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Abstract 

In this thesis we focus on statistical analysis of electrocardiogram data. These data 

record the electrical activity of the heart muscle. The data used in this thesis were 

provided by Dr. Raimond Wong from Hamilton Regional Cancer Centre (HRCC). The 

number of independent cases is small (6 cases), but each electrocardiogram contains over 

400000 plotting points. Three electrocardiograms came from cancer patients while the 

other 3 came from healthy volunteers. 

We conduct statistical analysis in two stages: extraction of feature vectors and clus

tering analysis of feature vectors. During the first stage, we define 7 statistics that 

capture important features of the electrocardiogram data. Then these 7 features are 

separately used in a univariate way to classify the electrocardiogram data into two 

groups as patients and volunteers. Results show that some of the features can separate 

the electrocardiogram data well, but others can not do the job well. 

During the stage of clustering analysis using the 7 features in a multivariate way, 

we employ three methods of clustering analysis: hierarchical clustering analysis, K

means clustering analysis, and Andrews plot clustering analysis. Results show that 

hierarchical clustering analysis and K-means clustering analysis misclassify one of the 

subjects. Andrews plot clustering analysis however successfully classify all the subjects. 

The first two methods are more objective while the latter requires more judgement. 

Note that the limited number of independent cases available does not support general 

conclusions, but our study suggest some potential for the methods discussed. 
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Chapter 1 

Introduction to Electrocardiogram 

Data 

1.1 Introducing Basics of the Working of the Heart 

The heart has two kinds of principal cells: working cells and specialized neural-like con

ductive cells. The muscle or myocardium of the atria and ventricles are the working 

cells. Specialized neural-like conductive cells include the Sinuatrial (SA) node, the Atri

oventricular (AV) node, the Bundle of His, and the Purkinje fibers (Becker, 2006), which 

are shown in Figure 1.1. 

The blood output of the heart per minute is the paramount cardiovascular event 

required to sustain blood flow throughout the whole body. In addition to blood volume 

and contractile strength, the muscle cells of the heart are linked very closely to one 

another, so that the electrical impulses can easily spread from one cell to the next. Cer-
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Figure 1.1: Specialized neural-like conductive heart tissues and their approximate rates 

(Becker, 2006). 

tain groups of specialized neural-like conductive cells rapidly transmit electrical activity 

through the heart. The electrical activity of the heart muscle can be recorded from the 

body surface, monitored by a device called electrocardiogram (Khorovets, 2000). Elec-

trocardiogram monitoring is regarded as a standard of care during general anesthesia 

and is strongly encouraged when providing deep sedation. 

The electrical activity of the heart muscle comes from the process of "depolarization" 

of the heart muscle cells. The inside of the cardiac muscle cells is negatively charged 

with respect to the outside in its resting state, which is called in "polarized" status. 

When there is a greater concentration of certain charged ions on one side of the cell 

membrane as compared with the other side, the cardiac muscle cells are charged. For 

example, the concentration of potassium ions is much higher inside the cells while the 

concentration of sodium ions is much higher outside. These ions will move in response to 
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stimuli, particularly a rapid inward movement of sodium, and then a rapid loss of internal 

negative potential, which generates electricity. The opposite process of the heart muscle 

cells is called "repolarization". The processes of depolarization and repolarization are 

shown in Figure 1.2 with more details. 

Polaril8d Re8tiag Cell Depolarlzllll Cell 

) I 

Dcpolllrlzecl Coli Repolarlzl~~g Cel 

Figure 1.2: The process of depolarization and repolarization (Becker, 2006). 

In Figure 1.2, the A step means that the resting cell membrane is charged positively 

on the outside and negatively on the inside. The B step tells that positive ions enter the 

cell, reversing this polarity following a stimulus S. The C step tells this process continues 

until the entire cell is depolarized. And the D step means that ions are returned to their 

normal location and the cell repolarizes to its normal resting potential. 

1.2 Recording Electrocardiogram Data 

The first crude electrocardiogram was introduced by a Dutch physiologist, Willem 

Einthoven in 1901. The electrocardiogram records the electrical activity of the heart 

muscle by 3 electrode arrangements, which are known as the primary limb leads I, II, 
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and III. Figure 1.3 gives more details. 

Figure 1.3: Standard limb leads I, II, and III (Becker, 2006). 

In Figure 1.3, G means that electrode lead connects to the ground. Most often, 

lead II is selected as the important data source in research analysis because it generally 

records the largest electronic waves of the heart muscle cells. 

When current electricity flow passes into the positive end of the bipolar (2-sided) 

electrode, it causes a positive deflection, which corresponds to an upward movement 

of the pen on the electrocardiogram paper. When current electricity flow passes away 

from the positive pole of the bipolar electrode, it causes a negative deflection and a 

downward movement of the pen on the electrocardiogram paper instead. A typical 

electrocardiogram is shown in Figure 1.4. 
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Figure 1.4: A standard electrocardiogram record (Khorovets, 2000). 

Figure 1.5 gives more details about the meaning of the segment of waves in an 

electrocardiogram in the processes of depolarization and repolarization of the heart cells. 

~~ 
Phys!~logic Event ECG Evidence 

1. SA node initiates impulse Not visible 

@. 0(b ® 
2. Depolarization ol atrial muscle Pwave 

·~ 
3. Atrial contraction Not visible 

~~ - 4. Depolarization ·(Jt AV node & Common Not visible 
Bundle 

. ) ~ II 5. Repolarization of atrial muscle Not visible 

~ / lr! 6. Depolarization of ventricular muscle QRS complex 

!~ . 7. Contraction of ventricular muscle Not visible 
8. Repolarization 0 ventricular muscle Twave 

~- --
Figure 1.5: Summary of events of a cardiac cycle (Becker, 2006). 

From Figure 1.5, we can see that of the 8 physiologic events listed for a cardiac 

cycle, only 3 are actually observed on the electrocardiogram. The observable events are 

depicted in Figure 1.4. 
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Chapter 2 

Statistical Modeling of 

Electrocardiogram Data 

The main motivation for this thesis is the work of Dr. Raimond Wong and his team 

from the Hamilton Regional Cancer Center (HRCC). In fact, all the electrocardiogram 

data used in this thesis were kindly provided by Dr. Wong. One of the key studies of Dr. 

Wong and his team carried out at the HRRC focused on evaluating heart rate variability 

and its relationship with cancer related fatigue syndrome in gut, breast, and prostate 

cancer patients (Wong, 2004). The cancer patients in radiation therapy may feel tired 

at various times during the therapy, so the whole objective of this research study was 

to find a better way to assess how tired the cancer patients are, by taking and studying 

the electrocardiograms of the patients. In the research study, the electrocardiograms of 

healthy volunteers were also taken to have a basis for comparison with those of cancer 

patients. During recording of the electrocardiograms, the electrodes have been attached 
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to the wires, and they are placed on the subject in the way referred to the Lead II 

position in Chapter 1. Table 2.1 shows more details on the positions of the wires. 

Table 2.1: Positions of the wires in Lead II (Wong, 2004). 

Wire Location 

Positive Left side of the stomach 

Negative Under right collar bone 

Ground Under left collar bone 

In the research study, the electrocardiogram should be taken at a minimum sam

pling rate of 500Hz for at least 5 minutes for the subject as recommended by the Task 

Force of the European Society of Cardiology and the North American Society of Pacing 

and Electrophysiology. So the sampling rate used for all electrocardiograms in Wong's 

research study is 1000Hz with a minimum measuring time of 7.5 minutes, and the elec

trocardiograms were taken with the subjects in a stationary position. 

So our electrocardiogram data (recorded by lead II) are from 3 cancer patients and 

3 healthy volunteers, and the data were taken on a sitting position for every patient and 

healthy volunteer. The sampling frequency is f = 1000Hz. The total test time is almost 

7.5 minutes for every patient and healthy volunteer. 

The main objective of this thesis are twofold: 

• To find out differences between the electrocardiogram data of cancer patients and 
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those for healthy individuals as far as statistical measures is concerned. 

• To develop statistical methods to classify cancer patients and healthy individuals 

based on their electrocardiogram data. 

The main idea is to establish if the electrocardiogram data can be used to predict 

whether an individual is cancer-free or not. As far as we know, there is no such research 

study focusing on this topic of the electrocardiogram data. 

2.1 Original Electrocardiogram Data 

The initial data sets that Dr. Wong produced consisted of the electrocardiograms of 3 

cancer patients and 3 healthy volunteers. Table 2.2 gives some details of the electrocar

diogram data for all the patients and healthy volunteers. 

Typical of electrocardiogram data, the number of points per electrocardiogram is very 

large. Figures 2.1-2.2 display separately for the first 10000 data points of the original 

electrocardiograms for Patient 1, Patient 2, Patient 3 and Volunteer 1, Volunteer 2, 

Volunteer 3 in the same magnitude range. We only plot 10000 points so that the features 

can be seen clearly. 

8 



0 2000 4000 6000 8000 10000 

Index 

0 2000 4000 6000 8000 10000 

Index 

0 2000 4000 6000 8000 10000 

Index 

Figure 2.1: Original electrocardiogram data of Patients. 
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Figure 2.2: Original electrocardiogram data of Volunteers. 
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Table 2.2: Total data time and data points of the electrocardiogram data. 

Total Data Time (Min) Total Data Points 

Patient 1 7.544 452618 

Patient 2 7.647 458810 

Patient 3 7.575 454510 

Volunteer 1 7.544 452618 

Volunteer 2 7.532 451930 

Volunteer 3 7.613 456746 

2.2 Segmenting Electrocardiogram Data 

From a statistical point of view, every electrocardiogram is a curve, i.e., a mathematical 

function. Thus we are dealing with functional data, a type of data that has been the 

focus of intense activity in the last few years (Ramsay and Silverman, 2002). Ramsay and 

Silverman (2005) had also given an excellent overview in the analysis of functional data. 

The curves are continuous but naturally observations (measurements) are only possible 

at discrete (time) points. For instance, the function for Patient 1 was observed at 452618 

points (Table 2.2). As we can notice from Figure 2.1, high and low peak points of varying 

height and diverse speeds of moving up and down are quite apparent. A natural approach 

to understand and analyze this kind of functional data is to start by extracting statistical 

shape features from the curves to form a feature vector. In this section we describe seven 

shape features that are quite noticeable in the electrocardiogram data. 
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Figure 2.3: Segment of electrocardiogram data of Patient 1. 
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Figure 2.4: Higher peak (left) and lower peak (right) of electrocardiogram data of Patient 

1. 
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Figure 2.3 gives an example of breaking the electrocardiogram data of Patient 1 into 

higher peaks (corresponding to QRS wave in Chapter 1) and lower peaks (corresponding 

to P wave and T wave in Chapter 1). We record the cut point ( "cp" in figure) time 

index into a vector P = (p1, P2, P3, p4 , p5 , PB, · · · ) T and also record the maximum point 

("maxp" in figure) time index into a vector M = (m1 , m2 , m3 , m4 , ···f. The higher 

peaks are between Pn and Pn+l : (Pn,Pn+ 1 ), when n is an odd number, and the lower 

peaks are between Pn and Pn+l : (pn, Pn+1 ), when n is an even number. 

Figure 2.4 gives us more details for one example of the higher peak (left) and lower 

peak (right) for the electrocardiogram data of Patient 1. 

Figures 2.5-2.6 give one example of breaking the electrocardiogram data of Volunteer 

1 into higher peaks and lower peaks, and the details for the higher peak (left) and lower 

peak (right) for Volunteer 1. 

L{) 
~ ,, maxp (~ maxp 0 maxp i'> maxp Q) 
Q) 
+-' 
c 
::::J 

0 L{) 

> 0 -0 
Q) 
::::J L{) 
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0 500 1000 1500 2000 2500 3000 3500 

Time 

Figure 2.5: Segment of electrocardiogram data of Volunteer 1. 
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Figure 2.6: Higher peak (left) and lower peak (right) of electrocardiogram data of Vol-

unteer 1. 

We apply the same method to all other electrocardiograms of patients and volunteers. 
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2.3 Statistical Modeling for Electrocardiogram Data 

According to Section 2.2, we decompose the electrocardiogram data of all patients and 

volunteers into two processes: higher peaks and lower peaks. In addition to these most 

noticeable features, we can have more other features which capture the most important 

shape features of an electrocardiogram. 

