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Abstract 

We prove global well-posedness of the short-pulse equation with small initial 

data in Sobolev space H 2
. Our analysis relies on local well-posedness results 

of Schafer and Wayne, the correspondence of the short-pulse equation to the 

sine-Gordon equation in characteristic coordinates, and conserved quantities 

of the short-pulse equation. We perform numerical computations to illustrate 

this result. We also prove local and global well-posedness of the sine-Gordon 

equation in an appropriate vector space. 
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Introduction 

Fiber-optics communication lines are very efficient in rapid data transmission 

on long distances. In such systems a communication channel is an optical 

fiber with a certain balance between dispersion and nonlinearity. The data 

to be transmitted is encoded in pulses. If the pulses do not suffer much from 

dissipation and dispersion effects the data can be decoded on the other end 

of the communication channel. Using shorter pulses as an information carrier 

improves a bandwidth of the system. Modern lasers are capable of generating 

femtosecond laser pulses containing only a few cycles on a pulse length [23]. 

Figure 1: A wavetrain (left) and a short pulse (right). 

Propagation of light pulses in an optical fiber is described by Maxwell 's 

equations [4]. There are two alternative approaches to work with these equa

tions. The first one relies on numerical approximations [12 , 14]. This method 

allows us to compute evolution of any initial data provided numerical errors are 
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sufficiently small. However, this method is computationally costly and does 

not say much about the analytic properties of pulse solutions. The other line 

of attack is based on asymptotic approximations to the Maxwell 's equations. 

If the spectrum of a pulse is sufficiently narrow, the solution has a form of a 

wavetrain (see Figure 1, left) which fits into a "slowly varying envelope ap

proximation". This pulse can be represented as a product of a slowly changing 

amplitude and a rapidly oscillating phase function, with the amplitude satis

fying the well-known nonlinear Schrodinger equation [29]. If the spectrum of a 

pulse is broad, the solution has the form of a short pulse (see Figure 1, right). 

In the past decade, the topic of short pulses was intensively studied in the 

literature [5, 6, 10, 16, 27] due to rapid technological progress. 

This thesis is devoted to a model equation for ultra-short pulses in sil

ica optical fiber derived recently by Schafer and Wayne [27]. This model is 

referred to as the short-pulse equation in literature. Chung et al. [9] justified 

derivation of this equation in linear case and presented numerical approxi

mations of modulated pulse solutions. In addition to the derivation of the 

short-pulse equation, the pioneer paper [27] contains two important results. 

First, non-existence of a smooth travelling wave solution was proved in the 

entire range of the speed parameter. Second, the short-pulse equation was 

proved to be locally well-posed in a certain Sobolev space. The first result 

was recently extended by Costanzino, Manukian and Jones [11], who added a 

high-frequency dispersive term to the model of Schafer and Wayne allowing 

for existence of smooth travelling solutions. To construct homoclinic solutions 

with slow and fast motions, the authors of [11 J applied the Fenichel theory for 

singularly perturbed differential equations. Extension of the second result is 

described in the present thesis. 

The short-pulse equation has a number of remarkable properties. Not 
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only it is integrable by the Inverse Scattering Transform method [2], but also it 

is related to a well-studied sine-Gordon equation in characteristic coordinates 

through a coordinate transformation [24, 26]. This transformation endows 

the short-pulse equation with solitary wave solutions [19, 25] and an infinite 

hierarchy of conserved quantities [7]. There are two types of solitary wave 

solutions of the sine-Gordon equation (breathers and kinks) that generate two 

special solutions of the short-pulse equation (pulses and loops) [26]. The loop 

solutions are multi-valued, while pulse solutions are single-valued for small 

amplitudes. 

This thesis addresses properties of the short-pulse equation and con

tains the following original results: 

• We show that the short-pulse equation passes the Painleve test , that 

is it only admits solutions "whose only movable singularities are poles" 

[2 , 22]. Having passed the Painleve test, the system is considered to be 

integrable. 

• We prove global well-posedness of the short-pulse equation for small ini

tial data in energy space. We rely on equivalence of the short-pulse 

equation and sine-Gordon equation through a coordinate transforma

tion [24, 26] and the hierarchy of its conserved quantities [7]. 

• We prove that the sine-Gordon equation in characteristic coordinates 

is locally well-posed in a constrained Sobolev space. Our analysis is 

based on the Duhamel's principle, properties of the linearized problem 

and contraction arguments. By using the conserved quantities of the 

sine-Gordon equation in characteristic coordinates we prove global well

posedness for small initial data in the constrained energy space. 
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• We illustrate our result on global well-posedness of the short-pulse equa

tion by numerical simulations based on the pseudospectral method [31]. 

The numerical approximation to the solution of the short-pulse equation 

remains bounded and smooth for small initial data and develops shocks 

and wave breaking for large initial data. We also test stability of the 

exact pulse solutions by numerical simulations. 

The thesis is organized as follows. In Chapter 1, we show that the 

short-pulse equation possesses the Painleve property and review important 

properties of this model. Chapter 2 is devoted to global well-posedness of 

the short-pulse equation and well-posedness of the sine-Gordon equation in 

characteristic coordinates. In Chapter 3, we perform numerical computations 

of the short-pulse equation. 
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Chapter 1 

Formalism of the short-pulse 

equation 

The short-pulse equation derived by Schafer and Wayne in [27] after rescaling 

of dependent and independent variables can be conveniently represented in a 

normalized form 

Uxt = u + ~ ( u3
) , u(x , t) : lR x lR f-t JR, 6 XX 

(1. 1) 

where x and t are spatial and temporal variables correspondingly, and u is 

proportional to the amplitude of the pulse. This model possess a scaling 

invariance property 

u(x, t) = aU(a- 1x , at), a =I 0, (1.2) 

which allows to generate a one-parametric family of solutions from any known 

solution U(X, T) to this equation. 

Linearized short-pulse equation Uxt = u restricts propagation of the 

wave packets to the left. Indeed, the dispersion relation w(k) = k- 1 for the 
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harmonic waves 

u(x, t) = Aei(kx-wt) 

shows that the phase and group velocit ies are, correspondingly, 

w 1 
Vph = k = k2 > 0, 

dw 1 
Vgr = dk = - k2 < 0, 

and, in particular, the sign of the group velocity tells us that small-amplitude 

pulses of the short-pulse equation propagate leftwards. 

In this chapter, we prove that the short-pulse equation (1.1) possesses 

a Painleve property which is a reliable indicator of its integrability. We also 

review the other properties of the short-pulse equation (1.1) which stem out 

of its integrability. Those are Lax representation, transformation to the sine

Gordon equation in characteristic coordinates, solitary wave solutions, and 

conserved quantities. 

1.1 Transformation to the sine-Gordon equa-

tion 

Let us consider the sine-Gordon equation in characteristic coordinates in the 

form 

Wyt = sm w , w(y , t) : lR x lR t--t JR , (1.3) 

It was shown in [24] that the short-pulse equation (1.1) and the sine-Gordon 

equation (1.3) can be transformed to each other. This was done by transform

ing the generalized symmetry of the short-pulse equation to that of the sine

Gordon equation and then applying the transformations obtained directly to 

the equations. The derivation of this result was substantially simplified in [26] 
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by making a change of variables that remove all but mixed second order deriva

tives. Using the same method as in [26] we show how the transformation can 

be derived. 

Rewriting the short-pulse equation ( 1.1) in the parametric form 

u(x, t) = v(y, t), y = y(x, t), (1.4) 

we obtain 

22 1(2 2 2 ) 0 
VytYx + VyYxt + VyyYxYt - V - VVyYx - 2 V VyyYx + V VyYxx = . (1.5) 

To remove the terms with Vyy, we require 

(1.6) 

so that 

and the main equation (1.5) reduces to 

VytYx- V = 0. (1. 7) 

Let us assume that y(x, t) is invertible in x and consider x = x(y, t). By the 

chain rule, 
1 

Xy = - , Xt = - XyYt· 
Yx 

Thus, (1.6) , (1.7) and (1.8) yield 

By compatibility condition Xty = Xyt we get 

(
Vyt) 
--;; t + VVy = 0. 

7 
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Using an integrating factor 2:ut we arrive at 

2 
vyt 2 
2 +vy = f(y), 
v 

(1.10) 

where f (y) : lR f---7 IR+ is arbitrary. 

The choice f(y) = 0 gives only a trivial real solution v(y , t) = v0 (t), for 

which Xy- 0. 

Let us consider the case f (y) > 0. Due to representation ( 1.4) and 

invertibility of y(x, t) with respect to x, we can write the solution to the short

pulse equation in the parametric form 

u = v(y, t), x = x(y, t), (y, t) E 1R2
. 

This solution is invariant with respect to reparametrization y = '1/J(fj) with 

'ljJ : lR f---7 R Let 'ljJ be invertible function with the inverse ¢ = 'lj;-1 : lR f---7 R 

Then for v(y , t) = v(fj, t) we have 

vy = ¢'(y)vy. 

One can choose the function ¢ to satisfy 

(¢'(y)) 2 = f(y) > 0. 

Therefore, without loss of generality we can set f(y) = 1 in (1.10). Now, for 

the equation 

we make a potential transformation v = Wt, thus obtaining 
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Assuming that w with its derivatives decays to zero at infinity, upon integration 

in t we obtain the sine-Gordon equation 

Wyt = ±sinw, 

where we can choose "+" , due to invariance of u(x, t) with respect to the trans

formation y ~---+ -y. Hence, the above computations give important formulae 

relating (1.1) and (1.3): 

u(x, t) = wt(Y , t), x ~ x(y, t) : { (1.11) 
Xy = COSW. 

Formulae (1.11) make it possible to derive solutions of the short-pulse equation 

(1.1) from those of the sine-Gordon equation in characteristic coordinates (1.3). 

