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Abstract 

Physical sound synthesis produces sound by modelling the physics of musical instru
ments. One way to do this is to model the musical instrument as a network of masses, 
springs and dampers. This is known as a mass-spring system. 

The goal of this thesis is to determine the stability and accuracy of the numerical 
methods commonly used to implement mass-spring systems for sound synthesis and 
determine if there are alternate methods that might provide superior results. 

We show that the standard method used in mass-spring systems, when used on un
damped systems, has no numerical damping, but does have frequency warping and is 
unstable at frequencies above 1/ n times the sampling rate. As well, we find that for 
lightly damped systems the damping is accurate, but large damping can cause instabil
ity even at low frequencies. We present an algorithm to implement mass-spring systems 
using implicit numerical methods and show how a mass-spring system can be imple
mented using a wave digital filter. We compare the standard method implementing 
mass-spring systems with two higher order numerical methods: the fourth order Runge
Kutta, and the VEFRL algorithm, a fourth order symplectic algorithm. We find that 
the VEFRL algorithm is much more accurate than the standard method, but that this 
increase in accuracy does not noticeably affect the quality of the sound produced by the 
mass-spring system when used to simulate a vibrating string. The increased accuracy 
of the VEFRL method may, however, be useful for mass-spring spring systems used in 
physics or engineering requiring high accuracy. 
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Chapter 1 

Introduction 

1.1 Overview 

Physical sound synthesis uses mathematical models based on the physics of sound pro
duction to synthesize sound. In this thesis we focus on mass-spring systems: networks 
of masses, springs and dampers. The mathematical model of mass-spring systems is 
based on differential equations. To approximate these differential equations on a digital 
computer, numerical methods are used. An important question to ask when using a nu
merical methods is: how well does this method approximate the differential equations 
used in the system? Numerical methods can become unstable. This means that the nu
merical solution can deviate arbitrarily far from the exact solution. In many cases the 
error can grow wit out bound, making the the results of the numerical method mean
ingless. 

As well, we want to be able to quantify the accuracy of our approximation. The two 
most important parameters in the perception of a musical sound are its frequency and 
its decay rate. Mos t musical sounds are composed of a number of different frequencies . 
The lowest of these frequencies is called the fundamental frequency. The fundamental 
frequency determines the perceived pitch of the sound, and an error in the fundamental 
frequency will cause the sound to be out of tune. The higher frequency components 
determine the timbre, or tone colour, of the sound and errors in these components give 
the sound a differe11t timbre than it should. An error in frequency caused by a numerical 
method is known as frequency warping. 

The decay rate determines how quickly the amplitude (or volume) of the sound 
decreases. For example, a note on a piano will can be heard for 20 or 30 seconds after it 
is struck, while on a banjo it becomes imperceptible after only 3 or 4 seconds because 
the decay rate of a banjo is much larger than that of a piano. Numerical methods may 
add extraneous damping to vibrating systems that are undamped. This is known as 
numerical damping. 

The previous literature on mass-spring systems used in sound synthesis describe how 
these systems work (i .e. the equations used and the finite difference equations used to 
approximate them) , but have not addressed the issues of the stability and accuracy of the 
numerical methods used. This has been a important part of the criticism of mass-spring 
systems in the physical synthesis literature. Mass-spring system have been criticized as 

1 
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being computationally expensive [3], lacking an analysis of stability [3], and having an 
unknown accuracy [13]. In this thesis we try to answer two main questions: 

1. Using the "standard method" of implementing mass-spring systems, which we 
show to be equivalent to the symplectic Euler method, how accurate are the fre
quencies and decay rates of the sounds produced and under what conditions are 
these systems stable? 

2. Given the answer to question 1, are there other numerical methods that, when 
used to implement mass-spring systems, would give superior results? 

In the remainder of this chapter, we look at what sound synthesis is and how sounds 
are generated on a computer. We briefly describe some of the methods used in general 
sound synthesis and then some of the methods used in physical sound synthesis. We 
then give an introduction to the mass-spring model. We conclude with some reasons for 
using mass-spring models in sound synthesis. 

In chapter 2, we present some basic numerical methods used in approximating dif
ferential equations and show the results of these methods when applied to simple mass
spring systems. In particular, we are interested in 3 side-effects of numerical methods: 
instability, frequency warping and numerical damping. To analyze these side-effects 
we introduce the z-transform. We describe the concept of a numeric method as a map
ping from the s-plane to the z-plane. We then describe two previous implementations of 
mass-spring systems in sound synthesis: CORDIS-ANIMA and TAO. 

In chapter 3, we use the techniques described in chapter 2 to analyze mass-spring 
systems. We begin with an analysis of the symplectic Euler method-the standard 
method used to implement mass-spring systems-when used to implement an undamped 
mass-spring system containing a single mass. We then expand the analysis to include 
damped mass-spring systems. We conclude by considering mass-spring systems con
taining multiple masses. 

Chapter 4 looks at alternative methods that could be used to implement mass-spring 
systems. We look at three approaches for implementing mass-spring systems. The first 
approach is to use implicit numerical methods by removing the delay free loops. The 
second approach is to transform the mass-spring system into an equivalent electrical 
circuit and implement it as a wave digital filter. The third approach is to avoid delay
free loops by using explicit numerical methods. We consider multi-stage methods and 
in particular symplectic methods-methods which conserve energy. 

In chapter 5 we compare the standard method of implementing mass-spring systems 
with two of the alternative methods discussed in chapter 4 by simulating a vibrating 
string. We first find the analytical solution of this mass-spring system and then compare 
it to results of each of the numerical methods. 

The last chapter presents conclusions and some ideas for future work. 

The contributions of this thesis are mainly in chapters 3, 4 and 5. The analysis of 
the symplectic Euler method in chapter 3 is new work, since previous papers on mass
spring systems for sound synthesis [3 3, 41, 8, 1 0, 9] have not provided an analysis of the 
stability and accuracy of the numerical methods used. We refer to the method used as 

2 
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the symplectic Euler method since, although the previous papers in sound synthesis do 
not use this name, it is equivalent to the symplectic Euler method used in computational 
physics [ 19]. Among other properties, symplectic systems conserve energy, which is 
important in accurately simulating long lasting sounds. Our result in chapter 3, that 
the symplectic Euler method has no numerical damping for undamped systems, is not 
new, since it follows from the fact that the method is symplectic. The analysis of the 
frequency warping, damping and the extension to systems with multiple masses, has, to 
our knowledge, not been done before. 

The analysis of implementing mass-spring system using the bilinear transform, the 
fourth order Runge-Kutta method, the Velocity Extended Forest-Ruth Like (VEFRL) 
method and wave digital filters in chapter 4 is also original work, as is the comparison 
of the symplectic Euler method with the Runge-Kutta and VEFRL methods in chapter 
5. 

1.2 Sound Synthesis 

What is sound synthesis? 
Synthesis is creating something new from a combination of pre-existing parts. The 
name sound synthesis comes from early analog synthesizers, which created sound by 
combining oscillators, envelope generators and filters. Figure 1.1 shows an example 
patch, with VCA representing a Voltage Controlled Amplifier and ADSR the envelope 
generator, with parameter values for the Attack, Decay, Sustain and Release. 

Keyboard 

Low pass 
filter 

Mixer 

Figure 1.1: Patch on analog synthesizer 

Creating sound on a computer 
Most personal computers today come equipped with a sound card. A sound card has 
a Digital to Analog (D/ A) converter to convert numbers representing sound pressure 
(called samples) to analog signals that produce sounds. Since there are many different 
sound cards, a programmer will usually use an Application Program Interface (API) 
such as RtAudio or JavaSound to send samples to the sound card. The API will handle 
the details of communicating with any of the standard sound cards. To produce sounds, 
the program need to fill a buffer with samples and then send the buffer to the sound card 
(see figure 1.2). For real-time sound the buffer must be refilled before the sound from 

3 
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the previous buffer has finished playing - otherwise a gap in the sound is heard. The 
programmer can choose the sample rate and the size of samples-i.e. doubles or float. 

Buffer 

0.0 
0.5 
1.0 Speaker 

0.5 D/A 
0.0 .. ,.. Converter 
-0.5 
-1.0 
-0.5 
0.0 

Figure 1.2: Sound on a digital computer 

1.2.1 Types of Sound Synthesis 

There are many different types of sound synthesis. Some ofthe more common methods 
are listed below. 

• Additive synthesis 

A sound is made up of a number of frequencies. Any sound can be approximated 
by combining sine waves of different amplitudes and frequencies. A sine wave 
can be stored in a lookup table. By moving through the table at different rates 
different frequencies are generated -i.e. by skipping every other sample, a sine 
wave of twice the frequency of that of using every sample, is generated. Several 
sine waves can be generated and then added together. 

• Subtractive Synthesis 

If a sound is made up of a large number of frequencies, additive synthesis is 
computationally expensive. The opposite approach is to start with a complex 
sound --e.g. random noise -and remove some of the frequencies by filtering. 

• Modulation Synthesis 

Modulation synthesis creates more complex sounds by modulating the amplitude, 
phase or frequencies of basic wave forms. Many synthesizers in the 80's used 
frequency modulation. In frequency modulation a carrier signal (usually a sine 
wave) at frequency We has its frequency modulated by a second signal, the mod
ulation signal, at frequency wm. If the modulation signal has a low frequency
e.g. lOH z.- the result is a vibrato effect. At higher frequencies different tim
bres are created. Harmonic sounds are heard when the 2 frequencies have simple 
integer ratios. Non integer ratios produce metallic or bell like sounds. 

• Physical Modelling Synthesis 

While other synthesis methods model musical sound, physical synthesis models 
the sound producing mechanisms of musical instruments [34]. This method takes 

4 
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mathematical models of sound production, developed by physicists and acousti
cians, and simulates them on computers. Early models were very computationally 
expensive, but recent improvements in the efficiency of the algorithms coupled 
with greater processor speeds have resulted in some physical models that can run 
in real time. 

1.2.2 Introduction to Physical Modelling in 
Sound Synthesis 

Why Physical Modelling? 

• Curiosity 

How do instruments produce sounds? Mathematical models of music go back 
as far as Pythagoras. How do we know if the models are correct? One way is 
to simulate them on computers. A model of an instrument which can produce 
a sound that resembles that of the actual instrument give us confidence that the 
model is correct. 

• More realistiic synthesized sound 

Many synthesized sounds have an artificial sound. They often sound too uniform 
because the frequency spectrum does not change over time nor does it vary with 
different amplitudes. Physical models often result in more complex and interest
ing sounds. We usually associate sounds with the method of their production
bubbling, scraping, smashing, rubbing etc. [33]. Sound created by physical mod
elling seem to have an underlying production method, while other methods of 
synthesis can sound disembodied. 

• Aid to composers 

Not many composers have a symphony on call to test out their ideas. Physical 
modelling may make it possible for composers to hear an approximation of what 
a symphony, string quartet etc. will sound like. 

• Aid to instrument makers 

Detailed physical models may allow instrument makers to experiment with instru
ment design n the computer --e.g. how would the sound of a guitar change if 
a different ty e of wood is used for the top plate. Software at this level of detail 
does not yet exist. 

• New Sounds 

Instruments that would be very difficult to design or play (e.g. a ten foot long 
flute) could be simulated. Instruments that are impossible physically (e.g. a bell 
that changes ' hape) could also be simulated. 

5 
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History of Physical Modelling in Sound Synthesis and Acoustics 

Pythagoras was the first person to relate mathematics with music. He did experiments 
with the monochord (see figure 1.3) and found that when the string lengths were small 
integers (e.g. 1:1, 1:2 , 2:3) the sound was harmonious [4]. During the 18th and 
19th centuries physicists and mathematicians such as Euler, d 'Alembert, Helmholtz and 
Rayleigh developed mathematical models ofvibration and musical instruments. 

string 
movable bridge 

Figure 1.3: Monochord 

In 1961 Kelly and Lochbaum [23] created a model of the human vocal tract and used 
an IBM 704 computer to synthesize the singing of"a bicycle built for two." In the 70's 
Hiller and Ruiz discretized the wave equation to create a computer model of a vibrating 
string [25]. In the late 70's and early 80's Mcintyre, Woodhouse and Schumacher cre
ated the first computer models of musical instruments, such as the violin, clarinet and 
flute [28]. 

In the early 80's researchers at Association for the Creation and Research on Expres
sion Tools (ACROE) created the CORDIS system to build virtual musical instruments 
using networks of masses and springs. They used specially built input devices and 
transducers to allow gestures by the user to interact with the instruments [8]. 

In the mid 80's Julius Smith developed the digital waveguide technique. The ef
ficiency of this technique made real time simulations of physical models possible. In 
1994 Yamaha used the digital waveguide technique to develop the first synthesizer based 
on physical modelling. 

1.2.3 Methods Used in Physical Synthesis 

There are many methods used to implement physical synthesis. Finite-difference models 
use numerical techniques to discretize the differential equations of the mathematical 
model of the instrument. For example, to simulate a vibrating string, the finite difference 
method would discretize the wave equation: 

(1.1) 

Here y( t , x) represents the vertical position of the string at timet and horizontal position 
x, k is the string stiffness and E the mass/length (linear density) of the string. The 

6 
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resulting difference equation can be run on a digital computer, using parameters for the 
initial conditions and constants, and will calculate the position of the string at discrete 
points in time and space. 

When a solid bject is struck, deformations are caused which propagate through 
the object. The material and shape of the object determine the possible frequencies-or 
modes-that the object can vibrate at. Theoretically, there could be an infinite number of 
modes associated with a continuous structure [ 1]. In practice, a small number of modes 
can often be a good approximation for the vibration of an object. Modal Synthesis 
approximates the s und of an instrument by summing up a finite set of modes. Each 
mode is represented by a sine wave with exponential damping. 

Instead of simulating the wave equation itself, as is done in finite difference mod
elling, digital waveguides simulate the solution of the wave equation. Any shape that 
travels to the left or right at speed c = ~' where T is the tension and E the 
mass/length (linear density), is a solution to this equation. The left and right travel
ing waves can be simulated with 2 delay lines. We can then get the solution of the wave 
equation at any poi nt in time by summing the left and right delay lines. The simulation 
is exact if the waves are bandlimited to half the sampling frequency and it is very effi
cient. These factors have made digital waveguides the most popular form of physical 
synthesis. 

Source-filter models have been used extensively in speech synthesis and in analog 
music synthesizers. The source can generate periodic wave forms (i.e. sine waves, 
square waves etc.), random noise, or glottal noise (vibrations from vocal chords). The 
sound is then processed by the filter before being output. Both the source and the filter 
are controlled by ti e varying parameters. 

Wave digital .filters were developed by electrical engineers in the late 60's for digitiz
ing analog circuits. Since the equations for inductors, capacitors and resistors have the 
same form as those of masses, springs and dampers, these filters can be used to model 
the vibrations of mechanical systems. Wave digital filters can be used to implement 
mass-spring systems. We explore this topic in section 4.2. 

1.2.4 The Mass-spring Model 

The mass-spring model builds complex musical instruments from simple components: 
masses, springs and dampers. Each element is discretized using finite difference meth
ods. The behaviour of the system depends solely on the network and the physical equa
tions of each of the componenets. No other physical equations are used. 

Figure 1.4: Simple mass-spring system 

7 
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Figure 1.4 shows a simple mass-spring model, where M 3 and M 5 are masses, 5 1, 54 

and 56 are springs and D 2 is a damper. 

Mass Spring Discretization 

We use finite difference methods to discretize the mass-spring model. 
Mass Element 
We can derive the behaviour of a mass from Newton's 2nd law: 

F(t) = ma(t), (1.2) 

where F(t) is the force acting on the mass at time t, m is the mass, and a(t) is the 
acceleration of the mass at timet. Since acceleration is the derivative of the velocity we 
can write equation (1.2) as 

F(t) = mv'(t). (1.3) 

We then have a system of two first order differential equations: 

(
x(t))' _ (v(t)) 
v(t) - F(t) . 

m 

(1.4) 

We then use the backward Euler approximation to discretize the equations. The back
ward Euler approximation is: 

(1.5) 

where h is the length of the time step, f(xn+I) is the value of the derivative at the 
( n + 1 )th time step-i.e. 

f(xn+d - f(x(h(n + 1))), 

and the vector Xn+l consists of the position and velocity at time step n + 1. It is an 
implicit numerical method since Xn+I is on both the left and right sides of the equation. 
So equation (1.4) is approximated by 

(1.6) 

It is sometimes convenient to represent the mass element using a scalar instead of a 
vector equation. We can write the backwards Euler method as 

where x~ is the derivative of x with respect to time. The first derivative of the displace
ment with respect to time is the velocity so 

Vn =X~= *(Xn- Xn-d· 

Then the acceleration, which is the second derivative of x, is 

8 
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Substituting this into equation (1.2) gives us 

Fn = m ( ~2 (xn - 2xn-1 + Xn-2)) 

h2 
Xn = -Fn + 2Xn-1- Xn-2· 

m 

Spring element The equations for the spring are derived using Hooke's Law F(t) 
-kx(t), where k is a constant denoting the spring stiffness. We write them as 

Fa:n+1 = k(xb:n+1- Xa:n+1) 

Fb:n+ 1 = - Fa:n+ 1· 

(1.8) 

(1.9) 

Here we let Xb:n, and Xa:n represent the distance from the equilibrium position of mass 
Ma and mass Mb at either end of the spring. We use Fa ( n) to denote the force acting 
on mass Ma at one end of the spring at time step n. The force, H:n, acting on mass Mb 
at the other end of the spring is, according to Newton's third law, equal and opposite to 
Fa(n). 

