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Abstract 

Solving the integer least squares problem min IIHs- xll 2 , where the 

unknown vector s is comprised of integers, the coefficient matrix H and given 

vector x are comprised of real numbers arises in many applications and is 

equivalent to find the closest lattice point to a given one known as NP-hard. 

In multiple antenna systems, the received signal represented by vector xis not 

arbitrary, but an lattice point perturbed by an additive noise vector whose sta­

tistical properties are known. It has been shown the Sphere Decoding, in which 

the lattice points inside a hyper-sphere are generated and the closest lattice 

point to the received signal is determined, together with Maximum Likelihood 

(ML) method often yields a near-optimal performance on average (cubic) while 

the worst case complexity is still exponential. By using lattice basis reduction 

as pre-processing step in the sub-optimum decoding algorithms, we can show 

that the lattice reduction aided sphere decoding (LRSD) achieves a better 

performance than the maximum likelihood sphere decoding (MLSD) in terms 

of symbol error rate (SER) and average algorithm running time. In the FIR 

(Finite Impulse Response) MIMO channel, the channel matrix is Toeplitz and 

thus gives us the leverage to use the fact that all its column vectors all linearly 

independent and the matrix itself is often well-conditioned. 

In this thesis, we will develop a lattice reduction added sphere decoding 

algorithm along with an improved LLL algorithm, and provide the simulations 

to show that this new algorithm achieves a better performance than the max-
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imum likelihood sphere decoding. 

In chapter 1, we define our system model and establish the foundations 

for understanding of mathematical model - namly the integer least squares 

problem, and thus the choice of the simulation data. In chapter 2, we explain 

the integer least squares problems and exploit serveral ways for solving the 

problems, then we introduce the sphere decoding and maximum likelihood 

at the end. In chapter 3, we explore the famous LLL reduction algorithm 

named after Lenstra, Lenstra and Lovasz in details and show an example how 

to break Merkle-Hellman code using the LLL reduction algorithm. Finally, 

in chapter 4 we give the LLL reduction aided sphere decoding algorithm and 

the experiment setup as well as the simul~tion results against the MLSD and 

conclusions, further research directions. 
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Chapter 1 

Introduction to System and 

Channel Model 

Over the past few year, it has been shown that using multiple antennas can 

significantly increase the capacity and robustness of communication systems in 

fading environments. As a result, much work has been done toward designing 

coding and decoding schemes to realize these gains promised by theoretical 

studies [5, 15, 34]. Recently, the use of the sphere decoding for lattice codes 

was proposed in [4 7] and has been shown in [20] that the average complexity 

of the sphere decoding used for maximum-likelihood detection in dispersive 

multiple antenna systems is polynomial (often cubic) with respect to a wide 

range of signal-to-noise ratios (SNRs). In this thesis, we will develop a new 

algorithm - a lattice reduction aided sphere decoding algorithm. But first, 

let us refresh our memories about MIMO multiple antenna systems and then 

1 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

define the channel and system model used in this thesis. 

1.1 Preliminaries on MIMO multiple antenna 

systems 

Multiple input multiple output (MIMO) channels, or Vector channels, repre­

sent a very general description for a wide range of applications. They incorpo­

rate SISO (Single Input Single Output), MISO (Multiple Input Single Output) 

and SIMO (Single Input Multiple Output) channels as special cases. Often, 

MIMO channels are only associated with multiple antenna systems. 

There are many reasons to use multiple antenna systems, two principle 

ones are: (29] 

1. Multiple antenna systems improve the link reliability. For example, if 

multiple access or cochannel interference in cellular networks disturbs 

the transmission, interferes that are separable in space can be suppressed 

with multiple antennas, resulting in an improved signal to interference 

plus noise ratio (SINR). 

2. Multiple antenna systems are capable of providing high data transmis­

sions over wireless channels. 

Research in wireless communications mainly studies transmissions over 

time-invariant channels, such as frequency-selective channel which arises at 

2 
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high data rates and causes subsequently transmitted data symbols to interfere 

with each other (also known as intersymbol interference (lSI)). Communica­

tion systems transmitting over frequency-selective channels generally employ 

an equalizer to recover the transmitted sequence corrupted by intersymbol in­

terference. Most practical systems use a training sequence to learn the chan-

nel impulse response and thereby design the equalizer. The channel is often 

assumed to be discrete-time finite-impulse-response (FIR), subject to block 

fading, i.e., the channel impulse response is constant over an interval after 

which is changed to an independent value. 

Let us assume a discrete-time block-fading frequency-selective FIR 

channel model, s( n) denotes the present value of the input, and s( n- 1), s( n-

2), ... , s(n- L) denote the L past values of the input. Let y(n) denote the 

present value of the channel output. we can then describe the input-output 

relation of the channel by the convolution sum [37) 

L 

y(n) = L h(k)s(n- k), (1.1) 
k=O 

thus the z-transformation of the channel impulse response is given by 

(1.2) 

where Lis also called the channel order and the channel coefficient {hi}f=1 are 

constant for some discrete interval of T channel uses, after which they may 

change to independent values held constant for another interval of length T, 

3 
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and so on. 

In the mathematical abstraction, the domain of a discrete-time signal 

is the set of integers (or some interval). What these integers represent depends 

on the nature of the signal. The transmission of the signals can be divided 

into two phases: the training phase and the data transmission phase. 

1.1.1 Training Phase 

During the training phase we transmit the TT training symbol 01' 02' ... ' Or-r' 

since we are interested in estimating the L channel coefficients h1 , h2 , ... , hL, 

to obtain meaningful estimates we require T7 ~ L., which provides the re­

ceiver with at least as many equations as there are unknowns. To allow the 

transmission of data, we clearly also require T7 < T. We can write: 

(1.3) 

v7 E JR.r-rxl is a vector of independent zero-mean unit variance additive Gaus­

sian noise, and <5; is the expected transmit energy during the training phase, 

the training symbol vector Or = [01, 02' ... ' Or-r v satisfies the power constraint 

tr( OT )2 = TT. Furthermore, 

4 
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(}1 0 0 0 

(}2 (}1 0 0 

(}3 (}2 (}1 0 

(}T = 

(}L (}L-1 (}L-2 (}1 

1.1.2 Data Transmission Phase 

The data transmission phase consists of Td > 0 channel uses. If we col­

lect the transmitted symbols into the Td-dimensional column vector sd = 

[s1, s2, ... , srd]r, and the received signals into the (Td + L- !)-dimensional 

column vector Yd = [y1, Y2, ... , YTd+L-1]T, then we can write: 

(1.4) 

Hd E JR(Td+L- 1)xrd, vd E JRTd+L-1 is a vector of independent zero-mean unit 

variance additive Gaussian noise. Furthermore, 

5 
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(1.5) 

Notice that, compared to the training phase, the channel coefficients are 

known while the transmitted symbols are unknown in the data transmission 

phase. 

Having introduced the MIMO multiple antenna system and the fre­

quency selective channel, let us describe in the following section the channel 

and system model that is going to be used in this thesis. 

1.2 System and Channel Description 

Consider a multiple antenna system shown in Figure (1.1) with M transmit 

antennas and N receive antennas. At each time instant, say kth instant, M 

signals (sk1
), si2), ... , siM>), satisfying an average power constraint, are trans­

mitted using M antennas and reaches all N receive antennas. In this thesis, 

we model the channel as frequency selective, Rayleigh and block fading, with 

channel knowledge at the receiver and additive white Gaussian noise(AWGN), 

6 
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Figure 1.1: FIR MIMO channel model 

and we explain these terms as followings [37, 39]: 

• Frequency Selective Fading: due to time dispersion of the trans­

mitted symbols within the channel, if the channel possesses a constant 

gain and linear phase response over a bandwidth that is smaller than the 

bandwidth of transmitted signal, then the channel creates such fading on 

the received signal. When this occurs, the received signal includes mul­

tiple versions of the transmitted waveform which are attenuated(faded) 

and delayed in time, and hence the received signal is distorted. In any 

radio transmission, the channel spectral response is not flat due to re-

flections and scattering which are the reasons cause the fading. This 

assumption is practical as multipath propagation is the typical charac-

7 
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teristics of wireless communication channels. 

• Rayleigh Fading: the channel coefficients hij are independent and iden­

tically distributed with zero mean, unit variance, circularly symmetric, 

Gaussian density (CN(O, 1)). Notice, however, the channel coefficients 

are correlated in most environments, the correlation is less when the an­

tennas are well separated and there are a large number of scatters in the 

environment. Nevertheless, Rayleigh fading model is more often used in 

theoretical analysis as it offers a nice statistical property for the channel 

coefficient( s). 

• Block Fading: the channel stays fixed for a certain period, called the 

coherence time of the channel, and then changes to something indepen­

dent for the next block. Notice that in reality, channel coefficients change 

gradually from one time to another. However, block fading is often used 

in theoretical analysis for its simplicity. 

• Channel Knowledge at Receiver: perfect channel knowledge is avail­

able at the receiver(s) but not the transmitter(s), or coherent detection. 

In practices, the receiver(s) can not know the channel perfectly. However, 

if the channel varies slowly, we can assume the receiver(s) has sufficient 

time to get a good estimation of the channel. 

• AWGN at Receiver: At each receiver, signals received from all trans­

mit antennas are added together, along with iid additive white Gaussian 
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noise with zero mean and variance CN(O, 82). 

Finally, we assume that the system feedback is unavailable and the 

receiver learns the channel based on the training information, and we also 

restrict our attention to the case where the code duration is shorter than the 

coherence time of the channel, so that each codeword experiences only one 

channel realization. With the above channel model, let the column vector 

denotes the single-input single-output (SISO) channel impulse response 

from the lh transmit antenna to the ith receive antenna, where T is the trans-

pose operation and L is the channel order as defined before. Then from the 

(1.1), the received signal at the ith antenna can be expressed as 

M L 

x(i) - ""'""' h (i,j) s(j) + v(i) 
k - ~~ l k-l k. 

j=l l=l 

The above equation can be written as 

L 

Xk = L Hlsk-l + vk, 

l=l 

• vk is the additive noise vector defined as vk = [vk1
), vi2), ... , VkN)JT, 

(1.6) 

• sk-l = [sk1
), si2), ... , siM)]T is the transmitted signal vector, whose entries 

typically come from a QAM ro PAM constellation, and 

9 
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• H1 E cNxM is the zth coefficient matrix in the MIMO channel impulse 

response 

h(1,1) 
l 

h (1,2) 
l 

h(1,M) 
l 

h (2,1) h(2,2) h(2,M) 

Ht= 
l l l 

h(N,1) 
l 

h(N,2) 
l 

h(N,M) 
l 

Define 

we can write the input-output relation for the FIR MIMO channel in 

the matrix form as [46] 

X=HS+V, (1.7) 

10 
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where HE CN(Td+L-l)xMTd is constructed as 

(1.8) 

Notice all quantities in (1.7) are complex, so one may find it is useful 

to rewrite it in terms of real quantities. So, let us define 

and 

X= [~(X) J(X)f, 

v = [~(V) J(V)]T, 

H= [~(H) 
J(H) 

Then ( 1. 7) can be rewritten as 

-J(H)]. 
~(H) 

x=Hs+v, 

11 
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where x E JR2NTdxl' v E JR2NTdxl' and HE JR2N(Td+L-l)x2MTd is still a Toeplitz 

matrix. 

For simplicity, we assume all the quantities in {1. 7) are real, which is not 

unrealistic if considering the PAM constellation, and focus on the SISO case, 

which can serve as building blocks for complex MIMO systems. Additionally, 

we also assume that the channel coefficients obtained through the training 

sequence are exact, i.e., there is not errors in the estimation of these variables. 

With the notations and restrictions introduced above, due to the exis­

tence of Gaussian additive noise in the channel, we can express the transmitted 

signal recovery problem as the optimization problem 

where the minimization is over all the integer points in zrd. This is indeed a 

integer least square problem (ILS) to find the closest lattice point to a given 

T dimensional vector x in the skewed lattice Hs, which is known to be NP 

hard. As the channel matrix is in fact obtained through training sequences, 

perturbation on the channel matrix H has to be considered in practice. In the 

following chapter, we will introduce the Integer Least Squares (ILS) problem 

and the maximum likelihood sphere decoding algorithm. 

12 



Chapter 2 

Integer Least Squares Problem 

and Maximum Likelihood 

Sphere Decoding 

The integer least squares (ILS) problem is an extension of the least squares 

(LS) problem in the integer domain for solving the problem of finding a vector 

s E zm such that minsEzm IIHs- xll2, where the data matrix HE ]RnXm and 

the observation vector x E JRn are given and n ~ m. In this chapter, we are 

going to discuss the integer least squares problems and general methods used 

to solve them, their applications in wireless communication, and finally the 

maximum likelihood sphere decoding algorithm. 

13 
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2.1 Introduction to the Least Squares Prob­

lems 

Consider the problem of finding the least-squares solution to the problem: 

min IIHs- xll2 

where H is an n x m matrix(n 2: m) and x is an n-vector, both are with 

real entries, is more precisely to minimize the Euclidean norm of the residual 

Hs- x. That is, 

IIHs- xll 2 = (Hs- xf (Hs- x) 

= (Hs)T (Hs)- XT Hs- (Hsf X+ XT X. 