We note that 

Ux(x , t) =tan w(y, t) , (1.12) 

so that the infinite slope of u(x , t) occurs in the solution of the short-pulse 

equation (1.1) at the same points where the solution w(y, t) of the sine-Gordon 

equation (1.3) intersects zeros of cos w. We will be interested in localized 

solutions w(y, t) satisfying 

1.2 Painleve property 

To use the Inverse Scattering Transform scheme for a nonlinear partial differ

ential equation, one can start by checking if it passes a Painleve test [22, 30] 

that indicates typically integrability of the nonlinear equation. This approach, 

which is also known as the singularity analysis method, was adjusted to par

tial differential equations by Weiss, Tabor and Carnevale in [34]. The idea 
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is to check whether the solution to the partial differential equation with in-

dependent variables x1 , x2 , ... , Xn is a single-valued function about a movable 

singular manifold ¢(x1 , x2 , ... , xn) = 0. The equation passes the Painleve test 

if the expansion of a solution into Laurent series about the singular manifold 

has the number of arbitrary functions being equal to the order of the system, 

that is the highest derivative in x1 , x2 , ... , Xn· 

The short-pulse equation in the form ( 1.1) does not allow to determine 

the leading order behaviour of Laurent series. Therefore, we perform the 

Painleve test for the equivalent system 

{ 

Vyt - VXy = 0, 

1 2 0 
Xt + 2v = ' 

(1.13) 

which follows from (1.9). We apply the Weiss- Kruskal algorithm for Painleve 

test (see [22] and references therein) to the system (1.13): the singular manifold 

is taken in the form 

</J (y, t) = y + '1/J (t) , '1/J'(t) =/= 0, Vt E IR, 

and Laurent series expansions for v and x are represented as 

{ 

v(y, t) = L:~=O an(t)<jJ(y, t)n+a, 

x(y, t) = 2::::~=0 bn(t)<jJ(y, t)n+f3 . 

The balance of the lowest powers of </J(y , t) in the system (1.13) occurs if 

{ 

a- 2 =a+ (3 - 1, 

(3- 1 = 2a, 

so that a = (3 = -1 after which we find that 

a0 (t) = ±2i'¢'(t), b0 (t) = -2'1/J '(t). 
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We are going to consider only the branch with a0 (t) = 2i'lj;'(t) because the 

other branch a0 (t) = -2i'lj;'(t) will give the same expansion, but with the 

opposite sign due to the symmetry v ~----+ -v of the system. To determine the 

values of r at which one or both coefficients ar(t), br(t) can be arbitrary, we 

substitute the expansions 

{ 

v(y, t),...., ao(t)¢- 1 (y, t) + ar(t)q;r-l(y , t), 

x(y, t) ,...., bo(t)¢- 1(y, t) + br(t)q;r-l(y, t), 

into (1.13), group the terms at q;r-J and q;r-2 for the first and second equations 

correspondingly, and obtain r = -1 , 1, 4. The value r = -1 corresponds to 

the arbitrariness of the function 'lj; (t). In order to see what actually happens 

at the orders r = 1, 4 we need to use the full series expansions. With this idea 

in mind, we derive the recursion relations 

{ 

(n- 2)a~_ 1 + (n- 2)(n- 1)an'l/J'- L~=0 (k- 1)an-kbk = 0, 
(1.14) 

b~-l + (n- 1)bn'l/J'(t) + ~ L~=O akan-k = 0, 

where a_ 1 = b_1 = 0 and n = 0, 1, 2, .... The results of our computations are 

listed as follows: 

•n=1 

b1(t)- arbitrary. 

• n=2 

•n=3 

a3(t) = - ib3(t), 

b3(t) = 12'lj;\t)5 (b~(t) 'l/J '(t) 3 - 2b~(t) 'lj;"(t) 'lj;'(t) 2 - 'l/J"(t) 'lj;3(t) 'lj;'(t) + 2'lj;"(t) 3
) ' 

11 
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•n=4 

a4(t) = 144;'(t)7 (216b4(t)'l/!'(t) 7
- 4b~(t) 2 '1/J'(t) 4 + 6b1 (

3)(t)'l/!'(t)4 

- 30b~(t) '!j!"(t) '!j!'(t) 3 - 12b~(t) '!j!( 3 ) (t) 'l/J'(t) 3 

+ 52b~(t)'l/!"(t) 2 '1/!'(t) 2 - 6'lj!(3)(t) 2 '1/J '(t) 2 

- 6'1/!"(t) '!j!(4)(t) 'l/! '(t)2 + 66'1/!"(t) 2 '!j!(3)(t)'l/!'(t) 

- 73'1/!"(t)4) , 

b4 (t) - arbitrary. 

Higher-order corrections of the Laurent series for v(y, t) and x(y, t) can be 

obtained in the same way by recursion relation (1.14). We observe that Laurent 

series for the solution to system (1.13) about cp(y, t) = y + '!j! (t) possess three 

arbitrary parameters '!j! (t) , b1(t) and b4(t). Since system (1.13) is of the third 

order, this indicates that the short-pulse equation passes the Painleve test. 

1.3 Lax pair 

It is common to tag a nonlinear PDE as an integrable system if it can be 

written as a compatibility condition of two linear operators, known as the Lax 

pair. In this case, the initial-value problem can be solved by means of the 

Inverse Scattering Transform method [2]. It has been checked for a number 

of examples that the existence of a Lax pair appears to be equivalent to some 

other tests on integrability such as the Painleve test. There is no proof to this 

fact , but there is no counterexample either. A good introduction to the topic 

of integrable systems is given in the books [1], [2] and [30]. 

Following the results presented in [24] we show how to derive the Lax 
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pair of the short-pulse equation ( 1.1) in the form 

{ 
7/Jx = X 7/J, 

7/Jt = T 'ljJ, 

McMaster - Mathematics 

where X and Taren x n matrices depending on x, t , function u(x , t) and its 

derivatives, and 7/J (x , t) is an n-component column. The compatibility condi

tion 

Xt - Tx + [X, T] = 0, 

where square brackets denote a matrix commutator, must recover the short

pulse equation (1.1). It is important to note that X , T and 7/J are defined up 

to some gauge transformation 

7/J f-+ G 7/J, 

X f-+ GXG- 1 + (DxG)G-1, 

T f-+ GTG- 1 + (DtG)G-1
, 

where G is a nondegenerate n x n matrix depending on x, t , u(x , t) and its 

derivatives. 

The Lax representation of the short-pulse equation can be obtained in 

terms of 2 x 2 traceless matrices X and T , upon assuming that 

X= Aux +B, 

T = T(u , Ux), 

where A and B are 2 x 2 constant traceless matrices. This gives a set of 

commutator equations which can be solved for 

13 
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with ..\ being an arbitrary nonzero constant, which produces 

X = ( 0 ..\ ( 1 + iux)) 
..\(1 - iux) 0 

T= 
i>.u2u + .!.>.u2 + ...!..) 2 X 2 4A 

_iu 
2 

Finally, the gauge transformation induced by a matrix 

( 1 1) G= 
-z z 

yields another representation of the Lax pair 

(1.15) 

The spectral problem 1/Jx =X 1/J produced by the operator X in (1.15) is of the 

Wadati- Konno- Ichikawa type [33]. 

1.4 Exact solutions 

Using transformation (1.11) , it is possible to generate solutions of the short

pulse equation (1.1) from those of the sine-Gordon equation (1.3). In [25]loop 

and pulse solutions were derived in this way. Later in [19], general formulae 

for multiloop and multibreather solutions were obtained by means of Hirota's 

method. In [21], some other periodic and solitary travelling-wave solutions to 

equation ( 1.1) were presented. Below we provide some explicit solutions of the 

short-pulse equation (1.1) following the results of [25]. 

14 
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4:r : : r < ~, Jii r 1 
-6 - 4 -2 0 2 4 6 

X 

~:r ·····•• .. ······R: .... ·····•···· ..... ~ = , ·•·············:•.· ·······•····· J ~ 1 ·····:········· ·· ··:· ·· - - - -- - ··: · --- - - ·· :··---- ·····:· ....... ····:··· ······ - --~---

. . . . . . . 
0 . - -- -- -· --: ·· .. -- ····· ·:··· ·- ·· -- : : : 

-6 -4 - 2 0 2 4 6 
X 

Figure 1.1: The loop solution u(x ,t) (1.17) to the short-pulse equation (1.1) 

Consider the kink solution of the sine-Gordon equation (1.3) in the 

form 

w = 4 arctan( exp(y + t)) (1.16) 

and apply transformation (1.11) to arrive at the solution in the parametric 

form 

{ 

u = 2sech(y + t), 

x = y- 2tanh(y + t). 
(1.17) 

This solution represents a loop soliton of the short-pulse equation (1.1) trav

elling with a unit speed to the left (Figure 1.1). This solution always has two 

singular points, because kink (1.16) passes through w = 1r /2 and w = 37r / 2 

for all (y, t) E JR2 (cf. (1.12)). 

Consider now the breather solution to the sine-Gordon equation (1.3) 

in the form 

( 
msin 'lj; ) 

w = -4 arctan n cosh¢ , (1.18) 

where 

¢ = m(y + t) , 1/J = n(y- t) , n = v'1- m 2 , (1.19) 
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t = 20 

~J ···· · · · · ·····f ··· ··· · ··· · · · · :· · ·· l - llo~----::------::_,.:------:c------::,::-, ---:::------! .. 

60 

Figure 1.2: The pulse solution (1.20) to the short-pulse equation (1.1) with 

m = 0.32 

and 0 < m < 1. Since 

7r 
lw(y, t)l < 2 . 7r 

for m <mer= sm 8:::::::; 0.383, 

this breather solution can generate a non-singular solution of the short-pulse 

equation (1.1) in the parametric form 

m sin 7/J sinh ¢ + n cos 7/J cosh ¢ 
u = 4mn , 

m 2 sin2 7/J + n 2 cosh2 ¢ 
(1.20) 

m sin 27/J - n sinh 2¢ 
x = y + 2mn . 

m 2 sin2 7/J + n 2 cosh2 ¢ 

This formula represents a smooth pulse solution for 0 < m < m er (Figure 1.2, 

left) and a singular pulse solution form> mer (Figure 1.3). 

We note that the pulse solution (1.20) is periodic on the (x , t)-plane, 

according to the following property 

{ 

u(y , t) = u (y- ~ ' t + ~) , 

x(y, t) = x (y- ~' t + ;;J + ~' 

16 

'i(y , t) E IR2
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1l ! • . · ~' ' i j 
_, ............................. ,, ..... .. 

-· -Hi -10 -5 0 5 10 15 
X 

~ :r ; ¥. · ~:·· · : l 
-2 ··-·······-···-- ....... :.......... ... . . ....... ···-·· ..... . 

- 4 
- 15 - 10 -5 0 5 10 15 

X 

Figure 1.3: A singular solution (1.20) to the short-pulse equation (1.1) with 

m = 0.80 

On the other hand, the solution is localized in any other direction on the (x , t)

plane. The solution surface of the pulse solution (1.20) with m < mer is shown 

on Figure 1.2, right. 