2.3.1 Univariate Shape Features for Electrocardiogram Data 

Without loss of generality, we continue to use the electrocardiogram data of Patient 1 

as an example. Let Y = (y1 , y2 , y3 , y4 , · · · )T be the data value vector for Patient 1, then 

the following seven important statistical features can be calculated: 

1. Maximum value of higher peak (P2k-I ,P2k): plmk' k = 1, 2, 3, · · · 

2. Rangeofhigherpeak (P2k-I ,P2k): plRHk = Ymk -min(yP2k-l' · ·· ,yP2k), k = 1,2,3,· ·· 

3 . Maximum value of lower peak (P2k,P2k+I) : plmLk = max(yp2k, · · · ,YP2k+l), k = 

1, 2,3, 0 0 0 

4. Range of lower peak (P2k,P2k+I): plRLk = Ymlk - min(yP2k, · · · , Yp2k+! ), k = 1, 2, 3, · · · 

5. Width of higher peak (P2k-I,P2k): plwHk = (P2k- P2k-I)/f, f = 1000hz , k = 

1, 2,3, 0 0 0 

6 . Width of lower peak (P2k , P2k+I): plwLk = (P2k+I - P2k) / f, f = 1000hz, k = 1, 2, 3, · · · 

7. Average value of lower peak (P2k, P2k+I): plAv Lk = (Yp2k +· · ·+Yp2k+! )/ (P2k+l -P2k+ 1) , 

k=l , 2, 3,· · · 

So for the kth segment (p2k - l , p2k+ I) in the electrocardiogram data of Patient 1, we 
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have an corresponding feature vector of seven important statistics: 

Plhtk = (p1mk ,p1RHk ,P1mLk,p1RLk'p1wHk, p1wLk ,p1AvLkf, k = 1, 2, 3, . . . . 

Then the group set of feature vectors: {Pl htk ,k = 1, 2, 3, ···}can be used to represent 

the electrocardiogram data of Patient 1 for further study. We apply the same method 

to all the other electrocardiogram data of patients and volunteers, then we have: 

{P2htk ,k = 1, 2, 3, · · · } (P2htk = (p2mk ,p2RHk.,p2mLk,p2RLk,p2wHk,p2wLk,p2AvLk)T) 

for Patient 2, 

for Patient 3, 

{Vlhtk, k = 1, 2, 3, ... } (Vlhtk 

for Volunteer 1, 

{V2htk ,k = 1, 2, 3, · · ·} (V2htk = (v2mk , v2RHk, V2mLk , v2RLk ' v2wHk ' v2wLk, V2AvLkf) 

for Volunteer 2, 

{V3htk ,k = 1, 2, 3, · · · } (V3htk 

for Volunteer 3. 

The following figures are the boxplots and density plots of the seven statistical fea-

tures for the electrocardiogram data, separately. 
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Figure 2. 7: Boxplot of the maximum value of higher peak. 
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Figure 2.8: Density of the maximum value of higher peak (Solid lines: Patients, Dash 

Lines: Volunteers). 

Figures 2.7-2.8 are the boxplots and pdfs of the maximum of higher peak of the elec-

for Vl, V2, V3, Pl , P2, P3. From Figure 2.7, the center of the boxplots of Vl, V2, 

and V3 are greater than 0.8 (between 1.2 and 1.4 for Vl , between 1.0 and 1.5 for V2, 

between 0.8 and 0.9 for V3), but the center of Pl , P2 and P3 are less than 0.8 (between 

0.3 and 0.4 for Pl , between 0.4 and 0.5 for V2, between 0.7 and 0.8 for V3). Figure 2.8 

(Solid lines: left for Pl , middle for P2, right for P3. Dash lines: high for Vl, middle for 

V3, low for V2) shows t he same property for the pdfs of the maximum of higher peak, 

18 



and the pdfs of patients are more compact (less variance) than the pdfs of volunteers. 
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Figure 2.9: Boxplot of the range value of higher peak. 

Figures 2.9-2.10 are the boxplots and pdfs of the range value of higher peak of 

k = 1, 2, 3, · · · for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see 

that the center of the boxplots of V1 and V2 are around 2.0, and the center of V3 is 

around 1.5, but the center of P1, P2 and P3 are less than 1.5 (between 0.6 and 0.7 for 

P1 , between 0.9 and 1.0 for V2, between 1.0 and 1.5 for V3). Figure 2.10 (Solid lines: 

left for P1, middle for P2, right for P3. Dash lines: high for V1, middle for V3, low for 

V2) shows the same property from the pdfs of the range value of higher peak for V1 , 

V2, V3, P1, P2, P3. The pdfs of P1 , P2, P3 are more compact (less variance) than the 
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Figure 2.10: Density of the range value of higher peak (Solid lines: Patients, Dash Lines: 
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Figure 2.11: Boxplot of the maximum value of lower peak. 

Figures 2.11-2.12 are the boxplots and pdfs of the maximum value of lower peak of 

the electrocardiogram data: { {p1mLk}, {P2mLk}, {p3mLk}, { v 1mLk}, { v2mLk}, { v3mLk}}, 

k = 1, 2, 3, · · · for V1, V2, V3, P1 , P2, P3, respectively. From the boxplots we can see 

that the centers of the boxplots of V1, V3 and P3 are around 0, but the center of P2 

are around 0.2, and the centers of P1 and V2 are around 0.15. Figure 2.12 (Solid lines: 

left for P3, middle for P2, right for Pl. Dash lines: high for V3, middle for V1, low for 

V2) shows the same property from the pdfs of the maximum value of lower peak for V1 , 

V2, V3 , P1 , P2, P3. 
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Figure 2.12: Density of the maximum value of lower peak (Solid lines: Patients, Dash 

Lines: Volunteers). 
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Figure 2.13: Boxplot of the range value of lower peak. 

Figures 2.13-2.14 are the boxplots and pdfs of the range value of lower peak of the 

1, 2, 3, · · · for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see that 

the centers of the boxplot of V2 is around 0.8, and the center of all other boxplots of V1, 

V3, P1, P2, P3 are around 0.5. Figure 2.14 (Dash lines: left for V3, middle for V1, right 

for V2. Solid lines: high for P2, middle for P1, low for P3) shows the same property 

from the pdfs of the range value of lower peak for V1, V2, V3, P1, P2 , P3 . 
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Figure 2.14: Density of the range value of lower peak (Solid lines: Patients, Dash Lines: 

Volunteers). 
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Figure 2.15: Boxplot of the width of higher peak. 

Figures 2.15-2 .16 are the boxplots and pdfs of the width of higer peak of the elec-

1, 2, 3, · · · for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see that 

the centers of the boxplots of V2, and V3 are around 80, the center of V1 is around 60. 

But the center of P1, P2 and P3 are around 70. In Figure 2.16 (Dash lines: high for V2 , 

middle for V1 , low for V3. Solid lines: high for P1, middle for P2, low for P3) , we can 

also see the same pattern from the pdfs of the width of higher peak for V1 , V2, V3, P1, 

P2, P3. 
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Figure 2.16: Density of the width of higher peak (Solid lines: Patients , Dash Lines: 

Volunteers). 
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Figure 2.17: Boxplot of the width of lower peak. 

Figures 2.17-2.18 are the boxplots and pdfs of the width of lower peak of the elec-

1, 2, 3, · · · for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see 

that the centers of the boxplots of V2, V3, P1 , P2, P3 are all around 750, but the center 

of the boxplot of V1 is around 650. In Figure 2.18 (Dash lines: high for V1, middle for 

V2, low for V3. Solid lines: high for P2 , middle for P3, low for P1) , we can also see the 

same pattern from the pdfs of the width of lower peak for V1, V2, V3, P1 , P2, P3. 
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Figure 2.18: Density of the width of lower peak (Solid lines: Patients, Dash Lines: 

Volunteers). 
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Figure 2.19: Boxplot of the mean value of lower peak. 

Figures 2.19-2.20 are the boxplots and pdfs of the mean value of lower peak of the elec-

1, 2, 3, · · · for V1 , V2, V3, P1, P2, P3, respectively. From the boxplots we can see that 

the centers of the boxplots of V1, V2, V3, P2, P3 are all around -0.2, except that the 

center of the boxplot for P1 is around 0. In Figure 2.20 (Dash lines: high for V3, middle 

for V1, low for V2. Solid lines: high for P1 , middle for P2, low for P3), we can also see 

the same pattern from the pdfs of the mean value of lower peak for V1, V2, V3 , P1 , P2, 

P3. 

According to Section 2.2 , given the time position vector of the maximum of higher 

peaks: M = (m1, m2 , m3 , m4 , · · · f, we also consider its position variation vector: 
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Figure 2.20: Density of the mean value of lower peak (Solid lines: Patients , Dash Lines: 

Volunteers). 
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Figure 2.21: Boxplot of position variation vector of maximum. 

VM = (vm1 , vm2 , vm3, · · · )T (vmi = mi+1 - mi, i = 1, 2, 3, · · ·) for all the electro-

cardiogram data of V1, V2, V3, P1 , P2 and P3. 

Figures 2.21-2.22 are the boxplots and pdfs of position variation vector of the electro-

cardiogram data: VM = (vm1 , vm2 , vm3 , · · · f for V1, V2, V3, P1, P2, P3, respectively. 

In Figure 2.27 (Dash lines: high for V1, middle for V2, low for V3. Solid lines: high for 

P2, middle for P3, low for P1), we can see that the pdfs of position variation vector for 

P1, P2 and P3 are much more compact (less variance) than that of V1, V2, and V3 . In 

Figure 2.22, the centers of the boxplots of Vl , V2, V3, P1, P2, P3 are almost the same 

around 800. 
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Figure 2.22: Density of position variation vector of maximum (Solid lines: Patients , 

Dash Lines: Volunteers). 
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2.3.2 Feature Vectors for Electrocardiogram Data 

Consider now the means of each univariate feature discussed in Section 2.3.1. Specifically, 

for each subject consider the following 7 statistics, 

M H : mean value of maximum value of higher peak, 

RH : mean value of range of higher peak, 

M L : mean value of maximum value of lower peak, 

RL : mean value of range of lower peak, 

W H: mean value of width of higher peak, 

W L : mean value of width of lower peak, 

AV L : mean value of average value of lower peak. 

Then for each subject define YC as the 7-component feature vector with these statis-

tics, 

- ---------------r YC- (MH,RH ,ML,RL, WH, WL,AVL) . 

For the electrocardiogram data of patients and volunteers, the feature vectors will 

Table 2.3 gives the value of all the seven feature vectors of the electrocardiogram 

data for all the patients and volunteers. 
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Table 2.3: The feature vectors for electrocardiogram data of the patients and volunteers. 

MH RH ML RL WH WL AVL 

V1 1.3213 1.9370 -0.0014 0.6143 0.05780 0.6094 -0.2848 

V2 1.3145 1.8893 0.2416 0.8159 0.0857 0.7516 -0.2239 

V3 0.8774 1.3201 0.0155 0.4581 0.0771 0.8111 -0.2764 

P1 0.3529 0.6675 0.2167 0.5313 0.0751 0.8014 -0.0032 

P2 0.4571 0.9216 0.1348 0.5993 0.0715 0.7168 -0.2434 

P3 0.7563 1.2883 0.0539 0.5859 0.0651 0.7413 -0.2495 

2.3.3 Comparing Univariate Shape Features of Electrocardio

gram Data 

In this section, We compare the electrocardiogram of patients and volunteers through 

each of 7 components in the feature vectors. 

Figure 2.23 displays the mean of the maximum value of the higher peak and lower 

peak between the two group of volunteers and patients. We can see that volunteers and 

patients separate well in the first case. However, there is no separation in the second 

case. In fact, they almost overlap each other on the first point, although they separate 

well in the second and third point. 
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Figure 2.23: Mean of the maximum value of the higher peak (left) and lower peak (right) 

(Triangle: Volunteer, Circle: Patient). 

35 



-"" 
<!l 

q Q) q 
N c. ..,. 

~ 
0 

...J '"1 01 
c: (Y') 

-"" '"1 -"" '"1 <!l 1/1 <!l <!l 
~ Q) Q) ...... 

v c. c. -"" q 
:u .... <!l 

(Y') 

............ ~ .......... "'P3 ~ 
Q) 

.c e-01 .Q Q) 
E q 0 q 01 

'"1 0 .c 
...... Q) ...... I N 

Q) 01 \>1 Q) 
01 c: 

~ 
01 

-~ c: <!l c: 
~ .... <!l 0 

c: c: a:: N / 
/ 

<!l .Q 
////' 

<!l 1,[) Q) '"1 Q) 0 E 
. 

10 E 0 pI .... 
'v'J Q) '"1 / 01 

c: ...... _ _..,... p .... 
<!l ~-------· -a:: pI q q c: q 

0 0 <!l ...... Q) 

E 
1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 2.0 3.0 4.0 

Figure 2.24: Mean of the range of the higher peak (left) and lower peak (middle) , and 

their ratio (right) (Triangle: Volunteer , Circle: Patient). 

