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Abstract

In this thesis we focus on statistical analysis of electrocardiogram data. These data
record the electrical activity of the heart muscle. The data used in this thesis were
provided by Dr. Raimond Wong from Hamilton Regional Cancer Centre (HRCC). The
number of independent cases is small (6 cases), but each electrocardiogram contains over
400000 plotting points. Three electrocardiograms came from cancer patients while the
other 3 came from healthy volunteers.

We conduct statistical analysis in two stages: extraction of feature vectors and clus-
tering analysis of feature vectors. During the first stage, we define 7 statistics that
capture important features of the electrocardiogram data. Then these 7 features are
separately used in a univariate way to classify the electrocardiogram data into two
groups as patients and volunteers. Results show that some of the features can separate
the electrocardiogram data well, but others can not do the job well.

During the stage of clustering analysis using the 7 features in a multivariate way,
we employ three methods of clustering analysis: hierarchical clustering analysis, K-
means clustering analysis, and Andrews plot clustering analysis. Results show that
hierarchical clustering analysis and K-means clustering analysis misclassify one of the
subjects. Andrews plot clustering analysis however successfully classify all the subjects.
The first two methods are more objective while the latter requires more judgement.
Note that the limited number of independent cases available does not support general

conclusions, but our study suggest some potential for the methods discussed.
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Chapter 1

Introduction to Electrocardiogram

Data

1.1 Introducing Basics of the Working of the Heart

The heart has two kinds of principal cells: working cells and specialized neural-like con-
ductive cells. The muscle or myocardium of the atria and ventricles are the working
cells. Specialized neural-like conductive cells include the Sinuatrial (SA) node, the Atri-
oventricular (AV) node, the Bundle of His, and the Purkinje fibers (Becker, 2006), which
are shown in Figure 1.1.

The blood output of the heart per minute is the paramount cardiovascular event
required to sustain blood flow throughout the whole body. In addition to blood volume
and contractile strength, the muscle cells of the heart are linked very closely to one

another, so that the electrical impulses can easily spread from one cell to the next. Cer-
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Bundle of His ***%*" Pacemaker | Intrinsic Rate
(right & left) &
ot Sincatrial (SA) nede 60-80/min
i Alsioventricutar (AV) node 40-50/min
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- Purkinge fibers 18-30'min
Purkinje Fibers

Figure 1.1: Specialized neural-like conductive heart tissues and their approximate rates

(Becker, 2006).

tain groups of specialized neural-like conductive cells rapidly transmit electrical activity
through the heart. The electrical activity of the heart muscle can be recorded from the
body surface, monitored by a device called electrocardiogram (Khorovets, 2000). Elec-
trocardiogram monitoring is regarded as a standard of care during general anesthesia
and is strongly encouraged when providing deep sedation.

The electrical activity of the heart muscle comes from the process of “depolarization”
of the heart muscle cells. The inside of the cardiac muscle cells is negatively charged
with respect to the outside in its resting state, which is called in “polarized” status.
When there is a greater concentration of certain charged ions on one side of the cell
membrane as compared with the other side, the cardiac muscle cells are charged. For
example, the concentration of potassium ions is much higher inside the cells while the

concentration of sodium ions is much higher outside. These ions will move in response to



stimuli, particularly a rapid inward movement of sodium, and then a rapid loss of internal
negative potential, which generates electricity. The opposite process of the heart muscle
cells is called “repolarization”. The processes of depolarization and repolarization are

shown in Figure 1.2 with more details.

Polarized Resting Call Depolarizing Call
+ + +
X )
¥+ +
Depolarized Cell Repolarizing Cell

Figure 1.2: The process of depolarization and repolarization (Becker, 2006).

In Figure 1.2, the A step means that the resting cell membrane is charged positively
on the outside and negatively on the inside. The B step tells that positive ions enter the
cell, reversing this polarity following a stimulus S. The C step tells this process continues
until the entire cell is depolarized. And the D step means that ions are returned to their

normal location and the cell repolarizes to its normal resting potential.

1.2 Recording Electrocardiogram Data

The first crude electrocardiogram was introduced by a Dutch physiologist, Willem
Einthoven in 1901. The electrocardiogram records the electrical activity of the heart

muscle by 3 electrode arrangements, which are known as the primary limb leads I, II,



and III. Figure 1.3 gives more details.
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Figure 1.3: Standard limb leads [, II, and III (Becker, 2006).

In Figure 1.3, G means that electrode lead connects to the ground. Most often,
lead II is selected as the important data source in research analysis because it generally
records the largest electronic waves of the heart muscle cells.

When current electricity flow passes into the positive end of the bipolar (2-sided)
electrode, it causes a positive deflection, which corresponds to an upward movement
of the pen on the electrocardiogram paper. When current electricity flow passes away
from the positive pole of the bipolar electrode, it causes a negative deflection and a
downward movement of the pen on the electrocardiogram paper instead. A typical

electrocardiogram is shown in Figure 1.4.



Figure 1.4: A standard electrocardiogram record (Khorovets, 2000).

