop
station := route.get._first_station
from
until is.end or station = Void

56 4. Transit Information System Case Study

if name.same.as(station. get_ﬁame) then
is_.end := True

not is_.end then

if not

station := route.get.next.station (station)

not is.end then .
route := dbase.get_next_train_.route(route)

station := Void

At route / Void thon
num := route.get_number

mm = 0
add.node(—1, station, time, num)
end

Then from the bus station of start, we try to find its direct neighbor by the
following method:

feature {NONE}
'PRIME_FINDER... find_-neighbor (dbase: DATABASE; sn: STRING; pr: INTEGER) is
' require L . ;
sn /= Void
local
‘ cost , index,
p-node, node: KNOT
route: ROUTE
station, last: STATION
name: SIRING
break : BOOLEAN

from switch :=
until switch >
loop
if switch = 0 then
cost := bus_.time
else
cost := train.time

0
y

if pr >= stop_list.lower and pr <= stop-.list.upper then
p-node := stop-list.item(pr)

end

if p.node.get_station /= Void then
if switch = 0 then
if is_train(p-node.get-number) then
cost := change_time + cost
end
route := dbase.get_first_bus.route

if is_bus(p-node.get_.number) then
cost := change_time 4+ cost

route := dbase.get_first_train_route

until route = Void

station := route.get.first_station

4. Transit Information System Case Study 57

last := station
from
until station = Void or break
loop
name := station.get.name.twin

if name /= Void and name.is.equal(sn) then
if not last.get.name.is-.equal(name) then

index := get.index(last, route.get.number)
if index >= 0 then
node := stop-list.item(index)

if node.get.station /= Void then
if is.train(node.get.number) thon
if node.get.time > p_node.get.time + cost then
node.set.pred (pr)
node.set.time (p-node.get_time + cost)
node.set.number(route.get_-number)

end
olse
add.node(pr, last, p_node.get_-time+cost, route.get.number)
end
end
last := route.get.next.station(station)
if last /= Void then
index := get.index(last, route.get.number)
if index >= 0 then
node := stop.list.item(index)
if node.get.station /= Void then
if is.train(node.get_number) thon
if node.get_.time > p_node.get_time + cost then
node.set.pred (pr)
node.set.time (p-node.get_-time + cost)
node.set.number(route.get.number)
end
end
end
else
add.node(pr, last, p_node.get_-time+cost, route.get.number)
end
end
break := True
else

last := station;
station := route.get_-next_station(station)
end
end
break := False
if switch = 0 then
route := dbase.get_next_bus.route(route)

else
route := dbase.get_next.train_route(route)
end
end
end
end
switch := switch + 1

end
end

Al

For convenience, we define the following two methods to tell if the current route
is train or bus:

feature {NONE}

PRIMEFINDER... is.train (num: INTEGER): BOOLEAN is
do

58 4. Transit Information System Case Study

Result := num >= 10 and num <= 99
end

and

foature {NONE} . ' '
PRIME_FINDER... is_bus (num: INTEGER): BOOLEAN is

do
Result := num >= 100 and num <= 999
ond

The following method is used to get the index of a certain station in the list; if

the target station is not in the list, -1 will be return.

p

feature {INONE} .
UPRIME.FINDER;,.f.get_index(s‘; STATION; num: JNT ER

. require :
8 /= Void

): INTEGER is

local
ind, i: INTEGER

from i := stop.list.lower
until i > stop-list.upper
loap
node := stop.list.item (i)
if node.get_station /= Void then
name := node get_station. get-name

n" is. bus(num) and is. bus(node get. number) then
ind = i
elsoif is.train(num) and is_train(node.get.number) then

ind = i

end
end

end
Result := ind

end

When the searching is done, we can get the information of possible connections

by the following method:

e
feature {NONE}
PRIMEFINDER... get_connection_mes (index: INTEGER): STRING is
roquire
index >= 0
local
node: KNOT
mes: STRING
mes =
node := stop.list.item(index)
if node /= Void then
if node.get.station /= Void then
if node.get.pred /= —1 and node.get-time <= desire.time then
mes := "—No.” + node.get.number.to_string + "->”
4+ node.get.station.get.name + "_in.”
+ node.get_.time.to.string + ”_minutes%N”

4. Transit Information System Case Study

if node /= Void then
if node.get_station /= Void then

mes := "%N” + node.get.station.get.name + mes
end
else
mes ;= "7
end
end
end
end
Result := mes
end

node := stop-list.item(node.get_pred)
from
until node = Void or else node.get-station = Void or else node.get_pred = —1
loop

mes := "—No.” 4+ node.get_.number.to_string + "—>”

+ node.get_station.get.name + mes

node := stop.list.item(node,get.pred)

end

The creation of PRIME_FINDER is method make

l(c vention {ANY} PRIME.FINDER...make

it is defined as following;:

feature {HPTA.TRANSITINFO}
PRIME_FINDER. .. make is

do
create stop.list.make
ensure
stop-list /= Void
end

Now, let us talk about the root class HPTA_TRANSIT_INFO.

HPTA_TRANSII_NFO

m ake

set._database hew_database DATABASE)
delete_m enu

update_m enu

menu

nquie_m enu

do_delkte
set_finderfhew_fnderCONNECTON_FNDER)
do_update

mn

add_m enu

do_add

do_inquie

Figure 4.9: The methods of class HPTA_TRANSIT_INFO

The creation of class HPTA_TRANSIT_INFO is make

l(create HPTA_TRANSIT_INFO . . . make

60 4. Transit Information System Case Study

Its main task is to initialize the database and connection finder, and then run the

whole system:

”
feature {ANY} , ;
HPTA_TRANSIT.INFO. .. make is

local
prime.finder: PRIME_FINDER
file_.database: FILE.DATABASE

create file.database.make
set.database(file.database)
create prime_finder .make
set_finder (prime.finder)
run

In order to increase customer satisfaction, we run the system by a series of menus

e

feature {NONE}
HPTA_TRANSIT_INFO...run is

do
from
until io.last_character.to_upper = 'Q’
loop : ‘ ‘
menu
io.read.character
io.put.new_.line
inspect io.last_character.to_upper
when U’ then do_update
when 'I’ then do_inquire
else
end
end

end
7 S

In order to use OS command, we let class HPTA_TRANSIT_INFO be a subclass
of class SYSTEM, which is a predefined class in Eiffel.

i Z
HPTA_TRANSIT_INFO . . . SYSTEM

Method menu is the main menu of the interface of this system and

.
foature {NONE}
HPTA_TRANSITINFO...menu is
do

execute.command_line(”cls”)

io.put._string (” [
3k 3k ok sk ok ok ok ok sk ok ok K ok ok Xk
Welcome.to HPTA
o ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok k3K ok ok ke ok ok ok ok ok ok ok sk ok ok ok ok ok
~=U.Update_System.Information
wwloInquiresabout_.Transit_.Information

==Q_Quit

Enter_menu_.choice:

e

ond

This is the main menu and there are two items in it, through which users can

either update or inquire system information. The first line of the method body is

4. Transit Information System Case Study 61

used to clear the screen.
If users chose the first menu item, they are going to enter the following menu, i.e.

update_menu:

feature {NONE}
HPTA_TRANSITINFO... update.menu is

do

execute_.command_line(”cls”)

io.put_string (”|

ok ok o ok Kk ok ok K Ok
Welcome.to .HPTA

e ok o ok o ok ok o ok ok ok ok ok ok ok ke ok ok ok ok ok e ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok %
A_Add

D.Delete

G._Go.back

Enter.menu.choice:

1)

end
J

In this menu, users can add new information, such as staffs and stations, as follow:

-
feature {NONE}
HPTA_TRANSITINFO...add_menu is

do

execute_.command_line (" cls”)

io.put.string (" [
o o o o o K o K R K
Welcome.to _HPTA

e ok ok ok ok ok ok o ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok R
S_Add.a_station

E_Add_a_staff

G_Go_back

Enter.menu.choice:

12)

o)
]
2

Follows the logic of method do_add:

feature {NONE}
HPTA_TRANSITINFO...do.add is
local
employee: STAFF
id: INTEGER
input , name, password, open, access, last: STRING
is.end : BOOLEAN

e

from
until is.end
loop
add_menu
io.read.line
input := io.last.string.twin
io.put_new_line
if not input.is.empty then
inspect input.first.to.upper
when 'G’ then is_.end := True
when 'S’ then
io.put.string ("%NEnter.station.name:.")
io.read.line
name := io.last.string.twin
io.put.string ("%NEnter_open_.hour:.")

62 4. Transit Information System Case Study

io.read_line

open := jo.last_string.twin

io.put. string("%NEntet..xta.‘accesslbxhty)
io.read._.line

access := io.last_string.twin

io. put-string("%NEnter_route-number =

io.read.line

id := io.last.string.to_integer

io.put.string ("%NEnter_.the_name.of.its_last.station:.")
o.read_line

last := jo.last_string.twin
route := db.find.route(id)
if route = Void then

create route.make(id)
route.add_station (name, access, open, last)
db.add_route(route)
route.add.station (name, access, open, last)
ond o

when 'E’ then
io. put-string(”%NEnter...your..ID...)
io.read_line
id := io.Iast-stnng.to-lnteger
io.put.string ("%NEnter_.your_.password:.”)
io.read._line
password := io.last_string.twin
create employee.make(id, password)
db.add_staff(employee)

they can also delete those information as follow:

foature {NONE}
HPTA_.TRANSIT.INFO... delete_menu is
do

execute.command._ hne(”cls")

io.put.string (7|
3 ok ok ok ok ok ok ok ok ok ok ok 3k ok ok kK ok ok ok 3k ok ok 3k dk ok ok ok ok ok ok ok ok ok ok ok Xk ok
Welcome.to HPTA
e 3k o ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok K ok
S.Delete.a.station
E.Delete.a_staff
R_Delete_a-route
G.Go.back

Enter.menu.choice:

i)

end

Follows the logic of method do_delete:

feature {NONE}
HPTA_TRANSIT.INFO... do.delete is

local

route: ROUTE
input, name: STRING

from
until is.end

4. Transit Information System Case Study

63

loop
delete_.menu
io.read_line
input := io.last.string.twin
io.put.new.line
if not input.is.empty then
inspect input.first.to.upper
when 'G’ then is.end := True
when 'S’ then
io.put.string ("%NEnter_route_number:.”)
io.read.line
num := io.last.string.to.integer
io.put.string ("%NEnter_.station.name:."”)
io.read.line
name := io.last_.string.twin
route := db.find_.route (num)
if route /= Void then
route.remove.station (name)
olse
io.put.string ("%NNo.such.a.station%N")
io.read.line
end
- when 'R’ then
io.put._string ("%NEnter.route_number:.")
io.read_.line
num := io.last_string.to.integer
route := db.find.route (num)
if route /= Void then
db.delete_.route (route)
olse
io.put.string (”"%NNo.such._.a.station%N”)
io.read.line
end
when 'E’ then
io.put.string ("%NEnter.ID:.”)
io.read.line
num := jio.last.string.to.integer
staff := db.find.staff(num)
if staff /= Void then
db.delete.staff(staff)
olse
io.put.string ("%NNo.such.a.staff%N")
io.read.line
end

end

_/

According to the requirement, only authorized staffs can do such things, so this

system will ask the user to log in the system before he or she enter the update menu.

The following method do_update has the logic to require the user to enter his or her

employee number and password first.

r

feature {NONE}
HPTA_TRANSIT.INFO. .. do.update is
local

id: INTEGER
passed , is_end: BOOLEAN
password , input: STRING
staff: STAFF

io.read.line

64 4. Transit Information System Case Study

if db.is_locked then
io.put.string ("%NEnter_.employee.ID:._")
io.read_line
id := io.last.string.to.integer
. staff := db.find.staff(id)
if staff /= Void then
io.put.string ("%NEnter_password:.")
io.read.line
password := jo.last._string.twin
passed := staff.login (p#ssword)
end .
else
fo.put.string (7|
Thq-list._of..authorized..staff..is..not_empty,
.so_please_set.authorization_as_soon.as_possible...
17) ‘
passed := True
io.read_line

end
if passed then
from
until is_end
loop
update_.menu
io.read_line
input := io.last_string.twin
io.put.new.line
if not input.is.empty then
inspect input.first.to_upper
whon ’A’ then do.add
when ’D’ then do.delete
when ’G’ then is_.end := True
else
: end
end
db.do.save
else
. io.put.string (”%NLogin_failed!%N")
_io.read.line
end
end

The actual logging responsibility is assigned to class STAFF as public feature to
class HPTA_TRANSIT_INFO:

feature {HPTA_.TRANSIT_INFO}
STAFF. .. login (passwd: STRING): BOOLEAN is

require
passwd /= Void
do
Result := password.is_equal (passwd)

end

If the result is True, the user can continue his or her update, otherwise, this system

will remain on the main menu.
If users chose the second menu item of the main menu, they will enter the following
query menu without any bother, because the requirement says that any one can have

access to the transit information.

4. Transit Information System Case Study

65

®
feature {NONE}
HPTA_TRANSITINFO... inquire.menu is
do

execute.command.line(”cls”)

io.put.string (” |
o o K o o o o o o o o o K o o o o K K R KoK KK K

Wel ~to _HPTA

e e ok ok ok k3 ok ok ok ok ok ol ok ok sk ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
F_Find_.a_possible_connection
S.Show.a.route
B_Browse.all _.routes
G.Go.back

Enter_menu.choice:

155D,

end

The first item of this menu is used for users to find a possible connection. Following
the logic of method do_inquire, users are required to enter their start, destination, as

well as their desire time.

feature {NONE}
HPTA_TRANSIT.INFO... do.inquire is
local
input, start, dest: STRING
is.end : BOOLEAN
num, time: INTEGER
route: ROUTE

from
until
loop
inquire.menu
io.read._.line
input := io.last_string.twin
io.put_new.line
if not input.is.empty then
inspect input.first.to_upper
whenn ’B’ then
from route :=

is_end

db.get_first.bus.route

until route Void
loop

route .show

route := db.get.next_bus.route(route)
end

from route := db.get_first_train.route

Void

until route =
0op

e

route .show
route :=
end

io.put._string ("%N%NStrike_any_key_to_continue...”)

io.read_line

when 'F’ then

io.put.string ("%NEnter_.the_station.name.of_.your.start:.”)

io.read.line
start := io.last_string.twin

io.put.string ("%NEnter_.the_station.name.of_.your_destination:.”)

io.read.line
dest := io.last_string.twin

io.put.string ("%NEnter.your.desire.time(in.minutes):.”)

io.read.line
time := io.last_string.to.integer
io.put.string(finder.get.connection (db,

db.get_next.train_route (route)

start , dest, time))

66 4. Transit Information System Case Study

io.put_string ("7\%NStrike_any_key_to_continue...”)
io.read.line
when ’S’ then
io.put_string (”Input_.the.route_.number.(10.—.999):.")
io.read.line - ~
num := io.last.string.to.integer
route := db.find_route (num)
if route /= Void then
route.show
elbe - .
io.put.string (”Sorry.there_is.no.such.a_route”)
ond
io.put._string (”%\%NStrike_.any.key_to.continue...”)

when G’ then is_.end := True
else
end

end

Now, it is time to implement the methods of class ROUTE

ROUTE
get,_num ber
add_staton hew_nam e access,open_hour,hst_stopSTRNG)
show
m atch oum :NTEGER)
get,_first_staton

m ake (um :NTEGER)

do_save (e TEXT_FILE_W RITE)
get,_next_staton (statonl STATDN)
=m ove_staton ham e STRNG)

Figure 4.10: The methods of class ROUTE

The creation of ROUTE is make, which can be invoke by
HPTA_TRANSIT_INFO

class

L(croa’cion ROUTE. . . make

The main task of make is initialize the route number and station list

e

teature {HPTA.TRANSIT.INFO}
ROUTE. .. make (num: INTEGER) is
require
num > 9
num < 1000
do
number := num
create stops.make
number = num
stops /= Void
end

4. Transit Information System Case Study 67

According the requirement, route number must be two- or three-digit number, so
we define the following invariant for class ROUTE.

p

invariant
ROUTE. .. number > 9
number < 1000

end
.

At any time, its client get route number by the following method:

"
feature {ANY}
ROUTE. .. get-number : INTEGER is

do
Result := number
end

also, by the following method to tell if the current route is which we want:

feature {ANY}
ROUTE. .. match (num: INTEGER): BOOLEAN is
do
Result := num = number
end

J

By the following method, its client adds new stations for this ROUTE object and
at the same time set the name, the accessibility, the opening hour, and last station

for this new station.

-
feature {HPTA_TRANSITINFO, DATABASE}
ROUTE. .. add.station (new_.name, access, open.hour, last_stop: SIRING) is
lacal
new.station: STATION
i: INTEGER
last: STRING

from i := stops.lower
until i > stops.upper or e¢lse stops.item(i) .match(new.name)
loo
i=1i+41
end
if i > stops.upper then
create new.station.make(new.name, access, open_hour)
last := last_stop.twin
last.to_upper
if last.same_as(”NONE”) then
stops.add_first (new.station)

else
from i := stops.lower
until i > stops.upper or else stops.item(i) .match(last_stop)
loop
i =141
end
if i <= stops.upper then

stops.add (new.station, i+1)
else
create new.station.make (last.stop, access, open.hour)
stops.add.last (new.station)
stops.add_.last (new.station)
end

68 4. Transit Information System Case Study

HPTA_TRANSIT_INFO object removes a certain station by the following method,
whose only parameter is the name of the target station.

feature {HPTA.TRANSIT.INFO} -
ROUTE...remove_station (name: STRING) is
local -
1 CEGER
from i := stops.lower
until i > stops.upper or else stops.item(i) .match(name)

lomi} ; :
foi—g e)
end

stops.remove(i)
end

end
J

The subclasses of CONNECTION_FINDER use the following two methods to visit

all stations in this route

feature {CONNECTION_FINDER}
ROUTE. .. get_first_station: STATION is

station: STATION

do
if stops.upper > 0 then

station := stops.first

end
Result := station

end

get_next_station(stationl: STATION): STATION is
require
: stationl /= Void
 loeal -
station: STATION
do
if stops.index.of(stationl) < stops.upper |
station := stops.item(stops.index.of(st
end
Result := station

end

J

Class ROUTE keep the secret of saving itself, so DATABASE object can call this
method to fulfill the task. Actually, such assignment is worth to discuss. Maybe
should move to the subclasses of DATABASE, because only they know exactly how

to save those data.
o
feature {DATABASE}
ROUTE. .. do_save(file: TEXT-FILEWRITE) is
reqguire
file .is.connected
local
i: INTEGER
tag, last: STRING

if number > 99 then
tag = "p¥

tag 1= 7t2

4. Transit Information System Case Study 69

last := "None”

from i := stops.lower
until i > stops.upper
loop

file.put_string (tag+"%N")
stops.item (i) .do.save(file)
file.put_string (".” 4 number.to.string +".” + last +"%N")
last := stops.item(i) .get-name.twin
i =141
end
end

Similarly, the following method is responsible for showing the details of this route,
but only class HPTA_TRANSIT_INFO know exactly how to display with interface,
so this method should be move to class HPTA_TRANSIT_INFO.

foature {HPTA_TRANSIT.INFO}
ROUTE. ..show is
local i: INTEGER.
do
if number > 99 then
io.put_string ("%NBus_route.No.”)

io.put-string ("%NTrain.route.No.”)
end
io.put.integer (number)
io.put_string (":.”)

from i := stops.lower
until i > stops.upper
loop

stops.item (i) .show
if i < stops.upper then
io.put_string ("->")
end
f= =iy
end
io.put.new_line

end

Same problem can be found on the method show of class STATION

feature {ROUTE}
STATION...show is
do ;
io.put.string (name)
end

Now, let us look at the class STATION, whose creation is method make too,

l(create STATION . .. make

and defined as following:

—
feature {ROUTE}
STATION. .. make (new.name, new.open, new.acc: STRING) is
requive
new.name /= Void
new.open /= Void
new.acc /= Void

name := new.name.twin
open := new.open.twin

70 4. Transit Information System Case Study

The main task of it is to initial these three features of class STATION. At any
time, its client can visit these three features by the following methods:

Similar with the method do_save of class ROUTE, this method should be moved
into the subclasses of DATABASE.

The same problem can be found on class STAFF

+

We identify station with name only, i.e. if two stations share the same name, we

assume they are the same station. Here case is insensitive.

fonture {ROUTE} o ~

. STATION...match (targetna
o roguire o : :

argetname /= Void

me: STRING): BOOLEAN is

¢t := name.same.as (targetname)

Now, let us talk about the implementation of class STAFF.
The creation of class STAFF is make

(czeationtanyy STARF... make ~ - , -

it is defined as following:

4. Transit Information System Case Study 71

STAFF

do_save (e TEXT_FIE_W RITE)

m atch (d:NTEGER)

bgn passwd STRING)

m ake (d:NTEGER ppasswdSTRNG)

Figure 4.11: The methods of class STAFF

g
foature {ANY}
STAFF...make (id: INTEGER; passwd: STRING) is

require

id->=—10

passwd /=Void
do

number := id;

password := passwd.twin
ensure

number >= 0

password = passwd
end

its main task is initialize staff’s id and password.
Method match is used to identify a certain staff and is defined as following:

feature {ANY}
STAFF...match (id: INTEGER): BOOLEAN is

do

Result := id = number

end

Any staff has an unique employee number, which is generated from 0, and a
password, which must not be Void:

invariant
STAFF... number_positive: number >= 0
password.not.void: password /= Void

4.1.9 Automatic Code Listing

So far, we have implement the system. In order to give an integrated view for ones
who are used to read code, Spark inserts all program code here automatically.
Automatical code is listed in Appendix C.

72 4. Transit Information System Case Study

4.1.10 Testing

Updating system

When no staff is authorized, we try to update system information. The result is

<\ Command Prompt - hpta_transit_info

FHH NI FIIHFNHIOHH I HFHH N IR FOH IO
Welcone to HPTIA
P I HEHE I H I HHH I FIIH I
U Update System Information
I Inguire ahout Transit Information
Q Quit

Enter menu choice: u

The list of authorized staff is not empty,
so please set authorization as soon as possible...

Otherwise, we try to update system information. The system requires ID and

password for logging in as following:

<+ Command Prompt - hpta_transit_info
P2 IE 2T FE P IEIEIEEIE 26T TEFEIE T I H I

Welcone to HPTA

T DI T DI TE I I I TE I I IE I
U Update System Information
I Inquire about Transit Infornmation
Q Quit

Enter menu choice: u

Enter employee ID: 161

Enter password: 1234

Login failed?

These results satisfy the design requirements.

Browsing all routes

We try to browse the information of all routes as following:

These result satisfies the design requirements.