Figure 2.24 displays the mean of the range of the higher peak and lower peak for 

volunteers and patients, also displays the ratio of the mean of the higher peak over the 

mean of the range of the lower peak for volunteers and patients. We can see that the 

two groups of volunteers and patients are separate well in the first case, but they are 

across each other in the second case. The two groups of volunteers and patients separate 

well in the third case. 
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Figure 2.25: Mean of the time interval of the higher peak (left) and lower peak (middle), 

and their summation (right) (Triangle: Volunteer, Circle: Patient). 
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Figure 2.25 displays the mean of the time interval of the higher peak and lower peak 

for the volunteers and patients, also the sum of the mean of the higher peak and the 

mean of the range of the lower peak for volunteers and patients. We can see that the 

two groups of volunteers and patients are across each other in all the three cases. 
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Figure 2.26: Mean of the original value of the lower peak (Triangle: Volunteer, Circle: 

Patient). 

Figure 2.26 displays the mean of the original points value of the lower peak for 

volunteers and patients. We can see that the two groups of volunteers and patients 

separate well in this case. 
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Chapter 3 

Clustering Analysis of 

Electrocardiogram Data 

3.1 Hierarchical Clustering Analysis 

Cluster analysis aims to group multivariate observations into subsets of similar charac

teristics. Traditionally, this has been accomplished through a similarity measure such 

as a distance to establish when two observations are close or far apart. 

The hierarchical clustering (Johnson, 1967) is a natural and simple unsupervised 

clustering algorithm. Given a group of N data vectors {XI , X 2, x 3, 0 0 0 ' XN} to be clus

tered, and anN *N distance matrix D~)={IIX;- Xjll, i, j E {1 , 2, .. · , N}} (II X ; - X jll 

is the distance measure between data vector X ; and data vector X J), the basic process 

of this hierarchical clustering algorithm is the following: 

1. Assign each vector in { X 1 , X2 , X 3 , · · · , X,v} to a cluster with each cluster contain-
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ing just one data vector. Let { A~o), A~o), A~o), · · · , A~)} be the set of clusters. Calculate 

theN* N distance matrix D~) ={IIA;o)- Aj0lll, i,j E {1, 2, · · · , N}} (IIA~o)- Aj0lll is 

the distance measure between cluster A;o) and cluster Aj0)). In the case of initial step, 

D
(O) - D(O) 
A- X· 

2. Find the closest pair of clusters according to theN *N distance matrix D~) ={II A~o) - Aj0 ) II, 

i, j E {1, 2, · · · , N}} and merge them into a single cluster, then the number of clusters 

. { } { (1) (1) (1) (1) } m X1, x2, x3, ... , XN reduces toN- 1 clusters: A1 , A2 , A3 , ... , AN-1 . 

3. Compute the (N -1) * (N -1) distance matrix D~)={IIA?) -Aj1lll , i,j E 

{1, 2, · · · , N -1}} (II A?) - Aj1l II is the distance measure between cluster A;
1
) and cluster 

AY)) for theN -1 clusters: {A~1),A~1l,A~1 l, · · · ,A~~ 1 } . 

4. Repeat steps 2 and 3 until all data vectors { x1, x2, x3, ... , X N} are clustered 

into a single cluster of size N. 

In step 3 of the algorithm, if the distance between one cluster and another cluster 

IIA~ 1 ) - Ajl) II is equal to the shortest distance from any member of cluster A;1) to any 

member of the other cluster Ajl), we say that it is single-linkage hierarchical clustering. 

Alternatively, in step 3 of the algorithm, if the distance jjA~ 1 ) - AY) II between one 

cluster and another cluster is equal to the greatest distance from any member of one 

cluster A;1) to any member of the other cluster Aj1l, then it is called complete-linkage 

hierarchical clustering. 

Also, in step 3 of the algorithm, if the distance IIAF) - Aj1l II between one cluster 

and another cluster is equal to the distance from the centroid c Plof one cluster A~ 1 l to 

the centroid c;l) of the other cluster Aj1l, then it is called centroid-linkage hierarchical 
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clustering. 

In clustering the six feature vectors: {YCpl • YCpz , YCp3, YCvl, YCvz, YCv3 } for 

the electrocardiogram data of patients and volunteers, we use centroid-linkage hierar-

chical clustering in step 3. The distance measure II c?) - c~l) II in the centroid-linkage 

hierarchical clustering method is Euclid distance measure, and the centroid C~l) of clus-

ter A~ 1 ) is calculated as the average of the data vectors in the corresponding ith cluster 

partition A?): 

where Ni denotes the number of data vectors in A?) and Xj1
) E A?), j = 1, · · · , Ni. 

Table 3.1: Hierarchical clustering process for electrocardiogram data. 

Cluster Partitions 

Initial {YCpl} , {YCpz} , {YCp3}. {YCvl }, {YCvz}, {YCv3} 

1st step {YCp1 }, {YCpz }, {YCvd, {YCvz}, {YCp3, YCv3 } 

2nd step {YCvd, {YCvz}, {YCp3, YCv3 }, {YCp1 , YCpz } 

3rd step {YCp3, YCv3}, {YCpt , YCP2}, {YCvl• YCvz } 

4th step {YCp3, YCv3, YCpl, YCp2 }, {YCvl , YCvz } 

5th step {YCp3, YCv3, YCpt, YCp2 , YCvl, YCvz } 

Table 3. 1 displays the process of hierarchical clustering. Figure 3.1 gives more de-

tails in the visualized sense for centroid-linkage hierarchical clustering for the six feature 
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vectors: {YCpl, YCp2, YCp3, YCvl , YCv2, YCv3} for the electrocardiogram data of pa-

tients and volunteers. 

I I 
Vl V2 V3 P3 Pl P2 

Figure 3.1: Hierarchical clustering tree for electrocardiogram data. 

From Table 3.1 and Figure 3.1 we can see that the feature vectors for V1 and V2 

are close to each other, the feature vectors for V3 and P3 are close to each other, and 

the feature vectors for P1 and P2 are close to each other. We know that all the six 

electrocardiogram data come from two clusters: patients and volunteers. From Figure 

3.1 of centroid-linkage hierarchical clustering, we can see that P1, P2 , P3, V3 are in one 

cluser, and V1, V2 are in the other cluster. 

3.2 K-means Clustering Analysis 

Another solution to the well-known clustering problem is provided by the K-means 

clustering method (MacQueen, 1967), which has been established as a good and sim-

ple unsupervised learning algorithm. We wi8h to classify a group of N data vectors 
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{XI, x2, x3, ... 'XN} into a certain number of clusters (assume K clusters, which is 

known a priori) with cluster centroids {C1,C2 , C3 ,··· , CK}· Initially, we should give 

K centroids: {Cinit , C~nit, c~nit , · · · , C~it} , one for each cluster. The next step is to take 

each data vector in {XI, X 2 , X 3 , • • • , XN} and associate it to the nearest centroid in the 

centroid sets: {Cinit, c~nit, C~nit, · · · , C~it}. The ith (i = 1, · · · , K) cluster partition is 

{X~i), · · · , X~}, where Ni is the number of data vectors in ith cluster partition. We 

also have the simple relationship: NI + · · · + NK = N. Then according to the new K 

clusters partition, we recalculate the new K centroids: {cnew cnew cnew . . . cnew} 
I ' 2 ' 3 ' ' K · 

After we get the new K centroids· {cnew cnew cnew · · · cnew} we repeat the process 
· I ' 2 ' 3 ' ' K ' 

of taking each data vector in {XI, X 2, X 3, • • · , XN} and associate it to the nearest cen-

troid in {C~ew, c~ew, CJ'ew, · · · , c~w} and recalculate the new K centroids again. As a 

result of this loop we will notice that the K centroids change their location step by step 

until no more changes are done, then we say that data vectors {XI, X 2 , X 3 , · • • , XN} 

are classified into K clusters. 

In general, the K-means clustering method is actually used to minimize the square 

error function of the classification, which is called the objective function: 

where llxY)- cill is a chosen distance measure between the data vector xy) and its 

cluster center vector Ci. We can see that the objective function is a measure of the 

distance of all the N data vectors {XI, x2 , x 3, ... 'XN} from their respective cluster 
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centroids {CI, C2, C3, · · · , Cg }. From the recursive procedure of K-means clustering 

method, we know that we will reduce the value of the objective function J when we get 

the new K centroids· {cnew cnew cnew · · · cnew } and we also know that J > 0 So · I>2>3> >K' - · 

if good initial K centroids {Cinit cinit cinit · · · cinit} are given (Bradley and Fayyad I > 2 > 3 > > K > 

1998), then the K-means clustering algorithm will converge in finite steps. A safe choice 

is to place the initial K centroids {Cinit c init c init · · · cinit } as far away as possible I > 2 > 3 > > K 

from each other. 

The algorithm is composed of the following steps: 

1. Place K initial centroids { c~nit, c~nit, c ;nit, · · · , C~it} into the space represented 

by the data vectors that are being clustered {XI' x2, x3, ... ' XN }. 

2. Assign each data vector in {XI, X2, x3 , ... 'XN} to the cluster partition that has 

the closest centroid in {cinit c init cinit . . . c init} 
I > 2 > 3 > ' K · 

3. When all data vectors in {XI' x2, x 3, ... ' XN} have been assigned, recalculate 

the new K centroids {cnew cnew cnew . . . c new} I>2 >3> >f(. 

4. Repeat Steps 2 and 3 until the centroids no longer move or the value of the objective 

function J is less than some preset valve E. 

The distance measure llx;i)- cill for the K-means clustering method is Euclid 

distance measure, and the new K centroids { C?ew, c~ew, c~ew, · · · , CK'w} are calcu-

lated as the average center of the corresponding ith (i = 1, · · · , K) cluster partition 

{x(il ... x (i) }· 
I > > N; · 
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N· 

cnew = ~ ~ x<n i = 1, ... 'K. 
t N · ~ J ' 

t j=l 

Table 3.2: Results for the process of K-means clustering for the electrocardiogram data. 

Initial C 10 =(0.5 , 0.9 , 0.1, 0.6 , 0.03, 0.7, -0.1) C20 =(0.2, 0.6, 0.2, 0.5, 0.01 , 0.90) 

step 

1st step Cluster 1={V1, V2, V3, P1, P3} 

C 11 =(0.945, 1.47, 0.09, 0.615, 0.07, 0.726, -0.256) 

Cluster 2={P2} 

c21 =(0.353, o.667, 0.211, o.531 , o.o751, o.801, -o.oo3) 

2nd step Cluster 1={V1, V2, V3, P3} 

c12= (1.068, 1.609, o.o77, o.619, o.o714, o.728, -0.259) 

Cluster 2={P1, P2} 

c22=(0.405, o. 795, 0.176, o.565 , o.o73, o. 759, -0.123) 

3rd step Cluster 1={V1, V2, V3, P3} 

c13= (1.068, 1.609, o.on, o.619, o.o714, o.728, -0.259) 

Cluster 2={P1, P2} 

c23=(0.405, o.795, 0.176, o.565 , o.073, o.759, -0.123) 

According to Section 2.3, for the electrocardiogram data, our objective is equivalent 

to classify a group of 6 feature data vectors {YCp1 , YCp2, YCp3 , YCvl , YCv2, YCv3 } 

into two clusters with cluster centroids {C1 , C 2 }. Table 3.2 shows the process of the K-
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means clustering algorithm for the electrocardiogram data. The clusters and centroids 

are given in every recursive step in the K-means clustering algorithm. The K-means 

algorithm stops at the 3rd step, as the centroids do not move anymore. 
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Figure 3.2: K-means clustering for electrocardiogram data. 

Figure 3.2 gives more details in a visualized manner. The mean value of range of 

lower peak is used as the x-coordinate, and the mean value of range of higher peak is 

used as the y-coordinate for the figure. The triangle points represent the feature vectors 

of the electrocardiogram data for healthy volunteers: Vl, V2, V3. The circle points 
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represent the feature vectors for patients: P1, P2, P3. The square points represent the 

centroids in every recursive step of the K-means clustering algorithm. And the arrows 

show the direction from one step to the next step in the process of K-means clustering. 

The straight line in the middle of the figure is the final separation of the 6 feature vectors 

into two clusters. 

From Figure 3.2 of K-means clustering method for the case of electrocardiogram data 

of patients and volunteers, we can see that V1 , V2, V3 and P3 are in one cluster, and 

P1, P2 are in the other cluster. 