Note that the equations for the mass and the spring are interdependent: in order to 
calculate the position of the mass at time n + 1 we need to know the force of the spring 
at time n + 1, but to find the force of the spring at time n + 1 we need to know the 
position of the mas.' at time n + 1. These are known as delay-free loops and they result 
in systems that are not directly computable, although they can be solved by using a 
system of simultaneous equations. They are equivalent to implicit difference equations. 
We will see how this problem is dealt with in section 3.1. 
Damper element 

The damper element is used to represent viscous friction. This is the object's resis
tance to motion and is assumed to be proportional to the velocity. The formula for the 
damper is F(t) = --Zvr(t), where Z is a constant denoting the coefficient of viscosity, 
F(t) the force and ' r(t) the relative velocity ofthe two ends ofthe damper. This can be 
written as 

Fa:n+1 = Z(vb:n+1- Va:n+1) 

Fb:n+ 1 = - Fa:n+ 1, 

where Fa and Fb represent the forces acting on the masses at the ends of the damper, 
and Va and vb are t e corresponding velocities. 

1.2.5 Motivation for Mass Spring Networks 

1. Simplicity, Uniformity, Generality 
Mass-spring networks represent a method of creating complexity from simple 
building blocks. While each of the components, the mass, the spring and the 
damper, are asy to understand, the networks built from these components can 
become com lex. Mass spring networks have been traditionally used in physics 
and engineering to model vibration and can be used to model a large family of 
vibration patterns. 

9 
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2. Compatibility with Computer Graphics 
The mass-spring model is also extensively used in computer graphics. This sug
gests that the same model could be used for both sound and graphics in virtual 
reality type models such as the CORDIS-ANIMA system described in the next 
section. One obstacle for this approach is that the time scales for computer graph
ics and sound synthesis are different. Computer graphics are usually displayed at 
50 to 75 Hz, whereas sound synthesis may require sample rates of 40,000 samples 
per second or more. 

3. Parallelizable 
Another advantage of mass-spring networks is that they can be computed in paral
lel. Georgii and Westermann [18] show how the Graphics Processing Unit (GPU) 
can be used to run a mass-spring computer graphics model in parallel. 

10 



Chapter 2 

Background 

In this chapter, we present some basic numerical methods used in approximating dif
ferential equations and show the results of these methods when applied to simple mass
spring systems. In particular, we are interested in 3 side-effects of numerical methods: 
instability, frequency warping and numerical damping. To analyze these side-effects 
we introduce the z-transform. We describe the concept of a numeric method as a map
ping from the s-plane to the z-plane. We then describe two previous implementations of 
mass-spring systems in sound synthesis: CORDIS-ANIMA and TAO. 

2.1 Numerical Methods 

The equations of motion describing how objects react to forces are usually expressed 
as differential equations. There are many ways of implementing these equations on a 
digital computer and most of them have side effects. In this section we examine some 
of the commonly used methods and what their side effects are. 

2.1.1 First Order Differential Equations 

Figure 2.1 : Mass damper system 

The equation of two point masses, one of which, x 2 , is fixed, connected by a damper 
(figure 2.1) is 

-F(t) = Zv(t) , 

11 



MSc Thesis Don Morgan Computing and Software 

where F is force exerted by the damper, v is the relative velocity of the ends of the 
damper and Z is the damping coefficient. From Newton's 2nd law we have 

ma(t) = -Zv(t). 

Since the acceleration, a, is the derivative of the velocity 

m dv(t) = -Zv(t) 
dt 

or dv(t) = _ Z v(t) 
dt m 

(2.1) 

This is an example of a first order differential equation, since the highest order 
derivative is one. 

The solution of this equation is 

v(t) = Ce-(Z/m)t, 

where Cis a constant depending on the initial conditions. 1ft= 0 then v(t) = C soC 
is the velocity at time 0. For each different value of C we get a different solution. These 
solutions are called integral curves. Some integral curves with Z / m = 10 are shown in 
figure 2.2. 

Mass damper system - integral curves 

3 

2 

1 
0 ·u 0 ..9 
Q) 

::> 
-1 

-2 

-3 
0 0.2 0.4 0.6 0.8 1 

time 

Figure 2.2: Some of integral curves for mass-damper system 

The forward Euler Method 

The forward Euler method is defined as 

Yn+l ~ Yn + y~h (2.2) 

where y' is the first derivative of y with respect to time and h is the length of each 
time step. Then the forward Euler approximation of the mass damper system using the 
derivative from equation (2.1) is : 

Vn+l ~ Vn- (Z/m)vnh = Vn(l- (Z/m) h) (2.3) 

12 
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The local truncation error is the error caused by the numerical approximation for 
one time step. It can be shown [7] that, for the forward Euler method, the local trunca
tion error is proportional to h2

. The global truncation error is the cumulative error for 
all time steps and for the forward Euler this error is proportional to h. Because of this, 
the forward Euler method is called aji.rst order method. Figure 2.3 shows the forward 
Euler approximation of the mass-damper system using a small time step. The Euler 
method tracks the actual solution very closely. 

0.9 

0.8 

0.7 

~ 0.6 
·g 
~ 0.5 

0.4 

0.3 

0.2 

Mass-Damper System 

~-. - Forw<l.nl Eult~r I 
...... e- 1111 

0.1 '-------'-------~----'---------' 
0 50 100 150 200 

sample number 

Figure 2.3: Forward Euler solution with small time step (h = .001) 

Figure 2.4 shows the same system with a larger time step. Since the slope of v = 
e-lOt is constantly decreasing, the forward Euler overestimates the slope. We can see in 
this diagram that the numerical approximation does not stay on the same integral curve 
but jumps to other curves with different initial values. Notice that the slope at the start 
of each line segment is the same as the integral curve at that point. 

Mass-Damper System 

0.7 

0.6 

0.4 ' 

0.3 

0.2 ' 

0.1 ·-. 

OL_----~--~==~~~~~~~~ 
0 2 3 

sample number 
4 

Figure 2.4: Forward Euler solution with larger time step (h = .08) 
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Stability 

Differential equations themselves can be unstable. This means that arbitrarily small 
changes in the initial conditions can cause arbitrarily large changes in the solution as 
t __. oo. This is shown in figure 2.5. This is also called an ill-conditioned problem and 
it is extremely difficult to model these systems numerically [32]. 

y 

t 
Figure 2.5: Unstable system 

Going back to our mass-damper system, we can see from figure 2.2 that it is not 
an unstable system. In fact, it is asymptotically stable since all solutions approach 0 as 
t __. oo. Numerical methods can also cause instability. Instead of approaching a stable 
equilibrium point, the computed solution may become arbitrarily large. 

The derivative ofthis equation was -(Z/M)v. Using the forward Euler method on 
this system with Z/m = 10 gives us: 

Vn+l ~ Vn + v~h = Vn- 10vnh 

= Vn(1 - 10h) (2.4) 

This is a first order difference equation of the form Yn - AYn-l = 0. The solution of 
this equation is Yn = y 0An [5]. So the solution of equation (2.4) is 

Vn = vo(1- 10ht. 

From this solution we can see some problems that might occur. If 0 > ( 1 - 1 Oh) > -1 
(i.e. 0.2 > h > 0.1) , the values of the velocity will oscillate between positive and 
negative values. Note that in the exact solution there is no oscillation, so the oscillation 
is produced by the numerical method. If (1 - 10h) < -1 (i.e. h > 0.2) the oscillations 
will increase without bound (see figure 2.6). In this case the numerical method has 
caused a stable system to become unstable. 

14 
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Mass-Damper System 

10 r----~---;---r-;:::======;~--~ 
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Figure 2.6: Forward Euler becomes unstable (h = .25) 

Backward Euler 

The backward Eule r method is defined as 

(2.5) 

The backward Euler is called an implicit method since it uses the derivative at the new 
point which has no t yet been determined. In some cases it may be difficult solve this 
equation. For the mass-damper system, however, the solution is simple. Again using 
Vjm = 10: 

The solution to thi s difference equation is Vn = v0 ( l+~Oh)n. Notice that unlike the 
forward Euler, this equation will never oscillate or become unstable no matter what the 
value of his (since his the time step it is assumed to always be> 0). 

Figure 2.7 shows the backward Euler with a large time step. Notice the the back
ward Euler underestimates the slope of this curve and that the slope of the line segment 
matches the integral curve at the end of each segment rather than the start like the for
ward Euler. 
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Mass-Damper System 

0.5 1.5 2 2.5 3 3.5 4 4.5 5 
sample number 

Figure 2.7: Backward Euler with large time step (h = .4) 

To gain more insight into the stability of numerical methods we introduce the topic 
of digital filters. 

Digital Filters 

A discrete signal, x(n) is a sequence of quantized real numbers indexed by n E N. 
Quantization is the approximation (rounding) required to represent the number in a 
finite number of bits in a digital computer. A digital filter is a Linear Time Invariant 
(LTI) system that transfonns an input signal, x(n), into an output signal, y(n) (see 
figure 2.8). A system is linear iff: 

1. 

2. 

for signals x1, x2, Y1, Y2 
if S(x1(n)) = Y1(n) and S(x2(n)) = Y2(n) 

then S(x1(n) + x2(n)) = Y1(n) + Y2(n) , 

i.e. the sum of the inputs equals the sum of the outputs. S is the function per
formed by the LTI system. 

if S(x1(n)) = Y1(n ) 
then S(cx1(n)) = cy1(n), 

i.e. scaling the input results in scaling the output by the same amount. 

A time invariant system is a system whose response does not change over time. 

if S(x(n)) = y(n) 

then S(x(n + 6)) = y(n + 6), 

16 
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Figure 2.8: A digital filter 

i.e. a time shift in the input results in a time shift in the output. 
The impulse response of a digital filter is its response to an impulse signal, 8(n), 

called the Kronecker delta. 

<S(n) = {1 ifn = 0, 
0 ifn:IO. 

The impulse response is then h( n) where 

S(8(n)) = h(n). 

We can regard the input signal x(n) as the sum ofweighted impulses [26]: 

00 

Vn EN, x(n) = L x(k)8(n - k), 
k=-oo 

(2.6) 

(2.7) 

since 8(n- k) = l only when k = n, at which point x(k)8(0) = x(n). We can then 
compute the output in terms of the impulse response: 

y(n) = S(x(n)) = S c~oo x(k}J(n - k}) substitute (2.7} 

00 

= L x(k)(S8(n- k)) since Sis linear 
k=-00 

00 

= L x(k)h(n - k) by (2.6) , 
k=-oo 

where h(n) is the impulse response of S. 
We can also analyze the filter in the frequency domain by perfonning the Laplace 

transform on the input and output. Letting X = .C[x] andY = .C[y], we define ii = 
Y /X. ii is called the transfer function of the filter. It can be shown [26] that: 

.c-1 [H(s)] = h(t), 

i.e. the inverse Lap lace transform of the transfer function is the impulse response in the 
time domain. 

S to z-plane mapping 

We can gain insight into the stability of numerical methods by analyzing the system 
on the s-plane and the z-plane. We map an equation to s-plane by taking its Laplace 
transform: 

17 
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where s = CJ + jw. We can write e - st as e-ate jwt , where e -at is an exponential damping 
term and e - Jwt is a phasor rotating at frequency w. The horizontal axis on the s-plane is 
the real part of s represented by CJ, and the vertical axis is the imaginary part represented 
by w (see figure 2.9) . 

~ 
ro 
c ·-C> ro 
E 

(0,0) 

• 
(cr,w) 

Figure 2.9: The s-plane 

real 

We can write the numerator and denominator of the transfer function as polynomials 
m s: 

H(s ) = (s - qi) .. . (s - QM) . 
( S - P1) ... ( S - P N ) 

A A A 

Since Y = X H, whenever s = Qm the output is zero. This is why the values of 
Qm are called the zeros of the filter. Similarly, when s = Pn, the output is infinite. The 
values of Pn are called the poles of the filter. It can be shown [26] that a filter is stable 
iff all the poles are on the left side of the s-plane-i.e. CJ < 0. A filter is stable if, when 
the input is bounded, the output is bounded. 

The z-transform is defined: 

00 

m=-oo 

where z = reJw . The z-plane uses polar coordinates with Jz J = r the distance from the 
origin and w as the angle (see figure 2.9). 

Analogously to the s domain, the transfer function in the z domain is: 

H(z ) = ~(z) . 
X(z) 

Writing the numerator and denominators of fi ( z ) as polynomials in z gives us the poles 
and zeros of the transfer function. In the z-plane, however, the filter is stable when all 
the poles are within the unit circle. 
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Figure 2.10: The z-plane 

An important feature of the z-transform is that multiplying the z-transform of a 
signal by z- 1 is the same as delaying the signal by one sample [39]. 

00 00 00 

m = - oo m = -oo k=-00 

which is the z-transform of signal x delayed by one sample. Similarly, multiplying by z 
is equivalent to advancing the signal by 1 time step [39]. 

Mapping the forward Euler from the s to the z-plane 

We start by defining an ideal differentiator [24] as a system that takes a signal x as an 
input and outputs its derivative dx / dt. We then take the Laplace transform of both sides 
and find the transfer function. 

y(t ) = dx (t) j dt 

Y(s) = sX(s) 

H(s) = ~(s) = s. 
X (s) 

Next we find the derivative approximation using the forward Euler method. From equa
tion (2.2), the approximation of the derivative using the forward Euler is 

dx l 1 dt n ~ h (Xn+l- Xn )· 

We now take its z-transform and find its transfer function: 

Z[dxjdt] = Z[(1 / h)(xn+l- Xn)] 

Y( z) = (1/ h)(X(z)z - X(z)) 

H(z) = ~(z) = z - 1_ 
X (z) h 

19 
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We can now map the transfer function from the s-plane to the z-plane using s ---+ zhl. 
The reverse mapping is then z ---+ 1 + hs . 

We can check to see if, when a system is stable in the s-plane, its transform is also 
stable in the z-plane; this is equivalent to the forward Euler approximation of a differ
ential equation being stable (absolutely summable) whenever the differential equation 
is stable (absolutely integrable). The system is stable on the s-plane when all its poles 
have a < 0- i.e. all poles are to the left of the j w axis. Using the reverse mapping we 
find 

if s = jw then z ---+ 1 + h(jw) = 1 + (hw)j . 

This is a vertical line going through the point ( 1, 0). We can see from this that a stable 
system's poles can be mapped anywhere to the left of this line, and in many cases this 
will not be inside the unit circle (see figure 2.11). This confirms that the forward Euler 
may create instability in a stable system. 

unstable 
• 

unstable 
• 

1 + (hw)j 
/ 

Figure 2.11: Forward Euler on the z-plane 

We can analyze the mass-damper system using this transform. We add Fext (t) as 
the input, which is an external force acting on the mass. Fd is the force produced by the 
damper. (see figure 2.12). 

Fe~ 

Figure 2.12: Mass damper system with external force 

Looking at the forces acting on the mass we see Fext(t) - Fd(t) = ma. So: 

dvjdt = 1/m( Fext(t ) - Fd(t )) = 1/m( Fext(t ) - Zv(t )) . 
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We then take the Laplace transform of both sides: 

sV(s) = (1 / m)Fext (s)- (Z/m)V(s) 

V(s)(s + Z jm) = (1 /m )Fext(s). 

Since Fext is the input and v the output, the transfer function is: 

A 1 1 
H(s)- ---

- m(s + Z jm) - ms + Z 

The transfer function has one pole at ms + Z = 0 or s = -Zjm. Since Z and mare 
always positive, this pole is to the left of the imaginary axis. Therefore the system is 
always stable. 

Now using the the mappings~ zh1 we can map the pole to the z-plane. 

z -1 
s = -Z/m ~ -h- = -Z/m 

-Zh 
z =--+1. 

m 

So on the z-plane the system is stable when: 

1

-Zh I ~+1 <1 

or -Zh + 1 > -1 whichistrueifh > 2m/ Z. 
m 

If, as in section 2.1.1, we use Z jm = 10, we get h > 0.2 as the condition for 
stability. Note that this is exactly the same result that we obtained in section 2.1.1 by 
solving the difference equation. 

Mapping the backward Euler from the s to the z-plane 

We can use the same method with the backward Euler method. This results ins ~ 1-r1 

and the reverse mapping is z ~ 1~hs 
Now we can check to see if when a system is stable in the s-plane its transform is 

also stable in the z-plane. The system is stable when CJ < 0 (i.e. all points to the left of 
the jw axis)[16]. 

1- z- 1 z - 1 . 
== -- = JW 

h hz 
z == 1 = 112 + 2- (1 - jwh) = 112 + ~ (1 + jwh) 

1 - jwh 2(1 - jwh) 2 (1 - jwh) 
1 lz- 1/21 == - (since 11 + jwhl = 11- jwhl). 
2 

This is the equation of a circle centered at (1 / 2, 0) with radius= 1/ 2 (see figure 2.13). 
All poles on the left side of the s-plane map to inside the circle lz - 1/ 21 = ~which is 
inside the unit circle. Therefore, any stable system will still be stable using the backward 
Euler method no matter what the time step. 
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z-1/21 = 1/2 

Figure 2.13: Backward Euler on the z-plane 

2.1.2 Second Order Differential Equations 

Figure 2.14 shows a simple mass spring system. 