1.5 Conserved quantities 

An infinite hierarchy of conserved quantities of the short-pulse equation (1.1) 

was derived by Brunelli in [7]. This was accomplished by using a hi-Hamiltonian 

representation of the system. Some results from [7] are reviewed below. The 

first few conserved quantities will be needed in Chapter 2 to prove global 

well-posedness of the short-pulse equation. 

form 

where 

The short-pulse equation ( 1.1) can be represented in the bi-Hamiltonian 

_ V bHo _ V bH-1 
Ut - 1 bu - 2 bu , 

17 
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and 

H0 =- u dx, 11 2 

2 IR 
H_ 1 = -u --(ox u) dx. 1 ( 1 4 1 -1 2) 

IR 24 2 

Here H0 , H_ 1 are conserved quantities (Hamiltonians) of the short-pulse equa

tion and 8: stands for the functional derivative given by 

Vv E £ 2
, u E Dom(f): ( v, ~f) = dd f(u + w)l ' 

uU £2 E e=O 

where ( ·, ·) £2 denotes the inner product in £ 2 space. Two hierarchies of con

served quantities arise from the hi-Hamiltonian form (1.21). 

The first hierarchy is generated by the recursion formula 

6Hn = R6Hn+1 
6u 6u ' 

n = -1,-2 ... , 

where 

R -n-1-n ~-2 ~-1 ~-1 ~-2 (1 2 ~-1 ) = 1/2 VI = Ux + U UxUx Ux = Ux + Ux + UxxU Ux . 

The first few conserved quantities are 

The second hierarchy of conservation laws is given recursively by 

n=0,1,2 ... , 

where 

R-1 = v-1v = 82 (_!__ + Aa- 1 A ) = 82_1_8 pa-l Uxx 
1 2 X p2 X X X X X p3 l 

Uxx 

18 
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and 

F = y/1 +u2 
X' 

The first few conserved quantities are 

Conserved quantities H 0 , H 1 and H 2 will be used in Chapter 2. 

19 



Chapter 2 

Well-posedness of the 

sine-Gordon and short-pulse 

equations 

In this chapter, we prove local and global well-posedness of the sine-Gordon 

equation in characteristic coordinates (1.3) using the contraction arguments 

and conserved quantities. We also establish a sufficient condition on global 

well-posedness of the short-pulse equation ( 1.1). This is accomplished by us

ing local well-posedness results of Schafer and Wayne [27], the hierarchy of 

conserved quantities found by Brunelli [7] and transformation (1.11) between 

the sine-Gordon equation in characteristic coordinates (1.3) and the short

pulse equation (1.1) [24, 26]. 
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2.1 Function spaces 

• Let p ~ 1 and f : lR ~---+ R The standard I.l space is defined by the norm 

II! IlL'= (L lf(x)IPdx) ' iv 

We also define£= norm by 

ll!llu"' =sup lf(x)l. 
xE IR 

• Let s ~ 1 be an integer. The £ 2-based Sobolev space H 8 is defined by 

the squared norm 

where j is the Fourier transform of a function f given by 

}(k) = ~ r f(x)e-ikxdx 
V 21f JIR 

and the equality follows from the Plancherel's identity. 

Here we list some properties of Sobolev space H 8 that play an essential 

role in our computations (refer to e.g. [28] for details). 

- Sobolev embedding: Iff E H 8
, then the functions f, f', ... ,J(s-l) are 

bounded uniformly continuous functions that converge to 0 at ±oo. 

In particular, there is a constant B s, such that the following bound 

holds: 

(2.1) 

- Banach Algebra Property: There is another constant Cs > 0 such 

that 
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We note that 

which is obtained by using the triangle inequality for integrals and the 

Cauchy-Schwartz inequality as follows 

lf(x)l =I~ 1 ](k)eikxdkl ~ Jk 11](k)' dk 

~ ~ 1 (1 + k2
)-

1dk 1 (1 + k2) IJ(k)l
2 

dk = ~IIJIIHl. 

We also note that 

llfgiiH1 ~ IIJIIH1II9IIH1 

llfgiiH2 ~ IIJIIH2II9IIH2, 

as follows from recent paper [20]. 

• Let JJR f(x)dx = 0 then ](0) = 0. We define 

11!11~-1 = 1 11~:) 12 
dk = 118;1 !11~2 , 

where 

8;1 f(x) = -100 

f(x')dx' = lx f(x')dx' = ~ (lx -100

) f(x')dx'. 
X -00 2 -00 X 

Let us define the space xs by the squared norm 

IIJIIis = IIJII~s + IIJII~-1· (2.3) 

For a given fo E (0, 1), a constrained version of the space X~ is then 

defined by 

X~ = {f E xs : llfllv"' < fo} · (2.4) 
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• Holder's inequality: Let 0 < p, q::::; oo such that 1 = 1/p + 1/q, then 

(2.5) 

For p = q = 2 formula (2.5) is known as the Cauchy-Schwartz inequality. 

• Hausdorff- Young inequality: Let 0 < p, q, r ::::; oo such that 1 + p-1 = 

q- 1 + r- 1 , then 

(2.6) 

where the star denotes convolution operator (! * g)(x) = fiR f(x')g(x

x')dx'. 

• To analyze the properties of a solution to the linear wave equation Qxt = 

Q we will need the following kernel functions for x, t > 0: 

and 

(2.8) 

where J0 , J1 stand for the Bessel functions of the first kind. 

For a subsequent integral estimates it is important to determine the 

asymptotic behaviour of these kernel functions. Since J1 ( x) = ~ + 0 ( x3 ) 

for small x > 0 and J1 ( x) ""' Jx cos( x - 3
;) for large x » 1, the kernel 

function Kt enjoys the following properties 

- Kt(x) = -t + O(xt2
) for small xt > 0, 

- Kt (x) = O(x-314t 114 ) for large xt » 1, 

- there is a constant C > 0 such that IIKtllu)Q ::::; Ct and IIKtll£2 < 

C Jt uniformly on t E JR.+. 
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- Kt ¢:. L1 for any t > 0. 

Similarly, since J0 (x) = 1+0(x2
) for small x > 0 and J0 (x)""' Jx cos(x

~) for large x » 1, the function lt satisfies 

- lt(x) = 1 + O(xt) -----+ 1 for small xt > 0, 

- lt(x) = O(x-114c 114 ) for large xt » 1. 

- llltllu"' :=:; 1 uniformly on t E ~+· 

- lt ¢:. L1 U L2 for any t E ~+· 

The graphs of functions Kt and lt for some values of t > 0 are shown 

on Figure 2.1. The slow decay of the functions lt and Kt introduces a 

delicate problem in the well-posedness analysis of the sine-Gordon and 

short-pulse equations. 

2. 2 Preliminaries 

The problem of global well-posedness for nonlinear equations in characteristic 

coordinates has been studied in a number of recent publications [13, 18, 32] in 

the context of Ostrovsky equation 

(2.9) 

which has some similarity to the short-pulse equation (1.1). The Ostrovsky 

equation (2.9) models small-amplitude long waves in a rotating fluid. Liu and 

Varlamov [32] proved local well-posedness in space H 8 n if-1 for s > ~· The 

space H 1 n if-1 is the energy space of the Ostrovsky equation (2.9), where the 

mass V(u) = llulli2 and the energy 

E(u) = 1 ( f)(oxu)
2 + ~ (o;1u)

2
- ~u3) dx 

24 



MSc Thesis - A. Sakovich McMaster - Mathematics 

~ 
~ 

o.os 1 --.---.--------.---.--------,----.--;::::::::::I====:;-J 

1
---t-011 

0 

: I 

:t 
-0.05 I 

I 
1: 
I 

-0.1 

-0.15 : 

I 

/ 

I 

·· · . 
-----

· · · · · · · t: o:2 

- - . ---:-- . :-: ......... - - .:.....; -

-0.2 L__ __ L__ __ L__ __ L__ __ L__ __ L__ __ L__ __ L__ _ ____J 

0 

0.8 

0.6 

0.2 
I\ 

r. I 
: : I :. \ 

l ( : \ : 
0 I · \: 

:1·1: 
i I 

-0.2 if 
:1r 

50 100 

I'\ 

I . \ 

1: 
,: 

f . 

. 1: 

\ ... 

: \ 

150 

/ . 
1: 

I : 
I : 

I · . 

' / 

200 
X 

' \ 

\ 
\ : 

: \ 

250 300 350 400 

..--
/. ·. ''\. 

/ : ' 
/ : 

/ : 

'' - ;-~ ... 

:11 
: II 

-0.4~·~~--~-~--L---~-~--~-~--L---~ 

0 20 40 60 80 100 120 140 160 180 200 
X 

Figure 2.1: Kernel functions lt ( x) = ]0 ( 2 VtX) and Kt ( x) = {i J~ ( 2 VtX) . 
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conserve in timet. Using conserved quantities and local existence in H 1 nif-1 , 

Linares and Milanes [1 8], and Gui and Liu [13] proved global well-posedness 

of the Ostrovsky equation (2.9) in the energy space. However, their proof is 

only valid for {3 > 0 and it is not applicable to the short-pulse equation (1.1). 

To understand the long-term dynamics of solutions to the short-pulse 

equation ( 1.1) it is instructive to prove local and global existence of solutions 

to the sine-Gordon equation (1.3) in a space where the constraint 

7f 

llw(·, t)llu"' < 2 (2.10) 

is kept global in time. According to the transformation (1.11) this would 

imply that a small initial data of the short-pulse equation (1.1) would evolve 

no singularities in a finite time. Together with integrability of the short-pulse 

equation (1.1), global well-posedness may suggest asymptotic stability of the 

modulated pulse solutions (1.20). 

The sine-Gordon equation in characteristic coordinates was considered 

long ago by Kaup and Newell [15] using formal applications of the stationary 

phase method. Local well-posedness of this equation is a non-trivial problem 

due to the presence of the constraint 

1 sin(w(y,t))dy = 0, (2.11) 

which does not guarantee that condition (2.10) is satisfied for all t E JR+- Our 

treatment of this equation is rigorous and we shall prove that the sine-Gordon 

equation (1.3) is locally well-posed in space H 8 n if- 1 for an integer s 2: 1 in 

the new variable q =sin w. Global well-posedness is proved in H 1 n if-1 with 

the help of three conserved quantities of the sine-Gordon equation. The result 

can be extended in H 8 n if- 1 for an integers > 1 if more conserved quantities 

are incorporated into analysis. 
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The sine-Gordon equation in the laboratory coordinates 

WTT - Wt;t; = SlnW 

is known to be locally well-posed in a weaker space £P(IR) for any p 2:: 2, see 

Appendix B of Buckingham and Miller [8]. Similarly to this work, our analysis 

is also based on the conventional method of Picard iterations to prove local 

well-posedness of the sine-Gordon equation in characteristic coordinates (1.3). 