3.3 Andrews-Plot Clustering Analysis 

Plotting has been one of the most useful statistical tools in data analysis, especially in 

exploratory data analysis of high-dimensional data. It is well-known that the plotting 

of residuals is a reliable way to test the adequacy of a model fitting, and distributional 

assumptions are frequently based on probability plots. Some plotting techniques such as 

Trellis plots and parallel coordinate plots were found in Wegman and Carr (1993) and 

Wegman et al. (1993). But Andrews plot introduce by Andrewss (1972) stands out, 

as it is supported by solid mathematical justification and has the desirable property of 

preserving means, distances and variances of the original vector data. Embrechts and 

Herzberg (1991) introduced other orthogonal functions such as Chebychev polynomials 

and Legendre polynomials into Andrews plot and they show their good performance in 

clustering the Iris Data (Fisher , 1936). Wavelets were also introduced into Andrews plot 
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by Embrechts et al. (1995). Khattree and Naik (2002) provided other trigonometric 

functions for Andrews plot. 

3.3.1 Clustering Analysis Using the First Andrews Plot Func-

tion 

Given a data vector Y = (y1 , y2 , y3 , · · • f, the Andrews-Plot function for Y is: 

The Andrews-Plot function has many desirable properties relevant to the clustering 

analysis for multivariate data, especially for high-dimensional data. 

1. Andrews plot function preserves means of the data 

Let Y be the mean of a group data vectors {Y1 , Y 2 , Y 3 , · · · , Y N } , then it is obvious 

that: 

1 N 
Ay-(t) = N L Ayi(t), 

i=l 

which means that the Andrews plot of the average vector Y is the same as the average 

of the Andrews plots for all the original data vectors: {Y1 , Y 2 , Y 3 , · · · Y N }. 

2. Andrews plot function preserves distances of the data 

Assume we have two N-dimensional data vectors: Y = (y1,y2 , y3 , · · · , yN)T and 

X = (x1, x2, X3, · · · , XN f. IIX- Yll is the Euclidean distance between them. We define 

the distance between the Andrews plot functions of X and Y as the following: 
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Moreover, we can see from the following that this distance is proportional to the 

Euclidean distance IIX- Yll. 

IIAx(t)- Ay(t)ll£
2 

= j:_1f (Ax(t)- Ay(t))2dt 

= Hx1- Y1)
2 j:_1f ldt + (x2- Y2)

2 j:_1f (sint)2dt + (x3- y3)
2 J:.1f (cost) 2dt + · · · 

N 

= 1r 2:::: (xi - Yi) 2 

i=l 

The last equality comes from J:.1f ldt = 21r , and J:.1f (sint) 2 dt = J:.1f (cost) 2dt = 1r. 

So we can say that if the original data vectors X and Y are close in the vector space, 

then the Andrews plot functions Ax(t) and Ay(t) will still stay close. Then clusters 

and outliers in the original data vectors can be identified visually from the respective 

Andrews plot functions. 

3. Andrews plot function preserves variance of the data 

Assume we have a data vector: Y = (y1, y2 , y3, · · · , YN f, and {y1, y2, y3, · · · , YN} are 

uncorrelated random variables with common variance 0"2 . 

We have var(Ay(t)) = 0"2 (1/2 + (sint) 2 + (cost) 2 + (sin2t) 2 + (cos2t) 2 +···).Thus 

when N is odd, var(Ay(t)) = ~N0"2 , and when N is even, var(Ay(t)) = ~(N- 1 + 

2sin2 (Nt/2))0"2 . And we have the following relationship, 
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In the first case (when N is odd) the variance does not depend on t and in the second 

case (when N is even) the relative dependence on t is small and it decreases when N 

increases. Thus, the variability of Andrews plot function is almost constant across the 

graph. 

4. The Andrews plot function produces one-dimensional projections 

Given a data vector: Y = (y1, Y2, y3, · · · f and its Andrews plot function Av(t) = 

Y1 / v'2 + Y2 sin t + Y3 cos t + Y4 sin 2t + Y5 cos 2t + · · · , and a particular value of t = to , we 

have the following, 

A ( ) yT A(to) AT( )A( ) 
Y to = AT (to) A (to) to to ' 

where A(t0 ) = (1/v'2,sint0 ,cost0 ,sin2t0 ,cos2t0 , · · · f , yT and AT(t0 ) are the trans

pose of Y and A(t0), respectively. As we know that Ai"~~~(;o) is the length of the 

projection ofY on the vector A(t0 ) , and AT(t0 )A(t0 ) is a constant, so Av(t0 ) is propor-

tional to the length of the projection ofY on the vector A(t0). Hence, clusterings, outlier 

pattern, or other peculiarities may be revealed in the projection on this one-dimensional 

space more clearly. The advantage of Andrews plot is that we plot a continuum of many 

such nice one-dimensional projections on the graph. 

Figure 3.3 displays Andrews plots using formula (3.1) for the six feature data vectors 

{YCpl, YCp2, YCp3 , YCvl, YCv2, YCv3} of the electrocardiogram data. 
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Figure 3.3: Andrews plot using formula (3.1) for electrocardiogram data for all volunteers 

and patients (Dashed Lines: Volunteer, Solid Lines: Patient). 
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It can be seen from Figure 3.3 that at time point T3 , the most top dashed line 

represents the Andrews plot for V2, and the next top dashed line represents the Andrews 

plot for Vl, and the lowest dashed line represents the Andrews plot for V3, and the most 

top solid line represents the Andrews plot for P3, and the next solid line represents the 

Andrews plot for P2, and the lowest solid line represents the Andrews plot for Pl. 

Figure 3.3 reveals that the Andrews plots of Vl and V2 are close to each other and show 

a similar pattern, the Andrews plots of Pl and P2 are close to each other and show also 

a similar pattern. The Andrews plots of Vl and V2 are bellow the Andrews plots of Pl 

and P2 between T1 and T2 , but the Andrews plots of Vl and V2 are top on the Andrews 

plots of Pl and P2 on all other slots. So it is easy to see that Vl and V2 are in one 

cluster, and Pl and P2 are in another cluster. As for the Andrews plots of V3 and P3, 

they are very close to each other, and they even coincide between T2 and T4 . We can 

also see that the Andrews plots of V3 and P3 always stay in the middle of the plots of 

Vl and V2 and the plots of Pl and P2. But at time T1 , we can see that all the three 

solid lines of Pl, P2, P3 pass through the same point, and at time T4 , we can see that 

all the three dashed lines of Vl, V2, and V3 are very close to each other, separated from 

the solid lines of Pl , P2, and P3. So we conclude from the above Andrews plots using 

formula (3.1) to classifying the 6 data vectors {YCp1, YCp2, YCpa, YCvl, YCv2, YCva} 

that Vl, V2, V3 are in the same cluster, Pl, P2 and P3 are in the same cluster. 
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3.3.2 Clustering Analysis Using the Second Andrews Plot Func-

tion 

Unfortunately, all even numbered terms in the Andrews plot function (3.1) will simul-

taneously vanish when t = 0, thereby only the features of the odd number terms are 

present on the graph. It is also similar for all odd numbered terms when t is a multiple of 

1r /2. Khattree and Naik (2002) provided another trigonometric functions so that many 

of these terms do not simultaneously vanish at any given t, as they do for the Fourier 

series in the original Andrews plot function. 

Given a data vector Y = (YI. y2 , y3 , · • · f , then a second Andrews plot function for 

the data vector Y has been proposed and is given by: 

1 
By(t) = yl2(y1 +y2(sint+cost)+y3(sint-cost)+y4 (sin2t+cos2t)+· · · ), -1r ~ t ~ 1r. 

(3.2) 

Note that the addition and substraction of terms of functions sin(jt) and cos(jt) 

result in every element in the high-dimensional data vector Y being exposed to a sine 

function as well as a cosine function. Then the new Andrews plot function will be more 

informative from a statistical point of view. Also, unlike (3.1) the trigonometric terms in 

(3.2) do not simultaneously vanish at any given t. Furthermore, Andrews plot function 

(3 .2) preserves all the desirable properties of Andrews plot function (3.1) , which were 

shown in Section 3.3.1. 

Figure 3.4 displays the Andrews plots using formula (3.2) for the six feature data 

53 



vectors {YCp1, YCp2, YCpa, YCvl, YCv2, YCv:3 } of the electrocardiogram data . 
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Figure 3.4: Andrews plot using formula (3.2) for electrocardiogram data for all volunteers 

and patients (Dashed Lines: Volunteer, Solid Lines: Patient). 

It can be seen from Figure 3.4 that at tiine point T2 , the most top dashed line 

represents the Andrews plot for V2, and the next top dashed line represents the plot 

for Vl, and the lowest dashed line represents the plot for V3. The most top solid line 
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represents the Andrews plot for P3, and the next top solid line represents the plot for 

P2, and the lowest solid line represents the plot for Pl. From Figure 3.4, we can see 

that the Andrews plots of Vl and V2 are much closer to each other and show similar 

pattern, the plots of Pl and P2 are much closer to each other and show a similar pattern, 

compared to the figure of Andrews plot using formula (3.1) . The Andrews plots of Vl 

and V2 are below the plots of Pl and P2 before T1 , but the Andrews plots of Vl and 

V2 are always top on the plots of Pl and P2 on all other slots. So it is clear that Vl 

and V2 are in one cluster, and Pl and P2 are in another cluster. As for the Andrews 

plots of V3 and P3, they are very close to each other, and even coincide between T1 and 

T2 . We can also see that the Andrews plots of V3 and P3 always stay in the middle 

of the plots of Vl and V2 and the plots of Pl and P2. But at points around T3 , we 

can see that all the three dashed lines of Vl , V2, and V3 are very close to each other , 

all the three solid lines of Pl , P2, and P3 are very close to each other, and the two 

groups of solid lines and dashed lines are well separated from each other. So we can 

conclude from the above Andrews plots using formula (3.2) for 6 feature data vectors 

{YCpl , YCp2, YCp3 , YCvl, YCv2, YCv3} that Vl , V2, V3 are in one cluster , and Pl , 

P2 and P3 are in another cluster. 
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Chapter 4 

Conclusions and Future Study 

4.1 Extracting Statistical Features for Electrocar

diogram Data 

This thesis focuses on the statistical analysis of electrocardiogram data, a type of data 

that tend to be of very high dimension. In Section 2.3 we defined seven statistics that 

capture interesting features of the electrocardiogram data: maximum value of higher 

peak, range of higher peak, maximum value of lower peak, range of lower peak, width of 

higher peak, width of lower peak, average value of lower peak, separately. The aim was 

to study these features in their own right and to use them to classify the subjects. The 

methods discussed were illustrated on a small but revealing set of 6 electrocardiograms: 

3 of them come from cancer patients while the other 3 come from healthy volunteers. 

From the discussion in Section 2.3, we can see that some statistical features , when used 
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individually, such as maximum value of higher peak, range of higher peak, ratio of range 

of higher peak over range of lower peak, average value of lower peak can separate the 

electrocardiogram data well into two groups as patients and volunteers. But unfortu

nately, other statistical features such as maximum value of lower peak, range of lower 

peak, width of higher peak, width of lower peak and variation of position of maximum 

are much less effective in clustering the electrocardiogram data correctly into the two 

groups as patients and volunteers. 

4.2 Multivariate Classification Using Feature Vee-

tors 

We then used the feature vectors in a multivariate way to perform the classification. We 

put all the seven import statistical features into a feature vector to represent the electro

cardiogram data of all patients and volunteers: {YCpl> YCp2 , YCp3 , YCv1, YCv2, YCv3}· 

Then several clustering analysis methods were applied on these six feature vectors . In 

Section 3.1 on hierarchical clustering analysis, YCv1 for Vl and YCv2 for V2 are close to 

each other , YCv3 for V3 and YCp3 for P3 are close to each other, and YCp1 for Pl and 

YCP2 for P2 are close to each other. And according to the results from centroid-linkage 

hierarchical clustering, YCpl> YCp2, YCp3 , YCv3 are in one group, and YCvl , YCv2 

are in the other group. In Section 3.2 on K-means clustering analysis for the six feature 

vectors: YCv1 for Vl , YCv2 for V2, YCv3 for V3 and YCp3 for P3 are in one cluster , 
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and YCp1 for Pl, YCp2 for P2 are in another cluster. But we can also see that V3 and 

P3 are very close to each other either in Euclidean distance of feature vectors: YCv3 

and YCP3 in the hierarchical clustering analysis , or in the pattern and magnitude of the 

original data plot for P3 and V3 in Section 2.1. The possible reason may be that cancer 

patient P3 is in his/her early stage of cancer and the strength of his/her heart is a little 

bit weaker than the normal healthy person, or volunteer V3 has no cancer, but he/she is 

only a little bit weak in the strength of the heart. So inK-means clustering analysis, V3 

and P3 are partitioned into Vl and V2's group, but in hierarchical clustering, V3 and 

P3 are partitioned into Pl and P2's group. Also the clustering methods of hierarchical 

clustering analysis and K-means clustering analysis do not find substantive differences 

to separate V3 and P3. 

