
COMPARISON BETWEEN AFFYMETRIX 

AND ILLUMINA GENE EXPRESSION 


MICROARRAY PLATFORMS 




COMPARISON BETWEEN AFFYMETRIX 

AND ILLUMINA GENE EXPRESSION 


MICROARRAY PLATFORMS 


By 


YIQIANG LUO, B.SC. 


A Thesis 


Submitted to the School of Graduate Studies 


in Partial Fulfilment of the Requirements 


for the Degree 


Master of Science 


McMaster University 


@Copyright Yiqiang Luo, June 2007 




MASTER OF SCIENCE (2007) McMaster University 

(Statistics) Hamilton, Ontario 

TITLE: 

AUTHOR: 

SUPERVISOR: 

NUMBER OF PAGES: 

Comparison Between Affymetrix And Illu­

mina Gene Expression Microarray Platforms 

Yiqiang Luo, B.Sc. 

(McMaster University) 

Dr. Angelo Canty 

(McMaster University) 

xiii , 88 

11 



Abstract 

DNA microarray technology is an exploratory tool that can be used to measure thou­

sands of gene expression values simultaneously. Many different microarray platforms 

have been developed. Various studies have shown that the same experiment performed 

in different laboratories using the same or different microarray platforms sometimes 

produce very different results. The lack of reproducibility is becoming a major chal­

lenge when comparing the microarray experiments across different labs and different 

platforms. 

Our study is focused on the cross-platform reproducibility between the Affymetrix 

GeneChip and Illumina BeadChip using two rodent experimental models for Type-1 

diabetes. Within-platform reproducibility is also checked for the Illumina platform. 

Comparisons are carried between the two platforms in terms of the physical array 

features , the data quality and the chip effects, and finally the SAM analysis . Our 

study suggested that the overall comparability between these two platforms is fairly 

poor, however some findings are promising and the results show some agreement with 

the conclusions found in Barnes et al. (2005). 
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Chapter 1 

Background 

DNA microarray technology has been widely applied as a tool in scientific research, 

especially in biotechnology and pharmaceutical applications. It gives us the ability 

to look at the gene expression profile - the expression pattern of tens of thousands of 

genes of a given tissue at a given time. This large-scale, high-throughput approach 

dramatically boosted the pace of biological research. 

Microarray technology is still at an early stage of development. Being an inter­

disciplinary science, it requires collaboration from other related disciplines such as 

bioinformatics and statistics to borrow the computational power and innovated method­

ology for microarray data analysis. Compared to the hardware development of the 

array platform itself, the software support from these co-disciplines is becoming more 

and more important. Biostatisticians need more sophisticated and robust data anal­

ysis methodology to deal with the challenges that arise from various applications and 

array platforms. One big challenge in microarray experiment is the lack of compa­

rability or reproducibility between studies from different laboratories and different 

microarray platforms, see Irizarry et al. (2005). The first discordance was reported 
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in Kuo et al. (2002). It has been shown that, even within the same platform but 

different versions of the same array products, it could generate very different data 

and results in terms of detecting the differentially expressed genes, see Shoemaker and 

Lin (2005). This reproducibility issue must be verified and better understood when 

we try to interpret and compare the results from different researchers and different 

microarray platforms. 

This chapter gives the background review to prepare the reader with basic genetic 

knowledge and the statistical methods that are required in this thesis. The basic 

biology concepts will be introduced in Section 1.1. Section 1.2 will introduce the 

physical and annotational features and the comparisons of some major gene expression 

microarray platforms. Section 1.3 describes the experiments that were performed. 

Section 1.4 will give the statistical methodologies that have been applied in the data 

analyses. 

1.1 Protein, DNA, Genes and Gene Expression 

Watson and Crick first proposed the double-helix structure of the Deoxyribonucleic 

Acid (DNA) in 1953. DNA is a long polymer composed of simple units called nu­

cleotides (See Figure 1.1). The nucleotides on one strand are linked to each other by 

phosphodiester bonds, while between the two strands of the helix, the nucleotides are 

linked together by the hydrogen bonds between the bases. There are only four bases 

found in DNA, namely, adenine (abbreviated as A) , cytosine (C), guanine (G) and 

thymine (T). Each type of base on one strand forms a bond with just one type of 

base on the other strand, that is, A with G and C with T. This is called the Watson­

Crick complementary base-pairing rule. This one-to-one complementary relationship 
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controls the DNA duplication that makes it possible for the genetic information to 

be passed onto the next generation. The sequence information on DNA is vital for 

the gene expression process which also inspired the DNA microarray technology. 

Gene expression is a process whereby DNA sequences are converted into functional 

proteins. It is a multiple-step process that begins with "transcription", when DNA 

is transcribed to RNAs (including mRNA, tRNA and other RNAs). The next step 

is called "translation", in which mRNAs are used as a template to form strings of 

amino acid as the material to assemble the actual proteins. The assembling is precisely 

performed according to certain protein coding rules that are "installed" in the DNA 

sequences. Genes are the particular DNA segments coded with above rule information 

that are responsible for the particular protein synthesis. Knowing this, we say gene 

expression actually studies the abundance of the transcribed mRN As in a biological 

system at a certain condition. 

1.2 	 Gene Expression Profiling DNA Microarray 

Platforms 

Compared to the early stage of molecular biology experiment, for example the South­

ern blotting and Northern blotting that work in a "one gene at a time" manner, 

gene expression profiling microarray platforms put tens of thousands of genes in one 

single array/chip. Using a library of probe sequence created by some genome se­

quencing projects, it allows us to look at the overall expression profile of all those 

genes and their interactions at a given time and under given conditions. For instance, 

one can compare gene expression between the normal and diseased cells to find the 
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Figure 1.1: The double helix structure of the DNA. The nucleotides on one strand are 

linked to each other by the phosphodiester (P) bonds. Between the backbone of strands 

are the base pairs of adenine (A) with thymine (T) and cytosine (C) with guanine 

(G). The figure comes from the slides of "Introduction to Genome Biology" presented 

by Sandrine Dudoit and Robert Gentleman at Bioconductor Short Course 2003. 
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differentially expressed genes between two conditions. 

DNA microarray technology has been evolving from Southern blotting methodol­

ogy for almost two decades. Many companies are producing their own commercial 

array platforms using different designs and materials. But despite these manufac­

turer differences , it has two major categories: One is the "spotted" microarray, also 

called two-channel or two-colour microarray. Here colour is referred to the different 

fluorescent signal of Cy3 and Cy5. The other one is oligonucleotide or single-channel 

microarray. The major difference between these two platforms is that, the first array 

hybridizes two biological samples onto the same array such that two fluorescent colors 

are required to distinguish them during the image processing, while the second array 

only hybridizes one biological sample on each array. 

Oligonucleotide DNA microarrays can be further divided into two subgroups: The 

long oligonucleotide arrays, whose probes are composed of 60-mer or 50-mer DNA 

sequences (e.g., Illumina Beadarray) , and short oligonucleotide arrays that use 25­

mer (e.g., Affymetrix GeneChip) or 30-mer of probe sequence design. 

Among these gene expression profiling microarray platforms, Affymetrix GeneChip 

and Illumina BeadChip are two major ones. Especially for Affymetrix GeneChip, it 

has been trusted by many researchers and laboratories and various commercial soft­

ware packages have been developed to deal with the GeneChip data. Compared to 

Affymetrix GeneChip, Illumina BeadChip is a relatively new and promising array 

technology which is becoming more and more popular because of its many special 

features. The following sections discuss the physical and technical features and the 

differences between these two microarray platforms. 
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1.2.1 Affymetrix GeneChip™ Platform 

Affymetrix GeneChip uses technology similar to that used in computer silicon chip 

manufacturing. But instead of masking the silicon material on the array surface, 

Affymetrix uses masks and photolithographic process to control the oligonucleotide 

synthesis on the glass/plastic array surface. For the probe design, "in situ" 25­

mer oligonucleotide gene-specific probes are used, more specifically, probe sets that 

constructed by 11 to 20 different probe pairs are used to match different genes. The 

probe pair design including one mismatch (MM) probe and one perfect match (PM) 

probe. The MM probe is used to control non-specific bindings during hybridization. 

One special feature of GeneChip array is that, each probe pair is attached to a 

predefined location on the array surface. Figure 1.2 illustrates the structure of the 

GeneChip and the hybridization mechanism and the laser scanned image. In our 

experiments, Affymetrix "Mouse430 v2" and rat "RAE230 v2" GeneChips are used 

for the mouse and rat experiments respectively. 

1.2.2 lllumina Sentrix™ BeadChip Platform 

Compared to Affymetrix GeneChip platform, Illumina's BeadChip is a relatively new 

technology using different assays and designs. We used "Mouse_Ref-8_v1" and rat 

"RatRef-12_v1" BeadChips in our mouse and rat experiments respectively. 

Figure 1.3 illustrates the probe design of the Illumina BeadChip. Instead of us­

ing 25-mer "in situ" RNA sequences that attached to predefined locations, Beadarray 

immobilizes standard 50-mer long oligonucleotide probes along with a 29-mer address 

sequence onto the 3p,m silica microbeads. For each gene-specific long oligonucleotide 

probe (probe/bead type), the number of bead is a random variable with a mean 
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Figure 1.2: An illustration of structure and design of the Affymetrix GeneChip 

(oligonucleotide) array. The figure comes from the slides of "DNA Microarray Data 

Oligonucleotide Arrays" presented by Sandrine Dudoit, Robert Gentleman, Rafael 

Irizarry and Yee Hwa Yang at Bioconductor Short Course 2003. 
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equals to 30. With these "internal replicate", trimmed mean values are calculated 

for the gene-specific probes as the gene expression value, see Kuhn et al. (2004) for 

more details. This redundancy ensures the statistical accuracy and robustness in 

gene expression measurements. According to Illumina documentation, it is found 

that the 50-mer long gene-specific oligonucleotide showed superior performance than 

the GeneChip 25-mer probe sequence sets. Another feature of the Illumina Bead Chip 

is that all arrays are randomly assembled. All different bead types come from a mas­

ter beads pool and then randomly placed onto the wells on the array substrate (see 

Figure 1.4). This randomness minimizes the effects of spatially localized artifacts , 

besides, the beads pool can be customer designed and so adjustable from application 

to application. Also because of the randomness, all probes need to be identified in 

order to get the gene expression data. This is done by a procedure called decoding, 

in which the address sequence information of each bead type is decoded and trans­

lated into (X, Y) co-ordinates by some algorithm in Gunderson et al. (2004). Instead 

of using MM and PM probe set design, Illumina Beadarray uses "negative control" 

and other quality control probes. In addition to the above, another important and 

innovative feature of BeadChip platform is its packaging design, it packs multiple 

(6-12) Beadarrays on each single BeadChip, which indicates that hybridization and 

other processes are performed in a parallel manner for all Beadarrays on the same 

chip, while in the Affymetrix experiment , all GeneChips are processed separately and 

individually. In all , as mentioned in Steemers and Gunderson (2005) , the Illumina 

BeadChip platform "enables parallel interrogation of multiple whole genomes or fo­

cused sets of target genes across large sample populations with low cost per sample". 

For more details about Illumina Sentrix™ technology please refer to Kuhn et al. 

(2004); Illumina (2004, 2005a,b). 
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Figure 1.3: Illustration of the probe design of Illumina direct hybridization assay 

technology. The figure comes from Illumina website (www.illumina.com). 
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Figure 1.4: The Illumina BeadChip design of two patterned substrate formats: the 

Sentrix Array Matrix consisting of 96 optical fiber bundles with 50,000 wells created 

by acid etching, and the Sentrix BeadChip created using a MEMS-patterned slide 

substrate. Oligonucleotide are individually immobilized on each bead type, which are 

subsequently pooled. Bead pools are self-assembled into the patterned substrate, and 

decoding is performed to determine the identity and location of each bead type. The 

figure comes from Illumina company profile by Steemers and Gunderson (2005). 
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1.2.3 Physical and Annotational Differences Between Affymetrix 

GeneChip and Illumina BeadChip Platforms 

In Table 1.1, we summarize the major physical and annotational differences between 

the Illumina BeadChip and the Affymetrix GeneChip arrays used in our mouse and 

rat experiments. 

