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Abstract 

In this report we explore how the effect of meteorological factors, allergens, and air pollution 

on respiratory conditions in children using longitudinal data. Our analysis makes use of a 

dataset from the DAVIS study in southern Ontario. The response variables are children's 

lower respiratory tract (URT) and upper respiratory tract (URT) scores. The explanatory 

variables are readings of various meteorological, allergen, and air pollution factors. First we 

make use of generalized estimating equations to find the main factors that are associated 

with certain respiratory conditions in children as measured by LRT and URT scores. Then 

we determine whether there are any interactions between the significant factors associated 

with LRT /URT scores. Comparisons between case and control groups are made to determine 

whether children with asthma are more sensitive to any of the changes in meteorological, 

allergen, and air pollution factors. The analysis results show that the significant factor that is 

associated with LRT scores for children with asthma is the two-day lag daily average changes 

in air pressure. On average an increase in air pressure will result in an increase in children's 

LRT scores. The interaction terms that remained in the final model show some degree of 

significance but without strong evidence to support it. Children in the case groups are more 

sensitive to meteorological factors, allergens, and air pollution than the children in control 

groups. 
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Chapter 1 

Introduction 

1.1 Motivation 

Asthma is the leading cause of hospitalization in children. In Canada, 10 to 15 percent of 

children are reported to have asthma, though it is believed that the rate could be as high 

as 20 percent. It is believed that meteorological factors, air pollution, and allergens may 

exacerbate asthma attacks in children. But few studies have used longitudinal analysis to 

investigate the relationship among lower/upper respiratory tract (LRT/URT) problems, me­

teorological factors, air pollution, and allergens on a daily basis, especially the effect of any 

combination of meteorological factors, air pollution and allergens. Many studies have exam­

ined the daily count of asthma admission or emergency room visits in relation to short term 

fluctuations in measured thunderstorms, pollen, trees, and air pollution. Furthermore, the 

etiology in asthmatic children is unknown. Knowing the association among meteorological 

factors, allergen and air pollution on asthma in children can help the prevention of asthma 

attacks. 
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1.2 DAVIS Study Asthma Data 

The data for the current study were obtained from Mr. Neil Johnston, a research member 

from the Firestone Institute for Respiratory Health at St.Joseph's Hospital in Hamilton, 

Ontario. The individual personal file came in as an Access file and the meteorological, air 

pollution, and allergens data came in as Excel files. About 5% of the subjects have missing 

values on the skin sensitivity test. 

1.2.1 Lower and Upper Respiratory Tract Score Data 

The individual data: Daily scores of LRT and URT were collected from July 2003 to Decem­

ber 2004 inclusive in Southern Ontario using a Secure Internet based system from a cohort 

of 208 asthmatic and non-asthmatic children. The lower respiratory tract consists of the 

part of the respiratory system including the trachea, primary bronchi, and lungs. The upper 

respiratory tract consists of the part of the respiratory system including the nasal cavity, 

pharynx, and larynx. The scores are given according to the severity of the symptoms in 

each part. The LRT scores are in the range of 0 to 18 and the URT scores are from 0 to 

9. Lower respiratory tract problems are generally more serious than upper respiratory tract. 

Children's demographic characteristics such as age and gender were collected. Children 

were categorized into different groups according to treatment/control, atopic/non-atopic, 

asthmatic/non-asthmatic, gender, and age. The asthmatic group consists of those subjects 

that have had physician confirmed asthma attacks in the past. The atopic group consists 

of subjects that failed at least two types of skin sensitivity test. Subjects in the study were 

between ages of 5 and 11. 
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1.2.2 Air pollution, Aeroallergen, and Meteorological Data 

The weather data: Hourly measures of temperature, pressure and humidity were recorded 

every day from November 2003 to December 2004. Then daily average temperature, 

humidity and pressure were computed as the mean of the three respective values. The 

difference between daily maximum and minimum were calculated as the range for tem­

perature, pressure and humidity. The temperature, pressure and humidity change were 

computed as the difference of average temperature, pressure and humidity and the one 

day lag values of the variables respectively. The absolute daily changes of the val­

ues were computed as well. Also whether a thunderstorm has occurred hourly was 

recorded. Here, we are interested in the number of hours in a day which a thunder­

storm has occurred. Then each of the calculated variables were plotted against time 

to check whether there is any trend. Moving average were used to remove any trend or 

seasonality. From the plots, only the mean temperature need a moving average. Then 

the one day lag and two day lag values were also computed to observe the day to day 

changes. Finally the logarithms values were computed for each of the variables. 

The air pollution data: Hourly measures of Sulphur Dioxide (802 ), Nitric Oxide (NO), 

Nitrogen Dioxide (N02), Nitrogen Oxides (NOx), Carbon Monoxide (CO), and Ozone 

(03) were collected from January 2004 to December 2004. There were five monitoring 

sites for pollutants. We used Brantford, Burlington, and Hamilton downtown since 

these three sites have similar amounts of the pollutants we were interested in. The 

corresponding average and range were computed for analysis. If any reading from one 

site is greater than two times of the average value of the other two sites, then the 

average will be used in the final analysis. No moving averages were needed for the 

pollutant data. Finally the corresponding logarithms for the pollutant variable and 

their one day lag and two day lag values were computed. 

The allergens data: There are no allergen readings in the winter time. The aeroallergen 

data has been collected from April 2004 to November 2004 using rotational impaction 

sampling located in each city. The particle adhering to the silicon grease-coated sample 
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rods was analyzed to determine the number of particles present per cubic meter of air 

sampled. Daily measures of total trees, total weeds, total pollen, total basidiomycetes, 

total ascomycetes, and total other spores were collected from Hamilton, London and 

Brampton sites. Since there were quite a lot of missing values in the Hamilton site, the 

other two site readings were used to fill the values. First the average of the other two 

sites with respect to each of the six variables are calculated. If the reading in Hamilton 

site is missing, then the average of London and Brampton value will be used; if the 

value in Hamilton value is not missing, but the reading is two times greater than the 

average of the other two sites, then the average of London and Brampton readings will 

be used. Since all the aeroallergen variables have trend, moving averages are done for 

each of them. Then the corresponding logarithms for each variable and their one day 

lag and two day lag values were computed. 

1.2.3 Missing Data 

It is desirable to have complete data for the longitudinal analysis. The method we used to 

estimate the missing values was to use the available measurements from the other monitoring 

sites on the same day. Most of the missing values occurred in the air pollutant data. For 

example, if the pollutant measure was missing from the Hamilton downtown site, then the 

average of readings from the other two sites was used. We were also informed that the 

pollutant measures from the Hamilton downtown site were not reliable. So we also checked 

to see if the Hamilton pollutant readings were within a reasonable range. If a value is missing 

completely for all the sites on a particular day (which happened with some of the aeroallergen 

data), then the interpolation method was used to fill in the missing values. The method used 

was to fit a cubic. 
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1.3 Objectives 

The purpose of this study is to test whether changes in children's LRT or URT scores 

are associated with meteorological factors, allergens, and air pollution among children with 

different characteristics. Also we want to test whether the interaction between these factors 

are significant for predicting LRT or URT scores. 
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1.4 Descriptive Analysis of DAVIS Data 

Table 1.1 below gives a listing and description of all the variables in the study. 

Table 1.1: Description of the original main variables 

Variable name 

Charl 

Char2 

Groupl 

Group2 

Group3 

LRT 

URT 

Temperature 

Pressure 

Humidity 

Thunderstorm 

Total pollens 

Total weeds 

Total trees 

Total ascomycetes 

Total basidiomycetes 

Total spores and other 

Sulphur Dioxide 

Nitric Oxide 

Nitrogen Dioxide 

Nitrogen Oxides 

Carbon Monoxide 

Ozone 

* parts per billion 

** parts per million 

Description 

Age group 

Gender 

Asthmatic and Non-Asthmatic 

Atopic and Non-Atopic 

adjudicated Asthmatic and adjudicated Non-Asthmatic 

Lower respiratory tract score 

Upper respiratory tract score 

Hourly temperature of the designated city 

Hourly pressure of the designated city(kPA) 

Hourly humidity of the designated city 

Has a thunderstorm occurred within the last hour 

Daily counts of total pollens (spores/m3) 

Daily counts of total weeds (spores/m3) 

Daily counts of total trees (spores/m3) 

Daily Counts of total ascomycetes (spores/m3) 

Daily counts of total basidiomycetes (spores/m3) 

Daily counts of total spores and other (spores/m3) 

Hourly measures of Sulphur Dioxide (ppb*) 

Hourly measures of Nitric Oxide (ppb*) 

Hourly measures of Nitrogen Dioxide (ppb*) 

Hourly measures of Nitrogen Oxides (ppb*) 

Hourly measures of Carbon Monoxide (ppm**) 

Hourly measures of Ozone (ppb*) 
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There were a total 208 children in the study. From table 1.2 we see that 60 percent of 

the subjects were male and 40 percent were female. A little more than 70 percent of the 

children were 5-8 years of age. In group 2, 17 of the subjects didn't have a skin test. The 

difference between group 1 and group 3 is that group 3 is with physician confirmed asthmatic 

and non-asthmatic cases, where group 1 is without confirmed examination. 

