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Abstract 

With the phenomenal growth of the Internet and the advancement of computing hard­

ware, grid architectures have been developed to exploit idle cycles in large networks of 

computational resources. One key aim of resource management (scheduling) schemes 

is to find mappings of incoming workload to machines within the grid to maximize 

the output. The "rst coutrilmtion of this thesis is the construction of a tool to aid 

researchers in testing and improving scheduling schemes, namely the McMaster Grid 

Scheduling Testing Environment (MGST). 

The Linear Programming Based Affinity Scheduling Scheme (LPAS_DG) was in­

troduced by researchers at McMaster, and simulation results have been promising 

in suggesting that this scheduling scheme outperforms other schemes when there is 

high system heterogeneity and is competitive under lower levels of heterogeneity. The 

second contribution of this research is providing suggestions to improve this scheme, 

based on the result s of experiments where the LPAS_DG scheme was actually deployed 

on the MGST test bed . 
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Chapter 1 

Introduction 

1.1 R esearch Motivation 

With knowledge comes the drive to pursue more knowledge. Recently, scientists 

have developed the need for huge computational power. This need along with the 

Internet coupled with the advancement of computers, has led to the development of 

grid technology. 

Research areas and applications that require large computational power include 

biology, medicine, artificial intelligence, mathematics , cryptography and climate mod­

elling. For instance, current DNA-based research requires huge computational power. 

The introduction of the personal computer and later the advancement and spread 

of personal computers has contributed to the development of desktop grids. The 

personal computers sold today are more than five orders of magnitude faster than 

computers from 50 years ago [30]. 

The increase of the number of hosts connected to the Internet in recent years 

has been phenomenal. From 1993 to 2007, the number of hosts connected to the 

Internet increased by 19540% [27] . The majority of personal computers connected 

to the Internet spend most of their time idle. Harvesting the idle cycles of personal 

computers connected to the Internet can produce a powerful computing resource at 

low cost. 

1 



2 1. Introduction 

Grid technology is a powerful computational resource, and maximizing the output 

of grid systems is challenging. Deploying an efficient scheduling scheme to map jobs 

to machines is a key to maximize the output of a grid system. 

The focus of this thesis is on grid architectures with heterogeneous processors. 

Processor heterogeneity may be caused by several factors. The first is the intro­

duction of multi-core processors. Examples include the Cell processor used in the 

PLAYSTATION 3 and the Core 2 family manufactured by Intel. Some of these cores 

are non-identical, which results in heterogeneity. Some cores might be better in a 

particular type of computing (e.g. vector operations) and worse in another type. A 

second factor is the wide range of computing devices. Video game consoles as well 

as cellphones and Internet tablets are joining personal computers in connecting to 

the Internet. In the future, many devices that have a processor might be able to 

participate in grid architectures. 

Heterogeneity can -be exploited by scheduling schemes. One way of doing so is 

to send jobs to a server that can complete the job fastest. However, scheduling for 

heterogeneous grids is challenging as sending jobs to processors that execute that 

type of job slowly may result in wasting processing time which could have been used 

to execute different type of jobs efficiently, this in turn can harm the scheduling 

performance. In other words, because processors are different , choosing the right 

processor has a more significant effect on the performance of scheduling schemes than 

when processors are homogeneous (We will see this in more detail in Chapter 7). 

Our work in this thesis is about testing and scheduling schemes, especially those 

for heterogeneous grids. This thesis work involves creating a testing environment to 

test and improve proposed policies. 

1.2 Research Objective 

In this thesis we will pursue the following research objective: Provide a testing envi­

ronment for theoretical scheduling policies on real grids. 

The testing environment should be able to give testers the ability to simulate a 
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heterogeneous grid in the case that homogeneous servers are being used. In addition, 

we aim to develop an extensible environment to allow testers to add new scheduling 

schemes. 

1.3 Contributions 

The main contributions of this research are: 

• The development of an extensible testing environment (McMaster Grid 

Scheduling Testing Environment (MGST )) that makes it possible to test and 

improve scheduling schemes. 

• Running experiments to test the implementability of the LPAS_DG scheduling 

scheme (defined in Chapter 4) and making suggestions to improve it. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 introduces Desktop grids and Xgrid Technology. First desktop grids 

are discussed, followed by a brief explanation of Xgrid Technology. Finally, the future 

of desktop grids is touched upon. 

Chapter 3 elucidates firstly the workload model followed in this research and 

then the machine availability model. 

Chapter 4 serves as a literature review on scheduling schemes. In this chapter a 

taxonomy of desktop grids as well as a taxonomy of scheduling policies are presented. 

This is followed by a brief explanation of scheduling schemes used in this research. 

Chapter 5 clarifies the system requirements specification and then explicates the 

software design. 

Chapter 6 introduces background information for concepts used in the software 

implementation. This is followed by a brief explanation of the software packages 
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and how to extend the software. This chapter is concluded with a discussion of 

considerations taken in the design and development phases. 

Chapter 7 illustrates tests and results obtained using the testing environment 

developed. 

Chapter 8 is the concluding chapter. It includes a discussion of the testing 

environment as well as the testing results followed by suggestions for possible future 

work. 

Appendix A is a compact disc containing the source code and the executable 

for the testing environment in addition to Javadoc Documentation. 

Appendix B serves as a user manual explaining the functions of the system and 

how to use them. 

Appendix C is a collection of setting configurations procedures to help testers 

in using the testing environment for future tests. 



Chapter 2 

Desktop Grids 

2. 1 D esktop Grids 

A desktop grid is a distributed computer system. The purpose of desktop grids is to 

provide specific computational or storage resources. The scale of such systems can 

be as small as a lab in a university campus or as large as the Internet itself. In [31], 

desktop grids are described as a large virtual computer formed by a networked set of 

heterogeneous machines that contribute with their resources. The main purpose of 

these systems is to exploit the dead cycles of millions of machines across the Internet 

[21]. 

Desktop grids are constructed from a number of machines and a Resource Man­

agement System (RMS). The machines (which from this point we will interchangeably 

call servers or machines) provide the computational and storage resources for the sys­

tem. The functionality provided by an RMS varies depends on the type of desktop 

grid system. However, the basic service that any RMS will provide is accepting re­

quests (jobs) from clients and mapping specific machines ' resources to these requests. 

The RMS is central to the operation of desktop grid systems [31]. 

Currently desktop grids are used mainly for research purposes by different uni­

versities and research centres. Some grid based projects are discussed later in this 

chapter. 

5 



6 2. Desktop Grids 

Desktop grid technology generates huge computational power that researchers 

can use to conduct computationally intensive experiments at reasonable cost. Other 

similar distributed computing technologies are clustered systems or dedicated grid 

systems, where the servers are owned and managed by one organization and used as 

a propriety system. Both technologies provide high computational power. Clustered 

systems are easier to manage and operate but usually more expensive than desktop 

grids since machines are bought and maintained at an organization's expense. On 

the contrary, in distributed desktop grids computational power is obtained by har­

nessing the idle cycles of voluntarily participating servers. Thus, a large amount of 

computational power can be obtained from a distributed desktop grid at reasonable 

cost, of course at the expense of more complex system management. Another impor­

tant difference between desktop grids and other distributed computing technologies 

is the dynamic nature of servers in desktop grids. Servers can connect to the grid and 

disconnect at any time, making it harder to predict the availability of servers in such 

systems. 

The invention and later the growth of this technology was driven by several factors. 

The first one is the existence of a suitable infrastructure. This infrastructure is 

constructed from the Internet and the hosts connected to it. The Internet provides 

a means of communication and the computers connected to it provide computational 

resources, meaning that building a Desktop grid requires only building a software 

layer on top of an existing system. 

The second factor is the massive growth of the Internet and the fact that there are 

many connected hosts that are mostly idle. Figure 2.1 shows the exponential growth 

of hosts connected to the Internet. In January of 1993 only 2,217,000 hosts were 

discovered by the Internet Systems Consortium (ISC) survey host count , whereas in 

January of 2007 the survey discovered 433,193,199, an increase of 19540% [27]. 

The number of users connected to the Internet is estimated to be 1.3 billion, which 

means that around one fifth of the world 's population uses the Internet [27]. That 

large number of users implies a correspondingly large number of connected computers. 

The 433,193,199 servers discovered by the ISC in January 2007 were servers directly 
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Figure 2.1: The exponential growth of Internet users 

connected to the Internet (computers with real IP addresses) [28]. The actual number 

of hosts connecting through proxies is hard to measure, due to the fact that they are 

protected by firewalls. In any case, this large number of computers generates a huge 

potential of unexploited computing power. 

The third factor is the exponential growth of computing power of individual com­

puters . According to Moore's law, the number of transistors that can be inexpensively 

placed on an integrated circuit (IC) increases exponentially, doubling approximately 

every year [35]. Practically, the number of transistors placed on an IC circuit of 

the same size is doubled every 18 - 24 months (Figure 2.2). The increase in num­

bers of transistors results in a corresponding increase in computational operations 

done per second. It is worth mentioning that the introduction of multi-core proces­

sors (e.g. Intel Core 2 Duo) has significantly increased the computational power of 
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personal computers. Multi-core processors also provide the ability to concurrently 

execute multiple threads. This ability allows for the execution of local tasks along 

with desktop grid tasks without affecting the performance of the local machine. 

9457416 

44721 

211 

Figure 2.2: The exponential growth of the number of transistors per IC 

In summary, desktop grids are computer systems developed to use the idle com­

puting power of large numbers of computing machines. The widespread availability 

of low-cost, high performance computing hardware and the phenomenal growth of 

the Internet have created a suitable environment for desktop grid technology to be 

deployed. 
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2.2 Desktop Grids in Practice 

2.2.1 History of Desktop Grids 

Although there is no consensus about the origins of grid computing, the roots of 

this technology can be traced back to the late 1980s in fields related to distributed 

supercomputing for numerically intensive applications, with particular emphasis on 

scheduling algorithms (e.g. Condor [16], Load Sharing Facility [44]) [33]. Ian Forster 

mHl Carl Kesselman arc known to be amongst the first scientists to write about the 

topic. Their publications include the seminal book The Grid: Blueprint for a New 

Computing Infrastructure, which was published in 1999 [21], and an important paper 

called Physiology of the Grid, which they co-wrote with several scientists in 2002 [22] . 

In addition to these publications, several projects are considered to be important 

milestones. Two of these projects are discussed in the following paragraphs. 

Distributed. net is the first Internet distributed computing project [17] . It was 

founded in 1997. Distributed.net is a non-profit organization that tries to employ 

the computational power donated by thousands of its users around the world for 

academic research and public-interest projects. Their first project was RSA Secret­

Key Challenge, which was initiated by the RSA Laboratories Institute (www.rsa.com) 

to demonstrate the relative security of different encryption algorithms. The challenge 

was successfully completed after 212 days and the RC5-56 encryption algorithm was 

cracked. Since then several projects have been successfully completed, while some are 

still active at the time of writing of this thesis. For example, the Optimal Golomb 

Rulers (OGR-25) project is still in progress . This project aims to find a solution for a 

mathematical problem called the Golomb Ruler, and has been active since September 

2000 [18]. 

SETI@Home 1s another distributed computing project that uses Internet­

connected computers. This project is managed by the Space Sciences Laboratory at 

the University of California, Berkeley. The group working on this project describes 

themselves on their web site as follows [41]: 

SETI@home is a scientific experiment that uses Internet-connected com-
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puters in the Search for Extraterrestrial Intelligence (SET!) . You can par­

ticipate by running a free program that downloads and analyzes radio tele­

scope data. 

The SETI project was released to the public in May 1999. Although the project 

has not yet achieved its goal, it has proven the viability and practicality of the dis­

tributed computing concept . Another important goal was achieved when Berkeley 

Open Infrastructure for Network Computing (BOINC) was developed to support 

SETI@home and later turned into open source middleware for distributed comput­

ing. It is now being used in several distributed computing projects including Pro­

teins@home and Rosetta@home. The list of desktop grids provided in the next section 

includes some of BOINC projects. 

2.2.2 Examples of Desktop Grids 

As mentioned earlier, the Internet 's rapid spread and the large increase of computa­

tional power has resulted in an increased use of distributed grid computing. There 

are currently many desktop grids in operation. The following is a partial list. 

• Proteins@home: Attempts to deduce the DNA sequence of given proteins [38]. 

• Rosetta@home: Tests the assembly of specific proteins, using appropriate frag­

ments of better-known proteins [40]. 

• FightAIDS@home: Helps to identify candidate drugs that might have the right 

shape and chemical characteristics to block HIV protease [20]. 

• Compute Against Cancer: Used in cancer research [15]. 

• Artificial Intelligence System: Attempts to create a full simulation of the human 

brain [2]. 

• ABC@Home: Attempts to solve the ABC conjecture in Mathematics [1]. 
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• SHA-1 Collision Search: This project investigates the characteristics of SHA-1 

hashing algorithms in terms of collision properties [42] . 

• Project Sudoku: Searches for the smallest possible start configuration of a Su­

doku game [45]. 

• APS@Homc: Conducts research into the effects of atmospheric dispersion as it 

relates to the accuracy of measurements used in climate prediction [9]. 

• Spinhenge@Home: Models the spin of elementary particles in atoms using the 

principles of quantum mechanics [46]. 

• J.LFluids~Home: Simulates two-phase flow m microgravity and microfluidics 

problems [48] . 

• BURP: Aims to develop a publicly distributed system for rendering 3D anima­

tions. The BURP project is still in its Alpha stage. The public nature of this 

project makes it interesting and unique since users .can upload animations to 

the grid to be rendered (i.e. request tasks from the grid) [12]. 

• SETI@home: As mentioned above, this project searches for extraterrestrial 

intelligence [ 41 J. 

• Storage@home: In [11] the authors describe Storage@home as follows: 

Storage @home is a distributed storage infrastructure developed to 

solve th e problem of backing up and sharing petabytes of scientific 

results using a distributed model of volunteer managed hosts. Data is 

maintained by a mixture of replication and monitoring, with repairs 

done as needed. By the time of publication, the system should be out 

of testing, in use, and available for volunteer participation 

Storage@home is interesting because the main purpose behind it is not com­

puting but storage. 
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Each desktop grid works on at most a few tasks or experiments at a time. These 

span several fields and topics such as Biology, Medicine, Artificial Intelligence, Math­

ematics, Cryptography, AI-based Games (e.g. Chess and Sudoku), Earth Sciences, 

Physics , and Astronomy. Biology, Mathematics and Cryptography seem to be the 

most active fields. 

In spite of the fact that this type of research is relatively new and that the ac­

complishment of a task could take many years, a lot of tasks have been successfully 

completed. For instance, the PiHex Project found that the five trillionth bit of 1r is 0 

[37] . Although the impact of this result on science is questionable, it is an indicator of 

the great computational power that grid computing can provide. On the other hand , 

other projects have larger impact such as the Genome Comparison Project which 

constructed a database comparing the genes from many genomes [24]. 

2.3 Xgrid Technology 

In this section, the Xgrid Technology is discussed. Most of this section's material is 

taken from the official Xgrirl. manual [8]. 

2. 3.1 Overview 

Xgrid Technology is an Apple technology that simplifies the management and admin­

istration of distributed computing systems. Apple describes Xgrid in [8] as follows: 

Xgrid, a technology in Mac OS X Server and Mac OS X , simplifies de­

ployment and management of computational grids. Xgrid enables admin­

istrators to group computers into grids or clusters, and allows users to 

easily submit complex computations to groups of computers {local, remote, 

or both}, as either an ad hoc grid or a centrally managed cluster. 
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2.3.2 Xgrid Terminology 

In Xgrid technology specific terms for its components and operations are used. The 

following are needed for this thesis: 

• Grid: a group of computers that can collaboratively complete a job using the 

Xgrid technology in Mac OS X Server and Mac OS X. 

• Controller: an Xgrid controller manages the grid and its work. It is built into 

Mac OS X Server. 

• Agent: an Xgrid agent resides on one computer in a grid and runs tasks sent to 

it by the controller. Any computer running Mac OS X vl0.3 or v l0.4 can run 

an Xgrid agent. 

• Task: a part of a job that one agent in the grid performs at one time. 

• Client: any computer running Mac OS X vl0.4 or Mac OS X Server vl0.4 that 

submits a job to an Xgrid controller. 

• Job: a set of work submitted to a grid from the client to the controller. 

It is worth mentioning here that the Xgrid terminology is different t han the ter­

minology we use for our system. For example, there is no concept of a task in our 

system. In any case, the terminology and the way our system works is discussed in 

Chapter 5. 

2.3.3 Xgrid Usage 

Xgrid can be used for three variations of distributed computing. It can be used in 

clusters , distributed grids and local grids. 