The physical differences in probe design and array packaging have been discussed 

in previous sections. The rest of this section shows the annotational differences be­

tween the two platforms. 

We applied the Illumina annotation file provided by the company. Table 1.1 

illustrates that the "Mouse_Ref-8_v1" BeadChip employs a design of 24049 different 

type of probes that map to 18241 unique known mouse genes, also according to the 

manufacturer 's annotation file, each array on the "RatRef-12_v1" BeadChip has a 

total of 22523 type of probes which map to 21909 unique known rat genes. 

For the GeneChip platform, the annotation is based on the package from Bio­

conductor, where the mappings are based on latest data (2007 April, by the time of 

analysis) provided by Entrez Gene (ftp: / / ftp.ncbi.nlm.nih.govjgene/DATA/). The 

library of "Mouse430 v2" GeneChip includes 45102 probe sets in total, which map 

to 20958 unique known genes. The rat "RAE230 v2" library consists of 31099 probe 

sets in total and 14295 unique known genes mapped. 
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Physical Features 


Affymetrix GeneChip Illumina BeadChip 

Probe (set) Design uses 11-20 probe pairs (MM and 

PM) of 25-mer "in situ" short­

oligonucleotide for each gene 

uses 30 copies of same probes of 50­

mer standard long-oligonucleotide 

for each gene 

Physical Attachment predefined location for each probe 

set 

probes are randomly allocated (de­

coding process required) 

Array Packaging one array per GeneChip multiple arrays per BeadChip 

Per Array Cost relatively more expensive relatively cheaper 

Annotations 


"Mouse430v2.0" GeneChip "MouseRef-8 v1" BeadChip 

Number of probes (sets) 45102 24049 

Number of annotated 

probes (sets) 

41382 (91.75%) 23821 (99.05%) 

Number of unique genes 20958 18241 

"RAE230 v2" GeneChip "RatRef-12 v1" BeadChip 

Number of probes (sets) 31099 22523 

Number of annotated 

probes (sets) 

22657 (72.85%) 22326 (99.13%) 

Number of unique genes 14295 21909 

Table 1.1: The physical and annotational differences between the Affymetrix Gene Chip 

and Illumina BeadChip microarray platform. 
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1.3 Description of Microarray Experiments 

1.3.1 Mouse Experiment 

In our Type-1 diabetes (T1D) mouse model, two parental strains of mice are used, 

which are the Non-Obese Resistant (NOR) and Non-Obese Diabetic (NOD) mice. 

The biological interest focuses on the Idd5 locus on the mouse genome, and the 

question is: how does this genetic locus contribute to T1D? Microarray experiments 

are designed using the NOD.NOR-Idd5 congenic and the NOD mice to show the 

difference in their gene expression profiling. The congenic mice are bred from the two 

original parental strains through multiple back-crosses to the background parental 

strains. After a number of generations , the NOD.NOR-Idd5 congenic mice have such 

a purified genome like the NOD parental mice that the only difference in their genomes 

is at the Idd5 locus, which includes only dozens of annotated genes. The mouse 

microarray experiments use four biological replicates either from the NOD.NOR-Idd5 

single congenic strain or the NOD mice strain. Two technical replicates BeadChips 

are prepared, namely, each replicate BeadChip has eight arrays, four of which are 

from the congenic strain and the other four are from the NOD strain. 

1.3.2 Rat Experiment 

In our T1D rat model, two strains of rat called BB and BB7B are used in our rat 

model. BB7B rat is a double congenic strain on a BB background with the different 

loci on chromosomes 8 and 13 coming from a WF (Wistar-Firth) rat. Again, we 

are trying to answer the same question: how different is the gene expression profile 

(especially for genes on those loci) across the two rat strains? The rat microarray 
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experiment design uses three biological replicates from either the BB7B or the BB rat 

strain, and two technical replicate BeadChips are prepared. Notice that, compared to 

the mouse model, the BB7B double congenic rat strain has a relatively wider genome 

region of interest than the single Idd5 locus of the mouse model. More specifically, 

the rat model contains more annotated genes that are expected to be differentially 

expressed than the mouse model. 

The objective of the experiments is to find a list of most differentially expressed 

genes between these two mouse or rat strains. The technical replicates are used to 

investigate the reproducibility within the Illumina platform. For the cross-platform 

comparison, we will examine the lists of differentially expressed genes produced using 

the Illumina and Affymetrix microarray platforms. 

1.4 Statistical Analysis 

In the early stage of microarray data analysis, the statistical analyses stayed in a 

"one-gene-at-a-time" paradigm. All you needed to know was the two-sample t-test 

or some other "t-like" tests. However , when it comes to microarray data analysis, 

instead of testing one gene, we are testing tens of thousands of genes, which means 

we are dealing with a family of tens of thousands of t-tests simultaneously. This is 

exactly the setup of a multiple hypothesis testing problem that will be discussed in 

Section 1.4.3. 

Some other statistical analyses are used for microarray data quality assessment , 

for example cluster analysis, which will be discussed in Section 1.4.2. 

Sample size in microarray experiments is another problem in statistical analysis. 

Microarray experiments are expensive, so doing a large number of biological repli­
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cates is not feasible due to resource limitations. To achieve the maximum statistical 

reliability and robustness, permutation and/ or Bayesian techniques (not discussed in 

this thesis) are required. 

1.4.1 Gene Expression Data and Data Preprocessing 

All raw microarray data have to be preprocessed before further statistical analysis. 

Preprocessing is a three-stage procedure including background correction, normaliza­

tion, and summarization. In the following sections we will briefly discuss the robust 

multi-array average (RMA) and the quantile normalization methods used in our anal­

ysis, both methods are described in Irizarry et al. (2003). 

Normalization is an important step in microarray data analysis. In general, all 

normalization algorithms are designed to remove variation of non-biological noise and 

systematic artifacts within or between arrays so that their values can be made com­

parable. All forms of normalization achieve this goal by making assumptions about 

the experimental samples and adjusting their values in a way that would factor out 

intensity changes arising from experimental variation without affecting the true bio­

logical differences. Knowing this, one has to be careful when applying normalization 

methods and make sure to understand the underlying assumptions of each method 

and to decide if they apply in the case of your experiment. 

Under the assumption of our rodent models, that most probes are not differentially 

expressed, the distributions of the expression data are expected to be similar across 

the arrays. The simplest method works just by multiplying each array by a constant 

to make the mean (median) intensity same for each individual array. Other methods 

like quantile normalization proposed by Bolstad (2001) can deal with non-linearity 
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quite well. The algorithm assumes that there is an underlying common distribution 

of intensities across the arrays. The algorithm first ranks all intensities inside each 

array/data set, then average intensity per rank is calculated across the arrays and the 

intensities for each data set are then recalculated according to the original ranking. 

This method recalculates the intensities in each array according to the original ranking 

and also makes sure that all arrays have the same quantile distribution across different 

arrays. More discussion of normalization methods and other preprocessing methods 

can be found in Yang (2006), Bolstad et al. (2003) and Irizarry et al. (2003). 

First proposed by Irizarry et al. (2003), robust multi-array average (RMA) is a 

preprocessing method particularly designed for Affymetrix GeneChip data. It sum­

marizes the expression data using the background-corrected, normalized, and log­

transformed PM values on GeneChips. The normalization method we used in RMA 

is the default quantile normalization that proposed by Bolstad et al. (2003). More 

details about the RMA method can be found in Irizarry et al. (2003). 

In our study we only deal with the summary data produced from the platform 

software such as the RMA for Affymetrix and Beadstudio software for Illumina data. 

More specifically, in our analyses, Affymetrix GeneChip "CEL" raw data are pre­

processed to produce the summary data using the RMA methods. The BeadChip 

summary data are produced from the Beadstudio software, and the quantile normal­

ization is then applied to both the Affymetrix and BeadChip summary data. 

After the preprocessing, all DNA microarray data has a matrix format of J x n 

gene expression values, where J represents the total number of probes (or probe sets) 

that were represented in one single array and n represents the number of samples or 

replicates used in the experiment. 
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1.4.2 	 Array and Data Quality Assessment Using Graphical 

Diagnostic Plots 

Data quality is an important issue in the microarray experiment because there are 

many sources of variation that can introduce bias into microarray data. The data 

quality assessment can be performed before or after the preprocessing step. 

The graphical diagnostic plots, such as the "XY" plot, "MA" plot, histograms and 

box plot are often used in microarray data analysis to visually check the overall data 

quality before and after the normalization. Like the XY scatter plot that plots theY­

values (expression values from array 2) on theY-axes against the X-value (expression 

values from array 1) on the X-axes, MA plot replaces X-values with A-values on the 

horizontal axes and M-values on the vertical axes instead of using theY-values, where 

the A-values and M-values are the average and difference of the expression values of 

the two arrays which can be defined in the following formulae. Besides, the axes of 

MA plot can be transformed by some scalar function like log2 . 

In oligonucleotide DNA array, the values of Mi and A for each probe i could be 

calculated by the formulae: 

Mi = log2(Eii) -log2(Ei2) 


Ai = ~(log2 (Eil) + log2(Ei2)) 


Where Ei1 and Ei2 are the expression intensity of probe or probe set i on array 1 and 

array 2 respectively. 

By the above definition, the MA plot shows the difference of the log-intensity 

against their average for each probe (set) on two individual arrays. If two arrays are 

very similar to each other, we would expect to see a MA plot such that all points are 

centered around the zero horizontal line (because M values are near zero). Meanwhile, 
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all points on the XY plots should be all centered around the Y = X line. These scatter 

plots can be used to diagnose problems such as bias between arrays, etc. 

Cluster analysis is a common statistical technique to classify or partition the 

whole data set into several subgroups according to some predefined distance metric. 

In gene pattern discovery, hierarchical clustering is the most commonly used technique 

for extracting the underlying gene cluster structure. The traditional representation 

of this hierarchical relationship is a tree diagram called the cluster dendrogram as 

illustrated in Figure 2.4. It groups the most similar individual elements (leaves) 

at one end and a single cluster (root) containing every element at the other using 

certain distance metric. The algorithm builds (agglomerative) or breaks up (divisive) 

a hierarchy of clusters, more specifically, divisive algorithm begins at the top of the 

tree, whereas agglomerative algorithm starts at the bottom to construct the clusters. 

The most commonly used distance metrics in gene expression hierarchical clustering 

are the Euclidean distance and 1 - p, where pis the Pearson's correlation coefficient 

measurement. Other distance metrics are also available. We used the Euclidean 

distance as the distance metric in our analysis for its familiarity to the biologists. 

More discussion of hierarchical clustering can be found in Arabie et al. (1996). 

1.4.3 	 Evaluating Differential Expression (DE) - Multiple Hy­

pothesis Testing 

The problem of Traditional Statistical Hypothesis Testing - "t-test" As 

ment ioned previously, the common objective of the microarray experiment is to iden­

t ify the differentially expressed genes across two biological conditions. 

The traditional procedure of selecting differentially expressed genes uses the t-test 
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to test the underlying null hypothesis: 

Ho,i : gene i is not differentially expressed across the two biological conditions 

Conventional t-statistic and other modified t-like test statistics are applied to log­

expression values for each gene and a p-value can be found for each gene. The next 

step is to choose a significance level for the p-values (e.g., p < 0.05) according to the 

study objective. But this approach could be problematic sometimes as we will discuss 

in the following sections. 

In microarray data analysis, it is essentially a multiple hypothesis testing problem 

that can be described as in Table 1.2. For a total of m individual hypothesis tests , 

which is equal to the total number of genes on each array, suppose m0 is the total 

number of actual true H0 hypothesis for which we make U correct decisions and 

R wrong decisions (type I error/ false positive) ; m 1 = m- m 0 is the total number 

of actual true H 1 hypothesis comprising S correct decision and T wrong decision 

(type II error/ false negative). Notice that all these numbers are assumed known, but 

we actually will never know the exact numbers of m0 , S, T , U and V, they are all 

unobservable random variables. Only R is an observable random variable. 

To control the multiple test error rate, various ways of error measurements have 

been proposed. These including the traditional Family Wise Error Rate (FWER) and 

Bonferroni correction as well as more recent methods using the False Discovery Rate 

(FDR) or Positive False Discovery Rate (pFDR). We will discuss these concepts in 

the following paragraphs. 

