
OBJECT-ORIENTED LITERATE PROGRAMMING

OBJECT-ORIENTED LITERATE

PROGRAMMING

By

MING Yu ZHAO, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

Department of Computing and Software

McMaster University

©Copyright by Ming Yu Zhao, August 2007

ii

MASTER OF SCIENCE (2007)

(Computing and Software)

TITLE: Object-Oriented Literate Programming

McMaster University

Hamilton, Ontario

AUTHOR: Ming Yu Zhao, B.Sc. (Dalian University of Technology)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: x, 179

Abstract

During the past decades, programming methodology has seen an improvement by

structured programming and object-oriented programming (OOP), leading to soft­

ware that is more reliable and easier to develop. However, software engineers are still

dealing with problems in processing associated documentation. Literate programming

was introduced by Donald Knuth in the early 80's as an approach to produce pro­

grams together with their documentation in a way that is aimed at consumption by

humans rather than by compilers. However, dated and complex features, dependence

on formatting and programming language, and a lack of methodology prevented the

method from gaining in popularity.

In this thesis, we propose an approach to "integrate" OOP with literate pro­

gramming in order to present and document the whole design in a consistent and

maintainable way. In our approach, both program code and corresponding documen­

tation are generated from the same source. The resulting documentation consists

of code chunks with detailed explanations, as well as automatically generated class

diagrams with varying levels of detail. A tool, Spark, has been developed and applied

to the design of a Transit Information System from requirement analysis to testing.

Spark was also used in its own development.

iii

Acknowledgements

I would like to give my sincere thanks to my supervisor, Dr. Emil Sekerinski, for his

thoughtful guidance, constant encouragement and generous support throughout my

study.

In addition, I am indebted to my examination committee, Dr. Ned Nedialkov and

Dr. Jacques Carette, who have each taken time to offer suggestions and guidance to

improve this work. Also, thanks to Mr. Jian Xu, Mr. Daniel Zingaro, as well as other

friends, who have helped me in the passed two years.

Especially, special thanks go to my wife, Ru Wei, for her love, understanding and

support and to my parents, who taught me how to navigate my life.

iv

Contents

Abstract

Acknowledgements

1 Introduction

2

1.1 Why Object-Oriented Literate Programming .

1.2 Contributions

1.3 Structure of the Thesis

Related Work

2.1 Object-Oriented Programming .

2.1.1 Class and Object

2.1.2 Inheritance
2.1.3 Assertion

2.1.4 Garbage Collection

2.1.5 Object-Oriented Approaches .

2.1.6 Critiques

2.2 Literate Programming

2.2.1 Advantages ..
2.2.2 Disadvantages .

2.3 Summary

3 Object-Oriented Literate Programming

3.1 Overview

3.2 Document Formatting Languages .

v

lll

iv

1

1

3

3

5

5

5

6

7

8

9

15

18

19

21

22

24

24

26

vi

3.3 Programming Languages

3.4 Spark

3.5 Editors

3.6 Reference Developing Process

3.6.1 Analysis . . .

3.6.2 Design

3.6.3 Implementing

3.6.4 Testing .

3.7 Summary

4 Transit Information System Case Study

4.1 Transit Information System

4.1.1 Requirements

4.1.2 An Overview ..

4.1.3 Dictionary

4.1.4 Identifying Class

4.1. 5 Identifying Operations

4.1.6 Consulting The Library of Model

4.1.7 Applying Design Patterns

4.1.8 Algorithms Design . . .

4.1.9 Automatic Code Listing

4.1.10 Testing

5 Implementation

5.1 Introduction

5.2 Graphic Notation describer .

5.3 Front End

5.4 Back End

5.5 Testing

5.5.1 Usability Testing

5.5.2 Unit Testing ...

5.5.3 Integration Testing

5.5.4 System Testing ..

CONTENTS

28

29

30

31

31

32

33

33

34

35

35

35

36

36

38

39

39

39

44

71

72

75

75

76

78

100

109

109

110

115

115

CONTENTS vii

6 Conclusion and Future Work 116

A Installation 118
Ao1 Perl 0 0 118
Ao2 Graphviz 0 118
Ao3 AsciiDoc 0 119
A.4 Python 0 0 119
Ao5 SmartEiffel 119

B Source Code of Case Study 120

c Generated Code of Case Study 150

D Reference Manual of Spark 170
Do1 Code Block Tag 0 0 0 0 0 0 170

Do2 Graphic Notation Setting 0 170

Do3 Program Code Quotation 0 171

E Document Structure of AsciiDoc 172

F Syntax of Dot 174

List of Figures

2.1 The initial structure of the duck game

2.2 The refined structure using strategy design pattern

2.3 Dual usage of a WEB file (adapted from [24])

3.1 An example of automatic class diagram.

3.2 Overview of OOLP environment .

3.3 The Workflow of Spark

4.1 Object model of transit information system.

4.2 The attributes of class HPTA_TRANSIT _INFO

4.3 Class CONNECTION_FINDER

4.4 Class database

4.5 The hirarchy of databases

4.6 The attributes of FILE_DATABASE

4.7 The hierarchy of class CONNECTION_FINDER .

4.8 The attributes of class KNOT

4.9 The methods of class HPTA_TRANSIT_INFO

4.10 The methods of class ROUTE

4.11 The methods of class STAFF

5.1 Top-level structure for Spark .

5.2 Top-level structure for Spark front end

5.3 The structure of Module parseCode . .

5.4 Top-level structure for Spark back end

5.5 Vertical testing

viii

15

16

19

25

26

29

37

40

41

41

44

45

50

50

59

66

71

76

78

81

100

114

LIST OF FIGURES

5.6 Horizontal testing ...

5. 7 Method only testing .

5.8 Attribute only testing .

5.9 Concise form testing

5.10 Brief form testing . . .

ix

114
115
115
115
115

List of Tables

5.1 The block structure of graphic notation describer.

E.1 The block structure of AsciiDoc.

F.1 Abstract grammar for the dot language .

X

77

173

175

Chapter 1

Introduction

1.1 Why Object-Oriented Literate Programming

Although object-oriented programming (OOP) is common in the area of computer

software development, it is only one of evolutionary extensions to get to a software

revolution (10]. The past several decades saw the development from early imperative

programming through to OOP and from unstructured programming to structured

one. Each programming paradigm and every progress has shortened the gap between

human beings and machines, the real world and computer software (36, 40]. However,

none of them escape the limitation of instructing a computer what to do. To make

a further progress, we propose a new approach, object-oriented literate programming

(OOLP), which combines the benefits of both OOP and literate programming and

is assured with automated support. Such an approach is desirable for the following

reasons:

• Language-independence: Donald Knuth's literate programming encourages

programmers to concentrate on explaining to human beings what they want a

computer to do, which does lead to significantly better documentation. How­

ever, the fact that it fails to employ new programming techniques and its

doomed complex features and language-dependence made one still wait for a

better alternative [38] : in spite of the support of tools such as CWEB [25],

noweb [38], FunnelWeb [1], FWEB (27], and OCAMAWEB [29], the depen­

dence on certain programming language or documentation formatting language

1

2 1. Introduction

is predeterminate. Our approach is more flexible: software engineers can choose

their favorites, both programming languages, like Eiffel [32], Lime [41], Java,

or C#, and formatting languages, such as f1.'JEX [26, 33], AsciiDoc [2], and

DocBook [45].

• Consistent, accurate, and readable documentation: it is hard to say

that any software application without qualified documentation is valuable, be­

cause documentation absences, errors and even omissions can undoubtedly lead

to disasters for both end-users and successive software engineers. In fact, all

software development projects must generate a large amount of associated docu­

mentation; a high proportion of software process costs is incurred in producing

documentation. In our approach, any change in program code can affect its

documentation directly and every algorithm, even a single variable, is discussed

properly. This kind of work of literature makes reading technical documentation

fun.

• Automated tools support: one of the main benefits of this approach is the

ability to use software tools to analyze program code and generate design dia­

grams. With such tool support, we not only hope for an increase in development

speed, but also for progression towards a more standardized form of documen­

tation.

• Object-oriented: programming in an object-oriented language, like Java, is

neither a necessary nor sufficient condition for being object-oriented; the key

is the object-oriented design technique [5]. This approach maintains the con­

cepts and techniques of OOP, so programs still may be seen as a collection

of cooperating objects, which makes the code characterized by flexibility and

maintainability, as opposed to traditional view in which a program may be seen

as a list of instructions to the computer.

• Simplicity: it is because of the feature of language-independence that little

extra training is needed. Experienced programmers can begin their OOLP im­

mediately with their favorite OOP language, like Eiffel, and documentation

formatting language, say J5'IEX; as to beginners, they can choose the simplest

1. Introduction 3

but powerful enough ones and get jobs done perfectly in a short term. In addi­

tion, there is no extra cost needed on other application software or equipments;

a text editor is good enough. Configurable, platform-independent and open­

source text editors such as VIM [35] and Emacs [7], are perfect for our job.

1.2 Contributions

My contributions include:

• design a scheme to combine OOP and literate programming,

• design and implement Spark, a set of tools supporting this technique,

• propose a reference development process,

• develop a case study, Transit Information System, in the way of OOLP.

OOLP, as well as Spark, is an ongoing research project and many aspects are

likely to evolve over time. Therefore, the design of schemes and the implementation

of Spark should be as general as possible. The code of Spark is written entirely in

perl [11, 44], which is good at text processing. Graphviz [14, 20] is employed to

produce diagrams, since we want to avoid looking deeply into layout algorithms.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 surveys the related work on object-oriented techniques, and literate

programming. Both advantages and limitations of them are discussed.

• Chapter 3 introduces OOLP by describing its features and predominance as

well as its supporting tools, Spark.

• Chapter 4 studies the case of Transit Information System, which is developed

entirely in the way of OOLP.

• Chapter 5 focuses on the implementation and testing of Spark.

4 1. Introduction

• Chapter 6 draws the conclusions of our work, in addition to discussing future

work.

Chapter 2

Related Work

In this chapter, a survey of the existing work on both object-oriented techniques and

literate programming implementations is developed where both its advantages and

disadvantages are analyzed.

2.1 Object-Oriented Programming

After the 1990s, OOP became a mainstream technique in software development.

It is widely used successfully in various applications including compiler, graphics,

user interfaces, databases, object-oriented languages, computer-aided design systems,

games, and control system [39). Basing on abstraction, encapsulation, and poly­

morphism, OOP has more predominance than traditional approaches on reliability,

modularity, compatibility, portability, and efficiency [31). As studied in detail in sub­

sequent sections, object-oriented techniques, some of which come from previously

established paradigms, can significantly improve these quality factors, which is why

it is so attractive.

2.1.1 Class and Object

In OOP, rather than just a list of instructions to the computer, an executing program

may be seen as a collection of cooperating objects, which distinguishes object-oriented

approach from other non-object-oriented methods [12). Objects could be anything,

including not only the entities, such as a student, an university, a hospital and a car,

5

6 2. Related Work

but also the abstract concept, such as a plan and an event, so the models or programs

conceived in such a natural way are more understandable.

As the smallest module of programs, an object is equipped with essential attributes

and behaviors and becomes active by executing one of its methods, in which it may

change its state or send messages to other objects, which in turn invokes the execution

of the corresponding methods of those objects. Compare to structured methods, they

focus on functional decomposition; once a complex program has been decomposed

into some programmable sub-functions, the software certainly will work mechanically

just like an assembly line. It is very likely that in order to produce some new "parts",

developers have to reconstruct a new "assembly line" for both new "parts" and old

ones or maintain two or more "assembly lines" for all at the same time. The following

workload and risk of new bugs could be a disaster for everybody concerned. While

for object-oriented methods, developers only need to prepare some new class(es) for

such an extension. Unfortunately, in practice the changes of whole workflow are more

common than the ones of concrete methods used to process certain object. Hence,

object-oriented programs can enjoy better extendibility and stability.

However, rather than the object, the class is the central concept of OOP. A class

is a kind of abstract data type equipped with a possibly partial implementation,

through which classes establish the necessary link with software construction- design

and implementation. Much of the power of the object-oriented method, such as

inheritance, encapsulation, and polymorphism, derives from this concept.

2.1.2 Inheritance

In OOP, inheritance is a strong conceptual relation that can hold between classes:

a class may be an extension, specialization or combination of others. It is common

that new software expands on previous developments, but problems of repetition and

variation are largely ignored by traditional design methods. Writing the same code

over and over again means not only waste of time, but also the risk of incoming

inconsistencies and errors. With the support of inheritance, one class (subclass)

can introduce itself by capturing the striking commonalities that exist within one or

more mature classes (superclass) and adding the many differences that characterize

individual cases.

2. Related Work 7

The advantages of inheritance also cover a faster modifying mechanism: by in­

heritance, any modification in high level can affect the other related parts of system

immediately. In addition, inheritance divides a system into different abstract levels,

where developers can focus on them one by one without the bother of trivial details

at the very beginning.

When a class inherits its members from more than one ancestor class, this is

called multiple inheritance, which is a debatable feature. Generally speaking, multiple

inheritance make the ancestor relation complex, so any change made in a certain

ancestor may result in some unexpected effects on its successors and a compiler has

to face the problem of processing those identical members. Nevertheless, there are

still some object-oriented programming languages, such as Eiffel, C++, and perl, that

support multiple inheritance with different ways. Eiffel will automatically join the

members with same name and implementation together if they are not renamed by

the programmer explicitly. C++ requires the programmer to state the inheritance

path in detail. Perl uses the list of classes to inherit from as an ordered list. These

contrast with Java and C#, which allow classes to inherit from multiple interfaces

rather than multiple inheritance; this results in no ambiguity.

2.1.3 Assertion

For software programmers, reliability refers to the correctness and robustness of soft­

ware. In order to improve reliability, assertions, boolean expressions, usually written

as annotations are employed to specify what a system behavior is supposed to do

rather than how it does. The use of assertion dates back to Hoare's 1969 paper

on formal verification [22). A correctness formula (also called Hoare triple) is an

expression of the form

p {Q} R (2.1)

where Q denotes a program; P and R, the properties of Q, are called precondition

and postcondition respectively. However, it is only a mathematical notation used to

constrain the properties of programs.

Design by Contract (DBC) proposed by Meyer as a trademark of Eiffel is a formal

technique for dynamically checking specification violation during runtime [31). The

main idea behind DBC is that a client and a supplier, the elements of a software

8 2. Related Work

system, collaborate with each other according to a "contract". For example, suppose

method M of class C provides a certain functionality needed by class D. Then, class

D, the client, must fulfil a certain requirement, the precondition of method M, before

invoking method M and as a result, class C, the provider, must ensure a certain

property on the exit of method M, its postcondition. That is:

• precondition constrains the client, so it is an obligation for the client and a

benefit for the supplier.

• postcondition constrains the supplier, so it is an obligation for the supplier and

a benefit for the client.

Only precondition and postcondition are not enough, because they are used to

describe the properties of individual methods. For the global states of a class, Eiffel

supports the concept of class invariant. An assertion I is a correct class invariant for

class C if and only if it meets the following two conditions:

• every constructor of C, when applied to arguments s.atisfying its precondition in

a state where the attributes have their default values, yields a state satisfying I

• every exported method of C, when applied to arguments satisfying its precon­

dition and a state satisfying I, yields a state satisfying I

Assertions used in preconditions, postcondition, and invariant express the seman­

tic constraints on a class, so it is possible for us to define formally what it means for

the class to be correct.

2.1.4 Garbage Collection

Garbage collection (GC) as one of automatic memory management techniques is used

in most good object-oriented environments. The main idea is that a garbage collector,

a facility included in the runtime system for a programming language, takes care of

both detecting and reclaiming unreachable objects. With this technique, software

developers do not need to worry about memory wasted on useless objects created by

their software any more, so the reliability and timeliness of software products will

surely benefit from it. GC was invented by John McCarthy around 1959 to solve

2. Related Work 9

the problems of manual memory management in his Lisp programming language [30].

The basic principle of how a mark and sweep garbage collector works is:

• mark phase, staring from the origins, follows references recursively to traverse

the active part of the structure, marking as reachable all the objects it encoun­

ters

• sweep phase traverses the whole memory structure, reclaiming unmarked ele­

ments and erasing all the marks

Classical garbage collectors are inactive as long as there is enough memory avail­

able for the application. Its advantage is that it causes no overhead before the collector

is triggered and a serious potential drawback is that a complete mark-sweep cycle may

take a long time - especially in a virtual memory environment. Therefore, GC is

rarely used on embedded or real-time systems.

To pursue better performance, some techniques were employed. First of all, en­

dow developers with some control over the activation and deactivation of collector

cycles. If a system contains a time-critical section, which mush not be subject to

any unpredictable delay, the developer may put a "stop sign" at the beginning of the

section and show a "green light" at the end; and at any point where the application is

known to be idle, the developer may ask collector to work immediately. In addition,

ones also use generation scavenging, the philosophy behind which is that the more

garbage collection cycles an object has survived, the better chance it has of surviving

many more cycles or even remaining forever reachable. Although this technique helps

through lessen the frequency of collector cycles on "old" objects, there remains a

need to perform full collections occasionally. Parallel collection, one of the practical

solutions for GC, requires two separate threads: the application and the collector.

During the execution of an object-oriented system, the application creates as many

new objects as it needs; the collector free them continuously according to the principle

mentioned above.

2.1.5 Object-Oriented Approaches

In contrast with structured approaches, which focus on functional decomposition

from the perspective of "input-process-output", many object-oriented approaches

10 2. Related Work

have been derived from these exceedingly popular object-oriented techniques dis­

cussed above. Each of them has introduced a set of new modelings or notations. The

rest of this section presents summarily five popular ones: Responsibility-Driven De­

sign (RDD) [46], Object Modeling Technique (OMT) [39], Business Object Notation

(BON) (43], Catalysis [13], and Vienna Development Method (VDM++) [16].

RDD

RDD, conceived by Rebecca Wirfs-Brock in 1990, is a shift from thinking about

objects as data plus algorithms to thinking about objects as roles plus responsibilities.

In a responsibility-based model, objects play specific roles and occupy well-known

positions in the application architecture, which is a smoothly-running community of

objects. Each object is accountable for a specific portion of the work and all objects

collaborate in clearly-defined ways, contacting with each other to fulfill the larger goals

of the application. By creating such a "community of objects," and assigning specific

responsibilities to each, developers build a collaborative and flexible model of their

application. On the other hand, developing consistent control styles for similar parts

of the application may reduce the maintenance costs and incorporating flexibility

into the design at specific "flex points" allows for planned extensions. Therefore,

responsibilities are a good way to think about the behaviors of complex software

systems. RDD consists of the following steps:

• create a CRC (Class, Responsibility, Collaborator) card for each candidate class,

which usually is a noun with a small well-defined set of responsibilities

• identify and assign the responsibilities to candidate classes by asking what this

class's objects need to know and what steps towards accomplishing each goal

these objects should be responsible for

• find collaborations for candidate classes by asking what other objects need those

result

• build inheritance hierarchies for all classes if necessary.

• identify subsystems by drawing the collaborations graph and then looking for

strongly coupled classes

2. Related Work 11

• construct protocols for each class

• implementing design

OMT

OMT, developed circa 1991 by Rumbaugh, Blaha, Premerlani, Eddy and Lorensen,

is one of popular object-oriented development methods today. It is primarily used

by system and software developers supporting full life-cycle development, targeting

object-oriented implementations. Because of its simple core notation, OMT has

proven easy to understand, to draw, and to use. So it continues to be successful

in various application domains, such as telecommunication, transportation, and com­

pilers. OMT consists of the following phases:

• analysis phase: understand and model the application and the domain within

which it operates by formal models: the object model specifies what it happens

to, the dynamic model specifies when it happens, and functional model specifies

what happens.

- object model: capture the static structure of a system by showing the ob­

jects in the system, relationships between these objects, and the attributes

and operations that characterize each class of objects

- dynamic model: describe the control flow, interactions, and operating se­

quences of the system and consist of multiple state diagrams

- functional model: describe computations within a system

• system design phase: determine the overall architecture of the system

- organize the system into subsystems

- identify concurrency

- allocate subsystems to processors and tasks

- handle the boundary conditions and the system resources, especially the

permanent data.

- choose software control implementation

12 2. Related Work

• object design phase: determine the full definitions of the classes and associations

used in the implementation, as well as the interfaces and algorithms of the

methods used to implement operations.

• implementation phase: discuss the specific details for implementing a system

using programming languages and database management systems.

BON

BON, developed in the early 1990s by Jean-Marc Nerson and Kim Walden, is a means

of extending the higher-level concepts of Eiffel into the realm of analysis and design

aided by a set of graphical notations. These graphical notations do not include the

associations, multiplicities, and state-charts that can be found in nearly all object­

oriented analysis and design notations today. BON consists of informal charts, static

architecture, class interfaces, dynamic scenarios and nine standard tasks are grouped

into three parts:

• gather analysis information

- delineate system borderline

- list candidate classes

- select classes and group into clusters

• describe the gathered structure

- define classes

- sketch system behavior

- define public features

• design a computational model

- refine system

- generalize

- complete and review system

2. Related Work 13

Catalysis

Catalysis coined by Desmond D'Souza and Alan Cameron Wills is a method for

component-based and object-oriented software development. It provides a strongly

coherent set of techniques for business analysis and system development using Unified

Modeling Language UML) and is characterized by following:

• Traceability from business models to code

• Precision, with clear unambiguous models and documents

• Component Based Development

• Reuse of designs, specifications, problem domain models, and even architec­

tures

• Scalability from small to large teams and projects

• Process that is flexible yet repeatable, with multiple "routes"

Catalysis believes that these is no single process that fits every project: each

one has different starting points, goals, and constraints. Therefore, it provides a

list of process patterns that help developers plan a project appropriately to their

situation [13] .

VDM++

VDM++ is extended by Nico Plat, Paul Mukherjee and, later, Marcel Verhoef from

VDM. It employs a formal notation to complement and enhance object-oriented class

models and its development process consists of the following ten steps:

1. determine the purpose of the model.

2. read the requirements.

3. analyze the functional behavior from the requirements.

4. extract a list of possible classes or data types and operations. Create a dictio­

nary.

14 2. Related Work

5. sketch out representations for the classes using UML class diagrams. This in­

cludes the attributes and the associations between classes. Transfer this model

to VDM++ and check its internal consistency.

6. sketch out signatures for the operations. Again, check the model's consistency

in VDM++. The development is continued by adding operation signatures (the

formal parameters and the result) at the class diagram level.

7. complete the class or data type definitions by determining potential invariant

properties from the requirements and formalizing them. To make the model

more comprehensive, it is a good idea to review the model to check coverage of

the requirement. Document important properties or constraints as invariants.

Before being able to validate the model created so far it is also necessary to

consider how to construct instances of the different classes. In VDM++, con­

structors are simply written as operations with the same name as the class in

which they are defined.

8. complete the operation definition by determining pre- and postcondition and

operation body, modifying the type definition if necessary.

9. validate the specification using systematic testing and rapid prototyping. Three

methods are used here:

(a) integrity properties are formal descriptions of system properties that can

be generated automatically by VDMTools.

(b) VDMTools supports validation using conventional testing techniques, in­

cluding features to enable test coverage documentation directly at the

VDM++ level.

(c) validation can be made executing models together with other code, e.g., a

graphical front end.

10. implement the model manually or using automatic code generators that produce

directly compilable code in C++ or Java.

2. Related Work 15

2.1.6 Critiques

We have introduced some object-oriented techniques and five object-oriented ap­

proaches. However, it is not necessarily followed by a reusable, robust, modifiable,

and maintainable software applications. The rest of this section explains several other

issues that contribute to a satisfying software applications.

Design Patterns

The work of designing a good object-oriented software is easy to say, but difficult to

do [18, 19]. Although design patterns may introduce some more classes through dele­

gation and inheritance, they do provide partial solutions to some common problems,

including analysis [17, 28], system design [6], middleware [34], process modeling [3],

dependency management [15], and configuration management [4]. Let us take the

strategy design pattern for instance. Suppose that there is a requirement of a duck

pond simulation game, which can show a large variety of duck species swimming and

making quacking sounds. Basing the standard object-oriented techniques and ap­

proaches discussed above, developers may naturally define one Duck superclass from

which all other duck types inherit as shown in Figure 2.1. Since all ducks quack and

swim, the superclass takes care of their implementations, while every subclass has to

be responsible for implementing its own display function.

Duck

quack()
swimO
disphly()
...

1
I I

WoodDuck CombDuck

E displayQ{ displayQ{
//show wood duck //show comb duck
} }

Figure 2.1: The initial structure of the duck game

16 2. Related Work

Unfortunately, the extendibility of such a design structure is not satisfying. What

will happen if here come two new requirements: let all existed ducks fly and add

some rubber ducks, which can neither quack nor fly? Apparently, inheritance and

overriding can not be the answer, because the specification will keep changing and

developers will be forced to keep an eye on and possibly override fly method and quack

method for every new subclass; trying to declare some interfaces, such as Flyable and

Quackable, for the changes must lead to a mass of duplicate code.

The strategy design pattern seems to be a key to such a problem. The main idea

of it is to decouple a policy-deciding class from a set of mechanisms so that differ­

ent mechanisms can be changed transparently from a client. In other words, all the

"problematic" behaviors, such as quack and fly, should be taken out of the super­

class and then assigned to the specific duck according to concrete circumstances (see

Figure 2.2). In this way, all the concrete strategies like FlyWithWings, FlyNoWay,

Quark, and Mute can be substituted at runtime and new behaviors also can be added

without modifying the other parts.

Duck <<interface>>

....... Fly Behavior
Fly Behavior fly Behavior
QuackBehavior quackBehavior f:>- fly()

swim() ::- · ·- · ·..!..... . . _,
display() I .
quack() FlyWithWings FlyNoWay
fly()

fly(){ fly(){
sefFiyBehavior()

//implement flying //do nothing
setQuackBehavior()

} } ...

<<interface>>
QuarkBehavior

quark()
WoodDuck CombDuck

~ display(){ display(){
//show wood duck II show comb duck :- ·· - · ·.0... . . -,

} } i
RubberDuck

Quark Mute

display(){
quark(){ quark(){
//implement quark //do nothing

//show rubber duck } }
}

Figure 2.2: The refined structure using strategy design pattern

Through the example above, we can say that knowing the object-oriented basics,

2. Related Work 17

abstraction, encapsulation, polymorphism, and inheritance, as well as some popular

approaches do not make one a good object-oriented designer. As practical object­

oriented experience, design patterns show designers how to build systems with better

qualities: reusability, extensibility, and maintainability, not concrete program code.

More and more good patterns are going to be discovered by the following principles:

• Encapsulate what varies.

• Favor composition over inheritance.

• Program to interfaces, not implementations.

• Strive for loosely coupled designs between objects that interact.

• Classes should be open for extension but closed for modification.

• Depend on abstractions rather than concrete classes.

• A class should have only one reason to change.

Software Documentation

Software documentation is written text that accompanies and explains computer soft­

ware. Its absence, insufficiency, or inconsistency means the loss of the partial or even

total previous effort, because the program will undergo modifications due to errors or

changes of requirements and reuses in other software applications. All large software

development projects, irrespective of application, generate a large amount of associ­

ated documentation, mainly including the project plan, quality plan, requirements

specification architecture description, design documentation, technical documenta­

tion, user manuals and test plan [42] .

OOP did achieve a major improvement in the analysis and design of software, but

it also suffers the problems coming from the consistency and readability of software

documentation. The reason of that comes mainly from the documentation mechanism

itself. Like traditional programming paradigms, OOP separates most documentation,

such as design documentation and architecture description, from code, so it is hard to

keep all this pivotal documentation up-to-date and synchronized. Especially for large

projects and plus the time pressure, the inconsistency of documentation gets worse.

18 2. Related Work

On the other hand, although technical documentation, which is used to explain class

as well as its members, data structures and algorithms, is embedded within the source

code as comments and may be supported by automatic documentation tools, such

as doxygen [21], Javadoc, and TwinText [37], it is always short and organized in an

order suitable for compilers rather than human beings.

In addition, software documentation without graphical notations is neither ex­

pressive nor appealing. In fact, most popular programming approaches today have

their own set of graphical notations used to create an abstract model for their tar­

get software systems, which, especially the complex ones, enhance the importance of

graphical notion. Usually, these notions are constructed by developers manually and

then included into the corresponding software documentation. So incomplete changes

may lead to inconsistency, which is the reason for other readers' misunderstanding.

2.2 Literate Programming

Introduced by Donald Knuth in the early 80's, literate programming is an approach

that combines a programming language with a formatting language, thereby making

programs more robust, more portable, and more easily to maintain than programs

written only in one high-level language [9, 24, 38]. Its main idea is to treat a pro­

gram as a work of literature, which is used to explain to human beings what it let

a computer do rather than to instruct a computer what to do. The program is also

viewed as a hypertext document, rather like the World Wide Web. By contrast with

other programming paradigms, the program source code is embedded into documen­

tation rather than the other way and the practitioner of literate programming needs

to manipulate two kinds of languages simultaneously, neither of which can provide

significantly better documentation of programs by itself.

The first published literate programming environment is WEB [23], which uses

Pascal as its underlying programming language and 'lEX [26] for typesetting of the

documentation. Pascal makes it possible to specify the algorithms formally and un­

ambiguously, while 'lEX provides typographic tools to explain the local structure of

such parts. The structure of WEB program may be thought of as a "web" that is

made up of many interconnected modules, which may contain the actual program

source code, abbreviations for the code, and description of the code. All the modules

2. Related Work 19

should be subdivided until their functionality is easily understandable. In WEB, the

"bilinguist" writes such a program that serves as the source language for two differ­

ent system routines as shown in Figure 2.3. Besides WEB, other implementations

of this concept are CWEB [25], FWEB [27], noweb [38], Funnel Web [1], and OCA­

MAWEB [29]. Some of them are different versions of WEB for documenting specific

programming languages, such as C++ and Fortan, while others are documentation

formatting language independent, such as noweb, and FWEB.

8 T~ 8 ~
-+

8
l'~ 8 -+ 8 04:

PASCAL

Figure 2.3: Dual usage of a WEB file (adapted from [24])

2.2.1 Advantages

As an efficient way to combine source code and its documentation, literate program­

ming enhances the quality of programs. Its programs are characterized by flexible

programming order, lossless factoring, better readability and better maintainability.

Flexible Programming Order

In literate programming, a program consists of some modules, which can be organized

in arbitrary order without the constrain coming from compilers. So a programmer

can choose the order best suited to explaining to human beings what he or she want

a computer to do. In other words, this principle encourages the author of a literate

program to take the time to consider each fragment of the program in its proper

20 2. Related Work

position. The reordering is especially useful for encapsulating tasks such as input

validation, debugging, and printing output fit for humans.

Factoring

Traditionally, a function is the smallest ordered list of computer instructions and the

compiler requires the full text of its algorithm to be held together continuously. This

is the reason that overweighed code chunks can be found everywhere. To improve

this situation, Knuth introduced a decomposition facility into the meta-language.

With this technique, the definition can be broken into constituent parts without the

extra cost for defining new functions. Therefore, every part of any algorithm can be

discussed in detail sufficiently.

Readability

Knuth believes that a program should be regarded as a work of literature. By such a

literary style of writing, programmers enjoy the freedom to discuss the design decisions

as well as constraints that may lead to certain intricacies in their implementation. A

program presented in book form is certainly characterized by better readability.

Maintainability

Since factoring and literary style endow programmers with the ability to describe

their algorithms as well as the trade-offs in detail fully, every reader, including the

author, can understand the program totally at any time. When an alteration is

required, it should be fairly obvious which part of the "book" needs to be modified.

Similarly, the description concerning such a alteration will be used as a reference for

other maintenance or development later.

In a word, maximized factoring, detailed description and literate sequence bring

literate programs better readability, which in turn makes the programs easer to be

maintained.

2. Related Work 21

2.2.2 Disadvantages

We have introduced Knuth's literate programming as well as its advantages. It turns

out to be a good approach to produce better documentation and to improve the qual­

ity of software, but literate programming has not become a mainstream technique in

software development yet. The reasons for this reside in the fact that writing literate

programs requires additional time in comparison to writing "illiterate" programs and

the limitation of language-dependence.

Time Overhead

There are following several issues that contribute to the time overhead. Literate

programmers need longer time to learn before staring to work than traditional pro­

grammers do. Besides specific programming language and compare to Javadoc and

TwinText, which are Source Code Documentation Tools rather than literate program­

ming tools, they have to learn to install and configure the set of applications that

support literate programming. Additionally, the harder part is learning how to prop­

erly write literate programs. So the longer learning curve of literate programming is

a challenge to the beginners' patience.

Literate programming forces programmers to develop software applications us­

ing a completely different perspective, where the developers should first make their

thoughts clear to everybody. In order to fulfil this requirement, only the ability of

programming is obviously insufficient. It is because there are too many choices of

expression way, order, and factoring extend to choose that literate programmers have

to sacrifice time for the best.

In addition to programming errors, two new types of errors are introduced by this

technique: WEB structural errors and formatting errors. The former are those caused

by the incorrect use of the WEB's own language required to define the structure of

a program. Since both Weave and Tangle routines use such structure as an input,

this kind of error can the be propagated into programming and formatting language

errors. Formatting errors are those caused by the misuse of formatting language.

Similarly, these errors could affect other parts of a program.

For literate programmers, there is only one way to obtain the executable program.

They have to run the Tangle routine over the WEB file first and then compile the

22 2. Related Work

output. If there exist any programming errors, they can not be found until executable

program is built. In order to correct them, developers have to go back to the WEB

file, make changes, then run the Tangle, and compile the output again.

Language-dependence

The first published literate programming environment is WEB [24], introduced by

Donald Knuth in 1981; this system uses 'lEX as the document formatting language

and PASCAL as the programming language. It is true that as long as a person knows

both of the underlying languages, there is no trick at all to learning WEB, but what

does it mean for those who do not know these two languages or for the circumstance

that the underling languages do not suit for the programming of the target project?

In the section "The WEB System" of his Computer Journal article, Knuth ad­

dressed that the same principles would apply equally well if other languages were

substituted: instead of 'lEX one could use a language like Scribe or Troff; instead

of PASCAL, one could use ADA, ALGOL, LISP, COBOL, FORTRAN, APL, C, or

even assembly language. However, all the literate programming systems derived from

WEB depend on one or both underlying languages. CWEB is created by Donald

Knuth and Silvio Levy as a follow up to Knuth's WEB, using the C programming

language instead of PASCAL. OCAMAWEB is a CWEB like literate programming

tool, which is a combination of the MATLAB [8] language and J§IEX. Although

noweb, FunnelWeb, and FWEB, can work with multiple programming languages,

they still depends on their document formatting language respectively.

2.3 Summary

As a software application development approach in mainstream, object-oriented pro­

gramming improve the quality of program, which includes reliability, modularity, com­

patibility, portability, and efficiency. The reason for this resides in the object-oriented

techniques, such as class, object, inheritance, polymorphism, and abstraction. Its

improvement on documentation and design approach as well as supporting tool is

not satisfying. On the other hand, literate programming could produce significantly

better documentation and improve the quality of software. However, its inevitable

2. Related Work 23

time over head and language-dependence prevent literate programming from being a

mainstream technique in software development.