Xgrid Clusters are grids constructed from servers entirely dedicated to compu­

tation. Typically, cluster systems are collocated in a rack and connected via high 

performance networks. Also these servers are often completely homogeneous. This 

means that they have identical operating systems that run on similar hardware. These 
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types of systems are managed strictly for performance and their failure rates are low. 

As a result, this type of distributed system is the most efficient. It is also more 

expensive than the types described below. 

Distributed Grids are grids constructed from servers distributed over the Inter­

net. Distributed grids have higher failure rates for jobs, but very low administrative 

burden for the grid administrator. The Xgrid agent (the server) can be associated 

with a specific controller by assigning the IP address or host name for its desired 

controller. This type of computing is the focus of this thesis . 

Local Grids are distributed grids where servers are distributed over intranets 

under the administration of one organization. All the testing performed in this thesis 

is done on such systems. 

2.3.4 Xgrid Components 

Figure 2.3 shows how Xgrid works. Every Xgrid system is mainly constructed from 

three components: agents, clients and a controller. 

Agents are the servers that run the computational jobs. Essentially an agent 

in Xgrid is a Mac OS X computer with the Xgrid service (daemon) turned on. By 

default this service is turned off. When the Xgrid agent is turned on, it becomes active 

at startup and it registers itself with a controller. An agent can be registered with 

only one controller at a time. By default, agents seek to bind to the first available 

controller on the local network. Alternatively, a specific controller can be specified 

for an agent. 

The agent's controller sends instructions and data to the agent. Upon receiving 

the data from the controller, the agent starts the job execution and sends the results 

back to the controller when finished . The agent can be set to accept instructions at 

any time, however , the default behaviour is to accept tasks only when idle and when 

the agent has not received any user input for at least 15 minutes. 

A Client is any Mac OS X machine running Mac OS X v10.4 (Tiger) or later, 

or Mac OS X Server v10.4, and has a network connection to the Xgrid controller. 

Job submission is usually done by a command-line tool accessed with the Terminal 
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Application on Mac OS X. In the case of password protection, the protected controller 

cannot accept jobs from any Xgrid client unless a valid password is provided with the 

job submission. 

A Controller manages the communications among the agents in an Xgrid system. 

The controller accepts connections from clients and agents. It receives job submissions 

from the clients, breaks the jobs up into tasks , dispatches tasks to the agents, and 

returns results to the clients after receiving the results from the agents. 

Every logical grid can have one controller. The theoretical maximum number of 

agents connected to a controller is the number of available sockets on the controller 

system. 
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2.3.5 Xgrid Advantages 

After investigating several desktop grid technologies, Xgrid technology was chosen to 

be employed in our system for several reasons: 

• The number of departmental machines that can run Mac OS X. The department 

has more than 50 machines that are running Mac OS X. 

• Simple grid configuration and deployment . The process of configuring an Xgrid 

system is neither complex nor time consuming. 

• Straightforward yet flexible job submission. This flexibility can be exploited if 

the system were to be extended. Adding new nodes is simple. 

• Flexible architecture based on open standards. 

• Supports command-line interface. This enables testing and enables the building 

of software components on top of the Xgrid software to be automated. 

• Xgrid has a good community around it. The Xgrid community was helpful 

in the process of development. It also suggests that the Xgrid technology will 

evolve and enjoy a long life span. 

• Stability and reliability. It is used in large scale projects and has been tested 

extensively by users. 

• Password-based authentication support. This enables us to control access to 

the system without building a security layer. 

2.4 Future of Desktop Grids 

Grid computing is currently an active research field. Several conferences are held 

yearly. Grid computing technology is supported by large corporations such as IBM 

and Apple. In addition, there are open architecture standards (e.g. BOINC) which 

suggests that the future development will be standardized and open. 
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Another important factor that will determine the success of this technology in the 

future is the commercial adoption of this technology. In [33] IBM states that: 

Over the last few years we have seen grid computing evolve from a 

niche technology associated with scientific and technical computing, into a 

business-innovating technology that is driving increased commercial adop­

tion. 

This commercial side of grid computing can be seen through the existence of services 

like IBM Grid and GrowTM[33] and companies like Platform™[44], which suggests 

that grid computing is a big part of the future of super computing. 



Chapter 3 

Workload and Availability Models 

3.1 Workload Model 

The theoretical workload model assumed in this thesis is the same model followed by 

the authors of [3]. Hence the materiel of this section is taken from that resource. 

In the assumed model for a Desktop Grid there is a dedicated Mapper. This 

Mapper is responsible for scheduling and assigning incoming requests for resources to 

the available resources in the Desktop Grid. The number of machines in the Grid is 

M. It is a.ssumccl that the jobs are classified into N classes. Jobs of the same class 

have common characteristics. Let J be the set of machines and I the set of classes. 

Jobs that belong to the same class i have arrival rate o:i· Let o: be the arrival rate 

vector, then the ith element of o: is o:i· Moreover, the average execution rate that 

a machine j can execute a job from class i is denoted by fl i,j. The actual execution 

rate is J.l~ ,j = J.li,j .aj where aj is the avai lability (given as a percentage) of the machine 

(more details are provided in Section 3.2). In addition, J.li is a vector that represents 

the execution rates for a particular job class. The yth element in this vector is J.li ,j. 

Finally, fl is the matrix constructed by all execution rate vectors, where the entry 

(i,j) is J.li,j· 

The jobs m the model are assumed to be independent and atomic. They are 

independent in the sense that the execution or the result of a job does not depend 
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on any other results of other jobs. Also, jobs are atomic in the sense that every job 

is one complete unit and not a part of a larger job. 

Pull-based scheduling is mainly used in resource management systems for Desktop 

Grids [13]. Pull-based scheduling is a type of scheduling driven by servers announcing 

their availability in order to be assigned a new job for execution. Please refer to Sec­

tion 4.2 for more details. In Desktop Grids, using pull-based scheduling is necessary 

due to the property that the servers are not dedicated. 

One of the results of using pull-based scheduling in Desktop Grids is that jobs 

queue at the Mapper, hence there is no queuing at the servers. In fact in our model, 

at most one job at a time can be executed without pre-emption on a server [19]. In 

addition to that, in pull-based scheduling, the scheduler makes a decision as soon as 

it receives a request from a machine. This is different from on-line mode mapping 

where a mapping decision is made by the mapper as soon as a job arrives [36]. 

Servers can fail or become unavailable at any time without any advance notice 

[7]. When a server fails while executing a job, then that job must be be resubmitted 

to the mapper. It is assumed that the mapper becomes aware of the failure within 

a negligible amount of time [32]. Moreover, it is assumed that the Desktop Grid 

is used to execute short-lived applications [32]. Hence, in such systems, fault toler­

ant scheduling mechanisms such as checkpointing, migration and replication are not 

considered, due to their overhead. 

3.2 Availability Model 

The main difference between cluster-based grids and desktop grids is that for the latter 

the availability of machines and CPUs changes with time. The machine availability 

is a binary value that indicates if a machine is reachable. Machines may become 

unavailable due to communication failure or machine reboot, for example. The CPU 

availability is a percentage that quantifies the fraction of the CPU time that can be 

exploited by desktop grid applications [3]. (A brief literature review of availability 

models and prediction methods can be found in [3].) 



20 3. Workload and Availability Models 

In [39], an approach for predicting machine availability in desktop grids is pre­

sented. In this approach, a semi-Markov process is applied for prediction. The exper­

iments in [39] suggested that their prediction method has an accuracy of 86%. They 

also showed the effectiveness of their scheduling policies in large compute-bound guest 

applications. The policies considered in this thesis assume short-lived applications. 

In [39] the week was divided into weekdays and weekends and every day was divided 

into hours. 

We assume a strong correlation between the availability of a machine in a par­

ticular time and the availability of the same machine in previous weeks around the 

same period of time (e.g. the availabilities of a machine around noon on successive 

Mondays are related). A similar assumption is made in [39]. 

In our availability model we divided the time into days, with each day divided into 

N equal intervals. The number of intervals and consequently their length is defined 

oy the tester. 

The predicted avai labili ty in a specific interval i is calculated using the previous 

readings in the same interval i from the previous weeks. Let d E D, where D =­

{Mo,Tu, We,Th , Fr, Sa , Su} (a day of the week) , a1,1 is the availability for interval 

i of day d in the lh week, a1,1 is the estimated availability for interval i of day d in 

the lh week, wk is the weight given to the the reading a i, j - k and cis a number in [0, 

1]. The current implementation has a choice of methods to estimate availability. The 

first one is 

and the second is 

-d a . 
1.,] 

- d d (1 ) - d a .. = ca .. 1 + - c a · 1 . 'l ,J 'l ,J- t,J -

(3.1) 

(3.2) 

Using (3.1) gives the tester flexibility in choosing the weights for previous readings 

and also the number of previous readings considered. Using (3.2) takes a different 

approach by considering all previous readings. Also, the tester is given the flexibility 

of choosing the value of c. This recursive prediction method is a typical way of 

predicting time related properties or events [50]. 
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As part of the testing environment , an availability prediction module that imple­

ments (3.1) and (3.2) was developed. The availabiliy predictor was implemented as 

the java package pulling. availability_prediction. 

The default values for (3.1) are N = 4 and w1 = 0.4, w2 = 0.3, w3 = 0.2 , W4 = 0.1. 

N was chosen to be 4 to include the effect of the readings from the previous month 

only. The weights were chosen in a way that gives more weight to recent readings 

than older ones. As for (3.2) , the default values are c = 0.5 and ii0,1 = 0.5 , \lj . Also, 

(3.1) is the default method. 



Chapter 4 

Scheduling Schemes 

4.1 Introduction 

-

Desktop grid systems allow the development of applications for computationally in-

tensive problems and sustain throughputs far exceeding those of much more expensive 

supercomputers . To achieve this efficiently, a scheduling policy is deployed. 

The basic function of a scheduler, which applies the scheduling policy, is to accept 

requests for resources from clients and assign specific server resources from the pool of 

grid resources in a specific order , to achieve a certain goal. In other words , scheduling 

is the process of assigning requests or tasks to the most suitable resource provider (i.e. 

where to execute a task) and ordering requests or tasks (i.e. when to execute tasks) 

[14]. Each scheduling policy is designed to optimize certain performance requirements. 

Also, diHereut scheduling polices require different information on the system state 

(e.g. arrival rates and machine execution rates). 

A scheduling policy must be scalable, i.e. applicable to large-scale systems in­

volving large numbers of computers. This scalability requirement may increase the 

complexity of scheduling policies. The complexity is further complicated by several 

factors. First, the scheduling policy must be fault-aware and cope with resource 

volatility since resources can be disconnected from the grid at any time without any 

advance notice. For example, a volunteer computer may be restarted or the resources 
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of a connected computer may become fully occupied with local jobs. Furthermore, 

as desktop grids are constructed using volunteer computers, the resources are not 

fully dedicated. Thus, a scheduling policy must exploit the available knowledge of 

the effective computing power contributed by resources, which also adds additional 

complexity [3]. 

Another contributing factor is related to the heterogeneous nature of desktop grids. 

Scheduling polices that do not consider information on jobs and machine heterogene­

ity will perform poorly in heterogeneous environments. There is already work on 

developing polices for cluster systems of dedicated and heterogeneous machines (see 

Al-Azzoni and Down [4], He at al. [36] and Maheswaren et al. [43]). As for heteroge­

neous desktop grids the authors of [3] state that their paper "Dynamic Scheduling for 

Heterogeneous Desktop Grids" is the first paper to consider the problem of scheduling 

for heterogeneous Desktop Grids involving resource volatility. 

The Linear Programming Based Affinity Scheduling policy for desktop grids 

(LPAS_DG) policy introduced in [3] will be discussed later in this chapter after in­

troducing a taxonomy of Desktop grids and scheduling p-olices. 

4.2 Taxonomy of Desktop Grids 

In [14], a taxonomy of desktop grid systems is suggested. This section is a summary 

of that work. Desktop grids are categorized according to organization, platform, scale 

and resource provider properties. Please refer to Figure 4.1. 

4.2.1 Organization 

In terms of organization, desktop grids can be divided into two categories according 

to the organization of components. 
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Figure 4.1: Taxonomy of Desktop Grids. 

Centralized Desktop Grids 

A centralized desktop grid consists of clients, resource providers (or volunteer servers) , 

and a mapper (scheduler). The execution model of centralized desktop grids consists 

of the following phases [14]: 

• Registration phase: Resource providers register their information to the mapper. 

• Job submission phase: A client submits a job to the mapper. 

• Resource grouping phase: A mapper constructs a Computational Overlay Net­

work (CON) according to capability, availability, reputation, trust of resource 

providers, etc. A CON is a set of resource providers. Scheduling is conducted on 

the basis of a specific structure or topology. This step depends on the assumed 

workload model. 

• Job allocation phase: The mapper assigns tasks to servers. 

• Job execution phase: Servers execute their tasks. 
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• Task result return phase: Servers return results to the mapper. 

• Task result certification phase: The mapper checks the correctness of the re­

turned results. This step is done if the scheduling policy deploys a verification 

mechanism. 

Distributed Desktop Grids 

A distributed desktop grid consists of clients and resource providers (or volunteer 

servers). Distributed desktop grids lack the existence of a centralized mapper. How­

ever, volunteering servers have partial information about other volunteers. Volunteers 

are responsible for constructing CONs and scheduling a job in a distributed fashion. 

The execution model of distributed desktop grids is as follows: 

• Registration phase: Servers exchange their information with each other. 

• Job submission phase: A client submits a job to a neighbouring server. 

• Resource grouping phase: Servers self-organize CONs according to several fac­

tors (e.g. capability, availability and reputation). 

• Job allocation phase: A server assigns the job to other servers either to execute 

or to schedule inside their CON according to a distributed scheduling policy. 

• Job execution phase: Servers execute their task. 

• Task result return phase: Servers return results to their parent servers. 

• Task result certification phase: The parent server checks the correctness of the 

returned results . This step is executed if the scheduling policy deploys a verifi­

cation mechanism. 

4.2.2 Homogeneity 

Desktop grids can be homogenous or heterogeneous. In homogenous grids , the 

execution rates of two servers for different task classes are proportional; for instance, if 



26 4. Scheduling Schemes 

server 3 1 is twice as fast as server 32 in executing tasks from class 1, then server 3 1 will 

be twice as fast as server 3 2 in executing all other classes. In heterogeneous grids 

execution rates of different servers are not correlated. For example, in a heterogeneous 

grid one might find a server 3 1 , which is much faster than server 3 2 in executing tasks 

that require a lot of matrix computations, while being slower on other task classes 

that require different kinds of computations. 

4.2.3 Scale 

Desktop grids are categorized into Internet-based and Intranet-based. Internet­

based Desktop grids are constructed from servers around the Internet. On the other 

hand, intranet-based desktop grids are based on servers within a corporation, a 

university, or an institution. This type has more availability than Internet-based 

desktop grids, however it is usually much smaller [14]. 

4.2.4 Resource Provider 

Desktop grids are categorized into volunteer and enterprise categories. Volunteer 

grids are constructed from servers whose owners willingly donate the idle time of 

their machines. This type of grid is normally Internet-based. One the other hand, 

enterprise grids are grids consisting of servers owned by a single organization, and 

this type is usually Intranet-based [14]. 

4.3 Taxonomy of Desktop Grid Scheduling Poli-
. 

c1es 

In [14], a taxonomy of desktop grid systems from the perspective of the scheduler 

(mapper) is suggested. This section is a summary of a taxonomy of mappers de­

rived from that work. Mappers can be categorized according to organization, mode, 

scheduling policy complexity, dynamism, adaptation and fault tolerant approaches 

(Figure 4.2). The remainder of this section is an elaboration of each category. 
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4.3.1 Organization 

The organization of a scheduling scheme can be classified into three categories: cen­

tralized , distributed, and hierarchical, depending on where and how scheduling deci­

sions are made. In the centralized approach, there is a central scheduler responsible 

for the scheduling process. The central scheduler maintains all grid status informa­

tion. On the contrary, in the distributed approach, scheduling decisions are the 

joint responsibility of all of the servers in the system. Each server has some partial 

information about the system status that it uses in making its scheduling decisions. 

Finally, in the hierarchical approach, scheduling decisions are performed in a hier­

archical fashion, where high level schedulers perform scheduling and assign tasks to 

low level schedulers, which perform scheduling in a centralized way for their group of 

servers [14]. 

4.3.2 Mode 

Depending on when the scheduling process is initiated. Scheduling policies can be 

categorized into two modes [14]. 

Push-based Mode 

In this mode, the scheduling process is initiated when a task is submitted, and ends 

when the scheduler assigns (or pushes) the task to a certain server according to the 

scheduling policy. This mode is not common in desktop grids, due to their dynamic 

nature and the fact that servers are not dedicated. 