Table 1.2: Frequency of subjects' characteristics 

I Group I Variable Name I Freq \ Percent 

Char1 Male 121 58.17 

Female 87 41.83 

Char2 Age 5-8 149 71.63 

Age 9-11 59 28.37 

Group1 Asthmatic 125 60.10 

Non-Asthmatic 83 39.90 

Group2 Atopic 139 72.77 

Non-Atopic 52 27.23 

Group3 Adjudicated Asthmatic 147 70.67 

Adjudicated Non-Asth~atic 61 29.33 

Each subject was assigned a unique identifier. In cross sectional data, each subject has 

one row. In longitudinal data, each subject may have several rows, where each row represents 

one measurement. Unlike repeated measures, the measurements are correlated. Here, each 

subject has about 200 rows. Each row corresponds to daily measurement of the same subject. 

Figure 1.1 shows an example of data for one subject for the dates April 19-23, 2004, as well 

as the logarithm of the meteorological data for these days. Figure 1.2 shows typical Plots of 

individual Lower respiratory tract (LRT) scores from day to day for a typical asthmatic and 

non-asthmatic individual. Note that there are lots of LRT score variations in the asthmatic 

group Vs. a few variation in Non-Asthmatic group. 
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Figure 1.1: Snapshot of one individual record 

id groupl lrt urt eb$-1 eb$-2 group2 gronp3 Date_ Time SUM..,.TBUN LMA_MEAN_TEMP 

CAS0001 1 0 0 1 1 0 1 19APR2004 1 3.23665 

CAS0001 1 0 0 1 1 0 1 20APR2004 0 2.67828 

CAS0001 1 0 0 1 1 0 1 21APR2004 0 2.99294 

CAS0001 1 0 0 1 1 0 1 22APR2004 0 2.98311 

CAS0001 1 0 0 1 1 0 1 23APR2004 0 2.83708 

LMEAN_PRES LMEAN_HUM LRAN_TEMP LRAN_PRES LRAN_HUM LTEMP """<;;BA LPRES_CBA 

4.58847 4.12039 3.59182 0.15700 3.55535 3.23097 1.41929 

4.59649 4.32524 3.25424 -0.10536 3.36730 2.20138 1.75642 

4.58407 4.43921 3.56388 -0.23572 3.55535 3.25553 1.32873 

4.59402 4.24253 3.30689 0.24686 3.73767 2.96484 1.78828 

4.59657 4.25915 3.21084 -0.96758 3.09104 2.80714 1.65870 

LABS_ TEMP _CHA LABS_.PRES_CHA LLAGl_MA_MEAN_TEMP LLAG2_MA_MEAN_TEMP 

1.66849 -0.14406 3.10051 3.24953 

2.39448 -0.23361 3.23665 3.10051 

1.78059 0.20192 2.67828 3.23665 

-0.49703 -0.02105 2.99294 2.67828 

1.23474 -1.37634 2.98311 2.99294 

LLAGl_MEAN_PRES LLAG2.....MEAN_PRES LLAGl_MEAN_HUM LLAG2_MEAN_HUM 

4.59723 4.59605 4.48817 4.26678 

4.58847 4.59723 4.12039 4.48817 

4.59649 4.58847 4.32524 4.12039 

4.58407 4.59649 4.43921 4.32524 

4.59402 4.58407 4.24253 4.43921 

LLAGl_RAN_TEMP LLAG2_RAN_TEMP LLAGl_RAN_PRES LLAG2_RAN_PRES LLAGl_RAN_HUM 

3.51750 3.45947 0.12222 -0.31471 3.76120 

3.59182 3.51750 0.15700 0.12222 3.40120 

3.25424 3.59182 -0.10536 0.15700 3.17805 

3.56388 3.25424 -0.23572 -0.10536 3.40120 

3.30689 3.56388 0.24686 -0.23572 3.61092 

LLAG2_RAN_HUM LLAGl_TEMP_CBA LLAG2_TEMP_CHA LLAGl_PRES_CHA LLAG2_PRES_CHA 

3.33220 2.90508 3.18652 1.63275 1.54765 

3.76120 3.23097 2.90508 1.41929 1.63275 

3.40120 2.20138 3.23097 1.75642 1.41929 
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Figure 1.2: LRT Scores for Asthmatic and Non-Asthmatic Groups 
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1. 5 Preliminary Analysis 

The weather data are stored monthly. A macro has been programmed to import all the 

weather data at once (Appendix A). We first plotted the independent variables to check for 

the trend and seasonality. When a trend was present we applied a difference of daily average 

(Appendix B) to the variable to eliminate the trend. For example, Figure 1.3 shows that a lag 

average is needed for average temperature (MEAN-TEMP), but not for range temperature 

(RAN-TEMP). Similarly, Figure 1.4 shows that a lag average is not needed for daily average 

of nitrogen dioxide and sulphur dioxide. 
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Figure 1.3: Plots of daily average temperature, range temperature and their lag average Vs. 
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Figure 1.4: Plots of daily average of Nitrogen Dioxide and Sulphur Dioxide Vs. Date 
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Chapter 2 

Generalized Linear Models 

A generalized linear model is a generalization of linear models. A linear model specifies a 

linear relationship between the dependent variable Y and a set of of independent predictors 

X' s. However, many relationships can't be summarized in a simple linear equation and 

normality can't be assumed. The first reason is that the effect of predictors on dependent 

variable may not be linear. The second reason is that the dependent variable of interest has 

a non-continuous distribution. 

2.1 General Assumptions 

Generalized Linear Models are an extension of the linear modeling process that allows mod­

els to be fit to data that follow probability distributions other than the normal distribution, 

such as the poisson, binomial, multinomial, etc. In the analysis of generalized linear model, 

we need to specify three parts: the distributional assumption, the systematic component, 

and the link function. 
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2.1.1 Generalized linear models 

The classical linear !~egression models for scalar response }j and k covariates Xji, ... , Xjk is 

usually written as 

(2.1) 

The }j's are assumed to be independent. When the response is continuous, it is often 

assumed that the E/3 are independent N(O, u 2), so that 

(2.2) 

That is, the classical, normal-based regression model may be summarized as: 

• Mean: E(lj) == f(x/ [j). 

• Probability distribution: }j follow a normal distribution for all j and are indepen­

dent. 

• Variance: var(}j) = u 2 (constant variance). 

2.1.2 Generalization 

For response variables that are not well represented by a normal distribution, the above model 

is no longer appropriate. A generalized linear model extends the classical linear regression 

model as follows. 

• The mean of }j is assumed to be in the form 

E(lj) = f(x/[j), (2.3) 

where the function f is monotone and differentiable. This means that there is a unique 

function g, called inverse function of J, such that we may re-express the model in the 

form 

g(E(lj)) = x/[j. (2.4) 
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The function g is called the link function, because it "links" the mean and covariates. 

The linear combination of covariates and regression parameters x/ f3 is called the linear 

predictor. 

• The probability distribution }j is assumed to be one of the scaled exponential family 

class. 

• The variance of }j is assumed to be the form dictated by the distribution: 

var(}j) = ¢V(E(}j)), (2.5) 

where the function V() depends on the distribution and¢ might be equal to a known 

constant. The function V is referred to as the variance function. The parameter ¢ is 

often called the dispersion parameter. 

2.2 Iterative Reweighted Least Squares 

A natural approach to estimate f3 in all generalized linear model is to use maximum likelihood. 

The ML estimator for f3 is a solution to 

t, v (! (~;'.B)) {Y; - ! ("'/.B)}!' ("'/.B)"'; ~ o, (2.6) 

where f(x/ /3) is the mean of }j and f is the inverse link function. Here, f3 appears as 

a function of f. Unlike with ordinary least squares, it is not possible to solve the above 

equation for f3 explicitly, 
n 

L (}j - x/ f3)xj = 0. (2.7) 
j=l 

Therefore we must use a numerical algorithm. 

The algorithm used to solve this equation is called Iteratively Reweighted Least Squares, and 

is performed as follows. 

• Give a starting value {3(0 ) for {3,: Evaluate the weight at {3(0): 1/V{!(xj,/3(0)} 
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• Pretending the weights are fixed constants not depending on {3, solve equation (2.6). 

This still requires a numerical technique, but maybe accomplished by something that 

is approximately like solving (2. 7). This gives a new value {3(1 ). 

• Evaluate the weights at f3C1), repeat until two successive {3(1) are very close. 

2.3 Sampling Distribution of the MLE 

The sampling distribution of the estimator f3 can not be derived in closed form. By large 

sample theory, when n is large, the IRWS /ML estimator satisfies, 

(2.8) 

• A is a (n x p) matrix whose (j, k) element (j = 1, ... , n, k = 1, ... ,p) is the derivative of 

f(x/ {3) with respect to the kth element of {3. 

• Vis (n x n) diagonal matrix with diagonal element V{!(x/{3)}. 

2.4 Hypothesis Testing 

It is common to use the Wald testing procedures to test the hypothesis about {3, for the null 

hypothesis of the form 

Ho: L/3 = h, (2.9) 

we may approximate the sampling distribution of the estimate L/3 by 

(2.10) 

Then if L is a row vector, we can construct the test statistics and confidence interval from 

the "z-statistic" 
L,6-h 

z= ~ 

SE(L/3) 
(2.11) 

and more generally, the Wald test statistic would be 

(2.12) 
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and compared to the appropriate chi squared critical value with degree of freedom equal to 

the number of rows. 