Family Wise Error Rate (FWER) In the literature, the Family Wise Error Rate 

(FWER) is proposed and defined as the probability of making more than one false 
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Not Reject Reject Total 

True H0 u v mo 

True H 1 T s m-m0 

Total m-R R m 

Table 1.2: The problem of Multiple Tests. 

discoveries, which can be formulated by the following: 

FWER = Pr(V > 1) 

Accordingly, Bonferroni correction suggested to use a much smaller p-value = ajm 

for each individual testing, where the a is the usual overall error rate control for 

the tests. FWER and Bonferroni correction are too conservative usually yielding no 

significant genes at all. Compared to the FDR approach, these methods are especially 

of low power when large number of true H 1 are expected for large m, see Benjamini 

and Hochberg (1995). 

False Discovery Rate (FDR), pFDR and Q-value The False Discovery Rate 

(FDR) was first proposed by Benjamini and Hochberg (1995) as the expected propor­

tion of the false positive among those rejected hypothesis using a sequential p-value 

controlling approach, and FDR is defined as zero if R = 0. It uses the observed 

p-values to estimate the rejection region such that on average the F DR< a for some 

pre-chosen a value. But Benjamini and Hochberg's FDR is controlled for all values 

of m0 , in other words, it did not use the information in the data when estimating the 

FDR= E (~) 
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The Positive F lse Discovery Rate (pFDR) and the concept of q-value was pro­

posed in Storey (2003). It is defined as the same expected proportion as FDR but 

conditioned on that there is at least one rejected hypothesis (R > 0): 

pFDR= E (~IR > o) 
In Storey (2002), Storey proposed a different methodology and applied it to his 

definition of pFDR and the calculation of q-values. He uses the opposite approach to 

Benjamini and Hochberg's sequential p-value method by fixing the rejection region 

and then estimating the corresponding pFDR, and simulation study shows that the 

new method offers increased applicability, accuracy and power compared to Benjamini 

and Hochberg's method. 

The pFDR analogue top-values is the q-value which has a special statistical re­

lationship with the p-value. It measures the significance in terms of the FDR rather 

than the type I error. The relationship between the p-values and the q-values can be 

illustrated in the following formula: 

In a multiple hypothesis testing problem, for each individual test, traditional p-

value for an observed t-statistic when T = t is: 

p-values = min { Pr(T E r I Ho)}
f' :tEf' 

where {r} is the rejection region(s). While q-value of this test can be defined as: 

q-value = inf {pFDR(r)}
f':iEf' 

From the formulae we discovered that q-value measures the significance of the test 

with respect to the pFDR - it is the minimum pFDR that can be obtained given that 

the test was significant (rejected for the rejection region {f}). For more details see 

Storey (2002). 
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Significance Analysis of Microarray(SAM) The SAM method proposed by 

Tusher et al. (2001) was designed to evaluate the significance of changes in gene 

expression pattern in comparing two different biological conditions. SAM assigns a 

score, called d-statistic which is a modified t-statistic to each gene (actually probes 

or probe sets) as a measure of the relative difference between two conditions. A gene 

is then labeled as significant if its score exceeds a threshold. The ideas regarding the 

error rate control discussed in previous paragraphs, namely the pFDR and q-values 

are implemented in the SAM package. 

Let's suppose we have a multiple test problem of m genes and n arrays from two 

experimental conditions (say, n1 arrays from condition 1 and n-n1 from condition 2). 

Let xi1 and xi2 be the average gene expression values for gene i in the two conditions. 

Let si = SE(xi1 - xi2). The detail of SAM procedure can be summarized in the 

following four steps: 

Step 1: Forming the Test Statistic (d-statistic) For each individual gene 

or test , the modified t-statistic for gene i is: 

where s0 is an adjustment in order to avoid extreme large values of di caused by very 

low variability of a gene across the samples. 

Step 2: Calculating the Null Distribution The null distribution of each 

gene is calculated by permuting the condition labels. For example, if we have n 1 = 

n 2 = 3 samples from each condition and thus 6 samples in total. The permutation is 

done by permuting the label pool (1 1 1 2 2 2), i.e. , randomly assign 3 samples for 

label 1, then the rest three are set to label 2. Then recalculate the test statistic dfb 
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for the bth possible permutation for gene i, the ordered statistics for this permutation 

is d(f) < d(~) < · · · < d(3) for all J genes. Notice that we would have B = (~) = 20 

permutations in total in this example. 

To achieve more accurate and powerful test statistics, Storey and Tibshirani (2001) 

pooled the null statistics across all genes by taking the average of all ordered permuted 

d-statistics for gene j = 1, 2, 3, ... , J: 

dj = (1 / B) L
B 

d(j) 
b=l 

See Storey and Tibshirani (2001) for more details regarding the pooled null distribu­

tion. 

Step 3: SAM Plotting and Threshholding (Choosing the Rejection Re­

gion) Instead of using the traditional symmetric rejection region (ldil > t), SAM 

uses two data-driven cutoff points t 1 and t2 to reject the hypothesis and calls gene-i 

significant if ldil < t 1 or ldil > t 2 . More specifically, SAM plots a scatter plot of 

the observed and expected ordered d-statistics found from the permutations, then a 

band of two parallel lines at a distance ~ (threshold) from the 45° line is drawn. 

Starting from the origin, counts up and to the right until we find the first point that 

falls outside this band, then all genes to the right of that point are called significant 

(over-expressed genes), even if they fall inside the band again. Do the same thing 

to the bottom left corner we find all the significantly under-expressed genes. The 

upper and lower Y-values form the cutoff points t 1 and t2 . See Figure 2.11 for an 

illustration. 

Step 4: Control the FDR in Some reasonable Fashion Once we have 

chosen the threshold ~' the FDR and pFDR can be estimated using the following 
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estimators and q-value can be calculated for each gene according to the definition. 

The FDR and pFDR are controlled using the methods as described in Storey (2002). 

- Ro(.6.)
FDRt:A.6.) = 7To(.6.') · R(.6.) v 1 

- A I R0 (.6.) 
pFDRt::.'(.6.) = 7ro(.6.). Pr(RD(.6.) > 0). [R(.6.) v 1] 

where R(.6.) is defined as the number of {di: di::::; t1 (.6.)ordi 2: t2 (.6.)}, and 

Ro(.6.) = ~~=l #{df:: df*::::; t1(.6.) or df: 2: t2(.6.)} 
B 

which is derived from the permuted d-statistics. 7T0 (.6.') is an estimator of the overall 

proportion of true null hypothesis by defining another .6.' value, which can be adap­

tively chosen to minimize the bias and the variance of the estimates, see (Storey and 

Tibshirani, 2001) . .6.' has to be carefully chosen since 7T0 (.6.') is very important to the 

estimator of FDR and pFDR. 

A more practical way to control the FDR is to pre-specify a tolerable level of a 

-that is biologically meaningful. Then take the smallest .6. such that F D Rt::.' (.6.) ::::; a. 

SAM package allows us to interactively change .6. , as a result , an FDR-by-Delta 

table can be produced. One can choose the proper threshold by choosing a meaningful 

FDR. For example, a larger FDR could be appropriate in some application because 

the two samples are too similar that result too few significant genes with a small FDR 

choice. In this way, we can use the FDR as the cutoff point that works in a reverse 

way to control the multiple test error rate. 

In our analyses, we used the SAM function written in R by Dr. Angelo Canty. 

This SAM function was originally designed to investigate the strain effect and give a 

list of the differentially expressed genes between two different strains. Strain variable 

24 




could refer to different biological conditions in a case-control experiment (i.e., the 

control and treatment groups). In our experiment, the strain variable refers to the 

same tissue of two biologically different rodent species, for example, the NOD and 

NOD.NOR-Idd5 mice. In addition to the strain variable, block variables are allowed 

and thus the permutation technique must be restricted within the blocks to retain the 

block effect. Block variables could be used to investigate some confounding variables 

such as the day effect, etc. 

Chip reproducibility can be verified by showing two similar SAM plots and similar 

lists of the significant genes from two SAM analyses, usually of two technical replicate 

chips. The comparison of the SAM analyses will be discussed in the next few chapters. 
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Chapter 2 

Within Platform Reproducibility 

(Illumina) 

In this chapter we investigate the chip reproducibility or the chip effect within the 

Illumina BeadChip platform using our rodent models for Type-1 diabetes. In the 

mouse model (see mouse data description in Section 1.3.1), two microarray experi­

ments were done using the Illumina Sentrix™ "MouseRef-8 v1" BeadChip, while for 

the rat model (see rat data description in Section 1.3.2) , the "RatRef-12" BeadChips 

were used. The BeadChip summary data were produced from the Beadstudio soft­

ware. The within-platform reproducibility is investigated through the data quality 

assurance and then the SAM analysis . The Affymetrix mouse data was taken from an 

earlier experiment using the same RNA samples but on "Mouse430v2.0" GeneChips, 

and the Affymetrix rat data is based on six rat "RAE230v2" GeneChips. Nonetheless, 

due to the lack of the technical replicates and the platform nature, the reproducibil­

ity or chip effect within the Affymetrix GeneChip platform cannot be verified and 

compared with the Illumina BeadChip platform. 
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(a) NOD.NOR-Idd5 arrays 	 (b) NOD arrays 

Figure 2.1: "MA" and "XY" plots for mouse Beadarrays from NOD.NOR-Idd5 strain 

and NOD strain of the first experiment. The expression data are log2 -scaled but un­

normalized. 

2.1 	 Visual verification of the Data Quality and the 

Chip Effect 

As mentioned in the previous chapter , data quality is a very important issue in mi­

croarray experiments and it is necessary to look into it using some quality control 

methods. Here , we visually check the data quality by applying some graphical diag­

nostic methods such as the scatter plots , boxplots, histograms and the hierarchical 

clustering dendrogram of arrays for both Illumina and Affymetrix platforms. 
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(a) NOD.NOR-Idd5 arrays (b) NOD arrays 

Figure 2.2 : "MA" and "XY" plots for mouse Beadarrays from NOD .NOR-Idd5 strain 

and NOD strain of the second experiment. The expression data are log2 -scaled but 

un-normalized. 

2.1.1 lllumina "MouseRef-8 vl" BeadChip Data 

In each of the mouse model experiments , we have two Illumina "MouseRef-8 vl" 

BeadChips that form the technical replicates, namely, the chip A that replicates chip 

B in the first experiment. Notice, however, that due to the way the RNA sample 

was prepared in the first experiment, these technical replicates are actually not pure 

technical replicates. In the the second mouse experiment , chip A_I and chip A_II are 

pure technical replicates. On each single "MouseRef-8 vl" BeadChip , there are eight 

arrays with four biological replicates from conditions of either NOD.NOR-Idd5 strain 

or NOD strain. To check the BeadChip data quality, we will discuss the following 

diagnostic plots: 
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Figure 2.3: Smoothed histograms of the un-normalized Beadarray mouse data on chip 

A , B, A_! and A_II. 
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(a) Arrays in first experiment (b) Arrays in second experiment 

Figure 2.4: Clustering all 16 arrays on two BeadChips from both experiments. For 

first mouse experiment, the array names are distinguished by chip A and B at the end 

of the names. For the second mouse experiment, the array names are distinguished 

by chip A_f and A_II. 
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(a) Dendrogram of NOD strain (b) Dendrogram of NOD.NOR-Idd5 strain 

Figure 2.5: Clustering within the same strain for first mouse experiment. 
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(a) Dendrogram of NOD strain (b) Dendrogram of NOD.NOR-Idd5 strain 

Figure 2.6: Clustering within the same strain for second mouse experiment. 

"MA" and "XY" plot and the distribution plot of the Beadarrays We 

combine the "MA" and the "XY" pairwise plots in one big plot as in Figures 2.1 and 

2.2. Located in the upper right corner of the plot are the "MA" scatter plots and 

the lower left corner are the "XY" scatter plots. To investigate the chip effect , we 

group the arrays by different strains. Within the same group (including the technical 

replicates) , all arrays are biologically identical to each other. If the chip effect is 

small, as discussed in section 1.4.2, we can expect to see an "MA" plot with all points 

scattered around the zero horizontal line because M's are near zero, and a "XY" plot 

with all points scattered around the Y = X line. Figures 2.1 and Figure 2.2 give 

the scatter plots within different strains for both experiments. Both figures showed 

that the data quality in both experiments is reasonably good and there is no single 

Beadarray having extreme variation. All arrays are highly correlated since pairwise 

Pearson's correlation coefficients are greater than 98% for both experiments. This 
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suggests that the chip effect is small in terms of the correlation coefficients. However, 

especially for the technical replicate arrays, the second plot does show slightly better 

similarity between the Beadarrays than the first one in terms of the overall image 

and the correlation coefficient matrix. Figure 2.3 shows the smoothed histograms 

of the Beadarray data on chip A and B in first experiment, A_I and A_II in second 

experiment. 