Pull-based Mode 

In this mode, the scheduling process is initiated when a server declares its availability, 

in other words when a server requests (or pulls) tasks from its mapper. This mode is 

more common in desktop grids, due to their dynamic nature and the fact that servers 

are not dedicated. 
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4.3.3 Scheduling Policy Complexity 

In terms of complexity, schedulers can be divided into into three categories [14]: 

simple, model-based , and heuristics-based. 

In the simple approach, tasks and resources are selected by using a simple 

approach like First Come First Served (FCFS) or the random scheduling policy [14]. 

The model-based approach is divided into deterministic, economy, and prob­

abilistic models. The deterministic model is based on a data structure or topology 

such as queue, stack, tree, or ring. Tasks or resources are deterministically mapped 

according to the properties of structures or topologies. For example, in a tree topol­

ogy, tasks are allocated from parent nodes to child nodes. In the economy model, 

scheduling decisions are based on financial factors where priorities are given to tasks 

according to the price paid by the job submitter. In the probabilistic model, resources 

are selected using probabilistic models (e.g. Markov _processes or genetic algorithms) 

[14]. 

In the heuristics-based approach, tasks and resources are selected by using rank­

ing, matching and exclusion methods based on performance, capability, weight , prece­

dence, workload , availability, location, reputation/trust, etc. The ranking method 

ranks the resources (servers) and tasks according to quantifying criteria and then 

selects the most suitable resource and task (e.g. the largest or the smallest one). 

The matching method selects the most suitable tasks and resources in accordance to 

evaluation criteria (e.g. min-min, max-min, sufferage, etc.). The exclusion method 

excludes resources according to a specific criterion, and then chooses the most appro­

priate one among the remaining set of resources. Ranking, matching, and exclusion 

methods can be used together or separately. Criteria used in these methods are nu­

merous and the following are some of them: arrival time and task class are used only 

for tasks while availability, performance, capability, location, and reputation are used 

for servers [ 14 J. 
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4.3.4 Dynamism 

Scheduling schemes are categorized as static or dynamic depending on the informa­

tion taken into consideration when making the scheduling decision. In the case of 

static scheduling, the state information that the policy is aware of does not change 

with time, hence no dynamic information about the resources (servers) is taken into 

account (e.g. availability) when scheduling. Such a policy use the static information 

from prior knowledge (prior to the start of the scheduling process) combined with the 

request status to come to a scheduling decision. For example, the First Come First 

Served policy is a static scheduling policy where only the prior static knowledge about 

the servers and the dynamic information about requests are used. On the other hand 

dynamic scheduling takes the general system status into consideration. A vailabil­

ity information, performance information and the absence or presence of servers are 

examples of the changing information that dynamic policies take into account when 

making a scheduling decision. Dynamic scheduling policies cope well with the fact 

that some servers may go off-line and others may join the grid, thus they suit large 

scale Desktop grids. 

Dynamic scheduling is further classified into online and periodic depending on 

the time at which the scheduling event occurs. In the online approach, scheduling is 

started by the arrival of a new task or a resource provider. In the periodic approach, 

scheduling events occur periodically at a predefined interval. 

4.3.5 Adaptation 

Based on adaptation, scheduling schemes can be categorized as being adaptive or 

non-adaptive. 

Adaptive scheduling 

Adaptive scheduling takes environmental stimuli into account to adapt to dynamically 

changing environments. The environmental change leads to a change in the scheduling 

policy to obtain better performance. There are several types of adaptive scheduling 
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mechanisms, and the following is list of them: 

Migration 

Migration is where tasks are moved from one server for some reason (for example, 

moving a task from a server which has become busy with local jobs to a less busy 

server). 

Redundant assignment 

Redundant assignment allows the assignment of the same task to more than one 

server. Some policies may always allow redundant assignment to achieve replication, 

others may only allow it under defined conditions (e.g. when the first assigned server 

times out). 

Change Policy 

In this approach the scheduling policy used can be switched in order to cope with new 

conditions dictated by environmental change. For example the Minimum Completion 

Time policy can be switched to the Minimum Execution Time policy when the system 

load distribution changes. 

Non-adaptive scheduling 

Non-adaptive scheduling does not take environmental stimuli into account. 

4.3.6 Fault Tolerant 

Scheduling policies are different in the way that they deal with faults. There are 

several approaches that may be taken. 
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Checkpoints 

In this approach, the current state of an active task is saved at different points through 

the execution process in a manner such that if a failure was detected the failed task 

can be restarted from the most recently saved point (called a checkpoint) on a different 

server. 

Reassignment 

When a scheduler detects a failure in a server, it simply reassigns the task to another 

server. 

Replication 

In this approach, replication is used as a method of fault tolerance. In case a server 

failed when executing a specific task, the result can still be obtained from another 

server executing the replicated task. This method anticipates failures , whereas Reas­

signment methods reacts to failures . 

Result Certification 

Scheduling polices can have a mechanism to validate results (or part of them) to 

guarantee their correctness. 

4.4 Scheduling Policies 

In the following subsections different scheduling policies will be discussed . Some of 

these scheduling schemes will be used in the experiments discussed in Chapter 7. 

4.4.1 FCFS 

First Come First Serve (FCFS) is one of the most basic scheduling policies. When a 

server is available, the job that has been waiting the longest is assigned to that server 
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regardless of the processing rate of the server. The FCFS policy is easy to implement 

and it does not add an overhead to the scheduling process since it does not maintain 

a large amount of data, neither does it perform expensive calculations. However, we 

will see that this scheme can perform poorly in heterogeneous environments (see the 

experiments in Chapter 7). 

4.4.2 MET 

Minimum Execution Time (MET) is a static scheduling policy. A mapper using the 

MET policy always gives the fastest machines the highest priority. An incoming task 

is assigned to the machine that has the least expected execution time for the task. 

Thus, when a new task of class i arrives in the system, the mapper assigns it to 

machine j E arg minjd/ /1i ,j' [36]. As defined in Section 3.1 , /1i ,j' is the processing 

rate of machine j' for class i. Ties are broken arbitrarily; for example, the mapper 

could pick the machine with the largest index j when more than one machine has the 

minimum expected execution time [4] . 

This heuristic enjoys an advantage of not requiring machines to send their expected 

completion times back to the mapper as tasks arrive, neither does it require them 

to send availability (i.e. use effective processing rates), thus the MET policy requires 

limited communication between the mapper and machines. 

However, it may suffer from severe load imbalance, even causing the system to 

become unstable. An illustration for such a case is a system with two machines and 

one stream of tasks with rate a 1 = 6, and the execution rates are 11 1,1 = 5 and 

111,2 = 3 for machine 1 and machine 2 respectfully. When the MET heuristic is used, 

all tasks are mapped to machine 1, since the execution rate of machine 1 is larger 

than that of machine 2. In this case the system will be unstable because tasks are 

arriving to the system at a rate larger than that at which they are served ( a 1 > J1 1,I). 

It is easy to see that this instability can be avoided if an adequate portion of tasks 

were assigned to machine 2, since a 1 < (!11,1 + 111,2 ). The information used by this 

policy is known prior to the start time of the mapping, making it a static policy. 
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4.4.3 MCT 

Minimum Completion Time (MCT) is a dynamic scheduling policy. A mapper using 

MCT assigns an arriving task to a machine that is expected to complete the task the 

earliest, hence the term minimum completion time [36]. Minimum completion time 

is calculated from two terms. The first includes the execution rates of the machines 

for the arriving task class , and the second is how long machines are expected to be 

busy for executing current tasks. 

The MCT policy is stated formally as follows . When a task of class i arrives the 

mapper assigns it to a machine j such that 

( 4.1) 

where Qi',j' is the number of tasks of class i' that are executing or waiting at machine 

j', at the time of the arrival of task i. The mapper examines all the machines in the 

grid system to find out the machine with the earliest expected completion time [4]. 

One drawback of this heuristic is that the mapper requires machines to send their 

expected completion times , which might result in communication overhead in the 

grid. 

However, MCT mitigates the load imbalance that happens when using MET. To 

illustrate how load imbalance is avoided, let us look again at the example from the 

previous section. As a reminder, the system has two machines and one stream of 

tasks arriving at rate a 1 = 6, and the execution rates are J..t1,1 = 5 and J..tl,2 = 3 

for machine 1 and machine 2 respectively. Under the MCT policy, when the first 

task arrives (let this task be of class 1) , the mapper assigns it to machine 1 since its 

expected completion time is earlier than that of machine 2 (see (4.1)) . If a second 

task arrives within k time units where k < (1/ J..tl,l + QI,I/ J..t1,1 - 1/ f.li,2 + Q1,2/ J..t1,2), 

the mapper will assign it to machine 2 despite the fact that machine 1 is faster than 

machine 2 in executing the task. This is because machine 1 will be busy executing 

the first task and the completion time for the task is less if sent to machine 2 (see 

( 4.1)). The fact that the mapper considers how busy the machines are, results in 

mitigating the load imbalance problem from which MET can suffer. 
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Several existing resource management systems use the MCT policy or other polices 

that are based on the MCT policy, including SmartNet [23] . 

4.4.4 KPB 

The k-Percent Best (KPB) policy attempts to combine advantages of both the MET 

and the MCT policies [36]. Upon the arrival of a task the mapper chooses the 

(kMI100) best machines based on their execution times for the task class, where 

100 I M s; k s; 100. Then, the mapper assigns the task to the machine with the earli­

est expected completion time among the machines in that subset [4]. This policy first 

uses MET on all the machines in order to pick the ( kM I 100) best machines and then 

uses MCT on that subset of machines to pick a machine to send the task to. Doing 

this not only guarantees that the task will be sent to a superior machine in terms 

of execution rate (a guarantee that MET can offer) , but also takes current machine 

loads into consideration (a property of MCT). 

The KPB policy needs only to communicate with the subset of machines fin;t , 

rather than with all of the machines in the grid. Another advantage for this policy 

is that it attempts to avoid assigning the task to a machine that could do better for 

tasks that arrive later [4]. 

The optimal value of k varies depending on the number of machines, execution 

rates and arrival rates. The KPB policy can perform poorly relative to the MCT 

policy if some machines are not among the best k% for any task class [4] . Also, if 

k = M , then the KPB policy is identical to MCT. On the contrary, if k 1, then 

the KPB policy is identical to MET. 

4.4.5 GCJ-1 

This scheduling policy is a variation of the generalized cp, ( Gcp,) policy [34]. This 

policy asymptotically minimizes delay costs. When a machine j requests a task, the 

scheduler assigns it the longest waiting job from class i such that i E arg maxiDi(t)p,~ ,j 

[3]. The use of this policy in desktop grids was first suggested in [3]. The optimality 
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of this policy is obtained under heavy loads (i.e. loads that approach 100%). On the 

other hand under more moderate load , this policy can make bad scheduling decisions 

especially with heterogeneous machines. This happens because the policy assigns an 

arriving job to the fastest machine available without considering the execution rate of 

this machine for different job classes. For example let us assume the following system: 

1.5 J and 1-L = [ 
2 2

]. 
2.1 10 

If machine 2 becomes available and there are two jobs from each class , the sched­

uler will assign to it the job from Class 1. The greedy nature of this policy prevents 

it from choosing a job from Class 2 which machine 2 can execute quickly. 

Nonetheless, the Gqt. policy results in achieving significant performance improve­

ment over simpler scheduling schemes such as FCFS. This improvement is a result of 

using the execution rates when making scheduling decisions that attempt to assign 

jobs to machines which will execute these jobs faster than any of the other available 

jobs. 

4.4.6 LPAS_DG 

The ;Linear Programming Based Affinity .Scheduling policy for Desktop Grids 

(LPAS_DG) was proposed in [3] . The description here is exactly as in the original 

publication. 

"The Linear .Erogramming Based Affinity ~cheduling policy for .Qesktop Qrids 

(LPAS_DG) requires solving the following allocation Linear Problem (A ndra.d6ttir et 

al. [5]) at each machine availability /unavailability event, where the decision variables 

are >- and tli,j for i = 1, ... , N, j = 1, ... , J..;f. The variables tli,j are to be interpreted 

as the proportional allocation of machine j to class i. 
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max A 

M 

s.t. L §; ,JJ..L~,J 2 AO:; , for all i = 1, ... , N, 
j=l 

N 

L6i,j :S: 1, for all j = 1, ... ,M, 
i=l 

for all i = 1, ... , N, and j = 1, ... , M. 

(4 .2) 

(4.3) 

(4.4) 

The left-hand side of (4.2) 1 represents the total execution capacity assigned to class 

i by all machines in the system. The right-hand side represents the arrival rate of 

tasks that belong to class i scaled by a factor of A. Thus, ( 4.2) enforces that the total 

capacity allocated for a class should be at least as large as the scaled arrival rate for 

that class. The constraint (4.3? prevents overallocating a machine and (4.4) states 

that negative allocations are not allowed. 

Let A* and {§;,1}, i = 1, ... , N , j = 1, ... , M, be an optimal solution to the 

allocation LP. The allocation LP always has a solution, since no lower bound constraint 

is put on A. Let §* be the machine allocation matrix where the ( i , j) entry is §i,.i. 

Whenever a machine becomes available or unavailable, the scheduler solves the 

allocatiou LP to find { 6i,J} , i = I , ... , N , j = I , ... , M. If a machine j becomes 

unavailable, then a1 = 0. In this case, 8i,J = 0 for i = 1, ... , N. On the other 

hand , if a machine j becomes available, a1 is equal to the predicted CPU availability 

for machine j during its next expected machine availability period. The scheduler 

obtains values for a1 using the CPU availability prediction techniques d iscussed in (the 

previous section)3 . Solving the a llocation LP at each availability /non-avai lability event 

represents how the LPAS_DG policy adapts to the dynamics of machine availability. 

Constraint ( 4.3) enforces the condition that the allocation of machine j should not 

exceed its CPU availability. The use of a1 represents how the LPAS_DG policy adapts 

to the dynamics of CPU availability. 

The value A • can be interpreted as follows. Consider an event in which a machine 

becomes available or unavailable. Let A* and {§;,1}, i = 1, ... , N , j = 1, .. . , M , be 

an optimal solution to the allocation LP corresponding to the system just after the 

occurrence of the event. Consider the system that only consists of t he avai lable subset 

1 J..L~,j is defined in Sectiou 3.2. 
2 a1 is defined in Section 3.2. 
3 Previous section in original paper. Please refer to Section 3.2 in this thesis. 
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of the M machines. Then , the value ). * can also be interpreted as the maximum 

capacity of this partial system [4, 26]. 

The LPAS_DG policy is defined as follow:;. 'iVhe11 a machine j requests a task, 

let Sj denote the set of task classes i such that c\i,j is not zero ( Sj = { i : 8i,J -!= 0}). 

Let D;(t) be the waiting time (sojourn time) of the head of the line class i task at 

the time t of making the scheduling decision. The scheduler assigns machine j the 

longest-waiting (head of the line) class i task such that 

J.Li,j8;_i > 0 and i E argmaxJ.L;,jD;(t). 
. I 

Note that P·i,J represents the effective execution rate for class i tasks at machine j 

(J.Li ,j = aiJ.L;,J fori= 1, ... , N, j = 1, ... , M). Note that the LPAS_DG policy does not 

use the actual values for { 8i,J}, beyond differentiating between the zero and nonzero 

elements. Regardless , we must solve the allocation LP to know where the zeros are. 

The allocation LP considers both the arrival rates and execution rates and their 

relative values in deciding the allocation of machines to tasks. In addition, these allo­

cations are constrained by the CPU availabilities of the available machines. Consider 

a system with two machines and two classes of tasks (M = 2, N = 2). The arrival and 

execution rates are as follows: 

Assume that all machines are dedicated (i .e. , aj = 1, for all j = 1, ... , M). Solving 

the allocation LP gives >. * = 1.5 789 and 

6* = [ 0 0.6316 ] . 
l 0.3684 

Thus, when machine 1 requests a task, the scheduler only assigns it a class 2 task. 

Machine 2 can be assigned tasks belonging to any class. Although the fastest rate is 

for machine l at class 1, machine l is never assigned a class 1 task. Note that machine 

l is twice as fast as machine 2 on class 2 tasks and note that 1!.!.2. < !:!:.2.2... 
1-'2 , 1 l-'2 .2 

Now assume that machine lis fully dedicated and machine 2 is half-dedicated (i.e. , 

a 1 = 1 and a 2 = 0.5). Solving the new allocation LP gives >. * = 1.3143 and 

8* = [ 0.0143 0.5 ] . 
0.9857 0 

In this case, machine 1 is assigned tasks from any class, but machine 2 is only assigned 

class 1 tasks. Note that machine l is four times as fast as machine 2 on class 2 and 

thus the LPAS_DG policy avoids assigning a class 2 task to machine 2. 
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There could be many optimal solutions to the allocation LP. These optimal so­

lutions may have different numbers of zero elements in the 5* matrix. The following 

proposition is a basic result in linear programming (the proof can be found in An­

drad6ttir et al. [6]) : 

There exists an optimal solution to the allocation LP with at least N M + 
1 - N - M elements in the 5* matrix equal to zero. 