4. Transit Information System Case Study 73

<\ Command Prompt - hpta_transit_info

M IO I M I HHIIN I I HIIIIOHNE

Welconme to HPTA

B e S s R e e e e e]

F Find a possible connection
S Show a route
B Browse all routes
G Go back
Enter nenu choice: b
route No.18B: MacNabh->llellington—->Sanford->Kenilworth->Queenston
route No.1@1: MacNah->Hughson->Barton->Birch

Train route No.18: Gore->James

Irain route No.11: Mohawk->Rymal->MacNab

Strike any key to continue..._

Finding connection

We try to find a connection between two stations as following:

o+ Command Prompt - hpta_transit_info

e s e

\lelcone to HPTA
DI I T2 HE I 2 2 I I MMM I
F Find a possihle connection
§ Shou a route
B Brouse all routes
G Go hack

Enter nenuw choice: f

Enter the station name of your start: MacNah

Enter the station name of your destination: Wellington

Enter your desire time(in minutes): 18
MacNah——hy No.188-->llellington in 2 minutes

Strike any key to continue...

These result satisfies the design requirements.

Strategy pattern

We construct a sample connection finder class and change the algorithm at run-time.

74

4. Transit Information System Case Study

&

class FAKEFINDER
inherit
CONNECTION_FINDER
creation {ANY}
make
feature {HPTA.TRANSIT.INFO}
make is

end .

get_connection (start , destination: STRING; time: INTEGER): STRING is

do

Result := "This_is_a_test%N”;

end

The result is

Command Prompt - hpta_transi

L e e e e s s

Welcome to HPTA
D 2T NI T D DT DE 3623 M2 I
F Find a possihle connection
S Show a route
B Browse all routes
G

Go hack

Enter nenu choice: f

Enter the station
Enter the station

Enter your desire

This is a test

Strike any key to

name of your start: MacNah

nane of your destination: Wellington

time{in minutes): 18

These result satisfies the design requirements.

Chapter 5
Implementation

Chapter 3 has showed us the key features of OOLP and some supporting tools. In
this chapter, we present the implementation of Spark in a literate way using Spark
itself. The rest of this chapter that follow is the actual output of Spark source file.

5.1 Introduction

The two reasons why we present the implementation of Spark in a literate way are
that we want to show the universality of Spark, i.e. it can work with not only object-
oriented programming languages, but also structured programming languages, and
that since the main task of Spark is to parse the syntax of a certain programming
language, which is a fairly stable structure, structured programming makes the pro-
gram clear, simple and efficient. This choice is also followed by one drawback that
we have to draw the diagrams by hand.

Spark is implemented entirely in perl. We choose perl mainly because it is good at
text manipulation, which is the main task of Spark, and perl is a stable, cross platform
programming language, which leads to Spark being inherently platform-independent.

In order to gain more flexibility, we separate Spark into two parts, i.e., front end
and back end (see Figure 5.1). The front end is responsible for explaining graphical
notation settings and parsing program code chunks; the back end takes care of pro-
ducing graphical notation files. So far, we have developed three front ends, which are
used for Eiffel, Lime, and perl itself respectively.

75

76 5. Implementation

Figure 5.1: Top-level structure for Spark

5.2 Graphic Notation describer

The graphic notation describer is a interim file used to describe all the graphic no-
tations included in the software documentation and the only input file of the back
end of Spark. So the changes coming from either document formatting language or
programming language do not impact the back end. In addition, except several im-
portant setting tags, programmers do not know anything about it, because this file
is going to be deleted by the back end before it finishes its work.

In the following table of graphic notation describer structure, terminals are shown
in bold font and nonterminals in italics, parentheses ‘(’ and)’ indicate grouping when
needed, square brackets ‘[’ and ‘|’ enclose optional items, curly parentheses ‘{’ and ‘}’
show the (zero or more) repeatable items, and vertical bars ‘|’ separate alternatives.

modFile ::= {classDiagram} {class}
classDiagram ::= QCLASSDIAGRAM nameSequence [@QVERTICAL)| [format]
format ::= @BRIEF | @CONCISE | @METHOD | @ATTRIBUTE | @ACTION
class ::= QCLASS name {statementSequence}
| @INTERFACE name { statementSequence }

statementSequence ::= statement statementSequence
statement ::= extendStmt
| inheritStmt
| implementStmt
| fieldStmt

| cotrStmt

5. Implementation 77

| methodStmt
| actionStmt
| dependentStmt
extendStmt ::= QEXTEND nameSequence
inheritStmt ::= QINHERIT nameSequence
implementStmt ::= QIMPLEMENT nameSequence
fieldStmt ::= QVAR name { modifier }
cotrStmt ::= QINIT name { modifier }

methodStmt ::= @QMETHOD name { modifier }
actionStmt ::= QACTION name { modifier }
nameSequence ::= name nameSequence
modifier ::= visibility | type | ‘(’paraSequence‘)’
visibility := @QPRIVATE | @PUBLIC | @PROTECTED
paraSequence ::= parameter; paraSequence
parameter ::= name ‘.’ type
type ::= name
name ::= letter { letter | digital }

letter ::

alblc|d|e|f|g|h|ilj|k|l|m|n|o|p|a|r|s|t]
ulv|w|x|y|z|A|B|C|D|E|F|G|H|I|J|D|L|
M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

digital ==1|2|3|4|5|6|7|8|9]|0

Table 5.1: The block structure of graphic notation describer.

A graphic notation describer consists of multiple classDiagrams followed by mul-
tiple classes. classDiagram begin with the key word “QCLASSDIAGRAM”. name-
Sequence is a list of class names included in this diagram. “QVERTICAL” is used
to set the direction of the specified graphic notation, i.e. if “QVERTICAL” is set,
the diagram will be drawn vertically, otherwise horizontally. “QHEAD”, “@BRIEF”
and “QCONCISE” are used to control the format of the specified graphic notation.
If “QCONCISE” is set, the class diagram will hide all the information about the
method’s parameters of the involved class. If “QBRIEF” is set, the class diagram will
be shown without parameters and types. If “QHEAD” is set, the class diagram will
be shown with class name only. Ones also can use “@QMETHOD”, “QATTRIBUTE”,
and “@QACTION” to control the display areas. For example, if “@QMETHOD” is set,
all class methods will be shown in the diagram and if “QATTRIBUTE?” is set, only
attributes of class can be saw in the diagram. All the setting tags are included in

78 5. Implementation

source file as specifical comments, so they are transparent for everything except the
front end. class begin with the key words “@CLASS” or “QINTERFACE”. class
name followed by a list of statements in the form of one statement each line. “inher-
itStmt”, “extendStmt” and “implementStmt” begin respectively with the key words
“QINHERIT”, “QEXTEND”, and “QIMPLEMENT”, which are followed by a list
of superclass names. “fieldStmt”, “cotrStmt”, “methodStmt”, and “actionStmt” are
the member statements of this class and begin with their key word respectively.

5.3 Front End

The front end of Spark takes an OOLP program file as input and produces machine-
readable program code files and one graphic notation script file as output. In addition,
it can insert the copy of machine-readable program code list back into the OOLP
program file upon the request. The only entrance of front end is main, which depends
on three modules, i.e. parseSource, doQutput, and callBackEnd (see Figure 5.2). The
rest of this section discusses the implementation of Spark front end for Lime in details.

Figure 5.2: Top-level structure for Spark front end

The entrance of Spark front end for lime,

t(Spsrkf—lime ...& main;

is defined as following:

Sparkf—lime ...sub main{
$#ARGV == 0 || die ”Usage: perl sparkf.pl filename\n”;

5. Implementation 79

open (SOURCE, "< 8$o0ld”) || die ”"Cannot gpen $old!\n”;
close SOURCE || die "Can't close $old: $!”;
&parseSource;

&doOutput;

&callBackEnd;

The first process in main is parsing the OOLP program, whose name is hold by a
local variable $old.

(Sparkf—-]ime...gw $old = SARGV|[0];

Module parseSource keeps reading the content of the program line by line:

ot N\
Sparkf—lime ...sub parseSource{
while (1){
&newlLine;
last if($done);
if(8currentLine =" /image::/){
&parseDiagram ;
}elsif($currentLine =~ /" —={5,}/){
&parseCode;
I

}

}

.

using the following function:

s N
Sparkf—lime ...sub newLine{
my @array = Q@currentWords;
push(@lastWords, \@array);
if($#lineBuffer < 0){
unless ($done){
$done = 1;
while(<>){
chop;
$currentLine = $_;
@currentWords = split;
$pointer = 0;

$done = 0;
last if($S#currentWords >= 0);
$done = 1;
}
}
}else{

my S$refArray = pop(@lineBuffer);
@currentWords = @$refArray;
$pointer = 0;
}
}

\i

where local variable @QcurrentWords defined as

l(Sparkf—lime ...my @currentWords = (); :)

always keeps the words of the current line in array form and local variable @last Words
defined as

l(Sparkf—lime ...y @lastWords = (); J

80 5. Implementation

keeps all the addresses of old @currentWords in order and local variable $currentLine
defined as

l(Sparkf—lime ...my ScurrentLine = ""; - ' . . . }

always keeps the words of the current line in string form and local variable $done
defined as

L(Sparkf—lime...mx $done = 0; J

will be set as 1 after the last line is read and local variable @QlineBuffer defined as

l(Sparkf-lime...x_gy @lineBuffer = (); ' - g)

is used to hold the current line temporarily in the case that front end need read again
the last word, which is in the last line, and the current line is still needed. The local
variable $pointer defined as

l(Sparkf—lime...th $pointer = 0;)

is used to point out the current word the front end is reading and increases by one
after the execution of function nextWord defined as

Sparkf—lime ...sub nextWord{
if(8pointer >= $#current Words){
&newlLine;
}olse{
$pointer++;
}

$currentWords [$pointer] ;

}

X

and decreases by one after the execution of function last Word defined as

7 T 7
Sparkf—lime ...sub lastWord{
if(8pointer = 0){
1f(8#lastWords >= 0){
my @array = QcurrentWords;
push(@lineBuffer , \@array);
my $refArray = pop(@lastWords);
@currentWords = @$refArray;
$pointer = S$#currentWords;

$pointer ——;

}

$currentWords [$pointer] ;

)

If a diagram tag such as “image::” is encountered, the front end will enter the

status of parsing diagrams:

Aw+::(A\w+)\.(\w+)/;
my Spicture = 81.”.7.82;

5. Implementation 81

- my $token = &nextWord;
if($token =" /\/\/\8$/){ : :
for(my $i = 1; 8$i <= $#currentWords; $i++){
$picture .= ” " $currentWords|[8$i];
}
}else{
&lastWord ;

push (@diagramList, $picture);
}

&

Front end keeps all the information concerning the current diagram in a local
variable, $picture, and then pushes it into the diagram list:

l(Sparkf-lime ...my @diagramList = ();]

If a code tag such as a serial of “-” is encountered, the front end will enter the
status of parsing code, which is the main difference between different front ends:

- - N
Sparkf—lime ...sub parseCode{
my $token = &nextWord;
until ($token =~ /"~ ={5,}/){
if(8token eq "class”){
parseClass (0);
}elsif(8token og "final”){
&nextWord ;
parseClass (1);
}elsif($memberList{$token}){
parseMembers ($token);

$token = &nextWord;

Figure 5.3: The structure of Module parseCode

The front end for lime parses various code units such as a class, a class member,
and a statement, according to the syntax one by one as following:

82 5. Implementation

If the first token of a code block is “final” or “class”, then this block is a class
block. For class block, front end parse it according to the syntax that
class ::= [“final”] “class” identifier base implement members “end”
as following:

Sparkf—lime ...sub parseClass{
$currentClass = &nextWord; i o
my $classBody = hashAdd(\%classList , $ScurrentClass);
$classBody —>{"final”} = 8_[0];
my $token = &nextWord;
if($token eq "inherit”){
parseBase(” inherit”);
‘$token = &nextWord;

if($token eq "extend”){
parseBase (" extend”);
$token = &nextWord;

while ($token ¢q ”"implement”){
$token = &nextWord;
parselmplement ($token);
$token = &nextWord;

}

while ($memberList{$token}){
parseMembers($token);
$token = &nextWord;

A

iec ”parsing class fa'iledly[stoken]\n” if(8$token ne "end”);

|

\ s J

where the local variable $currentClass keeps the name of current class and is defined
as:

L(Spatkf-lime...;m ScurrentClass = "7, . i }

and supporting function hashAdd is used to add item to a hash table without duplicate
and defined as:

-
Sparkf—lime ...sub hashAdd{
my($hash, $item) = @_;
~ if(not $hash—>{S$item}){
my %newHash = ();
$hash—>{8$item} = \%newHash;

$hash—>{$item };

}
If the first token of a code block is one of the members of
Sparkf—lime ...my %memberList = (” public”, 1, "action”, 1, "template” 1, "const™,— 1,
"jinitialization”, 15 "method? ;. 1, Zvap?. 1)

then the block is a class member block. There are six kinds of legal members, i.e.
constant, variable, method, action, initialization, and label:

Sparkf—lime ...sub parseMembers{
my ($token, $public) = (8-[0], 0);

\.

5. Implementation

83

if(8token eq "public”){
$public = 1;
$token = &nextWord;

if(Stoken eq "const”){
parseConst(&nextWord, $public);

}elsif(Stoken egq "var”){
parseVariable ($public, &nextWord);

}elsif (($token eq "method”)||($token ogq "template”)){
parseMethod ($token, $public);

}elsif(8token eq "action”){
parseAction(&nextWord) ;

}elsif($token eg "initialization”){
parselnitialization (&nextWord);

}elsif($token =" /" "\w+’'/){
parseLabel ($token);

}

}

For constants, the syntax is
constant ::= “const” identifier [“:” type| “=" expression:

\

Sparkf—lime...sub parseConst{

my (8token, $public) = @.;

my $identifier = "7;

my $const = ”"$public.”;

if(8token =" /"(\w+)8$/){
$identifier = $token;
$token = &nextWord;

}elsif(Stoken = /" (\w+)(\S+)/){
$identifier = $1;

$token = §$2;
}
if(8token eq ”:”){
$const ” : " parseType(&nextWord);

$token = $currentWords[$pointer];
}elsif(8token =~ / :(\w+\S=*)/){

$const .= " : ”.parseType($1);

$token = $currentWords[$pointer];

}
if(8token =" /=(\S+)/){

$const .= ” = ”.parseExpression($1);
}elsif(8token =~ /=8/){

$const .= " = ".parseExpression(&nextWord);
}else{

$token = &nextWord;
if(Stoken =" /=(\S+)/){

$const .= ” = ”.parseExpression($1);
}elsif($token =" /=8/){

$const .= ” = ” . parseExpression(&nextWord);
}olse{

die ”"parse const statement failed!\n”;
}
}
my $classBody = hashAdd(\%classList , $currentClass);
my $constFields = hashAdd($classBody, ”"const”);
$constFields—>{$identifier} = $const;

}

The supporting module parseExpression is defined according to its syntax
expression ::= conjunction “or” conjunction
as following:

84 5.

Implementation

o

Sparkf—lime...sub ,,paraeE):cpresni’on{
my $token = $.[0];
my $expression = "7;

$token = $1 if(Stoken =" /(.4);/);
if($token =" /\Wor\W/){

my QwordBuffer = tht(/\s-{-/, $token),
}gl.sg.{
$expression = parseConjunctmn(Stoken);
while(8expression ne ””){
$token = &nextWord;
if(S$token eq "or”){

$expression .= ” or ”.parseConjunction(&nextWord);
}else{
&lasthrd
last; .
}
1}
¥
$expression;

}

o

The syntax of conjunction is

conjunction ::= relational “and” relational :

Sparkf—lime...sub parseConjunction{
my $conj;\1nction‘ - pars,,eRelational(s,.i[O]);
while($conjunction ne ”7){
my $token = &nextWord;
if($token oq "and”){
‘ $conjunction .= ” and ”.parseRelational(&nextWord);
}else{
&lastWord ;
- dastg
} "
}

$conjunction;

P

The syntax of relational is
relational ::= additive [(“<” | “>” | “<” | “>” | “=” | “I=") additive]:

Sparkf—lime ... sub pnrseRelatlonél{

my $relational = 77;

my S$token = $_[0];

df(8token =" /(.4)(<|2|!l=l=I<=|>=] |)(.+)/){ .
$relational = parseAdditive($1).” ”.8$2.” ” . parseAdditive($3);

}elsif(Stoken =" /(.+H)(<I>|!=|=|<=]|>=] |)$/){

$relational = parseAdditive(8$1).” ”.82.” ”. parseAdditive(&nextWord);
}else ,

$relational = parseAdditive($token);
$token = &nextWord;
if(8token =" /(<L|>|l=|=|<=|>=| |)8/){
$relational .= ” ”.$1.” ”.parseAdditive(&nextWord);
}elsif(8token =" / (<|>|<=|>=|!=]=] |)(.+)/){
$relational .= ” ”.8$1.” " parseAdditive(8$2);

$relational;

5. Implementation

85

The syntax of additive is
additive ::= multiplicative (“+” | “-”) multiplicative

Sparkf—lime...sub parseAdditive{
my $additive = parseMultiplicative($.[0]);
my $token = ScurrentWords|[$pointer];
while ($additive ne ””){

if($token =" /(\+|=)$/){

$additive .= ” $1 ”.parseMultiplicative(&nextWord);
}elsif(8token =" /(\+|=)(\S+)/){
$additive .= ” $1 ”.parseMultiplicative($2);

}olse{
$token = &nextWord;
if ($token =" /"(\+|-)8/){
$additive .= ” $1 ".parseMultiplicative(&nextWord);
}elsif(8token =" /(\+|-)(\S+)/){

$additive .= ” $1 ".parseMultiplicative($2);
}else {
$token = $currentWords[$pointer];
&lastWord ;
$token = $currentWords[$pointer |;
last;
}
}
1
$additive;

}

The syntax of multiplicative is

multiplicative ::= unary(‘*” | “/” | “div” | “mod”) unary

Sparkf—lime ...sub parseMultiplicative{
my $multiplicative = parseUnary($-[0]);
my $token = $currentWords|[$pointer|;
while(8multiplicative ne ””){
if(8token =" /(*I\/)(\S+)/){
$token = $2;
$multiplicative .= ” $1 ”.parseUnary($token);
}elsitf(Stoken =" /(\+]-)$/){
$token = &nextWord;
$multiplicative .= ” $1
}else{
$token = &nextWord;
if ($token =" /" (*|\/)(\S+)/){
$token = $2;
$multiplicative .= ” $1 ”, parseUnary($token);
}elsif(8token =~ /"(\+|-)8/){
$token = &nextWord;
$multiplicative .= ” $1 ”.parseUnary(S$token);
}elsif(8token ogq "div”){
$token = &nextWord;
$multiplicative .= ” div ".parseUnary($token);
}elsit(8token ¢q ”"mod”){ .
$token = &nextWord;
$multiplicative .= ” mod ".parseUnary($token);
}else{
&lastWord ;
last;

.parseUnary ($token);

X
}

$multiplicative;
1

86 5. Implementation

The syntax of unary is
unary ::= (““” | “not” | “+”)unary | primary
and in turn the syntax of primary is

primary ::= integer | “nil” | “true” | “false” | designator | “new” name[actuals|:

Sparkf—lime ...sub parseUnary{

my (8Sunary, S$token) = (77, $_[0]);
H’(Stoken = [(-NHIN\SHNH{
~ 8unary = " ‘parseUnary(S2),
}elsif(Stoken =~ /*(=\+)$/){

$unary = "$1”.parseUnary(&nextWord);
}elsif(8token eg "not”){

$unary = "not ”.parseUnary(&nextWord);
}elsif(8token =" /not\s+(.4+)/){

S$unary = "not ”.parseUnary($1);
}elsif(8token =" /(\d+)/){
}elsit (($token

nary = "817;
= /[(nil)\Ws7) ||
(8token =" /" (true)\W=x/) ||
(8token =7 /" (false)\Wx/)){
$unary = $1;
)olsnf(Stoken eq "new”){
~ Sunary = "new &nextWord
”T'$token = &nextWord ;
1f($token =~ /* N
$unary .= ” ”.parseActuals(8$token);
}else{ .
&lastWord ;

I
}eolsif(8$token =" /new\s+(\w+)\s=(\(. +\))/){

$unary = "new ".$1. parseActuals ($2);
}elsit(8token =" /(\w+)/){ k

$unary = parseDesignator ($token) unless($keyWordsList{$1});
}

$unary;

The syntax of designator is

wn

designator ::= identifier identifier | actuals :

%
Sparkf—lime ...sub parseDesignator{
my (8designator, S$token) = (77, $.[0]);
if(Stoken =" /*(\w+)$/){
$designator = $token;
$token = &nextWord;
elsit ((8token =" /"(\w+)(\.\S+)/)||(8token =" /" (\w+)(\(\S+)/)){
$designator = $1;
$token = $2;
}elso{

die ”"parse designator failed![$token]\n”;

I
while (1) {
if($keyWordsList{$designator}){
$designator = "7
&lastWord ;
last;
}
Hf(8token = /°\./){
$token = ”.” . &nextWord if(8token =~ /°\.$/);
if(8token =" /°\.(\w+)$/){
$designator .= ”.”.81;
$token = &nextWord;

yelsit(8token =7 /“\.(Aw+)(\S+)/){

5. Implementation 87

$designator .= ”.”.81;
$token = $2;
}else{
die ”"parse designator failed ![3]\n”;

}
}elsif(8token =" /"\(/){

$designator .= parseActuals($token);

$token = $currentWords[$pointer];

if((8token =" /\)(\.\Sx)/)|[(8token =" /\)(\(\S=)/)){
$token = $2;

}elsif($Stoken =" /\)$/){
$token = &nextWord;

}else{last;}

}else{
&lastWord ;
last ;
}
}
$designator;
}
\ J

For variables, the syntax is variable ::= “var” idList “:” type:

Sparkf—lime ...sub parseVariable{
my @vars = parseldList(8-[1]);
my ($type, $public) = ("7, $.[0]);
my $token = $currentWords|[8pointer];
if(8token =" /\w:(\wH\Sx*)/){
$type = parseType($1);
}elsif($token =" /\w+:8/){
$type = parseType(&nextWord);
}else{
$token = &nextWord;
if(8token =" /" :(\wH\S=*)/){
$type = parseType($1);
}elsif($token eq ”:"){
$type = parseType(&nextWord);
}else{
die ”"parse variable failed!\n”;
}

}
foreach my $v(@vars){
if(8v =" /(\wH)\.(\w+)/){
$currentClass = $1;
$v = 82;

my $classBody = hashAdd(\%classList , $currentClass);
my $varFields = hashAdd($classBody, "var”);
$varFields—>{8v} = $type;

J

For methods, the syntax method ::= “method” identifier formals[“:” type| state-
ment:

-~
Sparkf—lime ...sub parseMethod{
my Qvars = ();
my ($token, $public) = @_;
my (8$identifier , $type) = (77, "”);
my ($formals, $statement) = (", "”);
if(8token eq "method”){
$token = &nextWord ;
dE(8token =" /" (\w-+\.\w+)8/){
$identifier = 81;
$token = &nextWord;

88

5. Implementation

}elsif($token =" /" (\w+\. \W+)(\5‘4')/){
$identifier = $1;
$token = $2;

}oleif(Stoken =" /"(\wH)$/){
$identifier = $1;
$token = &nextWord;;

}elsif(8token =" /° (\W+)(\S+)/){
$identifier = $1;

$token = $2;
}else{
- die "parse method failed!\n
} .
$formals = parseFormal(Stoken),

$token = $currentWords|[$pointer];
LE((8token =" /\):8/)]||
((Sformals eq "")&&($token =" /:8/))){
$token = &nextWord;
$type = parseType($token);
}elsif((8token =" /\):(\w+.x)/)||
((8token =" /:(\w+.*)/)&&($formals eq ""))){
$type = parseType($1);
}elsed
$token = &nextWord;
if(Stoken =" /:8/){
$token = &nextWord;
- S8type = parseType(8$token);
}elsif($token =" /:(\w+.%)/){
$type = parseType($1);
}else{ -
&lastWord;

}
}
~ my $newWord = 0;
 $token = $currentWords|8$pointer];
Lf((Stype ne "”)||((Stype ea "”)&&($formals eq *”))){

if(8token =" /(\'.%)/){
$token = $1;
}else{

$newWord = 1;
Stoken o &nextWord;

i_f(stOken =" /\)(+)){
$token = $1;
}elsa{
$newWord = 1;
$token = &nextWord;
}
}

$statement = parseStatementList($token);
&lastWord if(($statement eq ””7) && $newWord);
if(8identifier =~ /(\w+)\.(\w+)/){
$currentClass = 8$1;
$identifier = $2;

$identifier .= ”.”.8formals; ‘

my $classBody hashAdd(\%classList , $currentClass);

my $varFields = hashAdd($classBody, "method”);
$varFields—>{8identifier }={TYPE=>$type ,STATEMENT=>$statement }
unless(8varFields—>{$identifier });
$varFields—>{8identifier}—>{STATEMENT} = $statement

xf(($varFlelds—->{$ldent1f1er}—>{SI'ATEM]§N’I‘}__Q"”)&&($statement ne ""yy).