17 



Chapter 3 

Generaliized Estimating Equations 

Correlated data arise from many health science trials such as case/ control studies with drugs, 

clinical trials with baseline, and follow up visits and longitudinal studies. The big concern 

about this kind of data is how to account for the correlated measurements. For longitudinal 

data for a group of subjects are likely to exhibit correlation between successive measurement, 

therefore, within subjects, factors are likely to be correlated, but between subjects are likely 

to be independent. In analysis of correlated data, if the correlation is not taken into account, 

parameter estimates and standard errors can not be trusted. 

The basic ideas of generalized estimating equations (GEE) are introduced by Liang and Zeger 

(1986). GEE is an extension of generalized linear model that provides a semi-parametric ap­

proach to longitudinal data analysis. The GEE methodology models a known function of 

marginal expectation of dependent variables as a linear function of one or more explanatory 

variables. With quasi-likelihood methods, statistical models are created by making assump­

tions about the link fimction and the relationship about the mean and variance, but without 

fully specifying the distribution of the response. GEE describes the random component of 

the model for each marginal response with a common link and variance function. 

The GEE methodology provides consistent estimate of the regression coefficients and vari­

ance under weak assumption about the actual correlation within a subject. This method 

relies on the independence among subjects to estimate consistently the variance of the pw-
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posed estimators when the assumed working correlation was incorrectly specified. In this 

section, the basic ideas of GEE are introduced by Liang and Zeger (2002). 

3.1 Population-Average Model 

The population-average approach is focused on modeling the mean response across the popu­

lation of units at each time point as a function of time. The model describes how the average 

across the population of responses at different time points are related over time. Liang and 

Zeger's (1986) original approach is to forget about trying to model the whole multivariate 

probability distribution data vector. Instead, the idea is just to model the mean response 

and the covariance matrix of a data vector as in the normal case. The alternative approach 

to model fitting for such mean-covariance models for non-normal longitudinal data does not 

require specification of a full probability model but rather just the mean and covariance 

matrix. 

3.1.1 Mean Variance Model 

The mean response model is 

/-lij = E(Yij) = f(x~j{j). (3.1) 

The variance of Yij is modeled as some function of the mean response J-lij 

(3.2) 

3.1.2 Overdispersion 

Sometime, the model for variance turn out to be inadequate for representing all the variation 

in observations taken at a particular time across units. 

• The aggregate effects of ( i) error introduced by taking measurements and ( ii) variation 

because units differ add up to be more than would be expected if we only considered 

observation on a particular unit. 
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• There may be other factors involved in data collection that make things look more 

variable than the usual assumptions might indicate: e.g. the subjects in the Davis 

study may have not kept accurate records of the number of LRT problems that they 

experienced during a particular time period, and perhaps recalled it as being greater 

or less than it actually was. 

Therefore, for count data, it is standard to modify the variance model to allow for an 

additional scale or overdispersion parameter 

(3.3) 

3.1.3 Working Correlation 

The last requirement is to specify a model describing correlation among pairs of observations 

on the same data vector. The model for correlation is attempting to represent how all sources 

of variation that could lead to association among observations "added up" the aggregate of 

• Correlation due to within-subject "fluctuations" on a particular unit (and possibly 

measurement error). 

• Correlation due to the simple fact the observations on the same unit are "more alike" 

than those from different units. 

Some commonly used correlation structures are as follows. 

(1) Unstructured correlation: For observations taken at the same time points for differ­

ent units, this assumption places no restriction on the nature of associations among 

elements of a data vector. Let lii and Yik, j, k = 1, ... , n be two observations on the 

same unit where all units are observed at the same time point. If Pik represents the 

correlation between lii and Yik, then Pik = 1 if j = k and -1 :::; Pik :::; 1 if j =/= k. The 

implied correlation matrix for a data vector with all n observations is the n x n matrix 
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1 P12 

P21 1 

Pln 

P2n 

Pnl Pn,n-1 1 

(3.4) 

where Pik = Pki for all j, k. Thus the unstructured "working'' correlation assumption 

depends on n(n- 1)/2 distinct correlation parameters. 

(2) Compound symmetry (exchangeable) correlation: This assumption says that the cor­

relation between distinct observations on the same unit is the same regardless of when 

in time the observations were taken. In principle, this model could be used with bal­

anced data, ideally balanced data with missing values, and unbalanced data where 

time points are different for different units. This structure may be written in terms of 

a single correlation parameter 0 < p < 1; i.e. 

1 p 

p 1 

p 

p 

p p 1 

(3.5) 

(3) One-dependent: This assumption says that only observations adjacent in time are 

correlated by the same amount -1 < p < 1. In principle, this model could be used 

in any situation; however, for unbalanced data with different time points, it may not 

make sense. The model may be written as 

1 p 

p 1 

0 

0 

p 

0 

0 

p 1 

(3.6) 

(4) AR(1): This assumption says that correlation among observations "tail of"; if -1 < 

p < 1, the model is 
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1 

p 

1 

(3.7) 

In principle, this model could be used with any situation; however, for unbalanced data 

with different time points, it may not make sense. 

3.1.4 Summary 

• Mean-response of a data vector Yi as a function of time, other covariates and parameter 

{J by using a generalized linear model-type mean structure to represent mean response 

of each element Yi. 

• Variance of each element Yi is modeled by the function of the mean that is appropriate 

for the type of data e.g., count data are taken to have poisson variance structure, which 

says that the variance of any element of Yi is the corresponding mean. These models 

are often modified to allow for greater variation both within and among units by the 

addition of a dispersion parameter ¢. 

• Correlation among observations on the same unit is represented by choosing a model, 

such as the correlation structures corresponding to AR(1), one-dependent or other 

specification. Because there is some understanding in doing this and no formal way to 

check it, the chosen model is referred to as the "working" correlation matrix. 

With the above considerations, the mean response model and variance of Yii is the same as 

(3.1) and (3.2). The standard deviation of Yij is given by {4>V(J.Lij)} 112 • Suppose unit i has 

ni observations, so that j = 1, ... , ni. Define the standard deviation matrix for unit i as the 

(ni x ni) diagonal matrix whose diagonal elements are the standard deviations of the Yij 
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under this model. Let 

{¢V(Jlil)}1/2 0 

0 { <;f>V (Jli2)}1/2 

0 

0 

0 
(3.8) 

Let R;, be the ni x ni correlation matrix under one of the assumption above. Then we can 

write the covariance matrix for vector }ij as 

1 1 

~i = 4>A{ R;,A{. (3.9) 

We have the following statistical model for the mean vector and the covariance matrix of a 

data vector Yi consisting of observations }ij, j = 1, ... , ni on unit i. 

E(Yi) = 

f(x~l{j) 

f(x~2{j) 
= fi([j), 

1 1 

var(Yi) = 4>A{ R;,A{. 

3.2 Generalized Estimati:rw; Equations 

(3.10) 

The considerations in the last section allows for specification of a model for the mean and 

covariance of a data vector of the form (3.10). It is not possible to use the principle of 

maximum likelihood to develop a framework for estimation and testing. Although we don't 

have a basis for maximum likelihood, we are trying to emulate situations where there is such 

a basis: 

• The normal case with mean model, the model is 

var(}i) = ~i (3.11) 

for suitable choice of covariance matrix of ~i depending on a vector of parameters w. 

Assuming that the }i follow a multivariate normal, the estimator for {j 
m m 

~ = (Lxii:i 1Xi)- 1 z=x:i:;1Yi, (3.12) 
i=l i=l 
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where ti is the covariance matrix with the estimator for w. It can be shown that it is 

possible to rewrite (3.12) in the form 

(3.13) 

• In the case of ordinary generalized linear models, fJ is the solution to 

t V {f(~-,6)} {Yj - f(xj,6)} !' (xj,6)xj = 0, 
J=l J 

(3.14) 

where!'= :fp,f(J.L), the derivative off with respect to its argument. 

• Comparing (3.13) and (3.14), we see that there is a similar theme; the equations are 

linear function of deviation of observations from their assumed mean, weighted in 

accordance with their covariance and variance. 

From these observations, a natural way to fit the model (3.10) is suggested: solve an esti­

mating equation consisting of p equations for ,6(pxl) that 

• is a linear function of deviations 

(3.15) 

• Weight these deviations in the same way as in (3.13) and (3.14), using the inverse of 

the assumed covariance matrix :Ei of a data vector with an estimator for unknown 

parameters w in the working correlation matrix. Even if there is a scale parameter we 

really need use only the inverse of Ai in (3.14). As in (3.14), :Ei and Ai will also depend 

on f3 through the variance function V {f(x~j,6)} 

These results lead to consideration of the following equation to be solved for ,6 

(3.16) 
i=l 

where Vi is the (ni xp) matrix whose element is the derivative of f(xij,6) with respect to the 

sth element of ,6, and .A.i is the matrix Ai with an estimator w. An equation like (3.16) to be 

24 



solved to estimate a parameter j3 in a mean response model is referred to as a generalized 

estimating equation. 

The sampling distribution and hypothesis testing is the same as in a generalized linear 

model. 