Notice the two middle terms are equal, and the minimum is found at the zero 

of the derivative with respect to s: 

2HTHs- 2HTx = 0, 

we can solve it to get the vector s as the solution of the normal equations 

HT H s = HT x. The above introduced method is called normal equations 

method and is the most widely used method for solving the full rank LS 

problem, but the accuracy of the computed normal equations solution depends 

14 
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on the square of the codition number of H. If we define the minimum residual 

then we can conclude that if ELs is small and the condition number of His 

large, then the method of normal equations does not solve a nearby problem 

and will usually render an LS solution that is less accurate than a stable Q R 

approach. On the other hand, the normal equation and Q R methods produce 

comparably inaccurate results when applied to large residual, ill-conditioned 

problems [19]. 

At this point we have to also mention the total least squares (TLS) 

problems. The total least squares problem minimizes the Frobenius norm of 

the correction matrix [ fj.H; /j.x], that is 

minll[fj.H /j.x]IIF subject to (H + fj.H)s = x + /j.x. 

where His ann x m matrix(n ~ m) and xis ann-vector, both are with real 

entries, [fj.H; /j.x] is called the corresponding TLS correction [23]. 

One important application of TLS problems is parameter estimation in 

errors-in-variables models. Let us define an overdetermined linear equations 

system with n measurements in H, x and m unknown parameters s by 

H0s = Xo 

15 
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H=Ho+D..H 

x = Xo +flx, 

where D..H and D..x are the measurement errors. A reasonable assumption is 

that H has full rank and all rows of [D..H; D..x] are independently and identi­

cally distributed with zero mean and covariance matrix 82 I, as this coincides 

with our system model defined in previous chapter, i.e., H is Toeplitz and 

the channel noise is iid with zero means and covariance 82 . Then it can be 

proved [17] that the TLS solution s of Hs ~ x estimates the true parameter 

values s0 given by (HT H 0)-1Xo, where -1 is the matrix inverse operation, as 

n tends to infinity. This property of TLS estimation does not depend on any 

assumed distributional form of the errors. Had we not assumed exact channel 

knowledge, we would have to explore the TLS model as well. 

2.2 Least Squares Solutions 

The least squares problems have several explicit solutions including normal 

equations, QR decomposition and SVD (singular value decomposition). The 

first method is the fastest but least accurate, it is adequate when the condition 

number is small. The second method is the standard one but slower than the 

first one. The third method is of most use on ill-conditioned problem, i.e., 

when H is not of full rank, it is more computation intensive than the QR. Of 

all the methods used for solving the LS problems, QR factorization and SVD 

16 
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(singular value decomposition) are the most common and widely used. In the 

following, we will briefly introduce these two methods. 

2.2.1 QR decomposition 

the QR decomposition (also called the QR factorization) of a matrix is a 

decomposition of the matrix into an orthogonal and a triangular matrix Q 

and R respectively. The QR decomposition is often used to solve the linear 

least squares problem, and is defined in the following theorem: 

Theorem 2.2.1 (QR Decomposition (QR)) Let H be a real n-by-m ma­

trix. Suppose H has full column rank, then there exist a unique n x m orthog­

onal matrix Q such that QT Q = Im, and a unique m x m upper triangular 

matrix R with positive diagonals rii > 0 such that H = Q R. 

Proof: Omitted, please see [11] on pp.107. 

There are several methods for computing the Q R decomposition, such 

as Gram-Schmidt, Householder transfromation or Givens rotations. Each has 

a number of advantages and disadvantages. Here we will only introduce the 

Householder transformation and Gram-Schmidt methods as they will be used 

later in this thesis. 

17 
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2.2.1.1 Householder 'Iransformation 

A Householder transformation is an n x n matrix of the form [22] 

where v is a nonzero vector. It is easy to see that P = pT = p-l from the 

definition, so that P is both orthogonal and symmetric. 

Given a vector u, we can find a Householder transformation P to zero 

out all but the first entry of u, i.e., 

Pu = c· e 1 . 

Using the formula for P, we have 

( 
vvT) vTu c · e1 = Pu = I- 2-- u = u- 2v--, 
vTv vTv 

hence we can take 

v = u- ce1. 

We also must have c = ±iiull2 to preserve the norm, and the sign should 

be chosen to avoid cancellation, i.e., c = -sign(u1)llull 2 . Without going into 

too much details, we hereby give the Householder QR factorization (for more 

details, please see [19] in chapter 5): 

Algorithm: Householder Vector 

18 
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Input: Given u E JRn. 

Output: v E JRn with v1 = 1, and c E lR such that P = In-CVVT is orthogonal 

and Pu = llull2e1. 

function [v, c] = house( u) 

n = length(u) 

a= u(2: n)Tu(2: n) 

v = [1, u(2 : n)JT 

if a= 0 

else 

end 

c=O 

f-L = yfu(1)2 +a 

if u(1) ::; 0 

v(1) = u(l)- f-L 

else 

v(1) = -a/(u(l) + 1-l) 

end 

c = 2v(1) 2 f(a + v(1)2
) 

v = v/v(1) 

Notice that c = 2/vT v in the above algorithm. Now, we can subse­

quently choose a Householder matrix Pi to zero out hte subdiagonal entries 

19 
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in each column i without disturbing the zeros already introduced in previous 

columns. 

In general, the matrix, H is overwritten by Q, R instead of outputting 

matrices Q and R. Since for a n x m matrix H, the ith Householder vector v 

can be written as 

(i) - ro ..... oo 1 (i) (i)JT v -~, ,vj+1, ••• ,vn , (2.1) 

j-1 

so the Householder Q R factorization of H can be stored as a upper triangular 

matrix and a collection of the Householder vectors in the lower triangluar 

matrix. If the orthogonal matrix Q is needed, we can easily construct it by 

letting ?;, = Inxn- cv(i)(vCi))T with vCi) defined in (2.1), and the orthogonal 

matrix Q = P[ ... PJ'_1PJ' as the process above described is of the form 

To this end, we complete the QR factorization by explicitly giving an 

algorithm to construct the upper triangular matrix R and Householder vectors. 

We do this in the following algorithm. 

Algorithm: QR decomposition using Householder transformations 

fori= 1 to min(m,n -1) 

[v, c] = house(H(i: n, i)) 

H(i: n, i: m) = (In-i+l- cvvT)H(i: n, i: m) 

20 
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H(i + 1: n, i) = v(2: n- i + 1) 

end 

There are variant versions of Q R factorizations, such as Householder 

QR with column pivoting, but we will not further explore them here. 

2.2.1.2 Gram-Schmidt Orthogonalization 

The Gram-Schmidt orthogonalization is one of alternative methods to compute 

the QR decomposition with two variations: Classical Gram-Schmidt (CGS) 

and Modified Gram-Schmidt (MGS). 

Write the matrix Has a sequence of vectors {h1 jh2 1, ... , lhn}, then 

U h e _ Ul 

1 = 1' 1 - lluii! 

where Projuh = <<h,u>>u is called projection of h on u. u,u 

This is equivalent to say 

Uj = hj- (qfhl)ql- · · ·- (qj_lhj-I)%-1 

- h "j-1( Th) - j - L..ii=1 qi i qi, 

21 
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where qi = udJiuill is a normalized vector. Clearly, all the qis together with 

the qn = udlluill are the columns of the orthogonal matrix Q. If we write 

R= QrH, then 

if(i <j) 

and 

j-1 

rjj = llhj- L rijqill2· 
i=l 

Thus, the Classical Gram-Schmidt algorithm can be written as: 

for j = 1 ton 

for i = 1 to j - 1 

end 

~ = ujjrjj 

end 

Unfortunately, the CGS method is less satisfactory when implemented 

in finite precision arithmetic, as orthogonality among the computed qi tends 

to be lost due to rounding error. A rearrangement of the calculation, known as 

modified Gram-Schmidt (MGS), yields a better results (45]. The idea is simple: 

22 
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if we know qi, then we can apply qi to update his· So the MGS algorithm can 

be written as: 

fori= 1 ton 

end 

fori= 1 ton 

for j = i + 1 to n 

rii = qfhi 

Uj = Uj- rijqi 

end 

end 

The MGS method is equivalent mathematically, but superior numer­

ically, to CGS. However, it is slightly more expensive than Householder QR 

as it always manipulates m-vectors whereas the latter procedure deals with 

ever shorter vectors. As with square linear system, a diagonal linear squares 

problem is even easier to solve than a triangular one. The singular value 

decomposition (SVD) is such a method that goes beyond the triangular QR 

factorization to achieve a diagonal factorization of a rectangular matrix us­

ing orthogonal transformations. In the following, we will briefly introduce the 

SVD. 
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2.2.2 Singular Value Decomposition 

A general way to find a least squares solution to an overdetermined system 

is to use a singular value decomposition to form a matrix that is known as 

the pseudo-inverse of a matrix, this technique works even if the matrix is rank 

deficient. The numerical analysis for the algorithm, which is based on the SVD 

used in [18], reveals that the SVD is numerically robust but computationally 

expensive. The SVD plays an important role in a number of matrix approx­

imation problems. Among other things, the SVD enables us to intelligently 

handle the matrix rank problem and reveals a great deal about the structure 

of a matrix. 

Theorem 2.2.2 (Singular Value Decomposition (SVD)) if H is a real 

n-by-m matrix, then there exist orthogonal matrices 

and 

such that 
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Proof: Omitted, please see [19] on pp.70. 

where 

Furthermore, if H = U:EVT E JRnxm is the SVD of Hand n 2:: m, then 

ul = U(:, 1 : m) = [ul, u2, ... 'Um] E JRnXm 

and 

:E1 = :E(1: m, 1: m) = diag((J't,(J'2, ... ,(J'm) E lRmxm. 

We refer to this much-used, trimmed down version of the SVD as the 

thin SVD. 

Let us now define the minimum norm LS soution of H s ~ x using the 

SVD in the following. 

Theorem 2.2.3 {Minimum Norm LS Soution of Hs ~ x) Let the SVD 

of HE lRnxm be given by H = U:EVT, where U = [u1, u2, ... , Un] E lRnxn is an 

unitary matrix, :E = diag((J'l, (]'2, ... , (J'm) E lRnxm is a matrix with nonnegative 

numbers on the diagonal such as (J'l 2:: (J'2 2:: · • · 2:: (J'm 2:: 0 and zeros off the 

diagonal, and VT is the transpose of the unitary matrix V = [v1, v2, ... , vm] E 

lRmxm, i.e., H = L:Z:1 (J'in;vT, and assume that rank(H) = r. ifx E lRn, then 
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minimizes 11Hs-xll2 and has the smallest 2-norm of all minimizers. Moreover, 

n 

p
2 

= IIHs- xll~ = L (uT x)2
. 

i=r+l 

Proof: Omitted, please see [23] on pp.32. 

The underlying assumption in LS problems is that error only occur in 

the vector x and the matrix H is exactly known, which is exactly the assump-

tion we made earlier. In fact, this assumption is not uncommon and even with 

the consideration of the error in variables model (TLS), sometimes we still 

effectively are solving the LS problem indeed: consider the set H s ~ x, while 

the LS minimizes the sum of squared residuals IIHs- xll~, TLS in fact mini­

mizes a sum of weighted squared residuals II6H; 6xiiF· In signal processing 

applications, if the signal s is unitary, as proved by Arun in [2), the solution 

to this unitarily constrained TLS problem is the same as the constrained LS 

problem. Especially, if there is correlation among the errors, then the TLS so­

lution may no longer yield optimal statistical estimators [14]. Recently, A new 

detection technique called the maximum likelihood sphere decoding algorithm 

based on integer least square problem with QR decomposition was proposed in 

[4 7] to lower the computational complexity of the signal recovery problem, and 

consequently has draw a wide interests as a promising soft iterative decoding 

technique to improve the bit error rate performance of various communication 
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systems. In the following section, we will first explain the sphere decoding 

algorithm and then the maximum likelihood concepts. 

2.3 Integer Least squares and Sphere Decod-

. 1ng 

Now, consider the integer least-squares problem: 

min llx- Hsll2 
sEVczm 

(2.2) 

where x E ~n, H E ~nxm, and zm denotes the m-dimensional integer lattice 

and 1J c zm, i.e., s is an m-dimensional vector with integer entries and the 

search space is a finite subset of the infinite lattice. 

The integer least-squares problem has a simple geometric interpreta-

tion. As the entries of s run over the integers, s spans the "rectangular" 

m-dimensional lattice zm. However, for any given lattice generating matrix 

H, then-dimensional vector Hs spans a "skewed" lattice (when n > m,this 

skewed lattice lives in an m-dimensional subspace of~n). Therefore, given the 

skewed lattice H s, the integer least-squares problem is to find the "closest" 

lattice point Hs E ~n(in a Euclidean sense) to x- see Figure (2.1) below: 

In sphere decoding, we attempt to search over only lattice points that 

lie in a certain hypersphere of radius p around the given vector x to reduce 

the search space and the required computations (see Figure (2.2)): 
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. ~ .. 
• •r ~~~ eHs 

• 'e-./. • 

• • • • 
Figure 2.1: Geometrical interpretation of the integer least-square problem 

• • • • . ~---~· . . . ~·\ . . \"~~ . • • • • 
Figure 2.2: Idea behind the sphere decoder 
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However, two key questions need to be addressed here: 

1. The choice of p. Clearly, if p is too large, we could obtain too many 

points and the search remains exponential in size, if p is too small, we 

could obtain no points inside the hyper-sphere. 