Hierarchical clustering of Beadarrays After the quantile normalization and 

log2-scaling, hierarchical cluster analyses were performed using Euclidean distance 

metric for different groups of Beadarrays to show the similarity/dissimilarity within 

the same group. To see the big picture, we put all 16 arrays from both the first and 

the second experiment together. Figure 2.4 shows the overall clustering dendrogram 

for both experiments, from which we see that, except for two individual arrays (array 

IDD5.4.A and NOD.l.B), dendrogram of Figure 2.4(a) shows a big cluster between 

chip A and B in the first experiment. This suggests that the chip effect is much more 

significant compared to the biological effect. Figure 2.4(b) is the overall dendrogram 

arising from the second Illumina experiment, in which we find a much smaller chip 

effect between the BeadChip A_I and A_II compared to Figure 2.4(a). In addition 

to the grouping within the same experiment, the hierarchical clustering within the 

same strain group (either NOD or NOD.NOR-Idd5) across two experiments were 

investigated, Figure 2.5 once again confirms the big chip effect in the first experiment 

compared to the second experiment as showed in Figure 2.6. 

The RNA Preparation The clear chip effect we have seen above is investigated 

and it reveals that the effect is partially caused by the RNA sample preparation in 
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the first experiment. As we pointed out at the beginning that chip A and chip B 

from the first experiment are actually not pure technical replicates. Compared to 

the second experiment, some effect due to RNA preparation was introduced in the 

RNA sample in the first experiment, where the samples were prepared in a parallel 

way for both chip A and chip B. While in the second experiment, the RNA samples 

were prepared together before being divided into two parts for the hybridization onto 

BeadChip A_I and A_II. In this way, it avoided many possible sources of variation. 

As a result, we point out that in order to take advantage of the Illumina BeadChip 

platform, the RNA samples for technical replicates on multiple BeadChips should be 

processed together. This can significantly reduce the experimental bias and variation. 

2.1.2 Affymetrix "Mouse430v2.0" GeneChip Data 

The array quality of the Affymetrix GeneChips mouse data is investigated through 

the Pearson 's correlation coefficient matrix, the cluster analysis and the smoothed 

histograms of the density distribution of array data. There are eight GeneChips 

from one experiment with no technical replicates involved, four of which form the 

biological replicates that come from either the NOD or NOD.NOR-Idd5 strain. As in 

the Beadarray analyses, the pairwise Pearson's correlation coefficients (greater than 

97%) between the eight GeneChip arrays suggest that all arrays are highly correlated. 

Figure 2.8 gives the histograms and the boxplots of all eight GeneChips, from the 

boxplots in Figure 2.8(a) we notice that, the chip "IDD5 1" has a very different mean 

and quantile values compared to the others. This extremeness is also reflected in the 

histogram plot of Figure 2.8(b), where this "problem" chip has a shifted distribution 

from the others. 
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(a) Dendrogram of 8 Affymetrix chips (b) Dendrogram of 7 Affymetrix chips after ex-

eluding t he "problem" chip 

Figure 2. 7: Dendrogram of A.ffymetrix mouse Gene Chips before and after excluding 

the ''pro blem" chip. 
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(a) boxplot of 8 Affymetrix chips 

Figure 2.8: The boxplot and histogram for the original GeneChip Mouse data, which 

is un-normalized and log2 -scaled. 
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(b) Histogram of 8 Affymetrix chips 
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Figure 2.9: Smoothed histograms of the un-normalized rat data. 

After we normalized the GeneChip data by default RMA method, the clustering 

is performed between the GeneChip arrays. Figure 2.7 shows the cluster dendrogram 

before and after excluding the problem chip of "IDD5 1" , Figure 2.7(b) suggests that 

when excluding the chip "IDD5 1" , there seems to be a good clustering between the 

two biological strains, although chip "NOD 4" seems quite different from the other 

NOD chips. 

2.1.3 Illumina Rat "RatRef-12 vl" BeadChip Data 

The Illumina rat data come from 12 Beadarrays on two Illumina "RatRef-12 v1" 

BeadChips that form the technical replicates. On each BeadChip, three biological 

replicates come from two conditions of either BB or BB7B strain (as described in 

Section 1.3.2) . The rat data quality is assessed in terms of the pairwise Pearson's 

correlation coefficients and the smoothed histograms of the un-normalized Beadarray 
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Figure 2.10: Clustering dendrogram of the Illumina and Affymetrix rat data. 
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data. The coefficients suggest t hat data quality is quite good as illustrated in Figure 

2.9(a). The clustering dendrogram in Figure 2.10 suggests that the chip effect is 

relatively small compared to the biological strain effect . 

2.1.4 	 Affymetrix Rat "RAE230v2" GeneChip Data 

In the Affymetrix rat experiment, we used six rat "RAE230v2" GeneChips, three 

of which are biological replicates from the conditions of either BB or BB7B strains. 

Analyses show that, although it shows a relatively larger variance than the rat Bead­

Chip data, the rat GeneChip data also have pretty good quality in terms of the 

Pearson's correlation coefficient (the smoothed histograms of density distribut ions) 

and the clustering dendrogram, see Figure 2.9(b) and Figure 2.10(c). 

2.2 	 Illumina Within-platform Reproducibility through 

SAM Analysis 

Within-platform reproducibility can be verified through comparing the SAM analyses 

of two technical replicate chips as described in Section 1.4.3. In this section we 

investigate the reproducibility within the Illumina BeadChip platform using both 

mouse and rat data. 

2.2.1 	 Comparing SAM Analyses Using the Mouse Data 

Due to the data problem in the first Illumina experiment , we decided to use the second 

Illumina data set, namely, the data on chip A_I and A_II. Besides, in order to use the 

information on both chips, we generate the "averaged" data by taking the average 
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Figure 2.11: SAM plots of chip A, A_f, A_If and the "Average" mouse data. 
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Figure 2.12: Pairwise scatter plots of the d-statistics from different SAM analyses of 

chip A_I against A_II and chip A against the averaged mouse data. 
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BeadChip A_I I Comm A_II Comm Average 

FDR 

5% 

10% 

20% 

30% 

11 

32 

64 

118 

7 

13 

33 

61 

8 

20 

63 

142 

35 

136 

227 

549 

9 

15 

37 

65 

12 

30 

109 

227 

Table 2.1: Number of significant probes from different SAM analysis of mouse B ead­

Chip A , A_I, A_II and the averaged data at different FDR cutoff points ~ 5, 10, 20 

and 30%, along with the number of those common probes (column "Comm") in both 

lists of chip A_I and A_II; chip A and the averaged data. 

39 




Gene Symbol Probe ID d-stat q-value Rank in Chip A__ll 

1 Illb scll8674. 7. L35-S -5.1504 0.0135 1 

2 Asgr2 scl41344.9.L32-S 3.6447 0.0186 3 

3 Rtnl scl00104001.2_121-S 3.4425 0.0186 8 

4 Ccl24 scl25923.3. LO-S 3.4290 0.0186 5 

5 Asb2 scl42115.9.Ll21-S 3.3299 0.0186 6 

6 Rnase6 scl078416.2_288-S 3.3079 0.0186 2 

7 Pdk3 scl54041.11. 98_19-S 3.3002 0.0186 4 

8 Ifitm1 scl068713.2_9-S 3.2592 0.0186 20 

9 Ifitm6 scl30503.2.L167-S 2.9591 0.0225 9 

10 Igfbp5 sclOO 16011. 2_295-S 2.6401 0.0460 47 

11 Itgb7 scl46686.16. L15-S 2.5948 0.0504 109 

12 Adam23 scl023792.26_1-S 2.4741 0.0552 4966 

13 Fos scl42959.4_58-S -2.6969 0.0667 17 

14 Cblnl scl34520.5_191-S -2.6738 0.0667 10 

25 Dpp4 sc119224.27_390-S 2.2580 0.0784 55 

26 Den scl0013179.L275-S 2.2305 0.0806 45 

27 Itgae sclOOO 1586. L298-S 2.2149 0.0846 86 

28 AB124611 scl0382062.2_10-S 2.1693 0.0942 5681 

29 Klk11 scl32730.3.L40-S 2.1475 0.0960 87 

30 Il8ra scll6618.l.L330-S 2.1154 0.1014 51 

31 Col2a1 scl0012824.2_219-S 2.1116 0.1014 1045 

32 Ifitm2 scl080876.2_10-S 2.1089 0.1014 73 

Table 2.2: Significant probes from mouse BeadChip A_! and their corresponding rank­

ings in chip A_II when FDR :::::: 10%. 
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Gene Symbol Probe ID d-stat q-value Rank in Chip A__l 

1 Illb scll8674.7.L35-S -4.7825 0.0130 1 

2 Rnase6 scl078416. 2_288-S 3.9430 0.0173 6 

3 Asgr2 scl41344.9.L32-S 3.9134 0.0173 2 

4 Pdk3 scl54041.11. 98_19-S 2.9031 0.0389 7 

5 Ccl24 scl25923.3. LO-S 2.8767 0.0389 4 

6 Asb2 scl42115.9.L121-S 2.7691 0.0432 5 

7 Klk8 scl32735 .4_7-S 2.7217 0.0444 82 

8 Rtnl scl00104001.2_121-S 2.6850 0.0486 3 

9 Ifitm6 scl30503.2.L167-S 2.6426 0.0533 9 

10 Cblnl sc134520.5_191-S -2. 8886 0.0635 14 

11 2310046K01Rik scl20130.6_7-S -2.7473 0.0712 107 

12 Axud1 scl35215.8A96-S -2.6846 0.0712 33 

13 9030416H16Rik scl071521.2_63-S -2.5908 0.0762 1237 

14 Dusp1 sci 5014 7 .4_283-S -2.5207 0.0762 20 

15 Plk3 scl23942.14.L32-S -2.4759 0.0762 192 

16 Histlh2ah scl0319168.L1-S -2.4724 0.0762 23 

17 Fos scl42959.4_58-S -2.4553 0.0762 13 

18 Fpr-rs2 sc1014289.2_177-S -2.3792 0.0764 78 

19 Hist2h2ac scl00319176.L318-S -2.3784 0.0764 114 

20 Ifitm1 scl068713.2_9-S 2.4138 0.0933 8 

Table 2.3: Significant probes from mouse BeadChip A_II and their corresponding 

rankings in chip A_I when FDR -:::= 10%. 
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ChiJI A_l 

19 

(a) Chip A_l v.s A_II (b) Chip A v.s The averaged data 

Figure 2.13: The Venn diagram of the number of significant probes and those zn 

common from the SAM analyses between chip A_I, A_II, A and the averaged mouse 

data when FDR:::: 10%. 

of the replicates on chip A_I and A_II. SAM analyses are then performed using these 

data sets. This is because the SAM code only considers biological replicates. As 

mentioned in previous chapter, the RNA samples in second experiment are from the 

same preparation as those used on chip A in the first experiment. Thus we can treat 

these three Illumina BeadChips A, A_I and A_II as technical replicates prepared on 

two different days. The SAM results are compared between chip A and the averaged 

data in order to see the day effect. We show all the SAM plots in Figure 2.11 , 

and Table 2.1 gives the number of significant probes at different levels of FDR. The 

pairwise SAM analysis comparisons are performed in the following cases: 

First, we compare the SAM analysis of chip A_I against that of chip AJ:I. SAM 

plots of chip A_I and A_II are illustrated in Figure 2.11(b) and 2.11(c), the picture of 

the SAM plots suggest that two SAM analyses are quite similar to each other in terms 

of the shape, the tail behavior and the number of significant genes. For example at a 

10% FDR, the SAM analysis of chip A_I gives 32 significant probes and the number is 
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Cluster Dendrogram 

Figure 2.14: Cluster dendrogram of all 24 Beadarrays on three technical replicate 

BeadChips (chip A from first experiment, A_! and A_II from second experiment). 