Figure 1.5 gives more details about the meaning of the segment of waves in an

electrocardiogram in the processes of depolarization and repolarization of the heart cells.

Physiologic Event ECG Evidence
1. | SA node initiates impulse Not visible
2. | Depolarization of atrial muscle P wave
3. | Atrial contraction Not visible
4. | Depolarization of AV node & Common Not visible

Bundle

5. | Repolarization of atrial muscle Not visible
6. | Depolarization of ventricular muscle QRS complex
7. | Contraction of ventricular muscle Not visible
8. | Repolarization of ventricular muscle T wave

Figure 1.5: Summary of events of a cardiac cycle (Becker, 2006).

From Figure 1.5, we can see that of the 8 physiologic events listed for a cardiac
cycle, only 3 are actually observed on the electrocardiogram. The observable events are

depicted in Figure 1.4.



Chapter 2

Statistical Modeling of

Electrocardiogram Data

The main motivation for this thesis is the work of Dr. Raimond Wong and his team
from the Hamilton Regional Cancer Center (HRCC). In fact, all the electrocardiogram
data used in this thesis were kindly provided by Dr. Wong. One of the key studies of Dr.
Wong and his team carried out at the HRRC focused on evaluating heart rate variability
and its relationship with cancer related fatigue syndrome in gut, breast, and prostate
cancer patients (Wong, 2004). The cancer patients in radiation therapy may feel tired
at various times during the therapy, so the whole objective of this research study was
to find a better way to assess how tired the cancer patients are, by taking and studying
the electrocardiograms of the patients. In the research study, the electrocardiograms of
healthy volunteers were also taken to have a basis for comparison with those of cancer
patients. During recording of the electrocardiograms, the electrodes have been attached

6



to the wires, and they are placed on the subject in the way referred to the Lead II

position in Chapter 1. Table 2.1 shows more details on the positions of the wires.

Table 2.1: Positions of the wires in Lead II (Wong, 2004).

Wire Location

Positive | Left side of the stomach

Negative | Under right collar bone

Ground Under left collar bone

In the research study, the electrocardiogram should be taken at a minimum sam-
pling rate of 500Hz for at least 5 minutes for the subject as recommended by the Task
Force of the European Society of Cardiology and the North American Society of Pacing
and Electrophysiology. So the sampling rate used for all electrocardiograms in Wong’s
research study is 1000Hz with a minimum measuring time of 7.5 minutes, and the elec-
trocardiograms were taken with the subjects in a stationary position.

So our electrocardiogram data (recorded by lead II) are from 3 cancer patients and
3 healthy volunteers, and the data were taken on a sitting position for every patient and
healthy volunteer. The sampling frequency is f = 1000Hz. The total test time is almost
7.5 minutes for every patient and healthy volunteer.

The main objective of this thesis are twofold:

¢ To find out differences between the electrocardiogram data of cancer patients and



those for healthy individuals as far as statistical measures is concerned.

e To develop statistical methods to classify cancer patients and healthy individuals

based on their electrocardiogram data.

The main idea is to establish if the electrocardiogram data can be used to predict
whether an individual is cancer-free or not. As far as we know, there is no such research

study focusing on this topic of the electrocardiogram data.

2.1 Original Electrocardiogram Data

The initial data sets that Dr. Wong produced consisted of the electrocardiograms of 3
cancer patients and 3 healthy volunteers. Table 2.2 gives some details of the electrocar-
diogram data for all the patients and healthy volunteers.

Typical of electrocardiogram data, the number of points per electrocardiogram is very
large. Figures 2.1-2.2 display separately for the first 10000 data points of the original
electrocardiograms for Patient 1, Patient 2, Patient 3 and Volunteer 1, Volunteer 2,
Volunteer 3 in the same magnitude range. We only plot 10000 points so that the features

can be seen clearly.
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Figure 2.1: Original electrocardiogram data of Patients.
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Figure 2.2: Original electrocardiogram data of Volunteers.
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Table 2.2: Total data time and data points of the electrocardiogram data.

Total Data Time (Min) | Total Data Points
Patient 1 7.544 452618
Patient 2 7.647 458810
Patient 3 7.575 454510
Volunteer 1 7.544 452618
Volunteer 2 7.532 451930
Volunteer 3 7.613 456746

2.2 Segmenting Electrocardiogram Data

From a statistical point of view, every electrocardiogram is a curve, i.e., a mathematical
function. Thus we are dealing with functional data, a type of data that has been the
focus of intense activity in the last few years (Ramsay and Silverman, 2002). Ramsay and
Silverman (2005) had also given an excellent overview in the analysis of functional data.
The curves are continuous but naturally observations (measurements) are only possible
at discrete (time) points. For instance, the function for Patient 1 was observed at 452618
points (Table 2.2). As we can notice from Figure 2.1, high and low peak points of varying
height and diverse speeds of moving up and down are quite apparent. A natural approach
to understand and analyze this kind of functional data is to start by extracting statistical
shape features from the curves to form a feature vector. In this section we describe seven

shape features that are quite noticeable in the electrocardiogram data.
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Figure 2.3: Segment of electrocardiogram data of Patient 1.
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Figure 2.4: Higher peak (left) and lower peak (right) of electrocardiogram data of Patient
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Figure 2.3 gives an example of breaking the electrocardiogram data of Patient 1 into
higher peaks (corresponding to QRS wave in Chapter 1) and lower peaks (corresponding
to P wave and T wave in Chapter 1). We record the cut point (“cp” in figure) time
index into a vector P = (py, pa, P3, P4, Ps, P, - -+ )} and also record the maximum point
(“maxp” in figure) time index into a vector M = (m;, mg, m3, my,---)T. The higher
peaks are between p, and pyt+1 : (Pn,Pn+1), when n is an odd number, and the lower
peaks are between p, and p,+1 : (Pn, Pn+1), when n is an even number.