Figure 2.14: Mass spring system 

If we regard the equilibrium position of the spring to be x = 0, the force of the 
spring is F(t) = -kx(t). 

ma(t) = -kx (by Newton's 2nd law) 

d2x(t)jdt2 = -(k/m)x(t). 

This is a second order differential equation. The general solution is [7] 

x(t) = cl cos( ~t) + c2 sin( ~t). 

(2.9) 

(2.1 0) 

Setting initial condition x(O) = 1 (the initial position) and x'(O) = 0 (the initial 
velocity) 

x(O) = C1 

x'(t) = -~C1 sin( ~t) + ~C2 cos( ~t) 

x'(O) = ~C2 = 0; C2 = 0. 

So the particular solution is: x(t) =cos( ~t). Writing the frequency~ as 
w we get: 

x(t) = cos(wt) 
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The Forward Euler solution of the mass spring system 

From the definition of the forward Euler, Xn+ 1 = Xn + x~h, we find that the second 
derivative can be approximated as: 

We can then use the forward Euler to approximate equation (2.1 0). 

Xn+2- 2Xn+1 + Xn = -(k/ ) 
h2 m Xn-

If we assume the system is time invariant we can shift the indices back by one time step: 

Xn+1 - 2Xn + Xn-1 = _ (k/ ) 
h2 m Xn-1 

(
kh

2 
) 

Xn+1 = 2Xn- m + 1 Xn-1· 

The frequency, w0 , is equal to Jk[m, so: 

The results of nmning the forward Euler with w0 = 125 x 21r as the frequency and 
h = .001 as the sample time are shown in figure 2.15. 

Mass-Spring System 

15r---r;=========;--~-~-, 

10 - - -t;os{( l2:'"• x 2r)t ) 

-10 

-15 

-20o~-:---~---:-s-------:--~10:--__j12 

&ample number 

Figure 2.15: Forward Euler approximation of mass spring system (h = .001) 

We can see that this system is unstable. We can analyze this on the s and z-planes. 
We first add a forcing input function to equation (2.9) to get Fext - F8 = ma. This 
results in 

d2x(t) j dt2 = (1/m)Fext- (k/m)x(t) 

Taking the Laplace · ransform of both sides of the equation yields 

X(s)(s2 + (k/m)) = Fext(1/m). 

23 



MSc Thesis Don Morgan Computing and Software 

Here, the input is Fext and the output is the position x. So the transfer function is 

1 1 

ms2 +wJ 
(2.11) 

The poles of the system are where s 2 +wJ = 0, which ares= ±jw. These occur on 
the jw axis. The system is stable, but not asymptotically stable, since it does not decay 
to zero. 

Next, we map this to the z-plane with the forward Euler mappings---+ (z - 1)/h. 

z -1 
s = ±jwo ---+ -h- = ±jwo 

z = 1 ± (hwo)j 

These poles lie on the line z = 1 + ( hw )j as shown in figure 2.16. We can see that this 
is unstable for any sample time or frequency-unless the frequency is 0. 

1 + (hw)j 
/ 

Figure 2.16: Poles on the z-plane of mass-spring system using forward Euler 

Due to its problems with stability, we can conclude that the forward Euler is unsuit
able for sound synthesis using mass spring networks. 

The Backward Euler solution of the mass spring system 

We next examine the same system using the backward Euler method. The second deriva
tive using the backward Euler is: 

x"(n) = ~2 (xn - 2 Xn- l + Xn-2) . 

Now we use the backward Euler on the mass spring equation (2.10): 

Xn- 2Xn-l + Xn-2 = -(kj ) 
h2 m Xn 

1 
Xn = 1 + (hw) 2 (2Xn-l- Xn-2). 
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Figure 2. 17: Backward Euler approximation of mass spring system 

The results are : hown in figure 2.17. 
From the graph in figure 2.17 we see that the backward Euler has the opposite prob

lem of the forward Euler: instead of exponential growth, we have exponential damp
ing. We can again use the s to z-plane mapping to analyze this problem. We start 
with the transfer function from equation 2.11 and use the backward Euler mapping 
s--+ 1/ (1- hz). 

The poles are at z2(1 + (hw )2) - 2z + 1 = 0. Solving this quadratic equation gives us: 

1 ± j(hw) 
z =1 +(hw)2' 

For this example, the frequency, j, is 1/8 the sampling frequency, so 

f = (1 / 8)fs; w/ (27r) = 1/ (8h) 

7r 
hw = -· 

4 ' 

2 

(hw)2 = 76 · 

Now we can split 2 into its real and imaginary parts: 

[ 
1 ± j hw ] 1 1 

Re (h )2 = (hw)2 = 2 ~ .618486458 
1 + w 1 + 1 + ~6 

I m [ 1 ± j hw ] _ ±hw _ n 
1 + (hw)2 - 1 + (hw)2 - 1: ~ ~ ±.485758128. 
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The results are shown in figure 2.18. As expected the poles lie on the smaller circle. But 
note that they do not lie on the unit circle. The closer they are to the origin the larger 
the damping. 

Mass-Spring System -Backward Euler -Poles on z-plane. 
2~~~~~~~~~~=u~nil=e=ire~le~==~~ 

1.5 

-0.5 

-- -lz-~1 ~ ~ 

I 

/ 

I 

X (.618186458, .485758128) 
0 (.61 8486458, -.485758 128 

--0" 

-1 .5 -1 -0.5 0 0.5 1.5 
real 

Figure 2.18: Backward Euler approximation on the z-plane 

We can use the real and imaginary parts to find the exact damping. 

lzl = r = vRe2 +1m2 = v.6184864582 + .4857581282 = .7864391. 

This means the backward Euler approximation for this example is decaying at the rate 
. 7864391 n, where n is the sample number. This is shown in figure 2.17. 

We can solve the backward Euler mapping to the z-plane for r and w in the general 
case for the undamped mass spring system. 

r = ( 
1 )

2 

( hw )
2 

1 + (hw)2 + 1 + (hw)2 

J1 + (hw) 2 

1 + (hw) 2 

1 

J1 + (hw)2 

We see from this that r approaches 1 (no damping) when either the sample time, h, or 
the frequency, w, approach zero. The extraneous damping increases with the product of 
the sample time and the frequency. 

wd = tan- 1 ( l+~fw) 2 ) = tan- 1(hw) . 
l+(hw) 2 

(2.12) 

Here wd represents the digital frequency~the actual frequency produced by the nu
merical method~and w is the original frequency. Figure 2.19 shows the arctan func
tion. Note that the entire jw axis on the s-plane is mapped to the range [-n /2, 7T /2]. 
The part of the graph near the origin~where low frequency or small sample times 
are mapped~is nearly linear. High frequencies and large sample times are progres
sively "warped". This is called frequency warping. The "x" on this graph shows our 
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example with f = (1 / S)fs· Here the frequency is only slightly warped. The "o" is at 
f = (1 / 2)j8 , called the Nyquist frequency. At this point there is considerable frequency 
warp mg. 

1.5 

"' 1 c. 
E 
"' ~ 0.5 

" [" 

g 0 
~ 
cr 
~ -0.5 
2 ·c;, 
:0 -1 

Arctan function 

- - - - - · - · - · - - -- - - -l- - · - - - -- - -

Figure 2.19: Backward Euler -frequency warping 

Equation (2.12) shows that for our example the frequency of the system is 105.96 
Hz instead of 125 Hz. This can be seen in figure 2.17 where the backward Euler lags 
somewhat behind cos(125 x (2-rr)t). 

The backward Euler, although superior to the forward Euler, still is not ideal espe
cially at high frequencies. 

The Bilinear Transform solution of the mass spring system 

The bilinear transform is defined s +-- * ~~i [16]. This mapping can be used on our 
undamped mass spring system's transfer function using equation 2.11. 

This simplifies to 

~ 1 1 
H(s) =- 2 2 

ms + w0 

1 

1 1 
----,--- --+ -------;;----
s2m+k (~1+z-1 ) 2 m+k. 

h 1-z- 1 

H (s ) = ~(s) = -'-4m-'-+'--\:.__:_h2_ (h_2-=+_2h_2_z_- _1_+_h_2_z_- 2_) 
F( s) 1 + 2kh2_8m z-1 + z-2 

4m+kh 2 

We can now solve for X ( s) and calculate the inverse z-transform, resulting in 
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Mass-Spring System 
1 .51-~--~-~--;=::=::;:;::=~::;::::::::;l 

~ Bilinear TI-H.IL"ifonn 
cos((125 x 27r)l) 

5 10 15 20 25 30 
sample number 

Figure 2.20: Bilinear transform ofundamped mass spring system at f= 118 sample rate 

The results of running this equation with the external force Fn set to 0 are shown in 
figure 2.20. 

We see from figure 2.20 that the bilinear transform, at least in this case, is much 
more accurate than the backward Euler. There appears to be no numerical damping. As 
well, although there seems to be some frequency warping, it appears to be much less 
than the backward Euler. To confirm these observations, let us analyse how the bilinear 
transform maps jw axis on the s to the z-plane. 

The inverse mapping for the bilinear transform is 

1 + hs/2 
Z ----t . 

1- hs/2 

Now we find the value of z when s = jw. 

. 1 + hjw/2 
tf s = jw then z = / 

1- hjw 2 

lzl = 11 + hjw/21 = 1. 
11- hjw/21 

I z I = 1 is the equation a unit circle centered at the origin. This means that poles to the 
left of the jw axis map to inside the unit circle. So any stable system will still be stable 
after the bilinear transform. Further, since the jw axis maps to the unit circle, there is 
no numerical damping introduced to undamped systems. 

Next we look at how the frequencies on the jw axis map to the z-plane. We denote 
the analog frequency on the s-plane as Wa and the discrete frequency on the z-plane as 
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w d [27]. We let z = eJwd. 

This function is shown in figure 2.21. 

Bilinear Transform -Frequency Warping 
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-8 -6 -4 - 2 0 2 4 6 

hw
3 

Figure 2.21: Frequency warping by the bilinear transform 

Like the freque cy mapping of the backward Euler shown in figure 2.19, the bilin
ear transform maps the entire jw axis to a circle-in this case the unit circle. There 
are, however, some: differences. Comparing this function to the frequency warping of 
the backward Euler, we see that the linear portion is much longer for the bilinear trans
form since the discrete frequency ranges from -1r to 1r radians . For our example the 
frequency, which should be 125 cycles per second, is actually 119.11 cycles per second. 
This compares favourably with the backward Euler, which was 105.96 cycles/s. 
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---.~F 

M 

X 

Figure 2.22: M point [10] Figure 2.23: L point [10] 

2.2 Previous Work 

In this section we look two implementations of mass-spring systems: CORDIS-ANIMA 
and TAO. Several other mass-spring systems have been built including PhyMod and 
Cymatic [22]. 

2.2.1 CORDIS-ANIMA 

The CORDIS-ANIMA system consists of two main modules: the CORDIS module 
which does the sound synthesis and the ANIMA module which creates the computer 
graphics. This software was built in several stages beginning in 1978 [ 1 OJ by ACROE 
(Association for the Creation and Research on Expression Tools) in France. The phi
losophy behind the system was that instead of simulating the sounds themselves, as in 
signal processing or wave table synthesis, CORDIS-ANIMA would simulate the sound 
producing object [9] -i.e. simulate the musical instrument rather than just simulating 
the sound it produces. 

Communication Points 

CORDIS consists of a collection of intercommunicating objects. The objects commu
nicate through communication points which can be of 2 types [ 1 0]: 

1. M points An M point takes the input of a force and outputs a displacement (figure 
2.22). 

2. L points An L point takes the input of a displacement and outputs a force (figure 
2.23). 

Both the displacements and force are vectors of n dimensions. Objects must be linked 
so that an output force in one object is connected to an input force in another object and 
an output displacement is connected to input displacement. An M point can take any 
number of forces as input; these forces are summed together. An L point, however, can 
take only one displacement as an input, since an object can only be at one position at a 
given time. This restricts the way objects can be linked together. For example, objects 
containing only one communication point can only be linked in star shaped topologies 
with theM point at the center (figure 2.24). 

Objects containing two L points or one M point can be connected in arbitrary topolo
gies (figure 2.25). This corresponds to the mass-spring model with the masses being rep
resented by the elements with one M point (matter points) and the dampers and springs 
by elements with 2 L points (link elements). 
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M 

Figure 2.24: Connection of objects with 1 communication point 

Figure 2.25: Connection of matter points and link elements 

Physical Modules 

Physical modules are used to represent the physical elements of the system-the masses, 
springs and dampers . They have force and position as inputs and outputs. 

• Mass element 
These represent point masses. Each element contains a mass and a position. It 
receives one or more forces as input and calculates its new position as output. 
The new position is calculated using the backward Euler scheme as presented in 
section 1.2.4: 

Xn = Fn-dm + 2Xn- 1 - Xn-2 

where Xn is f e position at the current time, Fn_ 1 is the total force at the previous 
time step and m is the mass. Notice that Fn_1 is used instead of Fn -i.e. the 
new position is calculated using the forces in the previous time step. This is done 
to make the scheme realizable - to avoid a delay free loop when the elements 
are linked together. 

• Spring element 
This is a link element, linking two mass elements. It takes the position of the two 
masses as inputs and outputs the forces acting on each end of the spring. The 
equations are: 

Fr2 = k (x1:n-1 - X2:n- 1 - Lo ) 

Fr1 = -Fr2, 
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where Fr 1 and Fr2 are the forces at each end of the spring, k is the spring's stiff
ness constant and L 0 is the equilibrium length of the spring. Again, this equation 
differers from the one developed in section 1.2.4 by using the positions at the 
previous time step to calculate the current forces. 

• Damper element 
The damper is also a link element, linking two mass elements. The damping is 
proportional to the relative velocities of the two masses the damper connects. The 
equations are: 

Ff2 = Z(x1:n-1 - Xl:n-2- X2:n-1 + X2:n-2) 

Ffl = -F12 , 

where Ffl and F12 are the forces at each end of the damper and Z is the coefficient 
of viscosity. As with the other elements, the forces of the damper at the current 
time step are calculated using the velocities from the previous time step. 

Figure 2.26 shows an example of the CORDIS model. An external force Fe is acting 
on the point mass X 1 . Mass X 1 is also connected by a spring and a damper to X 2 . 

The three forces are summed to determine the next position of X 1 . The vibrations in 
CORDIS are simplified to act in 1 dimension only, even though the points may be in 2 
or 3 dimensional space. So, for example, the spring force acting on X 1 is determined 
only by the relative vertical displacements of X 1 and X 2 ; the x andy co-ordinates of the 
2 points are not relevant to the vibration. 

Figure 2.26: CORDIS model 

Functional Modules 

Functional modules do not represent physical elements, but control their behaviour or 
relationship with other elements. There are three type of functional modules. 
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1. Dynamic Structure Variation Modules These modules have one or more inputs 
(M or L points) and their output is boolean. They use the inputs to determine 
whether a connection is made between two elements. An example of a dynamic 
structure variation module is shown in figure 2.27. 

input from operator 
or other object 

Dynamic Structural 
Variation ule 

boolean 
output 

:Figure 2.27: Dynamic structure variation module 

2. Dynamic Par ameter Variation Modules These modules allow the parameters of 
an element to be modified during the simulation. 

3. Relative Viewpoint Modification These modules allow the scaling of data from 
communication points. 

Instrument Interface 

An important aspect of the CORDIS system is the interface with the user. The system 
uses physical actions (gestures) made by the user to produce the excitations of the sim
ulated instruments. This is done by using transducers to convert the gestures into data 
usable by the system. 

position, 
motion, e-· l 

- force 
feedback 

Gestural 
Transducer 

digitized 
position 
and/or 
forces 

force 
feedback 
commands 

Excitation 
Part 

digitized 
position, 
and/or 
f orces 

" 

., 
digitized 
position, 
and/or 
forces 

Figure 2.28: Interaction with input devices 

Vibrating 
Structure 

Figure 2.28 shows the outline of the interface between the instrument and the system. 
The user produces motions and forces on the instrument which are converted by the 
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transducer into digitized position and force information. This information is passed 
to the excitor part of the simulated instrument and is used to calculate its vibrations. 
The force and position information from the excitor is in tum passed to the vibrating 
structure of the simulated instrument and determines its vibrations. Note that all the 
information is two way. The vibrating structure returns information to the excitor which 
can affect its vibrations. The excitor passes force feedback instructions to the transducer 
which provides feedback to the user about the instrument. For example, Florens in [15] 
gives an example of a force feedback joystick used to bow a virtual stringed instrument. 
The force feedback allows the user to feel the amount of pressure the bow is applying 
to the string. 