2.3 Klein-Gordon equation in characteristic co-

ordinates 

To analyze the Cauchy problem for the sine-Gordon equation (1.3), we obtain 

information on the fundamental solution of the underlying linear problem 

(2.12) 

Let us denote L = 8;;1 and Q(t) = etLQ0. The solution operator can be 

represented in the Fourier transform form by 

which involves a bounded oscillatory integral on k E lR with a singular be

haviour as k ---+ 0. By the Fourier representation, the solution operator etL is 

a norm-preserving map from H 8 to H 8 for any s 2:: 0, so that 

(2.13) 

In particular, if Q0 E L2
, then Q(·, t) E £ 2

, for all t E R In the following 

statement we shall specify an explicit representation of Q(t) in the physical 

space. 
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Lemma 2.1 Let Kt(Y) be defined by (2. 7) with t, y E ~+- For any Q0 E 

L 2 n uxJ the linear Cauchy problem (2.12) has a solution in the form 

Q(y, t) = Qo(Y) + 100 

Kt(Y'- y)Q0 (y')dy', (y, t) E ~ x lR+, (2.14) 

so that Q(·, t) E UXJ for any t E JR+ 

Proof. Applying the Laplace transform defined as 

](s) := £f(t) = 100 

e-st f(t)dt, 

with Re(s) > 0, we reduce the linear Cauchy problem (2.12) to the form 

8Q t -
s By (y, s)- Q0 (y) = Q(y, s). 

By the method of undetermined coefficients, we find a solution 

Q(y,s) = c(y,s)exp(yjs), 

where c(y, s) solves scy(y, s) = Q~(y). Since Re(s) > 0, we integrate this 

equation from y to oo subject to the boundary condition c(y, s) ---+ 0 as y ---+ oo 

and arrive to the solution 

c(y, s) = -~ 100 

e-y'/sQ~(y')dy'. 
s y 

Inverting the Laplace transform, we complete computation of the solution 

operator as follows 

Q(y, t) = £-1Q(y, s) 

= - /.oo £-1 ( ~e(y-y')/s) Q~(y')dy' (2.15) 

= -100 

Jo(2Jt(y'- y))Q~(y')dy', 
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which gives the explicit formula (2.14) after integration by parts since J0 (0) = 

1, limz-+oo J0 (z) = 0, and Q0 E L00 (lR). Convergence of the integral in the 

explicit formula (2.14) can be easily shown by the Cauchy-Schwarz inequality 

(2.5): 

IQ(y, t)l < IQo(Y)I + /,oo IKt(Y'- y)Qo(y')idy' 

< IQo(Y)I + IIKtllv(R+) IIQollv < oo, 

so that Q(· , t) E L00
, for any t E JR+. D 

Remark 2.2 For well-posedness analysis of the sine-Gordon equation we will 

need to keep track of both dependent variable and its definite integral with 

variable upper (lower) boundary. In particular, the variable 

P(y , t) = -100 

Q(y', t)dy', 

also solves the Cauchy problem: 

Evidently, Lemma 2.1 holds for P(y , t) provided P0 E L2 n L00
. 

(2.16) 

Remark 2.3 If Q(· , t) E H 8 and P(· , t) E L2
, then P(· , t) E Hs+l for an 

integer s 2:: 0. By Sobolev embedding, P(· , t) E L00 and limlyl-+oo P(y, t) = 0, 

or equivalently, 

1. Q(y , t)dy = 0 (2.17) 

for any t 2:: 0. Therefore, the constraint (2.17) is automatically satisfied if 

Q(t) E C(JR, H 8
) and P(t) E C(JR, L2

) for a fixed s 2:: 0. We recall that, if 

fiR Q0 (y)dy =/= 0, the solution Q(y, t) still satisfies constraint (2.17) for t > 0 

but is not smooth at t = 0, see Ablowitz & Villaroel [3] for analysis of a similar 

Kadomtsev- Petviashvili equation. 
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Remark 2.4 If P0 E £ 2 n VX), upon replacing Q f---+ P and Q' f---+ Q equation 

(2.15) gives a new representation of P(y, t): 

P(y , t) =- f.oo lt(Y'- y)Qo(y')dy' , (2.18) 

where (t , y) E IR+ x IR, and a kernel function lt is defined by (2.8). 

2.4 Local well-posedness of the sine-Gordon 

equation 

To simplify the constraint (2.11) for solutions of the sine-Gordon equation 

(1.3), we introduce a new variable 

q =Sin W, 

so that (2.11) becomes a linear constraint 

1 q(y , t)dy = 0. (2.19) 

The sine-Gordon equation (1.3) transforms to the evolution equation 

(2.20) 

where the operator a;/ acts on an element of H 8 under the constraint (2.19): 

a;/q := [~ q(y' , t)dy' = - J.oo q(y', t)dy' = ~ ([~- J.oo) q(y', t)dy'. 

Let us introduce the nonlinear function 

q2 
J(q) := 1- vh- q2 = -----r==:::::;;= 

1 + J1- q2 

30 
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and write the Cauchy problem for equation (2.20) in the equivalent form 

{ 
qt = ~- J(q))a;; 1q, 

qlt=O - qo. 
(2.22) 

The nonlinear function f ( q) is squeezed by the quadratic functions 

2 

Vlql < 1 : ~ :::; f(q) :::; q2
, 

which allows us to interpret the term f(q)8;; 1q as a nonlinear perturbation to 

the linear evolution induced by a;; 1q. 

The local well-posedness analysis is based on the integral equation 

q(t) = Q(t) -1t e(t-t')L f(q(t'))p(t')dt' , (2.23) 

which follows from Duhamel's principle for the Cauchy problem (2.22). Here 

q(t) := q(y, t), p(t) := p(y , t) = -100 

q(y', t)dy', 

Q(t) = etLq0 is the solution of the linear problem (2.12) with Q0 = q0 , and 

f(q) is defined by (2.21). We shall work with initial data q0 from the space X~ 

in (2.4) for an integer s ~ 1. Since Py = q, it is clear that p E Hs+l if p E £ 2 

and q E H 8
. We need to show that the vector field of the integral equation 

(2.23) is a Lipschitz map in the vector space xs with the squared norm (2.3) 

rewritten as 

(2.24) 

for any t E [0 , T] and it is a contraction operator for a sufficiently small 

T > 0. If llqolluoo < 1 and q(t) is continuous in H 8 for a fixed s ~ 1, then 

the constraint llq(t)llu"' < 1 is satisfied on [0, T0] C [0, T] for some T0 > 0 

thanks to Sobolev's embedding H 8 
'---+ L00 for any integer s ~ 1. Using this 

construction, we formulate and prove the local well-posedness theorem for the 

sine-Gordon equation (1.3). 
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Theorem 2.5 Assume that q0 E X~ for an integer s 2: 1. There exist a 

T > 0 such that the Cauchy problem (2.22) admits a unique local solution 

q(t) E C([O, T], XD satisfying q(O) = qo. 

Proof. We prove this statement in two steps. First, we show that the vector 

field of the integral equation (2.23) is a closed map of a finite-radius ball in 

X~ that includes q0 E X~ to itself on a nonempty time interval. In other 

words, we prove that for any 6 E (O,min(B;l,C; 1
)) , and a E (0 , 1) we can 

find a small T* = T*(a, 6) > 0 such that if llqollx• :::; a6 and llqoll uX) :::; ex, 

then llq(t)llx• :::; 6 and llq(t)lluX) < 1 for any t E [0 , T*] (see (2.1) and (2.2) for 

definitions of Bs and C8 ). Second, using the quadratic behaviour of f(q), we 

prove that the map given by the integral term in (2.23) is Lipschitz with respect 

to the field variable q, and it is a contraction if the interval [0 , T] forT E (0 , T*) 

is sufficiently small. Existence of a unique fixed point of the integral equation 

(2.23) in a Banach space C([O, T], XD follows by the contraction mapping 

principle (see e.g. [35]). 

With the above scheme in mind, we start with with the bounds for 

llq(t)llx• for some t > 0. By the triangle inequality and the norm-preserving 

property (2.13) , we bound the H 8 norm of q(t) in the integral equation (2.23) 

for any integer s 2: 1 by 

llq(t)IIH• < IIQ(t)IIH• + 1t iie(t-t')Lf(q(t'))p(t')IIH•dt' 

< llqoiiH• + Cs 1t lif(q(t'))iiH• IIP(t')iiH•dt', 

where we recall that H 8 forms a Banach algebra with respect to multiplication 

for any integer s 2: 1. To deal with nonlinear function f(q) , we expand it in 

the Taylor series 

f( ) J 2 ~ (2n- 3)!! 2n 
q = 1 - 1 - q = 6 I 2n q ' n. 

n=l 
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which converges if llqllu"' < 1 and involves only positive coefficients. By in

voking again the Banach algebra property, we obtain 

IIJ(q)IIH• ::; f ( 2:~n3)!! llq2niiH• :S: f ( 2:~:)!! c:n-1 llqll7;. 
n=l n=l 

= ~sj(CsllqiiH•) :S: Csllqll~s, 

if CsllqiiH• < 1, thanks to the definition (2.4) and the representation (2.21). 

As a result , we have 

To estimate the L2 norm of p( t), we use the integral representation 

p(t) = P(t) -1t Le<t-t')L f(q(t'))p(t')dt' , 

where P(t) = LQ(t) is defined by solution of the linear problem (2.16). Now 

use the triangle inequality and the norm-preservation property, to derive 

llp(t)ll£2 < IIP(t)llu + 1t IILe<t-t')L f(q(t'))p(t')IIL2dt' , 

< IIPollu + 1t IILe<t-t')L f(q(t'))p(t')lludt'. 

The norm preservation is not useful for the second term because Lf(q(t))p(t) 

may not be in L2
. Since lt(Y) = 10 (2-JFY) is bounded for any t, y E IR+ and 

we represent the operator LetL acting on J(q)p E L1 in the convolution form 

(2.18) , or explicitly by 

Le<t-t')L J(q(t'))p(t') = -100 

lt-t'(y'- y)f(q(y' , t'))p(y', t')dy'. (2.25) 
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Using the Hausdorf-Young inequality (2.6), we obtain 

II Le(t-t')L f ( q( t') )p( t') II £2 ::; lllt-t' II L'"' II f ( q( t') )p( t') II £2/3 ::; II f ( q( t') )p( t') II £2/3. 

Using the Holder inequality (2.5) , we obtain 

llf(q(t))p(t) llu ::; llf(q(t)) IILP llp(t) llu, 

with p-1 + r- 1 = 1, so that 

II Le(t-t')L f ( q( t') )p( t') II £2 ::; II J ( q( t')) ll£2p/311P( t') II £2r/3 · 

If we chooser = 3, then we have p = ~ and llf(q)llu ::; llqll~2· Thus, we 

conclude that 

llp(t)ll£2 ::; IIPoll£2 +it llq(t')ll1-.dt', 

for some C > 0. Altogether the above estimates give a bound on the solution 

norm 

llq(t)llx• ::; llqollx• +Cit llq(t')ll1-.dt' , (2.26) 

where C > 0. By continuity of llq(t)llx•, for any a E (0, 1) , there is aT> 0 

such that if llqoiiH• < a min(B; 1
, C;1 

) , then llq(t) llx• < min(B;l, C;1
) for 

any t E [0, T]. 