Ideally, the number of zero elements in the 5* matrix should be N M + 1 - N - M . 

If the number of zero elements is greater, the LPAS_DG policy would be significantly 

restricted in shifting workload between machines resulting in performance degradation. 

Also, if the number of zero elements is very small, the LPAS_DG policy resembles 

more closely the GCJ..t policy. In fact , if the 5* matrix contains no zeros at all , then the 

LPAS_DG policy reduces to the GCJt policy. 

The LPAS_DG policy can be considered as an adaptive policy. As the policy only 

involves solving an LP, it is suited for scenarios when the global state of the system 

changes. For example, new machines can be added and/or removed from the system. 

Also, parameters such as the arrival rates and execution rates may change over time. 

On each of these events, one needs to simply solve a new LP and continue with the 

new values." 
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Chapter 5 

System Design 

The system considered in this thesis is purely a software system. New software com­

ponents were designed, implemented and tested and thereafter combined with existing 

software to create the desired testing environment. 

5.1 System Requirements Specification 

This section discusses the requirements for the scheduling schemes testing environ­

ment. The requirements imply a set of attributes that the final product must achieve. 

The requirements are used throughout the software life cycle. 

5.1.1 Purpose 

The purpose of this software system is to create a testing environment for scheduling 

schemes. This environment should allow testers to program new scheduling schemes 

and then test them. 

5.1.2 User Classes and Characteristics 

The expected users of this system are researchers in the scheduling field. The users 

will use the system by testing built in scheduling schemes or adding new ones. 

40 
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5.1.3 User Documentation 

In addition to the software system, user documentation is provided. Four types of 

documentation were prepared. 

1. User manual explaining the functions of the software and how the software is 

used to achieve these functions . 

2. Expansion Documentation explaining how a tester can expand the system 

by adding new features and layers to the system such as scheduling schemes or 

probability distributions. 

3. Javadoc Documentation that explains the classes, their attributes and their 

methods. 

4 . Code Documentation explaining how the code works and why. This along 

with the J avadoc documentation should help in future modifications . 

5.1.4 Functional Requirements 

A system 's functional requirements define its behaviour. The following is a list of the 

functional requirements for the system implemented: 

1. The system shall use the workload model defined in Section 3.1. 

2. The system shall allow the addition of a new scheduling scheme by adding a 

single J ava class. 

3. The system shall allow the addition of a new probability distribution by adding 

a single Java class. 

4. The system shall calculate the average waiting time (either overall or by job 

class) 1
. 

1The waiting time is the difference between the time that a job is submitted and is sent to a 
server. 



42 5. System Design 

5. The system shall calculate the average communication delay (either overall or 

by job class) 2
. 

6. The system shall calculate the average response time (either overall or by job 

class) 3 . 

7. The system shall allow the testers to define job classes. 

8. The system shall contain an availability predictor module. 

9. The system shall allow testers to impose heterogeneity on the servers. 

10. The system shall allow testers to generate simulated failure traces according to 

particular probability distributions. 

11. The system shall allow the testers to monitor the system activities while in 

operation (e.g what jobs are currently being executed or what jobs are timed­

out, etc.). 

12. The system shall be able to generate the same set of jobs from previous tests 

with the same probability distributions. 

13. The system shall log all scheduling events for further study. 

14. The system shall log all generations of jobs events for further study. 

15. The system shall log all artificial failure events for further study. 

16. The system shall log all actual exceptions for further study (e.g communication 

errors and file exceptions). 

2The communication delay is the difference between the time a job is sent to be executed cmd the 
time the job begins execution . This delay happens mainly due to communication , but it could also 
be caused by the software layer responsible for the process of distribution and execution of tasks. 

3The response time is the difference between the time when a job is submitted and when a job 
completes execution . 
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5.1.5 Platform Requirements 

The system shall run on Mac OS X 10.4 and Mac OS X 10.5. 

5.1.6 Maintainability Requirement 

The system shall be implemented in a manner allowing for maintenance as well as 

expansion. 

5.1. 7 Usability Requirements 

The system shall have a Graphical User Interface (GUI) that allows the tester to set 

up tests and monitor them. In addition, the system shall produce log file~ that can 

be opened with spread sheet programs (e.g. Numbers or Excel). 

5.2 Design 

In this section the software design of the system is explained abstractly from a func­

tional point of view. After analysing the workload model and the requirements of the 

system, the functions of the software were grouped into six main modules (see Figure 

5.1). These modules are discussed in the following subsections. 

5.2.1 Classes 

The main classes are: 

1. Job Generator: This module is responsible for generating jobs. As mentioned 

in Section 3.1 , there are N classes of jobs during a specific test. Every class 

has a different arrival rate. Based on the arrival rate and the underlying inter­

arrival time distribution (e.g exponential) chosen by the tester, this module 

generates jobs for the Mapper, simulating submission of jobs to the system. 

At the implementation level, the Job Generator module was implemented as a 

group of threads and a thread controller. Every job class has a thread which 
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knows the arrival rate and the inter-arrival time distribution of that class and 

acts accordingly to submit jobs. The module is synthetic in the sense that its job 

is to simulate users of the system. The Job Generator module was implemented 

as a Java package named generating. 

2. Adjuster: The purpose of this module is to impose some artificial properties 

on some servers . This module is responsible for adjusting sent jobs to make 

some servers slower or faster in executing them. For example, if server s can 

actually execute a job from class A in n time units on average and the tester 

wishes to increase the execution time for class A to be n' units on average, 

where n' > n, then she should configure the Adjuster and set the execution rate 

of that server to ( 1/n' ). The Adjuster will then act accordingly, forcing the 

average execution time to ben' and not n for that specific server. This is used 

by testers to configure homogeneous systems to be heterogeneous. This module 

is also used to simulate failures events. This feature might be used to measure 

the robustness of scheduling schemes when machines fail a certain percentage of 

time. The module is artificial in the sense that it is used to impose an artificial 

effect anrl has nothing to do with the mapping functionality. The Adjuster 

module was implemented as a Java package named adjusting. 

3. User Interface: Its functionality is receiving input from the tester and chang­

ing the parameters of the system according to the input. In addition to that, 

it shows the results of the tests . Thus , this module is responsible for config­

uring the test at the initial stage and showing the results at the final stage. 

The module is artificial in the sense that it has nothing to do with the map­

ping functionality. The Interface module was implemented as the Java package 

interfacing. 

4. Mapper: As its name indicates this module does the actual mapping. It re­

ceives submission requests from the Job Generator module and sends each task 

to a specific server. The process of choosing the server depends on the map­

ping scheme deployed in that test. The mapping scheme typically needs to 
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know details about the state of the system (e.g the availability of the servers) , 

therefore, the Mapper module keeps track of all of this information. The state 

information required depends on the mapping scheme itself. Because it is the 

core of the system functionality, this module is the most complex in the system. 

In addition to that, it is the module that will be extended by adding additional 

scheduling schemes. It was designed and implemented to allow this extension. 

An abstract base-class named MappingScheme was defined. This class has a 

defined and unimplemented set of services (abstract methods). When a new 

mapping scheme is to be added, a sub-class of the base-class MappingScheme 

should be created. This new sub-class must implement the abstract services. 

The way these services are implemented determines the new scheduling policy. 

Please refer to Section 6.4 for details. The Mapper module was implemented as 

the Java package mapping. 

5. Logger: The functionality of the Logger is simple. It keeps a record of the 

events that happen during the course of a test for further study. This module 

was implemented as the Java package logging. 

6. Puller: Unlike all of the other modules, this module is deployed at the servers. 

Every server in the system should have this module running. The Puller is 

responsible for maintaining availability information and sending it to the central 

Mapper notifying it when servers are available. In addition, the Puller notifies 

the Mapper when a job is completed. The frequency that the Puller monitors 

the availability is defined by the Mapper. We call it system resolution time; it 

is the time in minutes between two availability readings by the Puller. This 

module was implemented as the Java package pulling. 

7. Executer: This module is responsible for executing and managing the tasks on 

assigned machines. This module was implemented as the Java package execut­

mg. 
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5.2.2 Module Interaction 

In the previous subsection the modules in the system were discussed. These modules 

need to communicate in order for the system to function. In this section the messages 

between the modules are discussed. The interactions between modules are shown in 

Figure 5.2 . 

The Interface module sends messages to both the Adjuster and the Job Generator. 

The messages sent to the Adjuster are used to set the execution rates of jobs classes. 

The messages sent to the Job Generator are used to define the job classes and their 

arrival rates. Based on these parameters (job classes and their arrival rates) the Job 

Generator module sends messages to the Mapper module to submit tasks. 

The Mapper module sends messages to the Adjuster, Logger and the Puller. The 

Adjuster module is consulted by the Mapper before issuing a job to a server, to see 

what is the execution time expected for that job on that server. In addition to that 

the Mapper informs the Logger of every action, so the Logger can keep a record of the 

events happening in the system. Moreover the Mapper sends the jobs to the Executer 

module to be executed. 

The Puller module is responsible for sending availability information to the Map­

per. It also notifies the Mapper when a machine is ready to receive tasks. 

The Executer module notifies the mapper when a job is done. 
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Mapper Server 

Q Artificial functionality <iiii)Actual functionality 

Figure 5.2 : Messages between modules. 



Chapter 6 

System Implementation 

This section discusses the implementation phase of the software life cycle. 

6.1 Introduction 

The software system was implemented in the Java programming language, which was 

chosen for several reasons. The main reasons were that it is platform independent 

so testers can use it on any platform they desire, and it is a relatively popular pro­

gramming language. In addition, Java fits in the object oriented paradigm used in 

the development of the system. The Eclipse development framework was used for 

implementation. 

After the initial design (Section 5.2) , several iterations of refinements took place. 

After every refinement , a lower level model (in terms of abstraction) was produced. 

When the last level was reached , each abstract class defined in Figure 5.1 ended up 

being implemented as a Java package. 

The following section (Section 6.2) discusses some related Java topics. Section 

6.3 discusses the packages of the software. Following that, Section 6.4 explains how 

to add new mapping schemes and Section 6.5 explains how to add a new probability 

distribution. Finally, Section 6.6 touches upon issues considered in the design and 

development phases. 
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6.2 Java Related Background 

In this section the Java delegation event model and the abstract classes concept are 

discussed. 

6.2.1 Java Delegation Event Model 

In [47] the Java delegation event model is described as follows: 

Event types are encapsulated in a class hierarchy rooted at java.util.EventObject . 

An event is propagated from a "Source" object to a "Listener" object by invoking a 

method on the listener and passing in the instance of the event subclass which defines 

the event type generated. A Listener is an object that implements a specific EventLis­

tener interface extended from the generic java.util.EventListener. An EventListener 

interface defines one or more methods which are to be invoked by the event source in 

respouse to each specific eveut type haudled Ly the interface. 

An Event Source is an object which originates or fires events. The source defines 

the set of events it emits by providing a set of set<EventType>Listener (for single­

cast) and/or add<EventType>Listener (for multi-cast) methods which are used to 

register specific listeners for those events. 

In an AWT [Abstract Window Toolkit] program, the event source is typically a 

GUI component and the listener is commonly an "adapter" object which implements 

the appropriate listener (or set of listeners) in order for an application to control the 

flow /handling of events. The listener object could also be another AWT component 

which implements one or more listener interfaces for the purpose of hooking GUI 

objects up to each other. 

6.2.2 Abstract Classes 

An abstract class in Java is a class that contains an abstract method. Abstract meth­

ods are method signatures without implementations. The implementation is provided 

by the subclasses. Any class that contains abstract methods must be declared ab­

stract. A concrete class is a class without any abstract methods (i.e. all of its methods 

are implemented). Abstract classes are used to represent abstract concepts that can 

have several specific instances (concrete instances). For example a mapping scheme 
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is an abstract concept, where the MET mapping scheme is a specific instance of a 

mapping scheme. 

6.2.3 Polymorphism and Dynamic Binding 

An object of a subclass in Java can be used by any method written to work with 

an object of its superclass. This feature is called polymorphism. Dynamic binding is 

binding instances of objects of subclasses to objects of their superclass. For example 

Fruit f = new Apple(}; 

f. eat(}; 

when executing f.eat() the eat() method in the Fruit class is executed. 

6.3 Packages 

The source code of the system is constructed from eight packages resembling the 

seven modules of the first abstract design and one helper package. These packages 

are adjusting, executing, generating, interfacing, logging, mapping, pulling and the 

helper package probabilityDist. These packages will be discussed in the remainder of 

this section. 

6.3.1 adjusting 

This package is constructed from a single class. This class is called Adjuster and 

contains three methods. The first method is invoked by the active mapper to deter­

mine the adjustments to be done on jobs before sending them. The Adjuster uses 

information submitted by the user to perform these adjustments. 

6.3.2 executing 

The executing package has two classes. The abstract class Executer is basically a def­

inition of services that any concrete execution layer should offer. The second class in 
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this package is Executer ViaXgird, which is a concrete subclass of the abstract super­

class Executer. It is implemented using the Mac OS X dependent Xgrid technology. 

Some example services that a concrete subclass of Executer should implement are: 

submitLoopJob(}, getDateSubmitted(}, getDateStarted(). For instance, the submit­

LoopJob(} method is implemented in ExecuterViaXgird by sending a specific process 

using the xgrid command: 

xgrid -h hostname -p password -job submit loopProcess argl arg2 

where hostname is the target machine address, password is the Xgrid password for 

that machine, loopProcess is an executable process and argl and arg2 are argu­

ments for that process. The current implementation uses Xgrid technology for the 

jobs submission and execution management. However, the Xgrid technology can be 

substituted with another software layer. This can be done by implementing a new 

concrete class of the abstract class Executer. 

6.3.3 generating 

This package contains two classes. The first one is JobsGenerator. Each instance 

is responsible for the generation of jobs of one class according to some probability 

distribution. One instance of this class is associated with two instances of probability 

distribution classes (e.g. the exponential and uniform distributions). It uses one of 

them to calculate the periods between generation events to maintain an arrival rate 

under a specific distribution, and uses the other object to calculate the length of the 

jobs to create a variation in the length of jobs from the same class. After creating the 

jobs, they are sent to the active mapper instance. The second class in this package 

is GeneratorsController. The generators controller is responsible for controlling all of 

the instances of JobsGenerators. It initializes, starts and stops them. 

6.3.4 interfacing 

All the graphical user interface classes are contained in this package. The Java Swing 

library is used in this implementation. All other packages are completely independent 
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Figure 6.1: A screen shot showing a server table (left) and a failure trace view (right). 

of this package. A Model View Controller (MVC) design pattern is used. MVC is 

a software design pattern used when designing user-interface based software. In an 

MVC panel, data classes (or models) are graphically represented by graphical classes 

(or views) and the data classes are manipulated and controlled by classes of a third 

type (controllers). Sometimes the controller and the view are combined in one class 

which is able to view and control the data model. Classes in this package represent 

the view and controller of data classes from other packages. In addition, the Java 

Event Delegation mechanism described earlier is used in this package. 