3.3 Robust Estimator for Sampling Covariance 

It is important to recognize that GEE fitting method for estimating the parameters (mean 

and variance) is not a maximum likelihood method, rather, it was arrived at from an ad hoc 

perspective. As a result, it is not possible to derive quantities like AIC and BIC to compare 

different "working" correlation matrices to determine which assumption is not suitable. It is 

sensible to be concerned that the validity of inferences on {3 because calculation of approxi­

mate confidence intervals and tests may be compromised if the correlations assumptions on 

-correlation is incorrect. One way to solve the problem is to modify the covariance matrix V,a 

to allow the possibility that the choice of R( a) used in the model is incorrect. The modified 

version of f;; is 

(3.17) 

where 

(3.18) 

V,aR is a robust estimate and will provide a reliable estimate of the true sampling covariance 

matrix of {J even if the chosen 14 is incorrect. V,a is referred as the model-based covariance 

estimate. 

3.4 GEE with Poisson data 

For data in the form of counts, we have noted that a sensible probability model is the poisson 

distribution. This model dictates that variance is equal to the mean; moreover, any sensible 

representation of the mean ought to be such that the mean is forced to be positive. 
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(i) Mean: For regression modeling, we wish to represent the mean for }j as a function of 

the covariates Xj. However, this representation should ensure the mean can only be 

positive. A model that would accomplish this is 

(3.19) 

The positive requirement is enforced by writing the mean as the exponential of the 

linear function of x/ {3. The logarithm of the mean response is being modeled as a 

linear function of covariates and regression parameters, 

(3.20) 

Therefore this is called log-linear model. 

(ii) probability distribution: The }j are assumed to arise at each setting Xj from a poisson 

distribution. 

(iii) Variance: Under the poisson assumption and the mean model, the variance of }j is 

given by 

V(}j) = E(}j) = exp(xj{3). (3.21) 

The PROC GENMOD procedure in SAS uses the generalized estimating equations to extend 

the generalized model for repeated measures. We can use PROC GENMOD to perform a 

Poisson regression analysis of count data with log link function. 
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Chapter 4 

Goodness of Fit and Model 

Selection 

4.1 Approach 

There seem to be few model-selection criteria available in GEE. The well-known Akaike Infor­

mation Criterion (AIC) cannot be directly applied since AIC is based on maximum likelihood 

estimation while GEE is not likelihood based. Residuals from GEE regression models should 

be checked for the presence of outlier values that may seriously affect the results. Measures 

that test for the influence of a panel or case in the regression equation are extensions of those 

used in generalized linear models and are similar to those used in OLS regression. DFBETA 

measures the change in the fitted coefficient vector when a case is removed and is a measure 

of influence that can be used to analyze outliers and determine whether there are issues in 

the data that need further investigation. A visual test of the fitted GEE model that has been 

estimated is to plot residual versus fitted for each individual panel. In visually testing the 

residuals, a researcher should look for patterns that suggest a random distribution of resid­

uals; they should not be clustered around certain values. For example, if a researcher saw 

that there were a large number of residuals with small negative values and a small number 

of high positive values, then different distribution and correlation structures should be ex-
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amined. Another example would be the case in which there are changes in the pattern of the 

residuals across the time periods; this could indicate that they depend on the panel identifier 

and/or on the time identifier, and a different correlation structure should then be specified. 

SAS programs that fit GEEs provide users with the functionality to display residuals and 

DFBETA diagnostic statistics for observations in the data set. 

4.2 Goodness of Fit Method 

In this case, graphical and numerical methods for model assessment based on the cumulative 

sums of residual over some related aggregates of residuals will be used to check model fitting. 

Let Yij and Xij be the same as previous section. The marginal mean of the response /-lij = 

E(Yii) is assumed to depend on the covariate vector by g(J.Lii = XIi/3). 

Define the vector of residuals for the ith cluster as 

Then we use the cumulative sum of the residuals with respect to Xip to check the fit. 

(4.1) 

where Xijp is the pth component of Xij· The null distribution of Wp(x) can be approximated 

by the conditional distribution of 

m ( ni ) 1 """ """ ' A -1 ~' ~ -1 Wp(x) = .,fK ~ ~I(Xijp ~ x)eij +77 (x,/3)10 DiVi ei Zi, 
2=1 J=1 

(4.2) 

where b~ and ~-1 are the same as in chapter 3, 

(4.3) 

m 

~o = n.v; n. L ~~~-1 Af 

2 2 2 
(4.4) 

i=1 

and the Zi's are independent N(O, 1) random variables. 
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4.3 Model Selection 

4.3.1 Group 

According to each subject's baseline characteristics, subjects were divided into two groups 

Asthma/Non-Asthma, and Atopic/Non-Atopic. For this analysis, we will have in total eight 

subgroup analyses: Asthmatic, Non-asthmatic, Atopic, Non-Atopic, Asthmatic and Non­

Atopic, Non-Asthmatic and Atopic and Non-Asthmatic and Non-Atopic. Our response vari­

ables are LRT, URT and the sum of LRT and URT. We have 95 explanatory variables in 

total, as discussed in section 2. 

4.3.2 Stepwise Regression to Detect Main Factors 

Step 1: Fit a model with each linear predictor, the predictor with the smallest p-value is 

kept in the model, i.e. p1 (Detail SAS code in Appendix C) 

Step 2: Fit a model with the predictor p1 in step 1 and plus each of the other predictors 

one by one. The model contains p1 and the other predictor with the smallest p-value 

will be continued for the next step. This is continued until p-value is greater than 0.15. 

Step3: Check whether the p-value for the previous predictors in model are greater than 0.15 

when adding new predictor. 

4.3.3 Stepwise Regression to Detect Interaction Among Main Factors 

Once for each group we find the model with the main predictors, we try to fit an interaction 

between the main factors in a stepwise fashion too. The macro (Appendix D)creates all 

the possible interaction terms for all the main factors remained in the model. The model 
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building continues until the p-value for the addition of each interaction not in the model is 

greater than 0.15. 
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Chapter 5 

Modeling Example 

5.1 Modeling Example: Model Based vs. Robust Based Meth­

ods 

From Figure 5.1, since the estimates from model based and empirical based (3.17) show 

strong agreement. LLAG2-MEAN-PRES is significant in both models, LPRES-CHA and 

LLAG2-RAN-HUM are partially significant in both models as well. Therefore our specified 

working correlation matrix is a good choice. 
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5.2 Goodness of Fit Example 

The solid line in Figure 5.2 shows the cumulative sum of residuals from the Asthmatic group 

with respect to logarithm of two-day lag average pressure (LLAG2-MEAN-PRES). For any 

value x on the horizontal axis, the solid line represents the cumulative sum of the residuals 

for all values of LLAGE2-MEAN-PRES less than or equal to x. Like the raw residuals, 

cumulative residuals will be centered at zero if the model fit is correct. The motivation for 

considering cumulative sums of residuals is that the asymptotic distribution can be deter­

mined. Under the null hypothesis of a correct model fit, they can be approximated as a 

zero mean Gaussian process with a covariance structure determined by the particular type of 

regression model (4.2). Realizations of the Gaussian process can be simulated by computer 

and compared with the observed process to assess whether the observed residual process 

represents anything beyond random variation. The light dashed lines in Figure 4.1 are the 

first 20 realizations of 10,000 simulated paths of the cumulative residual process under the 

null hypothesis of a correct model fit. Most of the paths tend to be closer to and intersect 

the horizontal axis more than the observed residuals. The maximum absolute value of the 

observed cumulative residuals is 25. Of the 10,000 realizations under the null hypothesis, the 

p-value for a Kolmogorov-type supremum test is 0.02. This tells us that the functional form 

of LLAG2-MEAN-PRES is adequate for the model. 

In figure 5.3, The p-value of 0.1010 suggests that a more adequate model may be pos­

sible. The observed cumulative residuals represented by the heavy lines, seem atypical of 

the simulated curves, represented by the light lines, reinforcing the conclusion that a more 

appropriate functional form for pressure is possible. 
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Figure 5.1: Comparison between model based and empirical based methods 