$varFields—>{$identifier}->{TYPE} = $type
if(($varFields—>{8identifier}->{TYPE}oqg "")&&(8type ne ””));

5. Implementation 89

where the supporting module parseFormal is defined as following according to the
syntax (formals ::= [“(” idList “” type “” idList “” type “)”]):

Sparkf—lime ...sub parseFormal{
my (8$formals, S$token) = ("7, $_.[0]);
if(8token =" /\(/){
$formals = " (”;
if($token =" /\(8/){
$token = &nextWord;
}elsit(Stoken =" /\((\S+)/){

$token = 8$1;
while (1){
if (8token =" /(.*\))\Sx*/){
$formals .= $1;
last;
}else{
$formals .= $token;
$token = &nextWord;
}
}
}
$formals;

)

\ Lt

where the supporting module parseType is defined as following according to the
syntax (type ::= [“shared”] “array” [expression“,” expression]“of’ (name | “integer”

| “boolean”)):

-
Sparkf—lime ...sub parseType{
my $type = "7;
my $token = $_[0];
if($token eq "shared”){
$type = "shared ”;
$token = &nextWord;
}
while (1) {
if($token eg "array”){
$type .= "array ”;
while (8token ne ”"of”){
$token = &nextWord;
$type .= ”8$token ”;
}
$type .= ToF "3
$token = &nextWord;
}elsif(8token eq "set”){
$type .= "set ”;
$type .= &nextWord.” ”;
$token = &nextWord;
}eise{
last ;
)
}
if((8token =" /“(integer)\Wx/)||(8token =~ /“(boolean)\Wx/)){
$type .= $1;
}elsif(Stoken =" /"\w+/){
$type .= parseName(S$token);
}else{
die "parse type failed![2]\n";
}
$type;
}
J/

90 5. Implementation

the supporting module parseStatementList is defined as following according to the
syntax (statementList ::= statement “;” statement):

(= N

Sparkf—lime ...sub patseStatementList{ ; o . B
my $statementList = parseStatement ($. [0]).

$statementList = if(SstatementLiat =70 \s+$/),

my v Stoken = $currentWords[$pointer],
my Qarray spli t(/i/, Stoken);
for(my $i = 1; $i <= S#array; $i++){

$statementList .=”;\n”.parseStatement(Sarray[$i]);
I;
if(8token =" /;8/){

$statementList .=”;\n”.parseStatement(&nextWord);
}olse{

$token = &nextWord;
if(8token =~ /*;8/){

~ $statementList .=";\n” parseStatement(&nextWord);
}elsif(Stoken ="/"(\S+)/){
$statementList .=";\n”.parseStatement($1);
lelse{
&lastWord ;
$statementList .="\n";
last;
}
I}
} ;
$statementList;
}
— o
Statement is the most complex one in Lime. Its syntax is
statement ::= designator [“:=”expression]]
designatorList “:=" expressionList |
“begin” statement ;" statement “end” |
“when” expression “do” statement |
“if” expression “then” statement [“else” statement)] |
“while” expression “do” statement |
“repeat” statement “;” statement “until” expression |
variable statement |
constant statement |
“return” [expression] |
label
Sparkf—lime ...sub parseStatement{
my $space = " ore
$layers++;
for(my 8i = 0; $i < $layers; S$i++){
Bspace: =" "
}

1__;_ (8statement , $token) = (8$space, $_[0]);

5. Implementation

$statement .= "begin\n”.parseStatementList(&nextWord);

$token = &nextWord;

die "pasrse begin statement failed ![8$token]” if($token !~ /“end\Wx/);

$statement .= $space.”end”;
}elsif(8token og "when”){

$statement .= "when ”.parseExpression(&nextWord);

$statement .= " ".&nextWord.”\n”.parseStatement(&nextWord);
}elsif(8token eq "if"”){

$§statement .= " if ”.parseExpression(&nextWord);

$statement .= ” ”.&nextWord.”\n”.parseStatement(&nextWord);

$token = $currentWords[$pointer];
if (($token =" /\'.+\’'else(\'.+)/)|I(8token =" /\)else(\'.4+)/)){

$statement .= "\n”.$space.” else\n”.parseStatement ($1);
}elsif (($Stoken =" /\’(.+)\’else$ /)||(8token =" /\)else$/)){

$statement .= "\n".$space.” else\n”.parseStatement(&nextWord);
}else{

$token = &nextWord;
if(8token egq "else”){

$statement .= "\n”.$space.” else\n”, parseStatement(&nextWord);
}elsit($token =~ /Telse(\’.+)/){
$statement .= "\n”, $space.” olse\n”.parseStatement ($1);
}else{
&lastWord ;
}
}elsif($token ¢q "while”){
$statement .= "while ”.parseExpression(&nextWord);
$statement .= ” ”.&nextWord.”\n”.parseStatement(&nextWord);
}elsif(8token ¢q "repeat”){
$statement .= "repeat\n”.parseStatementList(&nextWord);
$statement .= $space.&nextWord.” ”.parseExpression(&nextWord);

}elsif(8token egq "var”){
my @vars = parseldList(&nextWord);
$token = $currentWords|[$pointer];
my $type = "”;
if(Stoken =" /\w:(\w+\S#)/){
$type = parseType($1);
}elsif(Stoken =" /\w:8/){
$type = parseType(&nextWord);
}else{
$token = &nextWord;
if(8token =" /":(\w+\Sx)/){
$type = parseType($1);
}elsif($token eq ":”){
$type = parseType(&nextWord);
}

}

$statement .= "var 7;
while ($8#vars >=0){
if (8#vars > 0){

 $statement .= shift(Qvars).”, ”;
}else{
$statement .= shift(@vars).” : ".$type;

}
}
}elsif(8token eq "const”){
$token = &nextWord;
$statement .= "const ”.81 if($token =" /*(\w+)/);
$token = S$currentWords [$pointer];
if($token =" /:8/){
$statement .= " : " parseType(&nextWord);
}elsif($token =" /:(\w+\Sx)/){
$statement .= ” : ”. parseType(8$1);
}else{
$token = &nextWord;
if($token =" /:8/){
$statement .= ” : ”.parseType(&nextWord);
}elsif(8token =~ /:(\w+\Sx)/){

92 5. Implementation

»

$statement .= : ".parseType($1);

}else{
&lastWord ;
}
$token = $currentWords[$pointer];
i:
if(8token =" /=8/){
$§statement .= " = ? parseExpreasion(&nextWord),
}elsif(Stoken =" /= (\s+)/){
$statement .= ” = ” . parseExpression($1);
}o}ha{
~ $token = &nextWord;
if(Stoken =" /=8/){
$statement .= ” = ” . parseExpression(&nextWord);
}elsif(Stoken =" /=(\S+)/){
$statement .= " = " parseExpression(8$1);
telse{
die ”parse const statement failed!\n”;
}

}elsif(8token egq "return”){

my $t = parseExpreaslon(&nextWord),

&lastWord if($t eq ") .

$statement .= "return ”.8$t;
}elsif($Stoken =" /" '\w+'/){

$statement .= 8Stoken;
}elsif(Stoken == /*\w+/){

$statement .= parseAssignment ($token) unless($keyWordsList{8token});
}

$layers ——;
$statement;

}

\:

where local variable %keyWordsList is used to identify the key words of Lime and
defined as:

Sparkf—lime ...my %keyWordsList = (” abort”, 1, "action”, 1, "and”, 1
Marray’; 1. Ychar?, 1, "do” 1
”begin” 1, Tboolean®, 1, '"chsel, oy
"class” 1, "iconsl 1, i hdiv? s 3
"downto”, 1, "else”, 1, Yend?; 13
"export”, 1, Tinteger”, 1. "map”, 1,
?false” 1, " final", 1, mign. 1,
"import”, 1; Zinitialigation? L
P"method” ; "1, "mod”, 1. "new” : L
bt L B 1, ”package?”, 1, "real”, 1,
"ot 1, roen 1 ngen 1
Pprivate” 1. program”, I, "procedure” 1.
"repeat”, 1, “return?” 1, Tdet” 1
Pehia 1, Tsequencel 1. Tmntil 1
"skip”, 1, superl, 1, then" 1
nto T i e ne) 1, Ttype 2 I
"var”, 1, ”when” 1, Twhile” 15
\

and local variable $layer is used to count the nest of statement and defined as:

[(Sparkf—lime...m $layers = =1

For actions, the syntax is action ::= “action” identifier statement;:

Sparkf—lime ...sub parseAction{
iy $1dentxfier = 8.(0};

die ”parse action failed!\n” if($identifier != / \w+8/);
my $statement = parseStatementList(&nextWord);

5. Implementation

93

my $classBody = hashAdd(\%classList , $currentClass);
my $actionFields = hashAdd($classBody, ”action”);
$actionFields—>{8identifier} = $statement
unless($actionFields —>{8identifier });

For initializations, the syntax is initialization ::
ment:

P

“initialization” formals state-

Sparkf—lime ...sub parselnitialization{
my $token = $_[0];
my $statement = "7,
nmy $formals = parseFormal($token);
if($formals ne ”"){
$token = S$currentWords|[8$pointer];
if(8token =" /\)(\S+)/){

$statement = parseStatementList ($1);
}else{
$statement = parseStatementList(&nextWord);
}
}elsed{
$formals = "init?”;
$statement =

parseStatementList ($token);

my $classBody = hashAdd(\%classList , $currentClass);

my S$actionFields = hashAdd($classBody, "initialization”);
$actionFields —>{8formals} = $statement
unless($actionFields—>{$formals });

For labels, the syntax is label ::= ‘char’:

Sparkf—lime ...sub parseLabel{
my @array = (8-[0]);
my $classBody = hashAdd(\%classList ,
if($classBody—>{"label”}){
my $old = $classBody—>{"label”};
my $find = 0;
foreach my $v(@$old){
if(8v eq $_[0]){

$currentClass);

$find = 1}
last;
}
}
push(@$old, $_[0]) unless(8$find);
}else{

$classBody —>{"label”} = (8.[0]);
}
i

o

Lime also support multiple assignment as following:

Sparkf—lime...sub parseAssignment{

my (@designatorList, @expressionList) = ((), ());
my ($finish , $token, Sassignment) = (0, $_.[0], ”");
my @statementList = split(/;/, $token);
$token = $statementList [0];
$finish = 1 if(($token =" /\)else$ /)||(8token =" /\)else\ '/));
until (8finish){

iast if(S#statementList > 0);

my $temp = &nextWord;

if(8temp =" /" (\w+)/){

if((81 eq "end”)||(81 eq "else”)||
($1 eqg "until”)||($memberList{$1})){

94 5. Implementation

&lastWord ;

$finish = 1;
}else{ .
if(Stoken =" /\w+8/){
$token.=" ”.$temp;

}else{
$token.=$temp;
}
1
- Yelse{

if(8token !° /\wi8/){
$token.=" ”.$temp; ‘
}olse{
$token.=8temp;
}
@statementList = split(/;/, 8$token);
}
$token = $statementList [0];
if($token =" /(.4):=(.+)/){
@designatorList = split(/,/, $1);
@expressionList = split(/,/, $2); ,
for(my $i=0; $i<$#designatorList; $i++){
‘ $assignment .= parseDesignator($designatorList[8$i]).”, 7;
} . k

}aamgnment -—parseDeslgnator($designatorLiar.[$#dcngnutor[,ut]) Rhem B
for (my 8$i=0; $i<$#erpressionList; $i++){

$assignment .= parseExpression(8$expressionList[8$i]).”, ”;
}

$assignment .= parseExpression(8expressionList [$#ezpressionList]);

$assignment .= parseDesignator ($token);

}

$assignment ;

}

\ J

“w”

For actuals, the syntax is actuals ::= “(” expressmn

expression “)”

-
Sparkf—lime...sub parseActuals{

my $token = $_[0];

my Sactuals = "(7;

if(Stoken =" /\((-+)/){
$token = $1;

die¢ ”"parse actuals statement failed![1]\n”;

}
while(1){
if(Stoken =" /(.4),(\S+)/){
$actuals .= parseExpression($1).”, 7;
‘$token = $2;
}elsif(Stoken =" /(.+),8/){
$actuals .= parseExpression($1).”, ”;
$token = &nextWord;
}elsit($token =~ /(.+)\)/){

$actuals .= parseExpression($1);
last;
}else{
die "parse actuals statement failed![2]\n”;
}
}
$actuals .= ")7;
$actuals;

}

({3}

The syntax of name is name ::= identifer identifier :

5. Implementation

Sparkf—lime ...sub parseName{

my ($name, 8$token) = (77, $.[0]);
if($token =" /"\w+8$/){

$name = $token;

$token = &nextWord;

lelsif(8token =" /" (\w+)(\S+)/){

$name = $1;
$token = $2;

}else{
die ”"parse name failed!\n”;

while (1) {
if($token =" /*\./){
if($token =" /\.(\w+)$/){
$token = &nextWord;
$name .= 7.”.81;
}elsif ($token =" /\.(\w+)(\S+)/){
$token = $2;
$name .= "."”.81;

}elso{
die ”parse name failed!\n”;
}

}else{
&lastWord ;

Iast;
}
}

$name;

}

\.

“? identifier:

)

The syntax of idList is idList ::= identifier

-
Sparkf—lime ...sub parseldList{
my @idList = ();

my $token = $.[0];

my $finish = 0;

if(Stoken =" /"(\w+)$/){

push(@idList , $1);

$token = &nextWord;

}elsif(8token =" /" (\w+)(,\8*)/){
push(@idList ,
$token = $2;

}elsif(8token =" /" (\w+)/){
$1);

$1);

push(@idList ,
$finish = 1;

}else{
die ”"parse idList failed![1]\n”;

}
until ($finish){
if(8token =" /* ,(\w+)8/){
$token = &nextWord;
push(@idList , $1);
}elsif($token =~ /" ,8/){
$token = " ,”.&nextWord;

}elsif(Stoken =~ /°,(\w+)(,\S*)/){

$token = $2;
push (@idList, $1);
= /T O\wH))AL

}elsif($token =
$finish = 1;
push (@idList ,

}olse{
&lastWord ;
$finish = 1;

$1);

}
}
@idList ;

96 5. Implementation

L " J

For base, the syntax is base ::= [“inherit” name | “extend” name]:

Sparkf—lime ...sub parseBase{
my $classBody = hashAdd(\%classList , $currentClass);
$classBody —>{$.[0]} = &nextWord; -

}

For implement, the syntax is implement ::= “implement” name:

- ~
Sparkf—lime...sub parselmplement{
my Qarray = ();
my $token = 8$_[0];
while (1) { ‘
while ($token =~ /(\w+),(\S+)/){
push (@array , $1);
$token = $2;

=
if(Stoken == /(\w+),/){
push (Q@array, $1);
8token = &nextWord;
}else{
push(@array , $token);
$token = &nextWord;
if(8token =" /" ,(\S+)/){
$token = $1; ,
}elsit(8token =~ /°,/){
$token = &nextWord;
}else{
&lastWord ;
last ;

}

}
X
die ”parse implement failed!\n[2]” if(S$#array < 0);
niy $classBody = hashAdd(\%classList , $currentClass);
if(8classBody —>{"implement”}){
- my 8o0ld = 8$classBody —>{"implement”};

my $find = 0;

foreach my 8$v(Q@array){

foreach my $w(@8$old){
1f(8v eq $w){

$find = 1:
last ;
}
}
$find ? $find = 0 : push(@S$old, $v);
k
}else{
$classBody —>{”implement”} = \@array;
}
\} J
All the parsing result of code blocks will be inserted into the class list:
l(Spa,rkf—lime .. my %classList = ();)

The second process in main is outputting the parsing result.

Sparkf—lime ...sub doOutput{
generateCode (”7);
&insertCode;
&createModFile;

5. Implementation 97

L

Module generateCode is responsible for generating the actual program code files
for compiler using the information in the variable %classList and defined as:

Sparkf—lime ...sub generateCode{
my $outFile;
my @keyList = keys(%classList);
foreach my $v(@keyList){
my $classBody = $classList{$v};
1f(8-[0] eq ""){

open $outFile, "> $v.lime” || die ”Create file failed!\n”;
}else{
$outFile = $.[0];

}
print $outFile "final ” if(8$classBody->{"final”});
print $outFile "class $v ”;
if(8classBody —>{extend }){

print $outFile "extend $classBody—>{extend} ”;
}elsif(8$classBody—->{inherit }){

print $outFile "inherit $classBody->{inherit} ”;

}
if(8classBody —>{implement}){
print $outFile "implement ”;
my $first = 1;
my $memberBody = $classBody—>{implement};
foreach my $w(@$memberBody){
if($first){
print $outFile "8w”;
$first = 0;
}else{
print $outFile ", $w”;
}

}

print $outFile ”\n”;
my @memberList = kevs(%$classBody);
foreach my $u(@memberList){
my $memberBody = $classBody—>{$u};
unless (($u eq "implement”)||(8u eq "inherit”)]||
($u og "extend”)||(8u eg "final”)){
my @fieldList = keys(%$memberBody);
foreach my $f(@fieldList){
if(%u eq "var”){
print $outFile ” var $f : $memberBody—>{$f}\n\n”;
}elsif($u eq "const”){
if($memberBody—>{8f} ="~ /(\d+)\.(.+)/){
print S$outFile ” 7;
print $outFile ”"public ” if(8$1);
print $outFile ”"const f2\n”;

}olsif($u eq "initialization”){
print $outFile ” initialization ”;
print $outFile "8f” if($f ne "init”);
print $outFile "\n”;
print $outFile ”$memberBody—>{$f}\n"
if($memberBody—>{$f} ne ”");
}elsif($Su eq ”action”){
print $outFile ” action $f\n”;
print SoutFile ”"$memberBody—>{$f}\n”
if($memberBody—>{8$f} ne ”");
}elsif(8u eq ”method”){

Af(8f =" /(\wH)\./){

print $outFile ” method $17;
print $outFile "8$1” if(8f =~ /\w+\.(.+)/);
t

rin

it $outFile ” : $memberBody->{$f}->{TYPE}"

E

98 5. Implementation

if‘($memberBody-—>{$f} >{TYPE} ne "");
print $outFile ”\n”
print $outFile ”$memberBody—>{Sf}—){SI’ATEWENT}"
if ($memberBody—>{$f}—>{STATEMENT} ne "”);
| print SountKile ?\n”;
i

ik
 }#end of foreach
}#end of unless

print SoutFile “end\n\n”;
close SoutFile if($_-[0] eaq ”7);
}#end of foreach '
}
J

After generating code files, front end will insert a copy of code to the origin file,
if it find the special tag-pair, “//CODE LIST BEGIN” and “//CODE LIST END”,

by module insertCode, which is defined as:

Sparkf—lime ...sub insertCode{
my $switch = 0;

opem my $oldFile, "< $0ld” || die "Can’t open $old: $!7;
open my 8$newFile, ”> $new” || die "Can’t open $new: $!”;
whllv(<$oldFlle >){ .
if(8. = /[\/\/CODE LIST BEGIN/){
print $newFile $_;
print $newFile "————\n";

$switch = 1;
generateCode($newFile);

}elsif (8. == /°\/\/CODE LIST END/){
' print $newFile "————\n";

print $newFile $_;
$switch = 0;

:{
print $newFile 8. unless($switch);

}
closo $oldFile || die "Can’t close S$old: $!17;
close $newFile || die "Can’t close $old: $!7;
unlink ($old);
rename($new, $old) || die "Can’t rename $old: $17; , , ;
J

In fact, this module creates a file named by the variable $new, which is defined

as:

(Sparkf—lime ...my $new = "temp”;)

and then copy the content other than the part between the code list tags into this
new file, and after that insert the content of %classList into this new file, and finally
deletes the old file and renames the new file with the old name.

Module createModFile is responsible for creating a scripts file according to the
content of variable @diagramList. If it is empty, nothing will happen; otherwise,
front end will create a file with the name defined by variable $filename, which is

defined as:

5. Implementation

99

l(Spatkf—lime“.my $filename = ”oolp.mod”;

to describe the diagrams used in this program.