2. Find the lattice points that are inside the hyper-sphere. 

Sphere decoding does not really address the first question, but does 

propose an efficient way to answer the second. The basic observation is the 

following: Although it is difficult to determine the lattice points inside a gen­

eral m-dimensional hyper-sphere, it is trivial to do so in one-dimensional case 

of m = 1. As one-dimensional hyper-sphere is simply an interval, so the de­

sired lattice points will be the integer values that lie in this interval. We can 

use this observation to go from dimension k to k + 1: Suppose we have de­

termined all k-dimensional lattice points that lie in a hyper-sphere of radius 

p, then for any such k-dimensional point, the set of admissible values of the 

k + 1-th dimensional coordinate that lie in the higher dimensional sphere of 

the same radius p forms an interval. 

The above means that we can determine all lattice points in a hyper­

sphere of dimensional m and radius p by successively determining all lattice 

points in hyper-spheres of lower dimensions 1, 2, ... , m and the same radius p. 

Now, assuming n 2:: m, i.e. there are at least as many equations as 

unknowns in x ~ Hs. Note that the lattice points Hs lies in a hyper-sphere 
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of radius p iff 

(2.3) 

In order to break the problem into the subproblems described above, it is 

useful to consider the Q R factorization of H: 

[ 
R ] H-Q 

O(n-m)xm 

(2.4) 

where R is an m x m upper triangular matrix and Q = [Q1 Q2] is ann x n 

orthogonal matrix. The matrices Q1 , Q2 represent the first m and last n -

m orthonormal columns of Q respectively. The condition (2.3) then can be 

written as( we will only discuss the matrix in JRn): 

or: 

(2.5) 

Defining y = Qfx and {J2 = p2 -11Qfxll 2
, we have: 

(2.6) 
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Since R is upper triangular, the RHS of (2.6) can be expanded as: 

where the first term depends only on sm, the second term on sm, sm-1 and so 

on. Therefore a necessary condition for Hs to lie inside the hyper-sphere is 

that j? ~ (Ym- rmmsmf This is equivalent to(Notice that by assumption, 

p~ 0): 

if rmm > 0; (2.8) 

or: 

if rmm < 0; (2.9) 

For any Sm satisfying (2.8) or (2.9), defining ~-1 = j?-(Ym- rmmsm)2 

and Ym-1jm = Ym-1- rm-1,msm, a strong necessary condition can be found by 

looking at the first two terms in (2.7), which leads to: 

~-Pm-1 + Ym-1jm l ::; Sm_
1 

::; lPm-1 + Ym-1jmJ 

rm-1,m-1 rm-1,m-1 
if r m-1,m-1 > 0; 

or 

~Pm-1 + Ym-1jm l ::; Sm-
1 

::; l-Pm-1 + Ym-1jmJ 

r m-1,m-1 r m-1,m-1 
if r m-1,m-1 < 0; 

Continue this fashion for Sm-2, and so on until St, we can obtain all 

lattice points belonging to (2.3). 
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Thus, we can formalize the implementation of the sphere decoding al-

gorithm as: 

Input: Q = [Ql Q2], R, x, y = Qf x, p. 

2. (Bounds for sk) 

if r > 0 Set u B(s ) = LPk+YkJk+I J s = r -.Ok+YkJk+ll - 1. k,k l k Tk,k l k Tk,k 

else Set u B(s ) = L-Pk+YkJk+l J s = rPk+YkJk+ll - 1. 
l k Tk,k l k Tk,k 

3. (Increase sk) sk = sk + 1, If Sk ::; U B(sk), go to 5, else go to step 4. 

4. (Increase k) k = k+ 1, if k > m, return results and terminate, else go to 

3. 

5. If k = 1, go to next step. Else, save sk, and set k = k- 1, Yklk+l = 

Yk- L::;':,k+l rkjBj, fPk = fPk:+l - (Yk+llk+2- rk+l,k+1Bk+1)
2 

and go to 2. 

6. Solution found. Save Bk and go to 3. 

2.4 Maximum likelihood and Sphere Decod-

. 
1ng 

Among all the decoding methods, the maximum likelihood decoder yields the 

best performance. The performances of Space-Time Codes for a large number 
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of antennas is studied using three different decoders: ML (Maximum Likeli­

hood), MMSE (Mimimum Mean Square Error) and ZF (Zero Forcing) in [7]. 

The maximum likelihood decoder computes the estimate codeword x by 

x = minxEDIIx- Hsll~ 

where D as defined in (2.2), s and x are the transmitted and received sig­

nals respectively, and x is searched over all possible x in the lattice space to 

minimize the 2-norm using the statistical property of the noise. 

For BPSK (binary phase shift keying), the D in (2.2) is 2, so the de­

coder has to perform an enumeration over a set size 2M. For higher-order 

modulation such as 64-QAM this complexity can become prohibitive even for 

a small number of transmit antennas. Thus, using ML method to choose an 

appropriate searching radius is necessary to reduce the computational com­

plexity. 

In our case, to answer the second question we just asked, the initial 

radius must be big enough to ensure that at least one lattice point is inside 

the sphere. One method is to use statistical properties of the channel noise. 

Notice that llbll 2/0'2 has a Chi-Square distribution [26] with 2NL degree of 

freedom, where N is the number of receivers and Lis the channel order. The 

probability of the lattice point inside the sphere can be written as 
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where 

One possible choice of the radius p is 

(2.10) 

and a ;:::: 1 is chosen so that we can be sure there exist a solution inside 

the sphere. Afterall, if the point is not found, we can always increase the 

probability of Pr to adjust the radius and search again. The complexity of 

the sphere decoding algorithm has been shown in [13, 21] to be the order of 

where n is the lattice dimension, p is the radius of the sphere, and .A is the 

lower bound for the eigenvalues of the matrix RRT. 

Using such statistical property of the channel noise lead to the neces­

sary choice of the searching radius in our sphere decoding algorithm, and the 

combination of the two makes the name maximum likelihood sphere decoding. 

34 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

However, notice that we are searching the solutions in the lattice space, it is 

natural to ask if we can use the lattice properties in the sphere decoding. After 

all, the sphere decoding itself was proposed with the name of universal lattice 

code decoder beared in [47]. One of the most important concepts in lattice 

theory is the basis transformations, or the basis reductions, among these the 

so called lattice reduction aided detection [49, 48] has shown a very promising 

result: the bit error rate (BER) parallel those for maximum likelihood detec­

tion. While a basis change does not always lead to an optimum perfomance, a 

change towards more orthogonal basses in general improves the performance. 

The more correlated the columns of H are, the more significant the improve­

ment in performance is [4]. In this thesis, we will see that the searching radius 

in the sphere decoding can be decided using the reduction algorithm instead 

of the Gaussian probability function. So the following we will first introduce 

the lattice basis reduction with focus on the most celebrated one - LLL basis 

reduction. 
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36 



Chapter 3 

Introduction to the LLL 

algorithm 

The lattice reduction has recently been rediscovered as a numerical method 

in many applications including MIMO systems and cryptography. In many 

cases, a basis consisting of relatively short and nearly orthogonal vectors is 

desirable, we will examine an important lattice basis reduction algorithm-the 

Lenstra, Lenstra and Lovasz (LLL) algorithm, and show one of its important 

usage in breaking the Merkle-Hellman code. 

3.1 Lattices and Basis Reduction 

In this section, we will briefly introduce some of the basic lattice concepts. 

Although there are a couple of handful definitions for lattice, the one 
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in [31] captures the essence of the lattices. 

Definition 1 Let n be a positive integer. A subset L of the n-dimensional 

real vector space JRn is called a lattice if there exists a basis b1 , b2 , ... , bn of 

JRn such that 

n n 

L = L Zbi = {L ribi: ri E Z(l ::; i::; n)} 
i=l i=l 

Furthermore, we say that b1 , b2 , ... , bn form a basis for L. 

The basis is not uniquely determined. To prove this, we need to intro-

duce the unimodular concept. Series of elementary column operations can be 

described by so-called unimodular matrices [44]. 

Definition 2 A nonsingular matrix M is unimodular if M is integral and 

det(M) = ±1. 

Lemma 3.1.1 A nonsingular integer matrix M is unimodular if and only if 

M-1 is an integer matrix. 

We further give a theorem and two corollaries here to establish the 

relations between the unimodular matrix and lattice generating matrix. They 

can also be found in [44]. 

Theorem 3.1.1 (Hermite normal form theorem}. Each rational matrix of 

full rank can be brought into Hermite normal form by a series of elementary 

column operations. 
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corollary 3.1.1 Let A and A' be nonsingular matrices. Then the following 

are equivalent: 

1. the columns of A and those of A' generate the same lattice; 

2. A' comes from A by elementary column operations; 

3. A'= AM for some unimodular matrix M (i.e. A-1A' is unimodular). 

corollary 3.1.2 For each rational matrix A of full rank there is a unimodular 

matrix M such that AM is the Hermite normal form of A. If A is nonsingular, 

M is unique. 

Now, let M be ann x n unimodular nonsingular integer matrix and B 

be a basis for a lattice L, then L = Bzn and BMzn is necessarily a sub-lattice 

of Bzn because Mzn c zn, so BMzn c Bzn. But M-1 also have all integer 

entries and det(M-1 ) = 1, so M-lzn c zn, that is, zn c Mzn, so we have 

Bzn c BMzn. Therefore, we can conclude that Bzn = BMzn, i.e. BM is 

also a basis for L = Bzn. 

Intuitively, for a 2-dimensional lattice, we can describe it as a set of 

intersection points of a regular (but not necessarily orthogonal) 2-dimensional 

infinite__grid as follows. 
The same lattice from Figure 3.1 can also be represented by the basis 

in Figure 3.2. 

However, the determinant d( L) of L defined by 

(3.1) 
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Figure 3.1: A Lattice in 2 dimensions 

Figure 3.2: A different basis for the same lattice 
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the bi being written as column vectors, is a positive real number that does not 

depend on the choice of the basis[8]. For if h1, b2, ... , bn and h1', h2', ... , bn' 

are bases of the same lattice, then by the above discussion, 

Hence, 

is independent of the particular choice of basis for L. 

Next, we observe that given a lattice L with b1 , b2 , ... , bn as a basis 

and L is obtained by projecting L perpendicular to b 1 , then for any vector 

v E L there is a unique vector v such that _llh1 11 < (v ..k!.....) < llbtll and 
' ' 2 ' llblll - 2 

v is v's projection perpendicular to h1, where 11.11 denotes the norm or the 

ordinary Euclidean length [25]. To see this, we have to understand two things: 

First, the geometric meaning of dot product. From the Law of Cosines, 

we can derive geometric formula for dot product of two vectors a and b as 

ab = llallllbllcose, 

where e is the angle between a and b. If we rewrite this as 
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then we can interpret it as "the dot product of a vector with a unit vector is 

the scalar of that vector's projection on the unit vector's direction". 

Thus the above observation says that for any vector v E L, there is a 

unique vector v, such that its projection on b1 has magnitude no longer than 

half of b 1 's. 

Second, the basic facts about lattice. For example, in a 2-dimension 

lattice (see figure 1.3), let b 1 be a basis and v is any vector in L, then the 

projection ofv, call it v .l, is perpendicular to b 1 and is equivalent to project v 

onto Vj_. Furthermore, jjv-v.ljj::; 11~111 as Vj_ has to fall in between v' and v, 

the adjacent two lattice points. Since v- v .l is in fact the projection of v onto 

b 1 with magnitude of jjvjjcosO, which is exactly the dot product (v, 11 ~~ 11 ), so 

either v' or v is the closest vector in L except when v .l exactly falling in the 

middle. Thus, if we choose the value interval to be ( -~~~1 11, 11~111], then the 

choice of such v is unique and the observation follows . 

• 

• 

V' 

Figure 3.3: Vector's Projection in 2D Lattice 
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Finally, notice that b1 has to be a basis instead of any vector, if not, 

then the uniqueness does not follow. It could be more clear if we draw an 

example in 3-dimensional space, but let us skip it for the purpose of saving the 

space. By doing the above projecting and "unprojecting", we are guaranteed 

to have a new basis that is no longer than the original basis. 

3.2 The LLL Basis Reduction and Algorithm 

With the above knowledge equipped, we now can move on to the LLL algo­

rithm now. The LLL algorithm due to A.K. Lenstra, H.W. Lenstra and L. 

Lovasz was proposed in 1982 [31]. It has been a foundation for many other 

improved algorithms since then. In this section, we will first introduce the 

LLL basis reduction and the properties of such reduced basis, then algorithm 

itself and some recent advances. 

3.2.1 The LLL Reduced Lattice Basis and its Properties 

Let b~, b 2 , ... , h 0 E JRn be linearly independent, recall the Gram-Schmidt 

orthogonalization process: 

i-1 

b~ = h· - """'"· ·h~ and 1 1 L....t r'~J J (3.2) 
j=l 

(3.3) 
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where 1 ::; i ::; n, the vectors hi are orthogonal and depend on the ordering of 

hi's. 