Chapter 3

Object-Oriented Literate

Programming

The previous chapters explored the the goals of OOLP and related research. In this

chapter, we take a closer look at OOLP from the perspectives of its key aspects and

supporting tools.

3.1 Overview

Nothing concerning OOLP is intrinsically new; what we have done is combined a

number of ideas that have been in the field for a time. All of these techniques have

their own advantages. By applying them systematically in a slightly new way, we

propose a new programming paradigm- OOLP, which is anatomized in the following

sections.

The practitioner of OOLP can be regarded as an essayist whose main tasks are to

break the whole program into little pieces and to order or reorder them for pursuing

the best suited to explaining what this software is doing. Every algorithm, even a

single variable, is discussed properly in its natural place. In this way, the program

and its documentation, including diagrams, are always consistent with each other.

On the other hand, it still can be viewed as a collection of loosely connected objects,

each of which is responsible for a certain specific task, which is a natural way for

human beings to cognise the world. Therefore, this kind of works of literature is

24

3. Object-Oriented Literate Programming 25

characterized by readability, reusability, flexibility, and maintainability.

Class diagrams are used in nearly all object-oriented analysis and design methods

today. They can present readers a clear and intuitive view of the system structure. All

existing literate programming tools would require developers to draw them by hand.

In OOLP, Spark allows them (see Figure 3.1) to be generated automatically and

inserted around the corresponding code part. Such automatic feature of Spark not

only lightens developers' workload, but also ensures the consistence of class diagrams

with the program code.

rl\1
TJeeNcxle

Set TJeeSet
p :ilteger

s : setofilfEger a :boom

SetO ~
ackl lt:iltegel)

TJeeSetO JDOt key: ilteger

ackl lt:iltegel) TJeeN Oil! it:ilfEgel)
haslt:iltegel) :boo:Ean haslt:iltegel) :bool!an addlt:iltegel)

haslt:iltegel) :boo:Ean

addToC hili 0

Figure 3.1: An example of automatic class diagram.

Like WEB, the programming environment of OOLP itself is chiefly a combination

of two other languages: (1) a documentation formatting language and (2) a program­

ming language. The difference is that programmers can choose their favorite or most

suitable combination of these two kinds of languages. The main point is to let the

practitioners of OOLP enjoy the power of the inherently bilingual tool, and get rid

of the limitation of language-dependence.

In OOLP, the documentation formatting language provides tools to explain the lo­

cal structure of documentation parts and to build the documentation that describes

the program clearly and that facilitates program maintenance, while the program­

ming language makes it possible to specify the algorithms formally and to obtain a

machine-executable program. In addition, the supporting tool, Spark, is responsible

26 3. Object-Oriented Literate Programming

DOC TOOLS 8
8
8 8L

COMPILER

Figure 3.2: Overview of OOLP environment

for reconstructing compiler-acceptable code files, inserting continuous program code

back to documentation, and building graphical notations.

3.2 Document Formatting Languages

Since OOLP dose not fix on any specific document formatting language, a programmer

can choose anyone from the popular text based document generation systems, such

as AsciiDoc [2], Ib-'JEX, and DocBook [45]. The main point is that the target source

file can be edited by arbitrary text editor platform-independently and that Spark can

parse and process the target source file.

Let us look at this process in slightly more detail. Suppose AsciiDoc is used as the

document formatting language and we have written an OOLP program and put it into

a computer text file called EXAMPLE.TXT. The concrete syntax of AsciiDoc can be

found in Appendix E. To generate hardcopy documentation for the program, we can

run asciidoc.py, which is an executable program that takes the file EXAMPLE.TXT

as input and produces another file as output. By setting different command line

parameters, we can ask AsciiDoc to produce several predefined back end outputs, in­

cluding DocBook, HTML, LinuxDoc, and Ib-'JEX. Take the Ib-'JEX output for example,

after running the following command, we can have a file EXAMPLE.TEX as output.

3. Object-Oriented Literate Programming 27

asciidoc.py -unsafe -backend=latex EXAMPLE.TXT

Then we run the J1!IEX processor, which takes EXAMPLE.TEX as input and produces

EXAMPLE.PDF as output.

pdflatex EXAMPLE.TEX

By default, AsciiDoc produces plain HTML 4.01 file. We can simply run the following

command,

asciidoc.py EXAMPLE.TXT

Then, we will get a file named EXAMPLE.HTML.

To use AsciiDoc, we need to setup the environment first (see Appendix A).

The process is the same for other document formatting languages, but the features

of OOLP are denoted a little differently. For example, a piece of program code is listed

in AsciiDoc as following:

feature {ANY}

STAFF .. . match (id: INTEGER): BOOLEAN is

require
id >• 0

do
Result :• id • number

end

In DocBook, the same code goes as following:

<programlisting>
feature {ANY}

STAFF ... match (id: INTEGER): BOOLEAN is

require

id >• 0

do

Result : • id • number

end
</programlisting>

In J1!IEX, it is listed as following:

28

\begin{ verbatim}
feature {ANY}

3. Object-Oriented Literate Programming

STAFF ... match (id: INTEGER): BOOLEAN is
require

do

end
\end {verbatim}

id >= 0

Result :• id = number

Graphic notations are included in different ways too. For example, in AsciiDoc,

a picture is included as following:

image::hpta_transit_info . jpg[Object Model]
//$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE ~VERTICAL

"hpta_transitJnfo.jpg" is the picture's name and followed by its attribute, "Object

Model". "/ /" denotes a comment line, which will be omited by AsciiDoc com­

piler, but Spark considers it as a setting of the diagram: HPTA_TRANSIT _INFO,

DATABASE and FILE_DATABASE are explained as the classes included in this dia­

gram; @VERTICAL means that the diagram must be drawn vertically. Other settings

are discussed in Charter 5.

In DocBook, the same picture is included as following:

<figure><title>Object Model</title>
<graphic fileref="hpta_transit_info.jpg"></graphic>
<!--$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE ~VERTICAL-->
</figure>

In Jb!IEX, it is included as following:

\includegraphics[width=100mm, height=65mm]{hpta_transit_info . jpg}
'l.$ HPTA_TRANSIT_INFO DATABASE FILE_DATABASE ~VERTICAL

3.3 Programming Languages

In OOLP, programmers can also choose their programming language from multiple

popular candidates, such as Java, C#, Eiffel, Lime, and C++. In principle, any pro­

gramming language, like PASCAL, Basic, and even assembly language, is eligible for

being such a candidate, but in this paper, we only focus on object-oriented program­

ming languages.

3. Object-Oriented Literate Programming 29

Since in literate programming, the continuous program written in certain pro­

gramming language has been broken into sections and ordered best for explaining to

human beings, the traditional process of "compile, load, and go" has been slightly

lengthened to "reassemble, compile, load, and go".

3.4 Spark

Spark consists of two parts: front end and back end. The front end takes an OOLP

program as input and produces a number of program source code files as well as one

graphic notation script file; the back end takes the graphic notation script file as input

and produces a number of DOT files, which are used to feed Graph Viz. Graph Viz

generates all the diagram files upon the request (see Figure 3.3). This structure

decouples the programming language parsing from the algorithm of diagram layout

so that different mechanisms can be changed transparently from each other.

/((,'~";;:~., fl\ .. ~1';~
~ ~ . "' ... ~:l

Figure 3.3: The Workflow of Spark

Two issues contribute to the fact that Spark gets rid of the limitation of the

language-dependence in all existing literate programming tools. First, Spark focuses

only on the code blocks and picture blocks and considers the other parts in OOLP

programs as comments. In other words, as long as the document formatting language

can work well by itself, Spark can accept it. Second, by providing different front

30 3. Object-Oriented Literate Programming

ends, Spark can be easily extent to adapt to various programming languages (see

Appendix D).

It is because Spark parses program code partially that it can help to debug the

program. Spark generates graphic notation automatically. This not only lightens the

workload of developers, but also ensures the consistence of diagrams with code. The

usage of Spark is simple, i.e. the front end followed by the OOLP program file. For

example, the front end for Eiffel is chose and the program is still EXAMPLE.TXT,

then the command is:

peri sparkf-eiffel.pl EXAMPLE.TXT

3.5 Editors

All the supporting tools are independent software and can be either embedded into

any extensible edit platform as plug-ins or called under OS shells, So there is no

specific requirement for its editor. In this paper, as an example we choose VIM,

which is a highly configurable text editor built to enable efficient text editing platform­

independently. In what it follows we will show how to build a integrated development

environment (IDE) by using the supporting tools as well as VIM.

vim EXAMPLE.TXT

To make the work easier, we can define a new command for VIM as following:

:command Spark :!peri sparkf.pl %

Then as long as finishing editing the OOLP program in VIM, we can switch to the

command mode and input the new command set above as following:

:Spark

Whenever the command, Spark, is invoked, it begins to parse the current source file,

and then both program code files and graphic notation files have been generated

immediately if no errors. In this way, we can call the compiler to compile the source

code and use other document formatting language tools to produce the consistent

document.

3. Object-Oriented Literate Programming 31

3.6 Reference Developing Process

Basing the existing object-oriented approaches such as RDD, OMT, BON, Catalysis

and VDM++ (see Section 2.1.5), we propose a reference developing process, of which

each step is discussed in details in the rest of this section.

3.6.1 Analysis

In object-oriented software development, this phase takes the input of a fuzzy, min­

imal, possibly inconsistent target specification and produces the output of a un­

derstanding, complete, consistent description of essential characteristics and behav­

ior. The final product, object, distinguishes object-oriented analysis from other ap­

proaches, such as structured analysis and Jackson's method [12].

Creating a Dictionary

The correctness of understanding the main terms used in the requirements is the key

to get the correct model of the target system, so the dictionary must be as detailed

and rigorous as possible. The potential classes and types identified in the dictionary

could then form the basis of a class diagram, whereas the potential operations might

be described as use cases. This idea comes from VDM++.

Identifying Classes

Object-oriented software consists of classes, which describes a group of objects with

similar properties, common behavior, common relationships to other objects. So the

main task of this step is to find out all classes from the dictionary constructed and

keep the number of entities in the initial model as small as possible at the same time.

The principles are listed as following:

• Omit those nouns, if they are irrelevant with the purpose of the system.

• Model those nouns as attributes, if they have only trivial functionality.

• Create an overall class to represent the entire system so that the precise rela­

tionships between the different classes and their associations can be expressed

there.

32 3. Object-Oriented Literate Programming

• Whenever an association is introduced consider its multiplicity and give it a

role name.

• Try to keep encapsulation by the modifiers such as private and protected.

• Document important properties or constraints as invariants.

Sketching Operations

An operation is a function or transformation that may be applied to or by objects

in a class. The aim of this step is to try to describe all the operations listed in the

dictionary with signature (parameters and result) and formal specification (pre- and

postcondition). Then, assign them to the classes identified respectively. This idea

comes from BON, Catalysis, and VDM++.

Constructing Initial Model

An object model captures the static structure of a system by showing the objects

in the system, relationships between the objects and the attributes and operations

that characterize each class of objects. This model provides an intuitive graphic

representation of a system and is valuable for communicating with customers. This

idea comes from OMT and VDM++; Spark supports the automatic generation of this

model.

3.6.2 Design

During analysis, the focus is on what needs to be done. During design, decisions are

made about how the problem will be solved better. This goal can be approached more

efficiently by employing the successful experience such as existing business models and

design patterns.

Consulting Existing Business Models

A business model is the object model that has been employed successfully in a certain

actual project. Such well-found business model can bring us not only the speed

of development, but also the quality of software product, after all it have passed

3. Object-Oriented Literate Programming 33

the enough arguments and testing. So as long as a business model can meeting

the requirements of the target system entirely or partially, we should replace the

initial model generated in analysis with it entirely or partially. This idea comes from

Catalysis.

Applying Design Patterns

We can not expect to find out everything in our library; in more cases, we need

construct a new one. Then, what kind of design is good design? This question is

ignored by most existing object-oriented approaches. We recommend design patterns,

which can provide the answer (see Section 2.1.6). In this step, many new classes may

be introduced into the current model, but this is we have to pay for the design with

better flexibility, extensibility and reliability.

3.6.3 Implementing

The goal of Analysis and design is to bridge the gap between the real world and com­

puter domain; the goal of this portion is discuss the specific details for implementing

a system using programming languages. By the aid of Spark and literate tools, one

can debug the program and view the document freely.

3.6.4 Testing

Testing is the process used to measure the quality of developed computer software.

Since software is developed by human beings, it is inevitable that there exist some

errors. Therefore, testing must be conducted for every computer software.

In order to cover the correctness, completeness, security, reliability, usability and

portability of software, one needs to perform the following tests:

• Usability testing, which tries to find faults in the user interface design of the

system.

• Unit testing, which tries to find faults in participating objects.

• Integration testing, which is the activity of finding faults when testing the

individually tested components together.

34 3. Object-Oriented Literate Programming

• System testing, which tests the entire system.

- Functional testing, which tests the requirements.

- Performance testing, which checks the design goals.

- Acceptance testing, which check the system against the project agree-

ment and is done by the customer.

3.7 Summary

This chapter has introduced the following major features of OOLP and Spark:

• Including program code and graphic notations in various document formatting

languages.

• Setting graphic notations

• Setting up the developing environment.

• Using Spark to generate graphic notation files and program code.

• Constructing OOLP IDE with VIM.

• A reference developing process

Chapter 4

Transit Information System Case

Study

In this chapter, by an example, Transit Information System, we demonstrate how

to use the technique of OOLP in developing software. The source code is listed in

Appendix B. The rest of this chapter that follow is the actual output of an OOLP

program file.

4.1 Transit Information System

4.1.1 Requirements

In this project, we are asked to develop an information system for a local train and

bus service. Our customer, HPTA (Happy Passenger Transit Authority), has no clear

picture what it should do, except to increase customer satisfaction and make traveling

more attractive. All the information we have goes as follows:

• It will be used by passengers as well as by HPTA staff.

• Selected staff members would be allowed to update the information.

• Passengers should be able to enter their start and destination, a desired time,

and get a bunch of possible connections.

• Connections can be direct or with changing busses or trains.

35

36 4. Transit Information System Case Study

• For each bus and train station, the information like opening hours and accessi­

bility is maintained.

• Users can browse a list of all bus and train routes or check the details of a

certain route ..

• Some bus stops and train stops are conjoint, but some not.

• Trains have two-digit numbers and busses have three-digit numbers.

• Connections between trains and busses must have at least five minutes for the

change.

For simplicity, we assume that detours and delays do not occur, stops are never

skipped.

4.1. 2 An Overview

The following picture (Figure 4.1) is the object model of transit information sys­

tem. As the root class, HPTA_TRANSIT _INFO controls the whole system from

the beginning to the end. Class DATABASE is a deferred class, whose subclasses,

such as class FILE_DATABASE, are responsible for maintaining system data. Class

CONNECTION_FINDER is also a deferred class, whose subclasses, such as class

PRIME_FINDER, are responsible for finding the possible connections.

The purpose of the application is to maintain the system information, including

local train or bus service and the status of staffs, and provide users current public

transit service information, including possible connections and routes.

4.1.3 Dictionary

To understand the main terms used in the requirements, we create a dictionary as

following:

• passenger: a person, who want to get his or her destination by bus or train.

• staff: a person, who works for HPTA.

4. Transit Information System Case Study 37

<;~~•t...num ber

HPTA__TRANSll' :...FO

make
-t....d.atatHl- t"lew_d.atan.ae :0 ATA8AS E)
dellla...Jnenu
upd.a-.....n enu
menu
bqu~enu

do_delltta
-t._.O:ldertlew_O'IderCO N N ECT D N___T::N D ER)
cto_ upcl.ata

m .h_tz:;ah._D:)uta_ nwn 1:.-lTEGER
m ax..._.bu.._JDu.._,um • :..ITEG £R
m A)(._t:at.h._D:)uta_J'Ium • ~TEG ltR
m ~UIIl....IDUO!LJ\UIII I :..I'TEG ER

Qet.....o::.t.....bU!Il....IDUt&
m .ake
Olc1_.0.trhum ::HTEGER I
adcl...IDUtB t'IGW_.D:)Ut&s:t.O UTE)
Q&l;,_next,_t:m.h._D:)uta (IDute:RO UTE)
0\cl..J:r::>ut»tlu.m ::HTEGER)
Qe~t ... :t::ra~uta
._,eked
add,__atatl' tlew _ at:alrSTAFF)
qe1;...next;._bu-..._.cuta (IDutaRO UTE 1
do_ -ve
deleotlet.....Stlofri:StllfriSTAFFI
delltta_l:DUtll!l (IDUtaSI.O UTE I

r
~arne :STR:.IG

9•~u-.._.:ou•
<;;~et.....next._b:ah._D:)u• ODuta :ROUTE)
0\d.....«>Utat"lwn :J>ITEGERI
--bcked
adct..._.t.frtlew_8Qltl'ISTAF!")
Qet.....nexl;..bu_..:ou• (IDUta :ROUTE)

ao_ -ve
.._tz.i"l hwot ::HTEG ER I ,..d
delit---.zgutl!o (1Dut8:RO UTE I
maka
0\d,_acatrtaum ~TEGER)
.add-..JDuta .., _ _.IDUta :ROUTE)

~•tlum ~TEGERI

qe~b:a:b.........i:Outa
de:llota_-trestatrtSTAFF)

\
t::ra.h_t:tne : ::NTI!:GER
bu.._t:tna : :...I TEGER
ch.anQe t:tn e ; ::N TEG ER

CONNECTDNJ'::NDER

get._oonn ect:bn t:lba-OATABASE.J.tart..de.ttlatbn STR:I'.JG Jt:tn, • :::HTEC I!:R I

PR:M£_T:211D£R

dea.--...t:m• ::I'.JTEGER

'ill•t...Zidex.6TATDN ... um :::HTEGERI
maka
add,_nod• pr.:I'IITEG ER ,a6TATD N ,..,....'--" :::HTI!!G ER)
9•t...oonn..::t~:of_Jn •• thd•x :::H T 1!: G E R I
-....»uat'lum :::HTEGER I
aQQ...bu._aa.h_.aQ,t:bn t2ba-:I)ATABASE ,ll"'&m e STR :I'.JG ICln • :::HTI!: G I!:R)
9•t...oonn-.;:t:bnt2ba-DATABAS£.-blrt..de~at:bn6TR:I'.JC rt:m •:::HTI!:G £AI
--.aant'lum :::HTEGERI
3\Q.._n•j;Jhbort:iba-DATABAS£ ,_,:ISTR :I'.JC JPr.:I'IITEG I!:R I

number: :211TEG ER
tin• 1 :21! TEGER
ata.U1a : :NTEG J!:R
pe1m •nent: :.ITEG ER
~nta~• : :N TEG ER
p-d I :N TEGER

•dd.-amt:bn t'law _n•m e.acceaa,opal"'_houJ<,l:lll't....atop:S TR :I'.JC)
show

p.-.-ou:l :STR:I'.JG
number • .,TJ!:GER 9•t...num ber

'ill•t...tan. m •t~:;h tl~.m~ :::HTI!:G I!:RI
9•t...~t._atat:bn
m •ke tlum :::HTI!:G ER I
clo _ _ v•CO:.!TEXT_FlLE _ W RD'EI

<;~~et...n•xt._atat:bn C!ltat:bn l. .STATD N)
~ov•~t:bnt'lame:STR:.IG)

~-vectna!XEXT_Fli..I:_W RJI'EI
m•tchUit:.lTEGERI
l:>QI*'P.-dBTR:.IG I
m aketttai!TEG ERJPa-d:STR:.IG I

open 1STR:NG
•c::ce-:b~ •STR .. G

• :STR:211G

-~~ fV•:l.l• ail TEG ER I
-t...num berfl,ra:l.I•:::HTEG ERI
<;~~•t....,p~

.g•~t:bn

-t...tb>•fv•:l.l•ai!TEGERI
m •ket.n:STATDN .num ,t,.-.prJ<lTEGERI
-~tuatJa.l.J•ai!TEGER)

-t...aOlt:bnfV•:l.le:STATDN I
'ill•~tu·

/-~·

m ak• w_nam •.n•w_open.n•w_.oc:ISTR :211G 1
do--v•ctna!TEXT_Tll.E~ RD'EI
..,~

9•~oc
q•t...open
O'•t...nam•
m atch b.JQ•tnam •6TR.,G)

Figure 4.1: Object model of transit information system.

38 4. Transit Information System Case Study

• start: a station, where a passenger begin his or her journey.

• destination: a station to which a passenger is going or directed.

• desired time: an interval, within which one want get to the destination from

the start.

• connection: a sequence of stations.

• bus: a long motor vehicle for carrying passengers, usually along a fixed route.

• train: a series of connected railroad cars pulled or pushed by one or more

locomotives.

• route: a course for buses or trains to travel from one station to another.

• opening hour: a time, at which the first vehicle departs.

• accessibility: a description of the running status of a station.

• update: a change of system information.

• browse: a display of the information of all routes.

• check: a detail show of a certain route information.

4.1.4 Identifying Class

The following classes are identified from the requirements.

~ :,~:ss HPTA_TRANSITJNFO

Class HPTA_TRANSIT _INFO is identified as a class of the entire system.

c lass STAFF
feature {NONE}

number : JNIEGER
password : STRING

STAFF is a class with attributes employee number and password. The require­

ments state that selected staff members would be allowed to update the system.

4. Transit Information System Case Study

class STATION
feature {NONE}

name : STRING
open : STRING
accessibility : STRING

STATION is a class with attributes name, opening hour, and accessibility.
c I a s s ROIJI1':
feature {NONE}

number: INTEGER
stops : LINKED-LIST (STATION]

ROUTE is a class with attributes station list and route number.

4.1.5 Identifying Operations

39

All three operations listed in the dictionary belong naturally in the class

HPTA_TRANSIT _INFO, because they are dependent on the interface of the system.

• login should belong in class STAFF, because it keep the secret of a certain staff.

4.1.6 Consulting The Library of Model

There is no suitable business model in our existing library, so we have to build this

system from the beginning.

4.1. 7 Applying Design Patterns

According to the requirements, our application needs to keep all system information

and to calculate possible connections. There exist so many different methods for these

two tasks. Hence, we apply the strategy design pattern. We declare two deferred

classes

~~erred class DATABASE

and
~ defo.-rcd class CONNEC'TION.FINDER

ond

Then, we define two private members in class HPTA_ TRANSIT _INFO denoted

by the class name followed by three dots as following:

40 4. Transit Information System Case Study

feature {NJNE}

i.e.

HPTA..TRANSITJNFO ... db: DATABASE
finder: CONNECTION..FINDER

HPTA_TRANSIT_NFO

db : DATABASE
fnder :CONNECTD N_FNDER

Figure 4.2: The attributes of class HPTA_TRANSIT _INFO

In this way, we can add new algorithms easily and even change mechanisms at

runtime with the following private methods:

featu•·e {NONE}
HPTA-TRANSITJNFO . .. set-finder (new_finder : CONNECTION..FINDER) l!!_

require

new_finder /= Void

finder := new_finder

finder = new_finder

and

feature {NONE}
HPTA-TRANSITJNFO . .. set_database (new-database: DATABASE) l!!_

require

new-database /= Void

db : = new_database

db = new-database

Their preconditions require that the new comers are not invalid and their post­

conditions ensure that the private member db and finder are set correctly.

Class CONNECTION_FINDER describes the interface that is common to all con­

crete mechanisms as following:

4. Transit Information System Case Study

CONNECTDN_FNDER

get...c:onnect:bn l:lbase!lATABASE;stalt,dest:ilat:bn:STR NG ;tin e:NTEG ER)

Figure 4.3: Class CONNECTION_FINDER

feat ure {HPTA_TRANSIT..INFO}
CONNECTION..FINDER . . .
get-connection { dbase : DATABASE; start , destination: STRJNG; time: JNI'EGER) : STRJNG ~

require

start /= Void
destination /= Void
time >= 0
dbase /= Void

deferl·ed

41

Class DATABASE describes the interface that is common to all concrete data

maintain mechanisms as following:

DATABASE

ge1;._fi:rst;J:>us_=ute
make
ftlc::L_staff(num :NTEGER)
adc::L_=ute (new _=ute R 0 UTE)
get._next.._b:a:h_:zoute (Ioute R 0 UTE)
ftlc::L_=ute (num :NTEG ER)
ge1;._fimt._b:a:h_:zoute
:is_bcked
adc::L_staff(new_staff:STAFF)
get._next._bus_=ute (Ioute R 0 UTE)
do_sa.ve
delo!te_staff~ff:S TAFF)
delo!te_:zoute (l:oute R 0 UTE)

Figure 4.4: Class database

featut·e {HPTA_TRANSIT..INFO, CONNECTION..FINDER}
DATABASE ... get_first_bus_route: RDUI'E l!!.

deferred

This method can return the first bus route object and is used by class

HPTA_TRANSITJNFO and class CONNECTION_FINDER only. Together with the

following method, its clients can browse all bus routes one by one.

42 4. Transit Information System Case Study

feotu r e {HPTA-TRANSIT..INFO , CONNECTION..FINDER}
DATABASE .. . get_next_buo_route(route : ROUTE): ROUTE ~

deferred

Similarly, we can browse all train routes by the following two methods:

f<H\ture {HPTA-TRANSIT..INFO, CONNECI'ION..FINDER}
DATABASE .. . get_first_train_route: ROUTE ~

defernad

e.nd

and

feature {HPTA_TRANSIT..INFO, CONNECI'ION..FINDER}
DATABASE ... get_next_train_route(route : ROUTE) : ROUTE is

deferred
eru.i

Browsing all staff information is not necessary, but we need to find given staff

object by the following method.

feature {HPTA-TRANSIT..INFO, CONNECTION..FINDER}
DATABASE .. . find-staff (num : INTEGER) : STAFF is

)'oguiJ·e

num > 0
deferred

ond

This method can return an STAFF object, whose employee number equals to the

parameter num. It is because all employee number start from 1 that the precondition

is added.

For convenience, we also provide a route finding method as follows:

feature {HPTA_TRANSIT..INFO , CONNECTION..FINDER}
DATABASE . .. find-route (num : INTEGER): ROUTE is

num >= min_train .. route .. num
num <= max .. bus .. route .. num

defert·ed

end

The following method is the creation of class DATABASE and invoked by class

HPTA_ TRANSIT _INFO only.

fe<>ture {HPTA_TRANSIT..INFO}
DATABASE .. . make ~

In order to update system information, class DATABASE also requires the inter­

faces of adding and deleting as following:

4. Thansit Information System Case Study

feat u re {HPTA-TRANSIT..INFO}
DATABASE . . . add_route(new_route: ROUTE) ~

and

regui re

new-route /= Void
deferred
end

feature {HPTA_TRANSIT..INFO}
DATABASE . .. delete-route (route : ROUTE) is

require
rout e /= Void

deferred

43

These two methods can add or delete a certain route to or from this system

respectively and is called by class HPTA_TRANSIT _INFO only.

Similarly, class HPTA_TRANSIT _INFO also can add or delete a certain staff by

the following two methods:

featuo·e {HPTA_TRANSIT..INFO}
DATABASE ... add_staff(new_otaff: STAFF) is

and

r equire

new_otaff /= Void
defern~d

er\d

feature {HPTA-TRANSIT..INFO}
DATABASE .. . delete-staff (staff : STAFF) li

l''HlU iJ•e

staff /= Void
d efer·red

As long as some system information is updated, DATABASE object must be

informed to save the change by the following method.

feature {HPTA-TRANSIT..INFO}
DATABASE .. . do_oave ~

deferred

According to the requirements, only selected members can update the system.

We define that when the database is locked, only the user, who knows both employee

number and password, can conduct an update.

fea.tut·e {HPTA_TRANSIT..INFO}
DATABASE ... Is-locked : 1300IEAN is

deferred

44 4. Transit Information System Case Study

The subclasses of these two deferred classes implement each concrete behavior
mentioned above.

The following four constants are used to point out the bound of route number
feat u r c fl'/CX'!E}

DATABASE ... max_bus_route_num : .INI'EGER is 999
min_bus_route_num: IN'"I"EGER 1ft. 100
max_tra i n_route_num : .INT.E<.:i.ER li 99

min-train_route-num: INTEGER is 10

4.1.8 Algorithms Design

File Database

For simplicity, we save the system information in a file named "sysJnfo.txt" . So we

define a subclass of class DATABASE, FILE_DATABASE as following:

class FILEJJATABASE
inherit DATABASE

file-name: STRlNG i:\11 "sys_info. txt "

i.e.

Figure 4.5: The hirarchy of databases

class FILE_DATABASE keep bus routes, train routes and staffs with

LINKED_LIST as following:

feature {NONE}
FILEJJATABASE .. . train-routes : LINKED-LIST (ROUI'E)
bus_rou te s : LINKED-LIST (ROUI'E)
employees: LINKED_LIST (STAFF)

now, class FILE_DATABASE becomes:

The creation of FILE_DATABASE is method make

~create FILEJJATABASE .. . make

The main task of make is to initialize this three list

4. Transit Information System Case Study

FlLE_DATABASE

fil=_nam e :STRNG

empbyees :LNKED_L:JST~TAFF1

bus_routEs : LN KED _115 T IR 0 UTE 1

tiah_routEs: LNKED_LlST !ROUTE 1

Figure 4.6: The attributes of FILK.DATABASE

feature {HPTA_TRANSIT..INFO}
FILE..DATABASE . .. make k

do
create employees. make
create bus.routes. make
create train.routea . make
load

~

end

employees /= Void
bus-routes /= Void
train-routes /= Void

and to load the system information for that file:

feat.uro {NONE}
FILE..DATABASE ... load ll

lo<~a l

input-string : STRlNG
text_file_read : TEXT..FILE..READ
text _fi le_w rite : TEXT ..FILE.. WRITE
split : ARRAY(STRING)
new-staff: STAFF
route : ROUTE

create text_file_read . connect-to (file-name)
11. text.file.read. ia.connected then

fron1.
until
loop

l.f.

text_file_read . read_Jine
text_file_read . end_of_input

text_file_read .last.string. upper = 1 then
inspect text-file.read. laat.atring. first. to.upper
when 'S' t h en

text.file.read. read.line
input.atring : = text.file.read .la a t.etring .twin
split : = input_string . spilt
create new_ataff . make (split.first . to_integer, aplit.laat)
employees. add-last (new_ataff)

w hen 'B', 'T' thEn\
text_file_read . read_ilne
input_string : = text_file_read. last-otring. twin
split := input_string . split
route := find_route (spilt . item (4) . to-integer)
lf. route = Void then

create route . make(split. item (4). to-integer)

45

46

t?lso

ond

and

4. Transit Information System Case Study

route.add_station(split.first , split . item(2), split.item(3) , split . last
l.f split . item(4) . to .. integer > max .. train .. rout e .. num tlHHl

bus_rou tes. add_last (route)
t-·dse

train-routes. add_last (route)
encl

e l se

t.:'\ru.i
else
end

route.add - statlon(split.first, split.item(2), split . item(3), s plit . last

text .. file .. read. read .. line

text .. file .. read. disconnect

create text .. file .. write . connect .. to (file .. name)
JL text .. file .. write . is .. connected t h en

text .. file .. write. disconnect

By the following method, one can get the specific route object.

feature {HPTA_TRANSIT JNFO, CONNECTION..FINDER}
FILE..DATABASE . . . find-route (num : INTEGER.) : ROUTE is

}I)Ca}

i : INTEGER
route : ROUTE

ll num > max .. train .. route .. num tht?:.n

frorr1 i : = bus ... rou tea . lowe r
u n til i > bus .. routes . upper or else bus .. r o utes . item(i) .match(num)
loop

l · - i+l
end
.if. i <= bus .. rout e s. upper then

route := bus-routes . item (i)
~nd

else

end

fron1 i .- train .. routes . lower
un.t.il i > tra i n .. routes. upper Q.!:. elt\lo train .. routes. it e m (i) . match(num)
IOCJJ)

i := i+l
end

Lt i <= train_routes.upper it~
route .- train-routes .item(i)

end

Re:sult .- route

Similarly, using the following method, one can get the staff with such employee

number:

f<>ature {HPTA_TRANSITJNFO , CONNEGTION..FINDER}
FILE..DATABASE ... find_staff (num : INTEGflR) : STAFF i•

local
i: INl'EGER
staff : STAFF

fron1 i .- e mployees . lower
until i > employees . upper .Q!_ elso employees . it e m(i) .ma tch(num)

hl2.R

4. Transit Information System Case Study

i ·- i+l
end
if i <= employees. upper t h en

staff := employees.item(i)
end

Result .- staff
end

47

By the following four methods, one can browse all train routes and bus routes:

feature {HPTA..TRANSITJNFO, CONNECTION.FINDER}
FILE.DATABASE ... get.first.bus.route : ROUTE .i.!!..

loc~d

route : ROurE

i.f. not bus-routes . is-empty then
route : = bua.routea. first

end
Re~ult := route

end
get.next.bus.route(route: ROUTE) : ROUTE .i.!!..

requi1·e
bus.routes.index.of(route) > 0

local
next-route : ROUTE

.if. bua.routea. index.of{route) < bua.routea. upper then
next.rou te := buo.rou teo . item (buo.rou teo. index.of (route)+ 1)

ond

Result := next.route
end

get.firot.traln.route: ROUTE Is
local

route: ROUTE

if. not train.routea. ia.empty then
route := train.routea. first

end
Result : = route

end
get.next.train.route(route : ROUTE) : ROUTE .i.!!..

requite
train.routeo .l ndex.of(route) > 0

local
next.route : ROUTE

J.f. train.routea.index.of(route) < train.routea.upper then
nex t.rou te : = train .rou tea . item (t ral n.rou teo . in dex.of (route)+1)

end
Result .- next.route

end

By the following method, HPTA_TRANSIT _INFO object can add an arbitrary

route to this database

feature {HPTA.TRANSITJNFO}
FILE.DATABASE .. . add.route(new.route : ROUTE) .i.!!..

do
l1. ia.bua (new.route . get.number) then

buo.routeo . add.laot (new.route)
else if i•-train (new_route.get-number) then

traln.routes. add.last (new.route)

48 4. Transit Information System Case Study

By the following method, HPTA_TRANSIT _INFO object can add a staff to this

database

fe"ture {HPTA_TRANSIT..INFO}
FILE..DATABASE ... add-staff (new-staff : STAFF) is

employees. add_last (new_staff)

By the following method, HPTA_TRANSIT__INFO object can remove an arbitrary

route from this database

feat ure {HPTA_TRANSITJNFO}
FILE..DATABASE ... delete-route (route: ROUTE) .1.!!.

s.!.2
if is_bus(route.get_number) t h "n

bus-routes . remove (bus-routes. index_of (route))
Edse l f is .. train (route. get .. number) then

t rain .. rou tes . remove (train .. rou tes. index .. of (route))

By the following method, HPTA_TRANSIT _INFO object can remove a staff from

this database

featu re {HPTA_TRANSITJNFO}
FILE..DATABASE ... delete-staff (staff : STAFF) j.l!_

employees . remove (employees . lndex_of (staff))

In FILE_DATABASE, as long as employees is not empty, this database is locked,

which means you have to log in before updating.

r.,, t. u re {HPTA_TRANSIT..INFO}
FILE..DATABASE ... is-locked: B:JOIEAN i s

R.osult .- not employees. is .. empty

Whenever the database is changed, it have to save the new data to the specific

file by the following method:

feature {HPTA_TRANSIT..INFO}
FILE..DATABASE .. . do-save .1.!!.

file_2_write: TEXT..FILE_WRITE
i : IN'I'EGER

create file .. 2 .. write . connect .. to{f i le .. name)
l.f. file .. 2 .. write . is .. connected t.hen

fro rn i := employees. lower
unt i l i > employees. upper
loop

employees . item (i) . do-save (fi le_2 _write)
i : = i + 1

.U..:.Qlli i : = bus .. routes. lower

4. Transit Information System Case Study

unt.i 1 i > bus ... rou tea . upper
loop

bua_routea . item (i) . do_save (file_2_wri te)
i : = i + 1

fron1 i := train ... routes .lower
until i > train ... routea . upper
loop

train_rou teo. Item (i) . do_a ave (fi le-2 _write)

i := i + 1

file ... 2 ... write . disconnect
else

io. put-string(" Update-database-failed 1%N")

49

For convenience, we define the following two methods to tell if the current route

is bus or train route:

fea ture {NONE}
FILE-DATABASE ... is _train (oum: INTEX:;;ER.): a::x:xEAN h

do
Resu l t := num >= min ... train ... route ... num and num <= max ... train ... route ... num

end
is_ bus (num : INTEX:;;ER.) : I3ClOIEAN h

do
Result .- num >= min ... bua ... route ... num and num <= max ... bua ... route ... num

Conditional Shortest Path

According to the requirement that connections between trains and busses must have

at least five minutes for the change, we have to consider bus station and train station

as two different stations even they share the same name. In addition, we define a

constant change_time in class CONNECTION..FINDER, whose subclasses need it.

fel\ture {NONE}
CONNECTION..FlNDER ... change-time: INTEX:;;ER. h 5

For convenience, we assume that a bus needs 2 minutes to get to the second stop

and a train needs only 1 minute. So we also define the following two members in class

CONNECTION_FINDER.

feature {l'PNE}
CONNECTION..FlNDER .. . train-time: INTEX:;;ER is 1
bus-time: INTEX:;;ER. h 2

PRIME_FINDER is one of the subclasses of CONNECTION..FINDER

[inherit
PRlME..FlNDER ... CONNECTION..FlNDER

50 4. Transit Information System Case Study

PR :M E_FJNDER

Figure 4.7: The hierarchy of class CONNECTION_FINDER

i.e.