,-
Empirialls...a.nt Emir~ 

Standard !IS '!I> Conlldent-e 
ParaJnetu llllmllle Error Llmill z Pr>I7J 

lntert.ept -69.3872 16.9261 -102.562 -36.2127 -4.10 <.0001 

LLAGI_ABS_PRES_CHA 0.0260 0.0098 0.0069 0.0451 2.66 0.0077 

LLAGl_MEAN_PRES 14.7884 3.6996 7.5374 22.0394 4.00 <.0001 

LLAGl_RAN_HUM -0.0871 0.0328 -0.1515 -0.0228 -2.65 0.0080 

SVM_THUN -0.0175 0.0100 -0.0371 0.0022 -1.74 0.0811 

~M 0.0523 0.0243 0.0047 0.0999 2.15 0.0313 

LLAGl_MEAN_03 0.1040 0.0468 0.0122 0.1957 2.22 0.0263 

LPRIS_CHA 0.3997 0.1351 0.1349 0.6645 2.96 0.0031 

LLAGl_ABS_TEMP _CHA 0.0077 0.0044 -0.0009 0.0164 1.75 0.0801 

LLAGl_MA._MEAN_TEMP -0.2365 0.1091 -0.4504 -0.0226 -2.17 0.0303 

LLAGl_RAN_NOl 0.0719 0.0362 0.0010 0.1429 1.99 0.0468 

LLAGJ_MEAN_N02 -0.0691 0.0373 -0.1421 0.0039 -1.86 0.0636 

LLAGI_MEANJI(n 0.0408 0.0277 -0.0135 0.0952 1.47 0.1409 

LMUASJDIO -0.0313 0.0213 -0.0731 0.0105 -1.47 0.1417 

Medel a-dsc..llriErrer ........ ...... -~ Celllkleare ...,.._. ......... Emir ........ z Pr>I7J 

lntert.ept -69.3872 17.8143 -104.303 -34.4718 -3.90 <.0001 

LLAGl_ABS_PRES_CHA 0.0260 0.0107 0.0051 0.0469 2.43 0.0149 

LLAG2_MEAN_PRES 14.7884 3.8824 7.1789 22.3978 3.81 0.0001 

LLAG2_RAN_IRJM -0.0871 0.0301 -0.1462 -0.0281 -2.89 0.0038 

SUM_TIIVN -0.0175 0.0132 -0.0433 0.0084 -1.33 0.1851 

LMA_ASCOM 0.0523 0.0191 0.0149 0.0898 2.74 0.0062 

LLAG2_MEAN_03 0.1040 0.0446 0.0165 0.1914 2.33 0.0198 

LPRES_CHA 0.3997 0.1501 0.1055 0.6938 2.66 0.0077 

LLAG2_ABS_TEMP _CHA 0.0077 0.0049 -0.00 18 0.0173 1.59 0.1130 

LLAGl_MA_MEAN_TEMP -0.2365 0.1142 -0.4604 -0.0125 -2.07 0.0385 

LLAGl_RAN_NOl 0.0719 0.0405 -0.0075 0.1514 1.77 0.0760 

LLAGl_MEAN_NOl -0.0691 0.0514 -0.1699 0.0317 -1.34 0.1789 

LLAGI_MEANJI(n 0.0408 0.0313 -0.0205 0.1021 1.31 0.1919 

LMA.JASIDIO -0.0313 0.0184 -0.0673 0.0047 -1.71 0.0881 
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Figure 5.2: Cumulative Residual Plot for Asthmatic Group 
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Figure 5.3: Cumulative Residual Plot for Non-Atopic Group 
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Chapter 6 

Results 

In this chapter the results of eight group analysis for this project are presented and discussed. 

The models are presented in the table format along with the predictors. The significant pre­

dictors and possible interaction between significant predictors are displayed. 
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Table 6.1: Significant predictors for different groups: 

Group Variable 

Asthmatic LLAG2-MEAN-PRE8 

LLAG2-RAN-HUM 

LMA-A8COM 

Atopic LLAG2-MEAN-PRE8 

LLAG2-RAN-HUM 

LAG2-RAN-NOX 

Non-Asthmatic LLAG1-MEAN-N02 

LMEAN-802 

LABS-TEMP-CHA * LRAN-TEMP 

Non-Atopic LMA-MEAN-CO 

LRAN-NO 

LLAG2-MA-WEED8 * AGE GROUP 

Asthmatic and Atopic LLAG2-MEAN-PRE8 

LAG2-8UM-THUN 

Asthmatic and Non-Atopic LLAG1-MA-POLLEN 

LLAG2-MA-MEAN-CO 

LRAN-PRE8 

Non-Asthmatic and Atopic LMEAN-802 

Non-Asthmatic and Non-Atopic LLAG1-MA-WEED8 

LLAG1-MEAN-N02* LLAG1-MA-WEED8 

Note: 

**: significant at a 1% level of significance 

***: sigllificaut at a 0.1% level of significance 

P-value Variable 

0.0022{**) LRAN-NO 

0.0306 8UM-THUN 

0.0381 LLAG1-ABS-PRES-CHA 

0.0004(***) LLAG1-MEAN-N02 

0.0138 LLAG1-MEAN-802 

0.0295 LMA-MEAN-03 

0.0001{***) LRAN-TEMP 

0.0264 LABS-TEMP-CHA 

0.0359 LRAN-CO 

< 0.0001 (***) AGE GROUP 

0.0047(**) LLAG 1-ABS-PRE8-CHA 

0.0404 LABS-TEMP-CHA 

0.0015{**) LLAG1-RAN-TEMP 

0.0436 

0.0012{**) LLAG1-RAN-N02 

0.0117 LRAN-HUM 

0.0313 LLAG1-MA-WEED8*LRAN-HUM 

0.0378 

0.0002{***) LLAG1-MEAN-N02 

0.0009{***) 

It should be noted that the above table only shows the predictors that are significant 

at a 5% level of significance for different groups. The log transformation of two-day lag of 

mean pressure is significant in both asthmatic group and atopic group at a 0.1% level of 

significance. By examing the p-value, both weather parameter and air pollution parameter 

are significant predictors for asthmatic children. There seems no strong evidence that there 

are any interaction between weather, air pollution and air pollen are significant associated 

with asthmatic children. There are two groups that don't have any interaction term in the 

final model: Asthmatic and Atopic, Non-Asthmatic and Atopic. 
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P-value 

0.0083(**) 

0.0311 

0.0398 

0.0102 

0.0175 

0.0433 

0.0168 

0.0356 

0.0369 

0.0099(**) 

0.0305 

0.0410 

0.0060{**) 

0.0064{**) 

0.0206 

0.041 

0.0005(***) 



The detail results of the 8 groups are shown below: For each group, the first part of the 

table shows the final model without interactions. The second part of tables shows the final 

model with interaction terms. The p-values that are< 0.01 are highlighted. 

Results for Asthmatic group (Figure 6.1): 9 predictors are kept in the final model with 

one interaction term. The significant predictors are log transformation of two-day lag mean 

pressure and log transformation of range in Nitric Oxide. Both of the positive coefficient 

signs mean that an increase in the predictors will resolve an increase in lrt count. The sig­

nificant interaction term is log transformation of one-day lag of absolute pressure change 

and log transformation of two day lag range of humidity. This means that as LLAG1-ABS­

PRES-CHA increases, the effect of humidity on lrt count gets greater. 

Results for Non-Asthmatic group (Figure 6.2): 9 predictors are in the final model with 

3 interaction terms. The significant predictors are log transformation of one-day lag mean 

of Nitrogen Dioxide and range of temperature. Both of the negative coefficient signs mean 

that an increase in the predictors will result an decrease in lrt count on average population. 

Results for the other groups can be found in the Appendix. From table 6.1, we conclude 

that the fact that we have so many predictors in the model will lead to too many significant 

results inflated type I error. Overall, the significant factor that is associated with LRT scores 

for children with asthma is the two-day lag daily average changes in air pressure. On average 

an increase in air pressure will result in an increase in children's LRT scores. The interaction 

terms that remained in the final model show some degree of significance but without strong 

evidence to support it. Children in the case groups are more sensitive to meteorological 

factors, allergens, and air pollution than the children in control groups. 
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Figure 6.1: Results for Asthmatic Group 

Final model without interaction for Asthmatic group 

Pann Estimate Stderr LowerCL UpperCL Z ProbZ 

Intercept -44.5100 14.6051 -73.1355 -15.8845 -3.05 0.0023 

LLAGI_ABS_pRES_CHA 0.0294 0.0099 0.0100 0.0489 2.97 0.0030 

LLAG2_MEAN_PRES 9.6922 3.1848 3.4500 15.9343 3.04 0.0023 

LLAG2_RAN_HUM -0.0552 0.0284 -0. 1108 0.0004 -1.95 0.0516 

SUM_THUN -0.0200 0.0095 -0.0386 -0.0013 -2.10 0.0361 

LMA_ASCOM 0.0538 0.0259 0.0031 0.1044 2.08 0.0376 

LRAN_NO 0.0332 0.0128 0.0080 0.0583 2.58 0.0098 

LMA_MEAN_CO -1.2257 0.6993 -2.5964 0.1450 -1.75 0.0797 

LLAG2_ABS_ TEMP _CHA 0.0079 0.0046 -0.0010 0.0168 1.73 0.0829 

LMA_BASIDIO -0.0333 0.0227 -0.0778 0.0112 -1.47 0.1426 

Final model with interaction for Asthmatic group 

Parm Estimate Stderr LowerCL UpperCL Z ProbZ 

Intercept -44.4429 14.5599 -72.9798 -15.9060 -3.05 0.0023 

LLAGI_ABS_PRES_CHA 0.1530 0.0744 0.0071 0.2989 2.06 0.0398 

LLAG2_MEAN_PRES 9.7249 3.1806 3.4911 15.9588 3.06 0.0022 

LLAG2_RAN_HUM -0.0888 0.0411 -0.1692 -0.0083 -2.16 0.0306 

SUM_THUN -0.0211 0.0098 -0.0403 -0.0019 -2.16 0.0311 

LMA_ASCOM 0.0534 0.0258 0.0029 0.1039 2.07 0.0381 

LRAN_NO 0.0339 0.0128 0.0087 0.0590 2.64 0.0083 

LMA_MEAN_CO -1.3129 0.6965 -2.6779 0.0522 -1.88 0.0594 

LLAG2_ABS_ TEMP _CHA 0.0086 0.0047 -0.0005 0.0178 1.85 0.0637 

LMA_BASIDJO -0.0334 0.0225 -0.0776 0.0108 -1.48 0.1385 

LLAGI_ABS_PRES_CHA* -0.0342 0.0203 -0.074 1 0.0056 -1.68 0.0923 

LLAG2_RAN_HUM 
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Figure 6.2: Results for Non-Asthmatic Group 