Modelling the Connection of the Excitation and Vibrating Structure 

There are three methods of excitation [8]: 

• Percussion 
The excitation part and vibrating structures are connected for a brief period and 
then disconnected. This can be accomplished by creating a Dynamic Structure 
Variation Module that controls the connection between the excitation part and 
the vibrating structure. For example, the excitation part might be a drum stick 
and the vibrating structure the drum head. When the position of mass X 1 on 
the drum stick becomes less than the position of mass X 2 on the drum head a 
connection is made between the two objects (see figure 2.29). The spring would 
be set to a high constant and the user would feel the force feedback on contact. 
The connection between X 1 and X 2 would cause vibration in X 2 which would in 
tum cause vibration in the vibrating structure. Once the position of X 1 was no 
longer greater than X 2 the connection would be broken. 

excitation 
part 

• Plucked String 

dynamic 
structure 
variation 
moduke 

Figure 2.29: Percussive excitation 

vibrating 
structure 

The left side of figure 2.30 shows the plucked string before contact is made be
tween the pick and the string. The point mass X 1 is a point on the pick and X 2 a 
point on the string. When x 1 < x2 there is no connection between them. The mid
dle section offigure 2.30 shows the connection made between X 1 and X 2 when 
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x 1 ~ x2 but x2 < h. This represents when the pick is in contact with the string. 
When the string reaches point h the contact is broken, which is shown on the right 
side of 2.30. This represents the point where the force of the string causes it to 
slip off the pick. 

h ________________ _ 

X,._ -!X, 
pick 

Initial 
x1 < x2 

• Bowed String 

string 

X1 > x2 
x2 < h 

Figure 2.30: Plucked String 

" X,~- ---l' 
pick 

X1 > x2 
x2 > h 

string 

When the relative velocity of the string and the bows is less than a threshold value, 
the bow "captures" the string causing point X 1 on the string to move with point 
X 2 on the bow. When the force on the string exceeds a threshold value the string 
slips-- i.e. the connection is broken. 

2.2.2 TAO 

History 

TAO was created by Mark Pearson as part of his PHD thesis [33] at the University of 
York in 1996 under the supervision of Dr. David M. Howard. It is freely available for 
download at http://web.ukonline.co.uk/taosynthl. 

Philosophy 

Pearson's goal in creating TAO was to allow users who are not signal processing experts 
to create virtual musical instruments that had "organic" sounds -i.e. sounds that seem 
to come from a physical source [33]. The program uses the concept of cellular automata 
to produce the sound synthesis. The idea is that from an array of simple cells that 
interact locally, complex and interesting sounds can be generated. 

The Cellular Model of TAO 

An instrument in TAO is constructed as a two dimensional cellular automaton, with 
each cell having 8 immediate neighbours. Each cell contains a point mass and each pair 
of neighbouring masses are connected by a spring and damper. Figure 2.31 shows the 
current cell, Sc and its 8 neighbour cells. The arrows mark the direction of vibration: 
along the z axis. 

Pearson demonstrates that the model can generate high level "emergent" behaviour 
such as reflection, refraction and diffraction of sound waves (see figure 2.32). 
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Figure 2.31: The current cell and its neighbours 

Virtual microphones are used to capture output. They can be placed anywhere along 
the instrument and record the vibrations at that position. They can be fed into either the 
right or left channel for stereo output. 

The instruments can be observed visually as they vibrate. Sounds are written to a 
wave file which can then be heard by using an audio player such as Windows Media 
Player or Real Audio. The sounds are not heard in real time and, for complex instru
ments, may take several minutes or even hours to generate 15 or 20 seconds of output. 

Figure 2.32: Reflection and refraction in TAO 

36 



MSc Thesis Don Morgan 

Calculation 

The high level algorithm to update the cellular model is: 
for each cell 

Computing and Software 

1. Calculate all forces from neighbouring cells and add them together. 

2. Add any external forces . 

3. Use the total force to calculate the cell's new position and velocity. 

The spring force is F = -k((sc- sn)- L 0 ) where k is the spring stiffness, Sc the 
position of the cun·ent cell, sn the position of the neighbour cell and L 0 the spring's 
equilibrium length. To simplify the calculation of the force between each pair of cells 
the spring stiffness, k, is set to 1 and the equilibrium length is set to 0. The speed of the 
vibration is ~' so it can still be controlled by adjusting m. The calculation of the 
force is then: 

Fc:n = Sn:n-1 - Sc:n-1, 

where Fe is the the force of the current cell, sn the position of the neighbouring cell and 
sc the position oft e current cell. Notice that, like CORDIS, TAO uses artificial delays 
- Sn:n-1 and Sc:n- 1 instead of Sn:n and Sc:n- to make the system realizable. 

The calculations to update the cell's new position and velocity (step 3) are as follows: 

1. an = Fn/m, where a is the acceleration, F is the total force and m the mass. 

2. Vn = Z(vn_ 1 +an), where vis the velocity and Z the viscous damping coefficient. 

3. Sn = Sn- 1 + Vn , where sis the position (vertical). 

Steps 2 and 3 are just the backward Euler method where the time step is 1. Note that 
step 2 is different from that used in CORDIS: here the damping uses just the velocity of 
the cell (mass), where CORDIS uses the relative velocities of the masses at each end of 
the damper. 

Scripting Language 

One of the main difference between TAO and CORDIS-ANIMA is the user interaction 
with the instruments. Whereas CORDIS uses physical actions and transducers to pro
duce the excitations of the instruments, TAO uses a script. This makes TAO's interface 
resemble a musical score created by composer and given to an orchestra, rather than a 
musician playing an instrument as in CORDIS. 

Scripts allow the user to easily create various virtual instruments and specify how 
and when they are excited. There are commands to create strings, rectangles, circles and 
triangles. The size of these objects are determined by their frequency - i.e. a string 
with frequency 220 Hz is twice as long as a string of 440 Hz. The user can also specify 
pitch instead of frequency - i.e. CU8 for the CU above middle C. Parts of instruments 
can be locked- they do not move - or set to different damping. Instruments can also 
be glued together. 
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Chapter 3 

Analysis of Mass-Spring Systems 

We begin this chapter with an analysis of the symplectic Euler method-the standard 
method used to implement mass-spring systems-when used to implement an undamped 
mass-spring system containing a single mass. This analysis is also presented in [30]. 
We then expand the analysis to include damped mass-spring systems. We conclude by 
considering mass-spring systems containing multiple masses. 

3.1 Undamped Mass-Spring Systems 

We have seen in the introduction that using the backward Euler method to discretize the 
equations of the components of mass-spring systems leads to delay-free loops that make 
the system non-computable. A simple way to eliminate this problem is to calculate the 
positions at time step n based on the forces at time step n - 1. This is the method used 
in the TAO system. Equation (1.6) for the mass then becomes 

( ~::D = ( ~=) + h ( v~r) . (3.1) 

where equation (3.1) now uses Fn instead of Fn+l· We will see in section 4.3.2, that this 
is equivalent to the symplectic Euler method and we will refer to it by this name. We 
can now calculate the velocity at time n + 1 using only the velocity and forces at time 
n, which are known, and can then use the velocity at time n + 1 to calculate the position 
at time n + 1. In other words, we have converted the implicit backward Euler method 
into an explicit method. 

Figure 3.1 shows a simple mass-spring system without a damper. It shows an exter
nal force acting on mass M 1. Spring 53 has one end connected to M 1 and the other end 
is fixed at point X 2 . If we regard the equilibrium position of the spring to be x(t) = 0, 
where x(t) is the position of M 1, the equation ofthis system is 

d2xjdt2 = (1/m)Fext- (k/m)x(t). (3.2) 

Since the symplectic Euler method is equivalent to the backward Euler with the forces 
delayed by 1 time step, we can approximate equation (3.2) by using the second deriva
tive of the backward Euler. The derivative of the backward Euler is 

x'(n) ~ *(xn- Xn-1)· 
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Figure 3.1: Mass-spring system 

The second derivative is then 

We now approximate equation (3.2) by substituting the second derivate of the backward 
Euler on the left side and the delayed forces on the right: 

Xn - 2Xn-1 + Xn-2 ( I ) -1 
h2 = - k m Xn-1 + m Fext:n-1· 

Then we take the z-transform 

where we make use of the fact that the z-transform of a unit delay is equal to z- 1. The 
z-transform of Xn is denoted by X(z ) and that of Fext (n) by Fext(z ). We then find the 
transfer function: 

iJ z = X( z ) = (h2lm)z-1 

( ) Fext( z ) 1 + ((hw)2- 2) z-1 + z-2' 
(3.4) 

where w2 = kIm. The poles of the transfer function occur when 

z2 +((hw) 2 -2)z +l =0. 

Solving this quadratic equation gives us: 

-(hw)2 + 2 ± (hw)..j(hw)2- 4 
z = . 

2 

If ( hw) 2 < 4 then 
-(hw) 2 + 2 jhwy'4 - (hw) 2 

z = ± . 
2 2 

Using the real and imaginary parts, we can calculate r: 

So on this interval, the poles map exactly to the unit circle. This means there is no 
numerical damping. We can calculate the frequencies in this range. Using the facts that 
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w = 2n f, where f is the frequency, and h = 1 I fs, where fs is the sample rate, we find 
that ( hw )2 < 4 is equivalent to f < ~ fs, i.e. all cases in which the frequency is less 
than ~ times the sample rate. 

We now find the frequency warping. Using wd for the digital angular frequency 
(the actual angular frequency using the numerical method) and wa as the analog angular 
frequency (the angular frequency of the original continuous system): 

_ _ 1 (im(z)) _ _1 (hwaJ4- (hwa) 2
) 

wd - tan ( ) - tan ( )2 . re z - hwa + 2 
(3.5) 

Figure 3.2 shows the graph of this function. As hwa approaches 2 (i.e. fa approaches 
(1ln)fs) the frequency becomes progressively warped. Notice that the frequency warp
ing of symplectic Euler causes the digital frequency to be higher than the original analog 
frequency. The digital frequency, fd, is in radians per sample, so to convert to radians 
per second we need to multiply it by the sample rate fs· 

Mass-Spring System -Symplectic Euler -Frequency Warping. 

3.5 r----~---~-r======:::::::::===;-l 
- Symplectic Euler 
- - - y=x 

3 

0.5 

0.5 1 1.5 2 
Analog freq . ""'• rads/sample 

Figure 3.2: Frequency warping for undamped mass-spring system using the symplectic 
Euler method 

Next we examine the interval where (wh)2 > 4. We examine the pole 

-(hw) 2 + 2- (hw)J(hw) 2 - 4 
Z= -------~-----

2 

First, notice that this is a real number. Looking at the first 2 terms of the numerator, we 
see that 

(-(hw) 2 +2) < (-4+2) = -2. 

The radical in the last term of the numerator is positive when (wh) 2 > 4, so the last 
term is always positive. Therefore, the numerator is always less than -2 and value of 
the pole is always less than -1. Since this pole is outside the unit circle, the system is 
unstable in all cases in which (wh) 2 > 4. So when the analog frequency is more than 
( 1 I 1f) fs, the system in unstable. 
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The final case is when (wh) 2 = 4. This results in z = -1. 
Figure 3.3 shows the plot of the poles on the z-plane. The two sets of conjugate 

poles trace the upper and lower halves of the unit circle. At frequency fa = (1/n)fs, 
they meet at z = -1. Then one pole continues along the real axis toward the left and 
the other along the real axis to the right. 

So for stability, it is required that 

(3.6) 

where fa is the frequency and fs the sample rate. 

Mass-Spring System -Symplectic Euler -Poles on z-plane. 

--l/2(-(hw)2 +2 +hwJ(hw)2 -4) 
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Figure 3.3: Poles on the z-plane for the symplectic Euler 
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3.2 The Mass-spring System with Damping 

In this section we look at the stability and accuracy of the symplectic Euler method 
when used to simulate damped mass-springs systems. We start by finding the analytical 
solution of a damped mass-spring system containing a single mass, a single spring and 
a single damper. We then find the z-transform of this equation when it is approximated 
by the symplectic Euler method. We use the z-transform to find the damping and the 
frequency of the transformed equation. We also find the conditions under which this 
equation is stable. 

3.2.1 The Analytical Solution of the 
Damped Mass-spring System 

Figure 3.4 shows a damped mass-spring containing only one mass, M 1, one spring, 5 1 

and one damper, D1 . 

Figure 3.4: Damped mass-spring system 

The equation for this system is: 

mx"(t) + kx(t) + Zx'(t) = 0, (3.7) 

where x( t) is the distance of the mass from its equilibrium position, m is the mass, k 
the spring stiffness and Z the viscous damping coefficient. 

We can solve this equation by finding the roots of the characteristic equation: 

z k 
r 2 + -r +- = 0. 

m m 

We use the substitutions 1 = Z/m and w6 = kjm: 

r 2 + 1r + w6 = 0. 

The roots of this characteristic equation are 
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For the system to vibrate we require that 1 2 < 4w6, so 

(3 .8) 

The condition dividing vibrating systems from those that do not vibrate occurs when 

(3.9) 

This value is known as critical damping. 
The general solution of equation (3.7), when 1 2 < 4w6, can be show to be [7] 

x(t) = R e--rt/2 sin (td + ¢). (3.10) 

This shows that the damped mass-spring system has a starting amplitude of R. This 
amplitude is being decreased by the term e--rt/ 2 . The frequency (actually the quasi
frequency since the system is not strictly periodic) is p, = (1 /2)J4w6 - 1 2 . As the 
damping approaches zero this equation becomes x (t ) = Rsin(w0t + ¢). 

3.2.2 The Damped Mass-spring System using the Symplectic Euler 
Method 

We next examine the damping and frequency of the damped mass-spring system, when 
approximated by the symplectic Euler method, by using the z-transform. 

We start by writing the symplectic Euler approximation of damped mass-spring 
equation 

mx"(t) + kx (t) + Zx'(t) = Fext(t), (3 .11) 

where Fext is an external force acting on the mass. Using the substitutions from the 
previous section we can write equation (3 .11) as 

x"(t ) = - w6x(t) - 1x'(t) + _!_Fext(t) 
m 

(3.12) 

Since the symplectic Euler is equivalent to the backward Euler with the forces delayed 
by one time step, we can approximate equation (3.12) by substituting equation (3.3) for 
the acceleration and delaying the forces by 1 time step: 

1 
h2 (xn - 2Xn-l + Xn-2) = 

2 I 1 
- WoXn- l - h (xn-l - Xn-2 ) + m Fext:n- l· (3.13) 

The z-transform of equation (3.13) is 

~2 ( X(z) - 2X(z)z-1 + X (z)z-2) = 

- w6X (z )z-1
- ~ ( X (z )z-1

- X (z )z- 2) + ~ Fext( z )z-I, 

X (z) (~2 + (w6 + ~ - ~2 ) z-
1 + (~2 - ~) z-

2
) = ~Fext(z ) z- 1 , 
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and the transfer function is 

H( z) = ~(z) 
Fext(Z) ;2 + (w5 + t- ,;2) z -l + (;2- t) z-2 

(h2 /m)z-1 

1 + ((w0h) 2 + "(h - 2) z- 1 + (1- "fh) z-2 · 

The poles of the transfer function occur when 

1 +((wah?+ "(h- 2) z-1 + (1- "fh) z-2 = 0, 

z2 + ((w0h) 2 + "(h - 2) z + (1- "fh) = 0. 

The roots of equation(3 .14) are 

z = ~ ( 2- (w0 h) 2
- "(h ± V((w0h)2 + "(h - 2) 2

- 4(1- "(h) ) 

~ ~ ( 2- (wah)'- "(h ± woh (wah)'+ 2"(h + (~or- 4) . 

(3 .14) 

(3.15) 

There are 2 cases to consider in equation (3 .15): 1) z is complex and 2) z is real. 

Case 1)- z is Complex 

We look at the case in which z contains an imaginary component- i.e. when 

We first calculate the range of values for w0 of this case. If 

(woh)
2 + 21'h + (~J 

2 

~ 4 (3.16) 

then wci + ( 2~- : 2 ) w5 + (~) 
2 

= 0, 

by multiplying both side by w5/h2 and rearranging. The roots of this equation are 

This simplifies to 

2 2 'Y ~ 
wo = h2 - h ± 2y h4 - J;J· (3.17) 
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If z is complex, w0 falls between these two roots. 
What is the maximum value that w0 = yfkJin can have in this range? As h ap

proaches 0 

~ ! . (2 I ~) 
we = l~ h2 - h + 2y h4 - h3 

2 - limh_,o (I h) + 2 J~1-----,-li-m-h_,-o----,(-1 h,....,..) 

h2 
(w0h):! = 4; w0h = 2 (since we assume h > 0 and w0 > 0). 

Thus, when the sample rate is high, the maximum value for w0 in this range approaches 
2 radians per sam pie, or ( 1/ 1r) fs samples per second, where fs is the sample rate. This 
is the same maximum value we obtained using the undamped mass-spring system. We 
can also see from equation (3 .16) that when 1 approaches 0, the maximum value for w0 

is also 2 radians per sample. As the sample rate decreases or the damping increases, the 
maximum value is lowered according to the equation 

2 I ~ 
Wo,max = h2 - h + 2y h} - hj· 

This equation depends on both 1 and h. Figure (3.5) shows the dependence of the 
maximum value for w0 in this range on the sample rate when 1 is fixed. For this figure, 
1 is set at 1, 000, while the sample rate ranges from 1, 000 samples per second to 40, 000 
samples per second . As the sample rate increases, the maximum value for w0 approaches 
2 radians per sample. Figure (3.6) shows the dependence of the maximum value for w0 

Damped Mass-Spring System -Maximum ro
0 

for complex z . 