Our first algorithm, PRIME_FINDER, is that starting from the start stations,

including both bus station and train station, we search for all direct neighbors one

after another and calculate their time respectively. In this way, as long as we found

the destination as the next neighbor or no more new neighbors before get to the

destination, our searching work is done.

To implement this algorithm, we declare list in class PRIME_.FINDER

feature {NJNE}
PRlME..FINDER ... 8 top _li 8 t : LINKED-LIST (KNOT]

Every node of this list record the following information:

KNOT

sta.t:i:::>n :STATDN
num her: JNTEG ER
tine :JNTEGER
status :JNTEGER
pel:rrl anent: JN TE G E R
t:E! n ta. t:::ive :JNTEGER
pned : JNTEG ER

Figure 4.8: The attributes of class KNOT

~ feature {~?NE}
KNOT ... station: STATION

Form the start down to the destination, as long as the station is found as a valid

neighbor, it will be set in a KNOT object by the following method.

4. Transit Information System Case Study

feature {PRIME..FINDER}
KNar . .. set_station (value : STATION) ~

do

station := value

51

Of course, class KNOT requires PRIME..FINDER object give a non Void value.

fentut·e {PRIME..FINDER}
KNar ... g e t- s tat i on : STATION is

Result : = sta ti on

After searching, PRIME_FINDER object can get the record of station by the

above method.

I(feature {NONE}
~ KNar . .. numbe r: INTEGER

The number of KNOT object keeps the route number of the station and is set by

the following method:

feature {PRIME..FINDER}
KNar . . . set_number(v alue: INTEGER) ~

require

value >= 0
valu e <= 999

numbe r := valu e

According to the requirement that train route number is a two-digit number and

bus route number is a three-digit number, we set a precondition like that for this

method.

feat ut·e {PRIME..FINDER}
KNar . . . get_numbe r : INTEG.ER is

do
Result. := number

The above method can tell PRIME..FINDER object the route, to which this sta­

tion belongs.

I(fen t ure {NONE}
~ KNar ... time: INTEGER

Member time records the total time needed from start and is set by the following

method

52 4. Transit Information System Case Study

feoture {PRIME-FINDER}
KNOT .. . s e t-tim e (value : INTEC'..ER) .iJ!._

l'(~ guire

valu e >= 0

tim e := v a lue

The time of start node is 0 and the time of destination is desire time plus one, so

here KNOT object requires a nonnegative number.

feature {PRIME-FINDER}
KNOT ... get-time: !NTEX;;ER, is

Result := time

The above method is used to provide time for PRIME_FINDE object.

''[feature {NONE} li =KNOT . .. pre d : 'INTEGER

This member is used to record the index of last stop in this list. The pred of

start is -1. That the pred of two destination are all -1 means that there is no possible

connection between the start and the destination.

PRIME_FINDER object set this member by the following method:

featu•·e {PRIME-FINDER}
KNOT ... set_pred(value: JNTEX;;ER.) is

do
pred . - value

and get the value of this member by the following method:

feature {PRIME-FINDER}
KNOT ... get_pred : JNTEX;;ER. is

Result := pre d

Then, how can we judge if this node should be check for new neighbors? we define

the member status in class KNOT.

"[feature {NONE} li KNOT . .. statu s: INTEGER

If there is no more new neighbors can be found for the current station, this member

should be set as permanent, which is a constant of class KNOT;

feature {PRIME-FINDER}
KNOT . .. p e rmanent : IN'IEGER .iJ!._ 1

4. Transit Information System Case Study 53

otherwise, member status should be set as tentative, which is another constant of

class KNOT.

f<>ature {PRIME-FINDER}
KNOT ... tentative : INTEJGER is 0

This member can be set by the following method

feature {PRIME-FINDER}
KNOT . . . set_s t atua (value : ~EGER) ~

l"egui,·e

value >= tenta t ive
value <= permanent

status . - valu e
end

and get by the following method

feature {PRIME-FINDER}
KNOT ... get_status : ~EGER ~

Method make is the creation of class KNOT

~ c •·eatio n {PRIME..FINDER}
KNOT . .. make

and its main task is to initialize this object with the given parameters as following:

feature {PRIME-FINDER}
KNOT . .. make(sn: STATION; num , t, sa, pr: JNTEX:;F.R) .ll.

do
set_station (an)
set_number (num)

seLtime(t)
aet_status (as)
set_pred (pr)

Every node is added into the list by the following method:

feature {NCNE}
PRIME-FINDER .. . add-node (pr : INTEJGER; a: STATION; t , num : INTEX::F.R) ~

J"equiJ·e

t >= 0
loca l

node: KNOT

create node.make(a, num, t, node . tentative, pr)
ll. s = Vo id then

node.set.atatus(node.permanent)
end

atop.list . add-last (node)

If the station is Void, then the new node will be considered as dead.

54 4. Transit Information System Case Study

The logic of possible connection finding is implemented mainly in the following

method.

fe<~t u re {HPTA_TRANSIT..INFO}

PRIME..FINDER ...
get_connection (dbase : DATABASE; start , destination : STRING ; time: INTEGER.) : S'IRING i8

reguh·e else
stop-list . upper = 0

local
connection, cur ... station : STR.ING
node: KNOT
i , monitor : INTEG-ER
is-end , break : BJOI.EAN

connection := '"'

desire ... time : = time
add_bus ... train ... station (dbas e , destination , desire ... time +1)
add_bus_train_station (dbase , start, 0)

i := 3

cur ... station .- start . twin

from
ur.U:..!l is ... end .Q.!:.. ~ l se cur ... station
loop

Void

monitor := stop ... list .upper
find-neighbor (dbase, cur_station , i)
lf. monitor= stop ... list . upper then

j_f_ stop_list .i tem(i) /=Void then

end
end

stop_list. item (i) . set-status (node. permanent)

is ... end . - True

fronl
u ntil break Q.!._ e l se i > stop-list. upper

.!..2.2.B.
j_f_ stop-list .item(I) /=Void thon

node:= stop_list.item(i)
j_f_ node . _get ... status = node . tentative a n d node . get ... station /= Void then

cur ... station := node. get ... station . get ... name

end
e n d

is-end := False
break . - True

if. n ot break then

· - i + 1

if break thc.-wl
break .- False

connection . - get_connection_mes (1)
connection . - connection + get _connection_mes {2)

.if. connection. same_as (" ") then
connection := " There ... is-no-connection -from ... your- start"

+ "_to-your - destination _in-such-time."

Result . - connection
ensure

Result /= Void

~u..rl

4. Transit Information System Case Study 55

The first parameter provides the source of data; the second and third parameters

are the names of start station and destination station respectively; the last parameter

is the desire time, which will be used to set the private member desire_time:

I(featuo·c {I'VNE} li PRIME-FINDER ... desire-time : INIEGER.

At the beginning of searching, we initialize the stopJ.ist of a PRIME_FINDER

object with four nodes, i.e. bus and train stations of destination followed by bus and

train stations of start, using the following method:

feat ur e {NCX'l£}
PRlME..FINDER ... add_bus_train_station(dbaoe: DATABASE; name: S"IRING ; time: INIEGER.) is

requi t·e

name /= Void
time >= 0

local
route: ROUI'E
station : STATION
is _ e n d : .I3CX)[EAN

num : INIEGER.

rou t e : = dbaae . get_Ciret_bua_route
fl'Ortl

until ia_end .Q.!:. route = Void

station : = route. get_firat_ a tation

fr o•n
u ntil ia_end .2!. station = Void
loop

l.f. name. aame_aa (at at ion . get-name) then
is-end : = True

end
..Lf. not i a_end the n

stat i on . - route . get-next-station (stat i on)

..if_ .!lQ!. i a _end then
route .- dbaae. get_next_bus-route (route)

ll not is_end then
station : = Void

end
_i_1 route /= Void t h en

num .- rou t e . get_number
else

num : = 0

end

add-node(-1 , station, time , num)

stat i on := Voi d
ia_end := Fal s e
route := dbase . get_firat_train_route

unt.il is-end ..2..!. route = Void

.!ill!.2
station := route. get_first_etation
fr t>m

unt.il is-end o r station = Void

56 4. Transit Information System Case Study

l.lllul.
.if. name. same_as(station .get ... name) then

is ... end := True
end

lL not is ... end then

end
end

station .- route. get ... next ... atation (station)

if.. &Q.!. is ... end thou
route .- dbase. get ... next ... train ... route{route)

end
e nd
.if. not is ... end then

station := Void
end

l.f. route /= Void then
num .- route . get ... number

else
num .- 0

end
add ... node(-1 , station , time , num)

Then from the bus station of start, we try to find its direct neighbor by the

following method:

feature {N:JNE}
PRIME..FINDER ... find_neigh bor (dbase: DATABASE; sn: STRING; pr: INTEGER.) b!.

require

sn /= Void
local

cost, index, switch: INTEC':ER
p_node , node: KNOT
route : ROUTE
station , last : STATION
name : EnniNG
break: B.JOIEAN

frorn switch := 0
until switch >
loop

.Lf. switch = 0 then

cost · - bus-time
else

cost . - train ... time
end

.if. pr >= stop ... list . lower and pr <= stop ... list . upper then
p_node .- stop-list . item(pr)

end

il p_node /= Void .U.L<ll!
l.! p ... node. get ... station /= Void th(H\

ll_ switch = 0 then

11. is ... train (p ... node. get ... number) t.h.en
cost := change-time + cost

end
route := dbase. get_first_bus_route

~lse

l.f. is_bus(p_node.get_number) then

cost := change-time + cost
end
route .- dbase . get_first_train_route

e-nd
fro~n

until route =Void
l otlp

station := route. get-first-station

4. Transit Information System Case Study

last : = station
fron1
until station = Void or break
loop

name := station. get-name. twin
.11. name /= Void and name. ia_equal (an) then

11. not la s t. get-name. ia_equal (name) then
index := get ... index (Ia at , route. get ... number)
if. ind e x >= 0 then

node := otop_Jiot .item(index)

if. node . get_otation /= Void t h en

end
else

if. io_train (node . get_number) t h e n
.if. node . get ... time > p_node. get ... time + coat t.hen

node.oet-pred(pr)
node. aet ... time (p ... node . get ... time + coat)
node . oet_num ber (route . get-number)

57

add ... node(pr, last, p ... node . get ... t ime+coet , route. get ... number)

end
end

end

end

end
end
laot : = route . get-next_otation (station)
if. laot /= Void t h en

Index := get-index (laot, route. get -number)
if. index >= 0 t h e n

node := stop_liat .item(index)
if. node. get_otatlon /= Void t h on

if. io-train (node.get_number) t h en

ond
else

if. node . get-time > p_node. get-time + cost t h en
node. oet-pred (pr)
node. oet_time (p_node . get-time + coot)
node. oet_n umber (route . get_num ber)

add ... node (pr, last , p ... node . get ... time+coat , route. get ... number)
end

end
break : = True

else

last : = station;
station .- route . get ... next ... atation (station)

end

break := False
j_f switch = 0 then

route .- dbaoe. get_next_buo_route (route)
else

route ·- dbaae. get_next_train_route(route)
end

sw i tch : = switch + 1

For convenience, we define the following two methods to tell if the current route

is train or bus:

f eature {NJNE}
PRIME..FINDER ... is-train (num : INIEGER): 1300IE.<\N is

do

58 4. Transit Information System Case Study

''l~===========lll==e=s=u=l=t==.-===n=u=m==>====l=O===n=n=d==n=u=m==<====9=9==~ lL end

and

fe<1t ure {NONE}
PRJME..FINDER ... i a- b u a (num: INIEGER.): I30Cll.EAN is

do
Result .- num >= 100 and num <= 999

end

The following method is used to get the index of a certain station in the list; if

the target station is not in the list, -1 will be return.

foature {NONE}
PRJME..FINDER ... get_index (a : STATION; num: jNTEGE;B): IN't_EG® .i§_

reg ui ro

a /= Void

loca.l
ind , i : INIEGF..R.
node: KNOI'
name: ~.Q

ind := -1
.- stop_list . lower

until i > stop_list . upper
loop

end

node:= atop-liat . item(i)
ll node . get-station /= Void then

name := node. get-station . get_name
if name.ia_equal(s.get_name) thtH'I.

ll ia_bua(num) and ia_bua(node.get_number) then
ind : = i

else if is-train (num) "nd ia_train (node . get_number) then
ind : = i

end
end

end

i := i + 1

lllesult . - ind
end

When the searching is done, we can get the information of possible connections

by the following method:

f<>aturo {NONE}
PRJME..FINDER .. . get_connection_mea (index: INTEGER): S'I'RlNG is

reg ui re

index >= 0
local

node: KNOI'
mea : S'TRJN(';

mea := ""
node := atop_liat .item(index)
ll node /= Void then

ll node. get-station /= Void then
l1_ node . get_pred /= -1 and node . get-time <= desire-time then

mes := "-No." + node. get-number . to-string + "->"
+ node.get_station . get_name + " -in-"
+ node . get_time . to-string + " -minuteso/cN"

4. Transit Information System Case Study

node := stop_list . item (node . get_pred)
from

59

until node = Void or else node. get_station = Void QL else node . get_pred -1
loop

mea := " -No. " + node . gel;_number . to-string + "->"
+ node . get_station. get_name + mea

node := stop-list . item{node . g e t-pred)
end
.if node /= Void then

il node. get _station /= Void then
mea : = "CJ'cN" + node . get_atation. get-name + mes

end
end

end
Resu lt .- mea

mea .-

The creation of PRIME_FINDER is method make

Q c1·eation {ANY} PRlME..FINDER .. . make

it is defined as following:

feat.ure {HPTA_TRANSITJNFO}
PRlME..FINDER ... make Is

create atop_liat . make

stop-list /= Void

Now, let us talk about the root class HPTA_TRANSIT __INFO.

HP TA TRA NS II' ~ FO

m a .ke
s et._database t\ew_database OATABA S E)
de lete_~n e nu
update_~n e nu
m enu
h qu.:ile,Jn e n u
do_ delete
set,_:fhd ertlew_:fhdeO::: O N N E CT D N_F~O ER)
do_update
llln
add....Jn enu
d o _ad d
do_ilqulte

Figure 4.9: The methods of class HPTA_TRANSIT__INFO

The creation of class HPTA_ TRANSIT __INFO is make

Q cr e ate HPTA..TRANSITJNFO . . . make

60 4. Transit Information System Case Study

Its main task is to initialize the database and connection finder, and then run the

whole system:

feAture {ANY}
HPTA..TRANSITJNFO ... make ll

local
prime-finder: PRlMELFINDER
file-database: FILE..DATABASE

create file-database .make
set_data base (file_dat a base)
create prime_finder .make
set-finder (prime-finder)
run

In order to increase customer satisfaction, we run the system by a series of menus
feature {NJNE}

HPTA_TRANSITJNFO ... run is

ft·on1

until io.last_character.to_upper 'Q'
loop

menu

io.read_character
io. put-new_line
inspect io.last_character . to_upper
wJwn 'U' then do_update
when 'I' then do-inquire

else
end

In order to use OS command, we let class HPTA_TRANSIT _INFO be a subclass

of class SYSTEM, which is a predefined class in Eiffel.

~in herit
~PTA-TRANSITJNFO ... SYSTEM

Method menu is the main menu of the interface of this system and

feature ~~}

HPTA-TRANSITJNFO ... menu ll

execute_command_line (" cls")
io. put-string(" (

-----------------------------·······································
---------------------------------------Welcome-to ..HPTA

-----------------------------·······································
--------------------------------U-Update _System- In form at ion
... 1 ... Inquire ... about ... Transit ... In format ion

--------------------------------Q-Quit

... - Enter ... menu ... choice:

-----------------------------]")
end

This is the main menu and there are two items in it, through which users can

either update or inquire system information. The first line of the method body is

4. Transit Information System Case Study 61

used to clear the screen.

If users chose the first menu item, they are going to enter the following menu, i.e.

update_menu:

feature ~E}

HPTA..TRANSITJNFO ... update-menu is
do

execute ... command ... line(" cla ")
io.puLstring("[

-----------------------------·······································
--- ------------------- - ----------------Welcome- to ..HPJ' A

-----------------------------·······································
----------------------- ---------A-Add
----------------------- ---------0-Delete
----------------------- ---------0-0o-back

-----------------------------Enter-menu-choice :

-----------------------------]")
("!1\.d

In this menu, users can add new information, such as staffs and stations, as follow:
featu1·e {NONE}

HPTA..TRANSITJNF O ... add-menu k
do

execute ... command ... line ("cia")
io. put-string(" [

-----------------------------·······································
---------------------------------------Welcome_ to ..HPJ' A

-----------------------------········~······························ --------------------------------8-Add~a-station
--------------------------------E-Add_a_staff
--------------------------------0-0o-back

-----------------------------Enter-menu-choice :

-----------------------------]")
end

Follows the logic of method do_add:

feature {NONE}
HPTA-TRANSITJNFO ... do_add is

local
employee: STAFF
id : INTEGER
input 1 name 1 password 1 open, access , Ia at: srRING
is_end: BOOlEAN
route: ROlJI'E

frorn
until i s _end
loop

add_m enu
io. read-line
input : = io. laat_string. twin
i o. put_new_line
l.f. .!lQ!. input. is_empty then

inspect input . first .to.upper
when 1 G 1 then is_end := True
when 1 8 1 then

io . put .at ring ("%NEnter-at at ion -name:-")
io. read-line
name : = io. laat_atring. twin
io. p u t_at ring ("%NEnter-open-hour: -")

62

end

4. Transit Information System Case Study

io. read_li ne
open:= io.laat_atring.twin
io. put_string("%NEnter-its-accessibility :-")
io. read .. line
access := io .last .. string. twin
io. p u t .. st ring ("%NEnter-rou te -number : -")
io. read .. line
id : = io .last .. string. to .. integer
io . put _string ("%NEnter-the -name-of_ its _J ast -station : -")
io . read .. line
last := io .last .. string. twin
route :=db. find_route(id)
l.f. route = Void t.han

ond

create route.make(id)
route . add .. station (name, access, open, last)
db.add_route(route)

route. add .. station (name, access , open, last)

wh(~-n 'E' t.hen

else
end

enQ

io. put-string ("%NEnter-your-ID: -")
io . read .. line
id := io . last .. string. to .. integer
io . put .. string("%NEnter-your-password:-")
io. read .. line
password := io . last .. string. twin
create employee . make (id , password)
db . add_staff(employee)

they can also delete those information as follow:

fet\ture {NJNE}
HPTA-TRANSITJNFO . .. delete-menu 11!

do

execute .. command_line (" cls")
io . put-string(" [

-----------------------------·······································
.. Welcome ... to JIPI'A

-----------------------------······································· .. S ... Delete ... a ... station

--------------------------------E-Delete-a-staff
... ~ ... Delete ... a ... route

--------------------------------G-Go-back

... Enter ... menu ... choice :

-----------------------------]")
end

Follows the logic of method do_delete:

fe ature {NONE}
HPTA-TRANSITJNFO .. . do_delete is

local

do

is-end: llCJOIEAN

num : INl'EG.ER
staff: STAFF
route: ROUTE
input, name: STRING

f•·on1
until is-end

4. Transit Information System Case Study

loop
del e te-menu
io. r ead_Jine
input := io. last-string. twin
io. put.new_line
.if. not input. is.empty then

i nspect input. first. to.upper
when 'G' then is.end := True
wlu n 'S' then

end

io . pu t_at ring { "%NEnter-rou te-number: -")
io. read.line
own : = io . last-string. to.integer
io. put_atring ("%NEnter-station-name: -")
io. read.line
name := io. I a at -• t ring. twin
route := db. find-route (num)
.if route /= Void then

route. remove.station (name)
else

end

io. put_string ("'J'iNNo-such-a-station'KN")
io. read_Jine

when 'R' then
io. put -•t ring ("%NEnter-rou te -number:_")
io. read.line
num := io. laet.•tring. to.integer
route := db. find_route (num)
.if route /= Void then

db.delete-route(route)
else

end

io. put_string ("'YcNNo-sucb_a_atation'KN")
io. read.line

when 'E' then

e ls e
end

end

io . pu t_st ring ("%NEnter-ID: -")
io. read.line
nwn := io. laat.atring. to.integer
staff := db. find_ataff(num)
.if staff /= Void then

db. de I e t e _staff (at a ff)
e l se

io. put-string ("'J'iNNo-such-a-staff'KN")
io. read_line

63

According to the requirement, only authorized staffs can do such things, so this

system will ask the user to log in the system before he or she enter the update menu.

The following method do_update has the logic to require the user to enter his or her

employee number and password first.
fl'!at.ure {NC?NE}

HPTA..TRANSITJNFO . . . do_ update .il_
local

i d : INTEJGER
passed , ia_end: RXli.EA.N
password, input: STRJNG
staff: STAFF

io. read-line

64 4. Transit Information System Case Study

if db . is-locked thor>
io . pu t_strin g ("%NEnter-employee-ID: -")
io . read ... line

id := io. last ... atring. to-integer
staff := db . find_staff(id)
lf. staff /= Void then

io. put-string ("%NEnter-password: -")
io . read ... llne
password := io ,.last ... string .twin
passed .- staff. login (password)

io. put-string (" [

--------------------------The-1 is t -of -authorized-staff- is -not-empty,
--------------------------so-please -set _aut hori za tion -as-soon _as-pose i b 1 e .. .

--------------------------]")
passed := True
io. read ... line

end

l.f. passed then

unt.j l is ... end

loop

update ... menu
io. read ... line
input := io.last ... string.twin

io. put ... new ... line
.!.f. not: input. is ... empty then

inspect input. first .to ... upper
wl~n 'A' then do ... add
when 'D' t.hen do ... delete
when 'G' then is ... end := True
else

db. do ... save

io . put-string ("%NLogin-failed !%N")
io . read ... line

The actual logging responsibility is assigned to class STAFF as public feature to

class HPTA_TRANSIT _INFO:

f.'at.ure {HPTA-TRANSITJNFO}
STAFF ... login(passwd : STRING): fl(X)IEAN 1..!!_

l'OQUil'E>

passwd /= Void

R.esult . - password . is-equal (passwd)

If the result is True, the user can continue his or her update, otherwise, this system

will remain on the main menu.

If users chose the second menu item of the main menu, they will enter the following

query menu without any bother, because the requirement says that any one can have

access to the transit information.

4. Transit Information System Case Study

feature {N.1NE}
HPTA-TRANSIT.lNFO ... inquire-menu iB

do

execute_command_line (" c la")
io. put-string(" [

-----------------------------·······································
----------------------- ----------------Welcome- toHPI'A

-----------------------------·······································
---------------------------------F-Find_a_poaeible-connection

---------------------------------8-Show-a-route
----------------------- ----------B-Browse-all-routea
----------------------- ----------G-Go-back

----------------------- ------Enter-menu-choice :

-----------------------------] ") end

65

The first item of this menu is used for users to find a possible connection. Following

the logic of method doJnquire, users are required to enter their start, destination, as

well as their desire time.

feat u t·e {N:JNE}
HPTA..TRANSIT.lNFO .. . do-Inquire ~

local
input , start , deat: STRING
ia_e n d: ~
num, time ; INTEGER.
route: ROUrE

frorn
unt i l ia _e nd
loop

inquire-menu
io. read_line

input:= io.laet_atring.twin
io. put ... new ... line
l.f.. not input. is ... empty then

inspect input. first. to ... upper
when 'B' then

from route := db. get_firat ... bua-route
until route = Void
loop

route. show
route := db. get_next_bus_route (route)

end
f1·on1 route := db. get ... firat ... train ... route
unt.il route = Void
Loop

route. show
route := db . get_next_traln_route(route)

end

io. put ... atring ("~NStrike-any-key_to-continue ... "}
io. read ... line

wht?n 'F' then

io . pu t ... a tri ng ("%NEnter-the-st ation -name-of _your_ start : - ")
io. read_line
start := io. laat ... etring. twin
io . put ... etri ng ("%NEnter-the-at ation _name-of _your-destination : -")
io. read ... line
deat := io. laat ... etring. twin
io. put-string ("%NEnter-your-desi re -time (in -minutes):-")
io. read ... line
time := io.]ast ... string.to ... integer
io. put ... etring (finder. get ... connection (db, start , dest, time))

66

end

end
end

4. Transit Information System Case Study

io. put-string {"'l'<Nr.NStrike-any-key-to-continue ... ")
io. read_line

when '8' then
io. put _string ("Input -the-route -number- (10---999): -")
io. read .. line
num := io. laat .. string. to .. integer
route := db . find-route {num)
if route /= Void then

route . show

~
io. put .. string (" Sorry ... there-is -DO-such-a-route")

io. put .. string ("o/cN'/oNStrike-any-key-to-continue ... ")
io. read ... line

whe_r.! 'G' _!;hen ia .. end := True

Now, it is time to implement the methods of class ROUTE

ROUTE

get;._number
ackl.statbn !'lew _nam e,access,open_hou~;hst.stcp :S T R N G)
show

m ati:h01um :NTEG ER)

get_fut_statbn

make 01um :NTEG ER)

do_save(fi},rrEXT_FlLE_W RITE)

get_next..statbn ~tbnl :STATD N)

tern ove_stat:bn t'\am e:STR flG)

Figure 4.10: The methods of class ROUTE

The creation of ROUTE is make,

HPTA_ TRANSIT _INFO

which can be invoke by class

Q creation ROUI'E ... make

The main task of make is initialize the route number and station list

feature {HPTA_TRANSIT..INFO}
ROUI'E ... make (num: INTEGf::R) i•

num > 9
num < 1000

do

number := num
create stops .make

en~ure

number = num

stops /= Void
end

4. Transit Information System Case Study 67

According the requirement, route number must be two- or three-digit number, so

we define the following invariant for class ROUTE.
invariant

ROUTE ... numbe r > 9
number < 1000

At any time, its client get route number by the following method:
feature {ANY}

ROUI'E . . . g e t-numbe r : INTJX:ER .ll_

do
Result . - n umber

end

also, by the following method to tell if the current route is which we want:
featur.> {ANY}

ROlTI'E . . . match (num: INTEGER) : BOOI.EAN .ll_

Resu lt . - num = number

By the following method, its client adds new stations for this ROUTE object and

at the same time set the name, the accessibility, the opening hour, and last station

for this new station.
feature {HPTA_TRANSITJNFO, DATABASE}

ROUIE ... add-stati o n (new_name , access , open-hour , laat_atop: STRING) ..!.!L
local

new_stati o n : STATION
i : INTEGER
last : STRING

fron1 i := stops .lower
until i > stopa . upper or else otopo.item(i) .match(new..name)

~
·- i + 1

end

lf > st o pa . upper then
creat e new_atation .make(new_name, access, open_hour)
last : = last-stop . twin
last. t o_upper
.if. la s t . same_aa (" NONE") then

st o p s. add-first (new_station)

fron1 i : = stops . lower
until i > atops . upper .2£. else otopa.item(i) .match(laot_stop)

· - 1+1

if. i <= stops . upper then
stops. add (new_atation , i +1)

create new_station . make (laat_atop , access, open-hour)
otopo. add_)aot (new_statlon)
stops . add_laot (new_station)

68 4. Transit Information System Case Study

HPTA_TRANSIT _INFO object removes a certain station by the following method,

whose only parameter is the name of the target station.
feature {HPTA_TRANSIT..INFO}

ROUTE ... remove_station(name: SI'RlNG) ll
l ocal

i: INTEGER

frotn i : = stops. lower

until i > stopa.upper Q..t. else atops.item(i) .match(name)
l oop

i := i + 1
end

lL i <= stopa.upper then
stops. remove (i)

The subclasses of CONNECTION_FINDER use the following two methods to visit

all stations in this route
feature {CONNECTION..FINDER}

ROUTE ... get-first-station : STATION ll

station: STATION

if stops.upper > 0 then
station := stops. first

end
Result : = station

end
get_next_station(stationl : STATION) : STATION is

require

stationl /= Void
local

station: STATION

if stops. index_of(station1) < stops. upper .!:.l!~!J.

station := stops. item (stops. index_of (station!)+1)
end
.R.osult := station

end

Class ROUTE keep the secret of saving itself, so DATABASE object can call this

method to fulfill the task. Actually, such assignment is worth to discuss. Maybe

should move to the subclasses of DATABASE, because only they know exactly how

to save those data.
feature {DATABASE}

ROUTE ... do_save(file : TEXT..FILE_WRITE) i5
1·eguit·e

file . is-connected
local

i: INTEGER
tag, last: STRING

if number > 99 then
tag .- "b"

~.§.~ ..
tag . - "t"

4. Transit Information System Case Study

last := " None"
fron\ i := stops. lower

until i > stops.upper
loop

ertd
end

file . p ut_string(tag+"'JfcN")
stops . item (i) . do-save (file)
file .put-string("-"+ number. to-string+"-"+ last +"'JfcN")
last : = stops . item (i) . get-name . twin

i ·- i + 1

69

Similarly, the following method is responsible for showing the details of this route,

but only class HPTA_TRANSIT J:NFO know exactly how to display with interface,

so this method should be move to class HPTA_TRANSIT J:NFO.
feoture {HPTA-TRANSITJNFO}

ROUTE ... show .1.!!.
local i: INTEGER.

l.f. number > 99 then
io. pu t_etring ("%NBue-route-No.")

el~e

lo. put-string ("%NTrain-route-No.")
end

io. put-i n teger (number)
io. put_s t ring (": -")
from i := stops. lower
until i > stops.upper
loop

stops . item (i) . show
lf i < stops . upper then

io . put_string ("->")
end

i : = i +l;

io. put-n e w-line

Same problem can be found on the method show of class STATION
feature {ROUTE}

STATION ... show .1.!!.

io. put - string (name)

Now, let us look at the class STATION, whose creation is method make too,

Q create STATION ... make

and defined as following:
feature {ROUTE}

STATION ... make (new_name, new_open, new_acc: STRING) .1.!!.
l'equiJ•e

new_name /= Void
new_op e n /= Void
new_acc /= Void

name .- new-_name. twin
open .- new_open. twin

70 4. Transit Information System Case Study

lll~~~~~~~~a=c=c=e=s=s=ib=I=·t=it=y~·=-~n=e=w=_=ac=c=.=t=w=in~~~~~~~~~~~~~~~~~~~~~~~~ ll end

The main task of it is to initial these three features of class STATION. At any

time, its client can visit these three features by the following methods:

feature {ROUTE, CONNECTION..FINDER}
STATION ... get_name: STRING is

R.esu)t := name. twin

get _ace : STRJNG i s

Result := accessibility . twin

get-open: b"rRING ~

!lesuiJ:. . - open. twin

Similar with the method do_save of class ROUTE, this method should be moved

into the subclasses of DATABASE.
fotlt ll"e {ROUTE}

STATION ... do_save (file : TEXT ..FILE-WRITE) ~

file . is-connected

file . put_string(name + "-" + accessibility + " " +open)

The same problem can be found on class STAFF

f•>a t.u re {DATABASE}
STAFF .. . do-save(file : TEXT..FILE_WRITE) ~

l'CQUil'C

file. is-connected

f'ile . put_string("so/iN" + number . to_string +" "+password+ "CJQ\l")

We identify station with name only, i.e. if two stations share the same name, we

assume they are the same station. Here case is insensitive.

feature {ROUTE}
STATION . .. match (targetname: STRING): BCX).lEAN is

require
targetname /= Void

Result .- name . s·ame_as (targetname)

Now, let us talk about the implementation of class STAFF.

The creation of class STAFF is make

Q c •·eat ion {ANY} STAFF ... make

it is defined as following:

4. Transit Information System Case Study 71

STAFF

do_save (fiE~EXT_FlLE_W RTI'E)

m atr:h (ii :N TEG ER)

bg.hpasswd:STRNG)

make (ii:NTEG ER ;passwd:STRNG)

Figure 4.11: The methods of class STAFF

feature {ANY}
STAFF ... make (i d : JNTEX:;ER.; paaawd: STRJNG) h

require
id >= 0
paaawd /=Void

number := id i
passwor d := passwd. twin

number>= 0
passwor d = passwd

its main task is initialize staff's id and password.

Method match is used to identify a certain staff and is defined as following:

featur e {ANY}
STAFF ... match (id: ~ER): BOOlEAN h

ReBult := ld = number

Any staff has an unique employee number, which is generated from 0, and a

password, which must not be Void:

invariant

4.1.9

STAFF ... number-positive: number>= 0
password_not_v oi d : password /= Void

Automatic Code Listing

So far, we have implement the system. In order to give an integrated view for ones

who are used to read code, Spark inserts all program code here automatically.

Automatical code is listed in Appendix C.

72 4. Transit Information System Case Study

4.1.10 Testing

Updating system

When no staff is authorized, we try to update system information. The result is

Otherwise, we try to update system information. The system requires ID and

password for logging in as following:

These results satisfy the design requirements.