Definition 3 An ordered basis b1, h2, ... , hn for a lattice L is called LLL 

reduced if 

IJ.Lii I ::; 1/2 for 1 ::; j < i ::; n (3.4) 

and 

where hi and J.lii are defined as in (3.2} and (3.3} respectively. 

We now give some properties of a basis that satisfies these conditions 

and explain their geometric meaning along the way. 

Proposition 3.2.1 Let h1 , h2 , ... , hn be a reduced basis for a lattice L in ~n 

as in Definition 3, and hi, h2, ... , h~ be defined as in (3.2} and (3.3}. Then 

the following hold: 

< 

d(L) ::; II~IIIhill ::; 2n(n-l)/4 · d(L), 

llhtll < 2(n-1)/4. d(L)lfn. 
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Notice that ~ in (3.5) is arbitrarily chosen and could be replaced by 

y E (i, 1), subsequently the power of 2 appearing in (3.6), (3.7) and (3.8) 

must be replaced by same powers of 4/(4y- 1). 

Proof: Since 

so from (3.5) and (3.4), we have 

for 1 < i ~ n. Hence by induction llbjll2 ~ 2i-j ·llbill2 for 1 ~ j ~ i ~ n. 

Further from (3.2) and again (3.4), we have 

i-1 

llbdl 2 = llbtll2 + L/l;jllbJ'II2 

j=1 

i-1 

~ lihtll2 +I: ~2i-jllbill 2 

j=1 

= (1 + ~(2i- 2)). llbill2 

~ 2i-l ·llhill 2
• 

It follows that llbjll2 ~ 2i-l ·llbjll2 ~ 2i-l · llbill2 • This proves (3.6). 
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By Hadamard's inequality (see [9] on Page 81), d(L) :::;; Ilf=1 llbill is 

trivial. And from above we have llbi II :::;; 2(i-1)/2 ·llbi II, together with the 

fact that his are pairwise orthogonal, which gives d(L) = Ilf=1 llbi II, we 

conclude 

II~_ lib· II < IT":_ 2(i- 1) 12 llb~ II t-1 I - t-1 I 

1 "n-1 . 
= 22 L...i=1 td(L) 

1 n(n-1) = 22 2 d(L) 

n(n-1) 

=2 4 d(L). 

This proves (3.7). 

Finally from (3.6), putting j = 1 yields 

llbtll :::;; 2(i-1)/2 ·llbill, for 1:::;; i:::;; n. 

That is, 

n 
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===? llbdn::; 2n(n4-l)d(£) 

===? llbd ::; 2(n-1)/4d(L)1fn 

This proves (3.8). 

Furthermore, the following properties also hold: 

• 

Proposition 3.2.2 For every x E L and x =I= 0, where L C JRn is a lattice 

with LLL reduced basis b1, b2, ... , bn and bi_, b2, ... , b~ defined as in 3.2, 

then 

(3.9) 

Further, ifxllx2, ... ,xt E L are linear independent, where t::; n, then 

(3.10) 

forj=1,2, ... ,t. 

1 ::; i ::; n. 

From (3.2), we have bi = bi + 2:::~=1 J.LiibJ. That is, 

i=1 

n i-1 

= L Zi (bi + L J.Lij bj) 
i=1 j=1 
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n n i-1 

= Z:zibi + Z:zi(LJLijbj) 
i=l i=l j=l 

n 

= z::,ibi, 
i=l 

so if i is the largest index such that Zi =!= 0, then Zi = Ti· Thus 

llxll
2 ~ rJ ·llbill

2 

= zJ ·llbill
2 

~ llbill
2 

~ 21-illbtll 2 by (3.6) 

~ 21-nllbd2, 

which implies llbd 2 :::; 2n-lllxll2. This proves (3.9). 

Again, write Xj = L:~=l Zijbi with Zij E .Z and 1 :::; i:::; n, 1 :::; j :::; t. For 

any fixed j, let i(j) denote the largest i for which Zij =!= 0. By the above 

proof, we have 

for 1 :::; j :::; t. Arrange the index i(l) :::; i(2) :::; · · · :::; i(t) for all xj's, 

and renumber the correspondent xj's as Xt, x 2 , .•. , Xt· We claim that 

j :::; i(j): if not, then by the above proof, the largest index i(j) < j, so 

X1, x2) ... , Xj would all belong to Zb1 + .Zb2 + · · · + .Zbj-t, contradict 

to the fact that X1, x2, ... , Xt are linearly independent. 

48 



Master Thesis - Jin Cai Guo -McMaster- Computing and Software 

Therefore, 

2n-1 ·llxjll2 ~ 2n-1 ·llhi(j)ll2 

~ 2i(j)-l . llbi(j) 11 2 

~ llbjll 2 by (3.6) 

for j = 1, 2, ... , t. This proves 3.10. 

Finally, let us investigate a bit further about the definition and its 

properties. 

The LLL algorithm is actually a generalization of Gaussian reduction 

in n-dimensions. So it is natural that we first consider the Gaussian basis 

reduction in 2-dimensions. 

Suppose b1 , b2 forms the basis of a lattice L E JR2. Rename them so 

that llbtll ::; llh2ll· Let b2* = b2- (~~~~~)b1, clearly, integer t that is closest to 

(~~~~~) shortens b2 such that b2' = b2 - t · b1 , and the projection of b2' onto 

b1 has length at most llblll/2. Further, if llb2'll ~ llb1ll we stop, otherwise we 

swap them and repeat the procedure. This can be written in an algorithm as: 

GaussianReduction(b1b2) 

do 

b = b2 ; b2 = b1; b1 = b (swap b1, b2) 

t _ L(b1·b2)l 
- \lbl\12 
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Clearly, the Gaussian Reduction terminates in a finite amount of steps 

as there are only finite number of lattice points with length smaller than llb1 ll. 

Furthermore, we can formulate the conditions when the above algorithm finds 

the shortest vector as 

llbtll:::; llb2ll, 
1 

IJ.L21I :::; 2· 

(3.11) 

(3.12) 

It follows that at end of the procedure, the acute angle between b 1 

and b 2 is at least 60 degrees, so they are "fairly" orthogonal and the basis is 

reduced. 

Recall the Gram-Schmidt Orthogonalization given by b2 = J.L21bi + h2, 

we have 

Together with (3.11) and b 1 =hi we have 
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If we slightly modify Gauss's algorithm by: if llb~ll ~ (1 - c)b1 we 

stop, else we swap them and repeat the procedure, where E is any positive 

constant, then the length of the shortest basis vector falls by a factor at least 

(1 - E) each iteration. That is, we replace the while condition with llb2 < 

(1- E)btll. It is easy to prove that the number of iterations of the algorithm 

is O(log(l-e)-lllb~0)ll), where b~o) is the initial b1. 1 Thus, the running-time 

is bounded above by a polynomial. In this case, the basis b 1 , b 2 at the end 

satisfies 

whence we also have 

lib* 112 = lib - (b2. bl)b* 112 ===} 
2 2 llbtll2 1 

llb;ll2 ~ llb2ll2- ~llb1l1 2 (notice b1 = b~) ===? 

llb;ll2 ~ ((1- E)2- ~) 
2

llbiii2 
===} 

lib; II ~ v(l- E)2 _ ~llbtll. 

(3.13) 

(3.14) 

1proof: Assume after k many steps we can finally reduce the length of b 2 to a positive 
constant c and stop, then we must have a(l - E)k · llbi0 ) II ~ c, where a < 1, which implies 

k !n(llbl (O) 11/(o:c)) T . k ( II {0) II) ~ !n(l-e) 1 . hat IS, E 0 log(l-e)-1 b 1 . 
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We choose E so that (1-E) 2--l > 0 and 0 < 1-E < 1 yields 0 < E < 1/2. 

That is, 

where -1 < ( 1 - E) < 1. 

Now, the lattice defined by a pair of vectors bi and bi+l has basis 

where /-Li(i-1) bi_1 + hi and bi_1 are the projections of bi and bi_1 on the 

orthogonal complement of 2:::~:,~ lRbj. We can generalize this by translating 

the relaxed 2-dimensional Gaussian Reduction conditions (3.13) and (3.14) to 

apply pairwise to adjacent vectors in this basis and thus gives the LLL basis 

reduction conditions 

IJ-Lij I ::; 1/2 for 1 ::; j < i ::; n 

and 

where i < 5 < 1. 

52 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

The propositions describe the properties of such reduced basis. In 

particular, Proposition (3.2.1) states the basis is reasonably orthogonal (by 

(3.7)) and vector b1 is a good approximation of the shortest vector (3.8) 2 . 

Proposition (3.2.2) further states that b1 is a good approximation of the 

shortest vector again by giving an upper bound in terms of any vector (3.9) 

and each of the reduced basis vector is a good approximation to the successive 

minima of l2 norm of the lattice L. 

Now, we have cleared up some concepts about LLL reduction and its 

properties. It is time that we write down the LLL algorithm and explore its 

applications in various areas. 

3.2.2 The LLL Algorithm 

To start with, we compute bt (1 ::; i ::; n) and /-lij (1 ::; j < i ::; n) using 

(3.2) and (3.3), and then update them during the algorithm based on the 

satisfaction of conditions (3.4) and (3.5). Perhaps the original paper is the 

best one that explains the algorithm, so here we will just present the original 

algorithm and give some necessary explanations. 

The Original LLL Algoritlun 

2 As compared to Minkowski's theorem: let the length of the shortest non-zero vector of 
a lattice L E ~n be denoted :A(L) and determinant as d(L), then >-.(L) :::; fo · d(L)lfn. 
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f.Lii := (bl> bj)/B;; } 

bj := bj- f.Li;bj 

Bi := (bj, bi) 

k := 2 

(1) per form(*) for l = k- 1; 

if Bk < (~- f.L%(k-l))Bk-l. go to (2); 

perform (•) for l = k- 2, k- 3, o 0 0, 1; 

if k = n, terminate; 

k := k+ 1; 

go to (1); 

(2) J1. := Jl.k(k-1); B := Bk + J1.
2 
Bk-1; f.Lk(k-1) := Jl.Bk-1/B; 

Bk := Bk-1Bk/B; Bk-1 := B; 

( ::-1 ) := ( ::_1 ) ; 
( :~:-!Jj) := ( :;~_ 1Jj); forj=1,2, .. o,k-2; 

( 

f.Li(k-1) 

f.Lik 
) := ( ~ ;k(k-1) ) ( ~ ~Jl. ) 

if k > 2, then k := k - 1; 

go to (1)o 

0 1 
(*) ~f!Jl.kz/ > 2' then: 

j 
r:=i.JLkzl; bk:=bk-rbz; 

f.Lk3 := f.Lkj- rJl.li for j = 1,2,ooo,l-1; 

Jl.kl := Jl.kl - ro 
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Now, we explain how we get (2) in the algorithm. 

Let h1 , h2 , ... , hn be the current basis and hi, Jlii as in (3.2) and (3.3). 

Let k be the current subscript for which the followings hold: 

and 

iJLiil ::; ~ for 1 ::; j < i < k, 

II hi + Jli(i-1) hi-1 11
2 2:: ~ llhi-1 11

2 
for 1 < i < k, 

1 
iJLk(k-1), ::; 2 if k 2:: 2, 

llhk. + Jlk(k-l)hk.-1ll2 < ~llhk-1ll 2 
if k 2:: 2. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Denote the newly obtained basis as Ci, ci and vii that will replace hi, 

hi and Jlii respectively, then 

ci =hi for i =J k- 1, k, 

and otherwise 

Since ck__1 is the projection of ck_1 on the orthogonal complement of 
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b* k 

= bk + /-lk(k-1) . bk-1· 

Similarly, we also have 

Vk(k-l) = (ck, ck-1)/llck-111 2 

and 

= (bk-1, bk + /-lk(k-1) · bk:-1)/llck:-1\\ 2 

k-2 

= (bk-1 + L/-l{k-l)jbj, bk + /-lk(k-1) · bk-1)/llck:-111 2 

j=1 
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b * * = k-1- Vk(k-1)Ck-1· (3.21) 

The interchange of the vectors ck and ck_1 resulted the change of ck: 

and ck:_1, and therefore the consequent Vi(k- 1) and Vik for all i > k. 3 To find 

vi(k-1) and vik, we substitute 

bk-1 = Vk(k-1)Ck_1 + Ck by (3.21) (3.22) 

bk = (1- J.lk(k-1)Vk(k-1))ck-1 - J.lk(k-1)ck by(3.19) and (3.22) 

J.L%(k-1) llbk-d
2 

* * 
= (1 - llck-

1
ll 2 )ck_1 - J.lk{k-1)Ck by (3.20) 

= (llbkll
2 
/llck-111

2
) • ck_1 - J.lk(k-1)Ck by (3.19) again (3.23) 

from above into bi = bi + L:~:,~ J.lij bj. That yields 

vi(k-1) = J.li(k-1) Vk(k-1) + J.lik llbk 11
2

/ llck-1ll
2 

= J.li(k-1)Vk(k-1) + J.lik(1 - J.lk(k-1)Vk(k-1)) by (3.23) (3.24) 

Vik = J.li(k-1)- J.likJ.lk(k-1)· (3.25) 

3 Notice that by our assumption that (3.15) and (3.16) hold, so Vjk does not change for 
allj<k-1. 
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Finally, for 1 ::; j < k - 1 we have 

V(k-l)j = /-Lkj, Vkj = /-L(k-l)j, 

and for 1 ::; j < i ::; n, where { i,j}n {k -1, k} = 0, we have Vij = /-Lij· It might 

be easier if one thinks the relationship between hi and hi, /-Lij as vector-matrix 

type, that is 

where B* = [hi, h2, ... , b~] and [J-Lij] is an x n lower triangular matrix with 

all diagonal elements equal to 1 (to see this, notice that hi= hi+ L::~:i /-Lijbj). 