2 

1.9 

" 
1.8 

15. 
E 1.7 ., 
~ 
"0 
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15. 
E 1.4 ., 
} 

1.3 
>< ., 
E 

1.2 

1.1 

1 
0 0 .5 1.5 2 2.5 3 3.5 

sample rate samples/s 
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4 

Figure 3.5: Damped mass-spring system -Max w0 versus sample rate 

in this range on 1 when the sample rate is fixed. For this figure, h = .001 or f s 
1000, while 1 ranges from 0 to 1, 000. As 1 approaches 0, the maximum value for w0 

approaches 2 radia s per sample. 
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Figure 3.6: Damped mass-spring system -Max w0 versus 1 

Now we look at the minimum value for w0 in this range. Ash approaches 0 

w6,m;n ~ ~~ ( : , - ~ - 2 J ~4 - ~3) 
= 2 - limh_,o (r h) - 2 ~,--1 ----=-lic--m-h_,-o---:(-1 h:-7") = 

0
/
0

. 

limh_,o h2 

Using L'Hospital's rule twice results in 

I 
Wo,m in = 2· 

We see that this is the critical damping value from equation (3 .9). So when the value 
for h is small, the system starts to vibrate near the critical damping value as it should. 
Figure (3.7) shows a mass-spring system with 1 set to 1, 000 while the frequency ranges 
from 1, 000 to 40, 000 samples per second. As the sample rate increases, the minimum 
value for w0 approaches 500 which is 1/2. We can solve the smaller root of equation 
(3 .17) for 1 to give us a formula for the critical damping. This works out to be 

lc:r = -w5h + 2w0 . (3.18) 

Figure (3.8) shows the critical damping for w0 = 1, 000 while the sample rate ranges 
from 1, 000 to 40, 000 samples per second. This shows that at high sample rates the 
critical damping is close to twice w0 , while at low sample rates the critical damping 
becomes less than this value. This means that if the sample rate is too low, a system 
may stop vibrating with a damping coefficient lower than the critical damping (i.e. it 
will take less damping to stop the vibration than it should). For example, if the sample 
rate is 5, 000 samples per second (h = 1/5000) and w0 = 1, 000, the symplectic Eu
ler approximation of the system will not vibrate with 1 > 1, 800 although the critical 
damping for the analog equation is 2, 000. 
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Figure 3.7 Damped mass-spring system -Min w0 versus sample rate 
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Figure 3.8: Critical damping versus sample rate 

We now look at the accuracy of the damping for case 1) (z is complex). In this case 
equation (3 .15) becomes 

z ~ ~ ( 2- (w0h)2
- -yh ± iw0hJ4- (woh)'- 2-yh- CJ) 

We can calculate the length of z using the imaginary and reals parts: 

lzl = ~2 + imag(z)2 

~ ~ F- (woh )2 
- -yh)' + ( wohJ 4- (w0h)2 

- 2-yh- CJ' )' 
This simplifies to 
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We see from equation (3.20) that, for this case, the length of z does not depend on the 
frequency. We can also observe that length decreases with the amount of damping (since 
'"'( = Z / m ), and approaches 1 as the damping coefficient, Z, approaches 0. 

Figure 3.9 shows the poles on the z-plane of the symplectic Euler approximation of 
the damped mass-spring equation. The value for '"Y is 40 and the time step, h, is .001. 
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Figure 3.9: Damped mass-spring system using symplectic Euler -poles on z-plane 

The radius ofthe circle containing the poles is .J1 - '"'(h, which depends on both '"Y 

and the time step h. If the damping or the time step increase, the radius of the circle will 
become smaller. 

From equation (3 .1 0), the damping of the analog system is e-'Yt/2 . From equa
tion (3.20), the damping of the system using the symplectic Euler approximation is 
~. How do these two values compare? We can rewrite t, the time, as nh, where 
n is the sample number and h is the length of the time step. Then we can write the 
analog damping as c"~nh/2 . Figure 3.10 shows the damping for the first 400 samples of 
the analog mass spring system and the symplectic Euler approximation. The value used 
for '"'fh was .1. Figure 3.11 shows the absolute error of this system for the first 100 sam
ples. The error reaches a maximum around the 20th sample, which is the (1/('"Yh) x 2)th 
sample. 

As '"'(h decreases, so does the error. Figures 3.12 and 3.13 show the damping results 
when '"'(h = .01. The difference between the symplectic Euler and the analog system 
can no longer be distinguished on the graph (figure 3.12). Note that figure 3.13 has the 
same shape as figure 3.11 with the maximum error occurring around the (1 /('"Yh) x 2)th 
sample - this time the 200th sample. The magnitude of the error is one tenth that of 
figure 3 .11. 

The time constant of the decay, T, is the time it takes for the peak amplitude to decay 

48 



MSc Thesis Don Morgan Computing and Software 

0.9 

0.8 

0.7 

~ 0.6 

0.2 

0.1 . 

Damping Accuray of Symplectic Euler 

I 
Symplectic Euler I 
Analog damping I· 

t:; ~ 
0o'--~w~=1-oo--·~1s~o--2~oo~~2~~--~3oo~-3~w~~400 

sample number 

Figure 3.10: Co pari son of damping 
with rh = .1 

0.9 

0.8 

0 .7 

-8 0.6 

~ 05 
~ -

0.4 

0.3 

0.2 

0.1 

Dampir g Accuray of Symplectic Euler 

1

- Symplectic Euler I 
Analog damping I· 

oL_~~==--·~--~--~--~~~~ 
0 500 1000 1500 2000 2500 3000 3500 4000 

sample number 

Figure 3.12: Comparison of damping 
with rh = .01 

Difference between analog and digital damping 
0 .02 ,------~~---------------, 

0.018 

0.002 

0o'----~2o~--~4o~-----=so-----=ao----:-:1oo 
sample number 

Figure 3.11: Accuracy of damping with 
1h = .1 

x 10-J Difference between analog and digital damping 
2,----------------- --------, 

1.8 

0.2 

0 '----~~-~--~~-~~--~ 
0 200 400 600 800 1000 

sample number 

Figure 3.13: Accuracy of damping with 
,h = .01 

by 1/ e [3 7]. Then ·r for the mass spring system with amplitude A is 

Ae-'YT/2 = A(lje) 

ln(e-''fT/2 ) = ln(1/e) 

-/T/2 = -1 

T = 2/r· 

Sounds with time constants less than around .005 seconds are not heard as pitches, but 
merely clicks. If the sample rate is 44, 100 samples per second, for a time constant 
of .005, 1 is 400 and rh is 9.07 x w-3 . This means that for any musical sound, the 
damping of the symplectic Euler method will be quite accurate at this sampling rate. 

We next look at the frequency warping when z is complex. From equation (3.19), 
we can calculate the frequency using the real and imaginary components. Using wd to 
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denote the actual frequency obtained using the symplectic Euler, 

_ _ 1 (imaginary(z)) 
wd- tan l( ) rea z 

_ (wohV4- (woh)
2

- 21h- (~or) 
=tan 1 

2- (woh) 2 - lh 

Figure 3.14 shows the frequency warping of the symplectic Euler method when the 
damping is quite high: h = .001, 1 = 500 and 1h = .5. The analog frequency is 
calculated as Wa = (1/2) J 4w6- 1 2 , and is slightly lower than w0 . Note that the digital 
frequency has reached the Nyquist limit of 1r radians per sample at around w0 h = 1. 7 
radians per sample. This is somewhat less than the frequency warping of the undamped 
system, which does not reach the Nyquist limit until w0 h = 2.0 radians per sample. This 
is consistent with equation (3 .17), which gives . 293 as the lower limit and 1. 707 as the 
upper limit for z being complex. 
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Figure 3.14: Frequency for damped mass-spring system, 1h = .5 

Figure 3.15 shows the frequency warping for values more typical of sound synthesis: 
h = 1/44100, I = 200 and lh = 4.54 X w-3• This time the frequency does not reach 
the Nyquist limit until very close to w0 h = 2.0 radians per sample. The frequency 
warping for these values is very close to that of the undamped system. Equation (3 .17) 
gives 0.0023 as the lower limit and 1.998 as the upper limit for z being complex. 

Case 2) - z is Real 

Equation (3.17) gives us 2 conditions for z to be real. If w0 is less than the lower root of 
this equation, the system has a digital frequency of zero, and hence produces no sound. 
If w0 is greater than the upper root, the system has a digital frequency of 1r radians per 
sample. As the leftmost pole approaches -1, the damping becomes smaller. The system 

50 



MSc Thesis Don Morgan Computing and Software 

3.5 

3 

"' 2.5 c. 
E 

~ 2 
"0 
~ 

~ 
~ 1.5 
::> 

~ 
u. 1 

0.5 

Damped Mass-Spring System -Symplectic Euler -Frequency Warping . 

- Symplectic Euler 

· analog freq 

0.5 1 1.5 2 
w

0 
x h rads/sample 

Figure 3.15: Frequency for damped mass-spring system, '"'(h = 4.54 x 10-3 

will become unstable when z becomes less than -1. From equation (3 .15), the lower 
root of equation (3 .17) equals -1 when 

1 ( 2 2 2-(wah) - '"'(h-wah 

4- (wah)' - 1h =wah (wah) ' + 21h + (:J 2 -4. 

Squaring both sides and simplifying results in 

(wah) 2 + 2'"'(h- 4 = 0. 

For a fixed time step, h, we can solve for wa 

(3.21) 

So for stability we require that 

(3.22) 

Figure 3.16 shows the maximum stable value for wah with 'Y set to 1, 000 while the 
sample rate ranges from 1, 000 to 40, 000. As h becomes small the system is stable for 
values of wah approaching 2. 

As the value of '"'fh increases, the circular region on the z-plane where z is complex 
becomes smaller. Figure (3.17) shows the poles of the damped mass-spring system 
where '"'fh = .98. When '"'fh = 1.0 the circular region disappears. For '"'(h ;::: 1.0, there 
are only two possible digital frequencies: zero and 1r radians per sample. If the pole 
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Figure 3.17: Damped mass-spring system -poles on z-plane where r h = .98 

with the larger magnitude is negative, the digital frequency will be 7r radians per sample; 
otherwise it will be zero. From equation (3 .15), the pole with the larger magnitude is 
negative when 

2-(wh)2 - r h<O, 

so, when 1h 2:: 1.0, the curve dividing systems that do not vibrate and those that vibrate 
at 7r radians per sample is 

2 - ( wh )2 
- 1h = 0. (3 .23) 

3.3 Generalizing to Mass-spring Systems with Multiple 
Degrees of Freedom 

So far, we have just analyzed mass-spring systems with a single mass. We now consider 
systems with multiple masses. Since each mass can move independently of the other 
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masses, these systems are said to have multiple degrees of freedom. We first look at the 
analytical solution of the general mass-spring system with n degrees of freedom using 
the method presented by Meirovitch [29]. 

3.3.1 Analytical Solution of Mass-Spring Systems 

We can find the analytical solution of a mass-spring system by using the state-space 
method. The state space method uses a vector, x(t), of state variables. The equation 
describing the state variables of the state-space system is [2] 

d 
dt x(t) = Ax(t) + Bu(t) , 

where the vector u (t ) is the input and A and B are matrices. The output is produced 
from the state variables and input by the equation 

y(t) = Cx(t) + Du(t) . 

The state variables should contain the information needed to calculate the system's con
figuration at each point in time, so for a mass-spring system obvious choice is the dis
placement and velocity of each of the masses. The first step is to determine the matrix 
A. We start by looking the 2 mass system shown in figure 3 .18. The equations of this 

Figure 3.18: Two mass system with damping 

system are 

m1x{(t ) = -k1x1(t)- k2(x1(t)- x2 (t))- Z1x~(t)- Z2 ((x~(t)- x;(t)) , 

m2x~(t) = k2(x1(t)- x2 (t))- k3x2(t ) + Z2 (x~(t)- x;(t))- Z3x;(t) , 

where ki is the spring stiffness coefficient for spring si and z i is the damping coefficient 
for damper Di. Sol ving for x~(t ) and x~(t) in terms of the state variables x 1 , x2 , x~ and 
x; gives us 
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We can now write the equation for the update of the state vector as 

x' (t) = Ax(t), 

C)' ( 0 

0 1 

0 ) C) ~~ = _k~lk2 0 0 1 X2 
~ _Z1+Z2 z2 , . (3.24) 
m1 m1 ml xl 

x' k2 _k+k3 z2 _Z~2Z3 x~ 
2 m2 m2 m2 

We can rewrite this in terms of the mass, stiffness and damping matrices. The mass 
matrix, M, contains each of the masses along its diagonal 

M= 
(

m 1 0 0 .. . 
0 m 2 0 .. . 

0 0 0 

The stiffness influence coefficients, kij, are defined as the forces required for a unit 
displacement of mass i, with all other masses j -=/=- i having a displacement of zero. On a 
simulated string such as Figure 3 .18, the force required to displace mass Mi one unit to 
the right is ki + ki+1, since the spring on the left must be expanded by one unit and the 
spring on the right compressed by one unit. Masses Mi-l and Mi+l require forces in 
the opposite direction to keep them in place. The stiffness matrix, K, for a linear string 
is then a tridiagonal matrix with the ith plus the ( i + 1 )th spring's stiffness coefficient 
on the diagonal, the negative of the ith stiffness coefficient to its left, and the negative 
of the ( i + 1 )th stiffness coefficient to its right: 

kl + k2 -k2 0 0 
-k2 k2 + k3 -k3 0 

K= 0 -k3 k3 + k4 -k4 0 

0 0 -k2o k2o + k21 

The damping matrix, Z, contains damping coefficients, Zij, that are defined as the 
forces required for a unit velocity of mass i to the right, with all other masses j -=/=- i 
having a velocity of zero [21]. On a simulated string containing n masses, n + 1 springs 
and n + 1 dampers, the force required for a velocity of one to the right for mass Mi is 
(Zi + Zi+1), since the dampers Di and Di+1 both have a velocity of one. The masses 
Mi- l and Mi+1 both need forces of -Zi and -Zi+1 respectively to keep them from 
moving. The matrices for the system shown in figure 3.18 are then 

We can write the equations of this system in matrix form as 
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We can then write equation (3.24) as 

This is the general form of matrix A for a state space mass-spring system. If there are 
n masses, A is an 2n x 2n matrix, 0 is a n x n matrix of zeros, I is the n x n identity 
matrix, and - M - 1 K and - M-1 Z are both n x n matrices. 

For a mass-spring system the input u is an external force acting on each mass. If the 
system has no external force u is equal to zero. The matrix B is then the n x n identity 
matrix. Since we want the state vector x as output, the matrix C is the n x n identity 
matrix and D = 0. 

The solution to the state space system is [2] 

x (t) = etAx(O) + 1 t et-r Bu dT 

y (t) = C ( etAx (O) + 1 t et-r Bu dT) + Du. 

The matrix exponential, etA is defined as 

tA t t2 2 t k k 
e =I+-,A +-,A . . . + 1 A .. .. 

1. 2. k. 

3.3.2 Mass-spring Systems with Multiple Masses using the Sym
plectic _Euler Method 

The poles of the analog system on the s-plane are the eigenvalues the system matrix (the 
matrix A described in section the previous section). For each mass in the mass-spring 
system, we have a conjugate pair of poles. We can view numerical methods as mapping 
for the s-plane to z-plane, so if any poles on the s-plane is mapped outside the unit circle 
on the z-plane, the system will be unstable. The poles on the s-plane have the abscissa 
of a-= - 1/2 and the ordinate of J-L = (1/2)J4w5 - 1 2 . We can find the region on the 
s-plane that maps to stable poles on the z-plane by using equation (3.22). In this case, 
however, we need it tenns of J-L and a- . First we find w5 in terms of 1-L and a-: 

1-L = ~ J4w5 - /2 

1 
J-L2 = - (4w5 - 4a-2) 

4 
w5 = J-L2 + a-2. 

We then substitute equation (3 .25) in equation (3.21) 

1 
J-L2 + a-2 = h2(4 - 2!h) 

1-L = ± J--~-2 -( 4_+_4_a-_h_) -- -a--2 0 
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The system is then stable if 

-v ~2 (4 + 4ah)- a
2

:::; 11:::; v ~2 (4 + 4ah)- a 2 . 

Figure 3.19 shows a damped string made with 20 masses. The sampling frequency is 
20, 000 samples per second, the spring stiffness coefficients, k, are all18 , 497.24392 , the 
masses are all 1 and the damping coefficients are 1, 000. Since all the poles lie between 
the two roots of equation (3.26), this system is stable. 