The line indicates and distinguishes the biggest cluster of the arrays from the first 

and second mouse experiment. 

43 




64 if we set the FDR equal to 20%. And the corresponding numbers are 20 and 63 from 

the SAM analysis of chip A_II (see Table 2.1 for the comparisons at different FDR 

cutoff points). Using a 10% FDR cutoff, we listed the significant probes from chip 

A_I and their corresponding rankings in chip A_II in Table 2.2. From the table, we 

find that excepting a few probes with some extreme disagreements in their rankings 

between the two analyses (Itgb7, Adam23 , AB124611 and Col2a1 ranked at 11th, 

12th, 28th and 31st in chip A_I), most probes are in reasonably good agreement with 

their rankings in chip A_II. The comparison shows that the rankings in the top 10 of 

both analysis reach a particularly good agreement with only two exceptions (Ifitm1 

and Igfbp5). However, the overall Pearson 's correlation coefficient of the d-statistics 

of the two SAM analyses is only 0.4381 as showed in Figure 2.12(a). The reason for 

this low correlation coefficient could be the large amount of noise in the data. Under 

the assumption that most probes are not differentially expressed, these probes form 

the points in the middle of the plot that make the plot looks "fat". 

Secondly, at the same FDR ~ 10%, we compare the SAM analyses of chip A_II 

against that of chip A_I. In addition to the SAM plots in Figure 2.11, Table 2.3 

lists the 20 significant probes from the SAM analysis of chip A_II and their corre­

sponding rankings in chip A_I. From this table, we find that excepting a few probes 

(9030416H16Rik, Plk3, Hist2h2ac, Klk8 , 2310046K01Rik and maybe Fpr-rs2), a sim­

ilar conclusion can be reached that the overall agreement of the two significant probe 

ranking lists is pretty good and this is especially true for the top 10 significant probes. 

As a summary, Table 2.1 lists the numbers of significant probes from different 

SAM analyses of chip A, A_I, AJ:I and the averaged data using different FDR cutoff 

points~ 5, 10, 20 and 30%. In middle column of "Comm", where it gives the number 

of those probes that are common in both lists when comparing chip A_I and A_II as 

44 




well as chip A and the averaged data. From the table we see that, for example, at 

FDR '::::' 10%, 32 and 20 probes are called significant from the SAM analysis of chip 

A_I and chip A_II accordingly. Among these two significant probe lists, 13 probes 

are found in common (appeared in both lists) which gives the percentage of 41% and 

65% for corresponding list if ignoring their rankings. Furthermore, from the Table 

2.2 and 2.3 we find that 8 out of the 13 common significant probes belong to the top 

10 significant probes in both lists. 

In addition to the numbers outlined in Table 2.1, the Venn diagram in Figure 

2.13 shows the relationship of the numbers of significant probes and of those common 

genes in both lists at 10% FDR. 

Illumina Day Effect Although in this report we are not interested in evaluating 

the day effect and we didn't formally test the significance of the day effect. We do 

see some day effect from the cluster analysis and the comparison of SAM analyses. 

As illustrated in Table 2.1, the day effect is revealed from the difference in the 

"number of significant probes" from the SAM analyses (136 of chip A v.s 32, 20, 30 

of others at the 10% FDR). Furthermore, day effect is verified after comparing the 

significant gene lists from the SAM analyses of the chip A and the averaged data (not 

included in this report), we find that the agreement between the two SAM analyses 

is quite poor in terms of the significant probe rankings, and the overall Pearson's 

correlation coefficient of the d-statistics from the two SAM analyses is 0.4157 as shown 

in Figure 2.12(b). Lastly, when we put together and compare the cluster analysis of 

all three data set of chip A, A_I and A_II , the cluster dendrogram in Figure 2.14 

clearly shows the day difference between the first and second experiments. 
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BeadChip I I Comm I II II Average 

FDR 

5% 

10% 

20% 

30% 

8 

61 

152 

224 

1 

48 

100 

141 

1 

66 

141 

209 

8 

57 

127 

267 

Table 2.4: Number of significant probes from different SAM analysis of rat BeadChip 

I, II and the averaged data at different FDR cutoff points~ 5, 10, 20 and 30%, along 

with the number of those common probes (column 11Comm ") in both lists of chip I and 

II. 

2.2.2 Comparing SAM Analyses Using the Rat Data 

To check the reproducibility within the Illumina rat BeadChips, we compare the SAM 

analyses of rat chip I and II that form the technical replicates. 

First , we compare the SAM analysis of rat chip I against that of chip II . SAM 

plots of chip I and II are illustrated in Figure 2.15 using a 10% FDR, the picture of 

the SAM plots suggest that two SAM analyses are quite similar to each other in terms 

of the shape, the tail behavior and the number of significant genes. For example, the 

SAM analysis of chip I gives out 63 significant probes and the number is 152 if we set 

the FDR equal to 20%. And the corresponding numbers are 66 and 141 from the SAM 

analysis of chip II (see Table 2.4 for the comparisons at different FDR cutoff points). 

We examine the top 20 significant probes in both significant lists from chip I and chip 

II along with their corresponding rankings in the other list in Table 2.5 and Table 2.6. 

Table 2.5 suggests that the top 20 significant probes reach a pretty good agreement 

between the two chips. We also find that , as with the mouse data, the rankings in the 
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Figure 2.15: SAM plots of chip I, II and the "Average" rat data. 
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Rank in Chip I Gene Symbol d-stat q-value Rank in Chip II 

1 De fa 10.0901 0.0465 1 

2 Np4 9.0537 0.0465 5 

3 LOC498659 9.0133 0.0465 2 

4 Ms4a3_predicted 7.7194 0.0465 4 

5 Nradd 6.501 0.0465 7 

6 LOC310395 6.1 0.0524 17 

7 MGC93766 6.0689 0.0524 10 

8 RGD1307811 5.7718 0.0524 19 

9 TmepaLpredicted 5.5066 0.0621 18 

10 Ldhc 5.27 0.0632 23 

11 Ugt8 5.1098 0.0632 16 

12 LOC502819 5.052 0.0632 9 

13 LOC502903 5.0224 0.0632 25 

14 Ctsg_predicted 5.0063 0.0632 24 

15 Cklfsf8 4.7828 0.0652 40 

16 Nkg7 4.6947 0.0657 30 

17 Galnt3_predicted 4.6327 0.0657 21 

18 Cdkn3_predicted 4.5745 0.0686 15 

19 Orm1 4.5647 0.0686 28 

20 Ccr1 -6.2546 0.0756 29 

Table 2.5: The top 20 significant probes from rat BeadChip I and their corresponding 

rankings in chip II. 
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Rank in Chip II Gene Symbol d-stat q-value Rank in Chip I 

1 De fa 11.3300 0.0469 1 

2 LOC498659 8.9988 0.0657 3 

3 LOC363158 -9.4466 0.0657 26 

4 Ms4a3_predicted 8.3797 0.0657 4 

5 Np4 8.0582 0.0657 2 

6 Snx14_predicted -7.3378 0.0670 25 

7 Nradd 6.2011 0.0670 5 

8 RGD1311259_predicted 6.1032 0.0670 301 

9 LOC502819 6.0157 0.0670 12 

10 MGC93766 5.8558 0.0670 7 

11 Cspg5 -6.3740 0.0670 64 

12 Coro2a_predicted 5.5246 0.0670 39 

13 Gca_predicted 5.4249 0.0670 22 

14 LOC299354 5.3161 0.0670 23 

15 Cdkn3_predicted 5.2707 0.0670 18 

16 Ugt8 5.2058 0.0670 11 

17 LOC310395 5.1545 0.0670 6 

18 TmepaLpredicted 5.1339 0.0670 9 

19 RGD1307811 5.1058 0.0670 8 

20 Gfi1 4.9502 0.0670 24 

Table 2.6: The top 20 significant probes from rat BeadChip II and their corresponding 

rankings in chip I. 
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Figure 2.16: 

Scatter Plot of significant gene d.stat(d1, d2) 

Pearson's correlation coefficient = 0.5824 
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Pairwise scatter plots of the d-statistics f rom different SAM analyses of 

chip I against II of the rat data. 
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Delta = 0.6461; Delta= 0.8085; 

Number Significant :696; Mean FOR= 19.88% Number Significant= 84 ; Mean FOR = 20.05% 
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Figure 2.17: SAM plots using both mouse and rat A.ffymetrix GeneChip data. 

top 10 of both analyses reach a particularly good agreement . However, the overall 

Pearson 's correlation coefficient of the d-statistics of the two SAM analyses is only 

0.5824 as shown in Figure 2.16. Although it is not highly correlated because of the 

large amount of noise in the data, compare to the mouse data of chip A_I and A_II 

(0.4381) , this correlation is much higher. 

Comparing the SAM analyses of Chip II against Chip I, excepting one probe with 

some extreme disagreement in its ranking between the two analyses (RGD1311259 

predicted, ranked at 8th in Chip II but 301st in Chip I, see Table 2.6) , a similar 

conclusion can be made that the overall agreement of the two significant probe ranking 

lists is pretty good. 
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1 

2 

4 

5 

6 

7 

8 

Gene Symbol d-stat q-value Gene Name 

Speg 10.2462 0.0242 	 SPEG complex locus 

Zfp64 7.8966 0.0363 	 zinc finger protein 64 

3 Psmd11 7.1489 0.0565 proteasome (prosome, macropain) 268 subunit, 

non-ATPase, 11 

Hmox1 6.7240 0.0588 	 heme oxygenase ( decycling) 1 

C5ar1 6.4464 0.0588 	 complement component 5a receptor 1 

Ifitm1 6.4224 0.0588 	 interferon induced transmembrane protein 1 

Commd3 6.2963 0.0588 	 COMM domain containing 3 

Ywhaz 6.1414 0.0645 	 tyrosine 3-mono oxygenase/ tryptophan 5­

monooxygenase activation protein, zeta polypep­

tide 

9 Ltb 6.0617 0.0645 lymphotoxin B 

10 Gna11 5.9440 0.0670 guanine nucleotide binding protein, alpha 11 

11 Marcks 5.8497 0.0670 myristoylated alanine rich protein kinase C sub­

strate 

12 Tsc22d3 5.8306 0.0670 TSC22 domain family 3 

13 Pfn1 5.8224 0.0670 profilin 1 

14 Apba3 5.7410 0.0674 amyloid beta (A4) precursor protein-binding, fam­

ily A, member 3 

15 Ctnnd2 5.5282 0.0719 catenin ( cadherin associated protein), delta 2 

16 Ddost 5.4648 0.0719 dolichy 1-di-phosphooligosaccharide-protein glyco­

transferase 

17 Omt2a 5.4403 0.0719 oocyte maturation, alpha 

18 2610510E02Rik 5.3930 0.0719 RIKEN eDNA 2610510E02 gene 

19 Mgst3 5.3833 0.0719 microsomal glutathione S-transferase 3 

20 Smpd4 5.3385 0.0719 sphingomyelin phosphodiesterase 4 

Table 2.7: The top 20 Significant probe sets (genes) from the mouse Affymetrix 

GeneChip data. 
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3 

4 

5 

6 

7 

Gene Symbol d-stat q-value Gene Name 

1 Defa 9.0358 0.0480 defensin, alpha 5, Paneth cell-specific 

2 Np4 8.9842 0.0480 defensin NP-4 precursor 

RatNP-3b 8.9473 0.0480 NA 

Fam31 b_predicted -8.1344 0.0680 family with sequence similarity 31, member B 

(predicted) 

RGD1560913_predicted 6.7699 0.0680 similar to expressed sequence AW413625 (pre­

dieted) 

Mthfs 6.7569 0.0680 5,10-methenyltetrahydrofolate synthetase (5­

formyltetrahydrofolate cyclo-ligase) 

IgG-2a 6.1957 0.0680 gamma-2a immunoglobulin heavy chain 

8 Anxa1 6.1589 0.0680 annexin A1 

9 NckLpredicted 6.0578 0.0680 non-catalytic region of tyrosine kinase adaptor 

protein 1 (predicted) 

10 Tln1 5.3661 0.0680 talin 1 

11 Nt5e 5.2715 0.0680 5' nucleotidase, ecto 

12 Rnpep 5.2130 0.0680 arginyl aminopeptidase (aminopeptidase B) 

13 Nt5e 4.9527 0.0812 5' nucleotidase, ecto 

14 NA 4.7707 0.0822 NA 

15 Pacsin1 4.6739 0.0900 protein kinase C and casein kinase substrate in 

neurons 1 

16 Fut2 4.5625 0.0900 fucosyltransferase 2 (secretor status included) 

17 Tf 4.4532 0.0933 transferrin 

18 Defa7 4.4369 0.0933 defensin alpha 7 

19 NA 4.2847 0.1028 NA 

20 NA 4.2800 0.1028 NA 

Table 2.8: The top 20 Significant probe sets (genes) from the rat Affymetrix GeneChip 

data. 
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2.3 SAM Analysis of Affymetrix Platforms 

Due to the lack of technical replicates in the data set, the chip effect within the 

Affymetrix GeneChip platform cannot be investigated through comparing two repli­

cate SAM analyses. In the rest of this section, we perform the SAM analysis using 

the GeneChip data of both mouse and rat data and give out the SAM results as 

following: 

2.3.1 Mouse platform 

Based on the results we find in section 2.1.2 and comparing the sensitivity analysis 

by running the SAM analysis with and without that "problem" chip ( "Idd5 1" ), we 

decided to abandon the "problem" chip that caused the inconsistency in the histogram 

and the boxplots, But the reason for this inconsistency is not clear yet. 