As discussed in Section 3.3, Andrews plot has solid mathematical justification and 

has desirable properties such as preserving means, distances and variance of the original 

vector data. Clusterings, outlier pattern, or other peculiarities in the original space 

may be revealed in the projection to one-dimensional space more clearly, which may be 

otherwise obscured in higher dimensions. In Section 3.3 on the Andrews plot clustering 

analysis, the method resolves the difficulty found by the hierarchical clustering analysis 

and K-means clustering analysis in separating V3 and P3. In fact, the Andrews plots 

using formula (3.1) and formula (3.2) for the six feature vectors clusters YCv1 for Vl, 

YCv2 for V2, YCv3 for V3 into one group, YCp1 for Pl , YCp2 for P2 and YCp3 for 

P3 into another group, which is the correct classification. Note, however , that the use 

of Andrews plots is more empirical and requires a visual analysis of the plot. Also , it 
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should be pointed out that the data set is small and thus no broad conclusions can be 

drawn at this point. 

4.3 Future Study 

We look forward to the following extensions of the work done in this thesis. 

• More Data. As noted in the thesis, a limitation of the study is the small number 

of electrocardiograms available at this time. As a result, no broad conclusions could 

be drawn. We plan to try the methods on a large number of subjects. Discussion 

with Dr. Raimond Wong from the Hamilton Regional Cancer Center suggests that 

at least 30 more electrocardiogram data will be available in the future. 

• Feature Extraction. As discussed in Chapters 2-3 of the thesis, there are two 

stages in the classification methods presented: feature extraction and clustering 

analysis of the ensuing feature vectors. Regarding feature extraction, two ap

proaches are used in the literature: pick appealing features driven by the data or 

use standard features. Our approach was to use appealing features which in part 

were suggested by the researchers from the cancer clinic. However standard meth

ods include sample moments, Fourier coefficients and wavelet representations. The 

recent work by Epifanio (2008) gives some guidance on the use of standard meth

ods and illustrates them with speech recognition data and biomedical data. Give 

the shape of electrocardiogram data, Fourier and wavelet representations may have 
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some potential. We plan to extend this on the existing and new electrocardiogram 

data. 

• Other Clustering Methods. The literature on classification is rich. Two meth

ods that have been shown to perform quite well for some types of data are artifi

cial neural networks based on nonlinear models (Lippmann, et al., 1991) or fuzzy 

C-Means clustering (Dunn, 1973, Bezdek, 1981). These methods are more sophis

ticated and require more work in their implementation. It would be interesting to 

explore their use for our electrocardiogram data. 

• Formal Grouping. It would be useful to have more quantitative guidance on the 

application of the methods. For instance, how many elements should are included 

in feature vector in a given application? Monte Carlo cross-validation (Burman, 

1998) has given the traditional way to proceed. The work of Hyviirinen et al. 

(2001) on independent component analysis (ICA) looks promising for electrocar

diogram data. On addition, a package in R to perform ICA is available. 
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Appendix A: R codes 

A.1 Original Electrocardiogram Data 

# Plot the original electrocardiogram data for volunteers and 
patients # Read the data 

tangp1<-read.table('p1.txt') 
tangp2<-read.table('p2.txt') 
tangp3<-read.table('p3.txt') 
tangv1<-read.table('v1.txt') 
tangv2<-read.table('v2.txt') 
tangv3<-read.table('v3.txt') 
tv1<-tangv1$V2 tv2<-tangv2$V2 
tv3<-tangv3$V2 tp1<-tangp1$V2 
tp2<-tangp2$V2 tp3<-tangp3$V2 

# Lengths of electrocardiogram data for volunteers and patients 

nv1<-length(tv1) 
nv2<-length(tv2) 
nv3<-length(tv3) 
np1<-length(tp1) 
np2<-length(tp2) 
np3<-length(tp3) 
ttv1<-tv1[1:10000] 
ttv2<-tv2[1:10000] 
ttv3<-tv3[1:10000] 
ttp1<-tp1[1 : 10000] 
ttp2<-tp2[1:10000] 
ttp3<-tp3[1:10000] 

# Plot the electrocardiogram data of volunteers 

windows() 
par(mfrow<-c(3,1)) 
ystand<-seq(-0 .7,1.8,2.5/10000) 
plot(ystand,ylab='volunteer 1 ' ,col='white') 
lines(ttv1,type='l') 
plot(ystand,ylab='volunteer 2' , col='white') 
lines(ttv2,type='l') 
plot(ystand,ylab='volunteer 3' , col='white') 
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lines(ttv3,type='l') 

# Plot the electrocardiogram data of patients 

windows() 
par(mfrow<-c(3,1)) 
ystand<-seq(-0.7,1.8,2.5/10000) 
plot(ystand,ylab='patient 1',col='white') 
lines(ttp1,type='l') 
plot(ystand,ylab='patient 2' ,col='white') 
lines(ttp2,type='l') 
plot(ystand,ylab='patient 3' ,col='white') 
lines(ttp3,type='l') 

A.2 Segment and extracting statistics from the electrocardiogram 
data for volunteers and patients 

# Function of finding the position of the minimum of a vector 

minpos i tion<-function(y) 
{ 

} 

l<-length(y) 
minpos<-1 
minvalue<-y[1] 
for(i in 2:1) 

{ 

if((y[i]<minvalue)==TRUE) 
{ 

} 

minvalue<-y[i] 
minpos<-i 

} 

minpos 

# Function of finding the position of the maximum of a vector 

maxposition<-function(y) 
{ 

l<-length(y) 
maxpos<-1 
maxvalue<-y [1] 
for(i in 2 :1) 
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} 

{ 

} 

if((y[i]>maxvalue)==TRUE) 
{ 

} 

maxvalue<-y [i] 
maxpos<-i 

maxpos 

# Segment and statistics of the electrocardiogram data for patient! 
# Read the original data of patient 1 

tangp1<-read.table('p1 . txt') 
ttv1<-tangp1$V2 
n<-length(tv1) 
ta<-0.3 

# Get the segment position vector for patient 1 

tpos<-array(O,n) 
i<-1 
flagb<-0 
flagn<-0 
for (j in 2:n) 

{ 

} 

if ((ttv1[j]>ta)==TRUE) 
{ 

flagb<-flagn 
flagn<-1 

} 

if((ttv1[j]<ta)==TRUE) 
{ 

} 

flagb<-flagn 
flagn<-0 

if(f l agb 6= flagn) 
{ 

} 

t pos[i]<-j 
i <-i+1 

m<-1 
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for (j in 1:n) 
{ 

if((tpos[j]==O)==FALSE) 
{ 

m<-m+1 
} 

} 

tposfinal<-array(O,m-1) 
i<-1 
for (j in 1:n) 

{ 

if((tpos[j]==O)==FALSE) 
{ 

} 

tposfinal[i]<-tpos[j] 
i<-i+1 

} 

l<-length(tposfinal) 
tposmax<-array(O,l/2) 
tposfinall<-array(O,l) 
j<-1 for (i in 1:1) 

{ 

if (i%%2==1) 
{ 

tempv<-ttv1[(tposfinal[i]-50):tposfinal[i]] 
minpos<-minposition(tempv) 
tposfinall[i]<-tposfinal[i]-50+minpos 

} 

} 

if (i%%2==0) 
{ 

} 

tempv<-ttv1[tposfinal[i] :(tposfinal[i]+50)] 
k<-i-1 
tempv1<-ttv1[tposfinal[k] :tposfinal[i]] 
minpos<-minposition(tempv) 
maxpos<-maxposition(tempv1) 
tposfinall[i]<-tposfinal[i]+minpos 
tposmax[j]<-tposfinal[k]+maxpos-1 
j <-j+1 

# Plot the segment of electrocardiogram data for patient 1 
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plot(ttv1[1:3500] ,ylab='value of Patient 1',xlab='Time' ,type='l') 
points(tposfinall[1] ,ttv1[tposfinall[1]] ,pch=23) 
text(tposfinall[1] ,ttv1[tposfinall[1]],label='cp' ,pos=2) 
points(tposmax[1] ,ttv1[tposmax[1]],pch=23,col='red') 
text(tposmax[1] ,ttv1[tposmax[1]] ,label= ' maxp',pos=4) 
points(tposfinall[2] ,ttv1[tposfinall[2]] ,pch=23) 
text(tposfinall[2] ,ttv1[tposfinall[2]] ,label='cp' ,pos=4) 
points(tposfinall[3],ttv1[tposfinall[3]] ,pch=23) 
text(tposfinall[3],ttv1[tposfinall[3]] ,label='cp' ,pos=2) 
points(tposmax[2] ,ttv1[tposmax[2]] ,pch=23,col='red') 
text(tposmax[2] ,ttv1[tposmax[2]] ,label='maxp',pos=4) 
points(tposfinall[4],ttv1[tposfinall[4]] ,pch=23) 
text(tposfinall[4] ,ttv1[tposfinall[4]] ,label='cp' ,pos=4) 
points(tposfinall[5],ttv1[tposfinall[5]] ,pch=23) 
text(tposfinall[5] ,ttv1[tposfinall[5]],label='cp' ,pos=2) 
points(tposmax[3] ,ttv1[tposmax[3]],pch=23,col='red') 
text(tposmax[3],ttv1[tposmax[3]] ,label='maxp',pos=4) 
points(tposfinall[6] ,ttv1[tposfinall[6]] ,pch=23) 
text(tposfinall[6] ,ttv1[tposfinall[6]] ,label='cp' ,pos=4) 
points(tposfinall[7] ,ttv1[tposfinall[7]],pch=23) 
text(tposfinall[7],ttv1[tposfinall[7]] ,label='cp' ,pos=2) 
points(tposmax[4],ttv1[tposmax[4]] ,pch=23,col='red') 
text(tposmax[4] ,ttv1[tposmax[4]] ,label='maxp' ,pos=4) 
points(tposfinall[8],ttv1[tposfinall[8]] ,pch=23) 
text(tposfinall[8] ,ttv1[tposfinall[8]] ,label='cp' ,pos=4) 

# Plot the higher peak and lower peak of electrocardiogram data 
patient 1, separately 

window() par(mfrow<-c(1,2)) 
plot(ttv1[tposfinall[1] :tposfinall[2]], 
xlab='Time' ,type='l') 
plot(ttv1[tposfinall[2] :tposfinall[3]j, 
xlab='Time' ,type='l') 

# Get the variation vector of the position of maximum of patient 1 

1<-length(tposmax) 
tposmaxa<-tposmax[i : (l-1)] 
tposmaxb<-tposmax[2:1] 
tposmaxv<-array(O,(l-1)) 
tposmaxv<-tposmaxb-tposmaxa 
tposmaxvp1<-tposmaxv 
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# Get the mean of position interval, maximum, range, mean of 
interval for patient 1 

tposfinal<-tposfinall 
leng<-length(tposfinal) 
posinterval<-array(O,leng/2) 
posintervalL<-array(O,leng/2-1) 

for(j in 1:(leng/2)) 
{ 

posinterval[j]<-tposfinal[j*2]-tposfinal[j*2-1] 
} 

for(j in 1:(leng/2-1)) 
{ 

posintervalL[j]<-tposfinal[j*2+1]-tposfinal[j*2] 
} 

maximum<-array(O,leng/2) meaninterval<-array(O,leng/2-1) 
minimum<-array(O,leng/2-1) maximumLow<-array(O,leng/2-1) 

for (j in 1:(leng/2)) 
{ 

} 

a<-tposfinal[2*j-1] 
b<-tposfinal[2*j] 
maximum[j]<-max(ttv1[a:b]) 

for (j in 1:(leng/2-1)) 
{ 

} 

test<-j 
minimum[j]<-min(ttv1[tposfinal[2*test] :tposfinal[2*test+1]]) 
st<-tposfinal[2*test]+10 
en<-tposfinal[2*test+1]-10 
maximumLow[j]<-max(ttv1[st:en]) 
meaninterval[j]<-mean(ttv1[tposfinal[2*test] :tposfinal[2*test+1]]) 

meanmaximum<-mean(maximum) 
meanminimum<-mean(minimum) 
meanmaximumLow<-mean(maximumLow) 
rangeHigh<-meanmaximum-meanminimum 
rangeLow<-meanmaximumLow-meanminimum 
meanposinterval<-mean(posinterval)/1000 
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meanposintervalL<-mean(posintervalL)/1000 
meanlowinterval<-mean(meaninterval) 
mrangeH<-maximum[1:(length(maximum)-1)]-minimum 
mrangeL<-maximumLow[i:(length(maximum)-1)]-minimum 