Browsing all routes

We try to browse the information of all routes as following:

These result satisfies the design requirements.

4. Transit Information System Case Study 73

Finding connection

We try to find a connection between two stations as following:

These result satisfies the design requirements.

Strategy pattern

We construct a sample connection finder class and change the algorithm at run-time.

74 4. Transit Information System Case Study

class FAKE.FINDER

CONNECI'ION.FINDER
c>·oatlon {ANY}

make
feature {HPTA_TRANSIT.lNFO}

make is

end
get-connection (start , destination: STRJNG; time : JNTEG.ER) : STRING 1!!.

The result is

These result satisfies the design requirements.

Chapter 5

Implementation

Chapter 3 has showed us the key features of OOLP and some supporting tools. In

this chapter, we present the implementation of Spark in a literate way using Spark

itself. The rest of this chapter that follow is the actual output of Spark source file .

5.1 Introduction

The two reasons why we present the implementation of Spark in a literate way are

that we want to show the universality of Spark, i.e. it can work with not only object­

oriented programming languages, but also structured programming languages, and

that since the main task of Spark is to parse the syntax of a certain programming

language, which is a fairly stable structure, structured programming makes the pro­

gram clear, simple and efficient. This choice is also followed by one drawback that

we have to draw the diagrams by hand.

Spark is implemented entirely in perl. We choose perl mainly because it is good at

text manipulation, which is the main task of Spark, and perl is a stable, cross platform

programming language, which leads to Spark being inherently platform-independent.

In order to gain more flexibility, we separate Spark into two parts, i.e., front end

and back end (see Figure 5.1). The front end is responsible for explaining graphical

notation settings and parsing program code chunks; the back end takes care of pro­

ducing graphical notation files. So far , we have developed three front ends, which are

used for Eiffel, Lime, and perl itself respectively.

75

76 5. Implementation

Figure 5.1: Top-level structure for Spark

5.2 Graphic Notation describer

The graphic notation describer is a interim file used to describe all the graphic no­

tations included in the software documentation and the only input file of the back

end of Spark. So the changes coming from either document formatting language or

programming language do not impact the back end. In addition, except several im­

portant setting tags, programmers do not know anything about it, because this file

is going to be deleted by the back end before it finishes its work.

In the following table of graphic notation describer structure, terminals are shown

in bold font and nonterminals in italics, parentheses'(' and')' indicate grouping when

needed, square brackets'[' and']' enclose optional items, curly parentheses'{' and'}'

show the (zero or more) repeatable items, and vertical bars 'I' separate alternatives.

modFile ::= { classDiagram} {class}

classDiagram ::= @CLASSDIAGRAM nameSequence [@VERTICAL] [format]

format::= @BRIEF I @CONCISE I @METHOD I @ATTRIBUTE I @ACTION
class : := @CLASS name { statementSequence}

I @INTERFACE name { statementSequence}

statementSequence ::= statement statementSequence

statement ::= extendStmt

I inheritStmt

I implementStmt

I fieldStmt

I cotrStmt

5. Implementation

I methodStmt

I actionStmt

I dependentStmt

extendStmt ::= @EXTEND nameSequence

inheritStmt ::= @INHERIT nameSequence

implementStmt ::=@IMPLEMENT nameSequence

fieldStmt ::= @VAR name { modifier}

cotrStmt ::= @INIT name { modifier}

methodStmt ::= @METHOD name {modifier}

actionStmt ::= @ACTION name {modifier}

nameSequence ::= name nameSequence

modifier ::= visibility I type I '('paraSequence')'

visibility: := @PRIVATE I @PUBLIC I @PROTECTED

paraSequence ::= parameter; paraSequence

parameter ::= name ':' type

type ::= name

name ::= letter { letter I digital }

letter ::= a I b I c I d I e I r I g I h I i I j I k Ill m I n I o I P I q I r I s I t I
ulvlwlxlylziAIBICIDIEIFIGIHIIIJIDILI
MINIOIPIQIRISITIUIVIWIXIYIZ

digital ::= 1 1 2 1 3 1 4 1 s 1 6 1 1 1 s 1 9 1 o
Table 5.1: The block structure of graphic notation describer.

77

A graphic notation describer consists of multiple classDiagrams followed by mul­

tiple classes. classDiagram begin with the key word "@CLASSDIAGRAM". name­

Sequence is a list of class names included in this diagram. "@VERTICAL" is used

to set the direction of the specified graphic notation, i.e. if "@VERTICAL" is set,

the diagram will be drawn vertically, otherwise horizontally. "@HEAD", "@BRIEF"

and "@CONCISE" are used to control the format of the specified graphic notation.

If "@CONCISE" is set, the class diagram will hide all the information about the

method's parameters of the involved class. If "@BRIEF" is set, the class diagram will

be shown without parameters and types. If "@HEAD" is set, the class diagram will

be shown with class name only. Ones also can use "@METHOD", "@ATTRIBUTE",

and "@ACTION" to control the display areas. For example, if "@METHOD" is set,

all class methods will be shown in the diagram and if "@ATTRIBUTE" is set, only

attributes of class can be saw in the diagram. All the setting tags are included in

78 5. Implementation

source file as specifical comments, so they are transparent for everything except the

front end. class begin with the key words "@CLASS" or "@INTERFACE". class

name followed by a list of statements in the form of one statement each line. "inher­

itStmt", "extendStmt" and "implementStmt" begin respectively with the key words

"@INHERIT", "@EXTEND", and "@IMPLEMENT", which are followed by a list

of superclass names. "fieldStmt", "cotrStmt", "methodStmt", and "actionStmt" are

the member statements of this class and begin with their key word respectively.

5.3 Front End

The front end of Spark takes an OOLP program file as input and produces machine­

readable program code files and one graphic notation script file as output. In addition,

it can insert the copy of machine-readable program code list back into the OOLP

program file upon the request. The only entrance of front end is main, which depends

on three modules, i.e. parseSource, doOutput, and callBackEnd (see Figure 5.2). The

rest of this section discusses the implementation of Spark front end for Lime in details.

Figure 5.2: Top-level structure for Spark front end

The entrance of Spark front end for lime,

~ Sparkf-lime . . . & main;

is defined as following:

I
Sparkf-lime . .. • u b main{

$#'\RGV==O II die "Usage: perl sparkf . pl filename\n";

5. Implementation

open (SOURCE, "< Sold") II die "Cannot open $old 1\n";
clos<> SOURCE II £!.!.£. "Can't close Sold : S !";
&parseSource;
&doOutput;
&caliBackEnd;

79

The first process in main is parsing the OOLP program, whose name is hold by a

local variable $old.

Q Spar kf-lime .. ·!!!Y Sold = SARGV(OJ;

Module parseSource keeps reading the content of the program line by line:

Sparkf-lime ... sub pars e Source {
whlle(l){

&newLine;
last j_f ($done);
j_f ($current Line =- /image :: /) {

&parse Diagram i
} elsif (ScurrentLine =- r-{5,}/){

&parse Code;

using the following function:

Sparkf-lime ... sub newLine{
!BY Oarray = O currentWords;

push (OlastWords, \Oar ray);
if (S#lineBu/fer < 0){

unless (Sdone) {
Sdone = 1;
while (<>){

chc•p ;

}
} else {

ScurrentLine = $_;

OcurrentWords = ~;
$pointer = 0;
$done = 0;
last j_[($#cur rentWord• >= 0) ;
Sdone = 1 ;

!llY SrefArray = illill (OlineBuffer);
OcurrentWords = O$refArray;
$pointer = 0 ;

where local variable @current Words defined as

Q Sparkf-lime ... !JlY O currentWordo = () ;

always keeps the words of the current line in array form and local variable @last Words

defined as

~ Sparkf-lime . . . !llY O laatWo rda ();

80 5. Implementation

keeps all the addresses of old @current Words in order and local variable $current Line

defined as

Q Sparkf-lime .. ·!!!'i $currentLine = "" ;

always keeps the words of the current line in string form and local variable $done

defined as

Q Sparkf-lime .. ·!!l'i $done = 0;

will be set as 1 after the last line is read and local variable @lineBuffer defined as

~ Sparkf-lime .. ·!!l'i OlineBuffer = () ;

is used to hold the current line temporarily in the case that front end need read again

the last word, which is in the last line, and the current line is still needed. The local

variable $pointer defined as

Q Sparkf-lime . . ·!!!Y $pointer = 0;

is used to point out the current word the front end is reading and increases by one

after the execution of function next Word defined as

Sparkf-lime ... sub nextVVord{
JJ'. ($pointer >= $#current Word6){

&newLine;
} olse {

$pointer++;

$currentVVordo($pointer);

and decreases by one after the execution of function last Word defined as

Sparkf-lime ... sub laotVVord{
lf($pointer == 0){

l.f_ ($#last Word6 >= 0){
!!1Y @array = OcurrentWords;
push(O lineBuffer, \Oarray) ;
!!!Y $refArray = £Qll (OlaotVVordo);
CcurrentWords = CSrefArray;
$pointer = S#curre nt"'ords;

} e lse {
$pointer--;

$currentVVordo ($pointer);

If a diagram tag such as "image::" is encountered, the front end will enter the

status of parsing diagrams:

Sparkf-lime . . . sub paroeDiagram{

/\w+ :: (\ w+)\ . (\w+)/;
UJ~· $picture= $1." . ".$2;

5. Implementation

!!lY $token = &next Word;
if($token =- /\/\/\$/){

f<>r(!!!Y $i = 1; $i <= S#currentWords; $i++){
Spicture .- " " . ScurrentWorda [Si J;

}
} e lse {

&last Word;

push (OdiagramLiat, $ p icture);

81

Front end keeps all the information concerning the current diagram in a local

variable, $picture, and then pushes it into the diagram list:

Q Sparkf-lime ... [!!Y Odiagr amList = ();

If a code tag such as a serial of "-" is encountered, the front end will enter the

status of parsing code, which is the main difference between different front ends:

Sparkf-lime ... sub parae Code {
!.!n:' $token = &next Word;
until(Stoken =- r-{5 ,}/){

l[(Stoken .£.9. "cla88"){
paraeClaaa (0);

} elsif ($token .£.9. "final"){
&next Word;
paraeClaaa (1);

} e Is if (SmemberLiat{ Stoken}){
paroeMembers ($token);

$token = &next Word;

.,.. . ., . ~--
t ,·.j.'(·,~·,~~lt-;-,;-,t_ , .-'·' .
L... - ~ --- - ~ - - '" ' ~ J

Figure 5.3: The structure of Module parseCode

The front end for lime parses various code units such as a class, a class member,

and a statement, according to the syntax one by one as following:

82 5. Implementation

If the first token of a code block is "final" or "class", then this block is a class

block. For class block, front end parse it according to the syntax that

class ::= ["final"] "class" identifier base implement members "end"

as following:

Sparkf-lime ... sub pareeCiaBO{
Scurren tClasa = &next Word;

!!!,Y $classBody = hashAdd(\%classList , $currentClass);
$classBody->{"final"} = $_[0);
!!!.Y $token = &next Word;
j_f.($token ~" inherit"){

parse Base(" inherit");
$token = &next Word;

.if.($token El!J. "extend"){
parseBaae ("extend");
$token = &next Word;

while($token ~ "implement"){
$token = &next Word;
paraelmplement ($token);
$token = &next Word;

while ($member List {$token}){
parseMembers ($token);
$token = &next Word;

die "parsing class failed I[Stoken)\n" j_f.($token .!!!'."end");

where the local variable $currentClass keeps the name of current class and is defined

as:

Q Sparkf-lime ... m,y ScurrentCiass = "";

and supporting function hashAdd is used to add item to a hash table without duplicate

and defined as:

Sparkf-lime ... sub hashAdd{
.!!!,Y(Shash, $item) = c_;
j_f. (not $hash->{$item}){

!!J.Y 'YonewHash = ();
$hash ->{$item} = \%new Hash;

$hash->{Sitem};

If the first token of a code block is one of the members of

Sparkf-lime .. ·!!!¥%member List = ("public", 1, "action",
"initialization",

1 1 "template" ,1, " canst", 1,
1, "method", 1, "var" 1 1);

then the block is a class member block. There are six kinds of legal members, i.e.

constant, variable, method, action, initialization, and label:

Sparkf-lime ... sub parseMembers{
!!J.Y ($token, $public) = (S-[0), 0);

5. Implementation

lf. ($token ill! " public "){
$public = 1 ;
$token = &next Word ;

l.f. ($token ill! "co not"){
paroeConot(&nextWo rd, $public);

} e lsi f($token ill! " va r "){
paroeVariable ($public , &nextWord) ;

} e l s i f ((Stoke n ill! " m e thod")II(Stoken ill! " template ")){
paroeMethod ($token , $public);

} e lsif ($toke n !1.9. " ac t ion"){
paroeAction(&nextW ord);

} e l s if($token ill!" in i tialization "){
parae Initial iz at ion (&tnextWord} i

} c l sl f (Stoken =- /" '\w+'/){
paroeLabel ($token) ;

For constants, the syntax is

constant ::= "canst" identifier [":" type] "=" expression:

Sparkf-lime .. . s ub parseConot {
= ($token . $public) = o_;
!,!El $identifier = " ";
mY Sconst = " Spu blic." ;
l.f. (Stoken =- /"(\w+)$/){

$identifi e r = $tok e n ;
$token = &next Word ;

} e lsi f(Stoken =- /"(\w+)(\S+)/){
$identifier = $1;
$token = $2;

l.f. ($token .£9. ":") {

$conot .= " : ". paroeType(&nextWord) ;
$token = ScurrentWordo ($pointer I;

} e l s if(Stoken =- f":(\ w+\S•)/){
Sconot . = " : " .parse Type ($1);
$token = $current Words [$pointer I;

l.f. (Stoken =- /=(\S+)/){
Sconst .= " = " . parseExpresaion (Sl) ;

} e\si f(Stoken =- /=$/){
$con at .= " = ". paraeExpreasion(&nextWord);

} el se {
$token = &next Word ;

lf. ($token =- /=(\S+)/){
Sconst .= " = ". paraeExpression ($1);

} elsif ($token =- / = S/){
Sconat .= " = ". paraeExpreaaion (&:nextWord) i

} els e {
~" parae cona t statement failedl\n";

ffiY Scla .. Body = hashAd d(\%claaaL i at , $current Class);
m,y $conatFieldo = hash Add ($class Body , "con at");
$c o natFields->{Sidentifier} = Sconst ;

The supporting module parseExpression is defined according to its syntax

expression ::=conjunction "or" conjunction

as following:

83

84

Sparkf-lime . . . sub parseExpression {
!!!Y $token = $_ [0 J;
!!lY $expression = "";
$token = $1 l.f_ ($token = - /(.+);/);
.if($token =- /\ Wor\W/){

!!!Y OwordBuffer = split (/\•+/, $token);
$token = s hi f.!_ { OwordBuffer);

} "I se {
$expression = parseConjunction ($token);
while {$expression ne ""){

$token = &next Word;
li {$token £9. "or"){

$expression . - " or ". parseConjunction(&nextWord);
} else {

&last Word ;
last;

$expression;

The syntax of conjunction is

conjunction ::= relational "and" relational

Sparkf-lime ... sub parseConjunction{
:w.y $conjunction = parse Relational($- (OJ);
whlh, .. ($conjunction .!!£ ""){

!B.Y $token = &next Word;
lf($token £Y "and"){

$conjunction . - " and ". parseRelational(&nextWord);
} else {

&last Word;
last;

$conjunction ;

5. Implementation

The syntax of relational is

relational::= additive [("<" I ">" I "<" ">" I "-" I "!=") additive]:

Sparkf-lime ... sub parse Relational {

!llY $relational = " ";
!!!.Y $token = $_[OJ;
l.f_ ($token =- /(.+)(<1>1!=1=1<=1>=1)(. +)/){

$relational= parseAdditive($1) ." ".$2." ".parseAdditive{$3);
} e lsif {$token =- /(.+)(<1>11=1=1<=1>=1 I)$/){

$relational
} .!!.l.!!_g_ {

$relational

parseAddi t i ve ($1)." ". $2 ." ".parse Additive (&nextWord);

parseAdditi ve ($token) ;
$token = &next Word;
l.f_ ($token =- r<< l>l!=l=l< =l >= l)$/){

$relational .=" " . $1 ." ".parseAdditive(&nextWord);
} elsif {Stoken =- r<<l>l<=l>=ll=l=l){ . +)/){

$relational . - " " . $1." ". parseAdditive($2);
}.2.l•<;t {

&last Word ;

$relational i

5. Implementation

The syntax of additive is

additive ::= multiplicative ("+" I "-") multiplicative

Sparkf-lime . .. sub parse Additive {
!!!Y $additive = parseMultiplicative ($_(OJ);
!!!Y $token = $current Words ($pointer J;
whilt?($additive ill! ""){

.L!'. (Stoken =- /(\+ 1-)S/){
$additive .=" $1 ".paroeMultiplicative(&nextWord);

}_g.l.!!...!..f. ($token =- / (\+1-)(\S+)/){
$additive .=" $1 ".parseMultipllcative($2);

} <tlse {

$token = &next Word;
.if. ($token =- ;-(\+1-)S/){

$additive .= " $1 ". parseMultiplicative(&nextWord);

} olsif ($token =- /(\+1-)(\S+)/){
$additive .=" $1 ".parseMultiplicative($2);

} else {
$token = $current Words [$pointer J;
&last Word;
$token = $c ur rent Words [$pointer J;
last;

$ a dditive;

The syntax of multiplicative is

multiplicative::= unary("*" I "/" I "div" I "mod") unary

Sparkf-lime ... sub pars e M ultiplicative {
!!!.Y $multiplicative= parseUnary(S-(0]) ;
!!!Y $token = $current Words ($pointer J;
while ($multiplicativ e ne ""){

.L!'. (Stoken =- /(\• 1\/)(\S+)/){
$token = $2;
$multiplicativ e .=" $1 ".parseUnary($token);

} elsif ($token =- / (\+1-)S/){
$token = &next Word;
$multiplicativ e .=" $1 ".parseUnary(Stoken);

} else {
$token = &next Word;
.if.($token =- /"(\•1\/)(\S+)/){

$token = $2 ;
$multiplica t ive.=" $1 ".parseUnary(Stoken);

} elsif (Stoken =- ;-(\+1-)S/){
$token = &next Word;
$multiplica t ive .= " $1 ". parseUnary(Stoken);

} elsif ($token QS "div"){
$token = &ne xt Word;
$multiplica t ive .=" div ".parseUnary($token);

} e lslf($token ~ "mod"){

Stoken = &ne xt Word;
$multiplica t ive .-" mod " . parseUnary(Stoken);

} e I se {
&last Word;
last;

$multiplicative;

85

86

The syntax of unary is

unary::= ("-" I "not" I "+")unary I primary

and in turn the syntax of primary is

5. Implementation

primary ::= integer I "nil" I "true" I "false" I designator I "new" name[actuals):
Sparkf-lime ... sub parse Unary{

illY ($unary, $token)=("", $_(0]);
l..f. (Stoken =- /"(-1\+)(\S+)/){

$unary = "$1". parse Unary ($2);
} elsif (Stoken =- /"(-1\+)S/){

$unary= "$1".parseUnary(&nextWord);
} e l •if (Stoken ~" not"){

$unary = "not ". parseUnary(&nextWord) ;
} elslf (Stoken =- /not\s+(.+)/){

$unary= "not ".parseUnary($1);
} .~-L~.Lf. ($token =- /(\d+)/){

$unary= "$1";
} elsif ((Stoken - /"(nil)\W•/) II

($token=- /"(true)\W•/) II
($token =- /"(false)\W•/)){

$unary = $1;
} elsif (Stoken ~" new"){

$unary = "new ".&nextWord;
$token = &next Word;
if(Stoken - r\U){

$unary .= " ". parseActuals ($token);
} <>lse {

&last Word ;

} e l sif (Stoken =- /new\s+(\w+)\s•(\(.+\))1){
$unary = "new ". $1. parseActuals ($2);

} elsii' (Stoken =- /(\w+)/){
$unary= parseDesignator(Stoken) unless(SkeyWordsList{$1});

}
$unary;

The syntax of designator is

designator ::= identifier "." identifier I actuals
Sparkf-lime ... sub parseDesignator {

illY ($designator , $token) = ("" , $_ [0 J);
l..f.($token =- /"(\w+)S/){

$designator = $token;
$token = &next Word ;

} elsif (($token =- /"(\w+)(\.\S+)!)II($token - /"(\w+)(\(\8+)/)){
$designator = $1;
$token = $2;

} elso {
dit:, "parse designator failed!($token]\n";

while (1){
l..f.(SkeyWordsList {$design a tor}) {

$designator "";

&last Word;
last. ;

l..f. ($token =- r\./){
$token= ".".&nextWord l..f. (Stoken - /"\.$/) ;
l..f. ($token =- f"\.(\w+)S/){

$designator .= ".". $1;
$token = &next Word;

}_§> lsit'($token =- r\ . (\w+)(\8+)/){

5. Implementation 87

$designator . - ".". $1 i
$token = $2 ;

} else {
die "parae designator failed 1[31 \ n";

} elsl f(Stoken =- r \U){
$designator .= parseActualo ($token);
$token = $current Words [$pointer I;
l.f.((Stoken =- /\)(\.\S•)/)Ii(Stoken - /\)(\(\S•)/)){

$token = $2 ;
} elsif ($token =- /\)S/){

$token = &ne xt Word;
} else {l tlst; }

} e l se {
&last Word;
last;

$designator;

For variables, the syntax is variable

Sparkf-lime ... sub pars e Variable {
!!J.Y Cvaro = parseidLi s t(S-[11);
!!J.Y ($type, $public)=("", $_[01);
mY $token = $currentWordo [$pointer I;
lf(Stoken =- /\w : (\w+\S•)/){

$type = parseType ($1);
} elsif (Stoken =- /\w+: S/){

$type = parseType(& nextWord);
} else {

$token = &next Word;
l.f. ($token =- ;-:(\w+\S•)/){

$type = pareeType ($1);
} elsif ($token ng ":"){

$type = parseType(&nextWord);
} else {

dle "parse variable failedl\n";

foreach !!J.Y Sv (Cvara){

lf(Sv =- /(\w+)\.(\w+)/){
ScurrentClasa = Sl;
Sv = $2;

"var" idList

!!J.Y SclaosBody = has hAdd(\%claosList , ScurrentClaao);
!!J.Y $varFieldo = has hAdd($claaaBody, "var");
SvarFieldo ->{Sv} = $type;

"·" type:

For methods, the syntax method

ment:

"method" identifier formals[":" type] state-

Sparkf-llme ... sub parse Method {
!!J.Y Cvaro = () ;
!!l.Y ($token' $public) = o_;
!!J.Y ($identifier , $type) = (" ", "");
!!J.Y ($formals, $statem e nt) = ("", "");
l.f.($token £9. " method") {

$token = &next Word ;
l.f. (Stoken =- ;-(\w+\ . \w+)S/){

$identifier = $ 1 ;
$token = &next W ord;

88

} e l sif (Stoken - /"(\w+\.\w+)(\S+)/){
$identifier = $1;
$token = $2;

} e l sif (Stoken =· /"(\w+)S/){
$identifier = $1;
$token = &next Word;;

} ol s if (Stoken =· /"(\w+)(\S+)/){
$identifier = $1;
$token = $2;

} e I se {
die "parse method falledl\n";

Sformalo = parae Formal ($token);
$token = ScurrentWordo ($pointer I ;
l..!'. ((Stoken =" /\):S/)11

(($formals ~ "")&&($token=·/ : $/))){
$token = &next Word ;
$type = paraeType ($token);

} e l sif ((Stoken =· /\) : (\w+ . •)/)11
(($token =" / : (\w+ .•)/)&&(Sformals £.9. " "))){

$type = parse Type ($1) ;
} e l ~e {

$token = &next Word;
l..!'. (Stoken =· / : $/){

$token = &next Word;
$type = parseType ($token);

} e l si f(Stoken =· J : (\w+ . •)/){
$type = paroeType ($1) ;

} e l se {
&last Word;

!!!.)' SnewWord = 0;
$token = $current Words ($pointer I ;
.i.f. ((Stype ill!. "")II((Stype ~ " ")&&($formals £.9. ""))){

.i.f. ($token =· /(\ '.•)/){
$token = $1 ;

} e l se {
$new Word = 1;
$token = &next Word;

} e l sl l'(Sformals ne ""){
.i.f. (Stoken =· /\)(. +)/){

$token = $1;
} e l se {

$new Word = 1;
$token = &next Word ;

$statement = parseStatementList ($toke n);

&lastWord l..!'. ((Sstatement .£.9. "") && SnewWord);
.if ($identifier =· /(\w+)\.(\w+)/){

$currentClass = $1 ;

$identifier = $2;

$identifi e r.= " . ".$formals;
illY SclassBody = hashAdd(\%classList, $current Class) ;
illY $varFields = hashAdd($clasaBody , " method") ;
SvarFielda ->{$!den ti fie r }={TYPEl=>Stype ,STATEMENT=>Sstatement}
unless (SvarFields->{Sidentifier });
SvarFielda ->{$ i dent i fie r }->{STATEMENT} = $statement
l..!'. ((SvarFields ->{$id e ntifier }->{STATEMENT}~"")&&($statement ne " "));
$varFields->{Sidentifier}->{TYPE} = $type
.i.f. (($varFields->{$identifier}->{TYPE}~ " ")&&($type ne ""));

5. Implementation

5. Implementation 89

where the supporting module parseFormal is defined as following according to the

syntax (formals ::= ["(" idList ":" type "," idList "·" type ")"]):

Sparkf-lime . .. sub parse Formal {
!!!Y (Sformals, $token)=(" " , $_(0)};
j_f ($token =- /\ (/){

$formals = " (" ;
lf(Stoken £ /\($/){

$token = &next Word;
} elslf (Stoken £ / \((\S+)/){

$token = $1;

while (1){
j_f (Stoken £ / (. •\))\S•/){

$formals .- $1;
last ;

} else {
$formals .= $token;
$token = &next Word ;

$formals;

where the supporting module parseType is defined as following according to the

syntax (type ::= ["shared"] "array" [expression"," expression] "of' (name I "integer"

I "boolean")) :

Sparkf-lime .. . s u b parseType{
l!l.Y' $type = " " ;
!!!Y $token = $_ (0);

ll(Stoken ~" shared "){

Stype ="shared ";
$token = &next Word;

whi l e (l){

}

ll ($token ~ "array"){
Stype .= " array ";
w hile ($token M " of"){

$token = &next Word;
$type .= n $token "i

Stype .= " of ";
Stoken = &next Word;

} o l slf (Stoken ~ "set"){

Stype .= "set ";
$type . = &next Word." " ;
$token = &next Word ;

li (($token =- r (inte g er) \W• /)II (Stoken - r (boolean) \W• /)){
Stype .= Sl;

} e l si f(Stoken =- r\w+/){
$type .= parse Name ($token);

} else {
d i e "parse type fa il ed 1(2)\n";

$type;

90 5. Implementation

the supporting module parseStatementList is defined as following according to the

syntax (statementList ::= statement ";" statement):

Sparkf-lime ... sub parseStatementList{
illY $statement List = parseStatement ($_ (OI);
$atatementLiat = "" j_[(SotatementLiat =- /'\a+$/);
while (SatatementLiat !!.!!!. "") {

illY $token = $current Words ($pointer I;
illY Oarray = .!L2.ill (I; I , $token);
for (illY $i = 1; $1 <= $#array; $i++){

Satatemen t List . ="; \ n" . paraeStatemen t ($array ($i I) ;
}
l.!'. (Stoken =-I;$/){

Sstatemen tList . ="; \ n". parseStatement (&nextWord);
} elso {

$token = &next Word;
l.!'. (Stoken =- ;- ; SI){

Satatemen t List .=" ;\ n". parseStatement (&nextWord);
} elsi f($token =- /';(\S+)/){

$atatementLiat .=" ;\n". parseStatement ($1);
} <>lse {

&:last Word;
$statement List .="\n";
last;

$statement List;

Statement is the most complex one in Lime. Its syntax is

statement ::=designator [":="expression] I
designatorList ":=" expressionList

"begin" statement ";" statement "end"

"when" expression "do" statement I
"if'' expression "then" statement ["else" statement] J

"while" expression "do" statement J

"repeat" statement ";" statement "until" expression

variable statement I
constant statement I
"return" [expression] I
label

Sparkf-lime ... sub paraeStatement {

t!1Y $space = " "i
$layers++;
.f.!!L. (lliY $i = 0; Si < $layers; Si++){

$space .=" ";

illY ($statement, $token) = ($apace, $_(OJ);
l.f. ($token ~" begin"){

5. Implementation

$statement .= "begin \n". parseStatementList(&nextWord);
$token = &next Word;
die "pasrse begin statement failed![$token]" .i.f.(Stoken r- f"end\W•/);
$statement .= $space." end" i

} "lsif (Stoken ~"when"){

$statement .= "when ". parseExpression (&nextWord);
Sstatemen t .= " ".&next Word."\ n". parseStatemen t (&nextWord);

} <•lsif (Stoken £..9. ".i.f."){
$statement .= "11. ". parseExpression (&:nextWord);
$statement .= " ".&next Word."\ n". parseStatement(&nextWord);
$token = $currentWords ($pointer];
.i.f. (($token £ /\'. + \' clse (\'.+)f)II(Stoken =-/\) else (\'.+)/)){

$statement .= "\n". $space." e I se \n". parseStatemen t (11) i
} elslf ((Stoken =- /\'(.+)\'else$/)li(Stoken £ /\)elaeS/)){

$statement .= "\n". Sa pace." else \n". parseStatement(&nextWord);
} else {

$token = &next Word;
.i.f.($token £.9. "el s e "){

Sstatemen t .= " \n". $space." else \n ". parseStatement (&nextWord);
} c'lsif (Stoken =- j"else(\ '.+)/){

$statement . - " \n". $space." else \n". parseStatemen t (Sl);
}~{

&last Word;

} elsif (Stoken £..9. "while"){
$statement .= "whi l e ".parse Expression (&:nextWord);
$statement .= " ".&next Word." \n". parseStatement(&nextWord);

} elsif($token £Q "repeat"){
$statement .= "repeat \n". parseStatementList(&nextWord);
$statement .= $spa c e .&next Word." ". parseExpreosion(&nextWord);

} elsif(Stoken £.9. "var"){
illY Ovars = parseld L iot (&nextWord);
$token = $currentWordo ($pointer];
!!ri $type = "";
if(Stoken £ /\w:(\w+\8•)/){

$type = parseType (Sl) ;
}elsif($token =- /\w:S/){

$type = parseType(&nextWord);
} else {

$token = &next Word;
.i.f.(Stoken =- ;-:(\w+\S•)/){

$type = parseType ($1) ;
} olsif (Stoken £S ":"){

$type = parseType(&nextWord);

$statement .= "var " ;

white ($#var• >=0){
.i.f.(S#var• > 0}{

Sstatement .- shift (Ovars) . " ";
} a lse {

Sstatement .- shift (Ovars) ." : ".$type;

} elsif (Stoken £S "const"){
$token = &next Word;
$statement .= "const ". 11 lf ($token
$token = ScurrentWordo [$pointer];
.i.f.(Stoken =- /:$/){

/"(\w+)/);

Sotatement . = " : ". parseType(&nextWord);
} e lsi f($token £ /: (\ w+\S•)/){

S.tatemen t .= " : ". parseType (Sl);
} else {

$token = &next Word;
.i.f.($token £ f:Sf){

$statement . = " : ". parseType(&nextWord);
} elsif (Stoken =- f:(\w+\S•)/){

91

92

$statement ·­
} else {

&last Word;

". parseType ($1);

$token = $current Words [$pointer J;

11.($token =- /=$/){
$statement .= " = ".parse Expression (&nextWord);

} e Is If ($token =- /=(\S+)/){
$statement.="= ".parseExpression($1};

} else {
$token = &next Word;
.il.(Stoken =- /=$/){

$statement .= " = ". parseExpression(&nextWord);

} elsi(($token =- /=(\S+)/){
$statement .= " = ".parse Expression ($1);

} else {
die "parse const statement failed I\n";

}elsif(Stoken gg "return"){
!BY $t = parseExpression(&nextWord);
&lastWord .ii.($t .£.9_ "");

$statement .= "return ". $t;
} elsi f($token =- r '\w+'/){

$statement .= $token;
}el sif (Stoken =- f"\w+/){

$statement .- parse Assignment ($token) unless (SkeyWordsList {$token});

$layers--;
$statement;

5. Implementation

where local variable %keyWordsList is used to identify the key words of Lime and

defined as:

Sparkf-lime .. ·illY %keyWordsList ("abort", 1 . "action", 1. "and", 1 •
"array", 1. "char" 1 1. "do", 1.
"begin", 1. "boolean", 1. "case", 1.
"class", 1. "co nat" 1 1. "div", 1.
"downto", 1. "else", 1. "end", 1.
"export", 1. "integer", 1. "map", 1.
"false", 1. "final", 1. n .if." I 1.
"import", 1. "initialization", 1.
"method" 1 1. "mod" 1 1. " new" 1 1.
"nil" 1 1. "package" 1 1. "real", 1.
"not" 1 1. "of" 1 1. "or", 1.
'
1 private" 1 1, "program", 1. "procedure" ,1,
"repeat", 1. "return", 1. "set", 1.
"this", 1. "sequence" ,1, "until", 1.
II skip tl I 1 • "super" 1 1, "then", 1 •
"to" 1 1. "true" 1 1. "type", 1.
"var" 1 1 • "when" 1 1 • "while", 1);

and local variable $layer is used to count the nest of statement and defined as:

Q Sparkf-lime .. ·illY Slayers = -1;

For actions, the syntax is action

Sparkf-lime .. . sub parseAction {
'!!Y $identifier = $_(OJ;

"action" identifier statement:

die "parse action failedl\n" .il.(Sidentifier !- f"\w+$/);
illY $statement = parseStatementList(&nextWord);

5. Implementation

!!l.l($class Body = haahAdd(\%classList , $currentCiass);
!!l.l($actionFields = hashAdd(SclassBody, "action");
$actionFields->{$identifier} = $statement
unless ($action Fields->{ Side n t i fie r }) ;

For initializations,

ment:

the syntax is initialization

Sparkf-lime ... sub parselnitialization {
!!J.Y $token = $_[OJ;
!!!tY $statement = "";
!!l.l:' $formals = parse F o rmal ($token);
.if. ($formals ne "") {

$token = $currentWords [$pointer);
il (Stoken =- /\)(\ S+)/){

p a rseStatemen t List ($1); $statement

} else {
$statement p a rseStatementList(&nextWord);

" in it" ;
} e Is•' {

$formals
$statement parseStatementList ($token);

!!l.Y $class Body hashAdd(\%classList , ScurrentClaoo);
!!!Y SactionFields = hashAdd(SclassBody, "initialization");
$actionFields->{$formala} = $statement
unless (SactionFields ->{$formals});

For labels, the syntax is label

Sparkf-lime ... sub parse Label {
!!!.Y Oarray = (S-[0));

'char':

!.!1Y SclassBody = haohAdd(\%claooL!ot, ScurrentCiaoa);
Jl. (SclaaoBody ->{"I a be I"}){