We also need to prove that the constraint II q( t) II L'"' < 1 is satisfied for 

some 0 < t < oo. Estimating the £ 00 norm of q(t) from the integral equation 

(2.23) we obtain 

llq(t)lluXl::; IIQ(t)llu"' +it lle(t-t')Lf(q(t'))p(t')llux,dt'. 

Using the convolution formula (2.14) and the Hausdorff-Young inequality (2.6) , 

the free term is estimated by 
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for some C1 > 0. The nonlinear term is estimated by 

lle(t-t')L f(q(t'))p(t')IIL'X> < llf(q(t'))p(t')lluX> + IIKt-t'IIL= llf(q(t'))p(t')llu 

< C2(1 + t- t')llq(t')llis, 

for some C2 > 0. Finally, we conclude that 

llq(t) IlL= ~ llqoiiL= + Clt112 llqollx· + c21t (1 + t- t') llq(t') llisdt'. (2.27) 

One can derive some explicit estimates forT* = T*(a , 8) , defined above, 

using the inequalities (2.26) and (2.27). That is, if we require that the solution 

to Cauchy problem for (2.23), with the initial norm llqollx• ~ a8 and llqoli£= < 

a for some a E (0, 1) and 8 E (0, min(B; 1
, C;1 

)), remains in the X~ with 

llq(t) llx• ~ 8 and llq(t) IlL= < 1 for any t E [0 , T*(a , 8)] then the bounds 

a8 + CT*83 < 8, 

a+ C1TY2
a8 + C2T* ( 1 + ~T*) 83 < 1 

would give the range of values forT*. 

It is left to prove that the map defined by the integral part of (2.23) 

(Aq)(t) =it e(t-t')L f(q(t'))(8;; 1q)(t')dt' 

is a contraction in the xs space on [0, T] forTE (0, T*). That is , for 

sup llql(t)llx• ~ 8 and sup llq2(t)llx• ~ 8 
tE[O,TJ tE[O,TJ 

there is k E (0, 1) such that the inequality 

sup IIAq1- Aq2llx• ~ k sup llq1- q2llx• , (2.28) 
tE[O,TJ tE[O,T2] 

is satisfied. We show existence of such a constant k by a direct computation. 

The definition of the xs norm (2.3) yields a convenient bound 

(a) (b) 
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Let us consider the components (a) and (b) separately. 

(a) Using the norm-preserving property (2.13), triangle inequality and Ba

nach algebra property for the Sobolev space we obtain 

IIAql- Aq2IIH• < 1t iie(t-t')L(J(ql)Pl- J(q2)P2)11Hsdt' 

< T sup IIJ(ql)Pl- j(q2)P2IIH• 
tE[O,T] 

< T sup IIJ(ql)(pl- P2) + (J(qi)- f(q2))P211H• 
tE[O ,T] 

< CsT sup (IIJ(ql)IIH•IIPl- P2IIH• + IIJ(ql)- f(q2)11H•IIP211H•) · 
tE[O,T] 

To estimate these norms we use the inequalities llf(q)IIH• ~ Csllqllh-. 

and IIPIIH• ~ llqllx•, where the latter follows from the identity IIPIIH•+l = 

llqllx•· By positivity of coefficients ank in Taylor series 
CXl 

1 _ "'""' a 2n 2k 
. / 1 - 2 /1 - 2 - L....t nkql q2 
Y ql + Y ql n,k=O 

we obtain a bound on the remaining term llf(ql)- f(q2)11H•: 

q~- q~ 

J1 - q~ + J1 - q~ H • 

< C, J! _ ql ! J! _ q? w llql - qJIIH· 

< c; c~. "nkc;n+2k-lllqdlli·llq,ll ;;. ) 

x llql + q2IIH·IIql- q2IIH• 
2 1 1 

< Cs Cs J1- c;tlqlllh-· + J1- c;tlq2111-. 2bllql- q2IIH• 

< V1 ~~;62 llql- q2llx•· 

As a result , we arrive at the following estimate 
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(b) Here we use the convolution representation (2.18), the Hausdorff-Young 

inequality and boundedness of the kernel function ]( 

IILAql- LAq2ll < T sup lllt-t'llux>llf(ql)pl- f(q2)P211L2/3 
tE[O,T] 

< T sup llf(ql)(Pl- P2)11£Z/3 + ll(f(ql)- f(q2))P211Lz;a 
tE[O,T] 

< T sup (llf(qi)IIviiPl- P2IIL2 + llf(ql)- f(q2)11viiP211£Z) 
tE[O,T] 

< T sup llq1lliz llq1 - q2llx• 
tE[O,T] 

1 
+ T sup llq2llx• llqi- q~llv 

tE [O,T] J1 - qr + J1 - q~ U ><> 

< Tb2 sup llq1 - q2llx• 
tE [O,T ] 

+ Tb llq1 + q2IILzllq1 - q2IIL2 

t!~~] J1 - llq1llioo + J1- llq2llioo 
< Tb2 

( 1 + (1- B;b2r 112) sup llq1 - q2llx• · 
tE[O,T] 

As a result , we obtain the following value for the constant k in (2.28) : 

So that there exists T > 0 such that k < 1. 

0 

Corollary 2.6 Under the conditions of Theorem 2.5, we actually have q(t) E 

C([O, T], xn n C 1 ([0, T], H 5
). 

Proof. The assertion follows from the facts that qt = J1 - q2p with q(t) E 
C([O, T], X~) and p(t) E C([O, T], Hs+l ). 0 

Remark 2. 7 Existence of a unique solution can be proved more easily in a 

weaker space C([O, T], xn , where 
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and xs = {q(t) E H 8
, p(t) E L00

}, provided that q0 EX~. Sirice p E H 1 if 

q,p E L2 , we note that Sobolev's embedding gives embedding X~~ X~. The 

space X~ turns out to be more suitable if we are to use conserved quantities 

of the sine-Gordon equation. 

2.5 Correspondence between the short-pulse 

and sine-Gordon equations 

We start by stating the local well-posedness theorem for the short-pulse equa

tion from [27]. 

Theorem 2.8 (Schafer & Wayne, 2004) Let u0 E H 8 for a fixed s ;::: 2. 

There exists a T > 0 such that the short-pulse equation ( 1.1) admits a unique 

solution 

satisfying u(O) = u0 . Furthermore) the solution u(t) depends continuously on 

uo. 

We can now compare the results following from Theorems 2.5 and 2.8. 

Using the transformation (1.11) and setting q = sin(w) , we have 

u(x, t) = wt(Y, t) = qt = p(y, t), J1- q2 

ux(x, t) = wt) = tan(w) = q 
cos w yl1- q2 

(2.29) 

If q(t) E X~, s ;::: 1, for all t E [0, T], then there exists a uniform bound 

qo E (0 , 1) such that llq(t)IIL= ::; qo for all t E [0, t]. As a result, the H 8 norm 

of u in x is equivalent to the H 8 norm of p in y , or, since, Py = q, the Hs-l 
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norm on q in y. The following lemma summarizes this correspondence between 

the norms. 

Lemma 2.9 Assume that llq(t) llv, :S q0 < 1 uniformly on [0 , T] for some 

T > 0 and consider the transformation (2.29). There exist c, C > 0 such that 

uniformly on [0, T]. 

Proof. The proof is given by direct computations, e.g. 

and so on. D 

Combining Theorems 2.5 and 2.8 with Lemma 2.9, we obtain a more 

precise result on local well-posedness ofthe short-pulse and sine-Gordon equa-

tions. 

Theorem 2.10 Let q(t) E C([O, T1], x~- 1 ) n C 1 ([0, T1], H 5
) be a solution of 

the sine- Gordon equation in Theorem 2. 5 and Corollary 2. 6 for some s 2: 2 

andT1 > 0. Letu(t) E C([O, T2],H5 )nC1 ([0, T2],H5
-

1
) be a solution ofthe 

short-pulse equation in Theorem 2.8 for the same s 2: 2 and some T2 > 0. Let 

qo and u0 be related by the transformations ( 1.11) and ( 2. 29) . Then, in fact, 

p(t) E C 1 ([0 , T], H 5
) and u(t) E C 1 ([0 , T], H 5

) forT = min(T1 , T2 ) , where 

Py = q. 

Proof. If q(t) E x~- 1 on [0 , T1], then the bound llq(t)ll v, :::; q0 holds on 

[0 , T1] for some qo E (0 , 1). By Lemma 2.9, if p(t) E C([O, T1], H 5
) then u(t) E 
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C([O,T1],H8
) and if q(t) E C1 ([0,T1 ],X~- 1 ) then Ux E C1 ([0,T1],H8

-
1 ). The 

first constraint recovers the result of Theorem 2.8, while if T = min(T1 , T2), 

the second constraint combing with u(t) E C1 ([0, T], Hs- 1 ) implies that u(t) E 

C1([0, T], H 8
). 

In the opposite direction, by Lemma 2.9, if u(t) E C([O, T2], H 8
) n 

C1 ([0, T2], Hs- 1 ), thenp(t) E C([O, T2], Hs)nC1 ([0, T2], Hs- 1). Combining this 

with the condition q(t) E C1 ([0, T], x~- 1 ) in Theorem 2.5 forT= min(T1 , T2 ) , 

we obtain that p(t) E C1 ([0, T], H 8
). 0 

Remark 2.11 Theorem 2.10 shows that the results on the sine-Gordon equa

tion (1.3) allow us to control the C1 property of ll8~ull£2 in the short-pulse 

equation (1.1) , while the results on the short-pulse equation (1.1) allow us to 

control the C1 property of IIPII£2 in the sine-Gordon equation (1.3). 

2.6 Global well-posedness of the short-pulse 

equation 

The existence time T > 0 in Theorems 2.8 and 2.10 is inverse proportional 

to the norm ll uoiiH• of the initial data to the short-pulse equation (1.1). In 

order to prove the theorem on global well-posedness of the short-pulse equation 

(1.1) we need to show the possibility of controlling the norm llu(T) IIH• by aT

independent constant. This constant will be found from the values of conserved 

quantities in Section 1.5. Using Theorem 2.10, we shall make a rigorous use 

of the first three conserved quantities. 