# Get the feature vector for the electrocardiogram data for patient 
1 

result<-c(meanmaximum,rangeHigh,meanmaximumLow,rangeLow,meanposinterval, 
meanposintervalL,meanlowinterval) 

# Get the vectors of maximum value of higher peak, range of higher 
peak, maximum value of lower peak, range of lower peak, width of 
higher peak, width of lower peak and average value of lower peak for 
the electrocardiogram data 

maximump1<-maximum 
mrangeHp1<-mrangeH 
maximumLowp1<-maximumLow 
mrangeLp1<-mrangeL 
posintervalp1<-posinterval 
posintervalLp1<-posintervalL 
meanintervalp1<-meaninterval 

A.3 Comparing Boxplots, densities of the electrocardiogram data for 
group of patients and group of volunteers 

# Comparing boxplots and densities of maximum value of higher peak 
of volunteers and patients 

n1<-length(maximumv1) 
n2<-length(maximumv2) 
n3<-length(maximumv3) 
n4<-length(maximump1) 
n5<-length(maximump2) 
n6<-length(maximump3) 
boxf<-c(maximumv1,maximump1,maximumv2,maximump2,maximumv3,maximump3) 
c1<-array('v1',n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2' ,n5) 
c6<-array('p3' ,n6) 
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cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(maximumv1),xlim<-c(0,2.5),ylim<-c(0,15),type='l' ,lty=2) 
lines(density(maximumv2),type='l',lty=2,col='blue') 
lines(density(maximumv3),type='l' ,lty=2,ol='red') 
lines(density(maximumpl),type='l') 
lines(density(maximump2),type='l' ,col='blue') 
lines(density(maximump3),type='l' ,col='red') 

# Comparing boxplots and densities of range of higher peak of 
volunteers and patients 

n1<-length(mrangeHv1) 
n2<-length(mrangeHv2) 
n3<-length(mrangeHv3) 
n4<-length(mrangeHp1) 
n5<-length(mrangeHp2) 
n6<-length(mrangeHp3) 
boxf<-c(mrangeHv1,mrangeHv2,mrangeHv3,mrangeHp1,mrangeHp2,mrangeHp3) 
c1<-array('v1',n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2',n5) 
c6<-array('p3' ,n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(mrangeHv1),xlim<-c(0,2.5),ylim=c(0,18),type='l' ,lty=2) 
lines(density(mrangeHv2),type='l' ,lty=2,col='blue') 
lines(density(mrangeHv3),type='l' ,lty=2,col='red') 
lines(density(mrangeHpl),type='l') 
lines(density(mrangeHp2),type='l' ,col='blue') 
lines(density(mrangeHp3),type='l' ,col='red') 

# Comparing boxplots and densities of maximum value of lower peak of 
volunteers and patients 

n1<-length(maximumLowv1) 
n2<-length(maximumLowv2) 
n3<-length(maximumLowv3) 
n4<-length(maximumLowp1) 
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n5<-length(maximumLowp2) 
n6<-length(maximumLowp3) 
boxf<-c(maximumLowv1,maximumLowv2,maximumLowv3,maximumLowp1, 
maximumLowp2,maximumLowp3) 
c1<-array('v1' ,n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2' ,n5) 
c6<-array('p3' ,n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(maximumLowv1),xlim=c(-0.15,0 .85),ylim=c(0,18),type='l' ,lty=2) 
lines(density(maximumLowv2),type='l' ,lty=2,col='blue') 
lines(density(maximumLowv3),type='l',lty=2,col='red') 
lines(density(maximumLowpl),type='l') 
lines(density(maximumLowp2),type='l' ,col='blue') 
lines(density(maximumLowp3),type='l' ,col='red') 

# Comparing boxplots and densities of range of lower peak of 
volunteers and patients 

n1<-length(mrangeLv1) 
n2<-length(mrangeLv2) 
n3<-length(mrangeLv3) 
n4<-length(mrangeLp1) 
n5<-length(mrangeLp2) 
n6<-length(mrangeLp3) 
boxf<-c(mrangeLv1,mrangeLv2,mrangeLv3,mrangeLp1,mrangeLp2,mrangeLp3) 
c1<-array('v1' ,n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array( ' p2' ,n5) 
c6<-array('p3' ,n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(mrangeLv1),xlim=c(0,0 .85), ylim=c(0,22),type= ' l' , lty=2) 
lines(density(mrangeLv2),type='l',lty=2 , col='blue') 
lines(density(mrangeLv3),type='l',lty=2,col='red') 
lines(density(mrangeLpl),type='l') 
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lines(density(mrangeLp2),type='l' ,col='blue') 
lines(density(mrangeLp3),type='l' ,col='red') 

# Comparing boxplots and densities of width of higher peak of 
volunteers and patients 

n1<-length(posintervalv1) 
n2<-length(posintervalv2) 
n3<-length(posintervalv3) 
n4<-length(posintervalp1) 
n5<-length(posintervalp2) 
n6<-length(posintervalp3) 
boxf<-c(posintervalv1,posintervalv2,posintervalv3,posintervalp1, 
posintervalp2,posintervalp3) 
c1<-array('v1' ,n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2' ,n5) 
c6<-array('p3' ,n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(posintervalv1),xlim=c(0,100),ylim=c(0,0.4),type='l',lty=2) 
lines(density(posintervalv2),type='l' ,lty=2,col='blue') 
lines(density(posintervalv3),type='l' ,lty=2,col='red') 
lines(density(posintervalp1),type='l') 
lines(density(posintervalp2),type='l' ,col='blue') 
lines(density(posintervalp3),type='l' ,col='red') 

# Comparing boxplots and densities of width of lower peak of 
volunteers and patients 

n1<-length(posinterva1Lv1) 
n2<-length(posinterva1Lv2) 
n3<-length(posinterva1Lv3) 
n4<-length(posinterva1Lp1) 
n5<-length(posinterva1Lp2) 
n6<-length(posinterva1Lp3) 
boxf<-c(posinterva1Lv1,posinterva1Lv2,posinterva1Lv3,posinterva1Lp1, 
posinterva1Lp2,posinterva1Lp3) 
c1<-array('v1' ,n1) 
c2<-array('v2' ,n2) 
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c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2',n5) 
c6<-array('p3',n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(posinterva1Lv1),xlim=c(0,1500),ylim=c(0,0.03),type='l',lty=2) 
lines(density(posinterva1Lv2),type='l' ,lty=2,col='blue') 
lines(density(posinterva1Lv3),type='l' ,lty=2,col='red') 
lines(density(posinterva1Lp1),type='l') 
lines(density(posinterva1Lp2),type='l' ,col='blue') 
lines(density(posinterva1Lp3),type='l' ,col='red') 

# Comparing boxplots and densities of average value of lower 
peak of volunteers and patients 

n1<-length(meanintervalv1) 
n2<-length(meanintervalv2) 
n3<-length(meanintervalv3) 
n4<-length(meanintervalp1) 
n5<-length(meanintervalp2) 
n6<-length(meanintervalp3) 
boxf<-c(meanintervalv1,meanintervalv2,meanintervalv3,meanintervalp1, 
meanintervalp2,meanintervalp3) 
c1<-array('v1',n1) 
c2<-array('v2',n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2' ,n5) 
c6<-array('p3',n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) 
boxplot(boxf_cf) 
plot(density(meanintervalv1),xlim=c(-0.4,0.6),ylim=c(0,120),type='l' ,lty=2) 
lines(density(meanintervalv2),type='l' ,lty=2,col='blue') 
lines(density(meanintervalv3),type='l' ,lty=2,col='red') 
lines(density(meanintervalp1),type='l') 
lines(density(meanintervalp2),type='l' ,col='blue') 
lines(density(meanintervalp3),type='l' ,col='red') 

# Comparing boxplots and densities of position variation vector of 
maximum of volunteers and patients 
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n1<-length(tposmaxvv1) 
n2<-length(tposmaxvv2) 
n3<-length(tposmaxvv3) 
n4<-length(tposmaxvp1) 
n5<-length(tposmaxvp2) 
n6<-length(tposmaxvp3) 
boxf<-c(tposmaxvv1,tposmaxvv2,tposmaxvv3,tposmaxvp1,tposmaxvp2,tposmaxvp3) 
c1<-array('v1' ,n1) 
c2<-array('v2' ,n2) 
c3<-array('v3' ,n3) 
c4<-array('p1' ,n4) 
c5<-array('p2' ,n5) 
c6<-array('p3' ,n6) 
cf<-c(c1,c2,c3,c4,c5,c6) 
cf<-factor(cf) boxplot(boxf_cf) 
plot(density(tposmaxvv1),xlim=c(0,1200),ylim=c(0,0.03),type='l',lty=2) 
lines(density(tposmaxvv2),type='l',lty=2,col='blue') 
lines(density(tposmaxvv3),type='l' ,lty=2,col='red') 
lines(density(tposmaxvp1),type='l') 
lines(density(tposmaxvp2),type='l',col='blue') 
lines(density(tposmaxvp3),type='l',col='red') 

A.4 Comparing single statistics of the electrocardiogram data for 
group of patients and group of volunteers 

# Read the file of feature vectors for the electrocardiogram data 

ttresult1<-read.table('result.txt') 
ttmaximumH<-ttresult1$V1 
ttrangeH<-ttresult1$V2 
ttmaximumL<-ttresult1$V3 
ttrangeL<-ttresult1$V4 
ttintervalH<-ttresult1$V5 
ttintervalL<-ttresult1$V6 
ttvalueintervalL<-ttresult1$V7 

# Compare maximum of higher peak and lower peak of volunteers and 
patients 

windows() par(mfrow<-c(1,2)) y<-c(0,1,2) plot(y,type='l' ,ylab='mean 
maximum of higher peak') lines(ttmaximumH[1 :3] ,type='l') 
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points(1,ttmaximumH[1],pch=24,cex=1) 
text(1 , ttmaximumH[1] ,labels='V1' ,pos=3,cex=0.7) 
points(2,ttmaximumH[2] ,pch=24,cex=1) 
text(2,ttmaximumH[2] ,labels='V2',pos=3,cex=0.7) 
points(3,ttmaximumH[3],pch=24,cex=1) 
text(3,ttmaximumH[3] ,labels='V3',pos=3,cex=0.7) 
lines(ttmaximumH[4:6] ,type='l' ,col='red') 
points(1,ttmaximumH[4],cex=1,col='red') 
text(1,ttmaximumH[4],labels='P1' ,pos=1,cex=0.7) 
points(2,ttmaximumH[5],cex=1,col='red') 
text(2,ttmaximumH[5] ,labels='P2' ,pos=1,cex=0.7) 
points(3,ttmaximumH[6],cex=1,col='red') 
text(3,ttmaximumH[6] ,labels='P3' ,pos=1,cex=0.7) 
y<-c(-1,0,1) 
plot(y,type='l' ,ylab='mean maximum of lower peak',col='white') 
points(2,ttmaximumL[1],pch=24,cex=1) 
text(2,ttmaximumL[1],labels='V1',pos=1,cex=0.7) 
points(1,ttmaximumL[2] ,pch=24,cex=1) 
text(1,ttmaximumL[2] ,labels='V2',pos=1,cex=0.7) 
points(3,ttmaximumL[3] ,pch=24,cex=1) 
text(3,ttmaximumL[3],labels='V3' ,pos=1,cex=0.7) 
lines(c(ttmaximumL[2] ,ttmaximumL[1],ttmaximumL[3]),type='l') 
lines(ttmaximumL[4:6] ,type='l' ,col='red') 
points(1,ttmaximumL[4],cex=1,col='red ; ) 
text(1,ttmaximumL[4] ,labels='P1' ,pos=3,cex=0.7) 
points(2,ttmaximumL[5],cex=1,col='red') 
text(2,ttmaximumL[5] ,labels='P2' ,pos=3,cex=0 . 7) 
points(3,ttmaximumL[6] ,cex=1,col='red') 
text(3,ttmaximumL[6] ,labels='P3' ,pos=3,cex=0 .7) 