The rest of (2) is straightforward except Bk, which is indeed llck:ll 2 . That is: 

llck:ll 2 = llhk:-1- Vk(k-l) · ck:-1ll 2 
by (3.21) 

= llhk:-1ll 2 
- 2vk(k-l)/-Lk(k-l) llhk:-1ll 2 + v~(k-l) llck:-1ll2 

= llhk:-1ll 2 
- 2v~(k-l) llck:-1ll 2 + v~(k-l) llck:-1ll 2 

by (3.22) 

= llhk:-1ll 2 
- v%(k-l) llck:-1ll2 

= llhk:-1ll 2
- M%ck-l)llhk-1ll 4 /llck:_1ll 2 

by (3.20) 

=lib* ll 2 . llck:-1ll2
- M%(k-1)llbk:-1ll2 

k-
1 llck-1ll2 

Bk + 1-L%(k-l)Bk-l - J-L%ck-l)Bk-l 
= Bk-l · B 
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by (3.19) B = ck_1 ===? B = Bk + J.lk(k-l)Bk-1 

= Bk-1 · Bk/ B. 

The beauty of the LLL algorithm is that it approximates the shortest 

vector in n-dimensional lattice in polynomial time while the other reductions 

such as Minkowski and Korkin-Zoloterref reductions are computationally too 

heavy [24]. In the following, we will further investigate some of the improve­

ments and applications in different area with focus on wireless communication 

systems. 

3.2.3 The LLL Algorithm's Improvements 

An immediate improvement about the original LLL algorithm can be made if 

we use a variable kmax to keep the maximal value of k that has been obtained 

and compute the Gram-Schmidt coefficients as needed in stead of computing 

all the Gram-Schmidt coefficients J.lki and Bk, and then updating J.lik and 

J.li(k-1) fori > k after exchange of bk and bk_1 (if there is any). After all, we 

know for sure that all b 1 , h2, ... , bk_2 are LLL reduced. 

This leads to an improved algorithm. 

A Slightly Improved LLL Algorithm 

Input: a lattice basis ht, b 2, ... , hn. 

Output: A LLL reduced basis bll h2, ... , hn. 
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2. if k :::; kmax 

go to step 3. 

else 

for j = 1, ... , k - 1 

set /-lki = bk · bj / Bj; 

bk = bk- /-lkjbj. 

set Bk = llbkll2· 

3. Execute sub_algorithm Reduce(k, k- 1). 

if Bk < (~- f-l~(k-l))Bk-1 

else 

execute sub_algorithm Swap(k); 

set k = max(2, k- 1) and go to step 3. 

for l = k - 2, k - 3, ... , 1 

execute sub_algorithm Reduce(k, l); 

set k = k + 1. 

4. if k :::; n 

go to step 2. 
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else 

output the LLL reduced basis b17 h2, ... , h0 . 

~ sub_algorithm Reduce(k, l) 

if iJLkli > ~ 

r = LJLk,zl; 

set bk = bk - r · h1 and Jlkz = Jlkl - r. 

for j = 1, 2, ... , l - 1 

Jlki = Jlki - r · Jlli. 

~ sub_algorithm Swap( k) 

exchange bk and bk-1· 

if k > 2 

for 1::::; j::::; k- 2 

exchange Jlki with Jl(k-1)i· 

set JL = Jlk(k-1), B = Bk + JL2 Bk-1; 

Jlk(k-1) = JLBk-t/ B, Bk = Bk-1Bk/ Band Bk-1 =B. 

fori= k + 1, k + 2, ... , kmax 

set t = Jlik; 

Jlik = Jli(k-1) - jlt; 
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/-Li(k-1) = t + /-Lk(k-1)/-Lik; 
4 

The /-LijS and Bis are not necessarily rational numbers, in this case they must 

be represented approximately using floating point arithmetic. However, the 

round off errors in the floating point arithmetic may cause catastrophic di-

vergence from the LLL algorithm and thus prevent the final basis to be LLL 

reduced (see [9] on Page 90). A variant of the LLL algorithm based on float­

ing point arithmetic due to Schnorr was described in [40], it uses a so-called 

self-correction method to improve the accuracy of an initial approximation by 

one step of an iteration that converges quadratically to the correct values and 

the Schulz's method for approximating the inverse of a matrix. A practical 

floating point LLL algorithm that uses "deep insertions" and have good sta-

bility was proposed in 1993 by C.P. Schnorr and M. Euchner in [43], and the 

improvements latter by Henrik Koy and Claus P. Schnorr in 2001 [41, 28], 

recently by Nguyen and Stehle in 2005 [36] and Claus P. Schnorr in 2006 [42]. 

these improvements of LLL algorithm in floating point arithmetic made the 

LLL reduction algorithm efficiently applicable in practice. 

4From (3.24) and (3.25) we know 

Vi(k-1) = /-li(k-1)Vk(k-1) + /-lik(l- /-lk(k-1)Vk(k-1)) 

= /-lik + (/-li(k-1) - /-lik/-lk(k-1))vk(k-1) 

Vik = /-li(k-1) - /-lik/-lk(k-1), 

this leads to the iterative definitions in the algorithm. 

62 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

3.3 The LLL Algorithm in Cryptography 

The LLL algorithm has a broad practical uses in the cryptography. In this 

section, we will briefly introduce some basic ideas with focus on breaking the 

Merkle-Hellman code using the LLL algorithm. 

3.3.1 Introduction to Ciphers 

Public key cryptosystem, also known as asymmetric cryptosystem, was first 

introduced by W. Diffie and Martin Hellman in 1976 [12]. It has a pair of cryp­

tographic keys - a public key and a private key. The private key is kept secret 

while the public key may be widely distributed. The keys are mathematically 

related, but the private key can not be practically derived from the public 

key. A message encrypted with the public key can be decrypted only with the 

corresponding private key. By contrast, the classical ciphers, as well as certain 

contemporary ciphers such as DES (Data Encryption Standard) and AES (Ad­

vanced Encryption Standard), are symmetric in the sense that knowledge of 

the decryption key is equivalent to, or often exactly equal to, knowledge of the 

encryption key. Interested reader can use [16] for a comprehensive introduction 

to cryptology. 

To understand the advantages of an asymmetric cipher, let us imagine 

two persons- Alice and Bob, sending a secret message through the public mail. 

With the asymmetric key system, Bob and Alice have separate pad­

locks. First, Alice asks Bob to send his open padlock to her through regular 
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mail, keeping his key to himself. When Alice receives the padlock, she uses it 

to lock her message, and sends the locked box to Bob. Bob can then unlock 

the box with his key and read the message from Alice. To reply, Bob must 

similarly get Alice's open padlock to lock the box before sending it back to 

her. 

A commonly used variant of this is that Alice and Bob each owns two 

keys, one for encryption and one for decryption. The decryption key should not 

be deducible from the encryption key, so the encryption key can be published 

without compromising the security of encrypted messages. In the analogy 

above, Bob might publish on how to make a lock ("public key"), but the lock 

is impossible to be unlocked from these instructions about how to make a key. 

Those wishing to send messages to Bob can use the public key to encrypt the 

message and Bob can uses private key to decrypt it. 

With a symmetric key system, Alice first puts the secret message in a 

box, and locks the box using a padlock to which she has a key. She then sends 

the box through regular mail to Bob. When Bob receives the box, he uses an 

identical copy of Alice's key to open the box and reads the message. Bob can 

then use the same padlock to send his secret reply. 

Clearly, in an asymmetric key system Bob and Alice never need to send 

a copy of their keys to each other. This prevents a third party from copying a 

key while it is in transit. In addition, if Bob were careless and allows someone 

else to copy his key, Alice's messages to Bob would be compromised, but Alice's 

messages to other people would remain secret, since the other people would 
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be providing different padlocks for Alice to use. 

In many practices, the asymmetric ciphers are used to securely exchange 

a session key for a symmetric cipher to be used for the actual communication. 

That is, the only plain text encrypted with the asymmetric cipher is the key 

for a symmetric cipher, and then the faster-running symmetric cipher is used 

for encryption of the actual message. The trick of using session key is very 

common. A public-key system is used to establish a shared key (the session 

key) for a (faster) private-key, through which the bulk of the communication 

will occur. After the message is sent, the session key is discarded and not 

reused. Thus the advantages of public-key ciphers can be realized while at the 

same time benefiting from the speed of symmetric ciphers. 

Finally, note that all cryptosystems are subject to certain classes of 

attacks. For example, chosen-ciphertext attack exist for all public key cryp­

tosystems, including RSA, ECC, and NTRUEnrypt. Such attacks do not affect 

the security of the underlying cryptographic algorithm, but instead they rely 

on sending specially constructed fake messages and observing the resulting 

decryptions. For each cryptosystem, there are straightforward techniques for 

defending against such attacks. The attacks are only effective if these simple 

precautions are not taken. In the following, we will show some attacks on 

the public key cryptosystems based on LLL algorithm, along with some recent 

advances in cryptosystems based on lattice reduction. 
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3.3.2 Knapsack and Subset Sum Problem 

Knapsack ciphers use the same underlying mathematical problem, the knap­

sack or subset sum problem. The name comes from the maximization problem 

of choosing objects from a set of objects of various weights to fit into a bag 

(of maximum weight). One may look into the book Kanpsack Problems: Al­

gorithms and Computer Implementations by Silvana Martello and Paolo Toth 

for more information about knapsack problems. In the following we will in­

vestigate the knapsack problem based cryptosystems and show how to attack 

such a system using the LLL algorithm. 

A knapsack problem can be mathematically formulated as following: 

Number the distinct objects from 1 ton. Let Vj be a measure of the 

value given by object j, ai be its size and c the capacity of the knapsack, and 

introducing a vector of positive integer variables xi(j = 1, ... , n) such that 

0 :::; xi :::; bi, where bi is the number of available jth object and subject to 

bi :::; c/ ai, then our problem is equivalent to select the vector that maximizes 

the objective function 

from all vectors x satisfying the constraint 

n 

Laixi:::; c. 
j=l 

If bi is some positive integer for each j, then we call it Bounded 
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Knapsack Problem, If bi = +oo for each j, then we call it Unbounded 

Knapsack Problem. In particular, if bi = 1, that is 

Xj = { 1 if object j is selected; ' 

0 otherwise 

then it is known as 0-1 Knapsack Problem. 

(3.26) 

A particular case of the 0-1 Knapsack Problem arises when vi = ai. 

The problem becomes to find a subset of weights whose sum is closest to, but 

not exceeding the capacity, i.e. 

n 

maximize L aixi 
j=l 

n 

subject to L ajXj ::;; c, 
j=l 

with xis are defined as in (3.26). This is also called the Subset Sum Problem. 

Both the general knapsack problem and the subset sum problem are 

NP-hard, this has led to attempts to use subset sum as the basis for public key 

cryptosystems, such as Merkle-Hellman cryptosystem. The Merkle-Hellman 

cryptosystem, invented by Ralph Merkle and Martin Hellman in 1978 [33], 

was one of the earliest public key cryptosystems. In 1982, Adi Shamir broke 

the basic Merkle-Hellman cryptosystem using Lenstra's linear programming 

algorithm, which was later improved in the LLL algorithm (see [31, 38]). Since 

then several attacks on more complicated knapsack cryptosystems have been 
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proposed. These attacks are all based on the idea of recovering the trapdoor 

information concealed in the sizes { ai : 1 ~ i ~ n}. Adleman extended 

Shamir's work by treating the cryptographic problem as a lattice problem 

rather than a linear programming problem.[1]. In the following, we use the 

Merkle-Hellman cryptosystem to show how to break a simple version of Merkel­

Hellman cryptosystem (singly-iterated Merkle-Hellman cryptosystem) using 

the LLL algorithm. 