- 2 
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- -- - - ------- -- - -- - - --x_: ~ --- - - r - ---- - ]- - -- -
~~~--~-.=~~--~--~--=---~-,=~~---~,~~--~-·~=-----=,~~~~-~~--~ 

Figure 3.19: Poles of damped string on the s-plane 

We can also solve equations (3 .1 7) and (3 .23) in terms of 11 and a. Equation (3 .17) 
divides poles that have complex components from those that do not. Substituting equa
tion (3.25) into ((3.17)) we get 

Similarly, solving equation (3 .23)-the curve dividing vibrating poles from non-vibrating 
poles-for 11 in terms of a results in 

_ J -(ah)2 + 2ah + 2 
11- ± h2 . 

Using these equations, we can divide the left half on the s-plane into sections. These 
regions represent the qualitative properties that any pole on the s-plane within the region 
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will have when the systems is approximated with the symplectic Euler method. Figure 
3.20 shows the regions of the s-plane for positive frequencies. The negative frequencies 
are mirror images of the positive ones. The sampling frequency used for this graph was 
1, 000 samples per second, but the shape of the graph is the same for all sampling fre
quencies. Making the sampling frequency larger dilates all parts of the graph uniformly. 
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Figure 3.20: Regions ofthe s-plane 

Figure 3.21 shows a damped string with 3 masses using a sampling rate of 1,000 
samples per second. The highest frequency pole is very close to the region of instability. 
This means there is almost no damping in the symplectic Euler simulation of this system 
even though a = --307 on the s-plane. The frequency on the s-plane is 1, 634 radians 
per second, but since it lies in the region that the symplectic Euler maps to 1r radians per 
sample, the actual frequency is 3, 142 radians per second- almost twice what it should 
be. The sound produced by this simulation in a sustained pitch of 500 cycles per second 
(since 3,142 radians= 500 cycles), which is approximately the G above middle C. The 
other frequencies are damped so quickly they are barely heard. Figure 3.22 shows the 
same simulation, but this time using a sample rate of 2, 000 samples per second. The 
poles stay in the same positions, but all the regions are expanded so all the poles are 
now well within th" region where z is complex. The sound of this simulation is a short 
thud, as it should be because of the high damping. 

Figure 3.23 shows the errors vectors for the symplectic Euler. The arrows show, 
for points on the s-plane, the direction and magnitude of the error that the symplectic 
Euler method will produce. For example, if the arrow points upward and to the left, 
it means the symplectic Euler will have excessive damping and a frequency that is too 
high. Notice that the lower right part of graph has small errors. 
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Figure 3.21: Damped string with 3 masses- sample rate is 1,000 samples per second 
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Figure 3.22: Damped string with 3 masses- sample rate is 2,000 samples per second 
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Chapter 4 

Alternate Methods of Implementing 
Mass-Spring Systems 

In this section we look at three other methods of implementing mass-spring systems. 
The first approach is to solve implicit methods by removing the delay-free loops. The 
second approach is to transform the mass-spring system into an equivalent electrical 
circuit and implement it as a Wave Digital Filter. The third approach is to avoid delay
free loops by using explicit numerical methods. We consider multi-stage methods and 
in particular symplectic methods-methods which conserve energy. 

4.1 Implementing Implicit Numerical Methods 

As we have seen in chapter 2, using the backward Euler method or the bilinear transform 
results in a stable system whenever the analog system is stable. This means that, if we 
implement a mass-spring system with one of these methods, it will be stable for any 
frequency and sample rate. However, both these methods are implicit, and implicit 
methods cannot be implemented directly. In this section we show how to implement 
implicit numerical methods. 

4.1.1 Removing Delay-Free Loops 

What are Delay-Free Loops? 

Figure 4.1 shows a simple example of a delay-free loop. We can write an equation for 
y(n) as: 

y(n) = x(n) + o(n) = x(n) + P(y(n)). 

This will create a problem in the implementation of this system since the calculation 
of y at time step n depends on y ( n), the very value we are trying to determine. Such 
systems are called unrealizable. A delay-free loop is then a loop whose output cannot be 
directly evaluated at time step n since it depends on its own value at that time step. It is 
often possible to replace a system with one or more delay-free loops with an equivalent 
system that does not contain any delay-free loops. For example, if the system P merely 
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x(n) 1-----r---------,•~ y( n) 

o(n) 

Figure 4.1: A simple system with delay-free loop [20] 

multiplies y(n) by a constant k, we can write: 

y(n) = x(n) + P(y(n)) = x(n) + ky(n), 
1 

y(n) = --kx(n). 
1-

This removes the delay-free loop, since the output y(n) is now defined solely in terms 
of the input x(n), which is known at the time we calculate y(n). 

In this section we look at a general method of eliminating delay-free loops and then 
show how this method can be used in mass-spring systems using the bilinear transform. 

4.1.2 Eliminating Delay-Free Loops in Digital Filters 

A method of eliminating delay-free loops in digital filters is presented by Harma [20]. 
The idea is to split the component contained in the delay-free loop into 2 parts: the pure 
delay-free structure and the output from the delay units. The pure delay-free structure 
is the part of the component that goes directly from input to output without any delays. 
This is the output the filter would give if all the delay units contained zeros. The rest of 
the output comes from the delay units and is therefore known at the current time step. 
This is the output the filter would give if the input at time n was 0. 

Figure 4.2 shows a generic digital filter. The filter has L delay units for previous 
input values and Af delay units for previous output values. The values b0 ... bL are the 
coefficients for inputs x(n) ... x(n- L). Similarly, the values a1 ... aM are the coefficients 
for outputs y(n- l ) ... y(n- M). From the diagram it can be seen that the pure delay
free structure-the path directly from input to output-includes only b0 . The rest of the 
output comes from the delay units. The filter can be represented mathematically by: 

L M 

y(n) = L (bix(n- i)) + L (ajy(n- j)). 
i=O j=l 

The pure delay is b0x(n). The pure delay factor, b0 , is denoted as X· The delayed portion 
is denoted as o( n): 

L M 

o(n) = L (bix(n- i)) + L (ajy(n- j)). 
i=l j=l 
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input x(n) 

b(O) 

I ?~L~ ... 

I f. j(~) ... 
output y(n) 

Figure 4.2: A generic digital filter 

Thus 
y(n) = xx(n) + o(n). 

Figure 4.3 shows the delay-free loop we looked in the last section. 

x(n) r----.-----~ y(n) 

w( n) '---------1 

Figure 4.3: A simple system with delay-free loop [20] 

The equation for this system is: 

y(n) = w(n) + x(n) = x(n) + P(y(n)). (4.1) 

We add to P a function which returns o( n) without making any changes to its state 
variables. The input toP is y(n). We then have: 

w(n) = P(y(n)) = xy(n) + o(n). 

Substituting the right side into equation ( 4.1) gives us: 

y(n) = x(n) + xy(n) + o(n) 

y(n) = x(n) + o(n). 
1-x 

Once y(n) has been calculated, Pis updated. 
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Removing Delay-Free Loops in Mass-Spring Systems 

We start by looking at the approximation of a mass using the bilinear transform. Using 
F = m a as the equation for the mass and s ---+ ~ ~~~=~ for the bilinear transform: 

.C{ F} = .C{ mx"} 

F(s) = ms~ X (s) 

H (s) = ~(:~ = - 1
-

F(8) ms2 

1 1 
H (z) = ( ~ I-z-1 ) 2 

m h I+z- 1 ( 
4 I-2z 1+z 2 ) 

m h 2 I+2z 1 +z 2 

h2 + 2h2z-I + h2z-2 

4m - 8mz-I + 4mz-2 
(trn )(h2 + 2h2z-I + h2z- 2) 

1- 2z-I + z-2 

h2 h2 h2 
Yn = - Xn + - Xn-I + -Xn- 2 + 2Yn- I - Yn-2 · 

4m 2m 4m 

input F(n) 

h"2/(4m) 

output x(n) 

Y(z) 

X(z) 

Figure 4.4: Signal flow diagram for mass using bilinear transform 

Figure 4.4 shows the signal flow diagram for the mass. We can observe from the 
diagram that the p re delay part is 

(4.2) 

Since the equation for the spring is F = k(x2 - xi) , which does not contain a derivative, 
the bilinear transform is simply 

Yn = k(x2:n - XI:n), 

where Yn is the spring force and xi and x2 the displacement of the two ends of the spring 
from their equilibri um positions. 
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Figure 4.5: Mass spring system 

For an example, we use the mass-spring system shown in figure 4.5. This is a system 
with 3 masses-M1, M 2 and M3-connected to 2 springs-51 and S2 . We designate 
the pure delay for element i as X i · So from equation (4.2), for each mass 

The output- the position- of each mass can be written as 

F tot + 
Xi = Xi i:n Oi :n , 

where Fi~~t is the total force acting on mass i at time n . 
We denote the force of each spring acting to the right by F i,a and the force acting to 

left by Fi ,b· So 

We can now write the output for the 3 masses as: 

X l:n = X1F2,a:n + Ol:n 

X3:n = X3 [F2,b:n + F4,a:n] + 03:n 

Xs:n = xs F4,b:n + Os:n · 

We can then substitute these into the spring equations. For Spring S2 

F2,a = k2(x3 - x i) 

= k2 (X3[F2,b + F4,a] + 03 - [x 1F2,a + o1]) , 

F2,a (1 + k2X3 + k2X1)- F4,a (k2X3 ) = k2(o3 - ot) . 

(We have dropped the argument n -i.e. x 1 for x1:n- to simplify the notation.) 
Similar calculations for spring S4 result in 

We now have two equations and two unknowns -the forces F2,a and F4,a· We can 
create a matrix equation in the form Ax = b . 

(
1 + k2X3 + k2X1 -k2X3 ) (F2 ) (k2(o3 - o1) ) 

-k2X3 1 + k2Xs + k2X3 F4:: = k2(os - o3 ) 

Note that matrix A contains only constant terms -recall that X i = h2 / 4mi. On 
the other hand, the vector b normally changes at each time step. This means that we 
can calculate the LU decomposition of A (L is a lower triangular matrix and U an 
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upper triangular matrix) once and then at each time step the forces, x, can be quickly 
calculated using the upper and lower triangular matrices. 

The calculations for dampers are a little more complicated than those of springs. 
The bilinear transform of the damper is 

Yn =(-2Z/h)Xr:n + (2Z/h)Xr:n-1- Yn-1 

=(-2Z/h)Xa:n + (2Z/h)xb:n + (2Z/h)xa:n-1 

- (2Z/h)xb:n-1- Yn-1, 

where Xr = X a - 1·b, with X a and Xb representing the positions of the two masses, Ma 
and Mb, connected to the damper. For the damper, Yn is the force and Xn the position. 
We can then write n equation for the damperi using xi = oi + XiFlot: 

Fi,a:n =( - 2Z/h)(oa:n + xaF~~~) + (2Z/h)(ob:n + XbF;:O::) 

+ (2Z/h)Xa:n-1- (2Z/h)xb:n-1- Fi ,a:n-1· 

Since we know that Fi is one of the forces acting on the masses Ma and Mb we can 
separate F~ot and F~ot into: 

ptot = p + pother 
a t ,a a 

p,tot = p + p,other = _ p + p,other b t,b b t,a b ' 

where F~ther denotes all the forces acting on mass Ma except Fi, and likewise for Fbther. 
Using this substitution and substituting a= (2Z/h) gives us 

l~,a:n(l + a(xa + Xb)) + axaF~ther- axbFbther 

= a(ob:n- Oa:n) + a(xa:n-1 - Xb:n-1) - Fi ,a:n-1· 

We now look at an algorithm to calculate the forces for a general mass-spring system 
using the bilinear t ansform. We define a connector to be either a spring or a damper. 
Each mass can be c nnected to an arbitrary number of connectors, while each connector 
connects to exactly 2 masses, Ma and Mb. Each row in the matrix A represents one 
connector. So, if there are n connectors in the system, A is an n x n matrix. If the ith 
connector is a spring, the diagonal element in the ith row is 

Here ki is the spring stiffness for that spring, and XMa and XMb are the pure delay 
coefficients for the masses connected to each end of the spring. 

If the connector is a damper the diagonal element is 

where Zi is the damping coefficient. By using a = ki if the connector is a spring and 
a= (2Zdh) if it i ~ a damper we get: 
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Each entry, ( i, j), in the matrix not on the diagonal represents the effect of connector 
j that is connected to the same mass that the connector for row i is connected to. If 
connector j is not connected to either of the masses that connector i connects, the ( i, j) 
entry is 0. Ifboth connectors are pulling the same way-i.e. mass w is connected to the 
left sides of both connectors i and j, or mass w is connected to the right sides of both 
connectors i and j, and connector) is a spring -we add kjXMw to the (i,j) element. 
If the connectors are pulling in opposite directions-i.e. mass w is connected to the 
left side of connector i and the right side of j, or vice versa- we subtract kj XMw from 
the i,j element. If the connector j is a damper, then (2Zj/h)XMw is either added or 
subtracted from the ( i, j) element. 

Vector b also has one entry for each connector. If the connector for the ith entry is 
a spnng 

bi = ki(Oa:n- Ob:n)· 

If the connector for the ith entry is a damper 

bi = (2Zi/h)(ob:n- Oa:n) + (2Zi/h)(xa:n-1- Xb:n-d- Fi,a:n-1· 

Here Fi,a:n- 1 is the previous output of damper i. 

Algorithm 1 (Create Matrix to Solve Implicit System). 

I. Create n x n matrix A, where n is the number of connectors. Set all entries to 0. 
2. For i = 1 to n 

3. If (connectori is a spring) 
4. a= ki 

5. Else (connectori is a damper) 
6. a= (2Zi/h) 

7. Endif 
8. Let Ma and Mb be the masses at either end of connectori 

9. Ai,i = 1 + a(XMa + XMb) 
IO. For each Mw E {Ma, Mb} 

II. For each other connector), j =1- i, connected to Mw 
I2. If (connector j is a spring) 

I3. (3 = kj 
I4. Else (connector) is a damper) 

I5. (3 = (2Zj/h) 
I6. Endif 
I7. Let M~ and M~ be the masses at either end of connector) 
I8. If ((Mw = Ma) and (Ma = M~) or ((Mw = Mb) and (Mb = M{)) 

I9. Ai,j = Ai,j + f3XMw 
20. Else 

2I. Ai,j = Ai,j - f3XMw 
22. Endif 

23. Endfor 
24. Endfor 

25. Endfor 
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Once the matrix A is calculated, we find its LU decomposition. The LU decom
position decomposes the matrix into an upper triangular matrix and a lower triangular 
matrix. Then at each time step we calculate the vector b. The new forces, x, are found 
by solving 

Ly = b , fory and 

Ux = y , forx. 

Once we have updated the forces for the current time step we can calculate the new 
positions ofthe masses based on the forces of the current time step. 

Algorithm 2 (Implicit Mass-Spring System). 

1. Matrix A = Create_Matrix_to_so[veJmplicit_system() 
2. [L, U] = LVdecomposition(A) 
3. For n = 1 to numberOJSamples 

4. For each connector i 

{ 

ki(Oa:n - Ob:n) 

5. hi= (2Zi/h)(ob:n- Oa:n + Xa:n-1- Xb:n-1) 

-Fi,a:n-1 

6. EndFor 
7. solve Ly = b,for y andVx = y,for x. 
8. For each connector conni 

9. conni.Force(n ) =xi 

10. EndFor 
11. For each mass mj 

12. mj.updatePosition(n) 
13. EndFor 
14. writeSample(n) 

15. EndFor 

if spring 

if damper 

These algorithms are based on the bilinear transform, but could be easily adapted to 
other numerical methods. 

There are, however, some drawbacks to this method: 

1. If the mass-spring system is not static -i.e. if the configuration of the mass-spring 
system or any mass, spring stiffness or damping factor changes- the matrix A 
and its LU decomposition must be recalculated. For a continuously changing 
system, this would mean solving the matrix equation at each time step. 

2. This method assumes the elements of the system are linear. If non-linear elements 
are introduced it will no longer work. 
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4.2 Converting Mass-Spring Systems to 
Wave Digital Filters 

Wave Digital Filters (WDFs) were developed by electrical engineers to digitize analog 
filters. An important part of the design of WDFs was the elimination of delay-free 
loops. For every mechanical system composed of masses, springs and dampers, there 
is an equivalent electrical system composed of inductors, capacitors and resistors [12]. 
In this section, we first show the analogy between mass-spring systems and electrical 
circuits. We then look at converting mass-spring systems to their electrical equivalents 
and how to implement them as WDFs. 

4.2.1 Introduction to Wave Digital Filters 

AnN port is a black box with N ports for interaction with other elements. Each port has 
2 terminals; the port voltage is difference between them. Each port has an associated 
current and voltage. 

N Port 

--l.!.!(t)-

Figure 4.6: N Port 

Figure 4.6 shows anN port. The voltage is denotes by u(t), the current by i(t) and 
the impedance by Z0 . 

Wave digital filters use the concept of wave variables. Wave variable a = u(t) + 
Z0i(t) represents the incoming wave and b = u(t) - Z 0i(t) represents the reflected 
wave. The reflectance of a port, S( s ), is the Laplace transform of the reflected wave 
divided by the Laplace transfonn of the incoming wave or: 

S(s) = £{b} = £{u(t)- Z0i(t)} 
£{a} £{ u(t) + Z0i(t)} 

£{ THf - Zo} £{ Z(t) - Z0 } 

£{~g; + Z0 } £{Z(t) + Zo} 

One Port Elements 

Z(s)- Zo 
Z(s) + Zo 

Next we look at some one port elements used in electronics. 
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• Capacitor 

The formula for capacitors is: i(t) = C8~~t), where C is the capacitance. Its 
Laplace transform is: J(s) = .C{i(t)} = CsU(s). The impedance is defined 
as U(s)/ I(s), so the impedance of a capacitor, Zc(s), is Zc(s) = l/C5 • The 

fl S ( ) · . Z(s)-Zo _ d. -Zo _ 1-CsZo 
re ectance, c s , IS. Z(s)+Zo - d. +Zo - 1+CsZo 

• Inductor 

For inductors , we start from the formula u(t) = L 8~~t), where Lis the inductance. 
The Laplace transform is U(s) = Lsl(s) and ZL(s) = Ls. The reflectance, 
S ( ) · . s- :Lo/ L 

L S 'IS. s+:Lo/ L 

• Resistor 

For resistors the formula is u(t) = Ri(t) , where R is the resistance. We get 

U(s) = RI(s ) and ZR(s) = R. The reflectance, SR(s), is: i~~~~~ 

Bilinear transfi rm 
The next step is to use the bilinear transform to discretize the one port elements. The 

bilinear transform does the mapping s -? ~ i~;=~ where z = e5 h. 

• Inductor 

To discretize the inductor with the bilinear transform we use the mapping 

Since SL(s) == :~~~~~the transform is: 

2 1-z- 1 

h:~-Zo/L 
2 1-z-l z /L 
h l+z-1 + 0 

2/h- Z0 / L- (2/h + Z0 / L)z-1 

2/h + Z0 / L + (2/h- Z0 / L) z- 1 . 

Z0 is an arbitrary parameter, so we can choose any value. If we choose Z0 = 2£/ h 
this simplifies to - z-1 . 

• Capacitor 

Similarly, performing the bilinear transform and choosing Z0 

Sc = z-1 

• Resistor 

For the resistor Z0 = R gives SR = 0 

Connecting Elements 

h/ (2C) gives 

Units that connect elements are called adaptors. We can connect elements either in 