!.!1Y Sold= SclassBody->{"label"};
!!!.Y $find = 0;
fo1·each !.!1Y $v(O$old){

.if. ($v .!!.9. $_[0)){
$find = 1;
last;

pu•h(OSold, S-[0)) unless (Sfind);
} else {

SclaosBody->{"labe l" } = (S-[0));

93

"initialization" formals state-

Lime also support multiple assignment as following:

Sparkf-lime ... sub parseAooi gnment{
!!!Y (OdesignatorList , O expreosionList) (() , ());
!!!.Y ($finish , $token, $ assignment) = (0, $_[OJ, "");
!.!1Y OstatementLiat = split (/;/, Stoken);
$token = $statement Li s t [OJ;
Sfinioh = 1 .if. (($token =- /\)else$/) It ($token - /\) else \'/));
until ($finish){

last .if.(S#otatement Lio t > 0};
!!!Y $temp = &next Word;
Jl. (Stemp - r(\w+) /){

.if.((Sl .!!.9. "end")ll($1 .!!.9. "else")ll
(11 .!!.9. "untii") II(SmemberLiot{Sl})){

94 5. Implementation

&last Word;
$finish = 1;

} else {

}

.if.($token - /\w+S/){
$token . =" ".$temp;

} else {
$token.=Stemp;

} e \se {
l.f($token I"" /\w+S I){

$token.=" ".$temp;
}else {

$token .=$temp;
}

CstatementList = _'U/..\1.!_ (I; f, $token);

$token = $statement List (OJ;
.i.f. (Stoken =- 1(-+):=(.+)/){

CdesignatorList = ~(/ ,/, $1);
CexpressionList = .!1.JL!li(/ ,/, $2);
for(m.Y Si=O; $i<$#designatorLiot; $i++){

$assignment .= parseDesignator ($designator List [$i J) ." ";

$assignment .= parseDesignator ($desi gna tor List [S#deo ign a tor List 1) . " .- •;
for(m.:~: $i=O; $i<$#expre .. ionList; $i++){

$assignment .= parseExpression ($expression List [Si J)." , ";

$assignment .- parseExpression ($expressionList ($#expressio nL io t 1);
} -!1.1!§ .• \t {

$assignment .- parseDesignator ($token) i

$assignment j

For actuals, the syntax is actuals "("expression"," expression")":

Sparkf-lime .. . sub parseActuals {
!!l.Y $token = $.. (0];
m;:c Sactuals = "(";
J .. f. ($token =- I\ ((. +) /) {

$token = $1;
} _e lse {

dh" "parse actuals statement failed t(l]\n";

while (1){
l.f($token =- 1(. +) ,(\S+)/){

$actuals .= parseExpression($1) .", ";
$token = $2;

} e\slf ($token =- /(.+) ,$/){
$actuals .= parseExpression($1).", "i

$token = &next Word;
} elsif ($token =- /(. +)\)/){

Sactua\s
last;

} olse {

parseExpression ($1);

die "parse actuals statement failedt(2)\n";

Sactuals ")";

$actuate;

The syntax of name is name identifer "" identifier

5. Implementation

8parkf-lime ... sub paraeName{
m,y ($name, $token)=("", $_(0();
.i.f. ($token =- /"\w+S/){

$name = $token;
$token = &next Word;

} eh if($token =- /"(\ w+)(\8+)/){
Sname = Sl;
$token = $2;

} else {
die "parae name f ai led!\n";

while (1){
.i.f. ($token - r\.f){

.i.f.(Stoken =- / .(\w+)S/){
$token = &next Word;
Sname .= ". ''. Sl;

} olsif ($token =- /\ . (\w+)(\8+)/){
$token = $2 ;
$name.= ". " .$1;

}el•e{
die "parae name failedl\n";

} elde {
&laatWord;
last.;

$name;

The syntax of idList is idList

8parkf-lime ... sub paroeld List {
!!lY OidLiat = ();
m,y $token = $_ [0);
m,y Sfinish = 0;
.i.f.(Stoken =- /"(\w+)S/){

push(OidList, $1);
$token = &next Word;

} elslf (Stoken =- j"(\w+)(,\8•)/){
push(OidList, $1);
$token = $2;

} elslf (Stoken =- j"(\w+)/){
push(OidLiat, $1);

Sfiniah = 1;
} else {

die "parse idList failed !(1)\n";

until ($finish){

.i.f. (Stoken =- /" ,(\w+)S/){
$token = &nextWord;
push(OidLlat, $1);

} o lsif(Stoken =- j",S/){
Stoken = ",".&nextWord;

}e\slf(Stoken =- j",(\w+)(,\8•)/){
$token = $2;
push(OidLiat, Sl);

} elsif (Stoken =- /" ,(\w+)(.+)f){
$finish = 1;
push(OidLiat, Sl);

} olso {
&laatWord;
$finish = 1;

OidLiot;

95

identifier "" identifier:

96 5. Implementation

For base, the syntax is base ::= ["inherit" name I "extend" name):
Sparkf-lime ... s ub parse Base {

!.!.l.Y $class Body = hashAdd(\%claeeList , ScurrentClass);
$class Body ->{S- [OJ} = &next Word;

For implement, the syntax is implement

Sparkf-lime ... sub parselmplement{
!.!.l.Y Oarray ();
!.!.l.Y $token = $_[OJ;
while(1){

while(Stoken =- /(\w+),(\S+)/){
push (Oar ray, $1);
$token = $2;

if(Stoken =- /(\w+) ,/){
push (Oarray, $1);
$token = &next Word;

} e l se {
push (Oarray , $token);
$token = &next Word;
.i..!'. (Stoken =- /" ,(\S+)/){

$token = $1;

} e lsif(Stoken =- /" ,/){
$token = &next Word;

} e lse {
&last Word;
la.st;

die "parse implement falled!\n[2]" .i..!'. (S#array < 0};
!.!.l.Y $class Body = hashAdd(\%classList , $current Class);
.i..!'. (SclaseBody ->{"implement"}) {

!.!.l.Y Sold = $cla88Body ->{"implement"};
!.!.l.Y $find = 0;
fo reach !.!.l.Y $v (Oarray) {

foreach !.!.l.Y $w(O$old){

.i..!'.(Sv fill Sw){
$find = 1;
last;

$find ? $find 0 push (O$old, Sv);

} e l• e {

$claesBody ->{"implement"} \Oar ray;

"implement" name:

All the parsing result of code blocks will be inserted into the class list:

Q Sparkf-lime ···!.!.l.Y %classList = ();

The second process in main is outputting the parsing result.

Sparkf-lime ... sub doOutput{
generate Code("");
&insert Code j

&createModFile;

5. Implementation 97

Module generateCode is responsible for generating the actual program code files

for compiler using t he information in the variable %classList and defined as:

Spar kf-lime . .. sub gene r ateCode{
ffi.Y SoutFile ;
!!J.Y C keyLiot = keys (% cl aooLiot);
forench mY Sv(C keyLi ot) {

mY SclassBody = SclasoLiat {Sv};
.if (S-(0] £9. " "){

open SoutFile, " > Sv.lime " II .!!.!.!!_ "Create file failedl\n";
} o>ls e {

$out File = $_(O J ;

print SoutFile " f i nal "lf($clauBody->{" final"});
print $out File "c l ass $v " ;

.if (SclaooBody->{ex tend}) {
~ SoutFile " extend SclasoBody->{extend} ";

} e)s l f ($class Body - >{ inherit}){
pr i nt $outFile "inherit SclanBody->{inherit} ";

.if(SclassBody ->{im plement}) {
~ SoutFile " implement ";
!!l.Y $first = 1 ;
mY $member Body = SclaaaBody ->{implement} ;
fo r oach !!l.Y Sw(O $memberBody){

.if ($first){
p 1·int $o u t File "Sw" ;
$first = 0;

} el s e {
~ $o u t File " Sw";

~ SoutFile " \n " ;
!!!.Y C memberList = koys (%$claaoBody);
fo r ench mY Su (C mem berLia t){

!!J.Y $member Body = SclaaaBody ->{Su};
u nl <>s s ((Su .Q.9. "implement ")II(Su .!l.9. "inherit")ll

(Su .!l.9. "extend")II(Su !ll.l "final")){
!!!.Y Cfield List = keys (%SmemberBody);
fo r ench mY $f(CfieldLiot){

lf(Su £Y " var"){
~ $out File " var Sf : SmemberBody->{Sf}\n\n";

} e l s i f (Su .Q.9. "conot "){
.U(SmemberBody->{Sf} =- /(\d+)\ . (.+)/){

pr i n t $out File " ";
.P.!l.!!.l!. SoutFile "public " lf(Sl);
p r i n t $out File •conot Sf$2\n";

} el s if (Su .Q.9. "initialization "){
prin t $outFlle " initialization ";
prin t SoutFile "Sf" lf(Sf n e "I nit");
print SoutFile "\n";
pri n t $ outFile "SmemberBody->{Sf}\n"
lf (Smem berBody->{Sf} ng "");

} elsif (Su .Q.9. "action"){
print S outFile " action Sf\n";
.P.!:ll!!. $ outFile "SmemberBody->{Sf}\n"
lf (Smem berBody->{Sf} ' " ' "");

} e Is if (Su !lit "method "){
.U(Sf =- /(\w+)\ . /){

p r int SoutFile " method Sl" i
p r int SoutFile "11" .U(Sf £ /\w+\ . (. +)/);
print SoutFile " : SmemberBody->{Sf}->{TYPE}"

98

}

11.($memberBody->{$f}->{TYPE} 11<' "");

pr in t SoutFile "\n";
pdnt $outFile "SmemberBody->{Sf}->{SI'ATEMENT}"
J1. ($memberBody->{$f}->{SI'ATEMENT} ~ "");
p rin t SoutFile "\n";

}#end of foreach

}#end of unleu

print $outFile "end\n\n";
c l o•e SoutFile lJ. ($-(0] l!9. "");

}#end of foreach

5. Implementation

After generating code files, front end will insert a copy of code to the origin file,

if it find the special tag-pair, "//CODE LIST BEGIN" and "//CODE LIST END",

by module insertCode, which is defined as:

Sparkf-lime . .. sub insertCode {
ffiY $switch = 0;
opon mY $old File , " < Sold " II die "Can't open $old : $1 ";
open !.!!Y SnewFile, "> $new" II _412. "Can't llpetl $new: $! " ;
w h lle (<SoldFile >){

11. ($_ =- /" \/\/OODE LIST BEGIN/){
.l1..!:..i.!:!i $new Fil e $_;
.l1..!:..i.!:!i $new File "----\n";
$switch = 1 ;
generateCode ($ne w File) ;

} <> l sif (S- =- /"\/\/OODE LIST END/){
.l1..!:..i.!:!i SnewFile "----\n " ;
.P..t.!..!.U_ $new Fil e $_;
$switch = 0 ;

} .~L~ ... !t{
prin t. $newFile $_ un less ($swltch);

close $oldFile II d ie "Can't c l ose $old : $!";
close SnewFile II d ie "Can ' t close $old : $! ";
un l ink (Sold) ;
~($new, $old) II .9Js. "Can't !.!!.!}.~ $old : $!" ;

In fact, this module creates a file named by the variable $new, which is defined

as:

Q Sparkf-lime ··· mY $new= "temp " ;

and then copy the content other than the part between the code list tags into this

new file, and after that insert the content of %classList into this new file, and finally

deletes the old file and renames the new file with the old name.

Module createModFile is responsible for creating a scripts file according to the

content of variable @diagramList. If it is empty, nothing will happen; otherwise,

front end will create a file with the name defined by variable $filename, which is

defined as:

5. Implementation

Q Sparkf-lime ... !!l.Y $file n ame "oolp . mod";

to describe the diagrams used in this program.

Sparkf-lime ... sub crea t eModFile {
open FILE, "> Sfilename"lldi.e "Open file failed!";
foreach lli.Y $v (OdiagramList) {

pl"int FILE "\OCLASSDIAGRAM Sv\n";

.P.!:l.!!.!. FILE " \n ";
!!J.Y OkeyList = kevs{%classList);
for each !!l.Y $v (O keyList) {

!!l.Y $classBody = SclaosList{Sv};
.P.!:l.!!.!. FILE "\OCLASS Sv\n";
..lll..L!ll FILE "\OFINAL\n" .Lf. (SclassBody->{"final"});
.Lf. ($class Body ->{ex tend}) {

print. FILE "\CEXTEND SclasoBody->{extend}\n";
} e Is if ($class Body - >{ inherit}){

.P.!:l.!!.!. FILE "\OINHERlT SclaosBody->{inherit }\n";

.Lf. (SclasoBody ->{implement}){
print FILE "\CIMPLEMENT ";
!!!.¥ Ssep = "";
!!l.Y $member Body = $class Body ->{implement};
forench !!l.Y Sw(@SmemberBody){

print FILE " hepSw";
Seep="," l.f. (Ssep ~ "");

print FILE "\n " ;

!!l.Y O memberLiot = keys (%SclauBody);
f'orench !!l.Y Su (OmemberLiat){

!!l.Y SmemberBody = Sci au Body ->{Su};
unless((Su ~ "implement")II(Su ~ "inherit")ll

(Su ~ " extend")II(Su ~" final")){

!!l.Y Ofield List = kevs(%$memberBody);
fo 1·each !!l.Y S f (Ofield List) {

.Lf. (Su ~ "var"){
print FILE "\OVAR Sf SmemberBody->{Sf}\n";

} elsif {Su ~ "conot"){
.if. (SmemberBody->{Sf} =- / { \ d +) \. (. +) /) {

..P.J:iu.l;. FILE "\OOONST ";
print FILE "\OPUBLIC " .if.{$1);
print FILE "Sf$2\n";

} e Is If (Su .2.9. " In it i a I i z at Ion"){
print FILE "\OINIT ";
pl"int FILE "Sf" ll(Sf ne "inlt");
print FILE "\ n" ;

} elsif {Su ill! "action"){
pl"int FILE "\OAC'TION Sf\n";

} e I sl f (Su ill! "method "){
l.f.{$f £ /(\w+)\./){

print FILE "\GMEIHOD S1 ";
print FILE "Sl " l.f.{Sf =- /\w+\ . (.+)/);
.I!..!:l..!ll FILE " SmemberBody->{lf}->{TYPE}"
l.f. ($memberBody->{Sf}->{TYPE} ne "");
print FILE "\n";

}#end of for e ach

}#end of unle ..
}#end of foreach

.P..!:.!.!!i FILE "\n";

close FILE II die "Close $filename failed I";

99

100 5. Implementation

The third process in main is to call the back end of Spark. It is simply defined as:

Sparkf-lime ... sub callBackEnd {
svsten\ "peri sparke. pl";

5.4 Back End

The back end of Spark takes the graphic notation describer mentioned above as input

and produce all the graphic notation files as output. However, layout algorithm is out

of the range of this thesis, so we choose an automatic diagram layout tool, Graphviz,

to fulfill this task. Graph viz is a package of open source tools initiated by AT&T

Research Labs for drawing graphs specified in dot language scripts. Now, let us look

at how the back end works.

Figure 5.4: Top-level structure for Spark back end

The entrance of Spark back end for lime,

(Sparkb .. . & main;

is defined as following:

Sparkb ... su\?. main{
&parseModFile ;
&createDotFiles;

5. Implementation 101

The first process in main is to parse the script file created by front end and defined

as:

Sparkb ... sub parse Mod F ile {
open FILE, "< $filename" II die "Q= file failedl\n " ;
while (<FILE>){

..Lf($. =- /"\CCLASSDIAGRAM/){
push (C diagramList, S.);

} elsif ($. =- /"\OCLASS/){
parseClass ($_);

c lose FILE II die " C lose file failed 1\n" ;
unlink ($filename};

where local variable $filename hold the name of script file and defined as:

Q Sparkb ... !:JlY $filename = "oolp .mod";

and variable @diagramList keeps all the information about diagrams to be created

and defined as:
Q Sparkb ... !!JY @diagram List = ();

Module parseClass is used to retrieve all the class information by reconstructing

the class list %classList, which is defined as:

Q Sparkb ... !!!Y %classList = ();

and parseClass is defined as:

Sparkb ... sub parseC lass {
chop ($.[0]) ;
!!JY Owords = ..'UUll. (/ \ a+/ , S- [0]) ;
!!!):' $name = Swords [1] ;
!nY 'Yonew Hash = () ;
while (<FILE>){

last l.f ($. !ill. "\n"};

Oworda = s p l i t ;

if (Swords [0 J Q.9. • \ OVAR"){
unless ($new Hash { var}} {

!!JY %hash = () ;
SnewHash{ var} = \%hash;

!!JY $type = Swords [2] ;
fOI'(!nY Si=3; Si<=S#word•; li++){

$type . = • Swords [Si] • ;

SnewHash{var}->{Swords [1]} = $type;
} e Is if (Swords [0 J !ill. "\GAGTION"){

unless (SnewHash {act ion}){
!nY Oarray = () ;
SnewHaoh{act ion} = \Oarray;

!:JlY $body = SnewHaab{action };
push (OS body, Swords [1 J);

} els if (Swords [OJ !ill. "\OMEIHOD"){
unless (SnewHash { metbod}){

mY %hash= ();

102

SnewHash{method} = \%hash;

l.f.(S#words = 9){
$newHash{method}->{$words (11." . " . Swords (21} Swords (31;

} o lsif(S#word• = 1}{
$newHash{method}->{$words(11} "";

} elsi f(S#word• = .II}{
l.f. ($words(21 =- /\(.+\)/){

SnewHash{method}->{Swords (11.".". Swords (21} "";
} e l •e {

SnewHash{method}->{Swords (11} = $words (21;

}
} e lsif($words(01 ~ "\CINIT"){

unless ($new Hash{ in it }){
illY Carray = () ;
$new Hash{ in it} = \ Carray;

!!!.):"$body= SnewHash{init};
l.f. (S#words == 1}{

push (@$body, $name ." . " . Swords (11);
} elsif ($#words = 0){

push (@$body , $name) ;

} elsi f(Swords (01 ~ "\CIMPLEMENT"){
unless (SnewHash{ implement}) {

illY Carray = () ;
$new Hash{ implement} = \ Carray;

illY @temp = .§.E..li!. (/ , / , Swords (11);
illY $body = SnewHash{imp)ement};
while (S#temp >= 0){

push (CSbody, shl ft (Otemp));
}

} e Is if(Swords (01 ~ "\CEXI'END"){
$new Hash {extend} = Swords (11;

} o 1 s if (Swords (01 £.!1 "\ CINHERIT") {
u nl<>ss ($new Hash{ inherit}){

}

illY Carray = ();
$newHash{inherit} = \Carray;

illY @temp = .§.E..li!. (/ , / , Swords (11) ;
illY $body= SnewHash{inherit };
while(S#temp >= 0}{

push(C$body, shift (Otemp));
}

} elsif (Swords (01 £.!1 "\CCONST"){}

$classList {$name} = \%newHash;

5. Implementation

The second process in main is to createDotFiles, which is defined as:

Sparkb ... sub createDotFiles{
foroo.ch illY Sv (@diagramList) {

illY @diagram= •plit (/\s+/, Sv);
l.f. (Sdiagram (11 £ /(\w+)\.(\w+)/){

&in it;
i2..!:. (!!lY Si=2; Si<=S#diagram; $i++){

l.f. ($diagram (Si 1 =- /\OVERTICAL/) {
$isHorizontal = 0;

} olsif ($diagram($i1 - /\CBRIEF/){
SisBrief = 1;

} <>lsif ($diagram(Si1 - /\CCONCISE/){
SisConcise = 1;

} elsif ($diagram(Si1 - /\CHEAD/){
Sis Head = 1;

5. Implementation

} elslf (Sdiag ram(Sil =" /\CIMEIHOD/){
$isMethod Only = 1;

} e Is if ($diag ram [Si I =" /\OATTRIBUTE/){
SisAttributeOnly = 1 ;

} olsif (Sdiag ram(Sil =· /(\w+)/){
push(OclanesAdded, $diagram (Si I) unless(&findClan ($diagram (Si I));

next, _if (S#cla .. e•A dded < 0) ;
open mY Sout, "> $1. dot" II die "Create file failed 1\n";
prologue ($out) ;
print Classes ($o ut);
printRelations (Sout);
epilogue ($out) ;
systent "dot -T$2 -o$1.$2 S1 . dot";
unUnk("S l.dot ");

103

For each item in @diagramList, it will create one dot file for Graph Viz and one

dot file is corresponding to one picture. The supporting function findClass is used to

determine if the class will appear in this diagram and defined as:

Sparkb .. . sub find Class {
mY $found = 0;
foreach illY Sv (OclaasesAdded) {

_il (Sv ~ $.(01){
Sfound = 1;

$found;

Every diagram is new, so the back end clears the environment first every time.

The supporting function init is defined as:

Sparkb ... sub init{
(C classesAdded, O relationsAdded) = (() , ());
(Sis Horizontal, $isBrief, SisConcise, SisHead) = (1, 0 , 0, 0);
(SisMethodOnly, $isAttributeOnly, SisActionOnly) = (0, 0, 0};

where the variable @classesAdded is used to hold all the classes, which are going to

appear in the current diagram and defined as:

Q Sparkb . . . illY OclaueaAdded = ();

and the variable @relationsAdded is used to describe all the relations between these

classes and defined as:

Q Sparkb ... mY OrelationoAdded = ();

and the variable $isHorizontal is used to describe the direction of this diagram and

its default value is 1, which means that the diagram will be drawn horizontally.

104 5. Implementation

Q~S=p=a=r=k=b=·=· =·~==v=$=i=s=H=o=r=i=z=o=n=ta=l=====l=;==~)
and the variable $isBrief, $isConcise and $isHead are used to describe the form of

this diagram and defined as:

Sparkb ... [!1Y (SisBrief, $isConcise , $is Head) = (0, 0, 0);

and the variable $isMethodOnly, $isAttributeOnly, and $isActionOnly are used to

indicate which part of the classes in the diagram will be shown and defined as:

Sparkb .• ·!!l.Y ($isMethodOnly, SisActionOnly, SisAttributeOnly) = (0, 0, 0);

After initialization and necessary settings, the back end begins to build the dot

file basing on the obtained data.

First of all, it create a prologue as:

Sparkb ... sub prologue{
!!.I.Y $out= $_[0];
print $out "# Clau diagram\n# Generated by Spark version 1.0\n\n" .

"digraph G {\n\ tedge [fontname=\"" .$edgeFontName.
"\", fontsize=lO, labelfontname=\"".$edgeFontName .
"\" , I abe If on t size= 10]; \ n \ tnode [fontname=\"". SnodeFontName.
"\", fontsize=lO, shape=plaintext);\n";

print $out "\trankdir=LR;\n\tranksep=l;\n" if.(SisHorizontal);
print $out "\tbgcolor=\"" + $bgColor + "\";\n" if.(SbgColor =- f.+/);

where the variable $bgColor is defined as:

Q Sparkb ... [!1Y SbgColor = "";

Then, back end begins to print classes listed in @classesAdded as following:

Sparkb ... sub printClasses{
!!l.Y $out= $_[0];
for each !!.I.Y Sv(OclassesAdded){

print: $out "\t".Sv." {label=";
externa!TableStart ($out);
#show head
innerTableStart ($out);
tableLine(Sout, "CENTER", " interface") JJ:. (Sislnterface);
tableLinc($out, "CENTER", $v);
innerTableEnd ($out);
#add reuse relation"
!!.I.Y SclassBody = SclassList{$v} ;
ll. ($classBody->{implement}) {

}

!!l.Y $member Body = $class Body ->{implement};
forench !!.I.Y $w(O$memberBody){

push { @relationsAdded 1 "Sv. implement . $w\n");

il ($class Body->{ inherit}) {

}

!!l.Y $memberBody = SclassBody->{inherit };
fore"ch !!l.Y $w(O$memberBody){

push (OrelationsAdded, "Sv. inherit .Sw\n") if.(&findClass($w));
}

if. ($class Body ->{extend}) {

)

5. Implementation

p u sh (@relationsAdded , "Sv. extend. $class Body->{ extend} \n")
ll.(& find Class (Sci assBody ->{extend })) ;

ll. ($class Body->{ var}){
m.Y $member Body = $class Body ->{var};
mY OvarList = ev• (%SmemberBody);
foreach !!lY Sw(<O varList){

!ll.Y hype = $memberBody->{$w};
ll. (Stype =- ;-(.+)\•+\OLIST\s+(\w+)/){

push(OrelationsAdded, "Sv. haolist .S2.Sw\n") ll.(&findClaos($2));
} else {

push (OrelationsAdded, "Sv. has . hype. Sw\n") ll.(&findClau ($type));

unless ($isHead){
#show Attribut es
!!.!.Y $displayed = 0;
innerTableStar t ($out);
unless ($isMethodOnly II SioActionOnly){

ll. ($classBody ->{ var}) {
!!!.Y $member Body = SclaosBody ->{ var};
mY <OvarList = kevs (%SmemberBody);
for each !!!.Y Sw(OvarList){

$displayed I= attrlbute(Sout, Sw, SmemberBody->{Sw});

tableLine(Sout, "LEFT", " ") unless(Sdisplayed);
innerTableEnd ($out);
#•how operation
innerTableStart ($out);
$displayed = 0;
unless (SisAttri b uteOnly II SisActionOnly){

ll.(SclassBody->{init }){
$displayed = 1;

}

!!!.Y $membe r Body = SclaosBody ->{in it } ;
foreach !!lY Sw(OSmemberBody){

ll. (Sw =- /(.+)\.(.+)/){
op e ration (lout, 11' $2, "n) i

} else {
op e ration(Sout, Sw, "()", "");

ll. ($classBod y ->{method}) {
$displayed = 1;

!!!.Y $member Body = SclassBody ->{method};
!!!Y OmethodList = keys(%SmemberBody);
foreach !!!.Y Sw (OmethodList){

!!!.Y $type = SmemberBody->{Sw};
mY ($para, Sname) = ("", "");
ll. (Sw =- /(.+)\.(.+)/){

($na me, $para)= ($1, $2);
}else{

Sname = Sw;

operat i on (lout, $name, Spara, $type);

tableLine(Sout , "LEFI'"," ") unless(Sdisplayed);
innerTableEnd ($o ut);
#•how action
innerTableStart (Sout);
$displayed = 0;
unless (SisAttri buteOnly II SioMethodOnly){

ll. ($class Body ->{action}){

105

106

$displayed = 1;
!!!Y $member Body = $cla .. Body->{action} ;
fot·each !!!Y $w(O$memberBody){

operation(Sout, Sw, "()", "");

table Line ($out, "LEFI'", " ") .H.!!l."£!!1!. ($displayed) ;
innerTableEnd ($out);

}#end of unle .. (SisHead)
externalTableEnd ($out);
nodeProperties ($out);

where the variable $islnterface is defined as:

Q Sparkb .. ·!!!Y $islnterface = 0;

5. Implementation

The supporting function externalTableStart is used to draw the start border of

class diagram and defined as:

Sparkb . . . sub externaiTableStart {
!!!Y ($out, $bgcolor) = (S-(0], "");
$bgcolor =" bgcolor=\"" . $nodeFiiiColor. " \"" lf($nodeFiiiColor ne "");
print $out "<<table border=\"0\" cellborder=\"1\" cellspacing=\"0\" ".

"cellpadding =\" 2\" port=\" p \"". $ bgcolor." >".$line Postfix ;

where the variable $nodeFillColor is defined as:

Q Sparkb .. · !.!.!Y $nodeFiiiColor = "";

and function innerTableStart is used to draw the inner border of class diagram and

defined as:

Sparkb .. . sub innerTableStart {
!.!.!Y $out= $_(0];
print $out SlinePrefix . $linePrefix."<tr><tdXtable border=\"0\" "

" cellspacing=\" 0\" cellpadding=\"1\"> " .$1inePostfix ;

where the variable $1inePrefix and $1inePostfix are defined as:

Sparkb .. · !!!Y ($line Prefix, $1inePostfix) = ("\ t", "\n");

and function tableLine is used to draw a common line of class diagram and defined

as:

Sparkb .. . sub table Line {
!!XI:" $out = $_ (0] ;
!!!Y ($topen, $tclose) = ("", "</td></tr > ");
!!1Y $prefix = $line Prefix . $linePrefix. $linePrefix i
J.f (S-(1] .!ill "CENTER"){

$topen = $prefix ."<tr><td> ";
}~sif (S-(1] .!ill "LEFI'"){

$topen = $prefix."< tr><td align=\"left\"> " ;
} e Is i f ($- (1] .!ill "RIGHT"){

5. Implementation 107

$topen = $prefixo" <tr><td align=\"right\"> ";

.I!..!:l!:!.!. $out $topen o $_ (2Jo $tclose o $1inePostfix;

where the variable $align is defined as:

Q Sparkb o o o illY $align = "CENTER";

and function innerTableEnd is used to draw inner end of class diagram and defined

as:

Sparkb o o o sub innerTableEnd {
illY $out = $_(OJ;
print $out $linePrefi x o $linePrefixo"</table></td></tr>"o$linePostfix;

and function externalTableEnd is used to close class diagram and defined as:

Sparkb o o o sub externalTableEnd {
illY $out = $_(OJ;
p r int $out $linePrefix o SlinePrefix o" </table>>";

and function attribute is used to display the attributes of class in diagram and defined

as:

Sparkb .. 0 sub attribute {
illY $display = 1;
.if(& find Class ($_ (2J)) {

$display = 0;

} else {

l!.(S-(2J =- r(o+)\•+\OLIST\a+(\w+)/){
l!.(&fin d Class ($2)){

$display = 0;
} else {

}

illY Satt = $_ (1J;
Satt o= " : "o $1 unless (SiaConciae II SiaBrief);
tableLine ($_(OJ , "LEFT", $att);

} else {
illY Satt = $_ (1J;
Satt o= " : "o $_ (2J unless(SisConcise II SiaBrie();
tableLine ($_(OJ , "LEFI'", Satt);

$display;

and function operation is used to print operations of class in diagram and defined as:

Sparkb o o o sub operation {
illY ($out, $name, $para, $type) = Q_;

!!!,Y $cs = Sname;
.!.f($iaBrief){

$co o=" ()";
} else {

Sea .= $para;
$type = "" .!.f(Sis Concise);
Sea o= " : "o Stype l!.(Stype ne "");

108 5. Implementation

and function nodeProperties is used to print the common properties of the nodes of

diagram and defined as:

Sparkb . .. s ub nodeProperties{
illY $out = $_[OJ;
prlnt Sout " fontname=\"".$nodeFontName . "\"".

font color=\"". $nodeFontColor." \" ".
fontaize =" . SnodeFontSize."); \ n";

where the variable $nodeFontName, $nodeFontColor, and $nodeFontSize are defined

as:

Sparkb .. ·illY ($nodeFontName, $nodeFontColor , SnodeFontSize) = ("aria!" , "black", 10);

After that, back end begins to print the relations listed in @relationsAdded as

following:

Sparkb . .. s ub printRelations{
mY $out= $_[0) ;
fa r each illY $r (CrelationsAdded) {

illY {$tai1Label, SheadLabel) = (" " , " ");
l.f (Sr =- /(\w+)\ . extend \ . (\w+)/){

print $out " \t// ". $1." extend ".$2. " \n " . " \t " .$2 . ":p -> " . $1.
" : p [dir=back, arrowtail=empty, color=\"". SedgeColor." \"] ; \ n " ;

} e l s i f (Sr =- /(\w+)\.implement\ . (\w+)/){
print $out "\t// " .$1." Implement ". $2."\n " . " \t" . $2 .": p -> " . $1.

": p (dir=hack, arrowtail=empty, atyle=dashed , color=\"". SedgeColor ." \ " }; \ n " ;
} elsif (Sr =- /(\w+)\ . inherit\.(\w+)/){

pl'int $out " \t// " .$1. " inherit " . $2 . "\n" ." \t ". $2.":p -> ". $1.
": p [dir=back, arrowtail=cmpty, color=\"". SedgeColor." \ "]; \ n " ;

} elsif {$r =- /(\w+)\.haslist \.(\w+)\ . (\w+)/){
_print $out "\t// ". $1." has a list of ". $2 ."\n"."\t ". Sl. ": p -> ". $2 . " : p [" .

" taillabel=\"".$tai1Label ." \", " . " label=\" ". $3 ."\", " . " headlabel=\"".$headLabel.

} •' l se {

" \ ", "." fontname=\ "" .SedgeFontName . " \ " , "." fon teo lor=\"" . SedgeFontColor . " \" , " .
" fontsize= ". SedgeFontSize ." , "." color=\ "" .SedgeColor . "\", " . $associationMap{" list " }. "] \ n "i

Sr =- /(.+)\ . (.+)\ . (. +)\ . (.+)/ ;
print $out "\t// ". $1." ". $2 ." ". $3 ."\n" ." \t ". Sl. ": p-> " . $3 ." :p ["." taillabel= \"". $tai1Lab I .

"\", " . " label=\"".$4."\" 1 " ." headlabel=\" ". SheadLabel. " \ " , " ."fontname =\" " .
SedgeFontName ." \ ", " ." fontcolor=\ "". $edgeFontColor ." \" 1 "." fontsize=".$edgeFontSize ." 1 "

" color=\ '" ' . SedgeColor. " \ " , " .$association Map {$2}. ") ; \ n " i

where the variable $edgeFontName, $edgeColor, $edgeFontSize, and $edgeFontColor

are defined as:

Sparkb . .. !'!!Y ($edgeFontName, $edgeColor) =(" aria!" , "red ");
mY ($edgeFontSize, $edgeFontColor) = (10 , "black") ;

and the variable %associationMap is defined as:

5. Implementation

Sparkb ... mY %associationMap = (" as soc", "arrowhead=none",
"navassoc", "arrowhead=open",
" has" , "arrowhead=none, arrowtail=ediamond",
"composed ", "arrowhead=none, arrowtail=diamond",
"list", "arrowhead=dot, arrowtail=ediamond",
"depend", "arrowhead=open, style=dashed");

The last job is to print epilogue as following:

Sparkb ... sub epilogue{
!!!Y $out = $_(OJ ;
prlnt $out "}\n";
clo:'!e Sout;

5.5 Testing

109

To verify the design and implementation of Spark, we performed testing following the

strategy mentioned in Section 3.6.4.

5.5.1 Usability Testing

Correct Usage

We tried to use Spark with an actual OOLP program file name, leaf.txt, as following:

peri sparkf-lime. pl leaf.txt

The result is that there are three Lime files and four pictures generated by Spark.

No Parameters

We tried to use Spark without parameters as following:

peri sparkf-lime.pl

The result is

Usage: peri sparkf.pl filename

110 5. Implementation

Wrong Parameters

We tried to use Spark with fake file name as following:

peri sparkf-lime.pl aaa

The result is

Cannot open aaa!

These three results show that Spark can handle both legal and illegal usages and

satisfies the design requirements.

5.5.2 Unit Testing

Syntax Coverage

We composed a sample code program file that coverage all the syntax of Eiffel.