Figure 2.4 gives us more details for one example of the higher peak (left) and lower
peak (right) for the electrocardiogram data of Patient 1.

Figures 2.5-2.6 give one example of breaking the electrocardiogram data of Volunteer
1 into higher peaks and lower peaks, and the details for the higher peak (left) and lower

peak (right) for Volunteer 1.

15

value of Volunteer 1
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0 500 1000 1500 2000 2500 3000 3500

Time

Figure 2.5: Segment of electrocardiogram data of Volunteer 1.
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Figure 2.6: Higher peak (left) and lower peak (right) of electrocardiogram data of Vol-

unteer 1.

We apply the same method to all other electrocardiograms of patients and volunteers.
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2.3 Statistical Modeling for Electrocardiogram Data

According to Section 2.2, we decompose the electrocardiogram data of all patients and
volunteers into two processes: higher peaks and lower peaks. In addition to these most
noticeable features, we can have more other features which capture the most important

shape features of an electrocardiogram.

2.3.1 TUnivariate Shape Features for Electrocardiogram Data

Without loss of generality, we continue to use the electrocardiogram data of Patient 1
as an example. Let Y = (y1,¥2,¥3, %4, - )7 be the data value vector for Patient 1, then
the following seven important statistical features can be calculated:

1. Maximum value of higher peak (pogx—1,p2k): Plm,, K =1,2,3, -

2. Range of higher peak (pak—1,P2k): PlrH, = Y, —MID(Ypye 1" s Ypp), K =1,2,3,- -
3. Maximum value of lower peak (pok,por+1): Plmr, = MaX(Ypyr * 1 Upgpin)s K =
1,28, .x

4. Range of lower peak (pak, P2k+1): PlrRLy = Umie — MID(Ypyrs*** y Upgrss ) K =1,2,3, -+
5. Width of higher peak (pok—1,p2k): Plwn, = (Pox — P2k—1)/f, f = 1000hz, k =
1,2,3,---

6. Width of lower peak (pok, Pok+1): Plwr, = (Pok+1—p2k)/f, f = 1000hz, k =1,2,3, -
7. Average value of lower peak (pa, Pok+1): Plavi, = (Ypoe + * -+ Vpass )/ (P2kr1 =P +1),
k=123,

So for the kth segment (pok—1, pak+1) in the electrocardiogram data of Patient 1, we

15



have an corresponding feature vector of seven important statistics:

Pl = (pPling, PLREL, Pliniy, PLRL,, PlwH,, Plwiy, Plave, )T, kE=1,2,3,---.

Then the group set of feature vectors: {P1,,, ,k =1,2,3,---} can be used to represent
the electrocardiogram data of Patient 1 for further study. We apply the same method
to all the other electrocardiogram data of patients and volunteers, then we have:
{P2u,.k = 1,2,3,-+-} (P2h, = (02m,, P2RH,, P2mLy» P2RLy» P2WH,, P2W Ly, P24V L))
for Patient 2,
{P3h, .k = 1,2,3,---} (P3ny, = (p3m,» P3RH,» P3mLy» P3RLy» P3WH,» P3WL,, P3avi,)T)
for Patient 3,
{(Vig, k = 1,2,3,---} (Vip, = (vVlm, v1rH,, VimLe, V1RL,, Viws,, V1wL,, v1ave,)T)
for Volunteer 1,
{V2h,k = 1,2,3,- -} (V2ht, = (V2my, V2RH, » V2mLy» V2RLe V2W Hy» V2W Ly V24V, )T )
for Volunteer 2,
{V3p, .k = 1,2,3,-++} (V3p, = (v3m, V3RH, V3mLy> V3RL,, V3WH,» V3W L., V3avL,)T)
for Volunteer 3.

The following figures are the boxplots and density plots of the seven statistical fea-

tures for the electrocardiogram data, separately.
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Figure 2.7: Boxplot of the maximum value of higher peak.
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Figure 2.8: Density of the maximum value of higher peak (Solid lines: Patients, Dash

Lines: Volunteers).