-
Sparkf—lime...sub createModFile{
open FILE, "> $filename”||die "Open file failed!”;
foreach my $v(@diagramList){
print FILE "\@CLASSDIAGRAM 8$v\n”;
I
print FILE "\n”;
my @keyList = keys(%classList);
foreach my $v(@keyList){
my $classBody = $classList{$v};
print FILE "\@CLASS $v\n”;
print FILE ”\@FINAL\n” if($classBody—>{"final”});
if($classBody—>{extend}){
print FILE ”\@EXTEND $classBody—>{extend}\n”;
}elsif($classBody—->{inherit }){
print FILE "\@INHERIT $classBody—>{inherit}\n”;

if(8classBody —>{implement}){
print FILE ”\@MPLEMENT ”;
my $sep = "7
my $memberBody = $classBody —>{implement };
foreach my $w(@$memberBody) {
print FILE "sepw”;
$sep = ”,” if(8sep eq "");

print FILE "\n”;
}
my @memberList = keys(%8classBody);
foreach my $u(@memberList){
my $memberBody = $classBody—>{8u};
unless (($u eq ”"implement”)|]|(8u ¢q ”inherit”)||
($u eq "extend”)||($Su eq "final”)){
my @fieldList = keys(%$memberBody);
foreach my $f(@fieldList){
if(8u eq "var”){
print FILE ”\@VAR $f $memberBody—>{$f}\n";
}elsif($u eq "const”){
if(8$memberBody—>{8f} =~ /(\d+)\.(.+)/){
print FILE "\@CONST ”;
print FILE "\@PUBLIC " if($1);
print FILE ”f2\n”;

}
}elsif(8u eq "initialization”){
print FILE ”\@INIT ";
print FILE "8f” if(8$f ne "init”);
print FILE ”"\n”;
}elsif(8u eq "action”){
print FILE ”"\@ACTION $f\n”;
}elsif($u eq ”"method”){
Af(8f =" /(\w+)\./){
print FILE ”\@METHOD $1 ”;
print FILE "81 ” if($f == /\w+\.(.4+)/);
print FILE ”$memberBody—>{8$f}->{TYPE}”
if(SmemberBody—>{$f}->{TYPE} ne ”");
print FILE ”\n”;

}

}
}#end of foreach
}#end of unless
}#end of foreach
print FILE "\n”;

close FILE || die "Close $filename failed!”;

100 5. Implementation

(& J

The third process in main is to call the back end of Spark. It is simply defined as:

system " perl sparke.pl”;

} Ch

u Sparkf—lime ...sub callBackEnd{

5.4 Back End

The back end of Spark takes the graphic notation describer mentioned above as input
and produce all the graphic notation files as output. However, layout algorithm is out
of the range of this thesis, so we choose an automatic diagram layout tool, Graphviz,
to fulfill this task. Graphviz is a package of open source tools initiated by AT&T
Research Labs for drawing graphs specified in dot language scripts. Now, let us look
at how the back end works.

Figure 5.4: Top-level structure for Spark back end

The entrance of Spark back end for lime,

[(Sparkb...&main; J

is defined as following:

&parseModFile ;
&createDotFiles;

}

5. Implementation 101

The first process in main is to parse the script file created by front end and defined

as:

}

»
Sparkb...sub parseModFile{

open FILE, "< $filename” || die "Open file failed!\n”;
while(<FILE>){
if($. =" /"\Q@CLASSDIAGRAM/){
push (@diagramList, $.);
}elsif($- =" /"\Q@CLASS/){
parseClass ($.);

}

close FILE || die "Close file failed!\n”;
unlink ($filename);

where local variable $filename hold the name of script file and defined as:

l(Sparkb...r_mg $filename = ”oolp.mod”; : J

and variable @diagramList keeps all the information about diagrams to be created
and defined as:

l(Sparkb...;_l_\x @diagramList = ();)

Module parseClass is used to retrieve all the class information by reconstructing

the class list %classList, which is defined as:

l(Sparkb...gy %classList = (); : }

and parseClass is defined as:

Sparkb...sub parseClass{

chop(8.[0]);
my @words = split(/\s+/, $-[0]);
my $name = $words[1];
my %newHash = ();
while(<FILE>){
last i£(8$- eg "\n”);
chop;
@words = split;
if(8words[0] eq "\@VAR"){
unless ($newHash{var}){
my %hash = ();
$newHash{var} = \%hash;
}
my $type = $words [2];
for (my 8$i=3; $i<=8#words; $i++){
$type .= " $Swords[8i]";
}
$newHash{var}->{$words[1]} = 8type;
}elsif($words [0] egq ”\@ACTION”){
unless ($newHash{action }){
my @array = ();
$newHash{action} = \@array;

my $body = $newHash{action};
push (@$body, $words[1]);
}elsif($words [0] eq ”\@METHOD”){
unless ($newHash {method }){
my %hash = ();

102 5. Implementation

 8newHash{method} = \%hash;

}
if($#words == 3){
SnewHash{method}—>{$worda[1] n $words[2]} $words [3];
}olsif (8#words == 1){ , |
$newHash{method}->{$words [1] } o
}elsif (8#words == 2){
Af($words[2] =" /\(.+\)/){
$newHash {method}— >{$words[1] ?.7 . $words[2]} = "";
}elso{
$newHash {method}—>{8words[1]} = $words[2];
)‘ :

)
}elsif(Swords[O] __g ?\@INIT”) {
i B U
$newHash{init} = \@array;

my $body = $newHash{init };
if ($#words == 1){

push (@S$body, $name.”.”.$words[1]);
}elsif (S#words == 0){

push(@8$body, $name);

}
}elsif(8words [0] eg ”\GIMPLEMENT”){
unless($newHash{implement }){
my @array = (); ;
$newHash{implement} = \@array;

}

my Qtemp = split(/,/, $words[1]);
my $body = $newHash{implement};
whila($#temp >= 0){

}
}elsif(8Swords[0] eq ”\OE(TE\ID”)(

$newHash {extend} = $words[1];
}elsif($words [0] eq ”\@INHERIT”){

unless ($newHash{inherit}){

my @array = (),

$newHash{inherit} = \@array;
ngg Q@temp = split(/,/, Swords[1]);

my $body = $newHash{inherit};
whxh}($#tcmp >= 0){

push(@8$body, shift (Qtemp));

}
}elsif($words[0] eq ”"\@CONST”){}

}
$classList {$name} = \%newHash;
}

The second process in main is to createDotFiles, which is defined as:

Sparkb ...sub createDotFiles{
foreach my $v(@diagramList){
my @diagram = split(/\s+/, 8v);
if(Sdiagram[1] = /(\w+)\.(\w+)/){
&init ;
for (my $i=2; $i<=S#diagram; $i++){
if($diagram[8i] =" /\@VERTICAL/){
$isHorizontal = 0;
}olsif($diagram[8i] = /\@BRIEF/){
$isBrief = 1;
}elsif($diagram[8i] = /\@CONCISE/){
$isConcise = 1;
}olsif($diagram|[8$i] =" /\@HEAD/){
$isHead = 1;

5. Implementation 103

}elsif(8diagram[8$i] =" /\@METHOD/){
$isMethodOnly = 1;
}elsif($diagram[8i] =

= /\@ATTRIBUTE/) {
$isAttributeOnly b
}elsif(8diagram[8i] = /(\w+)/){
push(@classesAdded, $diagram[8$i]) unless(&findClass($diagram[8$i]));

}
next if($#classesAdded <0);
open my 8out, "> 81.dot” || die ”"Create file failed!\n”;

prologue ($out);

printClasses ($out);
printRelations ($out);

epilogue ($out);

system ”dot —T3$2 —0$1.82 $1.dot”;
unlink (”81.dot");

. ‘ J

For each item in @diagramList, it will create one dot file for GraphViz and one
dot file is corresponding to one picture. The supporting function findClass is used to
determine if the class will appear in this diagram and defined as:

Sparkb...sub findClass{
my $found = 0;
foreach my $v(@classesAdded){
1£(8v ea $_[0]){
$found = 1;

last;

}
}
$found;

Every diagram is new, so the back end clears the environment first every time.
The supporting function init is defined as:

Sparkb...sub init{
(@classesAdded , @relationsAdded) = ((), ());
(8isHorizontal , $isBrief , $isConcise, $isHead) = (1, 0, 0, 0);
($isMethodOnly , $isAttributeOnly, $isActionOnly) = (0, 0, 0);

}

where the variable QclassesAdded is used to hold all the classes, which are going to
appear in the current diagram and defined as:

l(Sparkb...my @classesAdded = ();]

and the variable QrelationsAdded is used to describe all the relations between these
classes and defined as:

l(Sparkb...m @relationsAdded = (); j

and the variable $isHorizontal is used to describe the direction of this diagram and
its default value is 1, which means that the diagram will be drawn horizontally.

104 5. Implementation

l(Sparkb...my $isHorizontal = 1;)

and the variable $isBrief, $isConcise and $isHead are used to describe the form of
this diagram and defined as:

L[Sparkb..~.u;y ($isB:r:ief, $isConcise , ;$'§§Head) = (0, 0, 0);]

and the variable $isMethodOnly, $isAttributeOnly, and $isActionOnly are used to
indicate which part of the classes in the diagram will be shown and defined as:

{(Sparkb...g_r_w ($isMethodOnly , $isActionOnly, $isAttributeOnly) = (0, 0, 0);)

After initialization and necessary settings, the back end begins to build the dot
file basing on the obtained data.
First of all, it create a prologue as:

-

Sparkb..;_s;x_g proldgue{

my $out = $_[0];

print Sout "# Class diagram\n# Generated by Spark version 1.0\n\n”.
"digraph G {\n\tedge [fontname=\"”.$edgeFontName.
"\, fontsize=10, lnbelfyontname:‘\"".$edgeFontName. !
”\”, labelfontsize =10];\n\tnode [fontname=\"".8$nodeFontName.
"\”, fontsize=10, shape=plaintext];\n”;

print $out "\trankdir=LR;\n\tranksep=1;\n"” if(8$isHorizontal);

print $out ”\tbgcolor=\"" 4 8bgColor + "\”;\n” if(8bgColor =~ /.4/);

}

\

where the variable $bgColor is defined as:

L(sparkb Ly $bsColor =nn, . ‘: - i ‘ j

Then, back end begins to print classes hsted in @classesAdded as followmg

Sparkb .sub printClasses{
my sout = 8.]0};
foreach my $v(@classesAdded){
print Sout "\t”.8v.” [label=";
externalTableStart (8$out);
#show head
innerTableStart ($out);
tableLine ($out, "CENTER”, "interface”) if(8islnterface);
tableLine ($out, "CENTER”, 8v);
innerTableEnd ($out);
#add reuse relations
1my $classBody = $classList{8v};
if($classBody —>{implement }){
my $memberBody = $classBody —>{implement};
foreach my $w(@$memberBody){
push(@relationsAdded , "8$v.implement.$w\n”);

-

}
if($classBody —>{inherit }){
my $memberBody = $classBody—>{inherit };
foreach my $w(@$memberBody){
push(@relationsAdded, ”"8$v.inherit.$w\n”) if(&findClass(8w));

}

5. Implementation

105

push (@relationsAdded , ”8v.extend.$classBody—>{extend}\n")
if(&findClass ($classBody—>{extend }));

if(8classBody—>{var}){
my $memberBody = $classBody—>{var};
my @varList = kevs(%$memberBody);
foreach my $w(@varList){
my $type = SmemberBody—>{$w};
if(8type =" /" (.+)\s+\@LIST\s+(\w+)/){
push (@relationsAdded, "8v. haslist.$2.8w\n”) if(&findClass($2));
}eolse{
push(@QrelationsAdded , "$v.has.$type.8Sw\n”) if(&findClass(8type));
}

}
}
unless ($isHead) {
#show Attributes
my $displayed = 0;
innerTableStart (Sout);
unless ($isMethodOnly || $isActionOnly) {
if(8classBody—>{var}){
my $memberBody = $classBody—>{var};
my @varList = kovs(%$memberBody);
foreach ry $w(@varList){
$displayed |= attribute($out, $w, $memberBody—>{8w});
}
}

tableLine($out, "LEFT”, ” ") unless(8$displayed);
innerTableEnd ($out);
#show operation
innerTableStart ($out);
$displayed = 0;
unless ($isAttributeOnly || $isActionOnly){
if(S8classBody—>{init }){
$displayed = 1;
my $memberBody = $classBody-—>{init };
foreach my $w(@$memberBody) {
if (8w =" /(.H)\.(.+)/){
operation($out, $1, 82, "7);
}else{
operation ($out, 8w, "()”, "");
}

}

if($classBody —>{method }){
$displayed = 1;
my $memberBody = $classBody —>{method };
my @methodList = keys(%$memberBody);
foreach my $w(@methodList){
my $type = $memberBody—>{$w};
my ($para, $name) = ("”, "");
(8w = /CHN-(HINL
($name, $para) = (81, $2);
}else{
$name = $w;
}

operation ($out, $name, $para, S$type);

}

tableLine ($Sout, "LEFT”, ” ”) unless($displayed);

innerTableEnd ($out);

#show action

innerTableStart ($out);

$displayed = 0;

unless (8isAttributeOnly || $isMethodOnly){
if(8classBody—>{action}){

106 5. Implementation

$displayed = 1; - :
my $memberBody = SclassBody—>{nctlon };
foreach my $w(@$memberBody) {
operation (8Sout, $w, "()”, "");
}
¥
tableLine($Sout, "LEFT”, ” ") unless ($displayed);
innerTableEnd ($out);
}#end of unless($isHead)
externalTableEnd ($out);
~ nodeProperties($out);
i}
}

\ : : J

where the variable $isInterface is defined as:

l(Sparkb.‘.my $isInterface = 0; = ! J

The supporting function externalTableStart is used to draw the start border of
class diagram and defined as:

Sparkb ...sub externalTableStart {
my (out, Sbgcolor) = (8.[0], "");
$bgcolor = ” bgcolor=\"".8$nodeFillColor.”\”” if($nodeFillColor ne mn)y
Qrixxt $out "<<table border—\”O\” cellborder=\"1\" cellspacing=\"0\"” ”,
~ "cellpadding=\"2\" port=\"p\””.8bgcolor.” >”.8linePostfix;

where the variable $nodeFillColor is defined as:

l(Sparkb...n_]_}; $nodeFillColor = "7; J

and function innerTableStart is used to draw the inner border of class diagram and
defined as:

Sparkb . sub innerTableStart {

my Sout 8-[0]:

print $out $linePrefix . $hnePref1x ”<cr><td><table border—\” T
”"cellspacing=\"0\"” cellpadding=\"1\">".8linePostfix;

where the variable $linePrefix and $linePostfix are defined as:

l[Sparkb...l_x__w ($linePrefix , $linePostfix) = ("\t”, ”\n"’); j

and function tableLine is used to draw a common line of class diagram and defined

as:

=
Sparkb ...sub tableLine{
my $out = $_[0];
my ($topen, Stclose) = (", "</td>L/tr >7):
my $prefix = $linePrefix.$linePrefix.$linePrefix;
1£(8-[1] eq "CENTER"){

$topen = Sprefix"<tr><td> ":

=\"left\"> "

5. Implementation 107

$topen = $prefix.”<tr><td align=\"right\"> ”;
}
print $out $topen.$_.[2].8tclose.$linePostfix;

}

where the variable $align is defined as:

l(Sparkb...my $align = "CENTER”;]

and function innerTableEnd is used to draw inner end of class diagram and defined
as:

Sparkb...sub innerTableEnd{
my $out = $.[0];
print $out $linePrefix. $linePrefix.”</table></td></tr >".8linePostfix;

}

and function externalTableEnd is used to close class diagram and defined as:

Sparkb...sub externalTableEnd{
my Sout = $.[0];
print $out $linePrefix. $linePrefix.”</table>>";

}

\

and function attribute is used to display the attributes of class in diagram and defined

as:
C N\
Sparkb...sub attribute{
my $display = 1;
if(&findClass ($-[2])){
$display = 0;
}else{
16(8-[2] = /7 (.+)\s+\GLIST\s+(\w+)/){
if(&findClass ($2)){
$display = 0;
}else{
my Batt = $_[1];
$att .= ” : ".81 unless(8$isConcise|| 8isBrief);
tableLine ($-[0] , "LEFT", $att);
}
}else{
my $att = $_[1];
$att .= " : ".8_[2] unless(8$isConcise || 8isBrief);
‘tableLine($-[0], "LEFT”, $att);
k
k
$display;
}
J/

and function operation is used to print operations of class in diagram and defined as:
rSparkb...w operation {]
my (8out, $name, 8$para, $type) = @_;
my $cs = $name;
if(8isBrief){

scw =T 0
}else{
$cs .= $para;

$type = ”” if(8isConcise);

”

Scuiti= : ".8type if(Stype ne "”);

108 ' 5. Implementation

}
_ tableLine(8out, "LEFT”, $cs);
}

and function nodeProperties is used to print the common properties of the nodes of

diagram and defined as:

Sparkb ...sub nodeProperties{
my Sout = $_[0]; =
print $out ”, fontname=\"".8nodeFontName.”\””.
. ., Hontcolor=\"".8nodeFontColor.7\"",
?, fontsize=".8$nodeFontSize.”];\n";

where the variable $nodeFontName, $nodeFontColor, and $nodeFontSize are defined

as:

{Spnrkb.‘.r_ty ($nodeFontName, $nodeFontColor, $hodeFontSizé) = () arial?, "blaek?, 10): . J

After that, back end begins to print the relations listed in QrelationsAdded as
following:

Sparkb...sub printRelations{
my Sout = $.[0]; ‘
foreach my 8$r(@relationsAdded){
my ($tailLabel, SheadLabel) = (77, "");
Lf(8r =" /(\w+)\.extend\.(\w+)/){
print Sout "\t//”.81.” extend ".$2."\n”.”\t7.82.7:p —> ".81.
7:p [dir=back,arrowtail=empty,color=\"".8edgeColor.”\”];\n";
}elsif($r =~ /(\w+)\.implement\.(\w+)/){
print $out "\t//”7.81."” implement ".8$2.”\n”."\t".8$2.7:p —> ”.81.
n:p [;di::bacfk,atr‘owtail:empty,style:dashfe‘d,color:\"”.sedgeColor.”\'T];\n”;
}elsif(8r =~ /(\w+)\.inherit \.(\w+)/){
print Sout "\t//%.81.7 inherit ” 82."\n”.7\t".82.%:p —> " 81.
Rep [dir:back,arrowtaiyl:empty,colo]rﬁ::\"".JSedge;Cplor.”y\”];\;n";
}elsif(8$r == /(\w+)\.haslist \.(\w+)\.(\w+)/){
pint Sous PNE/) M 1Y has aUlikt of " 82 "\n® "\t7 . §1.V.p N M 8200 .p (B
"taillabel=\"".8tailLabel.”\”, ”.” label=\"7.83.”\", ”.” headlabel=\"".8headLabel.
7\", ”.”fontname=\"".8edgeFontName.”\”, ".” fontcolor=\"".$edgeFontColor.”\", .
"fontsize=".8edgeFontSize.” , ”.” color=\"".8edgeColor.”\”, ”.$associationMap{”list”}.”]

}else{
$r =" /CHI\N-CHNCHN-CH) /3
print Sout "\t// ".$1.” ”.$2.” ”.$3.”\n”."\t”.$1.”:p —> ".83.":p [".” taillabel=\"".8tailLab
MNTL D Tabel =X"208a INN L Y Headlabel=\"" $headLabel.? \\7: -2 - Nfontname=X"".
$edgeFontName.”\” , ”.” fontcolor=\"".8edgeFontColor.”\”, ”.” fontsize=".8edgeFontSize.”,
”"color=\"".8edgeColor.”\”, ”.8$associationMap{$2}.”];\n”;

where the variable $edgeFontName, $edgeColor, $edgeFontSize, and $edgeFontColor

are defined as:

Sparkb ...my ($edgeFontName, $edgeColor) = (” arial”, "red”);
my ($edgeFontSize, $edgeFontColor) = (10, "black”);

and the variable %associationMap is defined as:

\n”;

el.

5. Implementation 109

Sparkb ...my %associationMap = (”assoc”, ”arrowhead=none” ,
"navassoc”, "arrowhead=open”,
"has”, ”arrowhead=none, arrowtail=ediamond”,
" composed”, ”arrowhead=none, arrowtail=diamond”,
Tlist”; ”arrowhead=dot, arrowtail=ediamond”,
"depend”, ”arrowhead=open, style=dashed”);

The last job is to print epilogue as following:

Sparkb ...sub epilogue{
my $out = $_[0];
print $out "}\n”;
close $out;

}

5.5 Testing

To verify the design and implementation of Spark, we performed testing following the
strategy mentioned in Section 3.6.4.

5.5.1 Usability Testing
Correct Usage

We tried to use Spark with an actual OOLP program file name, leaf.txt, as following:
perl sparkf-lime.pl leaf.txt

The result is that there are three Lime files and four pictures generated by Spark.

No Parameters

We tried to use Spark without parameters as following:
perl sparkf-lime.pl
The result is

Usage: perl sparkf.pl filename

110 5. Implementation

Wrong Parameters

We tried to use Spark with fake file name as following:
perl sparkf-lime.pl aaa

The result is
Cannot open aaa!

These three results show that Spark can handle both legal and illegal usages and
satisfies the design requirements.

5.5.2 Unit Testing
Syntax Coverage

We composed a sample code program file that coverage all the syntax of Eiffel.

p
Testing of a declaration of a class.

class STUDENT
end :

Testing of the inheritance relation of a class.

inherit STUDENT...PEOPLE

Testing of two features of a class.

feature {NONE} PEOPLE...name: STRING
age: INTEGER

Testing of a deferred class.

deferred class PEOPLE
end

Testing of a operation with formal specification and various statements of a class

feature {NONE}
STUDENT. .. set_.name (new.name: STRING) is

local
a: INTEGER
do
name := new.name
create employees.make
getup
if text_file.read.is.connected then
split := input_string.split
end
if text_file_.read.is_.connected then
split := input_string.split
else
split =/ input.string .split
end

inspect text_file_read.last_string.first.to_upper

5. Implementation

111

when 'S’ then
text.file_.read.read.line

when 'B’, 'T’ then
text_file_.read.read.line

else

end

from text.file.read.read.line
until text.file.read.end.of_.input

loop
text_file.read .read.line
end
end

‘Testing of a deffered operation with formal specification of a class

feature
PEOPLE. .. set_name(n: STRING) is
require
n /= Void
deferred
end

Testing of a constant of a class

feature {NONE} STUDENT... min_age: INTEGER is 5

Testing of an invariant of a class

invariant
PEOPLE... age > 0
age < 200
end

Testing of an operation with result of a class.

feature {ANY}
STUDENT...match (n: STRING): BOOLEAN is
do
Result := name = n
end

//CODE LIST BEGIN

//CODE LIST END

After running Spark on this sample,
perl sparkf-eiffel.pl coverage.txt

we got:

Testing of a declaration of a class.

class STUDENT
end

‘Testing of the inheritance relation of a class.

inherit STUDENT...PEOPLE

Testing of two features of a class.