Lemma 2.12 Let u(t) E C 1 ([0, T], H 2 ) be a solution of the short-pulse equa-
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tion ( 1.1). The following integral quantities are constant on [0 , T]: 

Ho 

Proof. We shall write the balance equations for the densities of H0 , H 1 , and 

H2: 

at ( u 2
) 

at ( J1 + u; - 1) 

a ( u;x ) 
t J(1 + u;)5 

where V = a; 1u = Ut - ~U2Ux thanks to the short-pulse equation (1.1). If 

u(t) E C 1 ([0 , T], H 2 ) , then v(t) E C([O, T], H 1 ). By Sobolev's embedding, 

we have v(t), u(t), ux(t) E V)O and v(t), u(t), ux(t) - 0 as lxl - oo for 

any t E [0 , T]. Integrating the first two balance equations on IR, we confirm 

conservation of H0 and H 1 . To prove conservation of H 2 , we need to show that 

uuxx - 0 as lxl - oo for any t E [0, T]. Using (1.1) and (1.11), we obtain 

1 2 Uxt 2 q2 

-UUxx - ux = -- 1 =tan (w) = 
2

, 
2 u 1- q 

where Ux - 0 as lxl - oo and q = q(y, t). If llqllv"' :S qo < 1, then 

~~ = cos(w) = v1- q2 
;::: J1- q5 , 

for any t E [0 , T]. As a result , the limits y - ±oo correspond to the limits 

x- ±oo and uuxx- 0 as lxl - oo follows from q- 0 as IYI- oo. D 
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Theorem 2.13 Assume that u0 E H 2 and the conserved quantities satisfy 

2H1 + H2 < 1. Then the short-pulse equation (1.1) admits a unique solution 

u(t) E C(IR.+, H 2
) with u(O) = u0 . 

Proof. The values of H0 , H1 and H2 computed at initial data u0 E H 2 are 

finite thanks to the explicit estimates 

Ho 

By Lemma 2.12, these quantities remain constant on [0, T]. We will show that 

the quantities H1 and H2 give an upper bound for H 1 norm of the variable 

- Ux 
q= . 

J1+ui: 
(2.30) 

Note that q(x , t) = q(y , t) = sin(w(y, t)) , where x = x(y , t) is defined by the 

transformation (1.11). To control lliJIIHl, we obtain 

r -2 d r u; d r u; 1 + J 1 + u; d 
} IT?. q x = } IT?. 1 + u; x = } IT?. 1 + Jl + u; 1 + u; x 

< 2 { u; dx = 2Hl 
- } IT?. 1 + J1 +ui: 

and 

If u(t) E C([O, T], H 2 ), then ij(t) E C([O, T], H 1) and ij(t) satisfies the T-

independent bound 
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for any t E [0 , T]. Let us assume that 2H1 + H2 < 1. Thanks to Sobolev's em

bedding [[q[[vX) :::; ~[[q[[Hl, we have [[q(t)[[vX) :::; ~J2H1 + H2 < 1. Inverting 

the map (2.30) , we obtain 
q 

U x = ----;:.=~ v1- q2 

Since [[q(t)[[~l < 2H1 + H2 < 1 we can derive an estimate 

using a Taylor series expansion and Banach algebra property for Sobolev space 

H 1 with constant C1 = 1. This results in the T-independent bound 

( 
2H + H ) 

112 

llu(T) [[H2 :::; Ho + 1 _ ( 2~1 + ~2 ) 2 

The constraint 2H1 + H2 < 1 guarantees boundedness of the above expression. 

This allows us to choose a constant time step To such that the solution u(T0 ) 

can be continued on the interval [T0 , 2T0] in space C1 ([T0 , 2T0], H 2) using the 

same Theorems 2.8 and 2.10. Continuing the solution with a uniform time 

step T0 > 0, we obtain global existence of solutions in space u(t) E C(IR+, H 2), 

which completes the proof of Theorem 2.13. D 

Remark 2.14 Using the whole infinite hierarchy of conserved quantitie in 

Section 1.5 it might be possible to extend Theorem 2.13 for u0 E H 8 for an 

integer s ~ 2. The proof would be similar for any integer s > 2 but more 

conserved quantities will be needed. If s = 2 is fixed , however, we need only 

three conserved quantities described in Lemma 2.12. 

Corollary 2.15 Assume that u0 E H 2 and the conserved quantities satisfy 

2.j2H1H2 < 1. Then the short-pulse equation (1.1) admits a unique solution 

u(t) E C(IR+ , H 2
) with u(O) = u0 . 
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Proof. Suppose u(x, t) is a solution to the short-pulse equation (1.1), then 

scaling invariance (1.2) gives a one-parameter family of solutions U(X, T): 

U(X, T) = au(x, t), X= ax, 

where a E JR+. This yields the following transformation for the conserved 

quantities 

- 1 u; 1 u; H1 = dX = a dx = aH1 
1R 1 + )1 + UJc 1R 1 + J1 + ui 

1 U2 1 2 - XX -1 Uxx -1 
H2= ( U2 ) 512 dX=a ( 2 ) 512 dx=a H2. 

IR 1 + X IR 1 + Ux 

Therefore 

Function ¢(a) = 2aH1 + a-1 H2 achieves its minimum of 2y2H1H2 at a = 

jlii, so that 2fh + H2 2:: 2y2H1H2 for all a E JR+. If 

there exists some a near J H2/ (2H1 ) so that 2H1 + H2 < 1 (even if 2H1 + H2 > 

1). By Theorem 2.13 the corresponding solution is U(T) E C(JR+, H 2), so that 

by scaling transformation u(t) E C(JR+, H 2
) . D 

Corollary 2.16 Assume u0 E H 2 and the solution u(t) to the short-pulse 

equation (1.1) breaks at a finite timet* > 0, so that limtrt.llu(t)IIHz = oo. 

Then, the corresponding conserved quantities satisfy 2y2H1H2 2:: 1. 

Proof. The necessary condition for the wave breaking is the negation to the 

sufficient condition for the global well-posedness in Corollary 2.15. D 
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2. 7 Global well-posedness of the sine-Gordon 

equation 

The sine-Gordon equation (1.3) has an infinite set of conserved quantities 

similarly to the short-pulse equation (1.1). These conserved quantities can be 

enumerated by the order j 2: 0 in the term (a~ w) 2 involving the highest spatial 

derivative. We will use only the first two conserved quantities , 

E0 = 1 (1- cosw)dy , E1 = 1 w;dy , 

existence of which follow formally from the balance equations 

at(1- cosw) = ay (~w?), at (~w;) = ay (1- cosw). 

Additionally, the sine-Gordon equation (1.3) has another infinite set of con

served quantities involving trigonometric functions of w and their integrals 

enumerated by -j ::; 0 in the term (OJ.w)2. Besides E0 , we need only one 

conserved quantity of this set , 

E-1 = 1 w? coswdy , 

existence of which follows formally from the balance equation 

at ( w? cos w) = aY ( w?t - ~wi) . 
Using the transformation q = sin( w), we rewrite the conserved quantities in 

the equivalent form 

E_ 1 = 1 J1 - q2p2dy , Eo = 1 f(q)dy , 

where p = a;; 1q and f(q) is defined by (2.21). 

rewritten in the corresponding forms 

1 
q2 

E1 = y 
2
dy , 

IR 1-q 
(2.31) 

The balance equations are 

atf(q) = ay (~P2) , at ( 1 ~ q2 ) = ayf(q) 
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and 

We shall check if E 1 , E0 , and E_ 1 are time conserved quantities for the Cauchy 

problem (2.22) if s = 2 is fixed in Theorem 2.10. Global well-posedness in H 2 

follows from analysis of the three conserved quantities. A similar analysis can 

be developed for any integer s > 2 but more conserved quantities are needed 

in this case. 

Lemma 2.17 Let q(t) E C1 ([0, T], X;) and p(t) E C1 ([0, T], H2
) be the solu

tion of the Cauchy problem (2.22) and q(t) = 8yp(t). Then, E 1 , E0 , and E_ 1 

are constant for any t E [0, T]. 

Proof By Sobolev's embedding for p(t) E C 1([0 , T], H 2
) , we have q(t), p(t) , 

Pt(t) --+ 0 as IYI --+ oo. Therefore, conservation of E 1 , E0 , and E_1 follows by 

integrating the balance equations in y on R D 

Theorem 2.18 Assume that q0 E x; and 2E0 + E 1 < 1 for the conserved 

quantities {2.31). Then there exist a unique global solution q(t) E C(IR+, X;) 

of the Cauchy problem {2.22) satisfying q(O) = qo. 

Proof Let us show that the values of E_ 1 , E0 , E 1 are finite if q0 Ex;. Indeed, 

provided that llqolluX> < 1, we have 

1 2 

El :::; 1- llqolli= ll8yqoll£2· 

By Lemma 2.17, if q(t) E C 1 ([0 , T], X;) and p(t) E C 1 ([0 , T], H 2
) is a solution 

constructed in Theorems 2.5 and 2.10 for a fixed T > 0, the values of quantities 

E _1, E0 , E 1 are constant on t E [0 , T]. Therefore, we only need to bound from 
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above the norm llq(t)llxl by a combination of values of E_ 1 , E0 , E 1 . This 

bound is obtained from the following estimates 

By Sobolev's embedding and the bounds above, we have 

since E 1 + 2E0 < 1. As a result, we obtain the bound 

Vt E [0, T]. 

The time step T > 0 depends on llq(O) llx1. Since the above norm is bounded 

by the T-independent constant , one can choose a non-zero time step T0 such 

that the solution can be continued on the interval [T0 , 2T0] using the same 

Theorems 2.5 and 2.10. Continuing the solution with a uniform time step T0 , 

we obtain global existence of solutions q(t) E C(JR+, xn. D 

Remark 2.19 Theorem 2.18 is almost identical to Theorem 2.13 owing to 

the correspondence between the two equations in Lemma 2.9. In particular, it 

follows directly that H0 = E _1 , H1 = E0 and H2 = E 1 . 
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Chapter 3 

Numerical simulations of the 

short-pulse equation 

We illustrate here our analytical results on global well-posedness of the short

pulse equation (1.1) by some numerical computations. It is worth recalling 

the paper by Kanattsikov & Pietrzyk [17] where the short-pulse equation was 

treated numerically through its multisymplectic Hamiltonian form. The au

thors claim their discretization allows for preservation of multisimplectic con

servation laws. Our numerical approach is based on the pseudospectral method 

which allows us to solve the short-pulse equation in a periodic domain by means 

of the discrete Fourier transform. This numerical scheme is described in detail 

by Trefethen in [31]. 