This package contains more than 15 classes. One such class is named JobClass­

esTableJPanel. This class contains a table that provides a view of the job classes in 

the system. Through this view the user can change properties of any job class in the 

table. Other similar classes are ServersTableJPanel and FailureTraceTable, which in 

turn provide views of and control the servers' table and failure traces respectively 

(see Figure 6.1). 
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Job Class Iterations Date 

Task generated from class: 2 iterations: 1982 Sun May 2517:16:24 EDT 2008 

Task generated from class: 2 iterations: 2047 Sun May 25 17:16:32 EDT 2008 

Task gen8fated from class: 2 iterations: 2038 Sun May 2517:16:44 EDT 2008 

Task generated from class: 2 iterations: 1964 Sun May 2517:18:13 EDT 2008 

Task generated from class: 2 iterations: 1970 Sun May 25 17:18:25 EDT 2008 

Task generated from class: 1 iterations: 981 Sun May 25 17:19:08 EDT 2008 

Task generated from class: 1 iterations: 99 Sun May 2517:20:07 EDT 2008 

Task generated from class: 1 iterations: 101 Sun May 25 17:20:52 EDT 2008 

Task generated from class: 2 iterations: 202 Sun May 25 17:21:02 EDT 2008 

Task generated from class: 2 iterations: 203 Sun May 25 17:21:17 EDT 2008 

Task generated from class: 1 iterations: 102 Sun May 25 17:21:20 EDT 2008 

Task generated from class: 2 iterations: 195 Sun May 25 17:21:24 EDT 2008 

Task generated from class: 2 iterations: 201 Sun May 25 17:21:34 EDT 2008 

Task generated from class: 2 iterations: 200 Sun May 25 17:21:39 EDT 2008 

Task generated from class: 1 iterations: 990 Sun May 25 18:19:17 EDT 2008 

Task generated from class: 1 iterations: 1022 Sun May 25 18:19:22 EDT 2008 

Task generated from class: 1 iterations: 1004 Sun May 2518:20:32 EDT 2008 

Task generated from class: 1 iterations: 979 Sun May 25 18:20:56 EDT 2008 

Task generated from class: 2 iterations: 2023 Sun May 25 18:36:33 EDT 2008 

Task generated from class: 2 iterations: 1959 Sun May 25 18:38:31 EDT 2008 

Task generated from class: 2 iterations: 2046 Sun May 25 19:00:00 EDT 2008 

Task generated from class: 2 iterations: 2008 Sun May 25 19:00:08 EDT 2008 

Task generated from class: 1 iterations: 1001 Man May 26 12:23:38 EDT 2008 

Task generated from class: 1 iterations: 998 Man May 26 12:24:02 EDT 2008 

Task generated from class: 2 iterations: 1977 Man May 26 12:24:08 EDT 2008 

Figure 6.2: A log file opened m Numbers software 

6.3.5 logging 

The classes of this package are responsible for the operation of logging system events. 

This package can be modified to use different schemes of storage. For simplicity and 

practicality the current implementation uses files. The text files produced can be 

opened and processed using spread sheet applications . This feature allows the tester 

to further study the results of their tests (Figure 6.2). 

This package contains three classes. The class Event represents a generic event. 

The class Logger is responsible for communication with the storage layer (e.g file 

system or DBMS) and storing events with their time stamps. The third class 1s 

named ServersReader and it can restore information about Servers objects stored m 

a file . This allows testers to maintain a list of servers in a text file. 
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6.3.6 mapping 

This package has several classes. The following is a partial list : 

1. A vailabilityServer is a server that keeps listening (by default on port 37933) 

for availability updates sent by machines in the grid and consequently modifies 

the mapper information. 

2. CompletionServer is a class that represents a server that keeps listening (by 

default on port 37931) for notifications of job completion and consequently 

modifies the mapper information. 

3. TimeoutThread. A thread from this class is responsible for sending a notifi­

cation to the mapper when a time-out occurs. It keeps track of all sent jobs. If 

a sent job was not completed by a certain time this thread will announce this 

job as Timed Out. This feature can be turned off. 

4. MappingScheme is an abstract class. It contains some abstract methods that 

must be implemented by any concrete mapping scheme. More details on this 

class can be found in Section 6.4. 

5. Mapper is a concrete class. One instance of this class co-operates with an in­

stance of a concrete subclass of MappingScheme to perform the mapping opera­

tion. The Mapper class performs all of the general operations of mapping such as 

receiving a job and later sending it to a machine. The concrete MappingScheme 

(e.g. LPAS...DG) on the other hand, performs the mapping scheme-specific op­

erations such as the actual scheduling and how time-outs are handled. The 

Mapper does not invoke different methods for each mapping scheme. It invokes 

the method defined in the abstract class MappingScheme and the the proper 

method is chosen using the polymorphism and dynamic binding features. 

6. LPAS_DG _ _MS is a concrete class of MappingScheme that implements the 

LPAS...DG mapping scheme. 
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Figure 6.3: Scqucucc uiagram showiug communications when a job IS sent anu 
mapped. 

7. LPAS_DG_TH is a thread that is part of the LPAS_DG implementation. This 

thread keeps checking the queues of jobs and sends jobs to an object of the 

LPAS_DG_MS class. The thread determines the order in which the available 

servers are used in the mapping process. In other words, this thread is responsi­

ble for choosing a server from the pool of available servers and notifies an object 

of class LPAS_DG_MS which in turn chooses a job to be sent to that server. 

In Figure 6.3 the communications between objects of classes of this package during 

the process of mapping a job are shown. 

6.3. 7 pulling 

The objects of this package's classes will run on the machines and not the mapper. 

This package is constructed from more than 12 classes. The following is a list of the 
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important classes in this package: 

1. CompletionAnnouncer is a class from which every machine has one object. 

That object is responsible for notifying the mapper when the execution of a 

job is completed and hence it needs to know the address of the mapper. The 

mapper in turn notifies this object when a job is sent to its machine. 

2. CPU _Eater is used to make machines busy. In some tests the tester wishes to 

simulate some availability conditions. This thread is able to make one core in 

a CPU busy to a certain percentage determined by the user. 

3. AvailabilityManager is a thread responsible for measuring CPU usage or 

CPU availability on machines and then logging and sending the results to the 

mapper. It is part of an availability prediction module developed as part of the 

environment. 

4. Availability Logger is used by the A vailabilityThread class to log the avail­

ability readings. 

6.3.8 probability _distribution 

This package has the classes related to probability distributions. It contains the 

following classes: 

1. ProbabilityDist is an abstract class with one abstract method getNext Value{). 

This method should be defined in a manner such that each invocation produces 

a sample from a certain probability distribution. 

2. ExponentialDist is a concrete subclass of ProbabilityDist that implements an 

exponential distribution. 

3. UniformDist is a concrete subclass of ProbabilityDist that implements a uni­

form distribution. 



58 6. System Implementation 

6.4 Adding New Scheduling Policies 

To add a mapping scheme, a new class must be added to the package mapping. This 

class must be concrete and must extend the abstract class MappingScheme, thus it 

must implement the methods of the abstract class MappingScheme. The methods 

are: 

1. public abstract void startMappingScheme(). In this method, initializa­

tion operations are defined. For instance, if the mapping scheme depends on a 

thread , the thread is initialized and started. 

2. public abstract void stopMappingScheme(). In this method, the program­

mer should define operations that stop the execution of the system processes 

(e .g mapping and generation) . This can be useful if the system execution is 

wished to be restarted after stopping it. 

3. protected abstract void mapJob(Job job). The implementation of this 

method determines the mapping scheme. It is invoked by the mapper object. 

The job is sent to the active MappingScheme concrete object (e.g. the LPAS_DG 

object or the MET object). This object then makes the mapping decision 

according to the appropriate policy. 

4. public abstract void handleJobTimeOut(long jobiD). The implementa­

tion of this method determines what should happen when a job times out. One 

way of handling a time-out for instance, is to resubmit the timed-out job. This 

way was chosen for the implemented schemes. 

5. public abstract void serverlsDown(int serveriD) The implementation of 

this method determines what should happen when a server goes down. For 

instance, the LPAS_DG policy re-solves the LP allocation. 

6. public abstract void serverlsUp(int serveriD) The implementation of this 

method determines what should happen when a server becomes up after being 

down. For instance, the LPAS_DG policy re-solves the LP allocation. 
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Three mapping schemes are implemented. These are LPAS_DG, Gcp and FCFS. 

Classes are named LPAS_DG_MS, Gcu_MS and FCFS_MS. The convention is to ap­

pend the name of the mapping scheme with "_MS". These implementations can be 

found in the source code on the attached Compact Disc (Appendix A). 

6.5 Adding New Probability Distributions 

Adding a new probability distribution requires adding a new concrete class to the 

probabilityDist package that extends the abstract class ProbabilityDist. The single 

method that has to be implemented is the method with the signature public abstract 

double getNext Value(). For instance to implement the exponential distribution the 

method is implemented as follows: 

return ( -l*Math.log(Math.random()) )/this.getLambda(}; 

or 

-log(r)j A (where r is a random number in [0, 1) and 1/ A is the mean) 

Invoking the method above will produce a sample from an exponential distribution 

with mean 1/ A. The exponential and uniform distributions were implemented in the 

ExponentialDist and UniformDist classes respectively. These implementations can 

be found in the source code on the attached Compact Disc (Appendix A). 

6.6 Considerations in Design and Development 

During the first phase of development the problem domain was analysed and the 

workload model of the theoretical scheme, which the system is supposed to test, 

was studied. Upon understanding the problem domain, design requirements were 

determined. Different aspects were considered, each of which is discussed in detail in 

the reminder of this section. 

Maintainability - A software system is said to be maintainable if it can be modi­

fied to adopt new requirements or to fix errors in a fluent manner. The maintainability 
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aspect was a prime consideration. The main reason for this is that the requirements 

of our system are dynamic. The workload and the problem domain are well defined 

for the current research, however, the model may change in the future. Therefore, 

classes were designed with future additions in mind. The whole architecture of the 

system is suitable for maintenance and adding new features. In addition, the code 

was well documented using Javadoc [29]. (Javadoc is a tool for generating API doc­

umentation in HTML format from comments in source code.) Moreover, the source 

code was extensively commented. 

Modularity- Every software system has several functionalities. Building a soft­

ware system involves designing the internal modules of the system and defining how 

these modules interact. Generally speaking, each component should be independent 

of the other components to the largest extent possible. However, these components 

have to know how to communicate with each other and therefore they are not fully in­

dependent. The less dependent the modules are, the easier the system is to maintain. 

In order to achieve high modularity, each component was designed to have a specific 

and defined functionality. Each system component is implemented as a Java package 

and each package can access specific services from other packages. As an example all 

the mapping functionality is encapsulated in the Mapper module, whereas the logging 

functionality is encapsulated in the Logger module. 

Extensibility - Extensibility is the ability to extend the system's features or 

functionality. The system was designed with extensibility at the top of the design 

requirements list. As previously mentioned, the system's main purpose is testing 

scheduling schemes. To do this , the system will support some scheduling schemes 

such as LPAS_DG. Adding additional scheduling schemes requires only inheriting 

an abstract class and implementing a set of methods. More details were given in 

Section 6.4. For example, the policies LPAS_DG , Gcf-L and FCFS were added using 

the method described in Section 6.4. 

Security - The security aspect of the system was not a big concern in the design 

process , since the system will run in an academic environment. However , that does 

not mean that the system is not secure. No one can request jobs from the system 



6. System Implementation 61 

without a password set in the configuration phase. For the purpose of testing, this 

is what really matters , that our Xgrid agents (servers) will not be receiving jobs to 

work on from outside entities. 

Compatibility - The testing environment is to be installed on departmental 

machines. The system is constructed from two main software components. The 

main one is written in Java thus guaranteeing compatibility on different platforms. 

The other component (Xgrid technology) is Mac OS dependent. We decided that the 

system should work on both Mac OS X 10.4 (Tiger OS) and Mac OS X 10.5 (Leopard 

OS) and the system was tested on both operating systems. We expect that the testing 

environment will work well on future Apple platforms, but we cannot guarantee it. 

However , if major modifications were introduced to the Xgrid system, only one layer 

of our system would need to be modified , the Xgrid dependent layer. 

Robustness - A software application is robust if it is able to tolerate unpre­

dictable or invalid inputs or conditions. To achieve robustness, at the design level we 

tried to eliminate unpredictable conditions by simplifying messages betwceu different 

modules. At the implementation level we always tried to check for different boundary 

conditions. In addition, the Java error handling model was extensively employed to 

catch exceptions. For example, all communications in the system were subject to 

time-out exceptions and the Xgrid system messages were always verified aud checked, 

with an exception raised in case of a problem. Moreover, most of the system compo­

nents are multi-thread based. As a result , every data structure was chosen from the 

java.util package to be thread safe, meaning that synchronization methods are used 

to guarantee the integrity of the thread-accessed data structures, thus protecting the 

integrity of the system state. In addition, no deprecated unsafe threads methods were 

used . Finally, it is worth mentioning that the Java programming language is robust. 

As a matter of fact , robustness of software created by Java is a main concern for Java 

designers [25]. The Xgrid technology is also robust and it is being used in large scale 

projects such as the Xgrid@Stanford project [49]. 
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Analysis 

7.1 Introduction 

In this chapter we will discuss some experiments conducted on our testing environ­

ment and will compare them to results obtained from the simulation tool used in [3]. 

Each of the following sections discusses one setting of servers and job classes and the 

experiments conducted using this setting. Although the description in each section 

may seem a bit repetitive, we have described each experiment in detail so that the 

reader can read the results of one experiment independently of the remainder of the 

chapter. 

As in Section 3.1, a is the arrival rate vector of job classes, where the ith element 

D'i, is the arrival rate of job class i. Moreover, the execution rate that a machine j 

can execute a job from class i is denoted by l'·i,j · The availability of machine j is 

donated by aj and the actual execution rate is given by JL~,j = /.Li ,jaj. In addition, /.Li 

is a vector that represents the execution rates for a particular job class , with the lh 
element in this vector being /.Li ,j. Finally, JL is the matrix constructed by all execution 

rate vectors, where entry ( i, j) is JLi,j . 

The metrics used in the simulations and experiments are the average waiting time 

and the average completion time (response time) . For the experimental part we also 

used the average communication delay. 

62 
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As a reminder, the waiting time is the difference between the time that a job is 

submitted and is sent to a server. The response time is the difference between the 

time a job is submitted and the time it completes execution. The communication 

delay is the difference between the time a job is sent to be executed and the time it 

begins execution. This delay occurs mainly due to communication delays , but it could 

also be caused by the software layer responsible for the distribution and execution of 

the tasks. 

Machine heterogeneity refers to the average variation in the rows of the execution 

matrix p, . Similarly, job heterogeneity refers to the average variation of the columns. 

Based on this and following [10] , we define the following categories for heterogeneity: 

• High job heterogeneity and high machine heterogeneity ( HiHi) 

• High job heterogeneity and low machine heterogeneity (HiLa) 

• Low job heterogeneity and high machine heterogeneity (LoHi) 

• Low job heterogeneity and low machine heterogeneity (LoLa) 

Every setting from the following belongs to one of the above categories. 

7.2 Setting HiHi 

This setting was constructed from 6 machines and 4 job classes. The LPAS_DG , Gcp, 

and FCFS policies were simulated and tested on this setting. 

• Execution rates are shown in Table 7.1. Ml to M6 are machine 1 to machine 6. 

I Class II Ml I M2 I M3 I M4 I M5 I M6 I 
1 2.0 2.0 2.0 2.0 2.0 2.0 
2 1.0 20.0 3.7 7.1 2.4 8.7 
3 1.0 20.0 9.4 3.7 7.2 2.7 
4 1.0 20.0 2.8 5.9 4.4 6.3 

Table 7.1: Execution Rates of Setting A 
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• The arrival rates of the job classes were 

a = [ 2.25 4.50 7.20 12.60 J . 

7.2.1 Experiment 1 

This experiment was conducted on Setting HiHi with the following parameters: 

• All machines were dedicated (aj = 1.0, Vj). 

• This experiment included no machine failures. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.2. The metric used in the table is the mean response 

time. The confidence level was 95%. The confidence intervals are shown between 

brackets in the table. 

I Class II LPAS_DG Gc11 FCFS 

1 (0.56 , 0.57) (0.66, 0.67) (1.30 , 1.33) 
2 (0.33 , 0.34) (0.26, 0.26) (0.99, 1.02) 
3 (0.18, 0.18) (0.25, 0.25) (0.99, 1.02) 
4 (0.11 , 0.11) (0.27, 0.27) (0.99, 1.02) 

Overall (0 .20, 0.21) (0.30 , 0.30) (1.01 , 1.05) 

Table 7.2: Results of simulation 1 

Our testing environment was used to conduct the experiment , and the results are 

shown in Table 7.3. At the time when the experiment was stopped the actual arrival 

rates of job classes were within 5% of the assumed arrival rates a. The LPAS_DG 

test took 90 minutes (45 time units) , while the Gc11 and FCFS tests took 10.5 hours 

(315 time units) and 21 hours (253 time units) , respectively. 
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Class II LPAS_DG I Gc11 I FCFS I 
1 0.58 0.78 1.27 
2 0.34 0.29 1.01 
3 0.22 0.21 0.98 
4 0.17 0.31 0.97 

Overall 0.24 0.34 1.00 

Table 7.3: Results of experiment 1 

Discussion 

In Figure 7.1 a comparison between the results of the simulation and the results of 

the experiment is shown. The left side of the figure shows the simulation results, 

whereas the right side shows the experimental results. The results were similar. All 

of the average response times obtained by the experiment were within 0.06 time units 

of the corresponding entries in the simulation table. 