Testing of a declaration of a class.

class STUDENT
end

Testing of the inheritance relation of a class.

inherit STUDENT ... PEOPLE

Testing of two features of a class.

feature {NONE} PEOPLE ... name : STRlNG
age : INTEGER

Testing of a deferred class.

deferred class PEOPLE
end

Testing of a operation with formal specification and various statements of a class

feature {NONE}
STUDENT . . . set_name (new_name: STRlNG) is

local
a: INTEGER

do
name ·- new ... name
create employees. make
getup
if text ... file ... read. is ... connected then

sp I it ·- input-string . split
end
if text ... file ... read. is ... connected then

split ·- input-string. split
else

sp II t ·- input ... string. split

end -'

inspect text ... file ... read. last ... string. first . to ... upper

5. Implementation

end

when ' S' then
text_file_read . read_line

when 'B' , 'T' then
text_file_read . read-line

else
e nd

fro m text_fiJe_read. read-line
until text_file_read . end_of_lnput
loo p

t ext_file_read. read_llne
end

Testing of a deffered o peration with formal specification of a claOB

feature
PEOPLE ... s e t_name(n : STRING) is

require

n I= Vo id
deferred
end

Tes t ing of a constant o f a class

feature {NONE} STUDENT . .. mln_age : INTEGER ia 5

Testing of an invarian t of a class

invariant

end

PEOPLE ... age> 0
age < 200

Testing of an operation with result of a class.

feature {ANY}
STUDENT ... match (n: STRING) : BOOLEAN is

do
Result .- name = n

end

I IOODE LIST BEGIN

I IOODE LIST END

After running Spark on this sample,

peri sparkf-eiffel. pi coverage. txt

we got:

Test i ng of a declaratio n of a class.

cIa s s STUDENT
end

Test i ng of the inherita n ce relation of a class .

inherit STUDENT ... PEOPLE

Testing of two features of a class.

111

112 5. Implementation

feature {NONE} PEOPLE .. . name : STRING
age: INTEGER

Testing of a deferred class .

deferred class PEOPLE
;

end

Testing of a operation with formal specification and various statements of a class

feature {NONE}
STUDENT . . . set .. name(new .. name : STRING) is

local
a: INTEGER

do
name ·- new-name

create employees. make
getup
if text_file_read. is .. connected then

split ·- input .. string . split
end
if text_file_read. ia .. connected then

split ·- input_string. split
else

split ·- input_string. split
end
inspect text_file_read . last-string. fir s t . to_upper
when 'S' then

texLfile_read. read-line
when 'B' I 'T' then

text .. file .. read . read .. line
else
end

from text-file-read . read_line
until text .. file .. read. end_of_input
loop

text_file_read. read_line
end

end

Testing of a deffered operation with formal specificat ion of a class

feature
PEOPLE ... set_name (n: STRING) is

require
n I= Void

deferred
end

Testing of a constant of a class

feature {NONE} STUDENT ... min .. age : INTEGER is 5

Testing of an invariant of a class

invariant
PEOPLE .. • age > 0

age < 200

end

Testing of an operation with result of a class.

feature {ANY}
STUDENT . .. match (n: STRING): BOOLEAN is

do
Result ·- name = n

end

..

5. Implementation

I IOODE LIST BEGIN

class S'IUDENT
inherit

PEOPLE
feature {NONE}

set-name(ncw_name : STRlNG) is
local

do
a : INTEGER

name := new _name
create employees. make

getup
if text_file_read. is-connected then

split : = i nput-string. split
end
if text-file-read. is-connected then

split .- input_string . split
else

split . - input-string. oplit
end
inspect

text_file_read. last_otring. first. to_upper
when 'S' t h en

text_fi}e_read. read-line
when 'B', ' T' then

text_file_read. read_line
else
end
from

text-fil e -read . read-line
until text _file_read. end_of_input
loop

text-fil e _read . read_line

end
end

min_age : INTEGER Ia 5
feature {ANY}

end

matcb(n : STRlNG) : BOOlEAN lo
do

Result .- name = n
end

deferred claSB PEOPLE
feature

oet_name(n: STRlNG) is
require

n I= Void
deferred
end

feature {NONE}
name : STRlNG
age : INTEGER

invariant

end

age> 0
age < 200

I IOODE LIST END

113

The result shows that Spark can parse syntax of Eiffel and generates files correctly.

114 5. Implementation

Diagram Files Generating

We composed a mod file for testing of diagram generation.

OCLASSDIAGRAM studentl . ps2 PEOPLE SI'UDENT ATHLETE CVERTICAL
CCLASSDIAGRAM student2 . ps2 PEOPLE SI'UDENT CHEAD
CCLASSDIAGRAM otudent3 . ps2 SI'UDENT CMEiliOD
OCLASSDIAGRAM otudent4 . ps2 SI'UDENT CATI'IUBUTE
OCLASSDIAGRAM studentS. po2 SI'UDENT C CONCISE
CCLASSDIAGRAM studentS . ps2 STUDENT C BRlEF

OCLASS PEOPLE
CMEiliOD set_name {n:STRlNG)
CVAR name STRlNG
CVAR num STRlNG

CCLASS SI'UDENT
C INHERlT PEOPLE
CIMPLEMENT ATHLETE
CIME1HOD match (n :STRlNG) B<X>LEAN
OVAR num INTEGER
CIME1HOD run

CINTERFACE ATHLETE
CMEiliOD run

According to this mod file, Spark should generate 6 diagrams. Figure 5.5 is drawn

vertically and includes all these three classes or interface.

PEOPLE
(htez:ta.ce

ATHLETE
nam e : S TR lN G

set.._nam e t>:STRlNG)
n.m 0

\ f1
I

STUDENT

num : :INTEGER

runO
m atchtl:STRlNG) :BOO LEAN 1

PEOPLE r------~1 STUDENT
1

Figure 5.5: Vertical testing Figure 5.6: Horizontal testing

Figure 5.6 is drawn horizontally and shows the class head only.

Figure 5. 7 shows the methods of a class only and figure 5.8 shows the attributes

of a class only.

Figure 5.9 and figure 5.10 show classes in concise form and briefform respectively.

The results shows that Spark satisfies the design requirements.

5. Implementation 115

STUDENT STUDENT

num :NTEGER
runO
match¢l:STRN G) :BOOLEAN

Figure 5. 7: Method only testing Figure 5.8: Attribute only testing

STUDENT STUDENT

nurn num

nmO mnO
m atr::h ~ :STRlNG) m atr::h ()

Figure 5.9: Concise form testing Figure 5.10: Brief form testing

5.5.3 Integration Testing

Our case study itself is perfect integration testing for Spark. The result that pro­

gram files can be compiled successfully and the graphic notation files is successfully

included in the documentation (see Chapter 4) shows that Spark satisfies the design

requirements.

5.5.4 System Testing

We conducted all testing mentioned above on MS Windows and Macintosh. The

same results show t hat Spark is platform-independent and Spark satisfies the design

requirements.

Chapter 6

Conclusion and Future Work

In this thesis, we presented a new programming paradigm, object-oriented literate

programming, which combines several existed significant ideas and is used to con­

struct object-oriented programs in literature style. A set of software tools, Spark, is

implemented to support this technique. So far the implementation of Spark altogether

contains about hand-written 5000 lines and consists of the following four parts:

• The front end of Spark for Lime (1200 lines).

• The front end of Spark for Eiffel (2500 lines).

• The front end of Spark for perl (800 lines).

• The back end of Spark (500 lines).

Chapter 3 introduced OOLP and all features of Spark, from which we can see

how programmers can enjoy the freedom of choosing the combination of languages

to develop their software. Chapter 4 gave a case study, Transit Information System,

implemented with this technique. It turns out that object-oriented software applica­

tions can be expressed in literate style well. In addition, programmers do not need to

worry about the graphical notations as well as any extra cost spent on training and

tools. Of course, more complex examples are still needed to validate this technique.

Spark itself needs further development to make it more complete and useful. One

of the most important things is to build more front ends for Spark in order to adapt

more object-oriented programming languages, such as Java and C#.

116

6. Conclusion and Future Work 117

More graphical notations are need to be supported. So far, Spark can only generate

class diagrams. In fact, further development could let Spark have the ability to

produce dynamic diagrams, such as sequence diagram and statechart, which can

make software documentation more expressive and more complete.

Appendix A

Installation

In order to run the study case presented in this thesis it is necessary to get hold of the

following five separate tools. All of them have setup programs as well as installation

instructions that can be found on the Web.

A.l Perl

Perl is a dynamic programming language created by Larry Wall. As an

open source software, every body can download its latest version for free from

www. perl. com/ download. csp.

Perl is necessary, because Spark is developed entirely in this language. The version

5.8.8.820 is employed in the testing of Spark.

A.2 Graphviz

Graphviz is a package of open source tools initiated by AT&T Research

Labs for drawing graphs specified in DOT language scripts. Since it is free

software licensed under the Common Public License, every one can down­

load it for free from www.ryandesign.comjgraphviz (for Mac OS) and from

www.graphviz.org/Download_windows.php (forMS Windows)

Graphviz is necessary, because the back end of Spark depends on it. The version

2.12 is employed in the testing of Spark.

118

A. Installation 119

A.3 AsciiDoc

AsciiDoc is a text document format for writing short documents, articles, books

and UNIX man pages. Its files can be translated to HTML and DocBook markups

easily. Free use of AsciiDoc is granted under the terms of the GNU Gen­

eral Public License, so every one can download the latest version for free from

www. methods. co. nz/ asciidocj downloads. html.

AsciiDoc is necessary, because it is used as the document formatting language in

the study case. The version 8~2.1 is employed in the testing of Spark.

A.4 Python

Python is a dynamic object-oriented programming language. As an OSI certified

open source software, every body can download its latest version for free from

www. python. orgj download.

Python is necessary, because AsciiDoc depends on it. The version 2.5.1 is em­

ployed in the testing of Spark.

A.5 SmartEiffel

SmartEiffel is a free Eiffel compiler. It has been developed at the Lorraine Labora­

tory of Research in Information Technology and its Applications, an institute affili­
ated to the French National Institute for Research in Computer Science and Control.

SmartEiffel can be downloaded for free from smarteiffel.loria.fr.

SmartEiffel is necessary, because Eiffel is chose as the programming language in

the study case. The version 2.2 is employed in the testing of Spark.

Appendix B

Source Code of Case Study

= The Requirement of Transit Information System
In this project , we are asked to develop an information system for a
local train and bus service. Our customer, HPTA (Happy Passenger
Transit Authority) , has no clear picture what it should do, except
to increase customer satisfaction and make traveling more
attractive. All the information we have goes as follows:

It will be used by passengers as well as by HPTA staff o
Selected staff members would be allowed to update the information.

Passengers should be able to enter their start and destination 1 a desired time 1 and get a bunch
of possible connections .
Connections can be direct or with changing busses or trains.
For each bus and train station 1 the information like opening hours and accessibility is maintaine
Users can browse a list of all bus and train routes or check the details of a certain route .
Some bus stops and train stops are conjoint , but some not .
Trains have two-digit numbers and busses have three-digit numbers.
Connections between trains and busses must have at least five minutes for the change .

For simplicity , we assume that detours and delays do not occur, stops are never skipped.

= An Overview
The following picture is an overview of this transit information system . As the root class 1

HPTA-TRANSIT..INFO is a subclass of SYSTEM, which is a predefined class in Eiffel and allow its
subclasses to execute system command. Class DATABASE is a deferred class, whose subclasses, such as
class FILE..DATABASE, are responsi bie for maintaining system data o Class CONNECTION..FINDER is also a
deferred class 1 whose subclasses 1 such as class PRIME-FINDER, are responsible for finding the
possible connections .

image: : hpta_transit-info ojpg(Class Family(
/ J$ HPTA_TRANSIT..INFO DATABASE FILE..DATABASE CONNECTION..FINDER PRIME..FINDER ROUTE STAFF STATION KN

The purpose of the application is to maintain the system information , including local train or bus
service and the status of staffs 1 and provide users current public transit service information,
including possible connections 1 and routes.

= Dictionary
To understand the main terms used in the requirement 1 we create a dictionary.

passenger : a person, who want to g e t his or her destination by bus or train .
staff : a person, who works for HPI'A.
start: a station , where a passenger begin his or her journey.
destination : a station to which a passenger is going or directed .

120

@VERTICAL

B. Source Code of Case Study

- desired time: an int e rval , within which one want get to the destination from the start.
- connection : a sequence of stations .
- bus: a long motor vehicle for carrying passengers, usually along a fixed route.
- train: a series of c o nnected railroad cars pulled or pushed by one or more locomotives.
- route: a course for buses or trains to travel from one station to another.
- opening hour : a time 1 at which the first vehicle departs.
- accessibility: a description of the running status of a station .
- update : a change of s ystem information.

- browse : a display of the information of all routes .
- check: a detail show of a certain route information.

- Identifying Classes
Bas i ng on the requireme nts, we defined the classes as follows:

class HPTA_TRANSITJNFO
end

HPTA_TRANSITJNFO is i d entified as a class of the entire system.

class STAFF
feature {NONE}

end

number: INTEGER
password : STRING

121

STAFF is a class with a ttributes employee number and password. The requ i rements state that selected
staff members would be allowed update the system.

class STATION
feature {NONE}

name: STRING
open: STRING
ac ceo si bi li ty : STRlNG

end

STATION is a class with attributes name, opening hour 1 and accessibility .

cla88 ROUIE
feature {NONE}

t

number: INTEGER
stops: LINKED..LIST

end
(STATION]

RDUIE is a class with attributes station list and route number.

- Identifying Operatio n s
All three operations li s ted in the directory belong naturally In the claBO HPTA_TRANSITJNFO,
because they are depend e nt on the interface of the system.

- login should belong i n claoo STAFF, because it keep the secret of a certain staff.

- Consulting The Libra r y of Model
There is no suitable business model in our existing library, so we have to build this system from
the beginning.

- Applying Design Patt rna
Acco r ding to the requirements, our application needs to keep all system information and to calculat
poss i ble connections. There exist so many different methods for these two tasks. Hence 1 we apply th
strategy design pattern . We declare two deferred classes

deferred class DATABASE
end

122 B. Source Code of Case Study

~

and

deferred class CONNECTION..FINDER
end

Then, we define two private members for class HPTA_T RANSITJNFO denoted by the class name
followed by three dots as following:

feature {NONE}
HPTA..TRANSITJNFO ... db: DATABASE
finder: CONNECTION..FINDER

i.e.

image:: hptal. jpg [attri bu tea of class HPTA..TRANSITJNF OJ
//S HPTA_TRANSITJNFO @ATTRIBUTE
In this way, we can add new algorithms easily and eve n change mechanisms at runtime with
the following private methods:

feature {NONE}
HPTA..TRANSITJNFO ... set_fin der (new_finder : co NNECTION..FINDER) is

require

new .. finder I= Void
do

finder ·- new .. finder
ensure

finder = new .. finder
end

and

feature {NONE}
HPTA_TRANSITJNFO ... set-database (new-database DATABASE) is

require
new .. database /= Void

do
db ·- new .. data base

ensure
db = new .. database

end

Their preconditions require that the new comers are n ot invalid and their postcondition& ensure tha
the private member db and finder are set correctly.

Class CONNECTION..FINDER describes the interface that is common to all concrete mechanisms
as following :

image:: connection . jpg [Class connection .. finder]

ff$ CONNECTION..FINDER <DIMEIHOD

feature {HPTA-TRANSITJNFO}
CONNECTION..FINDER .. .
get .. connection (dbase: DATABASE; start , destinatio n: STRING; time: INTEGER) : STRING is

require

start /= Void
destination /= Void
time >= 0
dbase /= Void

deferred
end

Class DATABASE describes the interface that is common to all concrete data maintain mechanisms

as following:

B. Source Code of Case Study 123

image:: database. jpg (Class database]
/ j$ DATABASE CMEIHOD

feature {HPTA-TRANSIT ..INFO, CONNECTION~DER}
DATABASE ... get_first_bue_route : ROUTE is

deferred
end

This method can return the first bus route object and is used by etas s HPTA..TRANSIT..INFO and cia ..
an browse all bus routes CONNECTION..FINDER. Together with the following method, ita clients c

one by one .

feature {HPTA_TRANSIT NFO, CONNECTION..FINDER}
DATABASE . . . get _next_bue_route(route : ROUTE) : ROUTE is

deferred
end

Similarly, we can brows e all train routes by the following two me tho

feature {HPTA-TRANSIT..INFO, CONNECTION~DER}
DATABASE ... geLfirst_train_route: ROUTE is

deferred
end

and

feature {HPTA_TRANSITJNFO, CONNECTION..FINDER}
DATABASE .. . get - next_train-route(route : ROUTE): ROUTE is

deferred
end

Browsing all staff information io not necessary , but we need to find
by the following method .

feature { HPT A-TRANSIT ..I FO, CONNECTION..FINDER}
DATABASE ... fin _staff (num: INTEGER): STAFF lo

require

num > 0
deferred
end

This method can return an STAFF object , whose employee number equals
because all employee number start from 1 that the precondition is ad

For convenience , we also provide a route finding method as follows:

feature {HPT A_ TRANSIT J NFO, CONNECTION~DER}
DATABASE .. . find-route (num: INTEGER): ROUTE Ia

require
num >= nl in_trai n_route_n urn

num <= max_bus_route_num
deferred
end

The following met bod is the creation of class DATABASE and Invoked b

feature {HPT A-TRANSIT JNFO}
DATABASE .. . make is

deferred
end

---- -···•·· ·---·~-~-·

de:

given staff object

to the parameter num . It is
ded .

y cla88 HPTA..TRANSITJNFO only.

124 B. Source Code of Case Study

In order to update system information· , class DATABASE also requires the interfaces of adding and
deleting as following:

feature {HPTA-TRANSIT..INFO}
DATABASE .. . add_route(new_route: ROUTE) is

require
new-route I= Void

deferred

end

and

feature {HPTA-TRANSIT..INFO}
DATABASE . . . delete_rou te (rout e : ROUTE) is

require

route I= Void
deferred
end

These two methods can add
system respectively and is

or del e te a
called by

certain route t
class HPTA_TRAN

o or from this
SIT..INFO only .

Similarly , class HPTA_TRANSIT ..INFO also can add or de lete a certain staff by the following
two methods :

feature {HPTA_TRANSIT..INFO}
DATABASE . .. add_staff (new_staff: STAFF) is

require
new-staff I= Void

deferred
end

and

feature {HPTA_TRANSIT..INFO}
DATABASE ... delete-staff (staff : STAFF) is

require
staff I= Voi d

deferred
e nd

As long as some system information is updated, DATAB ASE object must be informed to save the
change by the following method .

f e ature {HPTA_TRANSIT..INFO}
DATABASE ... do_save is

deferred
end

Accord i ng to the requirements, only selected members
the database is locked , only the user , who knows both
an update .

feature {HPTA-TRANSIT..INFO}
DATABASE . . . is-locked: BOOlEAN is

deferred
end

The subclass e s of these two defe rred classes implemen

The following four constants are used to point out th

feature {NONE}
DATABASE . . . max_bus_route_num : INTEGER is 999
min_bus_route_num : INTEGER is 100

can update the system. We define that when
employe e numbe r and password , can conduct

each concrete behavior mentioned above.

e bound of route number

B. Source Code of Case Study

max_train_rout o -num : INTEGER is 99
min_train_rout e _num: INTEGER is 10

- Algorithms Design
-- File Database
For simplicity , we save the system information in a file named "sys_info. txt". So we define a
subclaos of cia .. DATABASE, FILE_DATABASE ao following:

cl a so FILE_DATABASE
inherit DATABASE
feature {NONE}

file_name: STRlNG is "sys_info.txt"
end

i.e .

image : : databases . jpg [t h e hirarchy of databases)
I I$ DATABASE FILE..DATABASE QHEAD CVERTICAL

class FILE..DATABASE ke e p bus routes, train routes and staffo with LINKED..LIST ao following:

feature {NONE}
FILE..DATABASE . . . t rain_rou tea: LINKED..LIST (ROUI'E)
bus-routes: LINKED_LIST (ROUI'E)
employees: LINKED-LIST (STAFF)

now, cl aBB FILE..DATABASE becomeo:

image:: file-database . jpg (attributes of file databaoe)
I I$ FILE_DATABASE CATTRIBUTE

The creation of FILE_DATABASE io method make

create FILE_DATABASE ... make

The main task of make io to initialize thio three liot

feature {HPTA-TRANSITJNFO}
FILE..DATABASE •.. make io

do
create empl oyees. make

create b us-routes .make
create train-routes .make
load

ensure

end

employees /= Void
bus_routes I= Void
traln_routeo I= Void

and to load the oyotem Information for that fll e:

feature {NONE}
FILE_DATABASE ... load is

local

do

input_string : STRING
text_file_read: TEXT..FILE..R.EAD
text-file_w ri t e: TEXT ..FILE.. WRITE
oplit: ARRAY(STRING)
new-staff: STAFF
route: ROUI'E

create text_fil e_read. connect_to(file-name)
if text-file_read. is-connected then

from text_file_read. read _llne

125

126 B. Source Code of Case Study

else

end
end

until text_file_read. end_of_input
loop

if text_file_read .last_string. upper = 1 then

end

inspect text-file-read . last-string. first. to_upper
when 'S' then

text_file_read. read_Jine

input-string := text_file_read .last_string. twin
split := input-string. split
create new_staff .make (split . first. to-integer, split .last)
employees. add_last (new_staff)

when 'B', 'T' then
text_fi)e_read . read-line

else

end

input_atring := text_file-read . last-string .twin
split := input_string. split
route := find_route(split . item(4). to-integer)
if route =Void then

create route . make(split. item (4) . to-integer)
route.add_station(split.first, split.item(2), split.item(3), split.last
if split. item (4) . to-integer > max_train_route_num then

bus_routes . add-last (route)
else

train_routes. add_last (route)
end

else
route.add_station(split.first, split.item(2), split . item(3), split.last

end

text_file-read. read_line
end
text_file-read. disconnect

create text_file_write. connect_to (file_name)
if text_file_write. is-connected then

text_fi)e_write. disconnect
end

By the following method, one can get the specific route object .

feature {HPTA-TRANSITJNFO, CONNECTION..FINDER}
FILE..DATABASE ... find_route (num: INTEGER) : ROUI'E is

local

do

i : INTEGER
route: ROUTE

if num > max_train_route_num then
from i := bus ... routes .lower
until i > bus_routes.upper or else bus_routes . item(i) .match(num)
loop

·- i+l
end
if i <= bus-routes . upper then

route .- bus ... routes. item (i)
end

else

end

from i .- train-routes . lower
until i > train-routes . upper or else train ... routes .item(i) .match{num)
loop

i := i+l
end
if i <= train-routes.upper then

route . - train_routes . item{ i)
end

Result . - route

B. Source Code of Case Study

end

Similarly, using the f llowing method, one can get the staff with such employee number:

feature {HPTA-TRANSIT NFO, CONNECI'ION..FINDER}
FILE.DATABASE . . . find_staff (num: INTEGER): STAFF is

local

do

end

i : INTEGER
staff: STAFF

from i ~ - employees. lower
until i > employees.upper or else employeea.item(i) .match(num)
loop

i · - i+l
end
if i <= employees . upper then

staff := employees.item(i)
end
Result . - staff

By the following four methods, one can browse all train route a and bus routes:

feature {HPTA_TRANSITJNFO, CONNECI'ION..FINDER}
FILE.DATABASE . . . get_first_buo_route: ROI1l'E io

local

do

end

route: ' ROUTE

if not b us-routes . ia_empty then
rout e := bua.routea. first

end
Result : = route

get_next_bus_route(route: ROUTE}: ROUTE is
require

buo_routeo.index_of(route) > 0
local

do
next_route: ROUTE

if bus-routes. index.of(route) < bus-routes. upper then
next_route := buo_routeo .item(buo-routeo. index_of(route)+l)

end
Result := next.route

end
get_first_train _ route: ROUTE is

local

do
route: ROUTE

if not train-routes. is-empty then

route := train-routes . first
end
Result := route

end
get_next_train_ oute(route: ROUTE): ROUTE io

require
train.ro tea.index.of(route) > 0

local

do

end

next.route: ROUTE

if train _routea.index_of(route} < train_routeo.upper then
next- r oute := train-routes .item(train-routea. index_of(route}+l}

end
Result .- next-route

By the following method , HPTA..TRANSITJNFO object can add an arbitrary route to this databaoe

1·-- ..

127

128 B. Source Code of Case Study

feature {HPTA_TRANSITJNFO}
FILEJ)ATABASE ... add-route (new _route: ROUTE) i

do
if is-bus (new-route. get-number) then

bus-routes. add-last (new-route)
elaei f is. train (new-route. get_n urn her) then

t rai n_rou te s. add_laat (new _route)
end

end

By the follow! ng method, HPT A-TRANSITJNFO o bj ec t can add a staff to this database

feature {HPTA-TRANSITJNFO}
FILEJ)ATABASE ... add_staff (new _staff : STAFF) i

do
employees . add_Jast (new-staff)

end

By the following method, HPT A-TRANSIT JNFO object can remove an arbitrary route from this database

feature {HPTA-TRANSITJNFO}
FILE_DATABASE •.. delete-route (route: ROUTE) i

do
If is-bus (route. get-number) then

bus-routes. remove(bus-routes. in de x_of(route))
elseif is_train (route. get_number) the

train.routes . remove(train.routes .
end

end

By the following method, HPTA-TRANSIT JNFO object can

feature {HPTA-TRANSITJNFO}
FILE_DATABASE ... delete_st aff (staff: STAFF) i

do
employees. remove (employees. index_of (s

end

In FILE_DATABASE, as long as employees is not empty,

has to Jog in before updating.

feature {HPTA-TRANSITJNFO}
FILE_DATABASE ... is-locked : BOOLEAN is

do
Result ·- not employees. is.empty

end

Whenever the database is changed, it have to save the
following method :

feature {HPTA_TRANSITJNFO}
FILE_DATABASE ... do_save is

local
file-2.write: TEXT ..FILE-WRITE
i: INTEGER

do

n
index_of(route))

remove a staff from this database

taff))

this database is locked , which means the user

new data to the specific file by the

create fi Je_2 _write . connect_to (flle_na me)
if file.2.write. is-connected then

from i ·- employees . lower
until i > employees. upper

loop
employees . item (i) . do_save (fil

i ·- i + 1

end

B. Source Code of Case Study 129

fro m i ·- bus routes .lower
until i > bus.routes . upper
loo

bus-routes. item (i) . do-save (fi I e-2-write)
i ·- i + 1

end
fro m i ·- train-routes .lower
until i > train routes.upper
loop

t rain rou tes. item (i) . do_save(
i ·- i + 1

end
fil e 2 write . disconnect

else
io . p ut_string ("Update database fail edi%N")

end
end

For convenience, we define the following two methode to tell if the current route is bus or
train route :

feature {NONE}
FILE.DAT ABASE ... is train (num: INTEGER): BOOLEAN i

do
Result ·- num >= min train rou te n urn and nu m <= max_train_route_num

end
is bus (num: INTEGER): BOOLEAN ia

do
Result ·- num >= min bua route num and num

end

-- Conditional Shorte s t Path
According to the require ment
five minutes for the change,
stations even they share the

that connections between
we have to consider bus
same name. In addition

trains and busses must have at least
station and train station as two different
we define a constant change_time in class

CONNECI'ION..FINDER, whos e au bclaaaea need it .

feature {NONE}
CONNECI'ION..FINDER ... change-time : INTEGER is 5

For convenience, we ass me that a bua needs 2 minutes to get to the second atop and a train
two members in claaa CONNECI'ION..FINDER. needs only 1 minute. So we also define the following

feature {NONE}
CONNECI'ION..FINDER ... train-time: INTEGER is 1
bus time: INTEGER is 2

PRIME..FINDER is one of the subclasses of CONNECTION ..FINDER

inherit
PRIME..FINDER ... CONNECI'ION..FINDER

i.e.

image:: connect i on tinder. jpg (hierarchy of class HPTA.: TRANSIT ..INFO]
//S CONNECI'ION..FINDER PRIME..FINDER OHFAD OVERTICAL

Our first algorithm, PRIME..FINDER, io that starting f rom the start stations , Including both bus
elghboro one after another and calculate

ound the destination as the next neighbor
n , our searching work is done .

stat i on and train stati o n , we search for all direct n
thei r time respectively. In this way, ao long a a we r
or no more new neighbors before get to the deatinatio

To implement this algorithm, we declare liB t in claaa PRIME..FINDER

feature {NONE}

130

PRIME..FINDER .. . stop_list: LINKED ..LIST (KNOT)

Every node of this I is t record the following informat

image : : knot . jpg [attribute of class KNOT)
//$ KNOT CATI'RIBUTE

feature {NONE}
KNOT ... station : STATION

Form the start down to the destination , as long as th
it will be set in a KNOT object by the following meth

feature {PRIME..FINDER}
KNOT ... set-station(value: STATION) is

do

station ·- value

end

Of course , class KNOT requires PRIME..FINDER object gl

feature {PRIME..FINDER}
KNOT ... get_station : STATION is

do
Result ·- station

end

Aft e r searching, PRIME..FINDER object can get the reco

feature {NONE}
KNOT ... number: INTEGER

The number of KNOT object keeps the route number of t

feature {PRIME..FINDER}
KNOT . •. set-number (value: INTEGER) is

require

value >= 0
value <= 999

do
number ·- value

end

A c cording to the requirement that train route number

number is a three-digit number , we set a precondition

feature {PRIME..FINDER}
KNOT •.. g e t-number : INTEGER is

do
Result ·- number

end

The above m e thod can tell PRIME..FINDER object the rou

feature {NONE}
KNOT .. . time: INTEGER

Member time records the total time needed from start

featu r e {PRIME..FINDER}
KNOT • . . set_time (value : INTEGER) is

requir e
value >= 0

do

B. Source Code of Case Study

ion :

e station is found as a valid neighbor ,
od .

ve a non Void value .

rd of station by the above method .

he station and is set by the following m e tho d:

i s a two-digit number and bus route

like that for this method .

te, to which this station belongs.

and is set by th e following method

B. Source Code of Case Study

time o- valu
end

The time of start node is 0 and the time of destination
KNar object requires a nonnegative number.

feature {PRIME..FINDER}
KNar o o o get-time: INTEGER is

do
Result o- time

end

The above method is use d to provide time for PRIME..FINDE

feature {NONE}
KNOl' 0 0 o pred : INTEGER

This member is used to record the index of last stop in
That the pred of two d e stination are all -1 means that t
the start and the dest i nation.

PRIME..FINDER object se t this member by the following met

feature {PRIME..FINDER}
KNar 0 0 0 seLpred (val ue: INTEGER) is

do
pred o- valu e

end

and get the value of t his member by the following method

feature {PRIME..FINDER}
KNOl' o o o get_pred : INTEGER is

do
Result o- pred

end

Then, how can we judge if this node should be check for
status in class KNaro

feature {NONE}
KNOT .. . status: INTEGER

is desire time plus one, so here

object o

this list o The pred of start is -1.
here is no possible connection between

hod:

new neighbors? we define the member

If there is no more new neighbors can be found for the current station , thia member ahould
be set as permanent, w hich le a constant or class KNOI';

feature {PRIME..FINDER}
KNOT ... permanent: INTEGER is 1

otherwise , member statu s should be set as tentative , wh lch io another constant of class KNar o

feature {PRIME..FINDER}
KNOT ... tentative: INTEGER is 0

This member can be set y the following method

feature {PRIME..FINDER}
KNaro o o set-status (value: INTEGER) Is

require
value >= tent a tive
value <= perma nent

do
status o- val u e

end

- --------- ·- __ o

131

132

and get by the following method

feature {PRIME..FINDER}
J<Nar ... get-status: INTEGER is

do
Result .- status

end

Method make is the creation of class KNar

creation {PRIME..FINDER}
J<Nar ... make

B. Source Code of Case Study

and its main task is to initialize this object with the given parameters as following :

feature {PRIME..FINDER}
J<Nar ... make(so: STATION; num, t, ss, pr: INTEGER) is

do

end

set-station (so)
set_number (num)
set_time (t)
set_status (ss)
set_pred (pr)

Every node is added into the list by the following method :

feature {NONE}
PRIME..FINDER ... add-node (pr: INTEGER; s: STATION; t , num: INTEGER) is

require
t >= 0

local

do
node: KNar

create node.make(s, num, t, node.tentative pr)

if s = Void then
node.set_status(node.permanent)

end
stop_list .add_last(node)

end

If the station is Void, then the new node will be considered as dead.

The logic of possible connection finding is implemented mainly in the following method.

feature {HPTA_TRANSITJNFO}
PRIME..FINDER .. .
get_connection (dbase: DATABASE; start , destination: STRING; time : INTEGER): STRING is

require else
stop_list. upper = 0

local

do

connection, cur-station: STRING
node: KNar
i , monitor: INTEGER
is-end , break: BOOLEAN

connection .- ""
desire_time .- time
add_bus-train_station (dbase, destination, desire-time+l)
add_bus_train_station (dbase , start , 0)

i · - 3
cur_station .- start. twin

from
until is-end or else cur_sta.tion = Void

B. Source Code of Case Study 133

loop
monitor := atop_list. upper
find_ eighbor (dbaae, cur_station, i)
if m o nitor= stop-list .upper then

end

if stop-list. item (i) /= Void then
stop_list. item (i) . set-status (node. permanent)

end

ia_end . - True

from
until break or else i > stop_list .upper
loop

end

if stop_Jist. item(i) /= Void then
node := etop_list. item(i)

end

if node.get_status = node.tentative and node . get_station /=Void then
cur-station := node . get-station . get-name
ia_end := False
break .- True

end

if not break then

i ·- i + 1
end

if bre ak then
broak .- Falee

end
end

connecti o n .- get-connection-mea (1)
connection . - connection + get_connection-mea (2)

if conne c tion. aame-as ("") then

end

conne c tion := "There is no connection from your start"
+ " to your destination in such time."