3.1 Pseudospectral method 

Let u(x, t) = u(x + 21r, t) be a solution of the short-pulse equation (1.1) and 

consider 1r = [-1r , 1r] as the fundamental interval for u in x. We partition 
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this interval into an even number N of subintervals thus obtaining a spatial 

discretization at the grid points 

Xn =h(-~+n) , h=~ , nE{1,2, ... ,N}, 

where his a mesh spacing. We denote the value of the numerical approximation 

to a solution u(x, t) at the grid point Xn by un(t). A discrete Fourier transform 

of { un(t)} is defined componentwise by 
N 

uk(t) = (F{ Un} )k := h L eikxnun(t), k E { -~ + 1, -£¥- + 2, ... ' ~}. 
n=l 

The inverse discrete Fourier transform is written as 
N/2 

L eikxnuk(t), n E {1 , 2, ... , N}. un(t) = (F- 1{u}) := ~ 
n 2n 

k=-N/2+1 

(3 .1) 

(3.2) 

Using the discrete Fourier transform (3.1) we rewrite the short-pulse equation 

( 1.1) in a discrete Fourier space as follows: 

a · ·k2 

-uk = _!..uk + -2 
-F [(.r- 1u) 3

] at k 6 k' 
k =I 0, t E JR+. (3.3) 

On the other hand, we have 

uo(t) = 0, Vt E JR+. 

We will use the sixth-order Runge-Kutta method to approximate solutions of 

the systems of ODEs (3.3). The solution in physical space is obtained by the 

inverse discrete Fourier transform (3.2). 

3.2 Evolution of Gaussians 

We numerically simulate the initial-value problem for the ODE systems (3.3) 

using with the initial data in the form of a Gaussian pulse: 

u(x, 0) = ae-bx2 
- c, (3.4) 
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where a > 0 and b > 0 are arbitrary parameters and c is defined from the 

condition 
N 

uo(O) = h L u(xn, 0) = 0. 
n=l 

Along with parameters a and b governing the amplitude and steepness 

of the Gaussian pulse, we also compute numerically parameters 

and 

Theorem 2.13 and Corollary 2.15 on the global well-posedness guar

antees that if the initial data u0 E H 2 (11') satisfies 'T} < 1 or K, < 1 then the 

solution remains in H 2 (11') for all times t E IR+. However, this is just a suffi

cient condition on the global well-posedness which may not be sharp. Indeed, 

we will show that depending on the shape of u0 E H 2 (11') with 'T} > 1 or K, > 1 

the solution may remain in H 2 (11') or it may leave this space exhibiting wave 

breaking in a finite time. Table 3.1 lists some parameters of Gaussian initial 

data (3.4) in numerical simulations. 

Figure a b 'T} /'\, H1 H2 lluo 111-2 (11') 

3.1 0.05 20 0.83 0.21 0.0070 0.82 0.86 

3.2 1 3 10.72 7.80 0.84 9.04 22.27 

3.3 1 4 14.09 9.49 0.92 12.24 33.09 

3.4 0.05 300 36.20 2.68 0.025 36.15 48.90 

Table 3.1: Parameters of initial data in the form of the Gaussian pulse (3.4) 

If the amplitude a is small and the decay rate b is large with 'T} < 1 

(K, < 1) , we do not observe formation of singularities (Figure 3.1). As it was 
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expected, the Gaussian pulse breaks into a wave packet travelling leftwards. 

The conserved quantities guarantee that the solution does not decay to zero 

on the circle 'II'. 

Even if the parameters rJ and ri, exceed the critical value 1 the solution 

can remain smooth. On Figure 3.2 we show evolution of the Gaussian pulse 

with moderate values of a and b such that rJ ~ 10.72 (ri, ~ 7.80) . Although this 

initial condition has a greater amplitude and a slower decay rate than that for 

Figure 3.1, the numerical approximation exhibits similar behaviour. However , 

if we change the decay constant from b = 3 to b = 4, so that rJ ~ 14.09 

(ri, ~ 9.49) the numerical solution breaks in finite time (Figure 3.3). 

The solution can remain nonsingular for some initial conditions with 

fairly large values of rJ but moderate values of ri,. On Figure 3.4 we demonstrate 

evolution of a very narrow small-amplitude pulse with rJ ~ 36.20 which exhibits 

nonsingular behaviour. This phenomenon can be explained by the scaling 

transformation (1.2) since the value of ri, ~ 2.68 (that gives a minimum of rJ 

along the solution family) is not large. 

3.3 Evolution of perturbed pulses 

Stability of the exact pulse solutions (1.20) to the short-pulse equation (1.1) 

has not been addressed in the literature yet. In this section we describe nu

merical simulations suggesting stability of pulse solutions. 

First of all, it is instructive to evaluate the values of parameters TJ = 

2H1 + H 2 (cf. Theorem 2.13) and ri, = 2.)2H1H2 (cf. Corollary 2.15) for exact 

pulse solutions (1.20). Using breather solutions of the sine-Gordon equation 
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Figure 3.1: Evolution of the Gaussian pulse (3.4) with a 

rJ ~ 0.83 < 1 and K, ~ 0.21 < 1. 
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Figure 3.4: Evolution of the Gaussian pulse (3.4) with a 

TJ ~ 36.20 > 1 and "' ~ 2.68 > 1. 
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Figure m E TJ "" H1 H2 II Uo 111-z ('Ir) 

3.5 0.20 0.1 184.13 7.48 0.038 184.06 276.22 

3.6 0.20 -0.1 136.17 5.35 0.026 136.12 184.91 

3.7 0.30 0.05 251.18 10.21 0.052 251.07 903.87 

3.8 0.30 -0.05 228.10 8.95 0.044 227.81 739.90 

Table 3.2: Parameters of perturbed pulses obtained from (1.20) after rescaling 

(1.2) with a= 0.02 and multiplication of u by the factor (1 +E). 

with 2E0 = E 1 = 16m, we obtain 

TJ = 2H1 + H2 = 2Eo + E1 

= 21 (1- cosw)dy + 1 w~dy =32m, 

where w(y, t) is given by (1.18). Since 2H0 = H1 = 16m, we have""= TJ =32m. 

It is clear that TJ = "" < 1 for m < 1/32 and TJ = ""> 1 for 1/32 < m < mer ~ 

0.38, so that the terminal value of TJcr = ""cr = 32mcr ~ 12.26. This shows that 

the condition TJ < 1 of Theorem 2.13 and condition "" < 1 of Corollary 2.15 

are not sharp enough, as evolution of the short-pulse equation starting with 

the pulse solutions does not lead to wave breaking for t E IR+. 

Using the same numerical scheme as in Section 3.2 we consider evolution 

of initial data in the form of the exact pulse solution (1.20) multiplied by a 

factor 1 + E, with E E lR being a sufficiently small number. In addition, we 

apply scaling transformation (1.2) with a = 0.02 to make sure that pulses 

fit the spatial frame of [-n, n] and vanish to numerical zero on its boundary. 

Parameters of the initial data in the form of perturbed pulses are presented 

in Table 3.2. We should note that a big difference between values of TJ and 

"" is due to smallness of the scaling factor a = 0.02. On Figure 3.5 we show 
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what happens to a perturbed pulse solution with m = 0.20 and E = 0.1. This 

pulse exhibits stability under a perturbation. It moves more rapidly than the 

unperturbed pulse due to a higher amplitude. Some radiation propagating 

"out of the pulse" is also observed. If we take the same initial data with a 

perturbation E = -0.1 the pulse moves slower then the unperturbed one due 

to a lower amplitude and remains stable with respect to the perturbation, see 

Figure 3.6. On Figures 3.7- 3.8 the evolution of a shorter perturbed pulse 

with m = 0.30 and E = ±0.05 is shown. The perturbation is taken smaller 

than in the case of Figures 3.5- 3.6 to avoid wave breaking. As a result , both 

pulses with a higher and lower amplitude demonstrate stable propagation. 
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Figure 3.5: Evolution of the perturbed pulse with m = 0.20, E = 0.1 
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Figure 3.6: Evolution of the perturbed pulse with m = 0.20, E = -0.1 
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Figure 3. 7: Evolution of the perturbed pulse with m = 0.30, E = 0.05 
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Figure 3.8: Evolution of the perturbed pulse with m = 0.30, t: = -0.05 
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Summary and open problems 

We have obtained a sufficient condition on global well-posedness of the short

pulse equation in its energy space. In accordance with this result, numeri

cal simulations demonstrated smooth behaviour of a numerical approximation 

when the condition is satisfied and the possibility of wave breaking when it is 

violated. Some computations suggesting stability of exact pulse solutions were 

also presented. 

We proved local and global well-posedness of the sine-Gordon equation 

in characteristic coordinates for small amplitudes. This gives some control on 

regularity of solutions to the short-pulse equation, due to the relation between 

these two equations. 

It is worth to establish sharper conditions determining well-posedness 

of the short-pulse equation and the wave breaking criteria. It is also important 

to study regularity and wave breaking criteria for similar but more advanced 

models, such as the reduced Ostrovsky equation (2.9) with f3 = 0. 
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MATLAB codes for Chapter 3 

This script was used to compute evolut ion of Gaussian pulses, generate Figures 

3. 1- 3.4 and fill out Table 3. 1 in Section 3.2. 

%*************************************************************** 

% Computing evolution of Gaussians * 
%*************************************************************** 

tic; % start stopwatch 

clear all; close all; 

a = 1; b = 3; % define amplitude and steepness of a Gaussian 

% compute parameters of the Gaussian 

n = 3000; x = linspace(-pi,pi,n+1); 

dx = x(2)-x(1); 

u = a*exp(-b*x . -2); 

v = fft(u); v(1) = 0; v(n/2 + 1) = 0; 

u = ifft(v) ; 

ux = -2*a*b*x .*exp(-b*x.-2); 

uxx = 2*a*b*(2*b*x.-2-1).*exp(-b*x . -2); 

h22 u . -2 + ux.-2 + uxx. -2 ; 
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h1 = ux.A2./(1 + sqrt(1 + ux.A2)); 

h2 uxx. A2 . /(1+ux . A2) . A(S/2); 

% integrate by Simpson's rule 

McMaster - Mathematics 

H22 = (dx/3)*(h22(1)+4*sum(h22(2:2 :n))+2*sum(h22(3 :2:n-1))+h22(n+1)); 

H1 = (dx/3)*(h1(1)+4*sum(h1(2:2:n))+2*sum(h1(3:2:n-1))+h1(n+1)); 

H2 (dx/3)*(h2(1)+4*sum(h2(2:2 :n))+2*sum(h2(3 :2 :n-1))+h2(n+1)); 

semilogy(x,u); 

fprintf('eta %g, kappa= %g\n', 2*H1+H2, 2*sqrt(2*H1*H2)); 

fprintf('H_1 %g, H 2 %g, H 2A2 = %g\n', H1, H2, H22); 

% solve the short-pulse equation by pseudospectral method 

clear n x dx u ux uxx hO h1 HO H1; 

tmax = 10; 