Figures 2.7-2.8 are the boxplots and pdfs of the maximum of higher peak of the elec-
trocardiogram data: {{plm,}, {P2m,}, {P3m.}, {v1m }, {v2m, }, {v3mi}}s & = 1,2,3,---
for V1, V2, V3, P1, P2, P3. From Figure 2.7, the center of the boxplots of V1, V2,
and V3 are greater than 0.8 (between 1.2 and 1.4 for V1, between 1.0 and 1.5 for V2,
between 0.8 and 0.9 for V3), but the center of P1, P2 and P3 are less than 0.8 (between
0.3 and 0.4 for P1, between 0.4 and 0.5 for V2, between 0.7 and 0.8 for V3). Figure 2.8
(Solid lines: left for P1, middle for P2, right for P3. Dash lines: high for V1, middle for

V3, low for V2) shows the same property for the pdfs of the maximum of higher peak,

18



and the pdfs of patients are more compact (less variance) than the pdfs of volunteers.
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Figure 2.9: Boxplot of the range value of higher peak.

Figures 2.9-2.10 are the boxplots and pdfs of the range value of higher peak of
the electrocardiogram data: {{plgm,}, {P2rnu,}, {P3ru.}, {v1rH,}, {v2RH, }, {v3RE,}},
k=1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see
that the center of the boxplots of V1 and V2 are around 2.0, and the center of V3 is
around 1.5, but the center of P1, P2 and P3 are less than 1.5 (between 0.6 and 0.7 for
P1, between 0.9 and 1.0 for V2, between 1.0 and 1.5 for V3). Figure 2.10 (Solid lines:
left for P1, middle for P2, right for P3. Dash lines: high for V1, middle for V3, low for
V2) shows the same property from the pdfs of the range value of higher peak for V1,

V2, V3, P1, P2, P3. The pdfs of P1, P2, P3 are more compact (less variance) than the

19
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Figure 2.10: Density of the range value of higher peak (Solid lines: Patients, Dash Lines:

Volunteers).
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Figure 2.11: Boxplot of the maximum value of lower peak.

Figures 2.11-2.12 are the boxplots and pdfs of the maximum value of lower peak of
the electrocardiogram data: {{plmr,}, {P2mr,}, {P3mLi}s {v1mL}s {v2mL}, {v3mL.}}
k=1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see
that the centers of the boxplots of V1, V3 and P3 are around 0, but the center of P2
are around 0.2, and the centers of P1 and V2 are around 0.15. Figure 2.12 (Solid lines:
left for P3, middle for P2, right for P1. Dash lines: high for V3, middle for V1, low for
V2) shows the same property from the pdfs of the maximum value of lower peak for V1,

V2, V3, P1, P2, P3.
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Figure 2.13: Boxplot of the range value of lower peak.

Figures 2.13-2.14 are the boxplots and pdfs of the range value of lower peak of the
electrocardiogram data: {{plrr.}, {P2&e,} {P3rL.}, {v1irL,}, {v2RL. }, {v3RL }}, &k =
1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see that
the centers of the boxplot of V2 is around 0.8, and the center of all other boxplots of V1,
V3, P1, P2, P3 are around 0.5. Figure 2.14 (Dash lines: left for V3, middle for V1, right
for V2. Solid lines: high for P2, middle for P1, low for P3) shows the same property

from the pdfs of the range value of lower peak for V1, V2, V3, P1, P2, P3.
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Figure 2.14: Density of the range value of lower peak (Solid lines: Patients, Dash Lines:

Volunteers).
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Figure 2.15: Boxplot of the width of higher peak.

Figures 2.15-2.16 are the boxplots and pdfs of the width of higer peak of the elec-
trocardiogram data: {{plwam,}, {P2wa.}, {P3wa.}, {viwm.}, {v2wnr,}, {v3wnr, }}, k& =
1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see that
the centers of the boxplots of V2, and V3 are around 80, the center of V1 is around 60.
But the center of P1, P2 and P3 are around 70. In Figure 2.16 (Dash lines: high for V2,
middle for V1, low for V3. Solid lines: high for P1, middle for P2, low for P3), we can
also see the same pattern from the pdfs of the width of higher peak for V1, V2, V3, P1,

P2, P3.
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Figure 2.16: Density of the width of higher peak (Solid lines:

Volunteers).
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Figure 2.17: Boxplot of the width of lower peak.

Figures 2.17-2.18 are the boxplots and pdfs of the width of lower peak of the elec-
trocardiogram data: {{plwr,}, {P2wr,}, {P3wr. } {viwr. }, {v2wr. }, {v3wr, }}, & =
1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see
that the centers of the boxplots of V2, V3, P1, P2, P3 are all around 750, but the center
of the boxplot of V1 is around 650. In Figure 2.18 (Dash lines: high for V1, middle for
V2, low for V3. Solid lines: high for P2, middle for P3, low for P1), we can also see the

same pattern from the pdfs of the width of lower peak for V1, V2, V3, P1, P2, P3.
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Figure 2.18: Density of the width of lower peak (Solid lines: Patients, Dash Lines:

Volunteers).
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Figure 2.19: Boxplot of the mean value of lower peak.