The SAM analysis is then performed using the seven mouse GeneChip data (four 

from NOD and three from NOD.NOR-Idd5). The RMA preprocessing method with 

the quantile normalization is applied. Figure 2.17(a) shows the SAM plot at FDR 

cutoff points around 20%, which results in 99 probe sets called significant. Table 2.7 

shows only the top 20 significant probe sets in the list. 

2.3.2 Rat platform 

The rat SAM analysis is performed using the six GeneChips of BB and BB7B rat 

data. The RMA preprocessing method with the quantile normalization is applied. 

Figure 2.1 7(b) shows the SAM plot at 20% FDR cutoff point which results in 84 

probe sets called significant. Table 2.8 shows only the top 20 significant probe sets 

along with their d-statistics and gene descriptions. 
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2.4 Summary 

In this chapter, we analyzed both the mouse and the rat data from both Illumina 

BeadChip and Affymetrix GeneChip platforms. Except for one problem GeneChip in 

the Affymetrix mouse platform, the data quality is quite good for both platforms in 

terms of the correlation coefficients and other diagnostic plots. 

The chip reproducibility is pretty good within the Illumina BeadChip platform 

in terms of the correlation coefficients, the cluster analysis and the SAM analyses. 

The agreement in rankings of the significant probes is particularly good for those 

top differentially expressed genes. However, the within platform reproducibility of 

Affymetrix platform cannot be observed through SAM analysis due to the lack of 

technical replicates. 

The day effect does inevitably exist in Illumina BeadChip platform as it does in 

the Affymetrix GeneChip platform. In addition to the day effect, RNA preparation 

artifact was found in our mouse model experiment. In order to take advantage of the 

Illumina BeadChip platform and other microarray platforms as well, caution must be 

advised in the procedure of the RNA sample preparation. 

In next chapter, we will compare the results from the two platforms. 

55 




Chapter 3 

Across Platform Reproducibility 

Using the Mouse Data 

In this chapter we check the reproducibility of the Affymetrix GeneChip and Illumina 

BeadChip platforms through the SAM analyses using the mouse data from both 

platforms. At the end of the chapter another paper comparing these two platforms 

is discussed and compared to our study, and some conclusions are made. 

3.1 Difficulties of the Comparison 

The primary questions of interest in comparing different microarray platforms are: 

How do they perform in detecting the differentially expressed genes in the same 

experimental setting? Do they detect a similar pattern of genes, especially among 

the top significant genes on both platforms? 

Under the assumption that most genes are not differentially expressed between our 

two mouse RNA samples, these genes are producing only noise in the gene ranking lists 
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and so we are not mterested in comparing the concordance among these genes. We 

only compare those differentially expressed genes, in other words, the top significant 

genes from the SAM analysis. 

A number of problems arise in comparing different microarray platforms. One 

big challenge is the probe annotation. Unlike the within-platform situation where 

we are comparing two ranking lists within the same annotation space, now we are 

comparing products of two different manufacturers that use different probe designs 

and different probe annotations. Namely, we are comparing two lists of (significant) 

genes of different length and partially different names. For example for the mouse 

platforms, as shown in Table 1.1 , Affymetrix "Mouse430v2.0" GeneChip has 45101 

probe sets in total, which annotated to 20958 unique genes. While in the Illumina 

"MouseRef-8 v1" BeadChip platform, the annotation package gives 24049 probes 

that mapped to 18241 unique genes. Fortunately, among those annotated genes, the 

two platforms have 13234 genes in total that are mutually comparable (have the 

same gene symbol and functional description) to each other. The coverage of these 

common genes are reasonably good at 63.15% for Affymetrix and 72.55% for Illumina. 

In addition, there are 7724 Affymetrix genes not presented in the Illumina platform, 

which means these genes only make sense for the Affymetrix platform but not for the 

Illumina platform. Similarly, there are 5007 annotated genes on the Illumina platform 

that are not available on the Affymetrix platform. Figure 3.1 shows the Venn diagram 

of these comparable and non-comparable genes in the two platforms. Obviously, we 

cannot compare these genes that are unique to only one platform. All we can do is 

to make comparisons within the subset of the 13234 common genes (Subset B in the 

Venn diagram). 

In all, the cross-platform comparison becomes much more complicated because of 
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Figure 3.1: Venn diagram of the number of annotated genes in "Mouse430v2.0" 

Gene Chip and Illumina "MouseRef-8 vl" BeadChip. B denotes the number of com-

man genes for both platforms. 

the heterogeneity in the annotation spaces caused by different manufacturers. One 

possible solution is to find such a third-party linkage between these two annotation 

spaces that we can make an unique projection for all probes from one space to the 

other. But unfortunately, there is not such a linkage available at least for now. An­

other compromised approach is to compare the concordance only within the subset 

of the 13234 common genes with a hope that most significant genes will fall in this 

subset. That is, we ignore those genes that are only available in one platform even 

though they are significant . We used gene symbol as the linkage between two annota­

tions, which seems quite feasible as there are quite a large number of common genes 

with the same gene symbols for both platforms. Besides the gene symbol, another 

annotation mapping file provide by Illumina company is also used. It maps the Illu­

mina probeiDs to the Affymetrix probeiDs for all possible annotated probes between 

these two platforms. The analyses using these two linkage IDs produced very similar 
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Figure 3.2: SAM plot comparison between the Illumina and Ajjymetrix analysis using 

the mouse data. 

results. The results using the mapping file are showed in following sections. 

3.2 Comparing the SAM Analyses 

We chose the SAM analysis using the averaged mouse data (as described in last 

chapter) for the Illumina platform, and compare its result with the SAM analysis 

using the Affymetrix GeneChip mouse data. Both analyses are compared at different 

levels of FDR cutoff points roughly equal to 5%, 10% and 20%. Figure 3.2 only gives 

the SAM plots at the FDR ~ 20%. 
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3.2.1 Comparing the SAM Plots and Boxplots 

Comparing the two SAM plots in Figure 3.2, we find that they differ in terms of 

the scale of the axes, the number of significant probes or probe sets and the tail 

behaviors as well. From the Illumina SAM plot, we surprisingly find that Affymetrix 

analysis gives no "under-expressed" genes (in the lower-left tail) as all the d-statistics 

are positive (refer to Table 2.7) , while there are both "under-expressed" and "over­

expressed" genes (in the upper-right tail) from the Illumina analysis . Notice that the 

terms of "under-expressed" and "over-expressed" are referred to the gene expression 

behavior comparing the congenic (Idd5) mouse against the parental (NOD) mouse 

strain. 

The boxplots in Figure 3.3 show that the mean difference of the gene expression 

value on the Illumina platform has a smaller variance than the data on the Affymetrix 

platform, and it is also true for the log fold-change variances. 

3.2.2 Comparing the (Comparable) Significant Genes 

As stated before, we only investigate the concordance of those comparable genes 

across the two platforms. The comparable genes are subsetted based on the Illu­

mina's annotation mapping file that maps the Illumina probeiDs on the "MouseRef-6 

vl" BeadChip to the Affymetrix probeiDs on "Mouse430v2.0" GeneChip. Since the 

probes (24049 in total) used on "MouseRef-8 vl" BeadChip form a subset of those 

probes used on "MouseRef-6 vl" BeadChip platform, the mapping file (with a total 

of 20175 linkages) between the annotation of "MouseRef-6 vl" and "Mouse430v2.0" 

will cover all the linkages between "MouseRef-8 vl" and "Mouse430v2.0" platforms. 

Instead of giving the d-statistic plot for the whole genome of either platform, 
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Figure 3.3: Boxplots for the mean difference expression and the log fold-change com­

parison between the Illumina and A.ffymetrix analysis using the mouse data. Note: 

Average data is the averaged Illumina data as described in Section 2.2.1. 
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Figure 3.4 gives the d-statistic plot and the Pearson's correlation coefficient of these 

comparable genes in two platforms. From which we find that the Pearson's correlation 

coefficient is 0.1464, which is very poor. The shape of this plot does not support an 

assumption of good concordance between these two platforms. 

The SAM analyses give two significant gene lists from either platform. For example 

in the Illumina list , we find that there are 109 significant probes in total at FDR 

~ 20%. According to the mapping file , 70 probes (63.3%) among the total whose 

probeiDs are linked to certain probeiDs in the Affymetrix platform, which means 

these 70 probes are comparable and the other 39 (36.7%) probes are non-comparable 

across the two platforms. On the other hand in the Affymetrix list, at the same FDR 

cutoff point , the SAM analysis gives 698 significant probe sets in the significant list, 

of which 277 (39.7%) are comparable and 421 (60.3%) are non-comparable across the 

platform. 

From the significant probe list tables (refer to Table 3.2 and Table 3.3) we find 

that , for example, the first comparable significant gene in the Illumina list is "Asgr2" 

(3rd is the original overall ranking in the Illumina platform if including those non­

comparable genes), the second is "Pdk3" with an overall ranking as the 5th, and the 

third is "Asb2" with an overall ranking as the 6th in the list. The corresponding 

ranking for these top 3 comparable significant genes in the Affymetrix list are the 

78th, 28th and 31st (the original overall rankings). Furthermore, we find 19 of such 

comparable genes that are in both significant lists at the FDR level of 20%. This 

forms the percentage of 27.14% for the Illumina list and 6.86% for the Affymetrix list 

for these common significant genes correspondingly. We summarize the percentage 

statistics of these comparable and common significant genes in Table 3.1 , along with 

the Venn diagrams to show the agreement between these two significant lists, at three 
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Figure 3.4: The pairwise scatter plots of the d-statistics of those comparable genes 

from two mouse microarray platforms and the Pearson's correlation coefficient. 
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different FDR cutoff points of 20%, 10% and 5%. 

Table 3.2 shows the comparable top 40 significant genes from the Illumina platform 

and their corresponding ranking and d-statistics in the Affymetrix platform. From 

which we find that the overall concordance between the two platform is very poor. 

Furthermore, we surprisingly find that genes Zfp148 and Supt16h, ranked at 26th 

and 35th on Illumina, showed completely opposite expression behavior between the 

two platforms, both are significantly under-expressed (at 20% FDR) on the Illumina 

platform but become over-expressed on the Affymetrix platform. 