The results of this experiment verified the results of [3], that is the superiority 

in the performance of the LPAS_DG policy over the GCfL and FCFS policies. Both 

the simulation and the experimental results show an increase of performance of 4 - 5 

times when using the LPAS_DG policy instead of the FCFS policy in heterogeneous 

environments. These results also show that the abstract model assumed by [3] is 

reasonable and that the unmodeled overhead of LPAS_DG in this case had minimal 

impact, since the LP allocation problem was solved only once and the communication 

delay was not large (since the experiment was conducted in the same Local Area 

Network (LAN)). 

7.2.2 Experiment 2 

This experiment was conducted on Setting HiHi with the following parameters: 

• 
a . = { 1. 0 if 1 :::; j :::; 3 

J 0.5 if 4 :::; j :::; 6 

• This setting included no machine failures. 
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Figure 7.1: Experiment 1 results. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.4. The metric used here is the mean response time. 

The confidence level was 95%. FCFS is not stable for this setting and parameters. 

I Class II LPAS_DG I Gcp I FCFS I 
1 (0.97, 0.98) (1.10 , 1.11) N/A 
2 (0.22, 0.22) (0.42, 0.42) N/A 
3 (0.27, 0.27) (0.36, 0.36) N/A 
4 (0.16, 0.16) (0.44, 0.44) N/A 

Overall (0.27, 0.27) (0.47, 0.47) N/A 

Table 7.4: Results of simulation 2 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.5. 

LPAS_DG Test. This test took 6.5 hours (130.7 time units). The actual arrival 

rate was 

a'= [ 2.17 4.60 7.19 11.95 J, 
which is within 5% of the desired arrival rate. The actual execution rates are given 
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Class II LPAS_DG I Gcf.L I FCFS I 
1 0.99 1.51 NjA 
2 0.37 0.59 NjA 
3 0.29 0.50 N/A 
4 0.43 0.59 NjA 

Overall 0.42 0.64 N/A 

Table 7.5: Overall results of Experiment 2 

in the following table: 

I Class II M1 M2 M3 M4 M5 M6 

1 1.96 NjA NjA 0.96 0.94 N/A 
2 NjA 18.04 NjA 3.27 NjA 3.90 
3 NjA NjA 8.70 NjA 3.30 N/A 
4 NjA 18.09 NjA NjA NjA NjA 

Table 7.6: Execution Rates in LPAS_DG test in Experiment 2 

Gctt Test. This test took 3.9 hours (81.7 time units). The actual arrival rate 

a' = [ 2.22 4.90 7.12 12.57 J , 

which is within 10% of the actual desired rate. The actual execution rates are given 

in the following table: 

I Class II M1 M2 M3 M4 M5 M6 

1 1.92 2.05 2.03 0.90 0.94 0.92 
2 1.01 18.04 3.66 3.23 1.10 3.93 
3 0.98 17.92 8.70 1.68 3.30 1.27 
4 1.01 18.09 2.80 2.72 2.00 2.84 

Table 7.7: Execution Rates in Gc/-L test in Experiment 2 

FCFS Test 

This test took 17.7 hours (500 time units) . The actual arrival rate was 

a'= [ 2.24 4.13 6.84 12.41 J , 
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which is within 10% of the desired arrival rate. 

The experiment showed that this policy is unstable. Both the queue of waiting 

jobs and the response time were growing with time. Figure 7.2 shows the relation 

between time (in time units) and response time (in time units). 

90.0 

67.5 

45.0 

123 295 500 

Figure 7.2: Experiment 2, FCFS test results. 

Discussion 

The FCFS policy test on both the simulation tool and the testing environment showed 

th::tt the FCFS policy is unstable. As such , the LPAS_DG policy proves to be superior. 

It is worth noting though that since the actual processing rates (Table 7.6 and Table 

7.7) are slower than the assumed processing rates (Table 7.1), the response times of 

the experiment were larger than those of the simulation. 

Additionally, the performance of LPAS_DG in processing class 4 was much slower 

in the test than in the simulation. We believe that the reason behind this is that 

according to the 8* matrix (Section 4.4.6) , which results from solving the LP, class 

4 jobs can only be processed by machine 4. The actual rate P,4 ,11 was 18.09, whereas 

the desired Jl4 ,4 was 20. The fact that only one machine can execute jobs from this 

class makes the performance of the policy highly dependent on that machine. In 

this experiment the machine could not reach the ideal execution rate, which resulted 

in poor performance for that class. The fact that only one or few machines can 
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execute particular job classes makes the performance of the policy very sensitive to 

the performance of these machines. If these machines under-performed (due to over 

estimation of execution rates or machine failures) , the performance of the policy will 

deteriorate. In large grids however, these groups are constructed from a large number 

of machines which should attenuate this effect. Nevertheless, we think that this 

downside of the LPAS_DG policy warrants further examination. 

Sim.uJation MUSST 

1.509 - ••"'. ·-···-. ··- - - ·-·-··- ·- ·--·-·-·-·-·-·-···---- 1.509 
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Class 1 Class 2 Class 3 Class 4 All 
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Figure 7.3: Experiment 2 results. 

7. 2. 3 Experiment 3 

This experiment was conducted on Setting HiHi with the following parameters: 

• aj =1.0 (for all j) 

• Each machine fails at the rate 0.05 per time-unit and the mean fault time is 2 

time-units. The periods were exponentially distributed. 

Results 

The simulations were conducted using the simulation software used in [3] and the 

results obtained are shown in Table 7.8. The metric used here is the mean response 
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time. The confidence level was 95%. FCFS is not stable for this setting and parame­

ters. 

Class LPAS_DG Gcf.L I FCFS I 
1 (0.61 , 0.61) (0.73, 0.73) NjA 
2 (0.35 , 0.35) (0.28, 0.28) NjA 
3 (0.19, 0.20) (0.27, 0.27) N/A 
4 (0.13, 0.13) (0 .30, 0.30) N/A 

Overall (0.23, 0.23) (0.32, 0.33) NjA 

Table 7.8: Results of simulation 3 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.9. At the time when the LPAS_DG , Gc!J and the FCFS tests were 

stopped the actual arrival rates of job classes were within 2%, 8% and 5% respectively 

of the assumed arrival rates. The LPAS_DG test took 12.9 hours (258.7 time units), 

while GcfJ took 3.8 hours (56.4 time units). 

I Class II LPAS_DG I GctJ I FCFS J 

1 0.61 0.77 NjA 
2 0.45 0.30 NjA 
3 0.20 0.26 N/A 
4 0.15 0.30 N/A 

Overall 0.25 0.33 NjA 

Table 7.9: Overall results of experiment 3 

The experiment showed that FCFS is unstable. Both the queue of waiting jobs 

and the response time were growing with time. Figure 7.2 shows the relation between 

time (in time units) and response time (in time units) . 

Discussion 

In Figure 7.5 a comparison between the results of the simulation and the results of 

the experiment is shown. The left side of the figure shows the simulation results, 

whereas the right side shows the experimental results. The results were similar. All 
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Figure 7.4: Experiment 3, FCFS test results. 

the response times obtained by the experiment were within 0.1 time units of the 

corresponding entries in the simulation table. 

The results of this experiment verified the results of [3], that is the superiority in 

the performance of the LPAS_DG policy over the Gcp, and FCFS policies . 

These results also show that the abstract model assumed by [3] is reasonable and 

that the impact of the overhead of LPAS_DG in this case was minimal since the LP 

allocation problem was solved only once. In addition, the communication delay was 

minimal since the communications between the machines happened in the same LAN. 

7. 2.4 Experiment 4 

This experiment was conducted on Setting HiHi with the follmving parameters: 

• 
a . = { 1.0 if 1 :::; j :::; 3 

J 0.5 if 4 :::; j :::; 6 

• Each machine fails at the rate 0.05 per time-unit and the mean fault time is 2 

time-units . The periods were exponentially distributed. 
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Figure 7.5: Experiment 3 results. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained arc shown in Table 7.10. The metric used here is the mean response time. 

The confidence level was 95%. FCFS is not stable for this setting and parameters. 

I Class II LPAS_DG I GcJ.L I FCFS I 
1 (1.10, 1.11) (1.26, 1.27) N/A 
2 (0.30, 0.31) (0.50, 0.51) N/A 
3 (0.32, 0.32) (0.42 , 0.42) NjA 
4 (0.26, 0.27) (0.53, 0.53) N/A 

Overall (0.35, 0.36) (0.56 , 0.56) NjA 

Table 7.10: Results of simulation 4 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.11. At the time when the LPAS_DG, GcJ.L and the FCFS tests were 

stopped the actual arrival rates of job classes were within 7%, 5% and 5% respectively 

of the desired arrival rates. The LPAS_DG test took 14.4 hours (309 time units) , while 

the GcJ.L took 2 hours ( 40 time units) . The experiment showed that FCFS is unstable. 

Both the queue of waiting jobs and the response time were growing with time. Figure 

7.6 shows the relation between time (in time units) and response time (in time units). 
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Figure 7.6: Experiment 4, FCFS test results. 

I Class II LPAS_DG I Gc11 I FCFS I 
1 1.03 1.30 N/A 
2 0.50 0.55 N/A 
3 0.46 0.41 N/A 
4 1.36 0.51 N/A 

Overall 0.94 0.56 N/A 

Table 7.11: Overall results of experiment 4 

Discussion 

The difference between the response time of class 4 in the simulation and the experi­

ment is due to two factors. 

The first one is the effective rate in the experiment is less than that assumed 

by LPAS-.DG. The scconct ami more important factor is that the delay between the 

completion time and notification time of completion is large compared to the execution 

time. This delay is usually negligible, but in this case it is large compared to the 

execution time. Jobs from class 4 are exclusive to machine 4 and the processing rate 

of machine 4 is large (20 jobs per time unit or an execution time of 0.05 time units). 

In the test, the time unit was 3 minutes , thus the processing t ime of this machine for 

class 4 was 9 seconds ( 1 / 114 ,4 = 9 seconds). The actual processing rate was 10-11 

seconds, add to that the delay time between the completion t ime and the notification 
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time which was approximately 2 seconds (more than 10% of the desired processing 

time). This results in enlarging the actual effective execution rate by approximately 

44%. 

The entry ( 4,4) in the 6* matrix was .936 and the p* value was .673 which mean 

that this machine should be busy approximately 67% of time when it is up (without 

failures) in ideal conditions. Its busy time is divided between class 2 and class 4 jobs 

in a ratio of G:94. Taking the effective execution rate into account the load on that 

machine rises to approximately 97% without failures. If the failure rate was taken 

into consideration the load would exceed 100% or equivalently the effective processing 

rate of the machine becomes slower than the arrival rate of the class 4, which results 

in class 4 becoming unstable. We believe that one class being exclusive to one job 

class might give higher than desired sensitivity to system parameters. 

In addition, the response times of class 2 and class 3 are higher than the simulation, 

as the unavailability of machine 4 meant the other machines became more highly 

loaded. 

The GcfL performance in this case was better than. the LPAS_DG policy, indicating 

that it suffers less from the sensitivity problem. 
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Figure 7.7: Experiment 4 results. 

7.3 Setting LoHi 

This setting was constructed from the category LoHi, and had 21 machines and 4 job 

classes. There were seven groups of machines. Members of the same group have the 

same execution rates . Machines in group 1 arc machines 1, 8 and 15, machines in 

group 2 are machines 2, 9 and 16 etc. Formally, machine j belongs to group i if and 

only if j mod 7 = i. 

• Execution rates are shown in Table 7.12. G1 to G7 are group 1 to group 7. 

I Class II G1 I G2 I G3 I G4 I G5 I G6 I G7 I 
1 2.20 7.00 10.25 1.00 5.70 0.50 12.00 
2 1.95 7.05 9.78 0.95 5.65 0.56 11 .85 
3 2.00 7.25 10.02 0.98 5.75 0.67 11.80 
4 2.05 6.75 9.99 1.02 5.82 0.49 12.05 

Table 7.12: Execution Rates of Setting LoHi 

• The arrival rates of the job classes were 

a = [ 22.5 22.5 18.0 18.0 J . 
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7.3.1 Experiment 5 

This experiment was conducted on Setting LoHi with the following parameters: 

• All machines were dedicated in this experiment (aj = 1, Vj). 

• This experiment included no machine failures. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.13. The metric used here is the mean response time. 

The confidence level was 95%. 

I Class II LPAS_DG GcJ.L FCFS 

1 (0 .22, 0.22) (0.21 , 0.21) (0.21 , 0.21) 
2 (0.12, 0.12) (0.21, 0.22) (0.21 , 0.22) 
3 (0.30, 0.30) (0 .21, 0.21) (0.21, 0.21) 
4 (0.29, 0.29) (0.21 , 0.21) (0.22, 0.22) 

Overall (0.22 , 0.22) (0.21, 0.21) (0.21 , 0.21) 

Table 7.13: Results of simulation 5 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.14. At the time when the LPAS_DG , Gcf..L and the FCFS tests were 

stopped the actual arrival rates of job classes were within 4%, 3% and 4% respectively 

of the assumed arrival rates. The LPAS_DG test took 100 minutes (50 time units), 

while the GcJ.L and FCFS tests took 100 minutes (50 time units) and 320 minutes 

( 160 time units) respectively. 

Discussion 

The results of the simulation and our testing environment were similar. 

7.3.2 Experiment 6 

This experiment was conducted on Setting LoHi with the following parameters: 
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Class II LPAS__DG I Cel-L I FCFS I 
1 0.31 0.26 0.26 
2 0.22 0.25 0.26 
3 0.37 0.24 0.25 
4 0.35 0.25 0.26 

Overall 0.31 0.25 0.26 

Table 7.14: Overall results of Experiment 5 

Simulation MGST 
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Figure 7.8: Experiment 5 results. 

• The availabilities of machines were as follows: 

{ 

0.50 if j = 2, 11 or 19 

ai = 0. 75 if j = 3, 12 or 20 

1.00 otherwise 

• This experiment included no machine failures. 

Results 
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The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.15. The metric used here is the mean response time. 

The confidence level was 95%. 
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Class II LPAS_DG Gc11 FCFS 

1 (0.24, 0.24) (0.23, 0.23) (0.24, 0.24) 
2 (0.13, 0.13) (0.24, 0.24) (0.24, 0.24) 
3 (0.37, 0.37) (0.23, 0.23) (0.23, 0.23) 
4 (0.35, 0.35) (0.24, 0.24) (0.24, 0.24) 

Overall (0.26- 0.27) (0.24, 0.24) (0.24, 0.24) 

Table 7.15: Results of simulation 6 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.16. At the time when the LPAS_DG, Gc11 and the FCFS tests were 

stopped the actual arrival rates of job classes were within 6%, 8% and 5% respectively 

of the desired arrival rates. The LPAS_DG test took 110 minutes (55 time units) , 

while both the Gc11 and FCFS tests took 100 minutes (50 time units) . 

I Class II LPAS_DG I GcJ-L I FCFS I 
1 0.36 0.30 0.31 
2 0.26 0.32 0.32 
3 0.44 0.31 0.31 
4 0.47 0.33 0.32 

Overall 0.37 0.31 0.31 

Table 7.16: Overall results of experiment 6 

Discussion 

The results of the simulation and our testing environment were similar. 

7.4 Setting HiLo 

This setting was constructed from 21 machines and 4 job classes. This setting was 

from category HiLo. There were seven groups of machines. Members of the same 

group have the same execution rates. Machines in group 1 are machines 1, 8 and 15, 

machines in group 2 are machines 2, 9 and 16, etc. Formally, machine j belongs to 

group i if and only if j mod 7 = i. 
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Figure 7.9: Experiment 6 results. 

• Execution rates are shown in Table 7.17. G 1 to G7 are group 1 to group 7. 

I Class II Gl I G2 I G3 I G4 I G5 I G6 I G7 I 
1 2.00 2.50 2.25 2.00 2.20 1.75 2.25 
2 4.50 4.0 4.20 4.00 3.80 3.90 3.95 
3 6.00 6.20 6.25 6.00 5.75 5.90 6.05 
4 10.00 10.25 10.50 9.50 10.25 10.25 10.00 

Table 7.17: Execution Rates of Setting HiLo 

• The arrival rates of the job classes were 

Q = [ 10.50 21.00 26.25 26.25 ] . 

7 .4.1 Experiment 7 

This experiment was conductccl on Setting HiLa with the following parameters: 

• All machines were dedicated in this experiment (aj = 1, Vj). 

• This experiment included no machine failures. 
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Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.18. The metric used here is the mean response time. 

The confidence level was 95%. 