Figures 2.19-2.20 are the boxplots and pdfs of the mean value of lower peak of the elec-
trocardiogram data: {{plavc,}, {P2avi,}, {P3ave.}, {vlave, b {v2ave, } {v3ave, }} k=
1,2,3,--- for V1, V2, V3, P1, P2, P3, respectively. From the boxplots we can see that
the centers of the boxplots of V1, V2, V3, P2, P3 are all around —0.2, except that the
center of the boxplot for P1 is around 0. In Figure 2.20 (Dash lines: high for V3, middle
for V1, low for V2. Solid lines: high for P1, middle for P2, low for P3), we can also see
the same pattern from the pdfs of the mean value of lower peak for V1, V2, V3, P1, P2,
P3.

According to Section 2.2, given the time position vector of the maximum of higher

peaks: M = (my,mg,m3,my,---)¥, we also consider its position variation vector:
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Figure 2.20: Density of the mean value of lower peak (Solid lines: Patients, Dash Lines:
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Figure 2.21: Boxplot of position variation vector of maximum.

VM = (vmy,vmg,vma,--+ )T (vm; = miyy — my, i = 1,2,3,--+) for all the electro-
cardiogram data of V1, V2, V3, P1, P2 and P3.

Figures 2.21-2.22 are the boxplots and pdfs of position variation vector of the electro-
cardiogram data: VM = (vmy, vmg, vmsg, - -- )T for V1, V2, V3, P1, P2, P3, respectively.
In Figure 2.27 (Dash lines: high for V1, middle for V2, low for V3. Solid lines: high for
P2, middle for P3, low for P1), we can see that the pdfs of position variation vector for
P1, P2 and P3 are much more compact (less variance) than that of V1, V2, and V3 . In
Figure 2.22, the centers of the boxplots of V1, V2, V3, P1, P2, P3 are almost the same

around 800.
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Figure 2.22: Density of position variation vector of maximum (Solid lines: Patients,

Dash Lines: Volunteers).
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2.3.2 Feature Vectors for Electrocardiogram Data

Consider now the means of each univariate feature discussed in Section 2.3.1. Specifically,
for each subject consider the following 7 statistics,
: mean value of maximum value of higher peak,

: mean value of range of higher peak,

| & 3§

=
h

: mean value of maximum value of lower peak,

2

: mean value of range of lower peak,

H : mean value of width of higher peak,

-

3

: mean value of width of lower peak,

N

V'L : mean value of average value of lower peak.
Then for each subject define YC as the 7-component feature vector with these statis-

tics,

YC=(MH,RH,ML,RL,WH,WL,AVL)T.
For the electrocardiogram data of patients and volunteers, the feature vectors will
be denoted as YC,1, YCps, YCp3, YC,1, YC,2, and YCy3.
Table 2.3 gives the value of all the seven feature vectors of the electrocardiogram

data for all the patients and volunteers.
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Table 2.3: The feature vectors for electrocardiogram data of the patients and volunteers.

MH RH ML RL WH WL AVL

V1 | 1.3213 | 1.9370 | -0.0014 | 0.6143 | 0.05780 | 0.6094 | -0.2848

V2 | 1.3145 | 1.8893 | 0.2416 | 0.8159 | 0.0857 | 0.7516 | -0.2239

V3 |0.8774 | 1.3201 | 0.0155 | 0.4581 | 0.0771 | 0.8111 | -0.2764

P1 | 0.3529 | 0.6675 | 0.2167 | 0.5313 | 0.0751 | 0.8014 | -0.0032

P2 | 0.4571 | 0.9216 | 0.1348 | 0.5993 | 0.0715 | 0.7168 | -0.2434

P3 | 0.7563 | 1.2883 | 0.0539 | 0.5859 | 0.0651 | 0.7413 | -0.2495

2.3.3 Comparing Univariate Shape Features of Electrocardio-
gram Data

In this section, We compare the electrocardiogram of patients and volunteers through
each of 7 components in the feature vectors.

Figure 2.23 displays the mean of the maximum value of the higher peak and lower
peak between the two group of volunteers and patients. We can see that volunteers and
patients separate well in the first case. However, there is no separation in the second
case. In fact, they almost overlap each other on the first point, although they separate

well in the second and third point.
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Figure 2.23: Mean of the maximum value of the higher peak (left) and lower peak (right)

(Triangle: Volunteer, Circle: Patient).
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Figure 2.24: Mean of the range of the higher peak (left) and lower peak (middle), and

their ratio (right) (Triangle: Volunteer, Circle: Patient).

Figure 2.24 displays the mean of the range of the higher peak and lower peak for
volunteers and patients, also displays the ratio of the mean of the higher peak over the
mean of the range of the lower peak for volunteers and patients. We can see that the
two groups of volunteers and patients are separate well in the first case, but they are
across each other in the second case. The two groups of volunteers and patients separate

well in the third case.
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Figure 2.25: Mean of the time interval of the higher peak (left) and lower peak (middle),

and their summation (right) (Triangle: Volunteer, Circle: Patient).



Figure 2.25 displays the mean of the time interval of the higher peak and lower peak
for the volunteers and patients, also the sum of the mean of the higher peak and the
mean of the range of the lower peak for volunteers and patients. We can see that the

two groups of volunteers and patients are across each other in all the three cases.
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Figure 2.26: Mean of the original value of the lower peak (Triangle: Volunteer, Circle:

Patient).