In addition to the above finding, however, only looking at the top 10 significant 

genes from the Illumina list (Table 3.2) suggests a quite good agreement in rankings, 

four out of five (80%) comparable genes are in both lists, which is pretty good com­

pared to the overall percentage of 27.14% at a 20% FDR and 16.7% at a 10% FDR 

(Table 3.1). This tells us that , when mapping from the Illumina analysis to that for 

the Affymetrix data, the concordance of the significant genes across the two platforms 

is significantly higher for those extremely differentially expressed genes (top signif­

icant genes) than the average. However, this finding is not true if we are mapping 

from the Affymetrix analysis to that for the Illumina data. We find that none of the 

comparable top 10 genes in the Affymetrix list shows up in the Illumina list (Table 

3.3). And the overall percentages of those common significant genes are 6.86% at a 

20% FDR and 9.38% at a 10% FDR, which are all much lower than those from the 

Illumina platform (Table 3.1). 
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FDRc:::: 20% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

Non-comparable genes 

19 genes in both lists 

109 

70 (63.3%) 

39 (36.7%) 

27.14% 

698 

277 (39.7%) 

421 (60.3%) 

6.86% 

51 

-
lllumi.ua 

19 258 

Affymebi'C 

FDR~ 10% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

30 

18 (60%) 

91 

32 (35.2%) 

1.:' 

-
llhuni.ua 

3 29 

Affymetri.'C 

Non-comparable genes 12 (40%) 59 (64.8%) 

3 genes in both lists 16.7% 9.38% 

FDRc::::5% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

Non-comparable genes 

13 

8 (61.5%) 

5 (38.5%) 

2 

0 (0%) 

2 (100%) 

8 

lllumi.t1a 

0 
Affymehi'i: 

No genes in both lists 0 

Table 3.1: Summary of concordance of the significant genes from two mouse platforms 

at different F DRs c:::: 20%, 10% and 5%. 
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ILMN Rank ILMN Symbol d.statl Affy Symbol d.stat2 Affy Rank 

3 Asgr2 5.4133 Asgr2 4.1814 78 

5 Pdk3 5.1086 Pdk3 5.0290 28 

6 Asb2 4.7553 Asb2 5.0027 31 

8 Axud1 -4.6899 Axud1 -3.8237 1136 

9 Ccl24 4.2490 Ccl24 3.7986 122 

11 Nfil3 -4.1250 Nfil3 -0.0407 43763 

12 Cbln1 -4.0688 Cbln1 -1.2688 13249 

13 Ifitm6 3.8747 Ifitm6 2.7051 525 

17 Mrpl55 -3.6922 Mrpl55 0.7110 26530 

18 Dusp1 -3.5801 Dusp1 -1.4542 11323 

19 Fpr-rs2 -3.5255 Fpr-rs2 -2.2196 5835 

22 Itgb7 3.3568 Itgb7 2.7823 475 

24 4632408A20Rik 3.2909 4632408A20Rik 1.4602 4234 

26 Supt16h -3.3031 Supt16h 3.3647 216 

27 2310046K01Rik -3.2404 2310046K01Rik -1.4984 10991 

28 Trps1 -3.2296 Trps1 -0.4951 26666 

29 Card4 -3.2178 Card4 1.0254 10032 

30 Fos -3.1981 Fos -4.5395 801 

31 Dscam 3.2028 Dscam 2.0667 1499 

32 Ill8r1 3.1967 Ill8rl 2.5179 682 

33 Npy 3.1775 Npy 1.6912 2866 

35 Zfp148 -3.1764 Zfp148 3.7954 124 

37 D16Ertd472e -3.0588 D16Ertd472e -1.0797 15563 

39 Plk3 -3.0393 Plk3 0.6902 27663 

Table 3.2: The table of comparable significant genes from the Illumina platform and 

the corresponding ranking in the Affymetrix mouse platform. 
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Affy Rank Affy Symbol d.stat1 ILMN Symbol d.stat2 ILMN Rank 

4 Hmox1 6.7240 Hmox1 1.4485 3417 

9 Ltb 6.0617 Ltb 1.0483 10316 

10 G-11 5.9440 G-11 -1.7239 532 

11 Marcks 5.8497 Marcks 1.4241 4279 

12 Tsc22d3 5.8306 Dsip1 0.0245 23375 

13 Pfn1 5.8224 Pfn1 0.6335 16014 

14 Apba3 5.7410 Apba3 -0.6253 5966 

15 Ctnnd2 5.5282 Catnd2 2.0893 446 

16 Ddost 5.4648 Ddost 1.3549 5082 

18 2610510E02Rik 5.3930 1 700025G04Rik 1.1861 7805 

19 Mgst3 5.3833 Mgst3 -1.1420 2046 

28 Pdk3 5.0290 Pdk3 5.1086 5 

31 Asb2 5.0027 Asb2 4.7553 6 

39 Por 4.7989 Por 1.8608 804 

Table 3.3: The table of comparable significant genes from the Affymetrix platform and 

the corresponding ranking in the Illumina mouse platform. 
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3.3 Compare to Another Paper 

In another paper by Barnes et al. (2005), they compared reproducibility of the 

Affymetrix and the Illumina platforms based on a series of dilution studies using 

the human microarray products. It was found that the agreement between these two 

platforms is very high, especially for those genes that are predicted to be differentially 

expressed. It was shown that, firstly, the level of gene expression is an important fac­

tor in making a good cross-platform comparison and within-platform comparison as 

well, secondly, the precise location of the probe on the genome also plays an important 

role when comparing the two platforms. 

Compare the findings from our study to the above paper, although the two studies 

used different experimental designs and different microarray products and approaches 

of statistical analysis, our studies more focused on the SAM perspective. We arrived 

at similar findings to a certain degree; both studies suggest a good within-platform 

reproducibility on the Illumina platform. Besides, our study partially verified the 

finding that the level of gene expression plays an important role during the within­

and cross-platform comparison. We say partially because what we find is only true for 

the Illumina platform but not for the Affymetrix according to the mapping file. Plus, 

as pointed in Barnes' paper , we believe that the precision of the annotation mapping 

file has a huge impact on the cross-platform comparison. We hope that the mapping 

file does map the two different probeiDs to the same location on the genome, so we 

know that they are measuring the same thing on both platforms. 
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Chapter 4 

Across Platform Reproducibility 

Using the Rat Data 

In this chapter we check the reproducibility across the Affymetrix GeneChip ( "RAE230v2") 

and Illumina Bead Chip ( "RatRef-12 vl" ) platforms through the SAM analyses using 

another experiment in the rat model. The rat data is described in Section 1.3.2. We 

investigate the concordance of those comparable significant rat genes arising from the 

SAM analyses of both platforms. The result is also compared to that of the mouse 

data from the previous chapter. 

4.1 Comparing the SAM Analyses 

As we did in the mouse chapter, we produced the "averaged Illumina rat data" by 

averaging the expression values from the technical replicates. We performed the SAM 

analysis and compare its result with the SAM analysis using the Affymetrix GeneChip 

rat data. Quantile normalization methods for both platforms are used in t he same 
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Figure 4.1: SAM plot comparison between Illumina and Affymetrix analysis using the 

rat data. 

way as we did for the mouse data. Figure 4.1 illustrates both SAM plots at the FDR 

c::= 20%. We will compare the SAM analyses of both platforms at different FDR cutoff 

points at 5%, 10% and 20% in the following sections. 

4. 1. 1 Comparing the SAM Plots and Boxplots 

Comparing the two SAM plots in Figure 4.1 (FDR:::::: 20%), we find that they dif­

fer slightly in terms of the number of significant probes or probe sets, but there is 

quite a big difference in the tail behavior. Compared to the Illumina SAM plot, we 

find that Affymetrix analysis gives fewer "under-expressed" genes in the lower-left 

tail than the Illumina analysis, e.g., only one significant probe set with negative d-

statistic was detected to be significantly under-expressed. Notice that the terms of 

"under-expressed" and "over-expressed" are referred to the gene expression behavior 

.... 

-4 -2 

Expected Relative Difference 

(b) Affymetrix 
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comparing the parental (BB) rat against the congenic (BB7B) rat strain. 

The boxplots in Figure 4.2 show the variances of the mean difference of the gene 

expression value and log fold-change on the Illumina and the Affymetrix platforms. 

Compared to the mouse platform (Figure 3.3), we find the rat data suggests a very 

similar variation of the mean difference and the log fold-change across the two mi­

croarray platforms. That is , the variation in Affymetrix platform from rat data is 

much smaller than that from the mouse data. 

4.1.2 Comparing the (Comparable) Significant Genes 

Again, we only investigate the concordance of those comparable rat genes across 

the two platforms. The comparable genes are subsetted based on the Illumina's 

annotation mapping file that maps the Illumina probeiDs on the "RatRef-12 v1" 

BeadChip to the Affymetrix probeiDs on rat "RAE230v2" GeneChip. 

Figure 4.3 gives the scatter plot of the d-statistics and the Pearson's correlation 

coefficient among those comparable genes in two platforms, from which we find that 

the Pearson's correlation coefficient is 0.4223 which is not very high but much better 

than the coefficient we found in the mouse data (0.1464). 

From the significant probe list tables (refer to Table 4.2 and Table 4.3) we find 

that, at 20% FDR, within the list of 127 significant probes from the Illumina analysis, 

there are 71 probes which are comparable to the Affymetrix platform according to 

the mapping file. On the other hand for the Affymetrix list , only 29 out of the 84 

significant probe sets are comparable to the Illumina platform. For example, the first 

comparable significant gene in the Illumina list is "Defa", and the second is "Np4" 

(3rd in the original overall ranking in the Illumina platform when including those 
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Figure 4.2: Boxplots for the mean difference expression and the log fold-change com­

parison between the Illumina and Affymetrix analysis using the rat data. 
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Scatter Plot of significant gene d.stat(d1, d2) 

Pearson's correlation coefficient= 0.4223 


0 0 

co 

~ 
c.E 0 

::J <0 
-
E 0 

0 
0 .....- 0 0 

"E -.:t 

Vl -
0 

0 

0""0 
Q) 
c 
Q) C\1 
~ 
0'1 c 

=u c 
0 0 0a. 
Vl 
Q) 
..... ..... 

0 

() C\1 


I 
 0 

0 

-.:t 
I 

lb 

0 

0 

0 

-10 -5 0 5 10 

Gene d .s1a1 from Affyme1rix 

Figure 4.3: Pairwise scatter plot of the d-statistics of those common genes from two 

rat microarray platforms and the Pearson's correlation coefficient. 
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non-comparable genes). The corresponding ranking for these two comparable signif­

icant genes in the Affymetrix list are the 1st and the 2nd (original overall ranking). 

Furthermore, we find 16 such comparable genes that are in both significant lists at 

this FDR level of 20%. This forms the percentage of 22.5% for the Illumina list and 

55.2% for the Affymetrix list for these comparable significant genes. As we did in the 

mouse data analysis, we summarized these percentage statistics of these comparable 

and common significant genes in Table 4.1, along with the Venn diagrams to show the 

agreement between these two significant lists , at three different FDR cutoff points of 

20%, 10% and 5%. 

Table 4.2 and Table 4.3 shows the comparable top 40 significant genes from both 

the Illumina and Affymetrix platforms and the corresponding rankings and d-statistics 

in the other platform. From these tables we find that the overall concordance between 

the two platforms is still fairly poor, but seems better than the ranking tables from 

the mouse analysis. This is also reflected in the higher correlation coefficient. Further­

more, we didn't find any opposite signs of the d-statistics which indicate the totally 

different expression behaviors. 