112 5. Implementation

feature {NONE} PEOPLE...name: STRING
o _ age: INTEGER

Testing of a deferred class.

deferred class PEOPLE
end

Testing of a operation with formal specification and various statements of a class

feature {NONE} ‘
STUDENT. .. set.name (new.name: STRING) is
local
a: INTEGER
do
name := new.name
create employees.make
getup
if text.file.read.is.connected then
split := input.string.split

end

if text_file.read.is.connected then
split := input_string.split

else
split := input_string.split

end

inspect text_file.read.last.string.first.to.upper
when 'S’ then , .
text._file.read.read_line
when 'B’, 'T' then
text.file.read .read_line
else
end
from text.file.read.read.line
until text_-file_.read.end_of_input
loop
text_file_read .read.line
end
end

Testing of a deffered operation with formal specification of a class

feature
PEOPLE. .. set_name(n: STRING) is
require
n /= Void
deferred
end

Testing of a constant of a class

feature {NONE} STUDENT. .. min.age: INTEGER is 5

Testing of an invariant of a class

invariant
PEOPLE...age > 0
age < 200
end

Testing of an operation with result of a class.

feature {ANY}
STUDENT. .. match (n: STRING): BOOLEAN is
do
Result := name ='n
end

5. Implementation 113

//CODE LIST BEGIN

class STUDENT
inherit
PEOPLE
feature {NONE}
set.name (new.name: STRING) is

local
a : INTEGER
do
name := new.name

create employees.make

getup

if text_file.read.is.connected then
split := input_string.split

end

if text.file.read.is.connected then
split := input.string.split

else
split := input.string.split

end

inspect

text.file.read.last.string.first.to_upper
when ’S’ then
text.file.read .read.line
when 'B’, 'T’ then
text_file.read .read_line
else
end
from
text.file.read .read.line
until text.file_-read.end.of.input
loop
text.file.read.read.line
end
end
min.age : INTEGER is 5
feature {ANY}
match(n: STRING) : BOOLEAN is
do
Result := name = n
end
end

deferred class PEOPLE

feature
set.name(n: STRING) is
require
n /= Void
deferred
end

feature {NONE}
name : STRING
age : INTEGER

invariant
age > 0
age < 200
end

//CODE LIST END

The result shows that Spark can parse syntax of Eiffel and generates files correctly.

114 5. Implementation

Diagram Files Generating

We composed a mod file for testing of diagram generation.

a
@CLASSDIAGRAM studentl.ps2 PEOPLE STUDENT ATHLETE @QVERTICAL
@CLASSDIAGRAM student2.ps2 PEOPLE STUDENT @HEAD
@CLASSDIAGRAM student3 . ps2 STUDENT @METHOD .
@CLASSDIAGRAM student4 .ps2 STUDENT @ATTRIBUTE
@CLASSDIAGRAM student5 .ps2 STUDENT @CONCISE

@CLASSDIAGRAM student6 .ps2 STUDENT @BRIEF

QCLASS PEOPLE

@METHOD set.name (n:STRING)
@VAR name STRING
QVAR num STRING '

@CLASS STUDENT
Q@INHERIT PEOPLE

QIMPLEMENT ATHLETE

@METHOD match (n:STRING) BOOLEAN
@VAR num INTEGER

@METHOD run

@INTERFACE ATHLETE
@METHOD run

According to this mod file, Spark should generate 6 diagrams. Figure 5.5 is drawn
vertically and includes all these three classes or interface.

(interface)
FREOPLE ATHLETE
name :STRING
set name N:STRING) un 0
\ /

STUDENT

num :INTEGER

wno PEOPLE [t STUDENT

matchO:STRING) :BOO LEAN

Figure 5.5: Vertical testing Figure 5.6: Horizontal testing

Figure 5.6 is drawn horizontally and shows the class head only.

Figure 5.7 shows the methods of a class only and figure 5.8 shows the attributes
of a class only.

Figure 5.9 and figure 5.10 show classes in concise form and brief form respectively.

The results shows that Spark satisfies the design requirements.

5. Implementation 115

STUDENT STUDENT

num : INTEGER

mn ()
matth@STRING) :BOO LEAN

Figure 5.7: Method only testing Figure 5.8: Attribute only testing
STUDENT STUDENT
num num
mn () mn Q
matth QM STRING) m atch (
Figure 5.9: Concise form testing Figure 5.10: Brief form testing

5.5.3 Integration Testing

Our case study itself is perfect integration testing for Spark. The result that pro-
gram files can be compiled successfully and the graphic notation files is successfully
included in the documentation (see Chapter 4) shows that Spark satisfies the design

requirements.

5.5.4 System Testing

We conducted all testing mentioned above on MS Windows and Macintosh. The
same results show that Spark is platform-independent and Spark satisfies the design

requirements.

Chapter 6

Conclusion and Future Work

In this thesis, we presented a new programming paradigm, object-oriented literate
programming, which combines several existed significant ideas and is used to con-
struct object-oriented programs in literature style. A set of software tools, Spark, is
implemented to support this technique. So far the implementation of Spark altogether
contains about hand-written 5000 lines and consists of the following four parts:

e The front end of Spark for Lime (1200 lines).
e The front end of Spark for Eiffel (2500 lines).
e The front end of Spark for perl (800 lines).

e The back end of Spark (500 lines).

Chapter 3 introduced OOLP and all features of Spark, from which we can see
how programmers can enjoy the freedom of choosing the combination of languages
to develop their software. Chapter 4 gave a case study, Transit Information System,
implemented with this technique. It turns out that object-oriented software applica-
tions can be expressed in literate style well. In addition, programmers do not need to
worry about the graphical notations as well as any extra cost spent on training and
tools. Of course, more complex examples are still needed to validate this technique.

Spark itself needs further development to make it more complete and useful. One
of the most important things is to build more front ends for Spark in order to adapt

more object-oriented programming languages, such as Java and C#.

116

6. Conclusion and Future Work 117

More graphical notations are need to be supported. So far, Spark can only generate
class diagrams. In fact, further development could let Spark have the ability to
produce dynamic diagrams, such as sequence diagram and statechart, which can
make software documentation more expressive and more complete.

Appendix A

Installation

In order to run the study case presented in this thesis it is necessary to get hold of the
following five separate tools. All of them have setup programs as well as installation
instructions that can be found on the Web.

A.1 Perl

Perl is a dynamic programming language created by Larry Wall. As an
open source software, every body can download its latest version for free from
www.perl.com/download. csp.

Perl is necessary, because Spark is developed entirely in this language. The version
5.8.8.820 is employed in the testing of Spark.

A.2 Graphviz

Graphviz is a package of open source tools initiated by AT&T Research
Labs for drawing graphs specified in DOT language scripts. Since it is free
software licensed under the Common Public License, every one can down-
load it for free from www.ryandesign.com/graphviz (for Mac OS) and from
www.graphviz.org/Download_windows.php (for MS Windows)

Graphviz is necessary, because the back end of Spark depends on it. The version
2.12 is employed in the testing of Spark.

118

A. Installation 119

A.3 AsciiDoc

AsciiDoc is a text document format for writing short documents, articles, books
and UNIX man pages. Its files can be translated to HTML and DocBook markups
easily. Free use of AsciiDoc is granted under the terms of the GNU Gen-
eral Public License, so every one can download the latest version for free from
www.methods. co.nz/asciidoc/downloads. html.

AsciiDoc is necessary, because it is used as the document formatting language in
the study case. The version 8.2.1 is employed in the testing of Spark.

A.4 Python

Python is a dynamic object-oriented programming language. As an OSI certified
open source software, every body can download its latest version for free from
www.python.org/download.

Python is necessary, because AsciiDoc depends on it. The version 2.5.1 is em-
ployed in the testing of Spark.

A.5 SmartEiffel

SmartEiffel is a free Eiffel compiler. It has been developed at the Lorraine Labora-
tory of Research in Information Technology and its Applications, an institute affili-
ated to the French National Institute for Research in Computer Science and Control.
SmartEiffel can be downloaded for free from smarteiffel.loria.fr.

SmartEiffel is necessary, because Eiffel is chose as the programming language in
the study case. The version 2.2 is employed in the testing of Spark.

Appendix B

Source Code of Case Study

== The Requirement of Transit Information System
In this project , we are asked to develop an information system for a
local train and bus service. Our customer, HPTA (Happy Passenger .
Transit Authority), has no clear picture what it should do, except
to increase customer satisfaction and make traveling more
attractive. All the information we have goes as follows:

— It will be used by passengers as well as by HPTA staff.

~ Selected staff members would be allowed to update the information.

— Passengers should be able to enter their start and destination, a desired time, and get a bunch
of possible connections.

— Connections can be direct or with changing busses or trains.

— For each bus and train station, the information like opening hours and accessxblhty is maintaine

— Users can browse a list of all bus and train routes or check the details of a certain route.

— Some bus stops and train stops are conjoint, but some not.

— Trains have two—digit numbers and busses have three—digit numbers. ~

— Connections between trains and busses must have at least five minutes for the change

Foi‘simplicity , we assume that ‘detours and delays do not occur, stops are never skipped.

== An Overview

The following picture is an overview of this transit information system. As the root class,
HPTA_TRANSIT.INFO is a subclass of SYSTEM, which is a predefined class in Eiffel and allow its
subclasses to execute system command. Class DATABASE is a deferred class, whose subclasses, such as
class FILE.DATABASE, are responsible for maintaining system data. Class CONNECTIONFINDER is also a
deferred class, whose subclasses, such as class PRIME.FINDER, are responsible for finding the
possible connections.

image:: hpta_transit.info.jpg[Class Family]
//$% HPTA_TRANSIT_INFO DATABASE FILE_DATABASE CONNECTION_FINDER PRIME_FINDER ROUTE STAFF STATION KNO|

The purpose of the application is to maintain the system information, including local train or bus
service and the status of staffs, and provide users current public transit service information,
including possible connections, and routes.

== Dictionary

To understand the main terms used in the requirement, we create a dictionary.
— passenger: a person, who want to get his or her destination by bus or train.
— staff: a person, who works for HPTA.

— start: a station, where a passenger begin his or her journey.

[@QVERTICAL

— destination: a station to which a passenger is going or directed.

120

B. Source Code of Case Study 121

— desired time: an interval, within which one want get to the destination from the start.
— connection: a sequence of stations.

— bus: a long motor vehicle for carrying passengers, usually along a fixed route.

— train: a series of connected railroad cars pulled or pushed by one or more locomotives.
— route: a course for buses or trains to travel from one station to another.

— opening hour: a time, at which the first vehicle departs.

— accessibility: a description of the running status of a station.

— update: a change of system information.

— browse: a display of the information of all routes.

— check: a detail show of a certain route information.

== Identifying Classes
Basing on the requirements, we defined the classes as follows:

class HPTA_TRANSITINFO
end

HPTA_TRANSIT.INFO is identified as a class of the entire system.

class STAFF
feature {NONE}
number: INTEGER
password : STRING
end

STAFF is a class with attributes employee number and password. The requirements state that selected
staff members would be allowed update the system.

class STATION
feature {NONE}
name: STRING
open: STRING
accessibility : STRING
end

STATION is a class with attributes name, opening hour, and accessibility.

class ROUTE
feature {NONE}

number: INTEGER

stops: LINKED_LIST [STATION]
end

ROUTE is a class with attributes station list and route number.

== Identifying Operations
All three operations listed in the directory belong naturally in the class HPTA_TRANSIT.INFO,
because they are dependent on the interface of the system.

== Consulting The Library of Model
There is no suitable business model in our existing library, so we have to build this system from
the beginning.

== Applying Design Patterns

According to the requirements, our application needs to keep all system information and to calculatg
possible connections. There exist so many different methods for these two tasks. Hence, we apply th
strategy design pattern. We declare two deferred classes

deferred class DATABASE
end

122 B. Source Code of Case Study

and

deferred class CONNECTION.FINDER
end

Then, we define two private members for class HPTA.TRANSITINFO denoted by the class name
followed by three dots as following:

feature {NONE} , :
' HPTA_TRANSIT.INFO ... db: DATABASE
finder: CONNECTION.FINDER

1.e:

image:: hptal.jpg[attributes of class HPTA_TRANSIT.INFO]

//$ HPTA_.TRANSIT.INFO @ATTRIBUTE

In this way, we can add new algorithms easily and even change mechanisms at runtime with
the following private methods: '

feature {NONE} , : .
HPTA_TRANSIT.INFO... set_finder (new_finder: CONNECTION_FINDER) is

require

new._finder /= Void
do

finder := new.finder
ensure

finder = new._finder
end

and

feature {NONE}
HPTA_.TRANSIT.INFO...set.database(new.database: DATABASE) is
‘require . :
new.database /= Void
do
db := new.database
ensure
db = new.database
end

Their preconditions require that the new comers are not invalid and their postconditions ensure tha
the private member db and finder are set correctly. . . ~

Class CONNECTION.FINDER describes the interface that is common to all concrete mechanisms
as following: '

image :: connection . jpg[Class connection_finder]
//$ CONNECTION.FINDER @METHOD

feature {HPTA_.TRANSIT_INFO}
CONNECTION.FINDER . . .
get.connection (dbase: DATABASE; start, destination: STRING; time: INTEGER): STRING is
require
start /= Void
destination /= Void
time >= 0
dbase /= Void
deferred
end

Class DATABASE describes the interface that is common to all concrete data maintain mechanisms
as following:

B. Source Code of Case Study 123

image:: database. jpg[Class database]
//$ DATABASE @GMETHOD

feature {HPTA.TRANSIT.INFO, CONNECTION.FINDER}
DATABASE... get_first_bus_.route: ROUTE is
deferred

end

This method can return the first bus route object and is used by class HPTA_TRANSIT.INFO and class
CONNECTIONFINDER. Together with the following method, its clients can browse all bus routes
one by one.

feature {HPTA_.TRANSITJNFO, CONNECTION.FINDER}
DATABASE. .. get.next_bus_route (route: ROUTE): ROUTE is
deferred
end

Similarly , we can browse all train routes by the following two methods:

feature {HPTA_TRANSITINFO, CONNECTION._FINDER}
DATABASE. .. get .first_.train.route: ROUTE is
deferred
end

and

feature {HPTA_TRANSITINFO, CONNECTION_FINDER}
DATABASE... get.next_-train.route (route: ROUTE): ROUTE is
deferred
end

Browsing all staff information is not necessary, but we need to find given staff object
by the following method.

feature {HPTA_TRANSITINFO, CONNECTION.FINDER}
DATABASE. .. find.staff (num: INTEGER): STAFF is
require
num > 0
deferred
end

This method can return an STAFF object , whose employee number equals to the parameter num. It is
because all employee number start from 1 that the precondition is added.

For convenience, we also provide a route finding method as follows:

feature {HPTA_TRANSITINFO, CONNECTION_FINDER}
DATABASE. .. find.route (num: INTEGER): ROUTE is
require
num >= min_train.route.num
num <= max.bus.route.num
deferred
end

The following method is the creation of class DATABASE and invoked by class HPTA_.TRANSIT.INFO only.

feature {HPTA_TRANSITINFO}
DATABASE. .. make is
deferred
end

124 B. Source Code of Case Study

In order to update system information, class DATABASE also requires the interfaces of adding and
deleting as following:

feature {HPTA.TRANSIT_INFO} .
. DATABASE... add.route (new.route: ROUTE) is
require
new.route /= Void
deferred
end

and

feature {HPTA.TRANSIT.INFO}
DATABASE... delete_.route (route: ROUTE) is
require
route /= Void
deferred
end

These two methods can add or delete a certain route to or from this
system respectively and is called by class HPTA_TRANSITINFO only.

Similarly , class HPTA_TRANSIT.INFO also can add or delete a certain staff by the following
two methods:

feature {HPTA.TRANSIT.INFO}
DATABASE... add.staff (new_staff: STAFF) is
require
new.staff /= Void
deferred
end

| and

feature {HPTA_TRANSIT.INFO}
DATABASE. .. delete_staff (staff: STAFF) is
. require '
staff /= Void
deferred
end

As long as some syétem infoiiﬂation ié"‘updated; DATABASE" object must be informed to save the
change by the following method.

feature {HPTA_TRANSIT.INFO}
DATABASE. .. do_save is
deferred

end

According to the requirements, only selected members can update the system. We define that when
the database is locked, only the user, who knows both employee number and password, can conduct
an update.

feature {HPTA_.TRANSIT.INFO}
DATABASE. .. is.locked : BOOLEAN is
deferred
end

The subclasses of these two deferred classes implement each concrete behavior mentioned above.

The following four constants are used to point out the bound of route number

feature {NONE}
DATABASE. .. max_bus_route.num: INTEGER is 999
min.bus.route.num: INTEGER is 100

B. Source Code of Case Study 125

max.train.route.num: INTEGER is 99
min.train.route.num: INTEGER is 10

== Algorithms Design

File Database

For simplicity , we save the system information in a file named "sys_info.txt”. So we define a
subclass of class DATABASE, FILE.DATABASE as following:

class FILE.DATABASE
inherit DATABASE
feature {NONE}
file_name: STRING is "sys_info.txt”
end

1se,

image:: databases.jpg[the hirarchy of databases]
//$ DATABASE FILE.DATABASE @HEAD QVERTICAL

class FILEDATABASE kecp bus routes, train routes and staffs with LINKED.LIST as following:

feature {NONE}
FILELDATABASE. .. train.routes: LINKED_LIST [ROUTE]
bus_routes: LINKED.LIST [ROUTE]
employees: LINKED.LIST [STAFF]

now, class FILE DATABASE becomes:

image:: file_.database.jpg|[attributes of file database]
//$ FILELDATABASE @ATTRIBUTE

The creation of FILE.DATABASE is method make

create FILE DATABASE...make

The main task of make is to initialize this three list

feature {HPTA_TRANSIT.INFO}
FILEDATABASE. .. make is

do
create employees.make
create bus.routes.make
create train.routes.make
load

ensure
employees /= Void
bus.routes /= Void
train.routes /= Void

end

and to load the system information for that file:

feature {NONE}
FILEDATABASE... load is
local
input_string : STRING
text.file.read : TEXT_FILEREAD
text.file.write: TEXT.FILEWRITE
split : ARRAY[STRING]
new.staff: STAFF
route : ROUTE
do
create text_file_read.connect.to(file.name)
if text_file.read.is_.connected then
from text.file.read .read.line

126 B. Source Code of Case Study

until text_file_.read.end_of_.input
loop .
if text_file_.read.last_string.upper = 1 then
inspect text_file.read.last.string.first.to.upper
when 'S’ then o
text.file_.read.read._line
input_string := text.file.read.last_string.twin
split := input_string.split .
create new.staff.make (split.first.to_.integer, split.last)
employees.add_last (new_staff)
when ’'B’, ’'T’ then
text._file.read .read_line
input_string := text_file.read.last_string.twin
split := input_string.split
~ route := find_.route(split.item(4).to_integer)
_if route = Void then
create route.make(split.item (4).to-integer)
route.add.station(split.first , split.item(2), split.item(3), split.last
if split.item(4) .to.integer > max.train.route_.num then
bus_routes.add_last (route) .

else
train_routes.add_last (route)
end
else
route.add._station(split.first , split.item(2), split.item(3), split.last
end
else
end
end
text_file.read .read._line
end
text._file.read .disconnect

else
create text_file_write.connect-to(file.name)
if text.file_.write.is.connected then
text_file.write .disconnect
: end
end
end

By the following method, one can get the specific route object.

feature {HPTA.TRANSIT.INFO, CONNECTION.FINDER}
FILEDATABASE... find_.route (num: INTEGER): ROUTE is
local - ' -
i: INTEGER
route: ROUTE
do -
if num > max.train.route.num then
from i := bus.routes.lower
until i > bus_routes.upper or else bus.routes.item(i) .match(num)

loop
i = i+1
end
if i <= bus.routes.upper then
route := bus.routes.item (i)
end
else

from i := train.routes.lower
until i > train_routes.upper or else train_routes.item(i) .match(num)

loop
ii= i+l
end
if i <= train_routes.upper then
route := train.routes.item(i)
end
end

Result := route

B. Source Code of Case Study 127

end

Similarly , using the following method, one can get the staff with such employee number:

feature {HPTA.TRANSIT.INFO, CONNECTION.FINDER}
FILEDATABASE. .. find.staff (num: INTEGER): STAFF is

local
i : INTEGER
staff: STAFF
do
from i := employees.lower
until i > employees.upper or else employees.item (i) .match(num)
loop
i:= i+l
end
if i <= employees.upper then
staff := employees.item (i)
end
Result := staff
end

By the following four methods, one can browse all train routes and bus routes:

feature {HPTA_.TRANSIT.INFO, CONNECTION._FINDER}
FILE.DATABASE. .. get_first_bus_route: ROUTE is
local
route : ROUTE
do
if not bus_.routes.is.empty then
route := bus_routes. first

end

Result := route
end

get.next_.bus.route (route: ROUTE): ROUTE is

require

bus_routes.index_.of (route) > 0
local

next.route: ROUTE

do
if bus.routes.index.of(route) < bus.routes.upper then
next.route := bus.routes.item(bus.routes.index.of(route)+1)
end
Result := next.route
end
get_first_train.route: ROUTE is
local
route: ROUTE
do
if not train_routes.is.empty then
route := train.routes.first
end
Result ::= route
end
get_.next_train.route (route: ROUTE): ROUTE is
require
train.routes.index.of (route) > 0
local
next.route: ROUTE
do
if train.routes.index.of(route) < train.routes.upper then
next.route := train.routes.item(train.routes.index_.of(route)+1)
end
Result :== next.route
end

By the following method, HPTA_.TRANSITINFO object can add an arbitrary route to this database

128 B. Source Code of Case Study

feature {HPTA_.TRANSIT.INFO}
FILEDATABASE... add.route (new.route: ROUTE) is

do
if is-bus(new.route.get_-number) then
 bus_routes.add_last (new.route) i
elseif is_.train(new.route.get_.number) then
train_.routes.add_last (new_route)
end
end

By the following method, HPTA_.TRANSIT.INFO object can add a staff to this database

feature {HPTA.TRANSITINFO}
FILE.DATABASE. .. add._staff(new.staff: STAFF) is
do
employees.add.last (new_staff)
end

By the following rﬁethod, HPTA_TRANSIT.INFO object can remove an arbitrary route from this database

feature {HPTA.TRANSXTJNFO}
 FILEDDATABASE. .. delete_route (route: ROUTE) is

do
if is_bus(route.get_.number) then
bus_.routes.remove(bus.routes.index_of(route))
elseif is_train (route.get-number) then
train.routes. remdve(train.routes.index.of(route))
end -
end

| By the following method, HPTA.TRANSITJNFO object can remove a staff from this database

feature {HPTA_TRANSIT.INFO}
FILEDATABASE... delete_staff (staff: STAFF) is
de . =
employees.remove(employees.index.of (staff))
end

In FILEDATABASE, as long as employees is not empty, this database is locked, which means the user
has to log in before updating.

feature {HPTA.TRANSIT.INFO}
FILE.DATABASE... is_.locked : BOOLEAN is
do
Result := not employees.is_.empty
end

Whenever the database is changed, it have to save the new data to the specific file by the
following method:

feature {HPTA.TRANSIT.INFO}
FILELDATABASE... do.save is

local
file_2_write : TEXT.FILE.WRITE
i: INTEGER

do

create file_2_write.connect_to(file.name)
if file.2_.write.is.connected then
from i := employees.lower
until i > employees.upper
loop
employees.item (i) .do_save(file_-2_write)
i= 1401
end

B. Source Code of Case Study 129

from i := bus_routes.lower
until i > bus.routes.upper
loop
bus.routes.item(i) .do.save(file-2_write)
=il
end
from i := train.routes.lower
until i > train.routes.upper
loop
train.routes.item(i) .do.save(file_2_write)
i=4d 41
end
file.2_write.disconnect
else
io.put.string (" Update database failed!%N")
end
end

For convenience, we define the following two methods to tell if the current route is bus or
train route:

feature {NONE}
FILEDATABASE. .. is.train (num: INTEGER): BOOLEAN is

do
Result := num >= min_.train.route.num and num <= max.train.route_.num
end
is.bus (num: INTEGER): BOOLEAN is
do
Result := num >= min.bus.route.num and num <= max.bus.route.num
end

Conditional Shortest Path
According to the requirement that connections between trains and busses must have at least
five minutes for the change, we have to consider bus station and train station as two different

stations even they share the same name. In addition, we define a constant change_-time in class
CONNECTION_FINDER, whose subclasses need it.

feature {NONE}
CONNECTION.FINDER. .. change.time: INTEGER is 5

For convenience, we assume that a bus needs 2 minutes to get to the second stop and a train
needs only 1 minute. So we also define the following two members in class CONNECTION.FINDER.

feature {NONE}
CONNECTION.FINDER. .. train_time: INTEGER is 1
bus.time: INTEGER is 2

PRIME_FINDER is one of the subclasses of CONNECTION.FINDER

inherit
PRIME_FINDER . . . CONNECTION_FINDER

i.e,

image:: connection_finder.jpg[hierarchy of class HPTA_.TRANSIT.INFO]
//$ CONNECTION_FINDER PRIME_FINDER @HEAD @VERTICAL

Our first algorithm , PRIMEFINDER, is that starting from the start stations, including both bus
station and train station, we search for all direct neighbors one after another and calculate
their time respectively. In this way, as long as we found the destination as the next neighbor
or no more new neighbors before get to the destination, our searching work is done.