Final model with interaction/or Non-Asthmatic group 

Parm i'Btimate Stderr LowerCL UpperCL z ProbZ 

Intercept 69.8705 33.9693 3.2920 136.4490 2.06 0.0397 

LABS_ TEMP _CHA 0.0074 0.0042 -0.0009 0.0157 1.75 0.0796 

LLAG 1_MEAN_N02 -0.2351 0.0618 -0.3561 -0.1140 -3.81 0.0001 

LMEAN_S02 -0.0830 0.0399 -0.1612 -0.0048 -2.08 0.0375 

LMA_POLLEN 0.1483 0.0710 0.0091 0.2876 2.09 0.0368 

LRAN_TEMP -0.3377 0.1866 -0.7034 0.0280 -1.81 0.0703 

LMA_ASCOM -0.0524 0.0260 -0.1034 -0.001 3 -2.01 0.0444 

LMEAN_pRES -15.6157 7.4631 -30.2432 -0.9883 -2.09 0.0364 

SUM_THUN -0.0298 0.0163 -0.0618 0.0022 -1.83 0.0678 

LRAN_CO 0.8629 0.5265 -0.1691 1.8949 1.64 0.1012 

Final model without interaction for Non-Asthmatic group 

Parm i'Btimate Stderr LowerCL UpperCL Z ProbZ 

Intercept -1084.32 565.5857 -2192.85 24.2080 -1.92 0.0552 

LABS_ TEMP _CHA -0.8830 0.4203 -1.7068 -0.0593 -2.10 0.0356 

LLAG1_MEAN_N02 -0.2829 0.0683 -0.4167 -0.1490 -4.14 <.()001 

LMEAN_S02 -0.0880 0.0396 -0.1657 -0.0103 -2.22 0.0264 

LMA_POLLEN 0.1418 0.0744 -0.0040 0.2875 1.91 0.0567 

LRAN_TEMP -0.5023 0.2101 -0.9141 -0.0906 -2 .39 0.0168 

LMA_ASCOM -0.0514 0.0251 -0.1006 -0.0023 -2.05 0.0404 

LMEAN_pRES 235.7883 123.1958 -5.6710 477.2476 1.91 0.0556 

SUM_THUN -0.0286 0.0149 -0.0578 0.0007 -1.91 0.0556 

LRAN_CO 992.2909 475.5230 60.2829 1924.299 2.09 0.0369 

LABS_ TEMP _CHA * 0.2726 0.1300 0.0179 0.5273 2.10 0.0359 

LRAN_TEMP 

LMEAN_PRES* -215.821 103.5298 -418.736 -12.9067 -2.08 0.0371 

LRAN_CO 

LABS_ TEMP _CHA * -0.0277 0.0139 -0.0549 -0.0005 -2.00 0.0459 

SUM_THUN 
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Chapter 7 

Discussion and Future Work 

In this project, we have shown the association of meteorological factors, allergens and air pol­

lution on asthma in children and their possible interaction effect. Even though the asthmatic 

and atopic groups show some degree of agreement, we can include a seasonal component, 

virus date, September school return and holiday periods in the model to check whether these 

factors are associated with children's LRT. 

The limitation of this results is that in fact we have so many predictors in the model that 

will lead to too many significant results which inflated type I error. 

In this analysis , we use SAS proc genmod, which we are discussing from the population­

averaged specific. The rationale is that interest focuses on what happens on average in a 

population. But on the alternative, if we are interested in individual trajectories, we are 

referring to the statistical model as generalized linear mixed model. This can be analyzed in 

SAS using proc glimmix. 

As we mentioned, a common issue with longitudinal data, particularly when the units are 

humans, is that some data may be missing. The obvious consequence is that the resulting 

data may not be balanced. Correcting the problem is difficult, when the missingness is a 

consequence of something we can't observe. If nonignorable nonresponse is suspected, it may 

not be possible to obtain reliable inferences without making assumptions. 
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Chapter 8 

Appendix 

8.1 Partial SAS Codes for Importing data 

goptions reset=global; 
/*macro print to print out SAS statement generated by macro execution*/; 
options symbolgen mprint; 
/*Import excel sheets for weather data*/ 
Y~acro weather(month=,year=); 
%let start=&month&year; 
%let s=sum; 
%let t=thun; 
PROC IMPORT DBMS=EXCEL OUT= work.&start 

DATAFILE= 11 climate dataset\&start 11 REPLACE ; 
RANGE= 11 A10:Z754 11

; 

GETNAMES=YES; I* Use the first row of data as column names *I 
SCANTEXT=YES; I* Scan all rows of data for the largest size *I 
USEDATE=YES; I* Use DATE format for date/time columns *I 
SCANTIME=YES; I* Scan and identify time columns *I 
DBSASLABEL=NONE; I* Leave SAS label names to be nulls *I 

RUN; 

/*for each hour, see if there is an occurrence of thunderstorm*/ 
DATA &start; 

SET &start; 
where date_time <>.; 
NUM_THUN= 0; 

IF Weather ___ ='Thunderstorms' THEN DO; 
NUM_THUN=1; 
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END; 
RUN; 

I* For each day,calculate the number of hours thunder storms 
occurs*/ 

proc means data=&start noprint nway missing; 
class day; 
var NUM_ THUN; 
OUTPUT OUT=&t&start 

SUM=SUM_THUN; 
RUN; 

I* calculate average and range of TEMP, PRES , HUM *I 
proc means data=&start NOPRINT NWAY; 

class Day Date_time; 
VAR Temp ___ C_ Stn_Press __ kPa_ Rel_Hum ___ _ 
OUTPUT OUT=&start&s 

MEAN = MEAN_TEMP MEAN_PRES MEAN_HUM 
RANGE=RAN_TEMP RAN_PRES RAN_HUM; 

run; 
** merge thunderstorm variable with the rest weather data**; 
data &s&start; 

merge 
drop 

RUN; 

&start&s &t&start; 
_TYPE __ FREQ_ ; 

Y.mend weather; 
quit; 
** The reason to do it separately is because the data come ** 
** in month and each spread sheet contains extra information ** 
** that need to be deleted before we merge it. **; 
%weather (month=jul,year=03); **call macro to import all the dataset**; 
%weather (month=aug, year=03); 
%weather (month=sep, year=03); 
%weather (month=oct, year=03): 
%weather (month=nov, year=03); 
%weather (month=dec, year=03); 
%weather (month=jan, year=04); 
%weather (month=feb, year=04); 
%weather (month=mar, year=04); 
%weather (month=apr, year=04): 
%weather (month=may, year=04); 
%weather (month=jun, year=04); 
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%weather (month=jul,year=04); 
%weather (month=aug, year=04); 
%weather (month=sep, year=04); 
%weather (month=oct, year=04): 
%weather (month=nov, year=04); 
%weather (month=dec, year=04); 

** merge all the dataset into one big dataset**; 
DATA weather_sum; 

SET sumjul03 sumaug03 sumsep03 sumoct03 sumnov03 
sumdec03 sumjan04 sumfeb04 summar04 sumapr04 summay04 sumjun04 
sumjul04 sumaug04 sumsep04 sumoct04 sumnov04 sumdec04; 
TEMP_CHA=MEAN_TEMP-LAG(MEAN_TEMP); **daily mean temp change** 
PRES_CHA=MEAN_PRES-LAG(MEAN_PRES); 
ABS_TEMP_CHA=ABS(TEMP_CHA); **absolute daily temp change** 
ABS_PRES_CHA=ABS(PRES_CHA); 

RUN; 
** Sort according to date time**; 
proc sort data=weather_sum out=w_sum; 

by Date_Time; 
run; 

8.2 SAS Codes for Calculating moving average 

** This code is used to remove variables with tread or seasonal ** 
** effect. In this project, we decode to use 5 day moving average. **i 

DATA moving_ave; 
SET mean_ table; 
mean_temp_lag24=lag(mean_temp); **one day lag of mean temp**; 
mean_temp_lag48=lag2(mean_temp); 
mean_temp_lag72=lag3(mean_temp); 
mean_temp_lag96=lag4(mean_temp); 
if _N_ GE 5 THEN TEMP_AVE=MEAN(OF mean_temp mean_temp_:); 
drop mean_temp_lag24 mean_temp_lag48 
mean_temp_lag72 mean_temp_lag96; 

run; 

data diff_ma; 
set moving_ave; 
ma_mean_temp=(mean_temp-temp_ave); 
drop temp_ave; 

run; 
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8.3 Partial SAS codes for Proc genmod 

I* Get subjects in ashtmatic and atopic group*/; 
data asthmatic_atopic; 
set sasdata.longitudinal_table; 
where group3=1 and group2=1; 
drop group1 group2 group3 urt char1 char2; 

run; 