Result .- connection

ensure
Result / = Void

end

The first parameter pr o vides the source of data; the second and third parameters are the names
of start station and d e stination station respectively; the last parameter is the desire time ,
which will be used to se t the private member desire-time:

feature {NONE}
PRlME-FINDER ... desire-time : INTEGER

At the beginning of searching, we initialize the stop_Jiot of a PRlME-FINDER object with four
nodes 1 i.e. bus and train stations of destination followed by bus and train station& of start 1

using the following method:

feature {NONE}
PRlME..FINDER .. . ad d _bua_train_station(dbaae: DATABASE; name: STRING ; time: INTEGER) is

require
name /= Void
time >= 0

local

do

route : ROUTE
station : STATION
is-end: BOOLEAN
num: INTEGER

route := dbase. get_first_bua_route

134

end

from
until is .. end or route = Void
loop

station : = route . get .. first .. station
from

until is .. end or station = Void
loop

if name.same .. as(station .get .. name) then

is ... end := True
end
if not is .. end then

B. Source Code of Case Study

station . - route . get ... next .. station (station)
end

end

end
If not is-end then

route := dbase . get .. next ... bus .. route (route)

end

if not is .. end then
station := Void

end
if route /= Void then

num . - route . get .. number
else

num . - 0
end
add .. node(-1, station, time , num)

station := Void
is .. end := False
route := dbase. get .. first .. train .. route

from
until is .. end or route =Void

loop
station := route. get .. first ... station
from
until is .. end or station = Void

loop

end

if name. same .. as (station. get .. name) then
is .. end := True

end
if not is .. end then

station .- route . get .. next ... station (station)
end

i r not ia_end then

end
end

route .- dbase. get_next_train_route (route)

if not is_end then
station : = Void

end
if route /= Void then

num . - route . get_number
else

num . - 0
end
add_node(-1, station, time, num)

Then from the bus station of start , we try to find its direct neighbor by the following method :

feature {NONE}
PRlME..FINDER ... find-neighbor (dbase : DATABASE ; sn : STRING ; pr: INTEGER) is

require
sn /= Void

local
cost , index , switch: INTEGER

B. Source Code of Case Study 135

do

p_node , node : KNar
route : ROUTE
station , last: STATION
name : ST NG
break : BOOLEAN

from swi t ch := 0
until sw i tch >
loop

if s w itch = 0 then
c at . - bua ... time

else
c at . - train ... time

end
if p r >= stop_list . lower and pr <= otop_llot. upper then

p _node .- otop_liot. item(pr)
end
if p _node /= Void then

i f p_node . get_otation /= Void then
if ow itch = 0 then

if io_train (p_node.get_number) then
cost := change ... time + coat

end
route : = dbaoe . get_flrst_buo_route

else
If ia_bus (p_node . get-number) then

coat := change ... Ume + coat
end
route := dbase. get ... Cirat ... train ... route

end
from
until route = Void
loop

station .- route . get ... firat ... atation
last := station
from
until station = Void or break
loop

name := station. get ... name . twin
if name /= Void and name. io_equal (on) then

if not last. get-name. io_equal (name) then
index := get_index (Ia at , route. get-number)
If index >= 0 then

end

node := otop_list. i tem(index)
if node . get-station /= Void then

end
else

if la_train (node . get_number) then

end

If node. get_tlme > p_node. get_time + coot then
node.set_pred(pr)
node . oet_tlme(p_node . get_time +coot)
node . aet ... num her (route. get ... number)

end

add ... node(pr, last, p ... node. get ... time+coat, route . get ... number)
end

last := route . get_next_etatlon (station)
If laot /= Void then

Index := get-Index (last, route. get-number)
If index >= 0 then

node := stop-list. item (index)
If node. get_otatlon /= Void then

if is-train (node.get_number) then
if node . get_tlme > p_node.get_time +coot then

node .oet_pred(pr)
node. set-time (p_node. get-time + coot)
node . set-number (route. get_number)

136 B. Source Code of Case Study

end
end

end

end
end

end

end
else

end
end

add ... node(pr, last, p ... node.get ... time+cost, route.get ... number)
end

end
break := True

else
last := station i
station . - route . get ... next ... atation (station)

end

break := False
if switch = 0 then

route .- dbase. get ... next ... bus ... rou te (route)
else

route .- dbase. get ... next ... train ... route(route)
end

switch := switch + 1

For convenience, we define the following two methods to tell if the current route is train or bus:

feature {NONE}

and

PRlME..FINDER ... is-train (num: INTEGER): BOOLEAN is
do

Result .- num >= 10 and num <= 99
end

feature {NONE}
PRlME..FINDER .. . is_bus(num: INTEGER): BOOLEAN is

do
Result . - num >= 100 and num <= 999

end

The following method is used to get the index of a certain station in the list; if the target
station is not in the list , -1 will be return.

feature {NONE}
PRlME..FINDER ... get-index(s: STATION ; num : INTEGER): INTEGER is

require
s /= Void

local

do

ind , i : INTEGER
node : J<Nar
name : STRING

ind := -1
from i .- stop ... list .lower
until i > stop ... list. upper

loop
node:= stop_list.item(i)
if node. get-station /= Void then

name := node . get ... station . get ... name
if name. is-equal (s .get-name) then

if is_bus(num) and is_bus(node.get_number) then
ind := i

elseif is_train(num) and is_train(node.get_number) then
ind := i

B. Source Code of Case Study

end

end
end

end

i := i + l
end
Result . - in d

When the searching is d one, we can get the information of possible connections by the
following method:

feature {NONE}
PRIME-FINDER .. . get-connection-mea (index : INTEGER) : STRING is

require
index >= 0

local

do

node: KNOT
mea : STRING

mes : = " "
node := stop_list. item(index)
if node /= V o id then

if node.g e Lstation /=Void then
if node. get_pred /= -1 and node . get_time <= desire-time then

mes := " -No."+ node.get ... number.to ... string + "->"
+ node. get ... station . get ... name + " in "
+ node. get ... time. to_atring + " minuteacrcN"

nod e := stop_list.item(node.get_pred)
fro m

137

un t il node =Void or else node . get ... atation =Void or else node. get ... pred -1

end

loop

end

mea:= "-No."+ node.get ... number.to ... etring +"->"
+ node. get ... atation. get ... name + mea

node := stop_llst . item(node.get_pred)

if node /= Void then

else

end
end

end
end
Result .- mes

if node.get_station /=Void then
mea .- ""oN" + node. get ... station. get ... name + mea

end

mea .-

The creation of PRIME..FINDER is method make

creation {ANY} PRIME..FINDER ... make

it is defined as follow i ng:

feature {HPTA-TRANSIT..INFO}
PRIME-FINDER .. . ma ke La

do
create stop ... liat .make

ensure
stop-list / = Void

end

Now, let us talk about t he root claao HPTA-TRANSITJNFO.

image:: hpta2 . jpg (method of cia sa HPTA..TRANSIT..INFOJ
/ f$ HPTA-TRANSITJNFO OMElHOD

138 B. Source Code of Case Study

The creation of class HPT A-TRANSIT ..INFO is make

create HPTA-TRANSIT..INFO. ,. make

Its main task is to initialize the database and co nne ction finder , and then run the whole system:

feature {ANY}
HPTA-TRANSIT..INFO ... make is

local
prime ... finder: PRlMIU'INDER
file-database: FILE..DATABASE

do
create fi le ... data base. make
set-database (file-database)
create prime ... Cinder. make
set _finder (pr ime_fi nde r)
run

end

In order to increase customer satisfaction , we run th e system by a series of menus

feature {NONE}
HPTA-TRANSIT..INFO ... run is

do
from
until io.last ... character . to ... upper 'Q'
loop

menu

io.read ... character
io. put ... new ... line
inspect io . last ... character . to .. upper
when 'U' then do_update
when , I , then do ... inquire
else
end

end
end

In order to use OS command, we let class HPT A-TRANSIT ..INFO be a subclass of class SYSTEM,
which is a predefined class In Eiffel .

inherit
HPTA-TRANSIT..INFO ... SYSTEM

Method

feature

This is

menu is the main menu of the interface of this system and

{NONE}
HPTA_TRANSIT..INFO . .. menu is

do

end

the main menu

execute ... command ... line (" cls")
io. put-string(" (

and

••....•.••••.........••••.•.•.....
Welcome to HPT A .•...............•••....•.••••

mat ion u Update System In for
I Inquire about Trans it Information
Q Quit

Enter menu choice:
)")

there are two items in it ' through which users can either update or

B. Source Code of Case Study 139

inquire system information. The first line of the method body is used to clear the screen.

If users chose the fir s t menu item, they are going to enter the following menu, i.e. update_menu :

feature {NONE}
HPTA_TRANSITJNFO ... update-menu is

do

end

execu te .. command .. line (" cIa")
io. put-string(" (..........•..••..••••••.••...••........

Welcome to HPTA
..............................•........

A Add
D Delete
G Go back

Enter menu choice:

I")

In this menu, users can add new information, such as staffs and stations, as follow:

feature {NONE}
HPTA_TRANSITJNFO ... add_menu is

do

end

execute .. command .. line(" cis")
io. put_string (" [

.•••....•................•...••••••••••
Welcome to HPTA•.•.•••.•••••••..•.•

S Add a station
E Add a staff
G Go back

Enter menu choice :

I")

Follows the logic of m e thod do_add:

feature {NONE}
HPTA..TRANSITJNFO . .. do_add is

local

do

employee: STAFF
id: INTEGER
input, name, password, open, access, last: STRING
is-end: BOOlEAN
route: ROUTE

from

until is .. end
loop

add .. menu
io . read .. line
input := io. laat_atring. twin
io . put_new_Jine
if not input. is-empty then

i spect input. first. to_upper
when 'G' then ia_end := True
when 'S' then

io. put_string("%NEnter station name: ")
io. read-line
name:= io.laat_etring . twin
io. put_string("%NEnter open hour: ")
io. read _Jine
open := io.laat_atring.twin
io. put_etring("%NEnter Its accessibility: ")

140

end
end

end

B. Source Code of Case Study

io . read_line
access := io . last_string . twin
io. put _string("%NEnter route number : ")
io . read_line
id : = io .last-string. to-integer
io . put_string("%NEnter the name of its last station : ")
io . r e ad_Jine
last : = io .last-string . twin
route := db . find_route(id)
if route = Void then

else

end

create route. make(id)
route . add-station (name , access , open , last)
db.add_route(route)

route. add-station (name , access, open, last)

when ' E ' then

else
end

io . pu t_st ring (" %NEnter your ID : ")
io . read-line
id : = io .last-string. to-integer
io . put_string(" %NEnter your password : ")
io . read_line

password := io . last_string. twin
creat e employee . make(id 1 password)
db . add_staff(e mployee)

the y can also delete those information as follow :

feature {NONE}
HPTA-TRANSIT..INFO ... delete-menu is

do

end

execute_command_line (" cls ")
io. put-string(" (

.........••....••......................
Welcome to HPTA•...•....••.

S Delete a station
E Delete a staff
R Delete a route
G Go back

Enter menu choice:
) ")

Follows the logic of method do-delete :

feature {NONE}
HPTA-TRANSIT..INFO ... do-delete is

local

do

is_e nd: BOOLEAN
num: INTEGER
staff : STAFF
rout e: ROUI'E
input , name: STRING

from
until is_end
loop

delet e _men u
io . read_line
input := io. last-string . twin

B. Source Code of Case Study

end
end

io. put_new_line
if not input. io_empty then

end

inspect input. first. to_upper
when 'G' then is-end := True
when 'S' then

io. put_otrlng("%NEnter route number: ")
io. read-line
num := io. last_atring. to-integer
io. put_string("%NEnter station name: ")
io. read-line
name:= io.last_strlng.twin
route := db . find_route (num)
if route /= Void then

route. remove-station (name)
else

end

io . put-string ("%NNo ouch a station'YcN")
io. read-line

when 'R' then
io. put_string("%NEnter route number: ")
io . read_line
num := io. last_atring. to_integer
route := db. find-route (num)
if route /= Void then

db.delete_route(route)
else

end

io. put_string ("%NNo ouch a otation'YcN")
io. read-line

w hen 'E' then

e lse
end

lo. put_otrlng("%NEnter ID: ")
io. read-line
own : = io. last-string, to-integer
staff := db . flnd_otaff(num)
if at aff /= Void then

db. delete-staff(staff)
else

end

io . put-string ("%NNo ouch a otaff'YcN")
io . read-line

According to the requir e ment, only authorized ataffs can do such things , so this system will
ask the user to log in the system before he or she enter the update menu. The following
method do_update has the logic to require the user to enter hia or her employee number
and password first.

feature {NONE}
HPTA..TRANSIT..IN 0 ... do-update Ia

local

do

id : INTEGER
passed 1 is-end : BOOLEAN
password, input: STRING
otaff: STAFF

io. read-line
if db . is - locked then

io. put-string ("%NEnter employee ID: ")
io. r e ad-line
id : = io. last_atring. to-integer
staff := db. flnd_ataff(id)
if s t aff /= Void then

i o. put_atring ("%NEnter password: ")

141

142

end

else

end

end

io . read_line
password := io. last_string. twin
passed : = staff.login(password)

io.put_string ("[

B. Source Code of Case Study

The list of authorized staff is not empty ,
so please set authorization as soon as possible ...

1")
passed := True
io. read_line

if passed then
from

else

end

until is-end
loop

end

update-menu
io. read-line
input := io. last_string. twin
io. put_new_line
if not input. is-empty then

inspect input. first. to_upper
when 'A' then do_add

end

when 'D' then do-delete
when 'G' then ia_end := True
else

end

db . do-save

io . put-string ("%NLogin failedi%N")
io. read-line

The actual logging responsibility is assigned to class STAFF as public feature to class HPTA..TRANS JNFO:

feature {HPTA_TRANSITJNFO}
STAFF ... login(passwd: STRING): BOOLEAN is

require
passwd /= Void

do
Result .- password. is-equal (passwd)

end

If the result is True, the user can continue his or her update, otherwise, this system will
remain on the main menu.

If users chose the second menu item of the main menu, they will enter the following query menu
without any bother, because the requirement says that any one can have access to the transit
information.

feature {NONE}
HPTA-TRANSITJNFO ... inquire-menu is

do
execute-command-line(" c ls ")
io. put-string(" [..••••.•....•..........................

Welcome to HPTA •.•....•.•••.••...............•.....•.•
F Find a possible connection
S Show a route
B Browse all routes
G Go back

Enter menu choice:

1")

B. Source Code of Case Study

end

The first item of this menu is used for users to find a possible connection. Following the
log i c of method do .. inq ire, users are required to enter their start, destination, as well as
the i r desire time .

feature {NONE}
HPTA-TRANSITJ FO . . . do-inquire is

local

do

inp u t , start , dest: STRING
is_e nd : BOOLEAN
num , time : INTEGER
rou t e: ROUIE

fro m
unt i l is .. end
loo p

i nquire .. menu
i o. read .. line
i nput := io .laat .. strins. twin
i o. put .. new .. line
i f not input . is-empty then

inspect input. first. to_upper
when 'B' then

e n d

from route := db. get_firat-bua-route
until route = Void
loop

route . show
route := db . get_next-bua_route(route)

end
from route := db . get .. firat .. train .. route
until route = Void
loop

route . ahow
route :=db. get_next_train_route{route)

end
io . put-string ("%Nl>ONStrike any key to continue ... •)
io. read .. line

when ' F ' then
io. put_atring("%NEnter the station name of your start: •)
io. read .. line
start := io. laat .. atring. twin
io. put .. atring("%NEnter the station name of your destination: ")
io. read-line
dest := io . laat .. string.twin
io.put_string(" %NEnler your desire tlme(in minutes) :")
io . read_line
time := io . laet_etring . to-integer
io. pu t_at ring {finder . get-connection (db, at art , deal , time))
io . put_string {" %Nl>ONStrike any key to continue . . . •)
io . read_line

when 'S ' then
io . put-string ("Input the route number (10 - 999): ")
io . read-line
num := io. laet_etring. to-integer
route := db. find-route (num)
if rou t e /= Void then

rou t e . show
else

i o . put-string ("Sorry there is no such a route")
end
io . put-string (" %N)'l.NStrike any key to continue . .. •)
io. read-line

when 'G' then is_end := True
else
end

143

144 B. Source Code of Case Study

end
end

Now, it is time to implement the methods of class RO

image:: Route . jpg [class ROUTE)
I I$ ROUTE OMEIHOD

The creation of ROUTE is make, which can be invoke by cIa s s HPT A_ TRANSIT ..INFO

creation ROUTE ... make

The main task of make is initialize the route number and station list

feature {HPTA_TRANSIT..INFO}
ROUTE ... make (num: INTEGER) is

require
num > 9
num < 1000

do
number ·- num
create stops. make

ensure
number = num
stops I= Void

end

According the requirement , route number must be two- or three-digit number, so we define the
following invariant for class ROUTE.

invariant
ROUTE ... number > 9
number < 1000

end

At any time, it 8 client get route number by the folio wing method :

feature {ANY}
ROUTE .. . get-number : INTEGER is

do
Result ·- number

end

also, by the following method to te 11 if the current route is which we want:

feature {ANY}
ROUTE .. . match (num: INTEGER) : BOOLEAN is

do
Result ·- num = number

end

By the following method , it 8 client adds new stations for this ROurE .object and at the same

time set the name, the accessibility, the opening hou r, and last station for this new station .

feature {HPTA_TRANSIT ..INFO, DATABASE}
ROtnE ... add-station (new_name, access . open_hour , last-stop: STRING) is

local
new-station : STATION
i: INTEGER
last: STRING

do
from i ·- stops. lower
until i > stops. upper or else stops . ite m (i) . match(new_name)

loop
i ·- i + 1

end

B. Source Code of Case Study

end

if i > s t ops . upper then

end

crea t e new .. station. make(new .. name, access , open .. hour)
last := last .. stop. twin
last . to .. upper
if l a st. same_ae("NONE") then

s t ops. add_firot (new_otation)
else

end

from i := stops . lower
until i > stops.upper or eloe stopo.item(i) .match{last_stop)
l o op

i ·- i+1
e n d
i f i <= stopo.upper then

stops.add (new-station , i+1)
e l se

e n d

create new .. station. make (last .. stop , access , open .. hour)

stops . add_last (new-station)
stops . add-last (new_station)

HPTA_TRANSITJNFO obje c t removes a certain station by the following method, whose only
parameter is the name o f the target station .

feature {HPTA-TRANSITJNFO}
ROUI'E ... remove_s t ation(name: STRING) is

local

do

end

i: INTEGER

from i := stops. lowe r
until i > stops . upper or else otopa . item(i) . match(name)
loop

i ·- + 1
end
if i <= s tops . upper then

stops. remove (i)
end

The subclasses of CONNECTION.FINDER use the following two methods to visit all stations
in this route

feature {CONNECTION..FIN ER}
ROUTE .. . get_first _station: STATION is

local

do

end

s tation : STATION

if stops . upper > 0 then
statio := stops . first

end
Result := station

get_next_station (station 1 : STATION) : STATION i•
require

atation1 / = Void
local

station : STATION
do

if stops. index_of (station 1) < stope. upper then
stat io n : = stope. item (stope . index_of (station 1)+1)

end
Result := station

end

Class ROUTE keep the se c ret of saving itself, eo DATABASE object can call this method to

145

146 B. Source Code of Case Study

fu I fi II the task. Actually, such assignment is worth to discuss. Maybe should move to the
au be lasses of DATABASE, because only they know exactly how to save those data .

feature {DATABASE}
ROUTE .. . do-save(file: TEXT..FILE_WRlTE) is

require

file. is-connected
local

do

end

I: INTEGER
tag, last: STRlNG

if number > 99 then
tag .- "b"

else
tag .- "t"

end
last := "None"
from i := stops. lower
until i > stops . upper
loop

end

file. put_string(tag+"'YoN")
stops. item (i) . do_save (file)
file. put_string(" " +number. to-string +" " + last +""oN")
last := stops. item (i) . get-name. twin

i .- i + 1

Similarly, the following method Is responsible for showing the details of this route,
but only class HPTA_TRANSIT..INFO know exactly how to display with interface, so this
method should be move to class HPTA_TRANSIT..INFO.

feature {HPTA-TRANSIT..INFO}
ROUTE .. . show is

local i: INTEGER
do

if number > 99 then
io. put_string ("%NBus route No.")

else
io . put_string ("%NTrain route No . ")

end
io. put-integer (number)
io.put_strlng (": ")
from i := stops. lower
until i > stops. upper
loop

end

stops. item (i) . show
if i < stops.upper then

io. put_string (" ->")
end
i := i+l;

io. put_new_line

end

Same problem can be found on the method show of class STATION

feature {ROUTE}
STATION ... show is

do
io. put-string (name)

end

Now, let us look at the class STATION, whose creation is method make too ,

create STATION ... make

B. Source Code of Case Study

·- - ~ -
and defined as followi n g:

feature {ROUTE}
STATION .. . make (new .. name , new .. open, new .. acc : STRING) is

require
new .. natne I= Void
new .. op n I= Void
new .. ac c /= Void

do
name ·- new .. name . twin
open ·- new .. open. twin
accessibility ·- new .. acc. twin

end

The main task of it is to initial these three feature
it 8 client can visit t ese three features by the

s of claBS STATION. At any time,
wing methods: folio

feature {ROUTE, CONNECTION..FINDER}
STATION . . . geLname: STRING is

do
Result ·- name. twin

end
get .. acc: STRING is

do
Result ·- accessibility . twin

end
get-open: STRING io

do
Result ·- open. twin

end

Sim i lar with the metho do .. aave of class ROUTE, thlo method should be moved into the
subclasses of DATABASE .

feature {ROUTE}
STATION . . . do_sa ve (fi I e : TEXT ..FILE_ WRITE) is

require
file. ia .. connected

do
file. p u t_string(name + " " + acceaaib i lit y + " " + open)

end

The same problem can be found on class STAFF

feature {DATABASE}
STAFF .. . do-save {file: TEXT ..FILE_ WRITE) is

require
file . is .. connected

do
file . p t .. string ("so/eN" + number . to .. atri ng + " " + password + "'l"oN")

end

We identify station wit h name only, i.e. if two atati on a share the same name, we assume
they are the same stati o n. Here case Ia insensitive .

feature {ROUTE}
STATION .. . match (target name : STRING): BOOLEAN h

require
targetn e. me /= Void

do
Result ·- name . same .. aa (targetname)

end

Now, let us talk about t he implementation of class AFF. ST

image : : staff. jpg (cia so STAFF]

147

148

/I$ STAFF l!liMEIHOD

The creation of class STAFF is make

creation {ANY} STAFF ... make

it is defined as following:

feature {ANY}
STAFF . .. make (id: INTEGER; passwd: STRING) is

require

do

id >= 0
passwd /=Void

number . - id i
password .- passwd. twin

ensure
number>= 0
password = passwd

end

its main task is initialize staff's id and password.

B. Source Code of Case Study

Method match is used to identify a certain staff and Is defined as following:

feature {ANY}
STAFF ... match (id: INTEGER): BOOLEAN is

do
Result .- id = number

end

Any staff has an unique employee number, which is generated from 0, and a password,
which must not be Void :

invariant

end

STAFF ... number-positive : number >= 0
password_not_void: password /= Void

So far , we have implement the system.

- Testing

-- Updating system
When no staff is authorized , we try to update system information.

The result is

image : : empty. jpg [empty)

Otherwise, we try to update system information. The system requires
ID and password for logging in as following:

image : : updating. jpg [updating)

These results satisfy the design requirements.

-- Browsing all routes
We try to browse the information of all routes as following:

image :: browse. j pg [browse)

These result satisfies the design requirements.

-- Finding connection
We try to find a connection between two stations as following:

image:: connection. jpg (connection)

B. Source Code of Case Study

These result satisfies the design requirements .

= Strategy pattern
We c onstruct a sample c onnection finder class and change the
algorithm a run-time .

class FAKE-FINDER
inh e rit

CONNECTION..FINDER
creation {ANY}

make
feature {HPTA-TRANSITJ NFO}

make is

end

do
end

get-connection (s t art , destination: STRING; time: INTEGER): STRING is
do

Result .- "This is a teato/cN";
end

image : : strategy . jpg [st r ategy]

Thes e result satisfies the design requirements.

In order to give an in t egrated view for ones who
are used to read code , we 1 i at a 11 program code here .

149

Appendix C

Generated Code of Case Study

£.!ass KNOT
cl'oaticon {PRIME..FINDER}

make
f<>at.ure {PRIME..FINDER}

get_number : INTEGER. is

do
Result := number

end
make(sn: STATION; num, t, ss, pr : JNIEGER) ~

do

end

set_station (sn)
set-number (num)
set_time (t)
set-status (as)
set_pred (pr)

set .. pred (value: JN~EFt) i s
d.o

pre d := value
end

get_time : lN~ER is

do
Rt:"'sult := time

t.\'ln.d
set_ time (value : JNIEGER) is

l'tHIUiJ'e

value >= 0

time := value
end

get_pred : JNIEGER is
do

Result := pred
end

permanent : INTEGER is
get_s tation STATION is

do
R.esult := station

ond
tentativ e : JNIEGER is 0
set-station (value : STATION) is

150

C. Generated Code of Case Study

station := value
end

get .. atatua : IN'J'EX:;ER. .!..§.

do
Result : = s tatus

ond
set_status(value : ~) ~

require

e n d

value>= ntative
valu e <= p rmanent

status := v alue

s e t_number(value : ~) ~

require

end

value >= 10
value <= 9 9 9

numbe r .- v alue

feat u , . ., {N:JNE}
station : STATION
number : INIEGEH.
status : INIEGER
tim e lN'rE(;ER
pred : JNTEX::ER

defert·ed class DATABASE
foaturo {HPTA_TRANSIT..INFO}

do .. save j s
deferred

end
add-route (new_rou t e: ROUI'E) is

J·egui1·e

new-route / = Void
deferred
end

make ll
deferred

end
delete_st a ff(staff: STAFF) ~

require

st a ff /= V o id
deferred

end
del e te_route (route : ROUI'E) is

require
rout e /= V o id

deferred
end

add_otaff (new _staff : STAFF) is
require

new_staff / = Vo id
deferred
e n d

is-locked : BOOlEAN ll
deferred
end

fel>tUr<' {N:JNE}
min .. train .. route .. nu m : INlEGER. l.!!. 10
max .. bus .. route .. num IN"'"EX:;ER. ~ 999

max .. train .. route .. nu : INT'EGER. is 99
min .. bus .. route .. num INTEGER J..!i. 100

feature {HPTA_TRANSIT..INFO, CONNECI'ION.FINDER}
find_ rou t e (num: INI.'EJGER) : ROUI'E ~

l 'eCJUi1'e

num >= min .. train .. route .. num

151

152

num <= max_bua_route_num
deferred
end

fl nd _staff (num: INTEGER.)
require

num > 0
defer1·ed

end

STAFF Is

get_next_bus_route(route: ROUTE)
deferred
end

get _fir at_ bus-route
deferred

end

ROUTE ll1.

get_next_train_route (route: ROUTE)
deft:~E·red

end
get _fi rst_t ral n_ro u te

deferred
end

ROUTE ll1.

deferred class CONNECTION..FINDER
feature {HPTA_TR.ANSIT..INFO}

C. Generated Code of Case Study

ROUTE is

ROUTE is

get_connection{dbase: DATABASE; start, destination: STRING; time: INTEGER)
require

start /= Void
destination /= Void
time >= 0
dbase /= Void

deferred
end

feat\ll'e {NO!'!E;}
train-time : INTEGER is 1
bus-time : INTEGER. i • 2
change-time : JNT.EG.ER. is 5