# Compare range of higher peak and lower peak, and the ratio of them 
for volunteers and patients 

windows() 
par(mfrow<-c(1,3)) 
y<-c(0, 1,2) 
plot(y,type='l' ,ylab='mean 
range of higher peak ',col='white') 
lines(ttrangeH[1:3] ,type='l') 
points(1,ttrangeH[1] ,pch=24,cex=1) 
text(1,ttrangeH[1] ,labels='V1' ,cex=0.7,pos=3) 
poi nts(2,ttrangeH[2] ,pch=24,cex=1) 
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text(2,ttrangeH[2] ,labels='V2' ,cex=0.7,pos=3) 
points(3,ttrangeH[3],pch=24,cex=1) 
text(3,ttrangeH[3] ,labels='V3',cex=0 .7,pos=3) 
lines(ttrangeH[4:6] ,type='l',col='red') 
points(1,ttrangeH[4] ,cex=1,col='red') 
text(1 , ttrangeH[4] ,labels='P1',cex=0.7,pos=1) 
points(2,ttrangeH[5] ,cex=1,col='red') 
text(2,ttrangeH[5] ,labels='P2' ,cex=0 .7,pos=1) 
points(3,ttrangeH[6] ,cex=1,col='red') 
text(3,ttrangeH[6] ,labels='P3' ,cex=0.7,pos=1) 
plot(y,type='l' ,ylab='mean range of lower peak' ,col='white') 
lines(ttrangeL[1:3],type='l') 
points(1,ttrangeL[1],pch=24,cex=1) 
text(1,ttrangeL[1] ,labels='V1' ,cex=0.7,pos=3) 
points(2,ttrangeL[2] ,pch=24,cex=1) 
text(2,ttrangeL[2] ,labels='V1',cex=0.7,pos=3) 
points(3,ttrangeL[3],pch=24,cex=1) 
text(3,ttrangeL[3] ,labels='V3' ,cex=0.7,pos=1) 
lines(ttrangeL[4:6] ,type='l',col='red') 
points(1,ttrangeL[4],cex=1,col='red') 
text(1,ttrangeL[4] ,labels='P1' ,cex=0.7,pos=1) 
points(2,ttrangeL[5] ,cex=1,col='red') 
text(2,ttrangeL[5] ,labels='P2' ,cex=0.7,pos=1) 
points(3,ttrangeL[6],cex=1,col='red') 
text(3,ttrangeL[6] ,labels='P3' ,cex=0.7,pos=3) y<-c(1,2,3,4) 
rangeratio<-array(0,6) 
for(j in 1:6) 
{ 
rangeratio[j]<-ttrangeH[j]/ttrangeL[j] 

} 
plot(y,type='l' ,ylab='mean 
Rangeratio:RangeHihgerpeak/RangLowerpeak' ,col='white') 
lines(rangeratio[1:3] ,type='l') 
points(1,rangeratio[1],pch=24,cex=1) 
text(1,rangeratio[1] ,labels='V1' ,cex=0 .7,pos=3) 
points(2,rangeratio[2] ,pch=24,cex=1) 
text(2,rangeratio[2],labels='V2' ,cex=0 .7,pos=3) 
points(3,rangeratio[3] ,pch=24,cex=1) 
text(3,rangeratio[3] ,labels='V3' ,cex=0.7,pos=3) 
lines(rangeratio[4:6],type='l' ,col='red ' ) 
po i nts(1,rangeratio[4] ,cex=1,col='red') 
text(1,rangeratio[4] ,labels='P1' ,cex=0 .7,pos=1) 
points(2,rangeratio[5] ,cex=1,col='red ' ) 
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text(2,rangeratio[5] ,labels='P2',cex=0.7,pos=1) 
points(3,rangeratio[6] ,cex=l,col='red') 
text(3,rangeratio[6] ,labels='P3' ,cex=0.7,pos=1) 

# Compare width of higher peak and lower peak, and sum of them for 
volunteers and patients 

windows() 
par(mfrow<-c(1,3)) 
y<-c(0,0.1,0.2) 
plot(y,type='l' ,ylab='mean width of higher peak' ,col='white') 
lines(ttintervalH[1:3],type='l') 
points(1,ttintervalH[1],pch=24,cex=1) 
text(1,ttintervalH[1] ,labels='V1',cex=0.7,pos=1) 
points(2,ttintervalH[2],pch=24,cex=1) 
text(2,ttintervalH[2] ,labels='V2' ,cex=0.7,pos=3) 
points(3,ttintervalH[3] ,pch=24,cex=1) 
text(3,ttintervalH[3],labels='V3',cex=0.7,pos=3) 
lines(ttintervalH[4:6] ,type='l',col='red') 
points(1,ttintervalH[4],cex=1,col='red') 
text(1,ttintervalH[4] ,labels='P1' ,cex=0 .7,pos=3) 
points(2,ttintervalH[5] ,cex=l,col='red') 
text(2,ttintervalH[5] ,labels='P2' ,cex=0.7,pos=1) 
points(3,ttintervalH[6] ,cex=l,col='red') 
text(3,ttintervalH[6],labels='P3',cex=0.7,pos=1) y<-c(0,0.5,1) 
plot(y,type='l',ylab='mean width of lower peak',col='white') 
lines(ttintervalL[1:3],type='l') 
points(1,ttintervalL[1] ,pch=24,cex=1) 
text(1,ttintervalL[1],labels='V1',cex=0.7,pos=1) 
points(2,ttintervalL[2],pch=24,cex=1) , 
text(2,ttintervalL[2] ,labels='V2' ,cex~0.7,pos=3) 
points(3,ttintervalL[3] ,pch=24,cex=1) 
text(3,ttintervalL[3] ,labels='V3' ,cex=0 .7,pos=3) 
lines(ttintervalL[4:6] ,type='l' ,col='red') 
points(1,ttintervalL[4] ,cex=l,col='red') 
text(1,ttintervalL[4],labels='P1' ,cex=0.7,pos=3) 
points(2,ttintervalL[5] ,cex=l,col='red') 
text(2,ttintervalL[5] ,labels='P2' ,cex=0.7,pos=1) 
points(3,ttintervalL[6] ,cex=l,col='red') 
text(3,ttintervalL[6],labels='P3' ,cex=0.7,pos=1) 
RRinterval<-array(0,6) for(j in 1:6) 
{ 

RRinterval[j]<-ttintervalH[j]+ttintervalL[j] 
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} 
y<-c(0,1,2) 
plot(y,type='l' ,ylab='mean width of higer and lower 
peak' ,col='white') 
lines(RRinterval[1:3] ,type='l') 
points(1,RRinterval[1] ,pch=24,cex=1) 
text(1,RRinterval[1] ,labels='V1' ,cex=0.7,pos=1) 
points(2,RRinterval[2],pch=24,cex=1) 
text(2,RRinterval[2] ,labels='V2' ,cex=0.7,pos=3) 
points(3,RRinterval[3] ,pch=24,cex=1) 
text(3,RRinterval[3] ,labels='V3' ,cex=0 .7,pos=3) 
lines(RRinterval[4:6] ,type='l' ,col='red') 
points(1,RRinterval[4],cex=1,col='red') 
text(1,RRinterval[4] ,labels='P1' ,cex=0.7,pos=3) 
points(2,RRinterval[5] ,cex=1,col='red') 
text(2,RRinterval[5] ,labels='P2' ,cex=0.7,pos=1) 
points(3,RRinterval[6] ,cex=1,col='red') 
text(3,RRinterval[6] ,labels='P3' ,cex=0.7,pos=1) 

# Compare the average value of lower peak for volunteers and 
patients 

y<-c(0,0.25,0.5) 
absttvalueintervalL<-abs(ttvalueintervalL) 
plot(y,type='l',ylab='mean value of lower peak' ,col='white') 
points(2,absttvalueintervalL[1],pch=24,cex=1) 
text(2,absttvalueintervalL[1],labels='V1' ,cex=0.7,pos=3) 
points(1,absttvalueintervalL[2],pch=24,cex=1) 
text(1,absttvalueintervalL[2] ,labels='V2' ,cex=0.7,pos=3) 
points(3,absttvalueintervalL[3] ,pch=24,cex=1) 
text(3,absttvalueintervalL[3] ,labels='V3',cex=0.7,pos=3) 
lines(c(absttvalueintervalL[2] ,absttvalueintervalL[1], 
absttvalueintervalL[3]),type='l') 
lines(absttvalueintervalL[4:6] ,type='l' ,col='red') 
points(1,absttvalueintervalL[4] ,cex=1,col='red') 
text(1,absttvalueintervalL[4] ,labels='P1' ,cex=0.7,pos=1) 
points(2,absttvalueintervalL[5] ,cex=1,col='red') 
text(2,absttvalueintervalL[5],labels='P2' ,cex=0.7,pos=1) 
points(3,absttvalueintervalL[6] ,cex=1,col='red') 
text(3,absttvalueintervalL[6] ,labels='P3' ,cex=0.7,pos=1) 

A.5 Clustering analysis of the feature vectors for the 
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electrocardiogram data for group of patients and group of volunteers 

# Distance function for two vectors 

distance<-function(y1,y2) 
{ 

n<-length(y1) 
sum<-0 
for(i in 1:n) 
{ 

sum<-sum+(y1[i]-y2[i])*(y1[i]-y2[i]) 

} 

} 
dis<-sqrt(sum) 
dis 

# K-means clustering analysis for the electrocardiogram data of 
volunteers and patients # Read the file of the feature vectors for 
volunteers and patients 

ttresult1<-read.table('result.txt') 
ttmaximumH<-ttresult1$V1 
ttrangeH<-ttresult1$V2 
ttmaximumL<-ttresult1$V3 
ttrangeL<-ttresult1$V4 
ttintervalH<-ttresult1$V5 
ttintervalL<-ttresult1$V6 
ttvalueintervalL<-ttresult1$V7 
v1<-c(ttmaximumH[1],ttrangeH[1],ttmaximumL[1] ,ttrangeL[1] ,ttintervalH[1], 
ttintervalL[1],ttvalueintervalL[1]) 
v2<-c(ttmaximumH[2] ,ttrangeH[2],ttmaximumL[2] ,ttrangeL[2] ,ttintervalH[2], 
ttintervalL[2] ,ttvalueintervalL[2]) 
v3<-c(ttmaximumH[3],ttrangeH[3],ttmaximumL[3] ,ttrangeL[3],ttintervalH[3], 
ttintervalL[3] ,ttvalueintervalL[3]) 
p1<-c(ttmaximumH[4],ttrangeH[4],ttmaximumL[4],ttrangeL[4] ,ttintervalH[4], 
ttintervalL[4] ,ttvalueintervalL[4]) 
p2<-c(ttmaximumH[5] ,ttrangeH[5],ttmaximumL[5] ,ttrangeL[5] ,ttintervalH[5], 
ttintervalL[5] ,ttvalueintervalL[5]) 
p3<-c(ttmaximumH[6],ttrangeH[6],ttmaximumL[6],ttrangeL[6],ttintervalH[6], 
ttintervalL[6] ,ttvalueintervalL[6]) 
tvp<-c(v1,v2,v3,p1,p2,p3) 
center1<-c(0.5,0.9,0 . 1,0.6,0.03,0.7,-0 . 1) 
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center2<-c(0.2,0.6,0.2,0.5,0.01,0.9,0) 
clusterpos<-c(O,O,O,O,O,O) 
resultclusterpos<-clusterpos 
resultcenter1<-center1 
resultcenter2<-center2 
stopdistance<-0.01 
tempdistance<-1 

while(tempdistance>stopdistance) 
{ 

# new clustering 
for (i in 1:6) 
{ 

} 

s<-7*(i-1)+1 
tempv<-tvp[s:(s+6)] 
d1<-distance(tempv,center1) 
d2<-distance(tempv,center2) 
if((d1<-d2)==TRUE) 

{ 

clusterpos[i]<-1 
} 

if((d1>d2)==TRUE) 
{ 

clusterpos[i]<-2 
} 

# new centers and tempdistance 
c1num<-O 
c2num<-O 
c1new<-c(O,O,O,O,O,O,O) 
c2new<-c(O,O,O,O,O,O,O) 
for(i in 1:6) 

{ 

s<-7*(i-1)+1 
tempv<-tvp[s: (s+6)] 
if((clusterpos[i]==1)==TRUE) 

{ 

c1num<-c1num+1 
c1new<-c1new+tempv 

} 

if((clusterpos[i]==2)==TRUE) 
{ 

c2num<-c2num+1 

78 



} 

c2new<-c2new+tempv 
} 

} 
c1new<-c1new/c1num 
c2new<-c2new/c2num 
tempdistance<-distance(center1,c1new)+distance(center2,c2new) 
resultcenter1<-c(resultcenter1,'#',c1new) 
resultcenter2<-c(resultcenter2,'#',c2new) 
resultclusterpos<-c(resultclusterpos,'#' ,clusterpos) 
center1<-c1new 
center2<-c2new 