I Class II LPAS_DG Gcf-l FCFS 

1 (0.49, 0.49) (0.50, 0.50) (0.49 , 0.49) 
2 (0.28, 0.28) (0 .26, 0.26) (0.27, 0.27) 
3 (0.24, 0.24) (0.18, 0.18) (0.18, 0.18) 
4 (0.14, 0.14) (0.11, 0.11) (0.12, 0.12) 

Overall (0.25 , 0.25) (0.22 , 0.22) (0.22, 0.22) 

Table 7.18: Results of simulation 7 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.19. At the time when the LPAS_DG, Gcf-l and the FCFS tests were 

stopped the actual arrival rates of job classes were within 4%, 7% and 6%, respectively 

of the assumed arrival rates. All the tests took 100 minutes (50 time units). 

I Class II LPAS_DG I Cel-l I FCFS I 
1 0.50 0.53 0.51 
2 0.31 0.30 0.31 
3 0.32 0.21 0.23 
4 0.35 0.14 0.17 

Overall 0.35 0.25 0.26 

Table 7.19 : Overall results of experiment 7 

Discussion 

The results of the simulation and our testing environment were similar. 

7.4.2 Experiment 8 

This experiment was conducted on Setting HiLa with the following parameters: 
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Figure 7.10: Experiment 7 results. 

• The availabilities of machines were as follows : 

{ 

0.50 if j = 2, 11 or l9 

a j = 0.75 if j = 3, 12 or 20 

1.00 otherwise 

• This experiment included no machine failures . 

Results 
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MGST 

Class3 Class4 All 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.20. The metric used here is the mean response time. 

The confidence level was 95%. 

I Class II LPAS_DG GcJ.L FCFS 

1 (0. 79, 0.80) (0.64, 0.65) (0 .62, 0.62) 
2 (0.42 , 0.42) (0.35, 0.35) (0 .37, 0.37) 
3 (0.27, 0.27) (0.24, 0.24) (0.28, 0.28) 
4 (0.19, 0.19) (0 .14, 0.15) (0.20, 0.21) 

Overall (0.35, 0.35) (0 .29, 0.29) (0.32 , 0.32) 

Table 7.20: Results of simulation 8 
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Our testing environment was used to conduct this experiment , and the results 

are shown in Table 7.21. At the time when the LPAS_DG , Gcp, and the FCFS tests 

were stopped the actual arrival rates of job classes were within 5%, 10% and 10% 

respectively of the assumed arrival rates. The LPAS_DG test took 124 minutes (62 

time units) , while the Gcp, and FCFS tests took 104 minutes (52 time units) and 100 

minutes (50 time units) respectively. 

I Class II LPAS_DG I Gq1. I FCFS I 
1 1.22 0.96 0.65 
2 0.77 0.54 0.41 
3 0.53 0.38 0.33 
4 0.73 0.24 0.25 

Overall 0.74 0.44 0.36 

Table 7.21: Overall results of experiment 8 

Discussion 

Compared to the simulation, the LPAS_DG and GCp, policies performed poorly in 

the test. The reason is that the ideal overall load on the machines was fairly high 

(86.4%), but the different sources of errors and overhead caused the load to be close 

to 100%. The sources of errors are higher overall arrival rates , over estimation for 

processing rates and communication overhead coupled with the scheduling delay. 

7.5 Setting LoLo 

This setting was constructed from 21 machines and 4 job classes. This setting was 

from category LoLo. There were seven groups of machines. Members of the same 

group have the same execution rates. Machines in group 1 are machines 1, 8 and 15, 

machines in group 2 are machines 2, 9 and 16, etc. Formally, machine j belongs to 

group i if and only if j mod 7 = i. 

• Execution rates are shown in Table 7.22. G1 to G7 are group 1 to group 7. 
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Figure 7.11: Experiment 8 results. 

I Class II G1 I G2 I G3 I G4 I G5 I G6 G7 
1 2.00 2.50 2.25 2 2.20 1.75 2.25 
2 4.50 4.00 4.20 4 3.80 3.90 3.95 
3 6.00 6.20 6.25 6 5.75 5.90 6.05 
4 10.00 10.25 10.50 9.50 10.25 10.25 10.00 

Table 7.22: Execution Rates of Setting LoLo 

• The arrival rates of the job classes were 

0 = [ 18.00 20.25 15.75 22.50 ] . 

7.5.1 Experiment 9 

This experiment was conducted on Setting LoLa with the following parameters: 

• All machines were dedicated in this experiment (a1 = 1.0, Vj). 

• This experiment included no machine failures. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.23. The metric used here is the mean response time. 
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The confidence level was 95%. 

I Class II LPAS_DG Gcp, FCFS 

1 (0.25 , 0.25) (0.20, 0.20) (0 .20, 0.20) 
2 (0.23, 0.23) (0.20, 0.20) (0.20, 0.20) 
3 (0.23, 0.23) (0.21, 0.21) (0.21 , 0.21) 
4 (0.21, 0.22) (0.20, 0.20) (0.20, 0.20) 

Overall (0.23, 0.23) (0.21, 0.21) (0.21 , 0.21) 

Table 7.23: Results of simulation 9 

Our testing environment was used to conduct this experiment, and the results are 

shown in Table 7.24. At the time when the tests were stopped the actual arrival rates 

of job classes were within 5% of the assumed arrival rates. The LPAS_DG test took 

108 minutes (54 time units) , while the Gcp. and FCFS tests took 110 minutes (55 

time units) and 100 minutes (50 time units) respectively. 

I Class II LPAS_DG I Gcp, I FCFS I 
1 0.27 0.23 0.23 
2 0.28 0.23 0.23 
3 0.28 0.24 0.23 
4 0.25 0.23 0.23 

Overall 0.27 0.23 0.23 

Table 7.24: Overall results of experiment 9 

Discussion 

The results of the simulation and our testing environment were similar. The Gcf..l 

policy performed as well as the FCFS policy and slightly better than the LPAS_DG 

policy. 

7.5.2 Experiment 10 

This experiment was conducted on Setting LoLa with the following parameters: 
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Figure 7.12: Experiment 9 results. 

• The availabilities of the machines were as follows: 

{ 

0.50 if j = 2, 11 or 19 

a1 = 0.75 if j = 3, 12 or 20 

1.00 otherwi.se 

• This experiment included no machine failures. 

Results 
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MGST 

Class3 Class4 All 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Tahle 7.25 . The metric userl here is the mean response time. 

The confidence level was 95%. 

I Class II LPAS_DG I Cel-L FCFS 

1 (0.28, 0.28) (0.24 , 0.24) (0.24 , 0.24) 
2 (0.30, 0.30) (0.24, 0.24) (0.24, 0.24) 
3 (0.27, 0.27) (0.25, 0.25) (0.25 , 0.25) 
4 (0.32 , 0.32) (0.24, 0.24) (0.24 , 0.24) 

Overall (0.30, 0.30) (0.24 , 0.24) (0.24 , 0.24) 

Table 7.25: Results of simulation 10 
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Our testing environment was used to conduct this experiment , and the results 

are shown in Table 7.26. At the time when the LPAS_DG, Gcp and the FCFS tests 

were stopped the actual arrival rates of job classes were within 6%, 10% and 11% 

respectively of the assumed arrival rates. The LPAS_DG test took 156 minutes (78 

time units), while the Gcp and FCFS tests took 120 minutes (60 time units) and 100 

minutes (50 time units) respectively. 

I Class II LPAS_DG I Ccp I FCFS I 
1 0.39 0.32 0.29 
2 0.39 0.32 0.29 
3 0.35 0.33 0.30 
4 0.36 0.33 0.29 

Overall 0.37 0.33 0.29 

Table 7.26: Overall results of experiment 10 

Discussion 

The results of the simulation and our testing environment were similar. The Gc11 

policy performed as well as the FCFS policy and slightly better than the LPAS_DG 

policy. The performance of these policies are close to each other. In this setting, the 

decision of what policy to deploy should be based on other factors . 

7.5.3 Experiment 11 

This experiment was conducted on Setting LoLa with the following parameters: 

• All machines were dedicated in this experiment (aj = 1.0, Vj). 

• This experiment included machine failures. The mean uptime was 50 time units 

and the mean failure period was 2 time units. The periods were exponentially 

distributed. 
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Figure 7.13: Experiment 10 results. 

R esults 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.27. The metric used here is the mean response time. 

The confidence level was 95%. Our testing environment was used to conduct this 

I Class II LPASJ)G I FCFS 

1 (0.25, 0.25) (0.21, 0.21) (0.21 , 0.21) 
2 (0.24 , 0.24) (0.21 , 0.21) (0.2L 0.21) 
3 (0.24, 0.24) (0.21 , 0.21) (0.22, 0.22) 
4 (0.24 , 0.24) (0.21 , 0.21) (0.21, 0.21) 

Overall (0.24 , 0.24) (0.21 , 0.21) (0.2L 0.21) 

Table 7.27: Results of simulation 11 

experiment, and the results are shown in Table 7.28. At the time when the LPASJ)G. 

Gcf..L and the FCFS tests were stopped the actual arrival rates of job classes were within 

3%, 2% and 5% respectively of the assumed arrival rates. The LPAS_DG test took 50 

minutes ( 100 time unit), while the Gcf..L and FCFS tests took 243 minutes ( 486 time 

units) and 55 minutes (110 time units) respectively. 
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Class II LPAS_DG I Gcfi I FCFS I 
1 0.35 0.26 0.24 
2 0.34 0.26 0.24 
3 0.33 0.27 0.24 
4 0.29 0.26 0.24 

Overall 0.33 0.26 0.24 

Table 7.28: Overall results of experiment 11 

Discussion 

The results of the simulation and our testing environment were similar. The Gcf-J. 

policy performed as well as the FCFS policy and slightly better t han the LPAS_DG 

policy. 
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Figure 7.14: Experiment 11 results. 

7.5.4 Experiment 12 

This experiment was conducted on Setting LoLa with the following parameters: 



7. Analysis 

• The availabilities of the machines were as follows: 

{ 

0.50 if j = 2, 11 or 19 

ai = 0. 75 if j = 3, 12 or 20 

1.00 otherwise 

89 

• This experiment included machine failures. The mean uptime was 50 time units 

and the mean failure period was 2 time units. The periods were exponentially 

distributed. 

Results 

The simulations were done using the simulation software used in [3] and the results 

obtained are shown in Table 7.29. The metric used here is the mean response time. 

The confidence level wa.c:; 95%. Our testing environment was used to conduct this 

I Class II LPAS_DG I Gcp, FCFS 

1 (0.31 , 0.31) (0.26, 0.26) (0.26, 0.26) 
2 (0.32, 0.32) (0.25, 0.26) (0.26, 0.26) 
3 (0.32, 0.32) (0.27, 0.27) (0.27, 0.27) 
4 (0.34, 0.34) (0.26, 0.26) (0.26, 0.26) 

Overall (0.32, 0.32) (0.26, 0.26) (0.26, 0.26) 

Table 7.29: Results of simulation 12 

experiment, and the results are shown in Table 7.30. At the time when the LPAS_DG , 

Gcp, and the FCFS tests were stopped the actual arrival rates of job classes were within 

3%, 3% and 4% respectively of the assumed arrival rates. The LPAS_DG test took 

176 minutes (88 time units), while the Gcp, and FCFS tests took 108 minutes (54 

time units) and 100 minutes (50 time units) respectively. 

Discussion 

The response times in the results of our experiment were significantly higher than the 

simulation results. The reason behind this is the high load coupled with failures and 
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Class II LPAS_DG I Gq.L I FCFS I 
1 0.52 0.37 0.41 
2 0.63 0.38 0.42 
3 0.57 0.38 0.43 
4 0.52 0.38 0.42 

Overall 0.56 0.38 0.42 

Table 7.30: Overall results of experiment 12 

over estimation of the execution rates (the assumed execution rates were higher than 

the actual ones in this experiment). 
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Figure 7.15: Experiment 12 results. 



Chapter 8 

Conclusion 

8.1 Discussion 

8.1.1 Testing Environment 

We believe that the testing environment developed will prove to be very beneficial for 

theorists. Not only can the testing environment be used to test scheduling schemes, 

but the software itself was designed to be extensible in order to include additional 

features. Having such a testing environment allows researchers to do the following: 

• Verify that the scheduling policies designed can be implemented. 

• Validate the scheduling policies. 

• Verify that the assumptions made actually hold and are reasonable. 

• Determine the weak points in a scheduling policy and potentially improve them. 

8.1.2 LPAS_DG implementation 

Modifications 

The LPAS.J)G scheduling policy explained in Section 4.4.6 was implemented for the 

first time in our testing environment. Here we give a few remarks regarding the 
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implementation of this policy. 

The LPAS_DG policy is silent on how to choose a server if there is more than 

one available to serve a job. For simplicity, in our first implementation we chose the 

FCFS policy to choose servers, but this resulted in performance degradation. The 

performance is affected because the scheduling process might be blocked when the 

head of the available servers queue is a server capable of executing a limited number 

of job classes and none of the currently queued jobs belong to any of these classes. 

The FCFS implementation was modified to remove the head of the server queue and 

insert it at the back of the queue, if there are jobs in the jobs queue but this server 

is not able to execute any of them. However, we believe that the performance of the 

LPAS_DG can be further improved by employing a suitable policy to choose servers 

from the available servers queue, especially in the case of a low or medium load on 

the system. We believe that further research must be conducted to come up with 

a suitable policy. However , we recommend the LPAS scheduling policy for clusters 

[4] to be considered as a possible solution, since this policy is suitable for choosing 

servers for jobs in hetewgeneous environments. This modification is not necessary 

but could improve the performance under low or meduim loads. 

The LPAS_DG policy decisions depend on a matrix called 8* which is produced by 

solving a linear programming problem (Section 4.4.6). The 8* matrix depends on the 

values of aj. As a result , in [3] it is suggested that a new 8* matrix must be produced 

at every availability /unavailability event. 

Whenever a machine becomes available or unavailable, the scheduler 

solves the allocation LP to find 8*. 

Since the matrix 8* depends on aj, and the machines' aj varies between the avail­

ability and unavailability events, we think that 8* should be updated every time any 

aj changes. This solution is expensive to implement because it is very hard to notify 

the mapper of every change to any aj. In addition, this will require solving the allo­

cation LP frequently, which is also expensive and will raise a scalability problem. To 

solve this issue, we assumed a time resolution Tsystem (e.g. 10 minutes). The values 



8. Conclusion 93 

of aj are sent to the Mapper periodically which causes it to solve the allocation LP 

once again after receiving the values of aj . The determination of an optimal time 

resolution length is open to research . We believe that this modification is n~c~ssary 

to make LPAS_DG scalable. 

Robust Modifications 

In some experiments the performance of the scheduling schemes differed from the 

simulation results due to the machines experiencing an overload. This happens when 

machines arc highly loaded (at least 80%). The different sources of errors that can 

occur in a real system can significantly raise the load, even potentially causing insta­

bility in the system. These errors can be caused by: 

1. The actual arrival rate being larger than the assumed one. This results 

in receiving more jobs than expected and increasing the load on the machines. 

2. Overestimation of processing rates. This results in executing the jobs in 

more time than expected causing the server to be busier thus the load increases 

on the servers. 

3. Overhead caused by communication and scheduling delays. Assume 

that a server announces its availability at time t 1 , then the mapper learns of the 

availability of this server at time t 2 and consequently performs the scheduling 

and chooses a job at time t3 and then sends the job. The server then receives 

the job and starts the execution at time k At time t 5 the server finishes the 

job execution but only at time t 6 does the mapper learn that the job is done, 

obtaining the results at t7 . In the model, the processing time is considered to 

be t6 - t 5 , but in the actual implementation, there is an overhead of (t5 - t 1 ) + 
(t7- t6) . This overhead is usually negligible, but sometimes it affects the load 

on the system, especially if t6- t5 is small compared to the overhead. 

4. Machine failures. Although machines failure can be incorporated in the work­

load models , they can still increase the effective load due to the fact that it takes 
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time for the mapper to realize that a server is down. This time is wasted and 

effectively increases the load. For example, when using LPAS_DG , suppose that 

server 3 is the only server executing jobs from class 1, and the execution time is 

5 minutes. If server 3 fails when executing a particular job and the "time-out" 

parameter was set to 3 times (i.e. 3 times the estimated execution time should 

elapse before considering the job "timed out") , then the Mapper will not con­

sider server 3 down until 15 minutes have elapsed from the moment that the 

job was sent. These 15 minutes were essentially lost , with arriving jobs from 

class 1 accumulating in the queue at the Mapper within that time. 

If any or all of the above factors cause a significant increase in the load, the 

performance of the scheduling scheme will deteriorate. 