To implement this algorithm, we declare list in class PRIMEFINDER

feature {NONE}

130 B. Source Code of Case Study

PRIME_FINDER... stop.list : LINKED_LIST [KNOT]

Every node of this list record the following information:

image:: knot.jpg[attribute of class KNOT]
//8 KNOT @ATTRIBUTE

feature {NONE} .
' KNOT... station: STATION

Form the start down to the destination, as long as the station is found as a valid neighbor,
it will be set in a KNOT object by the following method.

feature {PRIME.FINDER}
KNOT... set_station (value: STATION) is
do

station := value

end

Of course, class KNOT requires PRIME_FINDER object give a non Void value.

feature {PRIME._FINDER}
KNOT... get.station: STATION is
do
Result := station
end

After searching, PRIMEFINDER object can get the record of station by the above method.

feature {NONE}
KNOT. .. number: INTEGER

The number of KNOT object keeps the route number of the station and is set by the following method:

feature {PRIMEFINDER} -
KNOT...set.number (value: INTEGER) is

require
value >= 0
value <= 999
do
_number := value
end

According to the requirement that train route number is a two—digit number and bus route
number is a three—digit number, we set a precondition like that for this method.

feature {PRIME_FINDER}
KNOT...get_.number: INTEGER is
do
Result := number
end

The above method can tell PRIMEFINDER object the route, to which this station belongs.

feature {NONE}
KNOT.. . time: INTEGER

Member time records the total time needed from start and is set by the following method

feature {PRIME.FINDER}
KNOT...set_-time(value: INTEGER) is
require
value >= 0
do

B. Source Code of Case Study 131

time := value
end

The time of start node is 0 and the time of destination is desire time plus one, so here
KNOT object requires a nonnegative number.

feature {PRIME.FINDER}
KNOT... get_time: INTEGER is
do
Result := time
end

The above method is used to provide time for PRIME.FINDE object.

feature {NONE}
KNOT... pred: INTEGER

This member is used to record the index of last stop in this list. The pred of start is -—1.
That the pred of two destination are all —1 means that there is no possible connection between
the start and the destination.

PRIME_FINDER object set this member by the following method:

feature {PRIME_FINDER}
KNOT...set_pred (value: INTEGER) is
do
pred := value
end

and get the value of this member by the following method:

feature {PRIME_FINDER}
KNOT... get.pred: INTEGER is
do
Result := pred
end

Then, how can we judge if this node should be check for new neighbors? we define the member
status in class KNOT.

feature {NONE}
KNOT...status: INTEGER

If there is no more new neighbors can be found for the current station, this member should
be set as permanent, which is a constant of class KNOT;

feature {PRIME.FINDER}
KNOT... permanent: INTEGER is 1

otherwise , member status should be set as tentative , which is another constant of class KNOT.

feature {PRIME.FINDER}
KNOT... tentative: INTEGER is 0

This member can be set by the following method

feature {PRIME_FINDER}
KNOT... set.status(value: INTEGER) is

require
value >= tentative
value <= permanent

do
status := value

end

132 B. Source Code of Case Study

and get by the following method

feature {PRIME.FINDER}
KNOT... get-status: INTEGER is
do
Result := status
end

Method make is the creation of class ‘KNCTI‘

creation {PRIME_FINDER}
KNOT. . . make

and its main task is to initialize this object with the given parameters as following:

feature {PRIME.FINDER}
: KNOT. .. make(sn: STATION; num, t, ss, pr: INTEGER) is
" do L -
set.station (sn)
set_.number (num)
set_-time (t)
set.status(ss)
set_pred (pr)
end

Every node is added into the list by the following method:

feature {NONE}
PRIME_FINDER...add.node (pr: INTEGER; s: STATION; t, num: INTEGER) is
require
Cob S)
local
node: KNOT
do
create node.make(s, num, t, node.tentative, pr)
if 8 = Void then
node.set_status (node.permanent)
end
stop.-list .add.last (node)
end

If the station is Void, then the new node will be considered as dead.

The logic of possible connection finding is implemented mainly in the following method.

feature {HPTA.TRANSIT_INFO}
PRIME.FINDER. ..
get_connection (dbase: DATABASE; start, destination: STRING; time: INTEGER): STRING is
require else
stop._list .upper = 0

local
connection, cur_station: STRING
node: KNOT

i, monitor: INTEGER
is_end , break: BOOLEAN
do
connection := ""
desire-time := time
add_bus.train_station (dbase, destination, desire.time+1)
add_bus.train_station(dbase, start, 0)

i:=3
cur_station := start.twin
from

until is.end or else cur.station = Void

B. Source Code of Case Study 133

loop
monitor := stop.list.upper
find_neighbor (dbase, cur_station, i)
if monitor = stop.list.upper then
if stop-.list.item(i) /= Void then
stop.list .item(i) .set.status(node.permanent)

end
end
is.end := True
from
until break or else i > stop.list.upper
loop
if stop.list.item(i) /= Void then
node := stop.list.item(i)
if node.get.status = node.tentative and node.get.station /= Void then
cur.station := node.get_station.get.name
is.end := False
break := True
end
end
if not break then
i =43
end
end

if break then
break := False
end
end

connection := get.connection.mes (1)
connection connection + get.connection.mes (2)

if connection.same.as(””) then
connection := ”"There is no connection from your start”
4+ ” to your destination in such time.”

end

Result := connection
ensure

Result /= Void
end

The first parameter provides the source of data; the second and third parameters are the names
of start station and destination station respectively; the last parameter is the desire time,
which will be used to set the private member desire.time:

feature {NONE}
PRIME_FINDER... desire-time : INTEGER

At the beginning of searching, we initialize the stop.list of a PRIMEFINDER object with four
nodes, i.e. bus and train stations of destination followed by bus and train stations of start,
using the following method:

feature {NONE}
PRIME_FINDER... add.bus_.train_station (dbase: DATABASE; name: STRING; time: INTEGER) is

require
name /= Void
time >= 0
local

route: ROUTE
station: STATION
is.end : BOOLEAN
num: INTEGER
do
route := dbase.get_first_bus_.route

134 B. Source Code of Case Study

from |
until is_.end or route = Void
loop
station := route.get_first_station
from . o
until is.end or station = Void
loop
if name.same_as(station.get_.name) then
isiend = True
end .
if not is.end then
station := route.get_next_station(station)
end
end

if not is_end then .
route := dbase.get_next.bus_route(route)

end
end
if not is.end then
station := Void
end
if route /= Void then
num := route.get.number
else
num := 0
end

add.node(—1, station, time, num)

station := Void
is_.end := False
route := dbase.get_first_train_route
from
until is_.end or route = Void
loop
station := route.get_first_station
from
until is_end or station = Void
loop
if name.same.as(station.get_.name) then
is_.end := True
end
if not is_end then
station := route.get_next_station(station)
end
end
if not is_end then
route := dbase.get_next_train_route(route)
end
end
if not is_end then
station := Void
end
if route /= Void then
num := route.get.number
else
num := 0
end
add_node(—1, station, time, num)
end

Then from the bus station of start, we try to find its direct neighbor by the following method:

feature {NONE} ~
PRIME_FINDER . . . find_neighbor (dbase: DATABASE; sn: STRING; pr: INTEGER) is
require
sn /= Void
local
cost , index, switch: INTEGER

B. Source Code of Case Study 135

p-node, node: KNOT
route: ROUTE

station, last: STATION
name: STRING

break : BOOLEAN

do
from switch ;= 0
until switch > 1
loop
if switch = 0 then
cost := bus.time
else
cost := train.time
end
if pr >= stop.list.lower and pr <= stop.list.upper then
p-.node := stop.list.item(pr)
end

if p.node /= Void then
if p-node.get_station /= Void then
if switch = 0 then
if is.train(p-node.get.number) then

cost := change_time + cost
end
route := dbase.get_first_bus.route
else
if is_.bus(p-node.get-number) then
cost := change.time + cost
end
route := dbase.get._first_train_.route
end
from
until route = Void
loop
station := route.get.first_.station
last := station
from
until station = Void or break
loop

name := station.get.name.twin
if name /= Void and name.is.equal(sn) then
if not last.get.name.is.equal (name) then
index := get.index(last, route.get.number)
if index >= 0 then
node := stop.list.item(index)
if node.get.station /= Void then
if is.train (node.get.number) then
if node.get.time > p_node.get_time + cost then
node.set.pred (pr)
node.set.time (p-node.get_-time + cost)
node.set.number(route.get_number)

end
end
end
else
add.node(pr, last, p-node.get_-time+cost, route.get-number)
end
end
last := route.get_next_station(station)

if last /= Void then
index := get.index(last, route.get_-number)
if index >= 0 then
node := stop.list.item(index)
if node.get.station /= Void then
if is_train (node.get-.number) then
if node.get.time > p.node.get.time + cost then
node.set.pred (pr)
node.set.time (p-node.get_time + cost)
node.set.number (route.get.number)

136 B. Source Code of Case Study

end
end
end
else
add.node(pr, last, p-node.get.time+cost, route.get.number)
end
end
break := True
else =
last := station; .
station := route.get._.next.station(station)
end

end
_break := False :
if switch = 0 then

route := dbase.get_next_bus_route(route)
else
route := dbase.get.next.train.route(route)
end . ‘
end
end
end
switch := switch + 1
end
end

For convenience, we define the following two methods to tell if the current route is train or bus:

featuie {NONE} ' -
PRIME._FINDER... is.train (num: INTEGER): BOOLEAN is
do

Result := num >= 10 and num <= 99
end

and

feature {NONE} .
PRIME_FINDER. .. is_bus (num: INTEGER): BOOLEAN is
do
Result
end

num >= 100 and num <= 999

The following method is used to get the index of a certain station in the list; if the target
station is not in the list , —1 will be return.

feature {NONE}
PRIME.FINDER. .. get.index(s: STATION; num: INTEGER): INTEGER is

require
8 /= Void

local
ind , i: INTEGER
node: KNOT
name: STRING

do
ind := -1

from i := stop.list.lower
until i > stop-list.upper
loop
node := stop.list.item (i)
if node.get_.station /= Void then
name := node.get.station .get_.name
if name.is.equal(s.get-name) then
if is_bus(num) and is_.bus(node.get_.number) then
ind := i
elseif is_train(num) and is_train(node.get.number) then
indi = i

B. Source Code of Case Study 137

end
end
end
fie="141
end
Result := ind

end

When the searching is done, we can get the information of possible connections by the
following method:

feature {NONE}
PRIME_FINDER. .. get.connection.mes (index: INTEGER): STRING is

require
index >= 0
local
node: KNOT
mes: STRING
do
mes = "7
node := stop.list.item(index)

if node /= Void then
if node.get_station /= Void then
if node.get.pred /= —1 and node.get_time <= desire.time then
mes := "—No.” + node.get.number.to_string + "—>"
+ node.get.station.get.name + ” in ”
+ node.get.time.to_string + ” minutesZN”
node := stop.list.item(node.get_pred)

from
until node = Void or else node.get.station = Void or else node.get.pred = -1
loop
mes := "—No.” + node.get.number.to.string + "->"
+ node.get.station.get_-name + mes
node := stop.list.item(node.get_pred)
end

if node /= Void then
if node.get_station /= Void then
mes := "%N” + node.get.station.get_.name + mes

end
else
mes ;= "%
end
end
end
end
Result := mes
end

The creation of PRIME.FINDER is method make

creation {ANY} PRIME.FINDER...make

it is defined as following:

feature {HPTA.TRANSITINFO}
PRIME_FINDER. .. mske is

do

create stop-list.make
ensure

stop.list /= Void
end

Now, let us talk about the root class HPTA_TRANSIT.INFO.

image:: hpta2.jpg[methods of class HPTA_TRANSIT.INFO]
//$ HPTA_.TRANSIT.INFO @VETHOD

138 B. Source Code of Case Study

The creation of class HPTA.TRANSIT.INFO is make

create HPTA_.TRANSIT.INFO...make

Its main task is to initialize the database and connection finder, and then run the whole system:

feature {ANY}
HPTA_.TRANSIT.INFO. .. make is

local o
prime.finder: PRIME.FINDER
file.database: FILEDATABASE

do
create file.database .make
set_database (file.database)
create prime_finder.make
set_finder (prime.finder)
run

end :

In order to increase customer satisfaction, we run the system by a series of menus

feature {NONE}
HPTA.TRANSIT.INFO...run is

do
from
until io.last_character.to.upper = 'Q’
loop
menu
io.read.character
io.put_new_line
inspect io.last.character.to.upper
when ’U’ then do_update
when ’'I’ then do.inquire
else
end
- end
end

In order to use OS command, we Iét*claes HPTA_TRANSIT.INFO be a subclass of class SYSTEM,
which is a predefined class in Eiffel.

inherit
HPTA_TRANSIT_INFO . . .SYSTEM

Method menu is the main menu of the interface of this system and

feature {NONE}
HPTA_TRANSIT_INFO...menu is

do
execute.command.line(” cls”)
io.put._string (”[
e 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok kK ok K ok ok ok sk 3k ok ok ok ok ok ok ok %k
Welcome to HPTA
e ok ok ok ok ol ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok K ok 3k ok ok ok ok ok ok ok ok
U Update System Information
I Inquire about Transit Information
Q Quit
Enter menu choice:
%)
end

This is the main menu and there are two items in it , through which users can either update or

B. Source Code of Case Study 139

inquire system information. The first line of the method body is used to clear the screen.

If users chose the first menu item, they are going to enter the following menu, i.e. update_.menu:

feature {NONE}
HPTA_TRANSIT.INFO. .. update_menu is
do
execute.command.line(” cls”)
io.put_string (”|
e ok ok ok ok ok ok ok ok o ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok O ok ok i ok ok
Welcome to HPTA
e 3 ok ok ok ok o ok ok ok ok ok ok ok ok ok 3 ok ok ok ok ok ok ok K ok ok ke ok ok ok ok ok ok ok o ok
A Add
D Delete
G Go back

Enter menu choice:
1)

end

In this menu, users can add new information, such as staffs and stations, as follow:

feature {NONE}
HPTA_TRANSITINFO...add.menu is
: do
execute.command.line("cls”)
io.put_string (”[
e ok ok ok ok ok ko ok ok sk ok ok ok ok ok ok ok o ok o ok sk ok ok ok ok ok o ok ok ok ok ok ok ok ok
Welcome to HPTA
e o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok K
S Add a station
E Add a staff
G Go back

Enter menu choice:
1%

end

Follows the logic of method do.add:

feature {NONE}
HPTA_TRANSIT.INFO...do.add is
local
employee: STAFF
id : INTEGER
input , name, password, open, access, last: STRING
is_.end : BOOLEAN
route: ROUTE

from
until is_end
loop
add.menu
o.read.line
input := io.last_string.twin
io.put.new.line
if not input.is_.empty then
inspect input.first.to.upper
when ’'G’ then is.end := True
when 'S’ then
io.put.string("%NEnter station name: ”)
io.read.line
name := jo.last.string.twin
io.put.string("%NEnter open hour: ”)
io.read.line
open := jo.last_string.twin
io.put.string("%NEnter its accessibility: ")

140

B. Source Code of Case Study

id

else
end
end
end
end

o.read_line
access :=
io.
io .

0.
100
last := io.last_string.twin

: route = ‘db.find._route (id)

_ if route = Void then
create route.make(id)
route.add.station (name, access, open, last)
db.add.route(route)
else
: route.add.station (name, access, open, last)
end ;
when ’E’ then
io.put._string ("% NEnter your ID: ")
io.read.line | .
id := io.last_string.to.integer
io.put_string("%NEnter your password:

.read_line
password :=
create employee.make(id,
db.

io.last_string.twin
put_string ("% NEnter route number:
read._line

i= io.last.string.to_.integer
put_string("%NEnter the name of its last station:
read._.line

2)

by

n)

io.last_string.twin
: password)
add_staff(employee)

they can also delete those

information as follow:

feature {NONE}

do

o ok ok o ok ok ok oK ok K ok ok 3k ok ok R ok ok ok ok ok oK oK K 3 oK ok ok K K ok ok oK ok ok % K K

Enter menu choice:

17)

end

HPTA_.TRANSIT.INFO... delete.menu

execute.command.line(” cls”)
io.put.-string (”|
. ‘*‘l’l"********’*Q‘**‘#l******#*i*‘*#***

is

Welcome to HPTA

S Delete a station
E Delete a staff
R Delete a route
G Go back

Follows the logic of method do.delete:

feature {NONE}

HPTA.TRANSIT.INFO... do.delete

local

is.end : BOOLEAN

num: INTEGER

staff: STAFF

route : ROUTE

input , name: STRING

do

from

until is.end

loop

delete.menu

io.read.line

input := io.last.string.twin

is

B. Source Code of Case Study 141

io.put_new.line
if not input.is.empty then
inspect input.first.to_upper
when 'G’ then is.end := True
when ’S’ then
io.put_string("%NEnter route number: ”)
io.read.line
num := jo.last_.string.to_integer
io.put_string("%NEnter station name: ”)
o.read_line
name := jo.last_.string.twin
route := db.find.route (num)
if route /= Void then
route.remove.station (name)
else
io.put.string ("%NNo such a station%N”)
io.read.line
end
when 'R’ then
io.put.string("%NEnter route number: ")
o.read.line
num := jo.last_string.to.integer
route := db.find.route (num)
if route /= Void then
db.delete_route (route)
else
io.put.string ("%NNo such a station%N”)
io.read_line
end
when 'E’ then
io.put.string("%NEnter ID: ”)
io.read.line
num := io.last.string.to_-integer
staff := db.find_staff (num)
if staff /= Void then
db.delete_staff(staff)
else
io.put_string ("%NNo such a staff%N”)
io.read.line
end
else
end
end
end
end

According to the requircment, only authorized staffs can do such things, so this system will
ask the user to log in the system before he or she enter the update menu. The following
method do.update has the logic to require the user to enter his or her employee number

and password first.

feature {NONE}
HPTA_.TRANSIT.INFO... do.update is
local
id : INTEGER
passed , is.end: BOOLEAN
password , input: STRING
staff: STAFF
do
io.read.line
if db.is.locked then
io.put.string ("%NEnter employee ID: ”)
io.read.line
id := io.last.string.to.integer
staff := db.find_staff(id)
if staff /= Void then
io.put.string ("%NEnter password: ”)

142 B. Source Code of Case Study

io.read_line
password := jo.last.string.twin
passed := staff.login(password)
end .

else : o

fo.put.string (7|
The list of authorized staff is not empty,
so please set authorization as soon as possible...
%)

passed := True

io.read.line

end
if passed then
_ from o
until is_end
loop
update.menu
io.read.line
input := io.last_string.twin
io.put.new.line ‘
if not input.is_.empty then
inspect input.first.to_upper
when ’'A’ then do.add
when ’D’ then do.delete
when 'G’ then is.end := True
else
end
end
end
db.do.save
else

io.put_string ("%NLogin failed!%N”)
‘io.read.line
end
end

The actual logging responsibility is assigned to class STAFF as public feature to class HPTA_TRANSI|

feature {HPTA_TRANSIT_INFO} | .
STAFF ... login (passwd: STRING): BOOLEAN is
require
passwd /= Void
do
Result := password.is.equal (passwd)
end

If the result is True, the user can continue his or her update, otherwise, this system will
‘,.remain on the main menu.