N 1024; dt = .01; % number of spatial grid points and time step 

X= (2*pi/N)*(-N/2:N/2-1)'; 

u = a*exp(-b*x. A2); 

v = fft(u); v(1) = 0; v(N/2 + 1) = 0; 

u = ifft(v); 

xb pi; L 2*pi; xa xb - L; % endpoints on x axis 

na 1· 
' 

nb = length(x); 

figure(1); plot(x,u,'-k') ; grid on; 

pbaspect([3 1 1]); 

axis([xa xb -H H]); 

xlabel('$x$' , 'interpreter' ,'latex'); 
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ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

title('$t = 0$' ,'interpreter' ,'latex'); 

saveas(gcf,'1.eps'); 

McMaster - Mathematics 

nplt = floor((tmax/20)/dt); %number of subplots 

nmax round(tmax/dt); %number of time steps 

udata = u; tdata = 0; 

h waitbar(O,'please wait ... '); 

k = [0.01 1:N/2-1 0.01 -N/2+1:-1] '; 

c1 = -i*dt . /k; c2 = i*k*dt/6; 

v(1) = 0; v(N/2 + 1) = 0; 

for n = 1:nmax 

t = n*dt; 

a = c1 . *V + c2.*fft(real( ifft(v) ) .-3); 

b = c1.*(v+a/2) + c2.*fft(real( ifft(v+a/2) ).-3); %4th-order 

c = c1 .* (v+b/2) + c2.*fft(real( ifft(v+b/2) ).-3); % Runge-Kutta 

d = c1.*(v+c) + c2.*fft(real( ifft(v+c) ) .-3); %method 

v = v + (1/6)*(a + 2*(b +c) +d); 

v(1) = 0; v(N/2 + 1) = 0; 

if mod(n,nplt) == 0 

u = real(ifft(v)); 

udata = [udata u]; tdata = [tdata t]; 

waitbar(n/nmax); 

end 

end 

close(h); 

toe; % stop stopwatch 
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figure(2); %plot u at t=T/2 

k = size(udata); 

nn round(k(2)/2); 

McMaster - Mathematics 

tt tdata (nn) ; 

plot(x(na:nb),udata(na:nb,nn),'k-'); grid on ; 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

axis([xa xb -H H]) ; 

title(['$t = $ ',num2str(tt,'%g')] ,'interpreter' ,'latex'); 

pbaspect([3 1 1]); 

saveas(gcf,'2.eps'); 

figure(3); %plot u at t=T/2 

k = size(udata); 

nn = round(k(2)-1); 

tt tdata (nn) ; 

plot(x(na:nb),udata(na:nb,nn),'k-'); grid on; 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

axis([xa xb -H H]); 

title(['$t = $ ',num2str(tt,'%g')] ,'interpreter' ,'latex'); 

pbaspect([3 1 1]) ; 

saveas(gcf,'3.eps'); 

figure(4); %plot u at t=T 

plot(x(na:nb),udata(na:nb,k(2)),'k-'); grid on; 
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xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x ,t)$' ,'interpreter' ,'latex'); 

axis([xa xb -H H]); 

title(['$t = $ ',num2str(tmax,'%g')] ,'interpreter' ,'latex') ; 

pbaspect([3 1 1]) ; 

saveas(gcf,'4.eps'); 

figure(5); %plot solution surface 

waterfall(x(na:nb),tdata,udata(na :nb, :)'); 

colormap(1e-6*[1 1 1]) ; 

view(-20,35); 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$t$ ' ,'interpreter' ,'latex'); 

zlabel('$u(x ,t)$' ,'interpreter' ,'latex') ; 

axis([xa xb 0 tmax -H H]); 

pbaspect([1 2 .2]); 

This script was used to compute t he evolut ion of pert urbed pulses and 

generate Figures 3.5- 3.8 in Section 3.3. 

%*************************************************************** 

% Computing evolution of perturbed pulses * 
%*************************************************************** 

tic; % start stopwatch 

clear all; close all; 

r = 0.02; % scaling parameter $\alpha$ 

x shift 1 .5; % initial position of center of the pulse 
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tmax = 10; x_shift*2/(r-2); %time of travel 

N = 3072; dt = .03; % number of spatial grid point and time step 

X= (2*pi/N)*(-N/2:N/2-1)'; 

% set up initial data 

m = .30; nm = sqrt(l-m-2); %geometry of the pulse 

y linspace(-200,200,9007); %a parameter to be eliminated 

ph = m*y; ps = nm*y; 

A = 1 - 0.05; 

denom m-2*(sin(ps). -2) + nm-2*(cosh(ph)) . - 2; 

uExact A*r*4*m*nm*(m*sin(ps) . *sinh(ph)+nm*cos(ps) .*cosh(ph)) ./denom; 

xExact x shift+ r*(y + 2*m*nm*(m*sin(2*ps)-nm*sinh(2*ph))./denom); 

u = spline(xExact, uExact, x) ; %make spline approximation 

L 5; H = 0 . 03; % define a window for a graph 

xb 2.5; xa = xb L; % endpoints on x axis 

na round( (xa+pi)*N/(2*pi) ); %margins in array 

nb =round( (xb+pi)*N/(2*pi) ) ; 

figure(!); plot(x,u,'-k'); grid on; 

pbaspect([3 1 1]) ; %aspect ratio 

axis([xa xb -H H]); 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

title('$t = 0$' ,'interpreter' ,'latex') ; 

saveas(gcf,'l.eps'); 

nplt floor((tmax/10)/dt); %number of subplots 

nmax = round(tmax/dt) ; %number of time steps 
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udata = u; tdata = 0; % set up the errays for data 

h = waitbar(O,'please wait ... '); 

v = fft(u); 

k [0 . 01 1 :N/2-1 0 . 01 -N/2+1 : -1] ' ; 

c1 = -i*dt./k; c2 = i*k*dt/6; 

v(1) = 0; v(N/2 + 1) = 0; 

for n = 1:nmax 

t n*dt; 

a= c1.*v + c2.*fft(real( ifft(v) ) .-3); 

b c1. *(v+a/2) + c2.*fft(real( ifft(v+a/2) ) . -3); %4th-order 

c = c1 . *(v+b/2) + c2.*fft(real( ifft(v+b/2) ).-3); % Runge-Kutta 

d c1 . *(v+c) + c2.*fft(real( ifft(v+c) ).-3); %method 

v = v + (1/6)*(a + 2*(b +c) +d); 

v(1) = 0; v(N/2 + 1) = 0; 

if mod(n,nplt) == 0 

u = real(ifft(v)); 

udata = [udata u] ; tdata 

waitbar(n/nmax); 

end 

end 

close(h); 

figure(2); %plot u at t=T/2 

k = size(udata); 

nn = round(k(2)/2); 

[tdata t]; 

tt tdata(nn); 

plot(x(na :nb),udata(na :nb,nn),'k-') ; grid on; 
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xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

axis([xa xb -H H]); 
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title(['$t = $ ',num2str(tt,'%g')] ,'interpreter' ,'latex'); 

pbaspect([3 1 1]); 

saveas(gcf,'2.eps'); 

figure(3); %plot u at t=T 

plot(x(na :nb),udata(na:nb,k(2)),'k-') ; grid on; 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$u(x,t)$' ,'interpreter' ,'latex'); 

axis([xa xb -H H]); 

title(['$t = $ ',num2str(tmax,'%g')] ,'interpreter', 'latex'); 

pbaspect([3 1 1]); 

saveas(gcf,'3 .eps'); 

figure(4); %a solution surface 

waterfall(x(na:nb),tdata,udata(na :nb, :)'); 

colormap(1e-6*[1 1 1]); 

view(-20,35); 

xlabel('$x$' ,'interpreter' ,'latex'); 

ylabel('$t$' ,'interpreter' ,'latex'); 

zlabel('$u(x,t)$' ,'interpreter', 'latex'); 

axis([xa xb 0 tmax -H H]); 

pbaspect([1 1 .2]); 
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This code was used to compute parameters of perturbed pulses and fill 

out Table 3.2 in Section 3.3. 

%*************************************************************** 

% This script computes the values of parameters $\eta$ and * 

% $\kappa$ for perturbed pulses * 

%*************************************************************** 

clear all; close all; 

r = 0.02; % scaling factor \alpha 

epsilon = -0.05; % perturbation 

A = 1 + epsilon; % multiplier for the amplitude 

N 4000; % number of mesh points 

x = linspace(-pi,pi,N)'; 

m = .30; nm = sqrt(1-m-2); %pulse parameters m and n 

y linspace(-400,400,9007); %a parameter to be eliminated 

% generate a perturbed pulse solution 

ph = m*y; ps = nm*y; 

denom = m-2*(sin(ps). -2) + nm-2*(cosh(ph)) .-2; 

uExact A*r*4*m*nm*(m*sin(ps) .*sinh(ph)+nm*cos(ps) .*cosh(ph))./denom; 

xExact = r*(y + 2*m*nm*(m*sin(2*ps)-nm*sinh(2*ph)) ./denom); 

% plot for the pulse solution 

u = spline(xExact, uExact, x); 

plot(x,u,'-k'); grid on; 

pbaspect([3 1 1]); 
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H = .03; 

axis([-1 1 -H H]) ; 

ux = zeros(N,1); 

uxx = zeros(N,1); 

dx = x(2)-x(1); 

% numerical derivatives with error - O(h-2) 

for k = 2 :N-1 

ux(k) = (u(k+1)-u(k-1))/(2*dx); 

uxx(k) = (u(k+1)-2*u(k)+u(k-1))/(dx-2); 

end 

h22 = u.-2 + ux.-2 + uxx. -2; 
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% compute integrals by Simpson's rule, error - O(h-3) 

% Sobolev's H_2 norm squared 

H22 = (dx/3)*(h22(1)+4*sum(h22(2:2:N-2))+2*sum(h22(3:2:N- 1))+h22(N)); 

h1 = sqrt(1 + ux. -2) - 1; 

h2 = uxx.-2./(1+ux.-2). -cs/2); 

H1 = (dx/3)*(h1(1)+4*sum(h1(2:2:N-2))+2*sum(h1(3:2 :N-1))+h1(N)); 

H2 (dx/3)*(h2(1)+4*sum(h2(2:2 :N-2))+2*sum(h2(3:2:N-1))+h2(N)); 

fprintf('eta = %g, kappa= %g\n', 2*H1+H2, 2*sqrt(2*H1*H2)); 

fprintf('H_1 = %g, H_2 = %g, H_2-2 = %g\n', H1, H2, H22); 

% for A = 1 the below value must be approximately 

% equal to \eta. test of accuracy 

fprintf('16m(r + 1/r) = %g\n', 16*m*( r + 1/r )); 
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