Figure 2.26 displays the mean of the original points value of the lower peak for
volunteers and patients. We can see that the two groups of volunteers and patients

separate well in this case.



Chapter 3

Clustering Analysis of

Electrocardiogram Data

3.1 Hierarchical Clustering Analysis

Cluster analysis aims to group multivariate observations into subsets of similar charac-
teristics. Traditionally, this has been accomplished through a similarity measure such
as a distance to establish when two observations are close or far apart.

The hierarchical clustering (Johnson, 1967) is a natural and simple unsupervised
clustering algorithm. Given a group of N data vectors {X;, Xy, X3, -, Xy} to be clus-
tered, and an N % N distance matrix DS?)={HXi - Xil, 4,7 €{1,2,--- ,N}} (|IX; — Xl
is the distance measure between data vector X; and data vector X ), the basic process
of this hierarchical clustering algorithm is the following:

1. Assign each vector in { X1, Xy, X3, -+, Xy} to a cluster with each cluster contain-
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ing just one data vector. Let {A(lo), Ago),AgO), e ,ASS)} be the set of clusters. Calculate

the N x N distance matriz fo):{HAEO) — A;-O) , 4,5 €4{1,2,--- ,N}} (HASO) - AE-O)“ is

the distance measure between cluster AEO) and cluster Ago)). In the case of initial step,

D= DY,

2. Find the closest pair of clusters according to the NxN distance matriz DS)) ={‘ AEO) - AE.O) ”,
i,j € {1,2,---,N}} and merge them into a single cluster, then the number of clusters

; = . (1) A1) 4 . 40Q)

in { X1, Xo, X3, -+, Xn} reduces to N — 1 clusters: {A;’, Ay, Ay’ AN}

3. Compute the (N — 1) * (N — 1) distance matric Dﬁ,”:{‘ Agl) - Aﬁ-l)

y LJ €

{1,2,---,N-1}} (’ Az(.l) - A§1) is the distance measure between cluster Agl) and cluster

A;I)) for the N — 1 clusters: {A(ll),Agl),Agl), e ,A%)__l}.

4. Repeat steps 2 and 38 until all data vectors { Xy, Xo, X3,--- , XN} are clustered
into a single cluster of size N.

In step 3 of the algorithm, if the distance between one cluster and another cluster
HAEI) — Ag.l)H is equal to the shortest distance from any member of cluster Agl) to any

member of the other cluster A§-1), we say that it is single-linkage hierarchical clustering.

Alternatively, in step 3 of the algorithm, if the distance I Agl) - Ag-l)H between one
cluster and another cluster is equal to the greatest distance from any member of one
cluster Af-l) to any member of the other cluster A§1), then it is called complete-linkage
hierarchical clustering.

Also, in step 3 of the algorithm, if the distance HAZ(I) - Agl)“ between one cluster
and another cluster is equal to the distance fromn the centroid Cgl)of one cluster AEU to

the centroid Cg” of the other cluster Agl), then it is called centroid-linkage hierarchical
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clustering.
In clustering the six feature vectors: {YC,1, YCp2, YC,3, YC,1,YCy2, YC,3} for

the electrocardiogram data of patients and volunteers, we use centroid-linkage hierar-

chical clustering in step 3. The distance measure Hcg.” - Cgl)

' in the centroid-linkage
hierarchical clustering method is Euclid distance measure, and the centroid Cgl) of clus-
ter Agl) is calculated as the average of the data vectors in the corresponding ith cluster

partition Afl):

where N; denotes the number of data vectors in Agl) and X](l) € Agl), j=1,---, N

Table 3.1: Hierarchical clustering process for electrocardiogram data.

Cluster Partitions

Initial {YCpl}a {chg}, {Yde} {chl}, {YCUQ}, {chg}

].St step {chl }, {Ysz}, {YCUI }, {chz}, {ch;;, YCU;;}

2™ step {YC.,1}, {YC.,}, {YC,,YCu}, {YC,,YCp}
37 step {YC,3,YC,s}, {YC,,YCp}, {YC,,YC,2}
4" step {YC,3,YC,3,YC,1,YCp2}, {YC,1,YC,2}
5% step {YC,3,YCy3,YC,1,YC,2, YC,1, YC,2}

Table 3.1 displays the process of hierarchical clustering. Figure 3.1 gives more de-

tails in the visualized sense for centroid-linkage hierarchical clustering for the six feature
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vectors: {YCp1, YCpo, YCp3, YC,1, YC,y2, YC,3} for the electrocardiogram data of pa-

tients and volunteers.

]

V1 V2 V3 P3 Pl P2

Figure 3.1: Hierarchical clustering tree for electrocardiogram data.

From Table 3.1 and Figure 3.1 we can see that the feature vectors for V1 and V2
are close to each other, the feature vectors for V3 and P3 are close to each other, and
the feature vectors for P1 and P2 are close to each other. We know that all the six
electrocardiogram data come from two clusters: patients and volunteers. From Figure
3.1 of centroid-linkage hierarchical clustering, we can see that P1, P2, P3, V3 are in one

cluser, and V1, V2 are in the other cluster.