# Plot the result of K-means clustering method of volunteers and 
patients 

center<-c(0,2) 
index<-c(0,1) 
plot(center,index,ylab='Mean value of 
range of higher peak' ,col='white',xlab='Mean value of range of lower 
peak') 
points(ttrangeH[1],ttrangeL[1] ,pch=24) 
text(x=ttrangeH[1],y=ttrangeL[1] ,labels='V1' ,pos=4) 
points(ttrangeH[2],ttrangeL[2] ,pch=24) 
text(x=ttrangeH[2] ,y=ttrangeL[2],labels='V2' ,pos=4) 
points(ttrangeH[3] ,ttrangeL[3],pch=24) 
text(x=ttrangeH[3] ,y=ttrangeL[3] ,labels='V3' ,pos=4) 
points(ttrangeH[4],ttrangeL[4],col='red') 
text(x=ttrangeH[4],y=ttrangeL[4] ,labels='P1' ,pos=2) 
points(ttrangeH[5],ttrangeL[5],col='red') 
text(x=ttrangeH[5] ,y=ttrangeL[5],labels='P2' ,pos=2) 
points(ttrangeH[6] ,ttrangeL[6],col='red') 
text(x=ttrangeH[6] ,y=ttrangeL[6] ,labels='P3' ,pos=2) 
points(0.9,0.6,pch=23) text(0.9,0.6,labels='C10',pos=1,cex=0.7) 
points(1.4712,0.6147,pch=23) 
text(1.4712,0 . 6147,labels='C11' ,pos=1,cex=0.7) 
points(1.6086,0.6185,pch=23) 
text(1.6086,0.6185,labels='C12' ,pos=1,cex=0.7) 
points(0.6,0 .5,pch=22,col='red') 
text(0.6,0.5,labels='C20' ,pos=1,cex=0.7) 
points(0.6675,0.5313,pch=22,col='red') 
text(0.6675,0.5313,labels='C21',pos=1,cex=0 . 7) 
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points(0.7945,0.5653,pch=22,col='red') 
text(0.7945,0.5653,labels='C22',pos=1,cex=0.7) 
arrows(0.9,0.6,1.4712,0.6147,type='l') 
arrows(1.4712,0.6147,1.6086,0.6185,type='l') 
arrows(0.6,0.5,0.6675,0.5313,tpye='l',col='red') 
arrows(0.6675,0.5313,0.7945,0.5653,tpye='l',col='red') 
arrows(1.3,0,0.9,1.1,type='l') 
text(x=1.2,y=0.3,labels='Final 
Boundary' ,pos=4) 

# Hierarchical clustering analysis for the electrocardiogram data of 
volunteers and patients # Read the file of the feature vectors for 
volunteers and patients 

ttresult1<-read.table('result.txt') 
ttmaximumH<-ttresult1$V1 
ttrangeH<-ttresult1$V2 
ttmaximumL<-ttresult1$V3 
ttrangeL<-ttresult1$V4 
ttintervalH<-ttresult1$V5 
ttintervalL<-ttresult1$V6 
ttvalueintervalL<-ttresult1$V7 
v1<-c(ttmaximumH[1],ttrangeH[1] ,ttmaximumL[1] ,ttrangeL[1],ttintervalH[1], 
ttintervalL[1] ,ttvalueintervalL[1]) 
v2<-c(ttmaximumH[2],ttrangeH[2] ,ttmaximumL[2] ,ttrangeL[2],ttintervalH[2], 
ttintervalL[2],ttvalueintervalL[2]) 
v3<-c(ttmaximumH[3],ttrangeH[3] ,ttmaximumL[3] ,ttrangeL[3] ,ttintervalH[3], 
ttintervalL[3] ,ttvalueintervalL[3]) 
p1<-c(ttmaximumH[4] ,ttrangeH[4],ttmaximumL[4] ,ttrangeL[4],ttintervalH[4], 
ttintervalL[4] ,ttvalueintervalL[4]) 
p2<-c(ttmaximumH[5],ttrangeH[5] ,ttmaximumL[S] ,ttrangeL[S] ,ttintervalH[5], 
ttintervalL[5],ttvalueintervalL[5]) 
p3<-c(ttmaximumH[6] ,ttrangeH[6] ,ttmaximumL[6] ,ttrangeL[6] ,ttintervalH[6], 
ttintervalL[6] ,ttvalueintervalL[6]) 
tvp<-c(v1,v2,v3,p1,p2,p3) 
resultmergeorder<-c(O,O) 
resultcenter<-tvp 

for(i in 1:4) 
{ 

com<-(7-i)*(6-i)/2 
tempdistance<-array(100,com) 
tempdistancex<-array(O,com) 
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} 

tempdistancey<-array(O,com) 
j<-1 
for(m in 1:(6-i)) 

{ 

s1<-7*(m-1)+1 
tempv1<-tvp[s1:(s1+4)] 
for(n in (m+1):(7-i)) 

{ 

} 

s2<-7*(n-1)+1 
tempv2<-tvp[s2:(s2+4)] 
tempdistance[j]<-distance(tempv1,tempv2) 
tempdistancex[j]<-m 
tempdistancey[j]<-n 
j<-j+1 

temppos<-minpostion(tempdistance) 
resultmergeorder<-c(resultmergeorder,'#',c(tempdistancex[temppos], 
tempdistancey[temppos])) 
newleng<-7*(6-i) 
newtvp<-array(O,newleng) 
new<-1 
for (k in 1: (7-i)) 

{ 

} 

if(k!<-tempdistancex[temppos]& k!<-tempdistancey[temppos]) 
{ 

} 

for (t in 1:7) 
{ 

} 

m<-7*(new-1)+t 
n<-7*(k-1)+t 
newtvp[m]<-tvp[n]} 
new<-new+1 

m<-tempdistancex[temppos]-1 
n<-tempdistancey[temppos]-1 
newtvp[(newleng-6):newleng]<-(tvp[(7*m+1):(7*(m+1))]+ 
tvp[(7*n+1) : (7*(n+1))])/2 
tvp<-array(O,newleng) 
tvp<-newtvp 
resultcenter<-c(resultcenter,'#' ,tvp) 
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# Andrew-Plots clustering analysis for the electrocardiogram data of 
volunteers and patients 

# Read the file of the feature vectors for volunteers and patients 

ttresult1<-read.table('result.txt') 
ttmaximumH<-ttresult1$V1 
ttrangeH<-ttresult1$V2 
ttmaximumL<-ttresult1$V3 
ttrangeL<-ttresult1$V4 
ttintervalH<-ttresult1$V5 
ttintervalL<-ttresult1$V6 
ttvalueintervalL<-ttresult1$V7 
v1<-c(ttmaximumH[1] ,ttrangeH[1],ttmaximumL[1],ttrangeL[1] ,ttintervalH[1], 
ttintervalL[1] ,ttvalueintervalL[1]) 
v2<-c(ttmaximumH[2] ,ttrangeH[2] ,ttmaximumL[2] ,ttrangeL[2] ,ttintervalH[2], 
ttintervalL[2] ,ttvalueintervalL[2]) 
v3<-c(ttmaximumH[3] ,ttrangeH[3] ,ttmaximumL[3] ,ttrangeL[3] ,ttintervalH[3], 
ttintervalL[3],ttvalueintervalL[3]) 
p1<-c(ttmaximumH[4],ttrangeH[4] ,ttmaximumL[4] ,ttrangeL[4] ,ttintervalH[4], 
ttintervalL[4],ttvalueintervalL[4]) 
p2<-c(ttmaximumH[5] ,ttrangeH[5],ttmaximumL[5],ttrangeL[5] ,ttintervalH[5], 
ttintervalL[5] ,ttvalueintervalL[5]) 
p3<-c(ttmaximumH[6] ,ttrangeH[6],ttmaximumL[6],ttrangeL[6] ,ttintervalH[6], 
ttintervalL[6] ,ttvalueintervalL[6]) 

#First-formula Andrew-Plot clustering analysis 

window() 
AndrewValue<-seq(-1.5,4.5,6/200) 
plot(AndrewValue,col='white') 
m<-100 
y<-array(0,2*m) 
t<-(-m:(m-1))*pi/m 
y<-v1[1]/sqrt(2)+v1[2]*sin(t)+v1[3]*cos(t)+v1[4]*sin(2*t)+v1[5]*cos(2*t) 
+v1[6]*sin(3*t)+v1[7]*cos(3*t) lines(y,type='p') 
y<-v2[1]/sqrt(2)+v2[2]*sin(t)+v2[3]*cos(t)+v2[4]*sin(2*t)+v2[5]*cos(2*t) 
+v2[6]*sin(3*t)+v2[7]*cos(3*t) lines(y,type='p',col='red') 
y<-v3[1]/sqrt(2)+v3[2]*sin(t)+v3[3]*cos(t)+v3[4]*sin(2*t)+v3[5]*cos(2*t) 
+v3[6]*sin(3*t)+v3[7]*cos(3*t) lines(y,type='p',col='blue') 
y<-p1[1]/sqrt(2)+p1[2]*sin(t)+p1[3]*cos(t)+p1[4]*sin(2*t)+p1[5]*cos(2*t) 
+p1[6]*sin(3*t)+p1[7]*cos(3*t) lines(y,type='l') 
y<-p2[1]/sqrt(2)+p2[2]*sin(t)+p2[3]*cos(t)+p2[4]*sin(2*t)+p2[5]*cos(2*t) 
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+p2[6]*sin(3*t)+p2[7]*cos(3*t) lines(y,type='l' ,col='red') 
y<-p3[1]/sqrt(2)+p3[2]*sin(t)+p3[3]*cos(t)+p3[4]*sin(2*t)+p3[5]*cos(2*t) 
+p3[6]*sin(3*t)+p3[7]*cos(3*t) lines(y,type='l',col='blue') 

# Second-formula Andrew-Plot clustering analysis 

window() 
AndrewValue<-seq(-1.5,4.5,6/200) 
plot(AndrewValue,col='white') 
m<-100 
y<-array(0,2*m) 
t<-(-m:(m-1))*pi/m 
y<-1/sqrt(2)*(v1[1]+v1[2]*(sin(t)+cos(t))+v1[3]*(sin(t)-cos(t)) 
+v1[4]*(sin(2*t)+cos(2*t))+v1[5]*(sin(2*t)-cos(2*t)) 
+v1[6]*(sin(3*t)+cos(3*t))+v1[7]*(sin(3*t)-cos(3*t))) 
lines(y,type='p') 
y<-1/sqrt(2)*(v2[1]+v2[2]*(sin(t)+cos(t))+v2[3]*(sin(t)-cos(t)) 
+v2[4]*(sin(2*t)+cos(2*t))+v2[5]*(sin(2*t)-cos(2*t)) 
+v2[6]*(sin(3*t)+cos(3*t))+v2[7]*(sin(3*t)-cos(3*t))) 
lines(y,type='p' ,col='red') 
y<-1/sqrt(2)*(v3[1]+v3[2]*(sin(t)+cos(t))+v3[3]*(sin(t)-cos(t)) 
+v3[4]*(sin(2*t)+cos(2*t))+v3[5]*(sin(2*t)-cos(2*t)) 
+v2[6]*(sin(3*t)+cos(3*t))+v2[7]*(sin(3*t)-cos(3*t))) 
lines(y,type='p',col='blue') 
y<-1/sqrt(2)*(p1[1]+p1[2]*(sin(t)+cos(t))+p1[3]*(sin(t)-cos(t)) 
+p1[4]*(sin(2*t)+cos(2*t))+p1[5]*(sin(2*t)-cos(2*t)) 
+p1[6]*(sin(3*t)+cos(3*t))+p1[7]*(sin(3*t)-cos(3*t))) 
lines(y,type='l') 
y<-1/sqrt(2)*(p2[1]+p2[2]*(sin(t)+cos(t))+p2[3]*(sin(t)-cos(t)) 
+p2[4]*(sin(2*t)+cos(2*t))+p2[5]*(sin(2*t)-cos(2*t)) 
+p2[6]*(sin(3*t)+cos(3*t))+p2[7]*(sin(3*t)-cos(3*t))) 
lines(y,type='l',col='red') 
y<-1/sqrt(2)*(p3[1]+p3[2]*(sin(t)+cos(t))+p3[3]*(sin(t)-cos(t)) 
+p3[4]*(sin(2*t)+cos(2*t))+p3[5]*(sin(2*t)-cos(2*t)) 
+p3[6]*(sin(3*t)+cos(3*t))+p3[7]*(sin(3*t)-cos(3*t))) 
lines(y , type='l' ,col='blue') 
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