I* Start stepwise regression analysis*/ 
I* step 1 regression analysis with lrt*/ 

data step; 
set asthmatic_atopic(drop=lrt); 

run; 

proc sort data=step; 
by Date_Time id; 

run; 

I* transpose col variables to row variables*/ 
proc transpose data=step out=sum (rename=(col1=x_variable)); 
by Date_Time id ; 

run; 

data info; 
set asthmatic_atopic; 
keep Date_Time id lrt; 

run; 

proc sort data=info out=info1; 
by Date_Time id; 

run; 

I* Merge weather, aeroallergen, and airpollution data with data 
contains subject's LRT score*/ 

data final_reg2; 
set sum info1; 
merge sum info1; 
by Date_Time id; 

run; 

proc sort data=final_reg2; 
by _name_; 

run; 
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**Call proc genmod**; 
proc genmod data=final_reg2; 
by _name_; 
class id; 
model lrt=x_variable/ dist=poisson link=log; 
repeated subject=id/type=ar(1) modelse; ** model based**; 
ods output GEEEmpPEst=parameterEst; **put output estimates in a separate data ** 

run; 

data reg2_table1; 
set parameterEst; 
where Parm='x_variable'; **Keep the variable of interest**; 
keep _name_ Estimate Probz; 

run; 

I* vars and corresponding p value sorted in increasing*/ 
proc sort data=reg2_table1; 

by Probz 
run; 
data reg1; 
set reg2_table1(obs=1); 
where probz LE &p_value; ** call macro variable: p-value=0.15**; 

run; I* 

create global macro variable*/ 
proc sql; 
select _name_ into: var1 
from reg1; quit; 
** First variable in the model**; 
%put var1 is &var1; 

8.4 Macros used to produce interaction variables 

** This macro is used once we have the final variables in the model. ** 
** We use this macro to create interaction terms for PROC GENMOD. **; 
%macro interact( 

data= _last_ , 
out=&data, 
v= , 
prefix = I_, 
names=, 
center= 

name of input dataset *I 
name of output dataset *I 
variable(s) *I 
prefix for interaction variable names *I 
or, a list of n*m names *I 
mean center first? *I 
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) ; 

** check if the variable list is empty or not**; 
%let abort = 0; 
%if C%length(&v) = 0 ) %then %do; 

%put ERROR: INTERACT: V= must be specified; 
%goto done; 
%end; 

**Check if the dataset exist. Default is last used sas output data**; 
%if %bquote(&data) = _last_ %then %let data = &syslast; 
%if %bquote(&data) = _NULL_ %then %do; 

%put ERROR: There is no default input data set (_LAST_ is _NULL_); 
%goto DONE; 
%end; 

** get standardize values**; 
%if %length(&center) %then %do; 
proc standard data=&data out=&data m=O; 

var &center; 
%end; 

data &out; 
set &data; 

** Local variables**; 
%local i j k w1 w2; 

%let k=O; 
%let i=1; 
%let w1 = %scan(&v, &i, %str( )); **Get the first variable**; 
%do %while(&w1 ~= ); 

%let j=%eval(&i+1); 
%let w2 = %scan(&v, &j, %str( )); **Get the second variable**; 

%do %while(&w2 ~= ); 
%*put i=&i j=&j; 
%let k=%eval(&k+1); 
%let name= %scan(&names, &k, %str( )); 
%if %length(&name) %then %do; ** If interaction names specified**; 

&name = &w1 * &w2; ** Assigns interaction term**; 
%end; 

%else %do; ** If interaction names not specified, use default names**; 
&prefix.&i.&j = &w1 * &w2; 
%end; 

%let j=%eval(&j+1); 
%let w2 = %scan(&v, &j, %str( )); 
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run; 

%done: 

%end; 

%let i=%eval(&i+1); 
%let w1 = %scan(&v, &i, %str( )); 
%end; 

%if &abort %then %put ERROR: The INTERACT macro ended abnormally.; 

Y.mend; 

8.5 Results for other groups 
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Figure 8.1: Results for Atopic Group 

Final model without interaction for Atopic group 

Pann Estimate Stderr LowerCL UpperCL z ProbZ 

Intercept -55.8820 16.1256 -87.4877 -24.2763 -3.47 0.0005 

LLAG2_MEAN_PRES 12.1404 3.5359 5.2101 19.0707 3.43 0.0006 

LLAG2_RAN_NOX -0.0835 0.0287 -0.1397 -0.0273 -2.91 0.0036 

LLAG1_MEAN_N02 -0.0944 0.0330 -0.1590 -0.0298 -2.87 0.0042 

LMA_MEAN_03 -0.0650 0.0324 -0.1285 -0.0016 -2.01 0.0447 

LMA_BASIDIO -0.0332 0.0208 -0.0741 0.0076 -1.59 0.1109 

LLAG2_RAN_HUM -0.0937 0.0329 -0.1582 -0.0292 -2.85 0.0044 

LLAG2_RAN_03 0.0497 0.0308 -0.0106 0.1100 1.61 0.1064 

LLAG 1_MEAN_S02 O.D705 0.0282 0.0152 0.1258 2.50 0.0125 

LLAG2_RAN_N02 0.0965 0.0494 -0.0004 0.1933 1.95 0.0510 

LABS_TEMP _CHA 0.0081 0.0045 -0.0007 0.0169 1.80 0.0713 

SUM_THUN -0.0175 0.0100 -0.0371 0.0021 -1.75 0.0801 

LLAG 1_MA_MEAN_ TEMP -0.1653 0.1126 -0.3860 0.0555 -1.47 0.1422 

Final model with interaction for Atopic group 

panq Estimate Stderr LowerCL UpperCL Z ProbZ 
Intercept -57.0347 16.1424 -88.6732 -25.3962 -3.53 0.0004 

LLAG2_MEAN_PRES 12.5609 3.5386 5.6255 19.4964 3.55 0.0004 

LLAG2_RAN_NOX -0.3267 0.1501 -0.6209 -0.0326 -2.18 0.0295 

LLAG 1_MEAN_N02 -0.0849 0.0330 -0.1496 -0.0201 -2.57 0.0102 

LMA_MEAN_03 -0.0655 0.0324 -0.1291 -0.0020 -2.02 0.0433 

LMA_BASID10 -0.0319 0.0212 -0.0734 0.0095 -1.51 0.1310 

LLAG2_RAN_HUM -0.3188 0.1295 -0.5726 -0.0650 -2.46 0.0138 

LLAG2_RAN_03 0.0489 O.o308 -0.0114 0.1093 !.59 0.1122 

LLAG 1_MEAN_S02 0.0662 0.0279 0.0116 0.1208 2.38 0.0175 

LLAG2_RAN_N02 0.1004 0.0492 0.0039 0.1969 2.04 0.0414 

LABS_ TEMP _CHA 0.0079 0.0045 -0.0009 0.0166 1.77 0.0773 

SUM_THUN -0.0164 0.0099 -0.0358 0.0029 -1.67 0.0959 

LLAG I_MA_MEAN_ TEMP -0.1710 0.1141 -0.3946 0.0527 -1.50 0.1341 

LLAG2_RAN_NOX* 0.0682 0.0401 -0.0105 0.1468 1.70 0.0894 

LLAG2_RAN_HUM 
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Figure 8.2: Results for Non-Atopic Group 

Final model without interaction for Non-Atopic group 

Pann Estimate Stderr LowerCL UpperCL Z ProbZ 

Intercept 2.4269 1.4179 -0.3520 5.2059 1.71 0.0870 

LMA_MEAN_CO -5.5499 1.4404 -8.3731 -2.7267 -3.85 0.0001 

LLAG2_MA_ WEEDS 0.1642 0.0654 0.0361 0.2923 2.51 0.0120 

LRAN_NO 0.1013 0.0354 0.0320 0.1706 2.87 0.0042 

LABS_ TEMP _CHA 0.0177 0.0085 0.0010 0.0344 2.08 0.0379 

LMA_ASCOM 0.0697 0.0353 0.0006 0.1388 1.98 0.0481 

LLAGI_ABS_PRES_CHA 0.0443 0.0209 0.0033 0.0853 2.12 0.0340 

AGE GROUP -0.6764 0.3773 -1.4158 0.0630 -1.79 0.0730 

GENDER 0.7 146 0.4422 -0. 1521 1.5813 1.62 0.1061 

LLAG2_MEAN_NO 0.0466 0.0264 -0.005I 0.0983 1.77 0.0772 

LRAN_pRES 0.0551 0.0346 -0.0127 0.1229 1.59 0.1112 

Final model with interaction for Non-Atopic group 

Pann Estimate Stderr LowerCL UpperCL z ProbZ 
Intercept 5.0496 1.7274 1.6639 8.4353 2.92 0.0035 