3.2 K-means Clustering Analysis

Another solution to the well-known clustering problem is provided by the K-means
clustering method (MacQueen, 1967), which has been established as a good and sim-
ple unsupervised learning algorithm. We wish to classify a group of N data vectors
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{X1,X3, X3, -+, Xy} into a certain number of clusters (assume K clusters, which is

known a priori) with cluster centroids {C;, Cs, Cs, -+ ,Ck}. Initially, we should give
K centroids: {Cy™, Ci* C¥ ... Ci*} one for each cluster. The next step is to take
each data vector in {X;, X3, X3, -+, X} and associate it to the nearest centroid in the

centroid sets: {Ci™ Cy™ Ci™t ... C@%*}, Theith (i = 1,--, K) cluster partition is
{Xgi), e ,Xﬁf,)i}, where N; is the number of data vectors in ith cluster partition. We
also have the simple relationship: N; + --- + Ng = N. Then according to the new K
clusters partition, we recalculate the new K centroids: {C7**,C3*, C3*¥,.-. , C¥"}.
After we get the new K centroids: {CT¢, C3*¥, C3°¥, .-, C¥"}, we repeat the process
of taking each data vector in {X;, Xs, X3, -+, X} and associate it to the nearest cen-
troid in {CT**, C5*, C5*”,--- ,C¥™} and recalculate the new K centroids again. As a
result of this loop we will notice that the K centroids change their location step by step
until no more changes are done, then we say that data vectors {X;, Xy, X3, , Xy}
are classified into K clusters.

In general, the K-means clustering method is actually used to minimize the square

error function of the classification, which is called the objective function:

2

K N;
1= 3 xo-alf

4=1 =1

where ”Xﬁ-i) — C;|| is a chosen distance measure between the data vector Xgi) and its

cluster center vector C;. We can see that the objective function is a measure of the

distance of all the N data vectors {X;, Xz, X3, -+, Xy} from their respective cluster
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centroids {C;,Cy,Cs, - ,Ck}. From the recursive procedure of K-means clustering
method, we know that we will reduce the value of the objective function J when we get
the new K centroids: {CT*¥, C3**,C3°, .- ,C¥"}, and we also know that J > 0. So
if good initial K centroids {C¥™, Cy* Ci¥, ... C%*} are given (Bradley and Fayyad,
1998), then the K-means clustering algorithm will converge in finite steps. A safe choice
is to place the initial K centroids {Ci™*, Ci Cir¥ ... C%#} as far away as possible
from each other.

The algorithm is composed of the following steps:

1. Place K initial centroids {C™, Civit Cit ... CW*} into the space represented
by the data vectors that are being clustered {X;, Xq, X3, , Xn}.

2. Assign each data vector in {X;, Xz, X3, -+ ,Xn} to the cluster partition that has
the closest centroid in {C™, Ci™ Ci ... C74Y.

3. When all data vectors in {X1,X, X3, ,Xy} have been assigned, recalculate
the new K centroids {CT*”, C3*¥, C3**,--- ,Ci"}.

4. Repeat Steps 2 and 8 until the centroids no longer move or the value of the objective
function J is less than some preset valve €.

The distance measure HX?) — Ci, for the K-means clustering method is Euclid

distance measure, and the new K centroids {C7*”, C3°”,C3%, ...  C¥™} are calcu-
lated as the average center of the corresponding ith (¢ = 1,---, K) cluster partition

{Xgi)’ o 7X$\llz}
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Table 3.2: Results for the process of K-means clustering for the electrocardiogram data.

Initial Ci0 =(0.5, 0.9, 0.1, 0.6, 0.03, 0.7, —0.1) Cgo =(0.2, 0.6, 0.2, 0.5, 0.01, 0.90)
step
1%t step Cluster 1={V1, V2, V3, P1, P3}
C1:=(0.945, 1.47, 0.09, 0.615, 0.07, 0.726, —0.256)
Cluster 2={P2}
C,1=(0.353, 0.667, 0.217, 0.531, 0.0751, 0.801, —0.003)
2" step | Cluster 1={V1, V2, V3, P3}
Ci2= (1.068, 1.609, 0.077, 0.619, 0.0714, 0.728, —0.259)
Cluster 2={P1, P2}
Ca2=(0.405, 0.795, 0.176, 0.565, 0.073, 0.759, —0.123)
34 step | Cluster 1={V1, V2, V3, P3}

C,3= (1.068, 1.609, 0.077, 0.619, 0.0714, 0.728, —0.259)
Cluster 2={P1, P2}

Cy3=(0.405, 0.795, 0.176, 0.565, 0.073, 0.759, —0.123)

According to Section 2.3, for the electrocardiogram data, our objective is equivalent

to classify a group of 6 feature data vectors {YC,;, YCp2, YC,3, YCy1, YCyo, YCy3}

into two clusters with cluster centroids {Cy, C2}. Table 3.2 shows the process of the K-
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means clustering algorithm for the electrocardiogram data. The clusters and centroids
are given in every recursive step in the K-means clustering algorithm. The K-means

algorithm stops at the 3" step, as the centroids do not move anymore.
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Figure 3.2: K-means clustering for electrocardiogram data.