series or in parallel. Using Kirchhoff's current law, we can represent a parallel adaptor 
as [6] 

(4.3) 
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where G = 1/Z0 . Note that we have each reflected wave, bk. defined in terms of aj, the 
. . 
mcommg waves. 

Similarly, series adaptors are represented by the equation [6]: 

2Zok ~ 
bk = ak - M L...t aj. 

Lj=l Zoj j=l 

More information on wave digital filters can be found in [41, 6, 38]. 

4.2.2 The Analogy between Mass-Spring 
Systems and Electrical Circuits 

(4.4) 

The equations for the inductor, capacitor and resistor using u for voltage and i for current 
are: 

• Inductor 

• Capacitor 

u(t) = L di(t) 
dt 

i(t) = cdu(t). 
dt , 

11t u(t) = C 
0 

i(t)dt + u(O) 

• Resistor 

The equation for a mass is: 

where v(t) is the velocity. 

u(t) = i(t)R 

dv(t) 
F(t) = ma(t) = m~, 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

If we compare equation ( 4.8) with equation ( 4.5) we see that they have the same 
form. If we substitute u(t) for F(t) -voltage for force- and i(t) for v(t) -current for 
velocity- the equations are identical if C = m. 

The equation for the spring is: 

F(t) = kx(t) = k 1t v(t)dt + F(O). (4.9) 

Comparing equations ( 4.9) and ( 4.6) and again substituting voltage for force and 
current for velocity, we see that they are the same if k = 1/ C. 

The equation for the damper is: 

F(t) = Zv(t). (4.10) 

Comparing equations ( 4.1 0) and ( 4. 7) and again substituting voltage for force and 
current for velocity, we see that they are the same if Z = R. 

The analogies between the mass-spring system and an electrical circuit are summa
rize in the table 4.1. 
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Mass-spring Electrical 
force F(t) voltage u(t) 
velocity v(t) current i ( t) 
mass inductor L = m 
spnng capacitor C = 1/ k 
damper resistor R = Z 

Table 4.1: Analogy between Mass-spring system and electrical circuit 

4.2.3 Converting Mass-Spring systems to Equivalent 
Electrical Circuits 

We start by looking at the example mass-spring system shown in figure 4. 7. 

Figure 4.7: Mass spring system 

The first thing to notice is that there are two masses, M 3 and M5 . Each mass must 
have exactly one velocity, and the velocities of the 2 masses are independent. Since the 
velocity in the mass-spring system is equivalent to the current in the electrical circuit, 
we must have 2 independent currents in the equivalent circuit. This means we need 2 
loops in the circuit, one for M3 and one for M5 . 

Next, notice that the position of mass M 3 , the length of spring S 1 and the length 
of damper D 2 are constrained to be equal at all times. This means their velocities are 
always identical. Therefore the current in the equivalent electrical circuit is the same for 
these elements, requiring that they be connected in series on the first loop. The same 
applies to mass M5 and spring D 6 which are connected in series on the second loop. 

The length of spring D 4 is the position of M5 minus the position of M 3 . So the 
velocity of D 4 is the velocity of M 5 minus the velocity of M 3 . This means D 4 must be 
on the intersection of the 2 loops. Since the forces at each end of the spring must be 
equal and opposite. the forces across D4 , the first loop and the second loop are all the 
same. This means the voltage drop in the equivalent circuit is the same so D4 must be · 
connected in parallel with the two loops. 

The resulting electrical circuit is shown in figure 4.8. 
In general, each mass requires a separate loop on the electrical circuit. A spring or 

a damper that has one fixed end is connected in series to the mass at the free end. A 
spring or damper with a free mass at each end needs to be connected in parallel between 
the two loops for two masses. 

We then convert the circuit into a WDF. This is shown in figure 4.9. The blocks in 
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Figure 4.8: Equivalent electrical circuit 

the diagram are called adaptors. An adaptor with a single vertical line represents a series 
connection, while two vertical lines represent a parallel connection. The first adaptor 
connects S1, D2 and M 3 in series. This adaptor has 4 ports, each with an input ai and an 
output bi. The elements-the capacitor, the inductor and the resistor-are implemented 
using the techniques discussed in section 4.2.1. This adaptor is connected in parallel to 
D4 and the series connection of M5 and D 6 . 

s1 
a1 b1 

a2 

t 
a4 b1 

H 
a3 b1 

02 
b2 4 a1 3 a1 

a3 t b3 a2 b2 

M3 s4 
Figure 4.9: Wave digital filter for circuit 

4.2.4 Removing Delay-Free Loops from 
Wave Digital Filters 

Ms 
a2 b2 

t 

a3 b3 

s6 

Recall from section 4.2.1 that the reflectance of the capacitor and the inductor contain 
a delay. As well, the reflectance of the resistor is always zero. This means that there 
is no problem in calculating the output of each element if we are only dealing with a 
single adaptor. But looking at Figure 4.9, we appear to have a problem when adaptors 
are interconnected, since the output of one adaptor depends on the input of the other 
adaptor and vice versa. This results in a delay-free loop between adaptors. 

The delay-free loop between adaptors can be eliminated by using a reflection-free 
port [14]. The port that connects two adaptors has an associated port impedance, Z0 . 

This is a free parameter. Suppose port q is the port on a series adaptor that connects 
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another adaptor. We can set the impedance, Zoq, so that it equals the sum of the other 
port impedances on the adaptor: 

Note that 

M 

Zoq = L Zoj· 
j=l ,j#q 

M M 

L Zoj = L Zoj + Zoq = 2Zoq· 
j=l j=l,j#q 

(4.11) 

Using equation (4.4) and substituting the left side of equation (4.11) for 2Z0q, we can 
write bq as 

This means we can calculate the output of port q without knowing the input, aq. This is 
called a reflection-free port. 

We can use the same method on a parallel adaptor. In this case we set the port 
conductance, Gq , to the sum of the other port conductances: 

M 

Gq = L Gj. 
j=l,j#q 

The output for port q can then be calculated as 

s1 
a1 b1 

a2 

I 
a4 b1 

H 02 
b2 4 a1 

a3 t b3 a2 b2 

M3 s4 

Ms 
a2 

a3 b1 

t 3 a1 

a3 

s6 
Figure 4.10: Wave digital filter with refection-free ports 
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Figure 4.10 shows our example circuit with the reflection-free ports indicated by 
"caps" on the output arrow. We have made b4 on the left adaptor and b3 on the middle 
adaptor reflection-free. 

Even with refection free ports, we still need to be careful of the order in which the 
new output calculations are made. Examining equation ( 4.4 ), we see that we can not 
immediately update the left adaptor in our example, since the ports 1, 2 and 3 depend 
input a4 which is not known. We can update the refection-free port (port 4) on the left 
adaptor since it depends on a 1 , a 2 and a3 , which are all known since they contain delays. 
Once b4 on the left adaptor is updated, a 1 on the middle adaptor is known. This allows 
us to updated port 3 on the middle adaptor, which depends on a 1 and a 2 which are now 
both known. After b3 on the middle adaptor is updated, a 1 on the right adaptor is known. 
Since all the inputs for the right adaptor are now known, we can update all the elements 
in it including b1. This allows us to update the rest of the middle adaptor and then the 
left adaptor. 

Converting mass-spring systems to wave digital filters allow us to eliminate delay
free loops. But they add a considerable amount of complexity since we need do the 
conversion, create refection-free ports, and make sure the updates are done in the right 
order. 

4.3 Multi-stage Numerical Methods 

We have seen in the previous section that although the symplectic Euler method used 
in mass-spring systems has no numerical damping, it does have frequency warping and 
does become unstable. The Euler method is a first order method, meaning that its error 
at each step (local truncation error) is order(n2

) and the overall error (global truncation 
error) order(n). We next look at more accurate methods. 

4.3.1 Runge-Kutta Methods 

Runge-Kutta methods are a family of methods used to solve ordinary differential equa
tions. They may be either implicit or explicit, and work by sampling the derivative at 
several points in the interval between time n and time n + 1. These methods are called 
multi-stage methods. The most popular of these-usually just referred to as the Runge
Kutta method-has four stages and is explicit. The derivatives are found at four points 
in the interval-k1 to k4-and then these four derivatives are averaged to get an esti
mate of the derivate for then+ 1 step. For the differential equation x'(t) = f(t, x), the 
function f ( tn, x ( n)) determines the value of the derivative at time step n using the time 
tn and the vector x(n), which consists of the position Xn and the velocity Vn. The fourth 
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order Runge-Kutta method is then [7]: 

k1 = f(tn, Xn) 

k2 = f(tn + (1/2)h, Xn + (1/2)hkl) 

k3 = f(tn + (l/2)h, Xn + (1/2)hk2) 

k4 = f(tn + h, Xn + hk3) 

h kl + 2k2 + 2k3 + k4 
Xn+l = Xn + 6 

The method has a local truncation error of order h5 and a global truncation error of order 
h4 [7]. This should make it much more accurate than the Euler method. 

There are, however, some complications in using the Runge-Kutta method on mass
spring systems. The Runge-Kutta method assumes we can calculate the derivative using 
the function f(tn , xn) at any point. This is not straightforward in a mass-spring system. 
Recall equation (1.4) for the mass element: 

(
x(t))' ( v(t) ) 
v(t) - F(t)/mi · 

Here F(t) represents the total forces acting on the mass at time step t. Calculating k 1 

is not a problem, since the forces at time step n have already been calculated. But, 
calculating k2 is a problem, since we need the forces when x = Xn + (1/2)hk1,1 and 
v = Vn + (1/2)hk1,2 , where k1,1 and k1,2 are k 1 's components corresponding to the 
position and velocity respectively. The force for spring S1, connected to mass Mi, is 
based on the positions of the masses at either end of the spring, so we need to know 
not just the position of Mi but the position of the mass Mk connected to Mi by spring 
S1. Since a mass can be connected to an arbitrary number of springs, we need to know 
the positions of all these masses to calculate the force acting on mass Mi. The situation 
is similar for the damper, except that it needs the velocities of the 2 masses instead 
of the positions. Since each of these masses may be connected to other masses, we 
need to know the positions and velocities of all the masses at x = Xn + (1/2)hk1,1 and 
v = Vn + (l / 2)hk1,2 to compute the forces acting on each mass. After computing all 
the forces, we can finally compute the derivative k 2 . 

This means, for each stage, s = 1 ... 4, we must first calculate the positions of all 
the masses and then use these positions to calculate the forces of all the springs and 
dampers. After this we can calculate k 5 for each mass. After stage 4 is completed, 
we can calculate the new positions and velocities of all the masses and finally, the new 
forces of all the springs and dampers. This means that instead of one loop through each 
of the masses, springs and dampers as in the Euler method, we need 5 loops through 
each of the components. This means that the Runge-Kutta method will take about 5 
times longer than the Euler method. 

4.3.2 Symplectic Numerical Methods 

Some numerical methods, such as the backward Euler method, can cause numerical 
damping--damping caused by the numerical methods that is not contained in the equa
tion itself. This has proved to be a problem, especially in fields such as molecular and 
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planetary simulation. In such systems conservation of energy over long periods of time 
is very important. Although all real systems that produce sound have some damping, 
many are very lightly damped, so a numerical method that preserves energy is important 
in physical sound synthesis. A numerical method is called symplectic if it preserves area 
on the position/momentum phase plane. Among other properties, symplectic systems 
conserve energy. 

The Euler-Cromer method, also called the symplectic Euler, is a first order symplec
tic method defined as [ 19]: 

(4.12) 

If we replace a with F / m, we see that this equation is the same as (3 .1 ). 
Next, we plot the energy of the mass-spring system. The total energy of a mass

spring system is the sum of the kinetic energy of the masses, K = ~mv2 , and the 
potential energy stored in the springs, U = ~ kx2

• Momentum is mass times velocity so 
the total energy is 

1 1 1 1 1 1 
E = -mv2 + -kx2 = -pv + -kx2 = -p2 + -kx2. 

2 2 2 2 2m 2 

Setting k = 1 and m = 1, we get 

E=~p2+~x2; (Y2E)2=p2+x2. 

This is a circle of radius v2E. lfthe starting conditions are x = 1 and v = 0, the poten

tial energy is ~kx2 = ~and the kinetic energy is 0. The radius is then ( M) 2 

= 1. 

The phase plot, therefore, should be a unit circle. 
Figure 4.11 shows a plot of the position/momentum phase plane of the symplectic 

Euler. The plot covers a thousand oscillations. This would be 1 second of sound at 

76 



MSc Thesis Don Morgan Computing and Software 

Figure 4.13 : Phase plane of fourth 
order Runge-Kutta 
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Figure 4.14: Phase plane of the 
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1000 Hz or just .1 ~econds at 10, 000 Hz, which is still within the range of hearing. So 
it is important that a numerical method be able to maintain relatively constant energy 
over this many cycles. From figure 4.11 we can notice that the shape is somewhat 
elliptical due to ina curacies of the first order method. But, the symplectic Euler is able 
to maintain the energy over a thousands cycles. 

In contrast, figure 4.12 shows the phase plot of the forward Euler. The energy of the 
forward Euler increases without bound. 

Next we try a h igher order algorithm-the fourth order Runge-Kutta-which is not 
symplectic. The n~sults are shown in figure 4.13. The more accurate Runge-Kutta 
method results in a circle, not an ellipse. The energy, however, does not stay constant, 
which can be seen by the fact the the graph slowly spirals inwards toward the center of 
the circle. 

Recently, sever 1 higher order symplectic methods have been developed. One of 
these methods is called the VEFRL algorithm, which is a fourth order method defined 
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as [31] 

1 
v1 = v(t) +-f[r(t)]~h 

m 
r 1 = r(t) + v1 (1 - 2)..)h/2 

1 
v2 = v1 +- f[rl]Xh 

m 
r2 = r1 + v2>..h 

1 
v3 = v2 +-f[r2](1- 2(x + ~))h 

m 
r3 = r2 + V3Ah 

1 
v4 = v3 +- f[r3]xh 

m 
r(t +h) = r3 + v4 (1- 2>..)h/2 

1 
v(t +h) = V4 +- f[r(t + h)]~h, 

m 
( 4.13) 

where r is the position, v the velocity, m the mass, f the force. The constants are: 

~ = +0.1644986515575760E + 00 

).. = -0.2094333910398989E - 01 

X = +0.1235692651138917 E + 01. 

The phase plot for this algorithm is shown in figure 4.14. This plot shows that the 
algorithm is both accurate-since it plots a circle-and symplectic-since it maintains 
a constant energy over a thousand cycles. 

This algorithm can be implemented similarly to the Runge-Kutta, with each stage 
requiring an update of the velocities and positions of all the masses and then the force 
of each spring and damper is calculated based on the new velocities and positions. The 
last step has an additional problem, since for mass-spring systems the force calculation 
is a function ofboth the position and the velocity (since viscous damping is a function 
ofthe velocity). This makes the last equation in (4.13) implicit. A simple solution is to 
calculate the positions of all the masses for r ( t + h) and calculate an estimated velocity 
for time t + h as Vest = v ( t) + (! ( t) / m) h; then, update all the forces of the springs 
and dampers using the new positions and estimated velocities; now we can calculate the 
velocity at timet+ h using f(r(t +h), Vest); finally we use r(t +h) and v(t +h) to 
calculate the force of the springs and dampers at time t + h. 

Algorithm 3 (VEFRL for Mass-Spring System). 

1. For stage s = 1 to 4 
2. For each mass 

3. calculate position and velocity for stage s 
according to equation (4.13). 

4. endfor 
5. For each spring or damper 

6. calculate the force for stage s. 
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7. endfor 
8. endfor 
9. For each mass 

10. calculate the position of the mass for time step 
n+l. 

11. calculate estimated velocity 
Vest = Vn + (f (n)/m)h. 

12. endfor 
13. For each spring or damper 

Computing and Software 

14. calculate force using positions at time step n + 1 
and estimated velocities. 

15. endfor 
16. For each mass 

17. calculate velocity of the mass for time step n + 1 
usingforcesfrom step 14. 

18. endfor 
19. For each spring or damper 

20. calculate force at time step n + 1 using positions 
and velocities at time step n + 1. 

21. endfor 
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Chapter 5 

Simulating a String using a 
Mass-Spring System 

In this chapter we look at the stability and accuracy of mass-springs systems when 
used to simulate a vibrating string. We simulate a vibrating string using 20 masses and 
compare the analytical solution described in section 3.3.1 with the results obtained from 
three numerical methods: the symplectic Euler, the fourth order Runge-Kutta and the 
VEFRL algorithm. This comparison is also presented in [30]. 

~;\,~ 
... L:J vv ~ 

Figure 5.1: String created from 20 masses 

5.1 Simulating a Vibrating String with 20 Masses 

In this section, we simulate a string by connecting springs between 20 masses as shown 
in figure 5.1. Each ofthe masses and the spring stiffness coefficients are set to the same 
value. The constants were set as follows: 

ki = 18, 497.24392 = 342, 148, 031.9, mJ = 1.0, sample_rate = 44, 100Hz . 

The initial conditions were that the 6th mass was displaced by one unit and all the other 
masses had a displacement of zero. 

Figure 5.2 compares the analytical solution of this system with that of a mass-spring 
system using the symplectic Euler. The first 200 samples are shown using the dis
placement of mass 1. Notice that at the start the symplectic Euler is fairly close to the 
analytical solution, but that it quickly diverges from it. Notice also that the frequency 
of the Symplectic Euler is a little higher than that of the analytical solution. This is 
consistent with the frequency warping noted in section 3 .1. 

Figure 5.3 shows the same system comparing the fourth order Runge-Kutta and the 
VEFRL algorithm with the analytical solution. For the first 200 samples both methods 
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Figure 5.2: Simulated string comparing symplectic Euler with analytical solution 
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Figure 5.3 : Simula1ed string comparing Runge-Kutta and the VEFRL with the analytical 