LMA_MEAN_CO -5.4856 1.4375 -8.3030 -2.6682 -3.82 0.0001 

LLAG2_MA_ WEEDS -0.439I 0.2647 -0.9579 0.0798 -1.66 0.0972 

LRAN_NO 0.1001 0.0354 0.0306 0.1695 2.82 0.0047 

LABS_ TEMP _CHA 0.0173 0.0085 0.0007 0.0339 2.04 0.0410 

LMA_ASCOM 0.0694 0.0352 0.0004 0.1384 1.97 0.0488 

LLAG I_ABS_pRES_CHA 0.0456 0.0211 0.0043 0.0868 2.16 O.D305 

AGE GROUP -2.9765 l.l545 -5 .2392 -0.7138 -2.58 0.0099 

GENDER 0.6964 0.4421 -0.1702 1.5630 1.58 0.1152 

LLAG2_MEAN_NO 0.0470 0.0264 -0.0048 0.0988 1.78 0.0755 

LRAN_PRES 0.0571 0.0346 -O.OI07 0.1248 1.65 0.0987 

LLAG2_MA_ WEEDS* 0.5226 0.2550 0.0229 1.0224 2.05 0.0404 

AGE GROUP 
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Figure 8.3: Results for Asthmatic and Atopic Group 

Final model for Asthmatic and Atopic group 

Parm Estimate Stderr LowerCL UpperCL Z PrubZ 

Intercept -55.2034 17.0459 -88.6127 -21.7941 -3.24 0.0012 

LMA_TREES -0.0366 0.0251 -0.0859 0.0126 -1.46 0.1450 

LLAGl_RAN_TEMP 0.2687 0.0978 0.0771 0.4603 2.75 0.0060 

LLAG2_MEAN_PRES I 1.7864 3.7037 4.5272 19.0456 3.18 0.0015 

LLAG2_RAN_NOX -0.0322 0.0198 -0.0710 0.0066 -1.63 0.1041 

LAG2_SUM_ THUN 0.0267 0.0132 0.0008 0.0526 2.02 0.0436 

LMA_MEAN_03 -0.0736 0.0385 -0.1490 0.0018 -1.91 0.0556 

LLAG I_MA_MEAN_ TEMP -0.2074 0.1192 -0.4409 0.0262 -1.74 0.0818 

50 



Figure 8.4: Results for Non-Asthmatic and Atopic Group 

Final model for Non-Asthmatic and Atpic group 

% 

Parm Estimate Stderr LowerCL UpperCL Z PrubZ 

Intercept -36.1942 20.3033 -75 .9880 3.5996 -1.78 0.0746 

LMEAN_S02 -0.0639 0.0308 -0.1242 -0.0036 -2.08 0.0378 

LLAG2_MA_BASIDJO -0.0225 0.0152 -0.0523 0.0072 -1.48 0.1377 

LMA_ASCOM -0.0548 0.0355 -0.1242 0.0147 -1.54 0.1225 

LLAG2_RAN_PRES 0.1066 0.0598 -0.0106 0.2237 1.78 0.0746 

LLAG2_MEAN_pRES 7.6139 4.4228 -1.0545 16.2823 1.72 0.0852 
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Figure 8.5: Results for Asthmatic and Non-Atopic Group 

Final model without interaction for Asthmatic and Non-Atopic group 

Pann Estimate Stderr LowerCL UpperCL Z PrubZ 

Intercept -4.0459 2.9049 -9.7394 1.6475 -1.39 0.1637 

LMA_MEAN_CO -2.4466 1.3263 -5.0461 0.1530 -1.84 0.0651 

LLAG l_RAN_N02 0.2640 0.0960 0.0759 0.4522 2.75 0.0060 

LLAGI_MA_WEEDS -0.1287 0.0760 -0.2777 0.0203 -1.69 0.0906 

LLAG2_MA_MEAN_CO 3.6243 1.4159 0.8491 6.3995 2.56 O.QI05 

LLAGl_MA_POLLEN -0.1537 0.0445 -0.2409 -0.0665 -3.46 0.0005 

LRAN_HUM 0.2257 0.0941 0.0413 0.4101 2.40 0.0164 

LLAG l_RAN_PRES 0.1620 0.0825 0.0003 0.3237 1.96 0.0496 

LRAN_PRES 0.1167 0.0559 0.0072 0.2263 2.09 0.0368 

GENDER 0.8460 0.4811 -0.0969 1.7889 1.76 0.0786 

LABS_ TEMP _CHA 0.0169 O.Ql08 -0.0043 0.0380 1.56 0.1181 

Final model with interaction for Asthmatic and Non-Atopic group 

Pano Estimate Stderr LowerCL UpperCL Z ProbZ 
Intercept -7 .2528 3.9575 -15 .0094 0.5039 -1.83 0.0669 

LMA_MEAN_CO -2.5106 1.3185 -5 .0948 0.0735 -1.90 0.0569 

LLAG l_RAN_N02 0.2588 0.0948 0.0729 0.4447 2.73 0.0064 

LLAG 1_MA_ WEEDS 0.6636 0.3539 -0.0300 1.3572 1.88 0.0608 

LLAG2_MA_MEAN_CO 3.5669 1.4143 0.7949 6.3390 2.52 0.0117 

LLAG l_MA_POLLEN -0.1486 0.0459 -0.2386 -0.0585 -3.23 0.0012 

LRAN_HUM 1.3135 0.5674 0.2014 2.4256 2.31 0.0206 

LLAG 1_RAN_PRES 0.1449 0.0807 -0.0132 0.3029 1.80 0.0725 

LRAN_PRES 0.1223 0.0568 0.0110 0.2337 2.15 0.0313 

GENDER 0.8240 0.4792 -0.1153 1.7633 1.72 0.0855 

LABS_ TEMP _CHA 0.0187 0.0115 -0.0039 0.0412 1.62 0.1042 

LLAG1_MA_WEEDS* -0.2559 0.1259 -0.5026 -0.0092 -2.03 0.0421 

LRAN_HUM 
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Figure 8.6: Results for Non-Asthmatic and Non-Atopic Group 

Final model without interaction for Non-Asthmatic and Non-Atopic group 

Pann l!'.stimate Stderr LowerCL UpperCL Z ProbZ 

Intercept 163.7617 55.7713 54.4521 273 .0714 2.94 0.0033 

LLAGl_MEAN_PRES -35.2448 12.2473 -59.2490 -11.2406 -2.88 0.0040 

LRAN_PRES -0.0933 0.0599 -0.2107 0.0241 -1.56 0.1194 

LLAG I_MEAN_N02 -0.2919 0.1263 -0.5395 -0.0444 -2.31 0.0208 

LLAGl_MA_WEEDS 0.0944 0.0316 0.0324 0.1564 2.99 0.0028 

LLAG 1_MEAN_HUM -0.6880 0.4556 -1.5811 0.2050 -1.51 0.1310 

SUM_THUN -0.0820 0.0372 -0.1550 -0.0091 -2.21 0.0274 

LLAG 1_MEAN_S02 0.1682 0.0881 -0.0044 0.3409 1.91 0.0561 

LABS_ TEMP _CHA 0.0247 0.0138 -0.0022 0.0517 1.80 0.0722 

LLAG 1_RAN_03 -0.3279 0.1 573 -0.6362 -0.0196 -2.08 0.0371 

LLAG 1_MA_MEAN_03 0.1711 0.0964 -0.0179 0.3601 1.77 0.0760 

LLAG1_MA_BAS!DIO -0.1296 0.0788 -0.2840 0.0248 -1.65 0.0999 

Final model with interaction for Non-Asthmatic and Non-Atopic group 

Parm Estimate Stderr LowerCL UpperCL Z ProbZ 

Intercept 182.9457 52.0209 80.9866 284.9047 3.52 0.0004 

LLAG l_MEAN_PRES -30.2659 11.7051 -53.2076 -7.3243 -2.59 0.0097 

LRAN_PRES 1.0472 0.6628 -0.2519 2.3463 1.58 0.1141 

LLAG l_MEAN_N02 -3.9549 1.1289 -6.1 675 -1.7424 -3.50 0.0005 

LLAG l_MA_ WEEDS -1.9990 0.5304 -3.0386 -0.9594 -3.77 0.0002 

LLAGl_MEAN_HUM -8.7111 3.1359 -14.8574 -2.5648 -2.78 0.0055 

SUM_THUN -0.0743 0.0452 -0.1628 0.0142 -1.64 0.1000 

LLAG 1_MEAN_S02 3.7931 1.5373 0.7800 6.8062 2.47 0.0136 

LABS_ TEMP _CHA -0.5476 0.2305 -0.9993 -0.0958 -2.38 0.0175 

LLAGl_RAN_03 -10.9605 3.9233 -18.6500 -3.2711 -2 .79 0.0052 

LLAG I_MA_MEAN_03 0.1809 0.0919 0.0007 0.3611 1.97 0.0491 

LLAG I_MA_BASJD10 0.1997 0.1002 0.0032 0.3961 1.99 0.0463 

LRAN_pRES* -0.2407 0.1485 -0.5317 0.0504 -1.62 0.1051 

LLAG1_MA_WEEDS 

LLAGI_MEAN_S02* -0.5232 0.2195 -0.9534 -0.0931 -2.38 0.0171 

LLAG 1_MA_BASIDIO 

LLAG1_MA_WEEDS* 0.1402 0.0586 0.0254 0.2550 2.39 0.0167 

LABS_ TEMP _CHA 

LLAG l_MEAN_N02* 0.8735 0.2629 0.3583 1.3887 3.32 0.0009 

LLAG l_MA_ WEEDS 

LLAG l_MEAN_HUM* 2.4033 0.8823 0.6740 4.1327 2.72 0.0065 

LLAGl_RAN_03 
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