class STAFF
_greation {ANY}

make

~~~!:.~ {HPTA-TR.ANSIT..INFO} 
login(passwd: STRING) 1300IEAN is 

require 

passwd /= Void 

Result .- password. is_equal (passwd) 
end 

fe!'!.Hu::.£ {DATABASE} 
do_save ( fi I e : TEXT ..FILE_ WRITE) ll1. 

require 

file. is_connected 

file. put_string("s~" +number. to_string + 
ond 

feature {~} 
password 
number : 

feature {ANY} 
make{ id : INTEGER; passwd: STRING ) 

require 
id >= 0 
passwd /= Void 

number .- id 
password : = passwd. twin 

~ 

number>= 0 

+ password + "«YcN'") 



C. Generated Code of Case Study 

password = passwd 
end 

match ( id : INTEJGER) : J3CX)lEAN Is 
do 

Result .- i d = number 
end 

invarinnt 

n urn her ... positive 
password ... not ... void 

class PRlME-FINDER 
inherit 

CONNECTION..FINDER 
creation {ANY} 

make 

number>= 0 
: password /= Void 

feature {HPTA-TRANSIT..INFO} 
make 1.§_ 

do 

create sto p ... list .make 
ensure 

stop_list / = Void 
end 

get-connection ( db a se: DATABASE; start , destination: STRING; time : INTEGER) 
require else 

stop-list. u pper = 0 
local 

connection : STRING 

cur ... statio 

node : KNOT 
i : INTEJGat 
monitor : IVI"EGER 
is-end : ~.JOf.EAN 
break : B:X.>IE.AN 

connection := "-" 

desire ... tim e := time 

add_bus-tr ai n_otation (dbaoe, destination, desire_time+l) 
add-bus_tr ai n_station (dbase, start, 0) 
i : = 3 

cur ... station := start. twin 
frozn 

until is ... end .2.!: elso cur ... station 
loop 

monitor := stop ... list. upper 

Void 

find ... neighbor(dbase, cur ... station, i) 
l1 moni t or = stop ... list . upper then 

l.f. s t op-list .item(i) /=Void then 

end 
end 

s t op _list . item ( i). set-status (node . permanent) 

is ... end := True 
fron1 

until break or else i > stop-list. upper 
.!.Q..Q.£ 

if. otop_liot .item(i) /=Void then 
n de := stop-list .item(i) 
l.f. node . get-status = node. tentative and node. get_station /= Void then 

cur ... station : = node. get ... station . get ... name 

end 

end 

is-end := False 
break .- True 

.if. .!L.! break then 
: = i + 1 

e nd 
end 
l!. break then 

153 



154 C. Generated Code of Case Study 

break .- False 
end 

end 

connection := get_connection_mea ( 1) 
connection := connection + get_connection_mea (2) 
il connection .aame_as("") then 

connection := "-There-is-no-connection-from-your-start" + "-to-your-destination-in-s ch-time." 
end 
R .esult .- connection 

en9ure 

R.<>sult /= Void 
ond 

f"at.ure {NONE} 
get-index ( s: STATION; num : INI'EGER.) 

require 

• /= Void 
local 

lnd : INI'EGER 
i : INI'EGER. 
node KNar 
name : STRING 

ind := - 1 
frorrl 

i := stop_list .lower 
until i > stop_list. upper 
Joop 

node:= stop_list.item(i) 
1l. node. get-station /= Void then 

name := node . get-station. get-name 
lf. name.is_equal(s.get_name) tben 

1l. is_bus(num) and is_bus(node . get_number) th"n 
ind := i 

elseif is-train (num) and is_train (node . get_number) then 
ind .-

end 

end 
e-nd 

i := i + 1 
end 

R<>sult := ind 
end 

add_bus_train_station(dbase: DATABASE; name: STRING; time: .INI'EGER) is 
reg uire 

name /= Void 
time >= 0 

I o<~ nl 

route : ROtJI'E 
station : STATION 
ls_end : B::X>lEAN 
num : INTEGER 

route := dbase. get_first_bus_rou te 
f~·orn 

until is-end .Q..!_ route = Void 
h.HJp 

station := route . get_first_station 
fi'Olll 

until is_end or station = Void 
loop 

lf name.same .. as(station .get_name) then 
is ... end := True 

end 
j_f_ not is ... end then 

end 

end 

station . - route. get .. next .. station (station) 

ll. not is .. end then 



C. Generated Code of Case Study 

rout .- dbase. get.next_bus_route (route) 
end 

end 

..!.f. not is- e nd t h en 
station : = Void 

e .nd 

end 

j_f_ route / = Void then 
num . - r oute. get-number 

else 

num .- 0 
end 
add.node(-1, station , time , num) 
station := Void 
is.end : = F alse 
rout e : = d b ase. get_first.train_route 
frotn 

until is-e n d or route = Void 
loop 

station : = rout e . get _first_atation 
fron1 

until i s _end or station = Void 
loo p 

l.i. n a me . same.as (station . get_name) then 
i s .end : = True 

end 

ll .!!..!l!. is-end then 

end 
e n d 

s t ation . - route. get.next.station (station) 

l1.. not i s-end then 

end 

end 

rout e . - dbase . g e t.next_train.route (route) 

l.f. not ia.e nd then 
station := Void 

end 
ii. route / = Void then 

num . - r oute . get.number 
e l se 

num .-
end 
add- node(- 1 , station, time, num) 

get_conne c tion_mes (index : fi\fl"EGER) 
1·equi J· e 

index >= 0 
loca l 

node : KNOT 
mes : STRlNG 

mes : = "-" 

node := st p_list . item( index) 
ii. node /= Void then 

ii. node . get-station /= Void then 
ii. node . get_pred /= - 1 and node . get_time <= deaire_time thet\ 

155 

mce :="--No. " + node.get_number . to_atring + "-->" + node . get_station . get_name + " - i n-" + 
node : = stop_liat . item(node . get_pred) 

node . get-pred - 1 

fr<~ 

..!!..!.!.!.1!. node = Void or e l se node. get_etation Void .Q.!. else 

loo p 

mee :="--No. " + node.get_number.to-string + "-->" + node . get_etation . get_n m e + m es 
node . - stop-list .item(node.get_pred) 

~ 

ii. node /= Void then 
ii. node . get-station /= Void the n 

mea := " -CKN" + node . get-•tation. get_name + m ea 
end 



156 

end 

end 
end 

else 

mea .­
end 

Rcs1.tlt : = mes 
end 

is. t r a i n ( num : INTEGER.) : .BOOlEAN ..!!!. 
do 

Result := num >= 10 and num <= 99 
end 

C. Generated Code of Case Study 

add.node ( pr: INTEGER.; a: STATION; t , num: INTEGER.) is 
r·equir·e 

t >= 0 
locul 

node KNOT 

create node. make{s , num, t, node. tentative , pr) 
ll. s = Void then 

node . s e t_status(node . permanent) 
end 
atop_liat . add_last (node) 

~.n4 
stop_liat 
desire-time 

LINKED ..LIST (KNOT) 
: INT.EX::ER 

ia_bua (num : INTEGER) : BCJOLFAN is 
do 

R.~$ult : = num >= 100 1t.nd num <= 999 
end 

find_neighbor{dbaae : DATABASE; an : STRING ; pr : INTEGER) is 
regui r·e 

an /= Void 
toe" I 

coat : INTEGER 
index : .INTEDER. 
switch : INTElGER 
p-node : KNOT 
node : KNOT 
route : ROUTE 
station : STATION 
last : STATION 
name : STRING 
break BJOIEAN 

fron1 

switch .- 0 
until switch > 
Joop 

lf switch 0 then 

c os t . - bu s -tim e 
els*:)-

cost .- train_tim e 
end 
.if. pr >= stop-list . lower and pr <= stop-l i st. upper then 

p_nod e . - stop.li s t . it e m(pr) 
end 
l.f p_nod e /= Void then 

l.f. p_node . g e t-station /= Void then 
ll switch = 0 then 

1f. is _train(p-node. g e t_numbe r} then 
cost := change_time + cost 

end 
route := dbase. g et _fir s t-bu s -r o ute 

else 
.Lf is_bus(p-node .get.number) then 

cost . - change_time + c ost 
end 



C. Generated Code of Case Study 

c lass STATION 

oud 

route .- dbase. get_first ... train ... route 
end 
fron1 
until route = Void 

l!!.2..P.. 

end 

end 

station .- route. get ... Cirat ... station 

last := station 
fl'Olll 

until station = Void or break 
loop 

name := station. get ... name. twin 
.if. name/= Void and name. ia ... equal(an) then 

lf. not. last . get ... name . ia ... equal (name) then 
index := get ... index( last, route .get ... number) 
.if. index >= 0 then 

node := atop_liat. item(index) 

il node. get-station /= Void then 
il is-train (node. get_number) then 

li. node. get ... time > p ... node. get ... time + coat then 
node.aet_pred(pr) 

(Hld 

t:."Jld 

end 

node. aet_time ( p_node. get-time + coat) 
node. aet ... num ber (route . get ... num ber) 

else 

end 

end 

add ... node ( pr, last , p ... node. get ... time+cost , route . get ... number) 

last : = route . get ... next ... atation (station) 
lf_ last /= Void then 

index := get-index( last, route .get-number) 
if Index >= 0 then 

node : = stop_liat .item( index) 
if node. get_atation /= Void then 

l! Is-train (node.get_number) then 
if node. get-time > p_node . get_time + coat then 

node.aet_pred(pr) 

end 

end 
end 

node. aet_time ( p_node. get-time + coat) 
node. aet ... num ber (route. get_num bcr) 

elso 

end 

end 

add-node ( pr, Ia at , p_node. get_time+coat , route . get-number) 

break : = True 
else 

end 
end 

last := station 
station .- route. get-next-station (station) 

break := False 
.i..f switch = 0 then 

route . - dbase. get_next_bus_route (route) 
else 

route .- dbaae. get_next_train_route (route) 
end 

awitch .- switch + 1 

157 



158 C. Generated Code of Case Study 

creation 
make 

feature {ROUTE, CONNECTION..FINDER} 
get_open : STR~G is 

do 
Res u lt := open . twin 

end 

get-ace : STRING l s 
do 

Resu l t : = access i bility .twin 
t.:1nd 

get-name : STRING is 
do 

Rt?sult . - name , twin 
end 

feature ~"JNE} 

accessibility 
open : STRING 
name : STRING 

featu r e {ROUTE} 
do-save (file : TEXT ..FILE-WRITE) .!.§. 

rEHlUi r t.~ 

file . is-connected 

file . put_string (name + " .. " + access i hi 1 it y + 
end 

make (new .. name , new .. open, new .. acc : STRING) .D!_ 

l'equire 

new .. name /= Void 

new-open /= Void 
new_acc /= Void 

name := new .. name . twin 
open := new .. open . twin 
accessibility .- new .. acc. twin 

end 
show is 

do 
io . put .. string(name) 

end 

match ( targetname: STRING ) 
requi1·e 

targetname /= Voi d 

Resu l t .- name. s a me .. as (targetname) 
end 

cl<>ss FILE..DATABASE 
inhf:n•tt 

DATABASE 
crectt.ion 

make 
fa"t1u-e {HPTA-TRANSITJNFO} 

d o .. save 1..§.. 

local 

file .. 2 .. writ e 

i : INTEGER 
TEXT ..FILE_ WRITE 

c r e ate fil e .. 2 .. write . conn e ct .. to{fil e _n a me) 
l.[ file _2_write . is-conn ec t e d then 

fron1 

i : = employees . low e r 
until i > employee s.upp e r 
loop 

employee s . item ( i ) . do-sa ve ( file_2_writ e ) 

·- i + 1 

+ ope n) 



C. Generated Code of Case Study 

.- bus .. routes . lower 
until i > bus .. routes . upper 
loop 

bus- r outes. item( i ). do-save( file-2_write) 

·- i + 1 

.- train .. routes . lower 
until i > train .. routea . upper 

.!.Q..Q.p_ 

end 

trai n _rou tea . item ( i). do_save ( file_2_w rite) 

i : = i + 1 

file .. 2 .. w rite. disconnect 
else 

io . p u t_ o t ring ("Update-database- fai I ed 1%N") 
end 

ond 
add_route (new-rou t e : ROUTE) is 

do 
.if. is .. bus ( ew .. route . get .. number) then 

bus_rou t ea. add-last ( new_route) 
e l s.£ ... L't is .. t rain (new ... route . get .. number} then 

train .. r o utes . add .. laat(new .. route) 
end 

end 
make is 

do 
cr e ate employees. make 
create bus .. routes .make 
create tra i n .. routea .make 
load 

ensure 

end 

employees / = Void 
bus-routes /= Void 
train .. rout e s /= Void 

delete_staff(staf f: STAFF) ~ 
do 

employees. r emove (employees . ind ex_of {at aff) 
end 

delete_route(route: ROUTE) is 
do 

end 

.i1_ is .. bus( r oute . get .. number) then 
bus .. rou t ee . remove ( bus .. rou tea . i ndex .. of (route) 

else if is ... t ra i n (route. get .. number) then 

train .. routes . remove ( t ra i n .. ro u tea. i ndex .. of (route) 
end 

add_staff ( new_sta ff : STAFF) is 
do 

employees. n dd_last ( new_staff) 
end 

is-locked : BOOI..EAN l.l;_ 

do 
Result .- __!2.1 employee s . is-empty 

e nd 
feat. ure {NONE} 

file.name STRlN 1.1!. " •Y•-info. txt" 
is_bus (num: INTEGER) : BOOI..EAN Is 

do 

Result : = nwn >= min .. bua.route .. num n.nd num <= max_bua .. route_num 
end 

employees : LINKED ..LIST (STAFF) 
io_train (num: INTEGER) : BOOI..EAN i s 

do 
R.et:<u l t . - n um >= min.train.route_num a n d num <= max_train.route_num 

159 



160 C. Generated Code of Case Study 

end 
bus ... routes 

load J..!.. 
l ot~a. l 

LINKED-LIST [ROUTE) 

· input-string : STRING 
text_file_read : TEXT..FILE..READ 
text _file_w rite : TEXT ..FILE-WRITE 
split : ARRAY(STRlNGJ 
new_staff : STAFF 
route : ROUTE 

create text_file_read . connect_to(file_name) 

ll. text-file-read .is-connected t.hen 
frorn 

text_file _ read. read ... line 

until text ... file ... read . end ... of ... input 
loop 

end 

l..i text _file ... read . last-string . upper = 1 then 
ins poet 

text-file-read .last-string. first . to-upper 
\.Vhon ' S' then 

text ... file ... read . read.line 
input ... string := text ... file ... read . last ... string. twin 
split := input-string. split 
create new_staff . make( split. first. to_integer , split. last) 
e mployees. add-last (new-staff) 

when 'B', 'T ' then 
text ... file ... read. read ... line 
input ... string := text_file.read . last.string. twin 
split := input-string. split 
route:= find_route(split . item(4).to_integer) 
l1.. route = Void then 

create route .make( split. item(4) . to-integer) 
route . add-station (split. first , split. item (2) , split . Item (3) , split. las ) 
ii. split. item (4). to.integer > max_train-route ... num then 

bus_routes . add-last (route) 
else 

train _routes . add ... last (route) 

end 
(~ lsE' 

~..!~...rl 
e l se 

011d 

end 

route . add-station (split . first, split . item (2) , split . item (3) , split. las ) 

text ... fil e _read . read ... line 

text ... file ... read. disconn e ct 
5.d 5e 

create text _fi le_w rite . connect _to ( file_name) 
11:. text-file-write . is_connected then 

text_file_write . disconnect 
end 

end 
ond 

train-routes : LINKED-LIST(ROUTE) 
fenturo {HPTA_TRANSITJNFO, CONNECTION..FINDER} 

find - r o ute(num: INI'D::ER.) ROUTE 1.!!_ 
loc a l 

i : INTE)3ER. 
route : ROUTE 

li num > max_train_route_num then 
frorr1 

i := bus-routes .lower 
until i > bus_routes.upper or else bus_routes .item(i ) . match(num) 
loop 

i := + 1 



C. Generated Code of Case Study 

end 
.if i <= bua ... routes . upper then 

rout . - bus-routes . item( i) 
end 

e l se 

fron1 

. - train ... routes . lower 

until i > traln-routea.upper o r else train_routea . item(i ) . match(num) 
loop 

+ 1 
end 
if i <= t r ain ... routee.upper then 

rout e .- train ... routea.item(i) 
end 

end 
Result : = r oute 

end 

get_next_bua_rout o (route : ROUIE) : ROUIE J..!!. 
r eq u ire 

bua_routea . index_of(route) > 0 
local 

next ... route : ROUIE 

jJ_ bus ... rou t es . index ... of (route) < bus ... routes. upper the n 
next _ro u te := bua_rou tea . item ( buo_rou tea . i nd ex_of (route) +1) 

end 

R .esuJt := ext ... route 
end 

get ... first ... b u a ... rou t e ROUIE J..!!. 
local 

route : ROUTE 

i..f. not bus ... routes. is ... empty then 
route : = bus ... routee. first 

end 

Resu l t : = r oute 
end 

find_ataff(num : INTEGER) 
local 

i : INTEGEP, 
staff : STAFF 

STAFF J..!!. 

.- em p loyees . lower 

unt i l i > e mployeea.upper or e l se employeeo.item(i).match(num) 

l2..2.l!. 
+ 1 

end 

l1_ i <= em loyees . upper t h en 
staff := employeea . item(i) 

end 
Result : = s taff 

end 

get_next_traln-route (route : ROUIE) : ROUIE J..!!. 
req u ire 

train_routeo.index_of(route) > 0 
l ocal 

next ... route : ROUI'E 

l! train ... routes . index ... of(route) < train ... routea.upper t h e n 
next_rou te : = t rai n-rou tea . item (train _ro u tea . index-of (route) +1) 

end 
R,esul t : = next ... route 

end 
get_first_train_ro te 

local 
route ROUTE 

ROUIE J..!!. 

161 



162 

l..f. not train-routes. is_empty then 
route := train-routes . first 

end 
R.osu l t . - route 

O lld 

cl as 5 RDUI'E 
creation 

make 
fet\t u re {HPTA-TRANSITJNFO} 

remove-station (name: STRING) i s 
l oca l 

I : INTEJGER 

. - stops . lower 

C. Generated Code of Case Study 

unt il i > stops.upper .£!:.e l se stops . item{l ) . match{name) 
loo p 

I .- + 1 
end 
if i <= stops.upper then 

stops . remove ( i) 
~nd 

end 
show 1.!;_ 

l oca. J 

end 

i : IN'I'EJGER 

.if. number > 99 then 
io . put _string ( "o/oNBus-rou te _No . ") 

e l se 

io. put_string ("%NTrain-route-No.") 
end 
io . put-integer (number) 
io . put-string (" : -") 
front 

i := stops. lower 
until i > stops . upper 

l22..P.. 

end 

stops. item ( i). show 
if i < stops . upper then 

io . put_string ( " ->") 
end 
i : = i + 1 

io. put_n e w_line 

make (num: INTEGm) .L~ 

require 

num > 9 
num < 1000 

number : = num 
create stops. make 

el\$U~ 

number num 

stops /= Void 
end 

feature {DATABASE} 
do_sav e ( file : TEXT..FILE_WRITE) is 

require 
file . is-connected 

l <,cnl 

i : JNTJ;<X;ER 

tag : STRJNG 
last : STRJNG 



C. Generated Code of Case Study 

.l.f_ number > 99 then 

tag .- "-b" 
e l se 

tag .- " -t" 
end 

last .- "-None" 
fron1. 

.- at ps. lower 
until i > stops.upper 
loop 

file . p t_string(tag+"'l'cN") 
stops. i t em ( i). do-save (file) 

file. put_string("-" +number. to_atring +"-" + last +"crcN") 
last : = stops. item ( i). get-name. twin 

end 
end 

f et\turo {NJNE} 

·- i + 1 

number : INTEGER. 
stops : LINKED-LIST [STATION) 

feature {CONNECTION..FINDER} 
get_first_station : STATION is 

local 
station : STATION 

.if. stops. u per > 0 then 
station : = stops. first 

end 

Re:s.ult := s tation 
end 

get_next_station( s tationl : STATION) 
reguit·e 

station} / = Void 
local 

station : STATION 

STATION l.!;_ 

lf stops.i dex_of(stationl) < stops.upper then 
station := stops . i tern (stops . i ndex_of (station 1) +1) 

end 
R esult := s tation 

end 
featun? {HPTA_TRANSIT..INFO, DATABASE} 

add-station (new_name, access, open_hour, laat_atop: STRING) ~ 
local 

new-station : STATION 
i : INTEGER 
last SrRI'IG 

frorn 

i .- stops . lower 

until i > s tops.upper or else stopa .i tem(i).match(new_name) 
loop 

i ·- + 1 
end 

lf > stops.upper then 
create ew_atation .make{new_name, access, open_hour) 
last := last-stop. twin 
last. to_ upper 
lL last. same_as("NONE") then 

stops . add _fi rat (new _station) 
else 

fron1 

. - stope o lower 

until i > stops.upper £!:. elst> stops.item(i).match(last_stop) 
loop 

i ·- + 1 
end 

lf <= stope o upper then 

163 



164 C. Generated Code of Case Study 

stops . add('new_stat ion, i+l) 
else 

create new_station . make( last-stop, access , ope n-hour) 
stops. add-last ( new_station) 

end 

end 
end 

end 

feature {ANY} 

stops . add-last ( new_station) 

get-number : INTEGER. is 
do 

R.esul t : = number 
end 

match(num : INTEGER) : B:X){EAN is 
d t) 

Result .- num = number 
e-.nd 

invar iaa1t 
number > 9 

number < 1000 

c l ass HPTA..TRANSITJNFO 
inherit 

SYSTEM 
creat.ion 

make 
fo"turo {~} 

delete-menu !.§_ 

do 
execute_command_line ("cIs " ) 
io . put-string( " [ 

-----------------------------······································· 
---------------------------------------Welcome-to ..HPTA 

-----------------------------······································· 
--------------------------------S-Delete_a_station 
--------------------------------E-De lete-a-staff 
--------------------------------R-Delete -a-route 
--------------------------------G-Go-back 
-----------------------------Enter-menu-choice : 

-----------------------------)") 
end 

db : DATABASE 
update-menu 1..§_ 

do 
execute_command_line( " cls " ) 
io. put-string(" [ 

-----------------------------······································· 
---------------------------------------Welcome_ to ..HPTA 

-----------------------------······································· 
--------------------------------A-Add 
--------------------------------0-Delete 
--------------------------------G-Go-back 
....................................................................................... Enter ... menu ... choice: 

-----------------------------)") 
end 

menu ls 
do 

exe c ute_command_line (" c ls " ) 
io . put_string (" [ 

-----------------------------······································· 
------------------------ ---------------Welcome- to ..HPTA 

-----------------------------······································· 
................................................................................................ U ... U pdate ... System ... In form at ion 
................................................................................................ I ... Inquire ... about ... Transit ... Information 

--------------------------------Q-Quit 
....................................................................................... Enter ... menu ... choice : 



C. Generated Code of Case Study 

-----------------------------) ") 
end 

set_find e r ( new_fi n der: CONNECI'ION.FINDER) i • 
require 

n e w_finder /= Void 

finder . - ew_finder 

~ 

finder n e w-finder 
end 

i nqu i re.menu is 
do 

execute_co m mand.line (" cls") 
io. put-str i ng(" ( 

-----------------------------······································· 
----------------------- ----------------Welcome- to ...HPTA 

-----------------------------······································· 
----------------------- ----------F-Find-a-possible-connection 

---------------------------------8-Show_a_route 
----------------------- ----------B-Browse-all-routes 
----------------------- ----------G-Go-back 
----------- ------------ ------Enter-menu-choice : 

-----------------------------)") 
end 

do.delete is 

local 

is.end: ~ 
num : IN"TH1ER 
staff STAFF 
route : ROUTE 
input : ~G 
name STRING 

fron\ 
u ntil is_e d 
loop 

delete.m en u 
io . read .line 
input := i o. last-string . twin 
io . put_ ew_line 

l.f_ llQ..t i nput . is-empty then 
insp..:.£!_ 

i n put . f i rst . to_upper 
w hen ' G ' then 

i s _end : = True 
·when 'S' then 

i o. put _atring ( "%NEnter-route-number: - " ) 
i o . read-line 
n um : = io. ]ast_string. to-integer 
i o . pu t_st ring ( "%NEnter-stat ion _name:-") 
i o . read-line 
n a me := io . last-string. twin 
r o ute := db . find_route(num} 
..L. route /= Void then 

route . remove_station (name) 
e l se 

!!!ill 

io . put_string ("%NNo-such-a-station%N") 
io. read_line 

when 'R' then 
i o. put_atring( "%NEnter-route-number:-") 
i o. read-line 

n um : = io . last_atring . to_integer 
r o ute : = db. find-route (num) 
j_ route /= Void then 

db. delete_route (route) 

~~ 
io . put-string ("%NNo-sucb_a_atation%N") 

165 



166 

~!!..<! 
£!25! 

io. read_line 
end 
~ 'E' then 

io . pu t_stri ng ( "%NEnter-ID: -") 
io. read-line 
num := io. last-string . to-integer 
staff := db. find_staff(num) 
l.f. staff /= Void then 

db. delete-staff (staff) 
e lse 

C. Generated Code of Case Study 

io. put _string ("'>'<NNo-such-a-staffo/cN") 
io . read-line 

&ill! 
else 
end 

end 

finder : CONNECTION..FINDER 
do-update is 

local 

id : INTEGER 
passed : J30()[.EAN 

is_end: ~ 
password : STR~G 
input STIUNG 
staff : STAFF 

io. rea.d_line 
l.f. db . is_loc ked then 

io. put_string ("%NEnter-employee-ID: -") 
io. read-line 
id := io. last-string. to-integer 
staff := db. find_staff(id) 
l.f. staff /= Void then 

~}14 
else 

io. put_string ("%NEnter-password: -"} 
io. read_Jine 
password := io . last-string . twin 
passed .- staff .login(password) 

io . put-string(" [ 

--------------------------The-list-of-authorized-staff-is-not-empty, 
--------------------------80- please :..set _au thoriz at ion _as-soon _as_ possible . .. 

--------------------------]") 
passed ::=: True 

io. read-line 
end. 
ll. passed t.h~!. 

froJn. 

until is-end 
loop 

update_menu 
io. read_Jine 

input := io. last-string. twin 
io. put_new ... line 
l..f not input. is ... empty then 

m-=='ii-2.£_tl. 

(--:>nd 

input . first . to .. upper 
'\vhen 'A' then 

do_add 
when 'D' t ·h<Jn 

do-delete 
·when 'G' then 

is-end .- True 
e ] S<J 
end 



C. Generated Code of Case Study 

end 

db. do_s ave 
else 

io . put_s tring ( "%NLogin-failed 1%N" ) 
io. r ea d-line 

end 
end 

run is 

do 

end 

from 
until io.l u at_character.to_upper 'Q' 
loop 

end 

menu 

io. read - character 
io . put_ ew_line 
inspect 

io . l n at_character. to-upper 
wht.:1n. ' U ' ~ 

do_u p date 
when 'I ' then 

do-i n quire 
else 
end 

add-menu is 
do 

execu te_co m mand_line ( " cIa " ) 
io. put-string( " [ 

-----------------------------······································· 
----------------------- ----------------Welcome_ to ..HPI'A 

-----------------------------······································· 
---------------------- - ---------8-Add-a-station 
----------------------- ---------E-Add_a_staff 
----------------------- ---------0-Go-back 
----------------------- ------Enter-menu-choice : 

-----------------------------) ") 
end 

do_add h 
local 

employee : STAFF 
id : INTEGlR 
input : STRlNG 
name : SI'RING 
password : STRING 
open : STRJNG 
access : ST1UNG 
last STRING 
is-end : I;;!!;"JOI..EAN 
route : ROUTE 

fron.1 

until ia_end 

loop 
add _men 
io. read - line 
input := io. last-string. twin 
io . put_ne w_line 
_if_ not i nput. ia_empty then 

inspnct 

i n put. first . to-upper 
when ' G' then 

is-end := True 
when 'S' then 

i o . p u t_st ring ( "%NEnter-atat ion -name:-") 
io . read_line 
name := io .l aat_atring . twin 
io. put_otring ("%NEnter-open-bour: -") 

167 



168 C. Generated Code of Case Study 

io. read_lfne 
open := io . last_string . twin 
io. put_string("%NEnter-its ... accessibility : ... ") 
io. read-line 
access := io . last-string. twin 
io. put-tJtring ( "%NEnter ... route ... number: ... ") 

io . read-line 
id := io. last_string. to_integer 
io . pu t_st ring ( "%NEnter ... the ... name ... of ... its ... 1 ast ... stat ion : ... ") 
io . read-line 
last:= io . last-string.twin 
route := db. find_route ( id) 
l1. route = Void then 

create route .make( id) 
route. add-station (name, access, open, last) 
db.add_route(route) 

els~ 

route. add-station (name, access, open, last) 
ond 

when 'E' ttu\\n 
io . put_string("%NEnter-your-ID:-") 
io . read_li ne 

id : = io . last-string . to-integer 
io . pu t_st ring ( "%NEnter ... your ... password : ... ") 
io. read_line 
password := io. last_string. twin 
create employee.make(id, password) 
db. add_staff(employee) 

t~l se 

end 

£n.Q 
end 

_end 
set_database(new_database : DATABASE) is 

require 
new-database /= Void 

db : = new-database 
ensur~~ 

db = new_database 
end. 

do_inquire 1§.. 
local 

input : STRING 
start : STRING 
dest : STRING 
is_end : ax.JIEAN 
num : INTEGER 
time : '!l:'fr!:';QER 
route : ROUTE 

fronl. 

until is_end 

loop 
inquire-menu 
io. read_line 

input := io. last_string . twin 
io. put-new-line 
.if. l!..Q.!. input. is_empty the-n 

inspect 
input . first . to-upper 

Yd!£11 'B' then 
fronl. 

route : = db. get_first-bus-route 
J:!.illJ.! route Void 
loop 

route . show 
route : = db. get_next_bus_route (route) 



C. Generated Code of Case Study 

e n d 
fJ ·o rn 

route . - db . get ... first ... train ... route 
Void until route 

loop 
route . show 
route := db. get_next_train_route (route) 

!!:\:ill 
i o. put-string ( " 'KN%NStrike-any-key-to-continue ... ") 
io. read ... line 

when 'F' then 

i o . p u t ... at ring ( "%NEnter-the-sta tion _name-of _your- at art : -") 
i o . read ... line 
s t art : = io. laat ... atriog. twin 
i o . pu t_ot r i ng ( "%NEnter-the _at a tlon _name-of _your-deot ina tion : -") 
i o . read ... line 
d e et := io . last ... atring . twin 
i o . put ... string ( "%NEnter-your-deaire-time( in-minutes):-") 
i o . read ... line 
t i me := io .laat ... atring. to ... integer 

i o. put-string (finder . get-connection (db, at art, deot, time) ) 
i o . put_string ("'KN%NStrike-any-key_to-continue . . . ") 
i o . read ... line 

w hen 'S' then 

end 

i o . pu t_st ring ("Input-the-route _number-( 10_-_999): -") 
i o. read ... line 
num : = io.last ... atring . to ... integer 
r o ute : = db. find_route (num) 
i f r oute /= Void t-hen 

r oute.ahow 
e l se 

io. pu t ... atri ng ("Sorry_ there_ i a -DO-such-a-route") 

~.lit 
. put_atring ("'KN%NStrike-any-key-to-continue . . . ") 
. read ... line 

when 'G' t h en 

i s ... end : = True 
t:dse 

end 

end 

and 

fe"ture {ANY} 
make ~ 

loca l 
prime-find e r : PRlMEJ'INDER 
file-datab a se : FILE.DATABASE 

create file - database . make 
set_databas e ( file_databaae) 

create pri m e-finder . make 
se t -finder (prime-finder) 
run 

169 



Appendix D 

Reference Manual of Spark 

D.l Code Block Tag 

Code Block Tag is used to identify the class, to which this block belongs. So there 

is nothing need to do for the class block, but for class member block, including 

invariant block, ones must put code block tag, class name followed by three dots, at 

the beginning. 

D.2 Graphic Notation Setting 

All the tags listed as following should be put in setting line, which is right behind 

graphic including command. 

• @VERTICAL: if set, the diagram will be drawn vertically, otherwise horizon­

tally. 

• @HEAD: if set, the class diagram will be shown with class name nodes only. 

• @BRIEF: if set, the class diagram will be shown without parameters and types. 

• @CONCISE: if set , the class diagram will hide all the information about the 

method's parameters of the involved class. 

• @METHOD: if set , all class methods only will be shown in this diagram. 

170 



D. Reference Manual of Spark 171 

• @ATTRIBUT E: if set, only attributes of class can be saw in the diagram. 

• @ACTION" if set, only actions of class can be saw in the diagram. 

D.3 Program Code Quotation 

"CODE LIST BEGIN" and "CODE LIST END" are the specific tags used to include 

continuous program code into the source file. This tags can be put anywhere in the 

source file as comments. Front ends will insert the parsed code between them, if they 

find them. 



Appendix E 

Document Structure of AsciiDoc 

An AsciiDoc document consists of a series of block elements. Almost any combination 

of zero or more elements constitutes a valid AsciiDoc document: documents can 

range from a single sentence to a multi-part book. In the following table of AsciiDoc 

document structure, parentheses '(' and ')' indicate grouping when needed, square 

brackets '[' and ']' enclose optional items, curly parentheses ' {' and '}' show the (zero 

or more) repeatable items, and vertical bars 'I' separate alternatives. 

Document ::= [Header] [Preamble] { Section } 

Header ::= Title [ AuthorLine [ RevisionLine ]] 

AuthorLine ::= FirstName [ [ MiddleName] LastName] [ EmailAddress] 

RevisionLine ::= [Revision] Date 

Preamble ::= SectionBody 

Section ::= Title [ SectionBody] { Section } 

SectionBody ::= ( ( [ BlockTitle ] Block ) I BlockMacro ) { ( [ BlockTitle] Block ) I BlockMacro } 

Block ::= Paragraph I DelimitedBlock I List I Table 

List ::= BulletedList I NumberedList I LabeledList I CalloutList 

BulletedList ::= Listltem { Listltem } 

NumberedList ::= Listltem { Listltem} 

CalloutList ::= Listltem { Listltem } 

LabeledList ::= ItemLabel { ltemLabel } Listltem { ItemLabel { ItemLabel } Listltem } 

Listltem ::= ItemText { List I ListParagraph I ListContinuation } 

Table ::= Ruler [ TableHeader] TableBody [ TableFooter] 

TableHeader ::= TableRow { TableRow} TableUnderline 

TableFooter ::= TableRow { TableRow} TableUnderline 

TableBody ::= TableRow { TableRow} TableUnderline 

172 



E. Document Structure of AsciiDoc 173 

TableRow ::= TableData { TableData} 

Table E.l: The block structure of AsciiDoc. 



Appendix F 

Syntax of Dot 

The following is an abstract grammar for the dot language. Terminals are shown in 

bold font and nonterminals in italics. Literal characters are given in single quotes. 

Parentheses'(' and')' indicate grouping when needed. Square brackets'[' and']' en­

close optional items. Curly parentheses ' {' and '}' show the (zero or more) repeatable 

items. Vertical bars 'I' separate alternatives. 

graph ::= [strict ] ( digraph I graph) id '{' stmt-list '}' 

id ::= letter { letter I digital I _ } 
letter ::=a 1 b 1 c 1 d 1 e 1 r 1 g I h 1 i I j I k Ill m I n I o I P I q I r I s I t I 

ulvlwlxlylziAIBICIDIEIFIGIHIIIJIDILI 
MINIOIPIQIRISITIUIVIWIXIYIZ 

digital ::= 1 1 2 1 3 1 4 1 s 1 6 1 1 I s I 9 I o 
stmt-list :: = [ stmt [ ';' ] [ stmt-list ] 

stmt ::= attr-stmt I node-stmt I edge-stmt I subgraph I id '=' id 

attr-stmt ::= ( graph I node I edge ) attr-list 

attr-list ::= '[' [ a-list ] ']' [ attr-list ] 

a-list ::= id '=' id [ ','] [a-list] 

node-stmt ::= node-id [ attr-list ] 

node-id ::= id [ port ] 

port ::= port-location [ port-angle ] I port-angle [ port-location ] 

port-location::=':' id I ':' '(' id ',' id ')' 

port-angle ::= '@' id 

174 



F. Syntax of Dot 

edge-stmt ::= ( node-id I subgraph ) edgeRHS [ attr-list ] 

edgeRHS ::= edgeop ( node-id I subgraph ) [ edgeRHS] 

subgraph ::= [ subgraph id ] '{ ' stmt-list '}' I subgraph id 

edgeop ::= -> I --
Table F.l: Abstract grammar for the dot language 

The language supports C++ style comments: /* */and I/. 

175 

Semicolons aid readability but are not required except in the rare case that a 

named subgraph with no body immediate precedes an anonymous subgraph, because 

under precedence rules this sequence is parsed as a subgraph with a heading and a 

body. 

Complex attribute values may contain characters, such as commas and white 

space, which are used in parsing the dot language. To avoid getting a parsing error, 

such values need to be enclosed in double quotes. 



Bibliography 

[1] FunnelWeb Developer Manual, 2000. Version 3.2d for F\mnelWeb V3.2. 

[2] "Asciidoc." Stuart Rackham, 2007. 

[3] S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object 

Technology. New York: Cambridge University Press, first ed., 1998. 

[4] W. J. Brown, H. W. McCormick, and S. W. Thomas, Anti-Patterns and Patterns 

in Software Configuration Management. New York: Wiley, first ed., 1999. 

[5] T. Budd, An Introduction to Object-Oriented Programming. Oregon State Uni­

versity: Pearson Education, seconded., 1996. 

[6] F. Buschmann, R. Meunier, H. Rohnert , P. Sommerlad, and M. Stal, Pattern­

Oriented Software Architecture: A System of Patterns. Chichester, U.K.: Wiley, 

first ed. , 1996. 

[7] D. Cameron and B. Rosenblatt , Learning GNU Emacs. Sebastopol, CA: O'Reilly 

and Associates, first ed. , 1991. 

[8] S. J. Chapman, MATLAB Programming for Engineers. Toronto, Ontario: Thom­

son, third ed., 2004. 

[9] B. Childs, "Literate Programming, A Practioner's View," TUGboat Journal, 

vol. 13, no. 3, pp. 261- 268, 1992. 

[10] B. J. Cox and A. J. Novobilski, Object-Oriented Programming: An Evolutionary 

Approach. The Stepstone Corporation: Addison-Wesley Publishing Company, 

seconded., 1991. 

176 



BIBLIOGRAPHY 177 

[11] S. Cozens, Advanced Perl Programming. Sebastopol, CA: O'Reilly, seconded., 

2005. 

[12] D. de Champeaux, D. Lea, and P. Faure, Object-Oriented System Development. 

Massachusetts: Addison-Wesley Publishing Company, first ed., 1993. 

[13] D. F. D'Souza and A. C. Wills, Objects, Components, and Frameworks with 

UML, The Catalysis Approach. New Jersey: Addison Wesley Longman, Inc., 

first ed., 1999. 

[14] J. Elison, E. R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull, "Graphviz 

and Dynagraph - Static and Dynamic Graph Drawing Tools," Graph Drawing 

Software Journal, pp. 127-148, January 2003. 

[15] P. H. Feiler and W. F. Tichy, "Propagator: A Family of Patterns," Proceedings 

of the Tools-23: Technology of Object-Oriented Languages and System, p. 355, 

August 1997. 

[16] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated 

Designs for Object-oriented Systems. Springer, first ed., 2004. 

[17] M. Fowler, Analysis Patterns: Reusable Object Models. MA: Addison-Wesley, 

first ed., 1997. 

[18] E. Freeman, E. Freeman, K. Sierra, and B. Bates, Head First Design Patterns. 

Cambridge, MA: O'Reilly Media, first ed., 2004. 

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of 

Reusable Object- Oriented Software. Massachusetts: Addison-Wesley Publishing 

Company, first ed., 1995. 

[20] E. R. Gansner and S. C. North, "An Open Graph Visualization System and Its 

Applications to Software Engineering," Software-Practice and Experience Jour­

nal, vol. 30, no. 11, pp. 1203-1233, 1999. 

[21] D. V. Heesch, Doxygen. http:/ /www.stack.nl/ dimitri/doxygen/, 2007. 



178 BIBLIOGRAPHY 

[22] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming," Communi­

cations of the ACM, vol. 12, no. 10, pp. 576-583, October 1969. 

[23] D. E. Knuth, The WEB System of Structured Documentation. Stanford Univer­

sity, 1983. WEB user manual, version 2.5. 

[24] D. E. Knuth, "Literate Programming," The Computer Journal, vol. 27, no. 2, 

pp. 97-111, May 1984. 

[25] D. E. Knuth and S. Levy, The CWEB System of Structured Documentation. 

American Methematical Society, 1994. CWEB user manual, version 3.0. 

[26] D. E. Knuth, The TF;Xbook. Stanford University: Addison-Wesley Professional, 

first ed., 1984. 

[27] J. A. Krommes, FWEB. http:/ /w3.pppl.gov/ krommes/fweb_toc.html, 1998. A 

WEB System of Structured Documentation for multiple languages. 

[28] C. Larman, Applying UML and Patterns: An Introduction to Object-oriented 

Analysis and Design. Upper Saddle River, NJ: Prentice Hall, first ed., 2001. 

[29] C.-A. Lehalle, Documentation for ocamaweb.ml. ocamaweb.sourceforge.net, 

2002. 

[30] J. L. McCarthy, "Recursive Functions of Symbolic Expressions and Their Com­

putation by Machine, Part I," Communications of the A CM, vol. 3, no. 4, 

pp. 184-195, April 1960. 

[31] B. Meyer, Object-Oriented Software Construction. Santa Barbara, California: 

Prentice Hall PTR, seconded., 1997. 

[32] B. Meyer, "An Eiffel Tutorial," ISE Technical Report, Interactive Software En­

gineering Inc.(ISE), July 2001. 

[33] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley, The 

ETF;X Companion. Addison-Wesley Professional, second ed., 2004. 

[34] T. J. Mowbray and R. C. Malveau, COREA Design Patterns. New York: Wiley, 

first ed., 1997. 



BIBLIOGRAPHY 179 

[35] S. Oualline, Vi IMproved - Vim. Indianapolis, Indiana: Sams, first ed., 2001. 

[36] T . W. Pratt and M. V. Zelkowitz, Programming Languages: Design and Imple­

mentation. Maryland: Prentice Hall, fourth ed., 2001. 

[37] PTLogica, Source Code Documentation as a Live User Manual. 

[38] N. Ramsey, "Literate programming simplified," IEEE Software, vol. 11, no. 5, 

pp. 97-105, September 1994. 

[39] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object­

Oriented Modeling and Design. New Jersey: Prentice-Hall, Inc., first ed., 1991. 

[40] R. W. Sebesta, Concepts of Programming Languages. University of Colorado: 

Addison Wesley Longman, Inc., first ed., 1999. 

[41] E. Sekerinski, "Concurrent Object-Oriented Programs: From Specification to 

Code," in First International Symposium on Formal Methods for Components 

and Objects, (Leiden, Netherlands), pp. 403-423, Springer-Verlag, 2003. 

[42] H. V. Vliet, Software Engineering: Principles and Practice. New York, NY 

10158-0012, USA: Wiley, seconded., 2000. 

[43] K. Walden and J.-M. Nerson, Seamless Object-Oriented Software Architecture­

Analysis and Design of Reliable Systems. New Jersey: Addison Wesley Longman, 

Inc., first ed., 1994. 

[44] L. Wall, T. Christiansen, and R. Schwartz, Programming Perl. Sebastopol, CA: 

O'Reilly & Associates, seconded., 1996. 

[45] N. Walsh and L. Muellner, DocBook: The Definitive Guide. O'Reilly & Asso­

ciates, first ed., 1999. 

[46] R. Wirfs-Broc , B. Wilkerson, and L. Wiener, Designing Object-Oriented Soft­

ware. New Jersey: Prentice-Hall, Inc., first ed., 1990. 