3.3.3 Merkle-Hellman Cryptosystem and An Attack Us­

ing LLL Algorithm 

Let us now define a slightly different version of subset sum problem from above, 

but is indeed used in cryptography: 

Definition 4 (Subset Sum Problem) Given a vector a = (a1 , a2 , ... , an) 

consisting all positive integers, and s a target positive integer, determine if 

there is vector x = (x1, x2, ... , Xn) with x1, x2 ... , Xn E {0, 1} satisfying 

Since the subset sum problem is NP-complete, so it is supposed to 

be hard to determine if there the vector x = (x17 x2 , ... , xn) as defined in 

the definition exists. The trivial solution is to try all 2n possible values for 

.n = ( x1 , x2 , ..• , Xn). A better method is to compute the common element 
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x; = Oorl Vj} 
and 

82 = {s- t Xjaj Xj = 0 or 1 'i/j}, 
i>Ln/2J 

this procedure takes O(n2nf2
) operations and is still the known fastest algo­

rithm for the general knapsack problem. A natural way to build up a knap-

sack cryptosystem is to use the vector a= (a1 , a2 , ... , an) as public key and 

x = (x1 , x2 , ... , Xn) as the plain text, so the ciphertext is 

n 

s = '2:: xiai. 
j=l 

But then not only the unauthorized receiver has to solve the knapsack 

problem if he is trying to decipher the message, the intended receiver is also 

faced to solving the knapsack problem. To bypass this problem, Merkle and 

Hellman proposed to use a superincreasing sequence for vector a and conceal 

it by some sort of invertible transformation. 

If 
j-1 

ai > '2:: ai for 2 ~ j ~ n, 
i=l 
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then ajs form a superincreasing sequence. Moreover, we can easily find Xn, 

since 
n-1 

Xn = 1 if and only if s > Lai. 
j=1 

Once we find Xn, we have a reduced knapsack problem 

n-1 

s- Xnan = L Xjaj, Xj E {0, 1}, 1 ~ j ~ n- 1, 
j=1 

thus we can recursively retrieve the entire message (x1 , x2 , ..• , Xn)· But if we 

directly use a= (a1 , a2 , ••• , an) as public key, then an attacker can decipher 

the message as easily as the intended receiver. So we need a one-way trapdoor 

to conceal this information. 

In basic Merkle-Hellman cryptosystem, Bob choose a superincreasing 

sequence b1, b2, ... , bn with b1 ~ 2n and bn ~ 22n, and M, W E Z with M > 

b1 + b2 + · · · + bn and gcd(M, W) = 1, and a permutation 1r of the integers 

{1, ... , n }. Then Bob's public key is { a1, a2 , ... , an} with 

ai = Wb1r(j) ( modM), 

while his private key is bj, M, Wand the permutation 1r. 

Now if Alice's plain text is x = (x1,x2, ... ,xn) E {0, 1}, then her 

ciphertext will be 
n 

s = LXjaj. 
j=l 
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To decrypt, Bob then computes 

n 

j=l 
n 

j=l 
n 

= L xib1r(j)(modM). 
j=l 

Since M > L. bi, so c exactly equals the sum, i.e. c = L.7=1 xjb1r(j)· 

Also b1, b2 , ... , bn is superincreasing, so Bob can easily solve this knapsack 

problem and recover the plain text x. 

The choice of b1 ~ 2n and bn ~ 22
n is supposed to ensure that an 

attacker has a great number of possibilities for each parameter, and hence 

anyone who does not know M, W and bi has great difficulty in solving x 

even the general method used for generating the trapdoor knapsack vector a 

is known by the public. Notice that if bis are too large, then the knapsack 

system will not efficient as the M has to be large but n bits information will be 

encoded into roughly log2 M bits. Interested readers can find more information 

and examples in [33]. 

In the following, we will show how to convert a knapsack problem to 

a lattice problem, and how to break the basic Merkle-Hellman cryptosystem 

using one of the improvement from that of Adleman's [1] due to Lagarias and 
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Odlyzko in [30]. 

Consider a knapsack problem to be solved: 

we can construct the lattice generated by the matrix5 

V= 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 

0 0 

0 0 

1 0 

Clearly, the columns of the matrix are linearly independent and form 

a basis of the lattice, say L, of zn+I. If X= (xi, X2, ... 'Xn) E {0, 1}n solves s, 

let VI, v2 , ... , Vn+I represents the columns in the matrix, then 

n 

l:xivi + Vn+l = (xi,x2 , ... ,xn,O)T. 
j=I 

(3.27) 

Since the xis are 0 or 1, this vector is very short. If it is indeed the 

shortest one in L, then LLL or one of its variants may be able to find it. 

Fortunately, the ais are large, so one could expect that most vectors in the 

5 We slightly changed the matrix form to fit our needs. 
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lattice would be large, and the vector 3.27 might be the shortest one. In [30], 

it was shown that if ais are chosen at random with 

a . "' 2{3n 
J "' ' 

where {3 is any constant> 1.54725, then the vector 3.27 is the shortest non-zero 

vector with high probability. This bound was later improved to be {3 > 1.063 

in [10]. 

Because the LLL algorithm is only guaranteed to return an approxi-

mated shortest vector, it can not be proved to break all the instances with 

good lattices. However, the LLL algorithm performs better in practice than in 

theoretical bound, so it might be prudent to say that we could solve most low­

density knapsack based cryptosystems. To help make these ideas clearer, we 

will give two small but concrete examples in the following (without considering 

the permutation). 

Example 1 

Let n = 4, the private key b = (3, 11, 19, 35); 

choosing M = 3001; 

taking w = 2007, therefore w-l = 474. 

So the public key is: 

a= Wb(mod M) = (19, 1070,2121, 1222). 
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If Bob is going to send Alice the plain text 1010, then the ciphertext 

Alice will be receiving is: 

s = 19 * 1 + 1070 * 0 + 2121 * 1 + 1222 * 0 = 2140. 

Alice then uses s to find the plain text by our algorithm described in 

1.2.2 and computes 

c = sW-1(modM) 

= 2140 * 474(mod3001) 

= 22, 

and uses c to find the plain text by 

22 - 35(0) = 22 X4 = 0 

22- 19(1) = 3 X3 = 1 

3- 11(0) = 3 X2 = 0 

3-3(1)=0 XI= 1. 

While an unauthorized user knows: 

the public key a= (19, 1070,2121, 1222); 

received ciphertext 2140. 
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He or she wants to find x = (x1 , ... ,x4 ) E {0, 1} such that 

19x1 + 1070x2 + 212lx3 + 1222x4 = 2140. 

Having written the matrix 

1 0 0 0 0 

0 1 0 0 0 

V= 0 0 1 0 0 

0 0 0 1 0 

19 1070 2121 1222 -2140 

and applied the improved LLL algorithm we described, he or she obtains a 

reduced matrix V 
1 0 -2 -3 7 

() -2 0 1 0 

V= 1 0 2 4 -8 

0 0 -7 1 -2 

0 0 0 9 1 

Clearly, the 1st column in red of the matrix is the only solution in 

correct form and is indeed the right answer, thus the message is deciphered. 

Example 2 ([3]) 

Let n = 9, the private key b = (2, 5, 9, 21, 45, 103, 215,450, 946); 
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choosing M = 2003; 

taking w = 1289, therefore w-l = 317. 

So the public key is: 

a= Wb(mod M) = (575, 436, 1586, 1030, 1921,569,721, 1183, 1570). 

If Bob is going to send Alice the plain text 101100111, then the cipher­

text Alice will be receiving is: 

Alice then uses s to find the plain text by our algorithm described in 

1.2.2 and computes 

c = sW-1(modM) 

= 6665 * 317(mod2003) 

= 1643, 

and uses c to find the plain text by 

1643- 946(1) = 697 Xg = 1 

697- 450(1) = 247 x8 = 1 

247- 215(1) = 32 X7 = 1 

32 - 103{0) = 32 X6 = 032 - 45(0) = 32 
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32- 21(1) = 11 X4 = 1 

11- 9(1) = 2 X3 = 1 

2- 5(0) = 2 X2 = 0 

2- 2(1) = 0 X!= 1. 

While an unauthorized user knows: 

the public key a= (575, 436,1586,1030,1921,569,721,1183, 1570); 

received ciphertext 6665. 

He or she wants to find x = (x1 , ... , xg) E {0, 1} such that 

575x1+436x2+1586x3+1030x4+1921x5+569x6+721x7+1183x8+1570x9 = 6665. 
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If he or she writes the matrix 

1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 
V= 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 

575 136 1586 1030 1921 569 721 1183 1570 -6665 

after applying the improved LLL algorithm, he or she obtains a reduced matrix 

v 
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0 0 0 1 2 -1 -1 0 1 -1 

0 -1 0 1 -1 -1 -1 1 0 1 

0 -1 1 -1 1 0 0 0 1 1 

-1 0 0 -1 -1 -2 1 -1 1 0 

V= 
0 0 -1 0 0 1 -1 0 0 -1 

1 -1 0 0 0 0 2 -2 0 0 

-1 1 1 1 0 -1 -1 -1 1 0 

1 0 1 1 0 0 1 1 1 -2 

0 1 -1 0 -1 1 0 1 1 2 

1 0 -1 -1 0 -1 -2 0 0 0 

Clearly, the 7th column in red of the matrix is the only solution in 

correct form and is indeed the right answer, thus the message is deciphered. 

The examples given were extremely small in size and were only intended 

to illustrate the ideas. It was thought that n = 100 is the bottom end of the 

usable range for secure systems in [33] though in fact almost all cryptosystems 

based on Knapsack problem have been broken so far. Interested reader can 

see the comparisons among the variants of the LLL algorithm in deciphering 

the Merkle-Hellman method encrypted messages. 
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Chapter 4 

An LLL Reduction Aided 

Sphere Decoding 

The idea of formulating the detection of a lattice type modulation transmitted 

over a linear channel as the so-called universal lattice decoding problem is 

particular attractive for bandwidth efficient modulations, such as L-PAM and 

L-QAM, due to its various desirable properties [35]. In this chapter, we show 

how to solve the ILS problem using the LLL reduction aided sphere decoding 

algorithm and simulate the new algorithm to show that it achieves a better 

performance than the maximum likelihood sphere decoding. 
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4.1 LLL Reduction Aided Sphere Decoding 

Recall the integer least-squares problem is defined as 

where X E ]Rn' H E ]RnXm' and zm denotes the m-dimensional integer lattice 

and v c zm. 

Since the noiseless received signal H s can be considered as a point in 

the lattice space generated by the lattice generating matrix H if the entries 

of s are taken from the set of integers, thus only a finite subset of this lattice 

is actually used as practical systems typically have only limited average and 

peak output power. As we proved at the beginning of the chapter 3, for any 

lattice, the bases are not unique, it is always possible to find a unimodular 

matrix M, such that if His a basis then fi = H M is also a basis. Specifically, 

a point in the basis H represented by scan be represented in fi by z = M-1s. 

Effectively, we have transformed our ILS in (2.2) into the following: 

~ 

With this basis change, the receiver first compensates the new channel H = 

H M, then sis produced by M-1z. 

Now, we can re-address our sphere decoding algorithm as the followings. 
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...... 
Consider the Q R factorization of H: 

[ ...... ] ...... ...... R 
H=Q 

O(n-m)xm ' 

where R is an m x m upper triangular matrix and Q = [Q1 Q2) is an n x n 

orthogonal matrix, in which the matrices Q1 , Q2 represent the first m and last 
...... 

n - m orthonormal columns of Q respectively. 

The condition (2.3) then can be written as 

...... 

l ~ llx- [Ql Q2J[ R Jzll2 
0 

-..T -.. 

~II [ ~~ Jx- [: Jzll' 
= IIQfx- Rzll 2 + lliJrxll 2

· (4.1) 

Note that for any Q R factorization of H, we have 

= llxll2
· 
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That is, 

Jlxll' = llr :~ Jxil' 

=II[ Qfx 1112 
Qfx 

so the above inequality ( 4.1) becomes 

P
2 -11Qfxll2 

= P
2 -llxll2 + 11Qfxll2 

~ IIQf x- Rzll 2
· 

Thus, we only need the compact QR decomposition for fi: fi = Q1R. Defining 

y = Qf x and {P = p2 - llxll2 + IIQf xll2, we have: 

(4.2) 

Recall that after the LLL reduction, the entries on the diagonal of the 
~ 

upper triangular matrix R are all positive real numbers, so we can define our 

new LLL reduction aided sphere decoding algorithm from ( 4.2) as: 

1. Set k = m, Pfc = P2 - llxll2 + IIQf xll2, Ykik+l = Yk 
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2 (Bounds for z ) Set U B(z ) = LPk+!klk+1 J z = r-Pk!Yklk+ll - 1. . k k Tk,k ' k I Tk,k 

3. (Increase zk) Zk = Zk + 1, If Zk :::; U B(zk), go to 5, else go to step 4. 

4. (Increase k) k = k + 1, if k > m, return results and terminate, else go to 

3. 

5. If k = 1, go to next step. Else, save zk, and set k = k- 1, Ykik+l = 

Yk- ~;k+l TkjZj, Pi= 'Pfe+l- (Yk+llk+2- rk+l,k+!Zk+l)
2 

and go to 2. 

6. Solution found. Save Zk and go to 3. 

Once the optimal solution z(s) are found, then we can simply use M-1z 

to get back the transmitted signal s. 

4.2 Experiment Setup 

In order to perform some numerical simulations to compare the new LLL re-

duction aided sphere decoding algorithm with the maximum likelihood sphere 

decoding algorithm, we specify the data sources and some terminologies in this 

section with some of the contents in this section can be found in [26, 32]. 

For simplicity, we assume the transmitted signals are the symbols from 

L-PAM (Pulse-amplitude modulation), but the algorithm can be readily ap­

plied to complex L-QAM. Here, PAM refers a form of signal modulation where 

the message information is encoded in the amplitude of a series of signal pulses. 