If users chose the second menu item of the main menu, they will enter the following query menu
without any bother, because the requirement says that any one can have access to the transit
information.

feature {NONE}
HPTA_TRANSITINFO... inquire_menu is
do
execute.command.line(” cls”)
io.put.string (7|
ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok K
Welcome to HPTA
ek ok ok ok ok ok ok ok ok ok ok ok ok ok K 3k ok ok ok ok ok ok ok ok ok 2k ok ok ok ok ok ok 3k ok ok K ok
F Find a possible connection
S Show a route
B Browse all routes
G Go back

Enter menu choice:

[T INFO:

),

B. Source Code of Case Study

143

end

The first item of this menu is used for users to find a possible connection.

logic of method do.inquire, users are required to enter their start, destination,

their desire time.

feature {NONE}

HPTA_TRANSIT.INFO... do.inquire is

local

input , start, dest: STRING
is.end : BOOLEAN

num. time: INTEGER

route: ROUTE

do

from
until is_end
loop

inquire.menu
io.read.line
input := io.last_string.twin
io.put_new_line
if not input.is.empty then
inspect input.first.to_upper
when ’'B’ then
from route := db.get.first_.bus.route
until route = Void

loop

route .show

route := db.get.next_bus.route(route)
end
from route := db.get_first_train_route
until route = Void
loop

route .show
route := db.get_next.train_route(route)
end
io.put_string ("%N%NStrike any key to continue...”)
io.read.line
when ’'F’ then

Following the

as well as

io.put.string ("% NEnter the station name of your start: ")

io.read_.line
start := io.last_string.twin

io.put.string("%NEnter the station name of your destination:

io.read_.line
dest := io.last.string.twin
io.put_string("%NEnter your desire time(in minutes)
io.read.line
time := io.last.string.to.integer
io.put_string(finder.get_connection(db, start, dest
io.put_string ("%NANStrike any key to continue...”)
io.read.line

when 'S’ then
io.put.string (”"Input the route number (10 — 999):
io.read.line
num := ijo,last.string.to_.integer
route := db.find.route (num)
if route /= Void then

route .show
else
io.put_string (" Sorry there is no such a route”)

end
io.put.string ("%N%NStrike any key to continue...”)
io.read.line

when ’'G’ then is.end := True

else

end

end

HbFads)

, time))

%)

)

144 B. Source Code of Case Study

end
end

Now, it is time to implement the methods of class ROUTE

image :: Route.jpg[class ROUTE]
//$ ROUTE @GMETHOD

The creation of ROUTE is make, which can be invoke by class HPTA_.TRANSIT_INFO

creation ROUTE. .. make

The main task ofinake is initialize the route number and station list

feature {HPTA_TRANSIT_INFO}
"ROUTE. ..make (num: INTEGER) is
require :
num > 9
num < 1000
do
number := num
create stops.make

ensure
number = num
stops /= Void
end

According the requirement, route number must be two— or three—digit number, so we define the

following invariant for class ROUTE.

invariant L

. ROUIE...number > 9
number < 1000

end

At any time, its client get route number by the following method:

feature {ANY} -
ROUTE... get_-number : INTEGER is
do - o
Result := number
end

also, by the following method to tell if the current route is which we want:

feature {ANY} .
ROUTE. .. match (num: INTEGER): BOOLEAN is

do
Result := num = number
end

By the following method, its client adds new stations for this ROUTE object and at the same
time set the name, the accessibility , the opening hour, and last station for this new station.

feature {HPTA.TRANSIT.INFO, DATABASE}

ROUTE... add.station (new_name, access, open.hour, last_.stop: STRING) is

local
new.station: STATION
i: INTEGER
last : STRING

from i := stops.lower

until i > stops.upper or else stops.item(i) .match(new.name)
loop
gy o]
end

B. Source Code of Case Study 145

if i > stops.upper then
create new.station.make(new.name, access, open.hour)
last := last_stop.twin
last .to-upper
if last .same.as(”NONE”) then
stops.add_first (new.station)

else
from i := stops.lower
until i > stops.upper or else stops.item(i) .match(last.stop)
loop
i =1+l
end

if i <= stops.upper then
stops.add (new.station, i+1)

else
create new.station.make (last.stop, access, open.hour)
stops.add.last (new.station)
stops.add.last (new.station)

end

end
end
end

HPTA_TRANSITINFO object removes a certain station by the following method,

: whose only
parameter is the name of the target station.

feature {HPTA_.TRANSIT.INFO}
ROUTE. .. remove.station (name: STRING) is

local
i: INTEGER
do
from i := stops.lower
until i > stops.upper or else stops.item (i) .match(name)
loop
B B S)
end

if i <= stops.upper then
stops.remove (i)
end
end

The subclasses of CONNECTION.FINDER use the following two methods to visit

all stations
in this route

feature {CONNECTION.FINDER}
ROUTE... get_first _station: STATION is
local

station: STATION

do
if stops.upper > 0 then
station := stops.first
end
Result := station
end
get.next.station(stationl: STATION): STATION is
require
stationl /= Void
local
station: STATION
do
if stops.index.of(stationl) < stops.upper then
station := stops.item(stops.index.of(stationl)+1)
end
Result := station
end

Class ROUTE keep the secret of saving itself , so DATABASE object can call this method to

146 B. Source Code of Case Study

fulfill the task. Actually, such assignment is worth to discuss. Maybe should move to the
subclasses of DATABASE, because only they know exactly how to save those data.

feature {DATABASE} ,
ROUTE. .. do._save(file: TEXT.FILEWRITE) is

require
file.is.connected
local
i: INTEGER
tag, last: STRING
do ‘
if number > 99 then
tag = "Db"
else
tag = Mg
end
last := ”None”
from i := stops.lower
until i > stops.upper
loop

file .put_string (tag+’%N”)
stops.item (i) .do.save(file)
file.put_string(” ” + number.to_string +” ” + last +"%N")
last := stops.item(i) .get_-name.twin
ii=1+41
end
end

~~Slmilariy~, the following method is responsible for showing the details of this route,
but only class HPTA_TRANSITINFO know exactly how to display with interface, so this
method should be move to class HPTA_TRANSIT_INFO.

feature {HPTA.TRANSIT.INFO}
ROUTE. .. show is
local i: INTEGER
do
if number > 99 then
io.put_string (”%NBus route No.”)
else ; '
io.put.string ("%NTrain route No.”)
end
io.put_integer (number)
joputistyring (D= 0)
from i = stobs.lower
until i > stops.upper
loop
stops.item (i) .show
if i < stops.upper then
io.put_string ("—>")
end
i = ikl
end
io.put_.new_line
end

Same problem can be found on the method show of class STATION

feature {ROUTE}
STATION. ..show is
do
io.put.string (name)
end

Now, let us look at the class STATION, whose creation is method make too,

create STATION...make

B. Source Code of Case Study 147

and defined as following:

feature {ROUTE}
STATION. .. make (new.name, new.open, new.acc: STRING) is
require
new.name /= Void
new_open /= Void
new.acc /= Void

do
name ::== new.name.twin
open :== new.open.twin
accessibility := new.acc.twin
end

The main task of it is to initial these three features of class STATION. At any time,
ite client can visit these three features by the following methods:

feature {ROUTE, CONNECTION.FINDER}
STATION... get_name: STRING is

do
Result := name.twin
end
get.acc: STRING is
do
Result := accessibility.twin
end
get_open: STRING is
do
Result := open.twin
end

Similar with the method do.save of class ROUTE, this method should be moved into the
subclasses of DATABASE.

feature {ROUTE}
STATION... do.save(file: TEXT.FILE.WRITE) is
require
file .is.connected
do
file.put.string(name + ” ” + accessibility + ” ” + open)
end

The same problem can be found on class STAFF

feature {DATABASE}
STAFF...do.save(file: TEXT.FILEZWRITE) is
require
file .is.connected
do
file.put_string (”s7N” + number.to_string + ” " + password + "%N”")
end

We identify station with name only, i.e. if two stations share the same name, we assume
they are the same station. Here case is insensitive.

feature {ROUTE}
STATION... match (targetname: STRING): BOOLEAN is
require
targetneme /= Void
do
Result := name.same.as (targetname)
end

Now, let us talk about the implementation of class STAFF.

image:: staff.jpg[class STAFF]

148 B. Source Code of Case

Study

//$ STAFF QMETHOD

The creation of class STAFF is make

creation {ANY} STAFF...make

it is defined as following:

| feature {ANY} fn
STAFF...make (id: INTEGER; passwd: STRING) is

require
id >= 0
passwd /=Void
do
number := id;
password := passwd.twin
ensure
number >= 0
password = passwd
end

its main task is initialize staff’s id and password.

"Method mﬁtch is used to idehtify a Eétt'aln staff and is defined ﬁs following:

feature {ANY}
STAFF ... match (id: INTEGER): BOOLEAN is
do
Result := id = number
end

Any staff has an unique employee number, which is generated from 0, and a password,
which must not be Void: '

invariant
STAFF ... number_positive: number >= 0
_password._not_void: password /= Void

end

So far, we have implement the system.

== Testing

Updating system

When no staff is authorized, we try to update system information.
The result is

image ::empty.jpg [empty]

Otherwise, we try to update system information. The system requires
ID and password for logging in as following:

image : :kupdating .ipg|updating]

These results satisfy the design requirements.

Browsing all routes .
We try to browse the information of all routes as following:

image :: browse. jpg [browse]

These result satisfies the design requirements.

Finding connection
We try to find a connection between two stations as following:

image:: connection.jpg[connection]

B. Source Code of Case Study 149

These result satisfies the design requirements.

Strategy pattern
We construct a sample connection finder class and change the
algorithm a run—time.

class FAKE_FINDER
inherit
CONNECTION.FINDER
creation {ANY}
make
feature {HPTA_.TRANSITINFO}
make is
do
end
get.connection(start, destination: STRING; time: INTEGER): STRING is
do
Result := ”"This is a test%N”;
end
end

image::strategy .jpg[strategy]
"These result satisfies the design requirements.

In order to give an integrated view for ones who

are used to read code, we list all program code here.
&

Appendix C

Generated Code of Case

Study

¢reation {PRIME.FINDER}
e)
feature {PRIME.FINDER}
get_-number : INITEGER is
do
Result := number
end
make(sn: STATION; num, t, ss, pr: INTBGER) is
set_station (sn)
set-number (num)
set_time(t)
set_status(ss)
set_.pred (pr)
ond :
set_.pred (value: INTECGER) is
. ;

pred := value
end
get.-time
do
Result := time
set.time (value: INTEGER)
reqguire
value >= 0
do
time :=
end
get_.pred : INTEGER fis
Result :=
end
permanent : INTEGER is 1

get_station : STA_’I:I_Oi‘EuL:x_

: INIEGER is

s
i,

b

value

pred

:= station

tentative : INTEGER is 0
set.station (value: STATION) is

do

150

C. Generated Code of Case Study 151

station := value

end
get_status : INTEGER. is
do
Roesult := status
end
set.status(value: INTEGER) is
require
value >= tentative
value <= permanent
do
status := value
end
set-number(value: INTEGER) is
require
value >= 10
value <= 999
do
number := value
end
feature {NONE}

station : STATION
number : INTEGER
status : INTEGER
time : INTEGER
pred : INTEGER

end

deferred class DATABASE
feature {HPTA_TRANSITINFO}
do.save is
deferred
end
add.route (new.route: ROUTE) is
reguire
new.route /= Void
deferred
end
make is
deferred
end
delete_staff(staff: STAFF) is
require
staff /= Void
doferred
end
delete.route(route: ROUTE) is
require
route /= Void
deferred
end
add.staff(new.staff: STAFF) is
require
new.staff /= Void
deferred
end
is.locked : BOOLEAN is
deferred
end
feature {NONE}
min.train.route.num : INTEGER is 10
max.bus_route.num : INTEGER is 999
max.train.route.num : INTEGER is 99
min.bus_.route.num ; INTEGER is 100
feature {HPTA.TRANSIT.INFO, CONNECTION.FINDER}
find.route (num: INJEGER) : ROUTE is
require
num >= min.train.route.num

152 C. Generated Code of Case Study

num <= max.bus_route_.num
deferred
ond -
find_staff (num: INTEGER) : STAFF is
requires .
num > 0
deferred
end
get_.next_bus.route (route: ROUTE) : ROUTE is
deferred
end ‘
get-first_bu
. doferred
end ;
get.next_train.route(route: ROUTE) : ROUTE is
deferred

end
gef-first.tr;ain‘.’toute : ROUTE is
 doferred
end

deferred class CONNECTION.FINDER

get_connection (dbase: DATABASE; start, destination: STRING; time: INTEGER) : STRING is
require - - - !
start /= Void
destination /= Void
time >= 0
dbase /= Void
deferred
end

train.time : INTEGER is 1
bus.time : INTEGER is 2
change_time : INTEGER is 5

S
S
(=%

class STAFF

login (passwd: STRING) : BOOLEAN is
reqguire
passwd /= Void
do
Result := password.is.equal (passwd)

ond

do._save(file: TEXT.FILEWRITE) is

require
file .is_connected

file.put.string (”s%N” + number.to_string + ”"_.” + password + "%N”)

feature {ANY}
make(id: INTEGER; passwd: STRING) is
raquire
id >= 0
passwd /= Void

number := id
password := passwd.twin
ensure

number >= 0

C. Generated Code of Case Study

153

password = passwd

end
match(id: INTEGER) : BOOLEAN is
do
Result := id = number
end

invariant

number_positive number >= 0
password.not.void password /= Void
end
class PRIME_FINDER
inherit
CONNECTION.FINDER
creation {ANY}
make
feature {HPTA.TRANSITINFO}
make is
do
create stop.list.make
ensure
stop.list /= Void
end
get.connection(dbase: DATABASE; start, destination: STRING; time: INTEGER) : SIRING is
roquire else
stop-list .upper = 0
local
connection : STRING
cur.station : STRING
node : KNOT
i : INTEGER
monitor : INTEGER
is_.end : BOOLEAN
break : BOOLEAN
do
connection := ".”
desire.time := time
add_bus_train.station (dbase, destination, desire_time+1)
add.bus.train.station (dbase, start, 0)
i:=.3
cur.station := start.twin
from
until is.end oy else cur_.station = Void
loop
monitor := stop-list.upper
find_.neighbor (dbase, cur_station, i)
if monitor = stop.list.upper then
if stop.list.item(i) /= Void then
stop.list.item(i).set.status(node.permanent)
end
end
is.end := True
from
until break or else i > stop-list.upper
loop
if stop.list.item(i) /= Void then
ncde := stop.list.item (i)
if node.get.status = node.tentative and node.get_station /= Void then
cur.station := node.get.station.get_.name
is.end := False
break := True
end
ond
i if not break then
: i aed Bl o

=S i:

break then

154

C. Generated Code of Case Study

break := False

end
ond
connection := get.connection.mes (1)
connection := connection + get.connection_.mes(2)
if connection.same.as(””) then

connection := ”"_.There.is.no_connection.from._your.start” 4+ ”_to.your.destination.in.s
end
Result := connection

ensure

Result /= Void

and L

feat ure {NONE}

get_index (s: STATION; num: INTEGER) : INTEGER is
require
s /= Void
local

i := stop.list.lower
until i > stop-list.upper
loop . .
node := stop.list.item (i)

if node.get.station /= Void then
name := node.get_station.get_name
if name.is_.equal(s.get.name) then

if is.bus(num) and is-bus(node.get.number) then

ind = i
elseif is_.train(num) and is.train(node.get.number) then
ind = ¢
end
end
end
1= 1+ 1
end
Rosult := ind
en . , .
add.bus.train_station (dbase: DATABASE; name: STRING; time: INTEGER) is
name /= Void
time >= 0
local

route : ROUTE
station : STATION
is_end : BOOLEAN
num : INTEGER

route := dbase.get_first_bus_route
from
until is.end or route = Void
station := route.get_first_station
from
until is_.end or station = Void
loop
if name.same_as(station.get.name) then
is.end := True
end

if mnot is_.end then
station := route.get_next.station(station)
end
if not is.end then

ch_time.”

C. Generated Code of Case Study

155

route := dbase.get_.next_bus_route(route)
end
end
if not is_.end then
station := Void
end
if route /== Void then
num := route.get.number
else

num := 0
end
add.node(—1, station , time, num)
station := Void

is.end := False
route := dbase.get_first_.train_.route
from
until is_end or route = Void
loop
station := route.get_first_station
from
until is.end or station = Void
loop
if neme.same_as(station.get-name) then
ie_end := True
end
if not is_.end then
station := route.get.next.station(station)
end
end

if not is.end then
route := dbase.get.next_train_route(route)
end
end
if not is.end then
station := Void
end
if route /= Void then
num := route.get_number

else
num := 0

end

add.node(—1, station, time, num)
end

get_connection_mes (index: INTEGER) : SITRING is

require

index >= 0
local

node : KNOT

mes : STRING
do

mes .= "."

node := stop.list.item(index)

if node /= Void then
if node.get_station /= Void then

if node.get.pred /= — 1 and node.get_time <= desire_-time then
mes := "_—No.” + node.get.number.to.string + ”.—>” + node.get_station.get_.name

node.get_pred

node := stop.list.item(node.get.pred)

from

until node = Void or ¢lse node.get_station = Void or else
loop

mes := ”".—No.” + node.get.number.to.string + ".~>" + node.get.station.get.ngy
node := stop.list.item(node.get.pred)
end
if node /= Void then
if node.get.station /= Void then
mes := " YN” + node.get.station.get.-name + mes
end

+ "wind”

me 4+ mes

+

156

C. Generated Code of Case Study

lse

o]

mes = "_
end
oend
end
Result := mes

is.train (num: INTEGER) : BC

do

Result := num >= 10 and num <= 99
end
add.node(pr: INTEGER; s: STATION; t, num: INTREGER) is
_ roguire
t>=0
local -
node : KNOT
do ‘
' create node.make(s, num, t, node.tentative, pr)
if 8 = Void then
node.set.status (node.permanent)

stop.list : LINKED.LIST [KNOT]
desire.time : INTEGER
is.bus (num: INTEGER) : BOOLEAN is

do
Result := num >= 100 and num <= 999
end
find_neighbor (dbase: DATABASE; sn: STRING; pr: INTEGER) is
require
sn /= Void
local :
cost : INTEGER
index : INTEGER
switch : INTEGER
p-node : KNOT
node : KNOT
route : ROUTE
station : STATION
last : STATION
name : STRING
break : BOOLEAN
do

from
switch := 0
until switch > 1
O
if switch = 0 then
cost := bus_time

else
cost := train_.time

end

if pr >= stop.list.lower and pr <= stop_list.upper then
p-node := stop.list.item(pr)

and

if p-node.get.station /= Void then
if switch = 0 then

if is-train (p-node.get.number) then
cost := change.time 4+ cost

end

route := dbase.get_first_bus_route

if is_.bus(p-node.get_.number) then
cost := change_time + cost

C. Generated Code of Case Study 157

route := dbase.get_first_train.route
end
from
until route = Void
loop
station := route.get_first_station
last := station
from
until station = Void or break
loop
name := station.get.name.twin
if name /= Void and name.is.equal(sn) then
if not last.get.name.is.equal(name) then
index := get.index(last, route.get_number)
if index >= 0 then
node := stop.list.item(index)
if node.get_station /= Void then
if is.train(node.get.number) then
if node.get.time > p.node.get.time 4 cost then
node.set_.pred (pr)
node.set.time (p-node.get_-time + cost)
node.set.number(route.get_number)
end
end
ond
else
add.node(pr, last, p.node.get.time+cost, route.get.number)
end
end
last := route.get_next_station(station)
if last /= Void then
index := get.index(last, route.get_.number)
if index >= 0 then
node := stop.list.item(index)
if node.get.station /= Void then
if is_.train (node.get_.number) then
if node.get.time > p.node.get.time + cost then
node.set_pred (pr)
node.set.time(p-node.get_time + cost)
node.set.number(route.get_.number)
end
end
end
else
add_node(pr, last, p.-node.get_.time+cost, route.get_number)
end
end
break := True
else
last := station
station := route.get_next_station (station)
end
end

break := False
if switch = 0 then
route := dbase.get.next.bus.route(route)

else
route := dbase.get_next_train_route(route)
end
end
end
end
switch := switch + 1
end
end

end

class STATION

158 C. Generated Code of Case Study

creation
make

feature {ROUTE, CONNECTION.FINDER}
get_open : SIRING is

' := open.twin
end : . i
get_acc : STRING is
do
Result := accessibility .twin
end
get.name : STRING is
do
Result := pame.twin
end

feature {NONE}
accessibility : ST
 open : STRING
name : STRING
feature {ROUTE) P
do.save(file: TEXT.FILEWRITE) is
require :
file.is_connected

do
file . put_string (name + ".” 4+ accessibility + ".” 4+ open)
end
make (new.name, new.open, new.acc: STRING) is
require
new.name /= Void
new.open /= Void
new_acc /= Void

do
name := new.name.twin
open := new.open.twin ,
accessibility := new.acc.twin
end .
show is
do
io.put_string (name)
match(targetname: STRING) : BOOLEAN is
reqguire
targetname /= Void
do
Result := name.same.as(targetname)
end
FILE.DATABASE
rit
DATABASE
croeation
make

foature {HPTA_.TRANSIT.INFO}

do_save is

local
file.2_.write : TEXT.FILE.WRITE
i : INTEGER

do

create file.2_.write.connect_to(file_.name)
if file_.2_.write .is.connected then
from
i := employees.lower
until i > employees.upper
loop
employees.item(i).do.save(file_2_write)
i=1+a
end

C. Generated Code of Case Study 159

from
i := bus.routes.lower
until i > bus.routes.upper

loop
bus_routes.item(i).do.save(file_.2_write)
id= 1 41
end
from
i := train.routes.lower
until i > train.routes.upper
loop
train.routes.item(i).do.save(file.2_write)
i:=1i+4+1
end
file_.2_write.disconnect
else
io.put.string (” Update_database_failed!%N”)
end
end
add.route (new.route: ROUTE) is
do

if is_bus(new.route.get.number) then
bus.routes .add.last (new.route)

(is_train(new.route.get.number) then

train.routes.add_last(new_route)

create employees.make
create bus.routes.make
create train.routes.make
load
ensure
employees /= Void
bus.routes /= Void
train.routes /= Void
end
delete-staff(staff: STAFF) is
do
employees.remove(employees.index.of (staff))
nd
delete.route (route: ROUTE) is
do
if is_bus(route.get_-number) then
bus.routes .remove(bus.routes.index_of (route))
elseif is.train(route.get_.number) then
train.routes.remove(train.routes.index.of(route))
end
end
add.staff (new_staff: STAFF) is
do

D

employees.add_last (new_staff)
end
is_locked : BOOLEAN is
do
Result := 1ot employees.is.empty
. end
feature {NONE}
file_name : STRINC is "sys_info.txt”
is.bus (num: INTEGER) : BOOLEAN is
do