Comparing these percentage statistics in Table 4.1, we find that , a lower (5%) 

FDR cutoff point improves the comparability of the significant genes between the 

two platforms. The percentage of those common significant genes increases to 40% 

and 100% from 12.9%, 50% when FDR = 10% and from 22.5%, 55.2% when FDR 

= 20%. The increase in the percentages indicates a better concordance for those 

extremely significant genes in the two platforms. Again, this finding is similar to 

what we have found from the mouse data in the previous chapter. 
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FDR ~ 20% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

Non-comparable genes 

16 genes in both lists 

127 

71 (55.9%) 

56 (44.1%) 

22.5% 

84 

29 (34.5%) 

55 (65.5%) 

55.2% 

55 

Illumina 

16 13 

Affymetrix 

FDR ~ 10% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

56 

31 (55.4%) 

21 

8 (38.1%) 

27 

Ilhunina 

4 4 

A1Iymetrix 

Non-comparable genes 25 (44.6%) 13 (61.9%) 

4 genes in both lists 12.9% 50% 

FDR~5% 

Illumina Affymetrix 

Total number of significant 

genes 

Comparable genes 

8 

5 (62.5%) 

3 

2 (66.7%) 

3 

Illumina 

~ 
Affymetrix 

'-....___../ 

Non-comparable genes 3 (37.5%) 1 (33.3%) 

2 genes in both lists 40% 100% 

Table 4.1: Summary of concordance of the significant genes from the two rat platforms 

at different F DRs~ 20%, 10% and 5%. 
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ILMN Rank ILMN Symbol d.stat1 Affy Symbol d.stat2 Affy Rank 

1 De fa 11.4662 Defa 9.0358 1 

3 Np4 9.0542 Np4 8.9842 2 

5 MGC93766 8.8321 Abhd14b 2.3946 280 

7 RGD1307811 8.6268 Spbc25 2.4979 228 

8 Nradd 8.3999 Nradd 3.1356 83 

11 Tmepai_predicted 7.5463 Tmepai_predicted 1.2771 2120 

14 Cklfsf8 6.4120 Cmtm8 1.1348 2819 

17 Ccr1 -7.4030 Ccr1 -2.8037 856 

19 Cdkn3_predicted 6.1521 Cdkn3_predicted 2.1955 401 

20 Ugt8 6.1513 Ugt8 0.6999 7254 

22 Ldhc 5.8520 Ldhc 3.3581 63 

24 Cspg5 -6 .7348 Cspg5 -2.21 86 2358 

26 LOC362626 5.5358 RGD1359529 2.0191 546 

28 Stk16 5.4746 Stk16 1.4787 1452 

29 S100a9 5.4091 S100a9 1.4124 1635 

30 Orm1 5.3726 Orm1 2.7379 146 

31 Gfi1 5.3614 Gfi1 3.4216 59 

35 LOC363028 5.1781 Spbc24_predicted 2.0162 550 

37 Nkg7 5.1216 Nkg7 3.1254 84 

38 LOC360847 5.1104 Ube2Lpredicted 2.0310 532 

39 LOC308607 5.0923 E2f8 2.7090 157 

Table 4.2: The table of comparable significant genes from the Illumina platform and 

the corresponding ranking in Affymetrix rat platform. 
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Affy Rank Affy Symbol d.statl ILMN Symbol d.stat2 ILMN Rank 

1 Defa 9.0358 Defa 11.4662 1 

2 Np4 8.9842 Np4 9.0542 3 

5 RGD1560913_predicted 6.7699 LOC499322 2.2627 542 

12 Rnpep 5.2130 Rnpep 3.1457 143 

13 Nt5e 4.9527 Nt5 4.6760 45 

15 Pacsin1 4.6739 Pacsin1 0.2144 17218 

16 Fut2 4.5625 Fut2 4.8189 42 

21 Zbp1 4.2633 Zbp1 3.7265 91 

22 Ceacam1 4.2420 Ceacam1 0.2824 16150 

26 Lcn2 3.9471 Lcn2 4.0892 66 

28 Rrm2_mapped 3.9280 Rrm2 1.7558 1764 

31 Ms4a2 3.8555 Ms4a2 4.4456 52 

39 LOC24906 3.7298 LOC24906 4.1379 64 

Table 4.3: The table of comparable significant genes from the Affymetrix platform and 

the corresponding ranking in the Illumina rat platform. 
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4.2 Comparison with the Mouse Data Analysis 


In addition to the above findings, after comparing the rat analysis shown in Table 4.1 

with the mouse analysis shown in Table 3.1 , we find that the rat data suggest a better 

overall agreement across the two platforms for those comparable significant genes than 

the mouse data. This is true both in terms of the Pearson's correlation coefficient 

(0.4223 v 0.1464) and the percentage of common significant genes. Especially, with a 

lower FDR at 5% (for the top significant genes), the rat data suggests a much better 

agreement across the two platforms compared to the mouse data analysis. The two 

most significant comparable genes are the same in both platforms (Defa and Np4). 

Besides, as shown previously in the boxplots of the mean difference and Log fold­

change, the variations for the rat data are greatly improved compared to the mouse 

data (Figure 4.2 and Figure 3.3). 

We will discuss and summarize the possible reasons for this improvement in the 

overall comparability between these two rodent models in the conclusion chapter. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this report, we discussed the within and across platform reproducibility between 

two major expression profiling microarray platforms, the Affymetrix GeneChip and 

Illumina BeadChip. From the study we find that, the reproducibility within the 

Illumina platform is pretty good in terms of the data quality and SAM analysis, 

especially for the most differentially expressed genes. However, as expected and seen 

on the Affymetrix platform, day effect does exist for the Illumina BeadChip platform 

as well. We also find that , due to the way the Beadarrays are packed on the Illumina 

Sentrix™ platform, proper procedure of RNA preparation and hybridization can 

efficiently reduce the Illumina chip effect . 

For the across platform reproducibility we find that , using the mapping file (both 

mouse and rat) provided by Illumina gives a fairly poor overall reproducibility of those 

comparable significant genes across the platforms. However, the rat data do show 

better overall concordance and smaller variance in the mean difference than the mouse 
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data do. We suspect that the improvement is due to the relatively larger genomic 

difference between the two rat strains. This shows the evidence that the genomic 

difference in biological samples could be a confounding variable that will affect the 

across platform reproducibility in microarray experiment. In addition, we find there 

is obviously better reproducibility for those extremely differentially expressed genes 

(top significant genes) across the two platforms. These findings partially agree with 

Barnes et al. (2005) . 

In addition to the agreements between the two platforms, we also find a lot of dis­

agreements . Especially for the mouse data, it reveals that some genes are significantly 

under-expressed in the Illumina platform are actually significantly over-expressed in 

the Affymetrix platform. We conclude several reasons that might cause these dis­

agreements as below: 

First , as suggested in Barnes et al. (2005), the accuracy of the annotation plays 

a very important role when comparing the two platforms. The annotation that we 

used in our analysis (the mapping file from the Illumina) could be a major source of 

bias that caused the discrepancy in the resulting significant gene lists. 

Secondly, under our biological assumption that most genes on the microarray are 

not differentially expressed, the experiments produce a lot of noise in the data. This 

low signal/ noise ratio initially makes the across platform reproducibility lower. 

Lastly, we used the same normalization method for both platforms, but this could 

also be a source to introduce bias to the comparison. We should use the optimal 

preprocess method to achieve the best SAM results for each individual platform and 

thus obtain the best comparability across the two platforms. However, the optimal 

normalization/ preprocessing methods for both platforms, especially the BeadChip 

data, are still being developed and more study needs to be done in the future work. 
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5.2 Future Work 

A lot of work could be done to look further into the questions of across platform 

reprod uci bili ty. 

As mentioned above, more research should be done in the preprocessing methods in 

order to get the optimal normalized expression data for both Affymetrix and Illumina 

platforms. For this reason, for example, the GCRMA and other algorithms could be 

applied or need to be developed to use the probe level information for both GeneChip 

and BeadChip platforms. 

Secondly, rather a more bioinformatical than a biostatistical research task though, 

another avenue for the future work is to find a more accurate and comparable anno­

tation files for different microarray platforms. We believe a more accurate annotation 

linkage file between the Affymetrix and Illumina platforms would greatly improve the 

across platform reproducibility. 

Finally, although we didn't test the significance of the suspicious confounding vari­

able as mentioned previously, in order to see a more clear picture of the comparability 

(for different biological applications) across the Affymetrix and Illumina platforms, 

more experimental design could be performed to investigate how these confounding 

variables (e.g., the biological difference on genome of the comparison) can contribute 

to the reproducibility across the platforms. 
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Appendix A 

Glossary 

Adenine (A) One of the four bases in DNA. Adenine (A) is always paired 

with thymine (T) according to the complementary base-pairing rule. 

Affymetrix Gene Chip One of the gene expression microarray platforms pro­

duced by Affymetrix, which consists of hundreds of thousands of probe cells, 

each containing several million copies of a specific oligonucleotide probe. 

Annotation A sequence representation of genetic material with information re­

lating position to gene names, regulatory sequences, repeats, and protein prod­

ucts , etc . This annotation is usually stored in predefined fields in biological 

databases, especially sequence databases. 

Bioinformatics The field of science in which mathematics, computer science 

and information technology are merge into a single discipline to solve biology 

problems. This includes recording, annotation, storage, analysis, and search­

ing/ retrieval of nucleic acid sequence (genes and RNAs), protein sequence and 

structural information, etc. 

Chromosome A large, threadlike macromolecule in the cell nucleus that car­

85 




ries the genes in a linear order. e.g., the human genome consists of 23 pairs of 

chromosomes; in each of these pairs , one chromosome comes from the mother 

and the other from the father. 

Complementary Base-Pairing The two complementary strands of DNA 

are connected via hydrogen bonds between base pairs: Adenine (A) is always 

paired with thymine (T) , and cytosine (C) is always paired with guanine (G). 

Cytosine (C) One of the four bases in DNA. Cytosine (C) always is paired 

with guanine (G) according to the complementary base-pairing rule. 

DNA Acronym for deoxyribonucleic acid. DNA carries the genetic instruc­

tions, in very long sequences of nucleotides, for making living organisms. Two 

long strands of DNA in the form of a double-helix structure make up each 

chromosome. 

DNA Microarray A small glass slide that comprises thousands - or even 

hundreds of thousands - of spots , or probe cells. Each of these spots contains 

specific genetic material for measuring the expression of a single gene. The 

most prominent examples are the Affymetrix GeneChip, eDNA microarrays 

and Illumina BeadChips. 

Gene A segment of DNA involved in producing a polypeptide chain. It can 

include regions preceding and following the coding DNA as well as introns be­

tween the exons. Considered a unit of heredity. 

Gene Expression A multiple-step process of converting a DNA sequence into 

a protein. It consists of "transcription" and "translation" steps. 

Genome The full DNA sequence of a organism, constituting a blueprint for 

all cellular structures and activities in that organism. Virtually all cells of an 

organism contain a copy of the complete genome. 
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Guanine (G) One of the four bases in DNA. Guanine (G) is always paired 

with cytosine (C) according to the complementary base-pairing rule. 

Hybridization The process of joining two complementary strands of DNA. 

Illumina BeadChip Another gene expression microarray platform produced 

by Illumina. 

Locus A location in the DNA sequence. 

Mismatch (MM) An oligonucleotide probe used on an Affymetrix microar­

ray to adjust the corresponding perfect match (PM) for background noise and 

nonspecific binding. Each MM oligo is a sequence consisting of 25 bases, which 

is almost identical to the sequence of corresponding perfect match. Only the 

thirteenth base of the MM is complementary to the thirteenth base of the cor­

responding PM. 

Nonspecific Binding Hybridization of a mRNA or eDNA sequence to a spot 

that actually corresponds to a different mRNA or eDNA sequence. 

Oligonucleotide Abbreviated "oligo" . A sequence of single-strand RNA or 

DNA often used on microarrays as probe to measure gene expression. The oligo 

sequences can consist of different length, usually 25 to 60 bases. 

Over-expression A gene is sometimes expressed in increased quantity com­

paring from one biological condition against the other. The increase can be 

measured in abundance of transcribed mRNAs, or the fluorescent intensity val­

ues between two biological conditions. 

Perfect Match (PM) An oligonucleotide consisting of 25 bases used on 

Affymetrix GeneChips to measure gene expression. Each PM is used with its 

corresponding mismatch (MM). 
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Probe A piece of labeled RNA or DNA used to measure the expression of a 

gene. 

Probe Set A set of probes pairs that represents a particular gene. On Affymetrix 

GeneChips , a probe set typically consists of 11-20 pairs of perfect match and 

mismatch probe pairs. 

Protein A large, complex molecule. Proteins are responsible for virtually ev­

erything that happens in an organism. 

RNA Acronym for ribonucleic acid. A chemical similar to a single strand of 

DNA but carrying a different sugar molecule (ribose instead of deoxyribose) 

and a different base (uracil [u] instead of thymine). 

Southern Blot A method named after its inventor, Edwin Southern. It is 

used in molecular biology to check for the presence of a DNA sequence in a 

DNA sample. 

Thymine (T) One of the four bases in DNA. Thymine (T) is always paired 

with adenine (A) according to the complementary base-pairing rule. 

Under-expression Contrary to over-expression, a gene is sometimes expressed 

in decreased quantity comparing from one biological condition against the other. 

See over expression. 
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