The LPAS_DG policy suffered the most in our experiments from the above factors 

due to the aggressive nature of this policy in minimizing the number of machines to 

execute each job class. Another factor is the exclusivity that can happen when using 

this policy. When one class can be executed by a small number of machines, then 

the performance depends only on these machines, so the eflect of the factors mention 

above is magnified. Contrast this with FCFS, where if a machine under performs , 

the effect is less obvious since this under performing machine can get help from other 

(potentially over performing) machines . Finally, the scheduling delay can contribute 

to the time needed to process jobs, eflectively raising the load on machines for all 

policies. The scheduling delay for LPAS _DG is slightly larger than Gcp, due to the 

overhead of solving the LP, while both policies have a larger delay than the FCFS 

policy due to the delay that occurs when choosing a job, as the LPAS_DG or Gcp, 

policies must check multiple queues to choose the suitable job where the FCFS policy 

has only one queue. The mentioned issues (exclusivity and scheduling delay) cause 

the LPAS_DG policy to be the most sensitive to the above four factors, the Gcp, policy 

to be the next most sensitive and then the FCFS policy (least scheduling delay) is 

the least sensitive. 

After discussing the reasons that can effect the robustness of the LPAS_DG, we 

provide the following suggestions to improve robustness: 
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1. Arrival rates estimation improvement. Since the LPAS_DG scheme de­

pends on solving the LP problem and that in turn depends on values that include 

arrival rates of job classes, estimates should be as close as possible. To do so, 

we propose that the actual arrival rates should be monitored (a feature that our 

tool provides) , and check the values against the estimated values every specific 

time (TarrivaLrate) and resolve the LP if one of the actual values differs from the 

estimated one by a specific threshold percentage (TharrivaLrate) that depends 

on the load and the job class. TarrivaLrate could be a specific time period or a 

number of job arrivals from a class (e.g. 10 jobs). We believe that this solution 

is not computationally costly, since the checking operation requires O(N) time 

and 0(1) space. We expect the number of jobs classes to be relatively small, so 

there should be no scaling issues. 

2. A voiding processing rates underestimation. We propose that every pro­

cessing rate entry (for a specific server for a specific job class) is modified then 

checked (against the estimated peer) whenever a job is done, then the LP is 

resolved if that entry differs from the estimated one by a specific threshold 

percentage (T processing_rate ) that depends on the load and the job class. This 

solution requiresO(N M) space and 0(1) time. 

3. Lessen the affect of communication and scheduling delays. Let Pi,j be 

an estimation of the value 
1///· . t"""t,J (8.1) 

1/u · ·+T· t"""t,J J 

where 1 is the communication and scheduling delay for machine j. 

In the example mentioned in factor 3 on p.93 p would be 

(8.2) 

We propose that all execution rates must be multiplied by p before resolving 

the LP to take this effect into consideration. 
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4. Lessen the machine failure affect. We propose choosing a low value for 

the time out, which will result in allowing the mapper to faster indicate server 

failures. The downside of this approach is that the mapper might consider a 

server failed one when it is not. 

To sum up , we believe that some modifications to the LPAS_DG policy should 

be performed to make it more implementable, some of which have already been done 

in our implementation. We believe that these changes will make the LPAS_DG an 

excellent (possibly the best) solution in heterogeneous environments and a good one 

in other environments. 

8.2 Future Work 

The following areas and software additions are of interest for future wor_k: 

• The implementation of more scheduling polices and the conducting of exper­

iments , in addition to the implementation of more probability distributions. 

Implementing scheduling schemes and testing them is the reason why this soft­

ware was built. 

• Changing the software layer used. This can be useful to allow testers to use 

Windows or Linux computers as servers. This can be done by extending the 

Executer abstract class and implementing its methods properly. This might al­

low the testing environment to expand and allow testers to ask users at home to 

install the Puller module on their machines and therefore allowing experiments 

with a larger number of machines. 

• Adding the feature for reading real workload traces and simulating them. 

• Launching an open source project to maintain the software and expand it. We 

believe that release of the source code and putting the software in the open 

source domain will result in the expansion of this tool. Other research can 

help develop this testing environment and use it. However, we recommend that 
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the open source project should be supervised by a committee to guarantee the 

correctness of the software updates. 

• Finding a suitable policy to choose a server among a set of servers when 

LPAS_DG is used. We believe that this will improve the LPAS_DG perfor­

mance especially in the case where the system is not highly loaded. 

• Finding optimal values of parameters mentioned in Section 8.1.2 . The Tsystem 

value for example, should lessen the communication in the grid system while 

aiding the LPAS_DG policy in producing an updated 6* that will ultimately 

maximize the performance. 
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Appendix A 

Source Code and J avadoc 

Documentation CD 

The accompanying Compact Disc contains the source code of the testing environment 

software and its Javadoc Documentation. 
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Appendix B 

User Manual 

This appendix serves as a user manual for the developed testing environment. In 

order to conduct an experiment , the tester should prepare the machines which will 

serve as servers. After that the tester has to define the parameters of the system, 

then start the test. The tester can then monitor the test and finally read and store 

statistics about the test. The remainder of this chapter discusses these phases. 

B.l Preparation of Servers 

In this phase the execution layer should be prepared. Two steps should be taken at 

every server in order to use the Xgrid execution layer. 

• The Xgrid controller and agent services should be turned on. See Appendix C 

for details. 

• The Puller.jar executable should be running, by executing the following com­

mand: java -jar Puller.jar. The Puller.jar file can be found on the Compact 

Disc of Appendix A. This executable contains the Puller module of the software. 
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Figure B.l: General Screen Shot 

B.2 User Interface 

105 

The User interface of the software is divided into the tool bar (where the most used 

actions have short cuts) , the menu bar (where system fun ctions can be invoked) and 

the main tabs. Each main tab is responsible for one phase of the test or a particular 

functionality and has several sub tabs. The remaining sections discuss these tabs m 

det ail. 
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B.3 Definition Phase 

This phase is done through the main tab labelled Definitions. In this phase the tester 

should define the parameters of the system, including: 

• General Parameters (e.g time units in minutes or scheduling policy to be used) 

• Job classes 

• Servers 

• Server Availability 

B.3.1 General Parameters 

These general parameters are accessed under the main tab Definitions and the sub 

tab General. 

• Time Unit in 1\!Iinutes: this parameter defines the length of the time unit 1used 

in a test in minutes. 

• Mean Time to Repair (MTTR): this parameter defines the mean length of the 

failure periods for all the servers when the artificial failures option is enabled. 

• Mean Time to Failure: this parameter defines the mean length of the up-time 

periods for all the servers when the artificial failures option is enabled. 

• Mapping Scheme: This parameter determines the scheduling policy used in a 

test. 

• Time Resolution: This parameter is Tsystem · Please refer to Section 8.1.2. 

• Artificial Failures and T /0 (Time-out): Artificial failures can be simulated to 

study the effect of failures . This parameter determines whether the artificial 

failures option is enabled or not. 

1 A time unit is a hypothetical time unit used as the unit of all time quantities in the system. 
(e.g. the units of execution rates and arrival rate is task per time unit ) 
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• Time-out: Every job has an estimated execution time. If a server failure occurs 

while executing a job, the completion notification will not reach the mapper. 

The mapper waits for that job to be completed for n times the expected ex­

ecution time, where n is the "Time-out after" parameter. Then the mapper 

invokes the handle TimeOut method of the active scheduling scheme. 

After the user has set all of the parameters , she should click on the Apply button 

(Figure B.l). 

B .3.2 J ob C lasses 

The job classes are defined in this phase. Every job class has an ID, iterations and 

arrival rate. The ID of a job class the number of the column which represents this 

job class in the f.L matrix (Section 3.1) . The iterations of a job class is the mean 

number which the jobs of this class have as iterations (Appendix D). In other words, 

the number of iterations is the number of times the triple loop in Appendix D is 

executed. The iterations number will affect the real execution rates of the machines. 

The arrival rate is the mean number of jobs that. will arrive to the system per time 

unit under an exponential interarrival time distribution. To add a job, click on the 

plus button and fill the iterations and the arrival rate. Then click on the Submit 

button (Figure B.2). The classes will be added in order. To delete a job, select it and 

then click the minus button. 

B.3.3 Servers 

The servers are defined in this phase. There are many ways that this can be done. 

Obviously, the servers to be defined should be the ones set up in the Preparation Of 

Servers phase (B.l). One way of adding servers is to click the plus button and insert 

the information related to the server (Figure B.3). The full canonical hostname should 

be inserted as the hostname. The password of the Xgrid layer should be entered as 

the password. The Iterations and the Processing Time are important parameters. 

Each server should be sent the loop job (Appendix D) to execute a few times, then 
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Figure B.2: Job Classes Screen Sub Tab 

the time required by this server to execute each loop is measured, and the average is 

taken. For example if the machine itb237-0l.cas.mcmaster.ca is to be added to the 

set of servers, the software must know how long it takes this machine to execute the 

loop job for a particular number of iterations. This allows the software to predict the 

actual processing rates for machines. The iterations and time to process in minutes 

arc inserted when a server is desired to be added. The servers will be added in order. 

The ID of a server is its order in the JL matrix (Section 3.1). 

For convenience, a file can be prepared where each line corresponds to one server. 

The file extension should be srs. Each line should be structured in the following 

format (spaces are ignored): 
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hostname ; password ; time to process (minutes) ; iterations 

For example the following are the contents of the file imported before the screen 

shot in Figure B.3 was taken. 

itb237-01. cas.mcm aster. ca; 9ijn8uhb; 1 ; 500 

itb237-04. cas.mcmaster. ca;password4; 0.51 ; 500 

itb237-03. cas. m cm aster. ca; 9ijn8uhb; 1 ; 500 

itb237-05.cas.mcmaster .ca;9ijn8uhb; 1 ; 500 

itb237-07.cas.mcmaster. ca;9-ijn8uhb; 1.0305 ; 500 

itb237-09.cas.mcmaster. ca;9ijn8uhb; 1.045; 500 

To delete a server, it should be selected and then the minus button should be 

clicked. 

Processing Rates 

To modify or view the processing rates of a server, the user should select the 

server by clicking on it. The Processing Rates tab will appear on the right 

side (Figure B.4). The real rates (second column) are those which the software 

estimated using the iterations and the time to process values inserted by the 

tester. The assumed rates (third column) can be changed. It is recommended 

that the tester does not force the server to be more than 4 times faster than the 

real rates (e .g. if the real rate is 4.0, it is recommended that the assumed rate 

is not larger than 16.0). Basically, the Assumed Rate column for a server with 

ID i is the ith column in the J..L matrix. To change an assumed rate, the user has 

to click on the appropriate cell and type a new number then press enter. For 

convenience, the tester can import all of the processing rates of a setting using 

the Import PR button. The file should be a text file with extension mue. The file 

format should be similar to the J..L matrix but entries are separated by commas. 

The following is the content of the mue file used in the LoHi experiments (Chapter 7). 
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Ho5tname macl\int,do-main 

Password :pauword 

Iterations sao 
Pnxt.ning Timt (minutes} 

Figure B.3: Servers Screen Sub Tab 
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1.95, 7.05, 9.78, 0.95, 5.65, 0.56, 11.85, 1.95,7.05,9.78, 0.95,5.65,0.56, 11.85,1.95, 7.05,9.78, 0.95, 5.65,0.56,11.85 

2, 7.25, 10.02, 0.98, 5.75, 0.67, 11 .8, 2, 7.25, 10.02, 0.98, 5.75, 067, 11.8, 2, 7. 25, 10.02, 0.98, 5.75, 0.67, 11.8 

2. 05, 6.75, .9.9.9, 1.02, 5.82. 0.49,12. 05, 2. 05,6.75,.9.99,102,5.82,0.4.9,12.05. 2. 05, 6.75,9.99,1.02, 5.82, 11.4.9, 12. 115 

Failure Periods 

In the case that the artificial failure option is enabled, the artificial failure of a server 

can be viewed by clicking on a server, and then selecting the Failure Periods sub tab 

(Figure B.5) . To generate new failure traces for all of the servers, the button Fill 
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Figure B.4: Servers with processing rates. 

Tmces should be clicked. The actual mean up-time and the mean failure period of a 

server are viewed at the bottom. To change these values for each server individually, 

the user has to change values in the text fields and click on Apply. 

B.3.4 Availability 

Every machine has a puller module running on it. To set up the module a message 

has to be sent to it. In this phase the messages (and hence the settings) of the puller 

modules (i.e servers) are prepared and sent. 

One or more servers are selected from the table on the left (Figure B.6 ), then the 

properties are set in the right side. The properties are: 
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Figure B.5: Servers with failure periods. 
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• Availability IS the ai value (Section 3.2). 

• Period is the time in minutes that ai will be imposed on the selected servers. 

The Period should be longer than the time the tests are to be run for. 

• Availability Mode is what method of availability prediction is used (Section 3.2). 

There are three different modes. Choosing different modes will be followed by 

the inserting of parameters related to that mode. 

After preparing the messages, they can be sent to the servers using the Servers 

menu in the menu bar or the Start Servers button in the toolbar. In addition , the 

servers can be paused, pinged or killed. All of these actions can be found under 
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the Servers menu m the menu bar. After pausing a server it must be started again 

to function properly. Pinging can be used to make sure the server is turned on. 

After killing the server , the puller executable must be run on that server (using 

java- jarpuller.jm·) to restart it, as the kill signal makes the puller.jar process exit. 

McMaster Ctid Schedufing Testing Envin>nrllent 

I About 
r~~~::-urts~~=;~~;;~;:rro~~~,;:;rcr;;~:;s~:=;~rro~~~r•-~-:-----------··~· .. --

·- ···•· ··•·· •· -·-··----··---(~ ' Monitoring St•tistics ~----·· ····-----···-··-······--·- ... ·-···-·········-- ··-·······-·- .•....... , 

no~tn.lme ~er: itb237-0l.caSJncmast.era 
!1b2l7-Cn:cu.mcmaster:'"'CI '-~n""'' """ '<!'·~ ~ ~ 

Avollobility 1.0 llb.:Zl7-04.c.as.mcmaster.ca 
ltb237- 0l,n .unc:master.ca ~00 ~3~2000~~~----
ltb2l7- 0S.cas.mcmuter.ca 

Av.tilability Mode ( RecuAM ! $ kb-237-07.cas...mcma_Ster.c;a 
ltb2"37 -09.cas.mcma.ster .a 

c 

Figure B.6: Availability Screen Sub Tab 

B.3.5 LP 

In this phase the LP allocation can be solved. To solve the LP allocation, the solve 

button should be clicked. The 8* matrix is then displayed. Also, >. * and p* are shown 

as in Figure B.7 (Section 4.4.6). 
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After the completion of the definitions, you can save them to a file usmg the 

Save definitions button. Saved definitions can be restored using the Load definitions 

button. All the information in the definition is saved except for the Scheduling scheme 

chosen which should be determined before every test. 

0.0 
1.0000000000000002 
0.0 

!"''"'" 0.0 
iii 
! ~ 
: c 
: ~ 

0.29770709010568186 0.0 
0.085<Hl802ll 16288 0.0 
0.0 o.o 
0.6166787296829513 1.0 
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0.0 
0 .0 
1.000000000000000< 

Figure B.7: LP Sub Tab 

B.4 Monitoring 

0.0 0.0 
0~ QO 
0.93881461$3459196 1.00,000()000,000<0002 
0.06l18Sl816S4080384 0.0 

After the completion of the definition phase, the experiment can be started by clicking 

on the Start button in the tool bar or Action in the menu bar. Under the Monitoring 

tab, there are two items to monitor: the Jobs Table and the Available Servers. In the 
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Jobs Table sub tab, jobs can be monitored. This table is updated whenever an event 

occurs. Under the Available Servers sub tab , the available servers can be monitored. 

To see the currently available servers, the Update button must be clicked to see the 

changes. 

Figure B.8: Jobs Table 

B.5 Statistics 

To obtain statistics about the tests, the main tab Statistics is used. This main tab 

has three sub tabs: 
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• General sub tab which shows general statistics such as: the start time of the 

test, the time units elapsed and the response time. 

• Job Classes sub tab which shows statistics about each job class. Such statistics 

include the average response time, average waiting time, total number of jobs 

arrived, desired arrival rate and actual arrival rate (Figure B.9). 

• Processing Rates sub tab which shows the J.L matrix and the actual processing 

rates per machine per job class. 

All these statistics can be saved into files. This can be done using the Tables 

menu in the menu bar. A save dialogue appears on the screen. The user can browse 

to the target folder and then type the name of the test (e.g. LPAS). As a result 

four files will be saved (e.g. LPAS_classesStats. txt, LPAS_jobs. txt , LPAS_mue. txt, 

LPAS_systemStats.txt). The four files can be open with spread sheet applications . 

iWork 08 Numbers is recommenoed to process these files. 
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Figure B.9: Job Classes Statistics 
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Figure E.3: Powcr-PC Machine (ith237-01) 
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Figure E.4: lntel-based Machine (itb237-04) 
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