solution 
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Figure 5.4: Simulated string comparing Runge-Kutta and VEFRL with the analytical 
solution after 4,000 samples 

match the analytical solution almost perfectly. The situation, however, changes over 
time. Figure 5.4 shows the same simulation after 4, 000 samples. The VEFRL algorithm 
is still quite close to the analytical solution, but the Runge-Kutta is showing the effects 
of numerical damping. 

What is the aural effect of these different methods? The numerical damping of the 
Runge-Kutta method is clearly audible. But, the symplectic Euler and the VEFRL are 
virtually indistinguishable. To understand why this is the case, we consider a continuous 
string. The frequencies that make up the continuous string are all integer multiples of 
the fundamental frequency [ 4]. For example, if the fundamental frequency is 440 Hz, 
the other frequencies (or modes) that make up the sound will be 880Hz, 1320Hz etc. 
In a string simulated with lumped masses, if the all the masses and spring constants are 
the same, the frequencies are [ 17] 

Wn = 2wo sin ( 2 (;;: 1) ) , (5.1) 

where wn is the nth frequency, w0 = ~. and N is the number of masses. We can 
solve this equation for w0 with n = 1 (the fundamental frequency) 

wl 
wo = . 

2 sin ( 2(;+1)) 
(5.2) 

This allows us to calculate w0 for a given frequency and number of masses. So, for 20 
masses and a fundamental frequency of 440Hz, w1 is 440 x 2n and w0 is 18,497.2439 
(the value used in the simulation). We can now calculate the frequencies for our simu
lated string. The second frequency is 877.54 Hz as opposed to 880Hz for the continuous 
string. The third frequency is 1310.17 Hz as opposed to 1320Hz. The twentieth fre
quency is 5, 822.09 Hz as opposed to 8, 800Hz. We can see that the low frequencies are 
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Figure 5.5: Fourier transform of undamped simulated string 

close to those of the continuous string, while the higher frequencies are quite inaccu
rate. All the frequencies of the mass-spring approximation are lower than those of the 
continuous string. When we use the symplectic Euler method these frequencies become 
warped according to equation (3.5) with h = 1/44100. The fundamental is warped from 
440Hz to 440.07 Hz, the second frequency from 877.54 Hz to 878.11 Hz and the third 
from 1310.17 Hz to 1312.08 Hz. The change of frequency in the fundamental is almost 
imperceptible. The other frequencies are shifted by a small amount upwards-toward 
the frequencies that a continuous string would have. So if anything, the symplectic Euler 
should sound a little more like a continuous string than the more accurate methods. 

Computing the Fourier transform of the output of the simulated string produces re
sults that are consistent with the frequency warping of equation (3.5). Figure 5.5 shows 
the Fourier transform of the analytical solution and the symplectic Euler simulation. 
Each spike in the graph represents the frequency of one of the modes. We used 8192 
"buckets", so, using a sample rate of 44, 100Hz, each bucket is about 5.4 Hz wide. This 
means the results should be accurate within 2. 7 Hz. As expected, the low frequency 
modes of the symplectic Euler are very close to those of the analytical solution. As the 
frequency becomes higher the frequency of the symplectic Euler is noticeably higher 
than that of the analytical solution. For the 20th mode, the spike for the analytical solu
tion occurs at 5873 Hz, which is close to the expected 5971 Hz. The spike for the 20th 
mode in symplectic Euler simulation is at 6056 Hz, which is close to the calculated 6058 
Hz. 

If a lower sampling rate is used, the frequency warping of the symplectic Euler 
becomes more noticeable. For example, at 8, 000 samples per second, the symplectic 
Euler warps the fundamental frequency, 440 Hz, to 442.19 Hz, which is noticeably 
higher. However, since the VEFRL method takes around 6 times longer to run, it is much 
more efficient to use the symplectic Euler and compensate for the frequency warping. 
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We can do this by using the inverse of equation (3.5), which comes out to 

Wa = h-1 2 (a + 1 + Va+T) 
a+1 

(5.3) 

(5.4) 

where a = tan2 (hwd), Wa is the analog frequency and wd the actual frequency resulting 
from the symplectic Euler method. So if we set wd to the desired frequency (i.e. 440 x 
27r) we get back the frequency we should use in equation (5.2) to calculate w0 . This will 
correct the fundamental frequency so that it is exactly 440 Hz. 

The more masses used in the simulated string, the more accurate the simulation be
comes. We note in section 3.1 that the symplectic Euler becomes unstable at 1/ 1r times 
the sampling frequency. This puts a limitation on the number of masses we can use 
to simulate a string vibrating at frequency w and sample rate fs· Consider for exam
ple, the simulation of a string vibrating at 440 Hz and using a sample rate of 44, 100 
Hz. The maximum frequency that the symplectic Euler can have at this sample rate is 
44, 100/ 7r = 14, 037.5 Hz. If we list the highest frequencies by using equation (5.1) 
with n = N, where N is the number of masses, we find that at 44 masses the highest 
frequency is 13, 957 Hz and with 45 masses the highest frequency is 14, 045 Hz. This 
tells us that the maximum number of masses we can use for a string vibrating at 440 
Hz with a sample rate of 44, 100 is 44. If we want to use more masses we have to go 
to a higher sampling rate. The Runge-Kutta and VEFRL can go up to near the Nyquist 
limit, fs/2, before becoming unstable. Even if a numerical method can go above the 
Nyquist limit without becoming unstable, aliasing will occur, resulting in an inaccurate 
sound. It is computationally more efficient to use the symplectic Euler at a higher sam
ple rate, than it is to use the VEFRL algorithm. At some point, though, the sampling 
rate of the sound card will be exceeded. At that point the results of the simulation must 
be put through a low pass filter to remove the frequencies above Nyquist limit, and then 
downsampled to the maximum sample rate ofthe sound card. 

5.2 Simulating a Damped String 

Next we simulate a string using 20 masses with a damper and a spring between each 
consecutive pairs of masses. All masses, springs and dampers are set to the same values. 
The constants were set as follows : 

ki = 18,497.24392 = 342148031.9, mi = 1.0, Zj = 5.0, sample_rate = 44, 100Hz . 

The initial conditions were that mass 6 had a displacement of 1, while the other masses 
had no displacement. The initial velocities were all zero. The displacement of mass 1 is 
used as the output. Figure 5.6 compares the analytical solution of this system with the 
symplectic Euler simulation. As with the undamped string, the two result start off very 
similar but quickly diverge. 

Figure 5.7 shows the same simulation, this time comparing the fourth order Runge
Kutta and the VEFRL algorithm with the analytical solution. For the first 200 samples 
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Figure 5.6: Simulated damped string comparing symplectic Euler with analytical solu
tion 

that are show in thi s figure, the Runge-Kutta and the VEFRL match the analytical solu
tion almost exactly. Figure 5.8 shows the same simulation after 4, 000 samples. While 
the VEFRL algorithm has become a little inaccurate, it is still much more accurate than 
the Runge-Kutta a1 this point. The sound output of the damped string gives a much 
more realistic sound than the undamped string. But, as in the undamped string, the 
sound produced by the symplectic Euler and that of the VEFRL method are virtually 
indistinguishable. ~he extra damping of the Runge-Kutta can be noticed, but the differ
ence is not as great as for the undamped string. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

We have addressed the issues of stability and accuracy of mass-spring systems in sound 
synthesis. We find that, using the symplectic Euler method (the standard method used 
in implementing mass-spring systems), undamped mass-spring systems are stable up 
to frequencies of 1 I 7f times the sample rate. When simulating a vibrating string, the 
highest mode of string, therefore, must be less than 1/7f times the sample rate for the 
simulation to be st ble. Damped mass-spring systems become unstable at a lower fre
quencies and large damping values may cause even low frequency vibration to become 
unstable. The general condition for stability is 

where w~ is the spr ing stiffness coefficient divide by the mass, 1 is the damping coeffi
cient divided by the mass, and h is the time step. 

We find that, fo undamped systems, the symplectic Euler method has no numerical 
damping, but that it is not accurate in frequency, warping frequencies upward. For large 
damping values the symplectic Euler warps low frequency vibrations downward and 
high frequency vibrations upward. We compare the symplectic Euler method with two 
higher-order methods: the fourth order Runge Kutta, and the VEFRL algorithm, a fourth 
order symplectic algorithm. We find that the Runge-Kutta method has numerical damp
ing which makes it become increasingly inaccurate in long lasting sounds. The VEFRL 
algorithm, on the other hand, conserves energy, and is much more accurate than either 
the Symplectic Euler or the Runge-Kutta. We find, however, that perceptually-the way 
the simulation sounds-there is little or no difference between the symplectic Euler and 
the VEFRL algorithm for the simulation of a vibrating string. This is because, when a · 
small number of masses are used, the difference between the mathematical model used 
by the mass-spring system and an actual vibrating string is much greater than the differ
ence in accuracy of the two numerical methods. If a large number of masses are used the 
model becomes much more accurate, but a high sample rate is required to avoid aliasing, 
and so both methods are quite accurate in the frequency range of human hearing. 

Figure 6.1 shows a model space. We are trying, ultimately, to model the actual 
physical system (marked with and x ), but to do this we first create a mathematical model 
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of the system (marked with an m). The distance between the models and the physical 
system on this figure represents the accuracy of the model. To realize the mathematical 
model, we use a numerical method (marked with an n). So the numerical method is 
approximating the mathematical model and only indirectly the actual physical system. 
We must remember that the continuous model of the string, based on the wave equation, 
is also a mathematical model. Since the string is actually made up of molecules, with 
enough masses, the lumped model should be more accurate than the continuous model. 
But our simulations use only a small number of masses, and so the mathematical model 
is not very accurate. So, even though the VEFRL method is a much better approximation 
of the mathematical model than the symplectic Euler, it does not follow that it will 
be a more accurate model of the physical system. In our case, it turns out that the 
inaccuracies of the symplectic Euler actually make it more accurate, in some aspects, 
with respect to the physical system. 

We have also looked at using the bilinear transform to implement mass-spring sys
tems. The bilinear transform has the advantage that for any stable system on the s-plane, 
the bilinear transform approximation of the system results in a stable system on the z
plane. As well, the bilinear transform is has no numerical damping for undamped sys
tems. The disadvantage of this method is that it is implicit, and requires that a system 
of equations be solved at each time step. Wave digital filters also use the bilinear trans
form and mass-spring systems can be converted to wave digital filters. If a large number 
of masses is used to simulate a vibrating string, the symplectic Euler and the VEFRL 
algorithm require very high sampling rates to remain stable and avoid aliasing, whereas 
the bilinear transform does not. 

In summary, we can divide applications using mass-spring systems into 3 categories: 

1. If the system being simulated is lumped system or a close approximation of a 
lumped system, and a high degree of accuracy is need without high sampling 
rates, the VEFRL algorithm should be used to implement the mass-spring system. 

2. If the simulation requires a large number of masses without using a very high 
sampling rate, the bilinear transform or a wave digital filter should be used to 
implement the mass-spring system. 

3. In most other cases, the symplectic Euler method, due to its simplicity and effi
ciency, should be used to implement the mass-spring system. 
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Figure 6.1: Model space 

6.2 Future Work 

• Numerical Analysis 

The analysis of the symplectic Euler presented in this thesis looks at stability, 
frequency warping and numerical damping. One other parameter of vibration 
that we have not considered is the phase. We have not determined whether the 
symplectic Euler alters the phase of the vibration. 

• Efficiency 

How efficient can mass-spring systems be? We would like to run systems with 
hundreds or thousands of elements in real time. The system we have built is 
written in Java and can run simulations with around 50 masses in real time. What 
gains in efficiency could be made by writing the system in optimized C code? 
Mass-spring systems are inherently parallel, so it would be interesting to see if 
there are parallel computing techniques that could improve the efficiency of these 
systems and what hardware would be required for this. We note that our limit 
of 50 masses in real time is roughly consistent with the CORDIS system, which 
ran a real time simulation of a bowed string on a Silicon Graphics, Inc. (SGI) 
workstation in 2002, using 25 to 60 masses [ 15]. 

• Acoustical Analysis 

We have looked at the simulation of strings in this thesis. Mass-spring systems 
can also be used to simulate vibrating systems with any geometry: plates, shells, 
beams etc. How accurate are the mass-spring models of these geometries? We 
have done a simulation of a very simple model of a guitar. The complete model 
of a guitar, requires not just the simulation of the strings, but the body of the 
instrument. Very little of the sound produced by a stringed instrument comes 
from the stri ngs themselves; most of the sound is produced by the instrument 
body [35]. Little research has been done on using mass-spring systems to attempt 
to accurately model musical instruments. Theoretically, by using enough masses, 
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mass-spring systems could model vibration patterns of specific types of wood. 
Whether this is practical on today's computers is an interesting research question. 

• User Interface 

Playing a virtual musical instrument requires a large number of parameters. Spec
ifying these parameters is an important issue in physical sound synthesis. For real 
time instruments the user may produce the input parameters physically by using 
transducers. The transducers convert physical motion produced by the user into 
digital signals that can be used as the parameters for the virtual instrument. This 
area has already been studied at ACROE using the CORDIS system [11], how
ever a simulation of a guitar using a mass-spring system with input from two data 
gloves does not seem to have been attempted yet. 

• Using more than 1 Dimension of Vibration 

In all of the mass-spring models we looked at, the vibration was in one dimension 
only. Even though the model of the instrument can be considered to have points 
in two or three dimension, these co-ordinates only affect how the sound prop
agates through the instrument. For true two dimensional vibration, we have to 
consider both transverse and longitudinal vibrations (see figure 6.2). If the mass 
is displaced along the x axis, the natural frequency of the longitudinal vibration 
is [36] 

fL = ]__ fik , 
21f v-:;;; 

where each spring has a spring stiffness of k and m is the mass. The transverse 
vibration, however, is more complex. If the mass is displaced along the y axis, 
the force acting in the y direction is [36] 

Fy ~ -2ky ( 1- z~) - :z3oy3, 

where l0 is the equilibrium length of the spring and l is the current length. We 
see that the force contains a cubic term, which results in a nonlinear differential 
equation. This would likely make the analysis of mass-spring systems with 2 or 
more dimensions much more difficult than for those with only one dimension. 

It should be noted that real strings exhibit non-linear vibration [ 40]. Mass spring 
system would seem to be a promising approach to studying nonlinear behaviour 
in real strings and other nonlinear aspects of the sound production of musical 
instruments. This would require a modification to the algorithms of the mass
spring system to change the positions, velocities and forces from scalar to vector 
quantities. 

• Combining Mass-spring Systems with other Sound Synthesis Methods 

In addition to simulating a musical instrument, we might also want to simulate the 
environment surrounding the musical instrument to produce reverberation. But to 
do this solely using a mass-spring system would involve a very large number of 
masses (i.e. we would use masses, springs and dampers to simulate the air and 
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Figure 6.2: Two dimensional mass-spring system 

other materials in the room). A more practical approach might be to use digi
tal wave guides to simulate the environment around the instrument, since, unless 
the system is massively parallel, digital waveguides are much more efficient than 
mass-spring systems. Thus in this simulation, the mass-spring system would pro
duce the sound of the instrument, and the digital waveguide would produce the 
reverberation of the room. 

• Converting Mass-spring systems to Wave Digital Filters 

We have seen in section 5 that in a simulated string, the more masses used, the 
more accurate the simulation is. We noted that, for a given fundamental fre
quency, the more masses used, the greater the sampling rate required to keep the 
system stable. We also noted that if the bilinear transform was used instead of the 
symplectic Euler, the system would be stable at any sampling rate. The bilinear 
transform is problematic to implement, since it is an implicit numerical method 
and would require solving a system of equations at each time step. However, wave 
digital filters also use the bilinear transform and so are also stable at any sampling 
rate. To implement complex mass-spring systems using wave digital filters would 
require an algorithm to covert the mass-spring system into a wave digital filter. 
This might be an efficient method of implementing mass-spring systems using a 
large number of masses. 
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