For example, A two bit modulator (4-PAM) will take two bits at a time and 
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map the signal amplitude to one of four possible levels, for example, -3 volts, 

-1 volt, 1 volt, and 3 volts. Pulse-amplitude modulation is widely used in 

baseband transmission of digital data, the widely popular Ethernet commu­

nication standard is a good example of PAM usage. In particular, we choose 

4-PAM constellation with the SNR (Signal to Noise Ratio) at Odb, 5db, IOdb, 

l5db, 20db, 25 to compare the two algorithms' symbol error rate (SER) and 

efficiency. 

Furthermore, the entries of the noise vector v are independently and 

identically distributed white Gaussian random variables with zero mean and 

unit variance and is applied on the receiving transmitters. The channel coef­

ficients are generated according to Gaussian distribution with zero mean and 

unit variance and the channel matrix is of Toeplitz form in (1.8). As with the 

maximum likelihood method, we always set the probability Pr in (2.10) as 

0.95 and look up the probability table for the Chi-square distribution in [6] or 

[27] to find the value of p2 /82
, where p is the correspondent searching radius 

and 6 = 1 by the assumption that the noise has a unit variance. [35] 

Finally, we compare the algorithms' efficiency and accuracy in terms 

of running time and symbol error rate (SER) respectively. The transmitted 

symbols satisfy the power constrain function Power L;~=l SlPt = 1 and thus 

the Power = 1/v'f> and Power = 1/v'2f for 4-PAM and 8-PAM respectively to 

observe the fact that as the antennas in a constellation increases the power 

of the signal decreases. Effectively, the mathematical model for the ILS has 
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become 
SNR 

1010 PawerHs + V =X, 

where H is the channel matrix, v is the additive noise vector, s is the trans-

mit ted signal and x is the received signal, SNR and P awer are defined as in 

above. 

4.2.1 Simulation Results and Conclusions 

In this section, we listed all the test results to compare the two algorithms. The 

programs presented in the Appendix were written in MATLAB v.7.l (student 

edition) on a Sun-microsystem computer. In the programs, we implicitly used 

the fact that the channel matrix is of the form Toeplitz, which is often well 

conditioned and forms a basis for the generated space. The former minimizes 

the introduced error propagation due to the calculation of the Q R factorization 

and the latter enable us to implement the LLL reduction algorithm on the 

channel matrix. 

The following graphs show the comparison of the symbol error rate(SER) 

and the time consumed for MLSD and LRSD respectively. For statistical suffi­

ciency purpose, we run each algorithm 10,000 time and take the average SER 

and time consumed for each algorithm. Notice that the simulation results may 

vary at each run, but the general trend reflected in the following graph has 

been preserved at all times. 

It is easy to see that the SER is decreasing for both algorithms when 
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SER performance of MLSD and LRSD 
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Figure 4.1: Error Rate Comparison of the MLSD and LRSD with 4-PAM 
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Figure 4.2: Efficiency Comparison of the MLSD and LRSD with 4-PAM 

89 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

the SNR increases as it is well known that SER is a decreasing function of 

SNR. 

The increasing of SNR is equivalent to adding power on the transmit­

ted signal, so the relative noise impact on the l0
8

foR PowerHs is smaller. Thus, 

for the MLSD, even with a smaller probability (therefore a smaller search­

ing radius and fewer number of lattice points to enumerate) we can find a 

nearby lattice point to the skewed one. Similarly, having a relative orthogonal 

and shortened searching base, the LRSD method has a comparable SER with 

MLSD algorithm and rendered the fact that SER is a decreasing function of 

SNR. 

Furthermore, for the LRSD, basis vectors do not change as it only 

depends on the channel matrix which is not changing by our assumption. 

When the signal to noise ratio at a high level, there is a relative large SER 

at first, but as the signal to noise ratio increases, the search radius does not 

change, thus yields a relative smaller searching radius comparing to the MLSD 

methods, which explains why the LRSD has a better performance both in 

terms of efficiency and accuracy than the MLSD as SNR increases. Recall that 

any skewed lattice point has to sit in between two lattice point in the reduced 

lattice space, so the LLL reduction aided sphere decoding must yield a closest 

lattice point within the norm of the longest reduced lattice vector, which is 

unlike the maximum likelihood that an inappropriate probability choice we 

may not have an (optimal) solution at all. 

It must be noted that although the LRSD achieves comparable SER 
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performance with a increased efficiency and accuracy than the MLSD, the 

LRSD's performance highly depends on the basis reduction process while this 

process is currently developed without considering that the floating point arith­

metics. To this end, we also would like to point out that the optimal solution 

is chosen by calculating the minimum norm of IIHs- H811 2 , which in MLSD 

is decided by the probability and in LRSD is decided by the largest reduced 

lattice vector. This choice is not necessary true in practice, but can be easily 

adapted when considering other choosing criteria. 

4.2.2 Further Work 

Keep in mind that the lattice point enumeration is the basis of the best known 

algorithm to solve exactly the shortest vector problem and also known in 

MIMO as Sphere Decoding algorithm. Though the lattice-reduction-aided de­

tectors have been proposed for multiple-input multiple-output (MIMO) com­

munication systems to give performance with full diversity like maximum like­

lihood optimal receiver but with complexity similar to linear receiver, these 

proposals are based on the original LLL reduction algorithm that was intended 

for real lattice basis even though the channel matrices are inherently complex­

valued. Besides, the original LLL reduction was not developed in consideration 

of the floating point arithmetics as we pointed earlier, so it is inevitable that 

the round off errors would be large in high dimensional lattice. Thus, a more 

stable LLL reduction or basis reduction algorithm can at least improve the 
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accuracy of the searching radius and reduce the computations needed in the 

sphere decoding. 

Also notice that the complexity of the sphere decoding can be improved 

by further exploiting the Toeplitz structure of the channel matrix. Remember 

that in order to use the sphere decoding, all we have to do is to perform the 

Q R factorization to obtain the upper triangular matrix R, which can be sped 

up using the Toeplitz structure in both the MLSD and the LRSD. 
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The LLL Reduction Algorithm Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo 

%McMaster University 

% 

April. 11, 2008 

Department of computing and software 

%Purpose: Useing LLL algorithm to reduce the given lattice space 

% 

%Input: basis B to be reduced 

% 

%Output: B: an LLL reduced basis that overwrite the original B 

% 

% 

% 

% 

% 

Q: orthogonal basis 

R: upper triangular basis 

U: a unimodular matrix, such that B*U = QR, where this B is the 

original B to be reduced 

%Precodition: input basis B must be of a basis or the program is 

%unpredicatable. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [B, Q, R, U]= LLLReduction(B) 

%initiate the current position k and maximum visited position kmax and 
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/~u(s). record the scalar product of two vectors as in S(i), for 1<= i <=n. 

k = 2; kmax = 1; b1 = B(:, 1); 

[m, n] size(B); mu = eye(n, n); S = zeros(1, n); S(1) sum(b1.*b1); 

BS zeros(m, n); BS(:, 1) = b1; U = eye(n, n); 

%step 4 in the algorithm: walking through all the column vectors. 

while k <= n 

%step 2 in the algorithm: check if we can work forward. 

if k > kmax 

end 

kmax = k; 

bk = B(:, k); 

bsk = bk; 

for j = 1: k-1 

mu(k, j) = sum(bk .*BS(:, j))/S(j); 

bsk bsk- mu(k, j)* BS(:, j); 

end 

BS ( : , k) = bsk; 

S(k) = sum(bsk .*bsk); 
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%step 3 in the algorithm: first execute reduction. 

if (abs(mu(k, k-1))-0.5) > 0 

end 

r = round(mu(k, k-1)); 

B(:, k) = B(:, k)- r * B(:, k-1); 

mu(k, k-1) = mu(k, k-1) - r; 

U(:, k) = U(:, k)- r * U(:, k-1); 

if k>2 

for j = i: k-2 

mu(k, j) = mu(k, j)- r * mu(k-i, j); 

end 

end 

%step3 in the algorithm: next check if we need do swap. 

if (0.75- mu(k, k-i) * mu(k, k-i)) * S(k-i) - S(k) > 0 

%if needed, then do the pairwise swap for b_k and b_{k-i}. 

tempi = B(:, k); 

B(:, k) = B(:, k-i); 

B(:, k-i) =tempi; 

%and the UK and Uk-i 

utemp = U(:, k-i); 
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U(:, k-1) = U(:, k); 

U(:, k) = utemp; 

temp= mu(k, k-1); 

if k>2 

for j = 1: k-2 

%exchange mu(k, j) with mu (k-1 , j) 

temp2 = mu(k, j); 

mu(k, j) = mu(k-1, j); 

mu(k-1, j) = temp2; 

end 

%change the orthognal basis k-1 first: 

vp = BS(:, k-1); %c_{k-1}~* = b_k~* + mu(k, k-1) b_{k-1}~* 

BS(:, k-1) = BS(:, k) + mu(k, k-1) * vp; 

tempS= S(k) +temp* temp* S(k-1); 

mu(k, k-1) = temp * S(k-1) I tempS; 

S(k) = S(k-1) * S(k)/tempS; 

S(k-1) = tempS; 

%then the kth orthognal vector: 
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else 

else 

end 

BS(:, k) = vp- mu(k, k-i) * BS(:, k-i); 

BS(:, k-i) =tempi; 

S(k-i) = sum(temp1 .*temp1); 

tempi = B(:, k); 

mu(k, k-i) = sum(tempi .*BS(:, k-i))/S(k-i); 

bsk =tempi- mu(k, k-i)*BS(:, k-i); 

BS(:, k) = bsk; 

S(k) = sum(bsk .*bsk); 

if k < kmax 

for i = k+1: kmax 

t = mu(i, k); 

mu(i, k) = mu(i, k-i) - temp*t; 

mu(i, k-i) = t + mu(k, k-i) * mu(i, k); 

end 

end 

k = max(2, k-1); 

if k > 2 
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end 

for d = k-2: -1: 1 

end 

end 

k = k+1; 

if abs(mu(k, d)) - 0.5 > 0 

r = round(mu(k, d)); 

end 

B(:, k) = B(:, k)- r * B(:, d); 

mu(k, d) = mu(k, d) - r; 

U(:, k) = U(:, k)- r * U(:, d); 

if d >1 

for q = 1: d-1 

mu(k, q) = mu(k, q) - r * mu(d, q); 

end 

end 

Q = BS; R = mu' ; 

%finally, it is easy to get the QR decomposition of the reduced base: 

for i=1 : n 

intermediate= sqrt(S(i)); 

Q(:, i) = Q(:, i)/intermediate; 
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R(i, :) = R(i, :)*intermediate; 

end 

'Y,mu 

%det(U) 
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The MLSD Algorithm Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo April 11 2008 

% 

%McMaster University, Department of Computing and Software 

% 

%Purpose: implement Maximum likelihood sphere decoding algorithm 

% 

%Inputs: 

% 

% 

% 

% 

% 

%Output: 

% 

% 

dets: received signal vecto with all entries are real 

the vector must be a column vector 

r: initial searching radius for the sublattice 

H: channel matrix 

S: sub-lattice space with all potential solutions 

time: the time used to run the SD algorithm 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [S, time] = mlsd(dets, H, r) 
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%initial the beginning time: 

time = cputime; 

%S is a matrix memorizing the s_k(s) at each step of k, from s_m 

%to s_1. Initialized as empty in case there is no solution at all 

s = []; 

[n, m] = size(H); 

%check if the demensions are right 

if abs(n-length(dets))>O 

disp(' Incorrect demensions ') 

time = 0; 

return; 

end 

%Then we do the QR factorization. 

[Q, M] = qr (H) ; 

%dets dets - noise; 

%start the MLSD here ... 
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%Seperate the Q = [Q1, Q2]: Q1 is first m orthonormal columns 

%Q2 is last n-m orthonormal columns of Q. And take the m by 

'l~ upper triangular matrix R from theM-- Q2 might be empty. 

Q1 Q(:, 1:m); 

Q2 Q(:, m+1:n); 

R = M(1:m, :) ; 

%check if r_(k, k)>O, if not, change the signs of all elements 

%in kth row in Rand hence the kth column's sign in Q1. 

for j = 1:m 

end 

if R(j, j) < 0 

end 

R(j, j:m) = -R(j, j:m); 

Q1(:, j) = -Q(:, j); 

%Set all the variables initial values. 

Y = Q1' * dets; % Y is an m by 1 matrix. 

k = m; 

%Generate matrices to store intermeditate and final values. 

%R_k stores all r'_k(s) andY stores all y_k(s). 

R_k = zeros(m, 1); 
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R_k(m, 1) = sqrt(r~2- norm(Q2' * dets, 2)~2); 

Y_k = zeros(m+1, m+1); 

Y_k(m, m+1) = Y(m, 1); 

UBs_k = NaN(m, 1); 

%Using S_k to memorize all values from s 2 to s_m. 