Result := num >= min.bus.route.num and num <= max.bus_.route.num
end

employees : LINKED.LIST [STAFF)

is.train (num: INTEGER) : BOOLEAN is
do

Result := num >= min.train.route.num and num <= max.train.route.num

160 C. Generated Code of Case Study

end
bus.routes : LINKED._LIST [ROUTE]
load is

local e
‘input.string : STRING
text.file.read : TEXT.FILE.READ
text.file_.write : TEXT_FILE.WRITE
split : ARRAY[STRING]
new.staff : STAFF
route : ROUTE

do
create text.file.read.connect.to(file.name)
if text_file_.read .is_connected then
from
text_file.read.read_.line
until text-file_.read.end_of_input
loop
if text_file_read.last.string.upper = 1 then
inspoct , - ,
text.file_.read .last_string.first.to_upper
when 'S’ then .
text_file_read .read_line
input_string := text_file_read.last_string.twin
split := input.string.split
create new.staff.make(split.first.to_integer, split.last)
employees.add.last (new.staff) .
when 'B', 'T then
text_file.read.read_line
input_string := text_file_read.last_string.twin
split := input.string.split
route := find.route(split.item(4).to.integer)
if route = Void then
create route.make(split.item(4) .to.integer) e
route.add.station (split.first , split.item(2) , split.item(3) , split.las
if split.item(4).to_.integer > max.train_.route_num then i
bus.routes.add._last (route)
olse
train_.routes.add._last(route)
end
else .
rkdut,e;.add-station(aplit.first, split.item(2) , split.item(3) , split.las
ond '
else
end
end
text_file.read .read.line
end
text-file.read .disconnect
create text_file_write.connect_to(file_name)
if text.file_write.is_.connected then
text.file.write .disconnect
end
end
end

train_.routes : LINKED_LIST [ROUTE]
feature {HPTA_TRANSIT.INFO, CONNECTION_FINDER}
:R) : ROUTE is

local

i : INTEGER
route : ROUTE
if num > max.train.route.num then
from
i := bus.routes.lower
until i > bus.routes.upper or else bus.routes.item(i).match(num)

loop

o=]

~

~

C. Generated Code of Case Study 161

end
if i <= bus.routes.upper then
route := bus_routes.item (i)
end
else
from

i := train.routes.lower
until i > train_routes.upper or else train.routes.item(i).match(num)

=i+ 1

if i <= train.routes.upper then
route := train_.routes.item (i)
end
end
Result := route
end
get.next_bus.route(route: ROUTE) : ROUTE is
bus.routes .index.of (route) > 0
local
next.route : ROUTE

do
if bus.routes.index.of(route) < bus.routes.upper then
next.route := bus.routes.item(bus_routes.index_of(route) +1)
end
Result := next.route
end
get_first_bus_route : ROUIE js
local
route : ROUTE
do
if not bus.routes.is.empty then
route
end
Result := route
end
find_staff (num: INTEGER) : STAFF js
local
i : INTEGER
staff : STAFF
do
from

i := employees.lower
until i > employees.upper or else employees.item(i).match(num)
loop
=1 41
end
if i <= employees.upper then
staff := employees.item (i)
end
Result := staff
end
get_.next.train.route(route: ROUTE) : ROUTE is
require
train.routes.index.of (route) > 0
local

next.route : ROUTE

do

if train_routes.index.of(route) < train.routes.upper then
next_route := train.routes.item(train.routes.index.of(route) +1)

end
Result := next.route

end

get._first_train_route : ROUTE is

local
route : ROUTE

do

162 C. Generated Code of Case Study

f not train.routes.is_empty then
route := train_routes.first

Result := route

class ROUTE
make -
foature {HPTA_.TRANSIT_INFO}
 remove.stati [
local

i := stops.lower
until i > stops.upper or else stops.item(i).match(name)

i=1i+4+1

end

if i <= stops.upper then
stops.remove(i)

end
end
- show s
L local
i : INIEGER
do
if number > 99 then
io.put_string (”%NBus_.route.No.”)
else
io.put_string ("%NTrain.route.No.”)
io.put.integer (number)
fo. put string (7:.")
from
i := stops.lower
until i > stops.upper
stops.item (i).show
if i < stops.upper then
io.put_string ("—>")
end
i =1+
ond
io.put_new.line
make (num: INTE R) is
require
num > 9
num < 1000
do

number := num
create stops.make

end
feature {DATABASE}
do.save(file: TEXT.FILEWRITE) is

require

file .is.connected
local

i : INTEGER

tag : STRING
last : STRING
do

C. Generated Code of Case Study 163

if number > 99 then
tag = ".b"

elsa

tag == "ot?
end
last := ”_None”
from

i = stops.lower
until i > stops.upper
loop

file .put.string (tag+"%N")
stops.item (i).do.save(file)
file.put_string(”".” + number. to_string +”." + last +"%N")
last := stops.item(i).get-name.twin
Tioees §idel
end
end
feature {NONE}
number : INTEGER
stops : LINKED.LIST [STATION]
feature {CONNECTION_FINDER}
get_first_station : STATION is
local
station : STATION

do
if stops.upper > 0 then
station := stops.first
end
Result := station
end
get.next.station(stationl: STATION) : STATION is
require
stationl /= Void
local
station : STATION
do
if stops.index.of(stationl) < stops.upper thon
station := stops.item(stops.index.of(stationl) +1)
ond
Result := station
end

feature {HPTA.TRANSIT.INFO, DATABASE}
add.station (new.name, access, open.hour, last.stop: STRING) is

local
new.station : STATION
i : INTEGER.
last : STRING
do
from
i := stops.lower
until i > stops.upper or else stops.item(i).match(new-name)
loop
i=1i41
end

if i > stops.upper then
create new.station.make(new.name, access, open.hour)
last := last.stop.twin
last .to_upper
if last.same.as(”NONE”) then
stops.add._first (new_station)
else

from
i := stops.lower
until i > stops.upper or eolse stops.item(i).match(last_stop)

; RIS S e R |
end
if i <= stops.upper then

164 C. Generated Code of Case Study

stops.add(new.station, i41)
else

create new._station .make(last_stop , access, open_hour)
stops.add.last (new.station)
stops.add_-last (new_station)

feature {ANY}
get-number : INTEGER is

do
Result := number
end
match (num: INTEGER) : BOOLEAN is
do

invariant
number > 9
number < 1000
end

¢lass HPTA_TRANSIT_INFO
inherit
. SYSTEM
creation
make
feature {NONE}
delete.menu is
do
execute_.command.line(”cls”)
io.put_string (” [
- *#‘ﬁ****##’*'*‘***'l#“**#*****l*‘*‘#**#*‘l
Welcome.to .HPTA
o ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok 3k sk ok ok ok ok ok ok ok sk ok ok ok ok ok
S.Delete.a.station
E_Delete_a_staff
R.Delete_a.route
G.Go.back
Enter_menu_choice:

17)

end
db : DATABASE
update_menu is
do
execute.command.line(”cls”)
. io.put.string(”|[.
e 3k e ok ko ok ok ok ok ok ok ok ok sk ke ok ke ok ok ok ok ok ko ok ok sk ok ok ok ok ok ok ok ok ok ok
Welcome.to .HPTA
3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok 3k ok
A_Add
D._.Delete
G.Go.back
Enter.menu.choice:

-17)

menu

do

execute_.command_.line(”cls”)

io.put.string(” [
e ok ok ok ok ok ok ok ok sk ok sk sk ok ok ok ok ok oKk ok ok ok ok ok ok ok ok ok ok ok K sk ok ok ok ok ok ok
Welcome..to .HPTA
e ok ok ok ok ok ok sk sk ok ke ke ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ke sk ok K ok ok ok ok ok ok ok k.
U.Update_System.Information
~-I_.Inquire.about_.Transit_.Information
= QuQuit

Enter_.menu.choice:

C. Generated Code of Case Study

165

17

end
set_finder (new_finder: CONNECTION.FINDER) is
require
new.finder /= Void
do

finder := new.finder

ensure
finder = new_finder
end
inquire.menu js
do

execute.command.line(”cls”)
io.put.string (” [
e ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok okl ok ok ok ok ok ok ok ok ok ol e ok K ok ok ok ok ok ok ok

Welcome.to HPTA

e ok ok ok ok ok ok ok ok ke ke ok ok ok ok ok ok ke ok ok ok K K ok 3k ok ok ok e koK ok ok ok %k ok K ok

F_.Find.a.possible_connection

S_.Show._a._route

B_Browse_.all.routes
G_Go.back

Enter_menu._choice:

1)

end
do.delete is
loceal

is.end : BOOLEAN
num : INTEGER
staff : STAFF
route : ROUTE
input : STRING
name : STRING

from
until is.end
loop
delete.menu
io.read_.line
input :== io.last_string.twin
io.put.new.line
if not input.is.empty then
input. first.to_upper
when 'G’ then
is.end := True
when 'S’ then
io.put_string ("%NEnter_route_number:.”)
io.read.line
num := jo.last_.string.to.integer
io.put_string ("%NEnter_station_name:.”)
io.read.line

"name := io.last_string.twin

route := db.find_route (num)

if route /= Void then
route.remove.station (name)

olse
io.put_string ("%NNo.such_a_station%N”")
io.read.line

end

when 'R’ then

io.put_string ("%NEnter_.route_number:."”)

io.read.line

num := io.last.string.to.integer

route := db.find_-route (num)

i? route /= Void then
db. delete_.route (route)

else

io.put_string ("%NNo.such.a.station%N”)

166 C. Generated Code of Case Study

C. Generated Code of Case Study

167

end
db.do.save
elsa
io.put.string ("%NLogin_failed!%N”)
io.read.line

end
end
run is
do
from
until io.last.character.to_upper = 'Q’
loop
menu
io.read.character
io.put.new.line
inspect
io.last.character.to_upper
when 'U’ then
’ do_update
when 'I° then
do.inquire
else
end
end
end
add_menu is
do

execute_.command._line(”cls”)
io.put.string (” [
e ok o ok ok ok ok ok ok ok ok ok ok e ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok
Welcome.to HPTA
ook ke ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
S_.Add.a.station
E.Add.a.staff
G.Go_back
Enter_menu.choice:

)jigh,

end
do.add is

local
employee : STAFF
id : INTEGER
input : STRING
name : STRING
password : STRING
open : SIRING
access : STRING
last : SITRING
is.end : BOOLEAN

route : ROUTE

from
until is_.end
loop
add.menu
o.read.line
input := io.last.string.twin
io.put.new.line
if not input.is.empty then
inspect
input.first.to.upper
when 'G’ then
is.end := True
when 'S’ then
io.put.string ("%NEnter_.station .name:.”)
ic.read.line
name := io.last_string.twin
ioc.put.string ("%NEnter.open_hour:.")

168 C. Generated Code of Case Study

C. Generated Code of Case Study

169

end
from

route := db.get_first_train_route
until route = Void
loop

route.show

route := db.get.next_.train.route(route)
end

io.put.string ("%N%NStrike_.any.key._to.continue...”)
io.read_line

when 'F’ then
io.put.string ("%NEnter_.the.station.name_of_your_start:.”)
io.read.line
start := io.last_string.twin
io.put.string ("%NEnter_.the_station_name_of_your_.destination:."”)
io.read.line
dest := io.last_string.twin
io.put.string ("%NEnter.your.desire.time(in.minutes):.”)
io.read_line
time := io.last.string.to.integer
io.put.string(finder.get_.connection(db, start, dest, time))
io.put_string ("%N%NStrike_any_key.to_continue...”)
io.read.line

when ’S’ then
io.put_string (”Input.the.route_.number.(10.~.999):.")
io.read.line
num := io.last_string.to.integer
route := db.find_route (num)
if route /= Void then

route.show
io.put.string (”Sorry_there_is.no_such_a.route”)

end
ic.put.string ("%N%NStrike_any.key_to_continue...”)
ic.read.line

when 'G’ then
is_.end := True

else

end

end
feature {ANY}
make is

local

lﬁ-

prime_finder : PRIMEFINDER
file_.database : FILE DATABASE

create file.database .make
set_database(file_database)
create prime-finder.make
set_finder (prime_finder)
run

faN

Appendix D

Reference Manual of Spark

D.1 Code Block Tag

Code Block Tag is used to identify the class, to which this block belongs. So there
is nothing need to do for the class block, but for class member block, including
invariant block, ones must put code block tag, class name followed by three dots, at

the beginning.

D.2 Graphic Notation Setting

All the tags listed as following should be put in setting line, which is right behind
graphic including command.

e QVERTICAL: if set, the diagram will be drawn vertically, otherwise horizon-
tally.

e QHEAD: if set, the class diagram will be shown with class name nodes only.

Q@BRIEF: if set, the class diagram will be shown without parameters and types.

@QCONCISE: if set, the class diagram will hide all the information about the
method’s parameters of the involved class.

@QMETHOD: if set, all class methods only will be shown in this diagram.

170

D. Reference Manual of Spark 171

e QATTRIBUTE: if set, only attributes of class can be saw in the diagram.

e QACTION?” if set, only actions of class can be saw in the diagram.

D.3 Program Code Quotation

“CODE LIST BEGIN” and “CODE LIST END” are the specific tags used to include
continuous program code into the source file. This tags can be put anywhere in the
source file as comments. Front ends will insert the parsed code between them, if they
find them.

Appendix E

Document Structure of AsciiDoc

An AsciiDoc document consists of a series of block elements. Almost any combination

of zero or more elements constitutes a valid AsciiDoc document: documents can

range from a single sentence to a multi-part book. In the following table of AsciiDoc

document structure, parentheses ‘(’ and ‘)’ indicate grouping when needed, square

brackets ‘[’ and]’ enclose optional items, curly parentheses ‘{’ and ‘}’ show the (zero

or more) repeatable items, and vertical bars ‘|’ separate alternatives.

Document
Header
AuthorLine
RevisionLine
Preamble
Section
SectionBody
Block

List
BulletedList
NumberedList
CalloutList
LabeledList
ListItem
Table
TableHeader
TableFooter
TableBody

::= [Header] [Preamble | { Section }

= Title [AuthorLine [RevisionLine]]

::= FirstName [[MiddleName | LastName] [EmailAddress |

::= [Revision | Date

::= SectionBody

::= Title [SectionBody | { Section }

::= (([BlockTitle] Block) | BlockMacro) { ([BlockTitle] Block) | BlockMacro }
::= Paragraph | DelimitedBlock | List | Table

::= BulletedList | NumberedList | LabeledList | CalloutList

::= ListItem { ListItem }

::= ListItem { ListItem }

::= ListItem { ListItem }

::= ItemLabel { ItemLabel } ListItem { ItemLabel { ItemLabel } ListItem }
= ItemText { List | ListParagraph | ListContinuation }

::= Ruler [TableHeader] TableBody [TableFooter]

::= TableRow { TableRow } TableUnderline

::= TableRow { TableRow } TableUnderline

::= TableRow { TableRow } TableUnderline

172

E. Document Structure of AsciiDoc 173

TableRow ::= TableData { TableData }

Table E.1: The block structure of AsciiDoc.

Appendix F

Syntax of Dot

The following is an abstract grammar for the dot language. Terminals are shown in
bold font and nonterminals in italics. Literal characters are given in single quotes.
Parentheses ‘(’ and ‘)’ indicate grouping when needed. Square brackets ‘[’ and]’ en-
close optional items. Curly parentheses ‘{>and ‘}’ show the (zero or more) repeatable
items. Vertical bars ‘|’ separate alternatives.

graph ::= [strict | (digraph | graph) id ‘{’ stmt-list ‘}’
id == letter { letter | digital | _ }
letter :=a|b|c|d|e|f|g|h|i]j|k|[l|m|n|o|p|q|r|s]|t]
u|v|w|x|y|z|A|B|C|D|E|F|G|H|I|J|D|L|
M|N|[O|P[Q|R[S|T|U|V|W[X]|Y|Z
digital :=112|3|4|5|6|7|8|9]|0
stmt-list ::= [stmt [;" | [stmt-list |
stmt ::= attr-stmt | node-stmt | edge-stmt | subgraph | id ‘=" id
attr-stmt ::= (graph | node | edge) attr-list
attr-list = ‘" [a-list | ‘]’ [attr-list |
a-list = 1d ‘="1id [‘)] [a-list]
node-stmt ::= node-id [attr-list |
node-id ::= id [port |
port ::= port-location [port-angle | | port-angle | port-location |
port-location ::= ‘2 id | ‘Y ‘(id ¢, id)’
port-angle ::= ‘Q’ id

174

F. Syntax of Dot 175

edge-stmt ::= (node-id | subgraph) edgeRHS | attr-list |

edgeRHS ::= edgeop (node-id | subgraph) | edgeRHS]

subgraph ::= | subgraph id | {’ stmt-list ‘}’ | subgraph id
edgeop = => | -=

Table F.1: Abstract grammar for the dot language

The language supports C++ style comments: /* x/ and //.

Semicolons aid readability but are not required except in the rare case that a
named subgraph with no body immediate precedes an anonymous subgraph, because
under precedence rules this sequence is parsed as a subgraph with a heading and a
body.

Complex attribute values may contain characters, such as commas and white
space, which are used in parsing the dot language. To avoid getting a parsing error,
such values need to be enclosed in double quotes.

Bibliography

(1] FunnelWeb Developer Manual, 2000. Version 3.2d for FunnelWeb V3.2.
[2] “Asciidoc.” Stuart Rackham, 2007.

[3] S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object
Technology. New York: Cambridge University Press, first ed., 1998.

[4] W. J. Brown, H. W. McCormick, and S. W. Thomas, Anti-Patterns and Patterns
in Software Configuration Management. New York: Wiley, first ed., 1999.

[5] T. Budd, An Introduction to Object-Oriented Programming. Oregon State Uni-
versity: Pearson Education, second ed., 1996.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture: A System of Patterns. Chichester, U.K.: Wiley,
first ed., 1996.

[7] D. Cameron and B. Rosenblatt, Learning GNU Emacs. Sebastopol, CA: O’Reilly
and Associates, first ed., 1991.

[8] S.J. Chapman, MATLAB Programming for Engineers. Toronto, Ontario: Thom-
son, third ed., 2004.

[9] B. Childs, “Literate Programming, A Practioner’s View,” TUGboat Journal,
vol. 13, no. 3, pp. 261-268, 1992.

[10] B. J. Cox and A. J. Novobilski, Object-Oriented Programming: An Evolutionary
Approach. The Stepstone Corporation: Addison-Wesley Publishing Company,
second ed., 1991.

176

BIBLIOGRAPHY 177

[11] S. Cozens, Advanced Perl Programming. Sebastopol, CA: O’Reilly, second ed.,
2005.

[12] D. de Champeaux, D. Lea, and P. Faure, Object-Oriented System Development.
Massachusetts: Addison-Wesley Publishing Company, first ed., 1993.

[13] D. F. D’Souza and A. C. Wills, Objects, Components, and Frameworks with
UML, The Catalysis Approach. New Jersey: Addison Wesley Longman, Inc.,
first ed., 1999.

[14] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz
and Dynagraph - Static and Dynamic Graph Drawing Tools,” Graph Drawing
Software Journal, pp. 127-148, January 2003.

[15] P. H. Feiler and W. F. Tichy, “Propagator: A Family of Patterns,” Proceedings
of the Tools-23: Technology of Object-Oriented Languages and System, p. 355,
August 1997.

[16] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated
Designs for Object-oriented Systems. Springer, first ed., 2004.

[17] M. Fowler, Analysis Patterns: Reusable Object Models. MA: Addison-Wesley,
first ed., 1997.

[18] E. Freeman, E. Freeman, K. Sierra, and B. Bates, Head First Design Patterns.
Cambridge, MA: O’Reilly Media, first ed., 2004.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Massachusetts: Addison-Wesley Publishing
Company, first ed., 1995.

[20] E. R. Gansner and S. C. North, “An Open Graph Visualization System and Its
Applications to Software Engineering,” Software-Practice and Experience Jour-
nal, vol. 30, no. 11, pp. 1203-1233, 1999.

[21] D. V. Heesch, Dozygen. http://www.stack.nl/ dimitri/doxygen/, 2007.

178 BIBLIOGRAPHY

[22] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communi-
cations of the ACM, vol. 12, no. 10, pp. 576-583, October 1969.

[23] D. E. Knuth, The WEB System of Structured Documentation. Stanford Univer-
sity, 1983. WEB user manual, version 2.5.

[24] D. E. Knuth, “Literate Programming,” The Computer Journal, vol. 27, no. 2,
pp- 97-111, May 1984.

[25] D. E. Knuth and S. Levy, The CWEB System of Structured Documentation.
American Methematical Society, 1994. CWEB user manual, version 3.0.

[26] D. E. Knuth, The TgXbook. Stanford University: Addison-Wesley Professional,
first ed., 1984.

[27] J. A. Krommes, FWEB. http://w3.pppl.gov/ krommes/fweb_toc.html, 1998. A
WEB System of Structured Documentation for multiple languages.

[28] C. Larman, Applying UML and Patterns: An Introduction to Object-oriented
Analysis and Design. Upper Saddle River, NJ: Prentice Hall, first ed., 2001.

[29] C.-A. Lehalle, Documentation for ocamaweb.ml. ocamaweb.sourceforge.net,
2002.

[30] J. L. McCarthy, “Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part 1,” Communications of the ACM, vol. 3, no. 4,
pp. 184-195, April 1960.

[31] B. Meyer, Object-Oriented Software Construction. Santa Barbara, California:
Prentice Hall PTR, second ed., 1997.

[32] B. Meyer, “An Eiffel Tutorial,” ISE Technical Report, Interactive Software En-
gineering Inc. (ISE), July 2001.

[33] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley, The
BTEXCompanion. Addison-Wesley Professional, second ed., 2004.

[34] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns. New York: Wiley,
first ed., 1997.

BIBLIOGRAPHY 179

[35] S. Oualline, Vi IMproved — Vim. Indianapolis, Indiana: Sams, first ed., 2001.

[36] T. W. Pratt and M. V. Zelkowitz, Programming Languages: Design and Imple-
mentation. Maryland: Prentice Hall, fourth ed., 2001.

[37] PTLogica, Source Code Documentation as a Live User Manual.

[38] N. Ramsey, “Literate programming simplified,” IEEE Software, vol. 11, no. 5,
pp. 97-105, September 1994.

[39] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling and Design. New Jersey: Prentice-Hall, Inc., first ed., 1991.

[40] R. W. Sebeste, Concepts of Programming Languages. University of Colorado:
. Addison Wesley Longman, Inc., first ed., 1999.

[41] E. Sekerinski, “Concurrent Object-Oriented Programs: From Specification to
Code,” in First International Symposium on Formal Methods for Components
and Objects, (Leiden, Netherlands), pp. 403-423, Springer-Verlag, 2003.

[42] H. V. Vliet, Software Engineering: Principles and Practice. New York, NY
10158-0012, USA: Wiley, second ed., 2000.

[43] K. Walden and J.-M. Nerson, Seamless Object-Oriented Software Architecture-
Analysis and Design of Reliable Systems. New Jersey: Addison Wesley Longman,
Inc., first ed., 1994.

[44] L. Wall, T. Christiansen, and R. Schwartz, Programming Perl. Sebastopol, CA:
O’Reilly & Associates, second ed., 1996.

[45] N. Walsh and L. Muellner, DocBook: The Definitive Guide. O’Reilly & Asso-
ciates, first ed., 1999.

[46] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Soft-
ware. New Jersey: Prentice-Hall, Inc., first ed., 1990.