Figure 3.2 gives more details in a visualized manner. The mean value of range of
lower peak is used as the x-coordinate, and the mean value of range of higher peak is
used as the y-coordinate for the figure. The triangle points represent the feature vectors
of the electrocardiogram data for healthy volunteers: V1, V2, V3. The circle points
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represent the feature vectors for patients: P1, P2, P3. The square points represent the
centroids in every recursive step of the K-means clustering algorithm. And the arrows
show the direction from one step to the next step in the process of K-means clustering.
The straight line in the middle of the figure is the final separation of the 6 feature vectors
into two clusters.

From Figure 3.2 of K-means clustering method for the case of electrocardiogram data
of patients and volunteers, we can see that V1, V2, V3 and P3 are in one cluster, and

P1, P2 are in the other cluster.

3.3 Andrews-Plot Clustering Analysis

Plotting has been one of the most useful statistical tools in data analysis, especially in
exploratory data analysis of high-dimensional data. It is well-known that the plotting
of residuals is a reliable way to test the adequacy of a model fitting, and distributional
assumptions are frequently based on probability plots. Some plotting techniques such as
Trellis plots and parallel coordinate plots were found in Wegman and Carr (1993) and
Wegman et al. (1993). But Andrews plot introduce by Andrewss (1972) stands out,
as it is supported by solid mathematical justification and has the desirable property of
preserving means, distances and variances of the original vector data. Embrechts and
Herzberg (1991) introduced other orthogonal functions such as Chebychev polynomials
and Legendre polynomials into Andrews plot and they show their good performance in

clustering the Iris Data (Fisher, 1936). Wavelets were also introduced into Andrews plot
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by Embrechts et al. (1995). Khattree and Naik (2002) provided other trigonometric

functions for Andrews plot.

3.3.1 Clustering Analysis Using the First Andrews Plot Func-
tion

Given a data vector Y = (1,2, ¥3, -+ )T, the Andrews-Plot function for Y is:

Ay(t) = y1/V2 + yasint + yscost + yysin 2t + yscos 2t + -+ ,—wr <t <m.  (3.1)

The Andrews-Plot function has many desirable properties relevant to the clustering
analysis for multivariate data, especially for high-dimensional data.
1. Andrews plot function preserves means of the data

Let Y be the mean of a group data vectors {Y1, Y2, Y3, , Yy}, then it is obvious

that:

N
Avlt) = 5 3 Av)

i=1
which means that the Andrews plot of the average vector Y is the same as the average
of the Andrews plots for all the original data vectors: {Y1,Ys, Y3, - Yn}.
2. Andrews plot function preserves distances of the data

Assume we have two N-dimensional data vectors: Y = (y1,y2,¥s, - .yn)’ and

X = (z1,29,23, - ,xy)T. ||X = Y] is the Euclidean distance between them. We define
the distance between the Andrews plot functions of X and Y as the following:
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™

IAx() - Av(®)l, = / (Ax(t) — Ay(t))dt.

=

Moreover, we can see from the following that this distance is proportional to the

Euclidean distance || X — Y]|.

[ Ax(t) — Ay ()|,
JZ. (Ax(t) = Ay(t))%dt
= 3(z1 —y1)? [T, 1dt + (z2 — y2)? [ (sint)?dt + (z3 — y3)? [ (cost)?dt + - -

4 2
=7y, (zi— yi)
=1

The last equality comes from [" 1dt = 27, and ["_(sint)?dt = [7_(cost)?dt = .

-
So we can say that if the original data vectors X and Y are close in the vector space,

then the Andrews plot functions Ax(¢) and Ay(t) will still stay close. Then clusters

and outliers in the original data vectors can be identified visually from the respective

Andrews plot functions.

3. Andrews plot function preserves variance of the data

)T

Assume we have a data vector: Y = (y1, 2,3, -+ ,y~n)", and {v1,y2,y3, "+ ,yn} are

uncorrelated random variables with common variance o2,

We have var(Ay(t)) = 0%(1/2 + (sint)? + (cost)? + (sin 2¢)? + (cos 2t)2 + - -+ ). Thus
when N is odd, var(Ay(t)) = 3No?, and when N is even, var(Ay(t)) = 3(N — 1+
25in?(Nt/2))o?. And we have the following relationship,

%(N ~ 1)0? < var(Ay(t)) < ~(N + 1)o2.

[Nl
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In the first case (when N is odd) the variance does not depend on ¢ and in the second
case (when N is even) the relative dependence on ¢ is small and it decreases when N
increases. Thus, the variability of Andrews plot function is almost constant across the
graph.

4. The Andrews plot function produces one-dimensional projections

Given a data vector: Y = (y1,%2,¥3, )7 and its Andrews plot function Ay(t) =

Y1/V2+ yasint + ys cost + y4 sin 2t 4+ y5 cos 2t + - - -, and a particular value of ¢t = to, we

have the 