S_k = NaN(m, 1); 

%code for the algorithm: 

while k <= m 

if R(k, k) == 0 

else 

end 

disp(' round off error is too large 

to calculate the solution ') 

break; 

UBs_k(k, 1) = floor((R_k(k, 1)+Y_k(k, k+1))/R(k,k)); 

sk = ceil((Y_k(k, k+1) - R_k(k, 1))/R(k, k)) - 1; 

while 1 

sk = sk + 1; 

if sk <= UBs_k(k, 1) 
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else 

end 

end 

S_k(k, 1) = sk; 

if k == 1 

else 

end 

S = [S S_k]; 

k = k - 1; 

temp = 0; 

for j = (k+1):m 

temp= temp+ R(k, j) * S_k(j, 1); 

end 

Y_k(k, k+1) = Y(k, 1) - temp; 

R_k(k, 1) = sqrt((R_k(k+1, 1))~2 -

(Y_k(k+1, k+2) - R(k+1, k+1)*S_k(k+1, 1))~2); 

break; 

k = k +1; 

if k > m 

break; %now, we've got back to the "root". 

else 

sk = S_k(k, 1); 

end 

113 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

%break; 

end 

time cputime - time; 
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The LRSD Algorithm Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo April. 11 2008 

% 

%McMaster University, Department of Computing and Software 

% 

%Purpose: implement LLL reduction aided sphere decoding 

% algorithm 

% 

%Inputs: 

% 

% 

% 

% 

%Output: 

% 

% 

% 

dets: received signal vecto with all entries are real 

the vector must be a column vector 

H: channel matrix 

S: the sub-lattice space containing all the potential 

solutions time: the time used to run the SD 

algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [S, time] = lrsd(dets, H) 
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%initial the beginning time: 

time = cputime; 

%S is a matrix memorizeing s_k(s) at each step of k, from s_m 

%to s_1. Initialized empty in case there is no solution at all 

s = []; 

%dets = dets - noise; 

[n, m] = size(H); 

%check if the demensions are right 

if abs(n-length(dets))>O 

end 

disp(' Incorrect demensions ') 

time = 0; 

return; 

%Do LLL reduction to get QR decomposition of the reduced basis 

[B, Q, R, U] = LLLReduction(H); 

%find the largest vector in the basis 

r = norm(B(:, 1), 2); 
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for i = 2:m 

end 

temp norm(B(:, i), 2); 

if r < temp 

r = temp; 

end 

%r = r/2; 

%start the LRSD here ... 

%Set all the variables initial values. 

Y Q' * dets; % Y is an m by 1 matrix. 

k = m; 

%Generate matrices to store intermeditate and final values. 

%R_k stores all r'_k(s) andY stores all y_k(s). 

R_k = zeros(m, 1); 

R_k(m, 1) = sqrt(r~2- norm(dets, 2)-2 + norm(Q' * dets, 2)-2); 

Y_k = zeros(m+1, m+1); 

Y_k(m, m+1) = Y(m, 1); 

UBs_k = NaN(m, 1); 

%Using S k to memorize all values from s 2 to s_m. 
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S_k = NaN(m, 1); 

%code for the algorithm: 

while k <= m 

if R(k, k) == 0 

else 

end 

disp(' round off error is too 

large to calculate the solution ') 

break; 

UBs_k(k, 1)=floor((R_k(k, 1)+Y_k(k,k+1))/R(k,k)); 

sk=ceil((Y_k(k,k+1)-R_k(k,1))/R(k,k)) - 1; 

while 1 

sk = sk + 1; 

if sk <= UBs_k(k, 1) 

S_k(k, 1) = sk; 

if k == 1 

else 

S = [S S_k]; 

k = k - 1; 

temp = 0; 
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else 

end 

end 

%break; 

end 

for j = (k+1):m 

temp= temp+ R(k, j) * S_k(j, 1); 

end 

Y_k(k, k+1) = Y(k, 1) - temp; 

R_k(k, 1) = sqrt((R_k(k+1, 1))-2 -

(Y_k(k+1,k+2)-R(k+1,k+1)*S_k(k+1,1))-2); 

break; 

k = k +1; 

if k > m 

break; %now, we've got back to the 11 root 11
• 

else 

sk S_k(k, 1); 

end 

%To find the solution via u--1 * z as in the algorithm 

time cputime - time; 

119 



Master Thesis - Jin Cai Guo- McMaster- Computing and Software 

if isequal(S, []) 

return; 

else 

S = inv(U)*S; 

end 
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The Optimal Solution Standard Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo, April 11, 2008 

% 

%McMaster University, Department of Computing and Software 

% 

%Purpose: Choose an optimal solution from a given sublattice 

% 

%Inputs: 

% 

% 

% 

% 

%Output: 

% 

S: the sublattice points to choose from 

H: channel matrix 

dets: the detected signal 

signal: single vector represents optimal solution 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%this function is to check the 11 optimal 11 solutions inside a 

%sublattice. it choose a lattice point such that Hs-v is 

'l~inimized and is from the L-PAM 
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%here in particular is 4-PAM or 8-PAM. 

function signal = optimalsoln(S, H, dets) 

[m, n] = size(S); 

[mh, nh] = size(H); 

if abs(m-nh) > 0 I n == 0 

signal= zeros(m, 1); 

return; 

end 

%choose signals from L-PAM constellation contained in this 

%sublattice 

sublattice [] ; 

switch m 

case 4 

for i=1 :n 

%check each column's entries 

signal= S(:, i); 

%set a flag to indicate if need to add this signal 

flag 1• , 
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end 

case 8 

for j=i :m 

end 

temp= signal(j, i); 

tempi= abs(temp); 

if tempi == i I tempi == 3 

%test if the entries from 4-PAM 

signal(j, i) =temp; 

else 

end 

flag 0; 

break; 

%if we have come to the last 

if flag == i 

sub lattice [sublattice signal]; 

end 

for i=i:n 

%check each column's entries 

signal= S(:, i); 

%set a flag to indicate if need to add this signal 
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flag = i; 

for j=i :m 

end 

temp= signal(j, i); 

tempi= abs(temp); 

%test if the entries from 4-PAM or 8-PAM 

if tempi== iltempi == 3ltempi == 5ltempi==7 

signal(j, i) =temp; 

else 

end 

flag = 0; 

break; 

%if we have come to the last 

if flag == i 

end 

end 

otherwise 

sub lattice [sublattice signal]; 

disp(' This is not a 4-PAM or 8-PAM ! ! ! ') 

return; 

124 



Master Thesis - Jin Cai Guo -McMaster- Computing and Software 

%choose optimal solution by the ML 

[ms, ns] = size(sublattice); 

%if no solution in the sublattice, then return a 0 vector 

if ns == 0 

signal zeros (m, 1); 

return; 

end 

%otherwise we find the optimal one 

if ns == 1 

signal sublattice; 

return; 

else 

signal= sublattice(:, 1); 

current= norm((H*sublattice(:, 1)- dets), 2); 

end 

for i=2 : ns 

hypersig = sublattice(:, i); 

temp= norm((H*hypersig- dets), 2); 

if temp < current 
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signal = hypersig; 

end 

end 
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Random Signal Generator Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo, April 11, 2008 

% 

%McMaster University, Dept. of computing and software 

% 

%Purpose: generate a random signal from either 4-PAM 

% 

'l. 

%Input: 

or 8-PAM constellation, i.e. {-+1, -+3, -+5, -+7} 

% m: m=4 or m=8, otherwise an error message displayed 

% 

%Output: 

% signal: a column vector with length either 4 or 8 

% and entries from the correspondent constellation 

% 

%Precondition: m=4 or m=8 

%Postcondition: a column vector signal with lenthg 4 or 8 

% 

%Note: the precodition is not checked in this program, it 

% is considered the tester has made sure precodition 

% is met 
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% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function signal = signalGenerator(m) 

%if it is a 4-PAM constellation, i.e. m=4: 

signal= mod(round(m*rand(m, 1)), m); 

for i=1 : m 

switch signal(i, 1) 

case 0 

signal(i, 1) = 3; 

case 1 

signal(i, 1) = 1; 

case 2 

signal(i, 1) = -1; 

case 3 

signal(i, 1) = -3; 

case 4 

signal(i, 1) = 5• 
' 

case 5 

signal(i, 1) -5; 

case 6 

128 



Master Thesis- Jin Cai Guo- McMaster- Computing and Software 

signal(i, 1) = -7; 

case 7 

signal(i, 1) 7· 
' 

otherwise 

disp('something is wrong') 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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The Main Test Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin Cai Guo, April 11, 2008 

% 

%McMaster University, Department of Computing and Software 

% 

%Purpose: compare the Maximum Likelihood Sphere Decoding 

% 

% 

% 

%Inputs: 

% 

% 

% 

% 

% 

% 

%Outputs: 

% 

% 

% 

% 

performance with that of LLL reduction aided 

sphere decoding's 

m: transmitted signal length, m=4 or m=8 when use 

4-PAM or 8-PAM respectively 

L: channel order 

snr: signal to noise ratio 

pr: probability needed to find the optimal solution 

serML: symbol error rate using Maximum Likelihood 

Sphere Decoding algorithm 

serLR: symbol error rate using LLL reduction aided 

Sphere Decoding algorithm 
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timeML: time used by Maximum Likelihood Sphere 

Decoding algorithm to find optimal solution 

timeLR: time used by LLL reduction aided Sphere 

Decoding algorithm to find optimal solution 

%Precodition: m=4 or m=8 for 4-PAM or 8-PAM respectively, 

% iniRadius is obtained throught the probability 

% 

% 

table with degree of freedom set as 3 and 

probability can only be (0.95 - 0.99) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[serML,serLR,timeML,timeLR]=finaltest(m, L, snr, pr) 

%generate the channel matrix 

h = randn(L, 1); 

n = L + m - 1; 

H zeros(n, m); 

for i = l:m 

H(i: i+L-1, i) = h; 

end 
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%find scalar to satisfy the power constrain function 

%constellation, i.e. 4-PAM or 8-PAm 

switch m 

case 4 

seal 1/sqrt(5); 

case 8 

seal 1/sqrt(21); 

otherwise 

ser1 = []; 

timeML = []; 

disp(' Undefined PAM constellation ') 

return; 

end 

%calculate the initial searching radius 

if pr >= 0.99 

iniRadius = 3.7817; 

else if pr >= 0.975 

iniRadius = 3.116; 

else 

iniRadius = 2.605; 

end 
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end 

r = sqrt(iniRadius); 

%run both algorithms 10,000 times to find the SER and 

%average time for different randomly generated signal 

%from 4-PAM or 8-PAM and Gaussian noise 

countML O· 
' 

countLR O· 
' 

timeML o· 
' 

timeLR = 0; 

for i=1 1000 

clear noise signal dets s1 s2 SML SLR; 

switch m 

case 4 

signal signalGenerator(m); 

case 8 

signal signalGenerator(m); 

otherwise 

serML = 0; 
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disp(' Undefined PAM constellation ') 

return; 

end 

noise= randn(n, 1)/((10-(snr/10))*scal); 

%noise= zeros(n, 1); 

%calculate the hypothetical received signal 

dets = H*signal + noise; 

%use the MLSD to solve the transmitted symbols 

[SML, time1] = mlsd(dets, H, r); 

s1 = optimalsoln(SML, H, dets); 

timeML = timeML + time1; 

if isequal(s1, signal) 

countML = countML + 1; 

end 

%use LLL reduction aided SD solve transmitted symbols 

[SLR, time2] = lrsd(dets, H); 

s2 = optimalsoln(SLR, H, dets); 

timeLR = timeLR + time2; 
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end 

if isequal(s2, signal) 

countLR = countLR + 1; 

end 

serML = 1 - countML/1000; 

serLR 1 - countLR/1000; 

%average time spend 

timeML = timeML/1000; 

timeLR = timeLR/1000; 
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The Graph Plot Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Author: Jin cai Guo April 11, 2008 

% 

%Purpose: plot the SER and efficiency comparison graph 

% 

%Input: 

% sr: the single row vector contains the SNR values 

% pr: probability you want to test on 

% 

%Output: 

% SER performance graph of MLSD and LRSD 

% Efficiency performance graph of MLSD and LRSD 

% 

%Note: the efficiency graph in terms of time spend in ms 

% has been commented off, but can be turned back. 

% 

%precodition: the pr can only be (0.95 - 0.99) 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function graphplot(sr, pr) 
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n length(sr); 

%y-axis 

%Y1 = zeros(1, n); 

%Y2 = zeros(1, n); 

21 zeros(1, n); 

22 zeros(1, n); 

for i=1:n 

end 

clear serML serLR timeML timeLR; 

[serML,serLR,timeML,timeLR]=finaltest(4,3,sr(i),pr); 

%Y1(1, i) = serML; 

21(1, i) = timeML; 

%Y2(1, i) = serLR; 

22(1, i) = timeLR; 

%plot(sr,Y1,'--rs','LineWidth',1) 

%hold all 

%plot(sr,Y2, '-gs','LineWidth',2) 

%xlabel (' SNR') 
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%ylabel( 'SER') 

%title('SER performance of MLSD and LRSD') 

plot(sr,Z1,'--rs','LineWidth',1) 

hold all 

plot(sr,Z2, '-gs','LineWidth',2) 

xlabel ( 'SNR' ) 

ylabel('TIME (/ms)') 

title('Efficiency (TIME) performance of MLSD and LRSD') 
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