
AN OBJECT ORIENTED PLATFORM FOR
IMPLEMENTING INTERIOR-POINT ALGORITHMS

AN OPEN SOURCE OBJECT ORIENTED
PLATFORM FOR RAPID DESIGN OF

HIGH-PERFORMANCE PATH FOLLOWING
INTERIOR-POINT METHODS

by

VOICU CHI~, M.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University
©Copyright by Voicu Chi§, 2008

MASTER OF SCIENCE (2008)
(Mathematics and Statistics)

McMaster University
Hamilton, Ontario

TITLE: An open source object oriented platform for rapid design of high­
performance path following interior-point methods
AUTHOR: Voicu Chi§, M.Sc.
SUPERVISOR: Dr. Tamas Terlaky, Dr. Yuriy Zinchenko
NUMBER OF PAGES: ix,126

Abstract

Interior point methods (IPMs) is a powerful tool in convex optimization. From
the theoretical point of view, the convex set of feasible solutions is represented
by a so-called barrier functional and the only information required by the
algorithms is the evaluation of the barrier, its gradient and Hessian. As a
result, IPM algorithms can be used for many types of convex problems and
their theoretical performance depends on the properties of the barrier. In
practice, performance depends on how the data structure is exploited at the
linear algebra level. In this thesis, we make use of the object-oriented paradigm
supported by C++ to create a platform where the aforementioned generality
of IPM algorithms is valued and the possibility to exploit the data structure
is available. We will illustrate the power of such an approach on optimization
problems arrising in the field of Radiation Therapy, in particular Intensity
Modulated Radiation Therapy.

Acknowledgements

I would like to acknowledge the persons who have extensively contributed,
directly or indirectly, to this thesis: my supervisors dr. Tamas Terlaky and dr.
Yuriy Zinchenko, the AdvOL group, my colleagues in the Math Department
and my extended family in Canada and Romania. I appreciate everything that
they did for me.

MoSco Thesis- Voicu Chis McMaster - Mathematics and Statistics

Contents

I Interior Point Methods

1 Problem formulation

2 Main ingredients in Interior Point Algorithms

201 The central path 0 0 0

202

203

2.4

Barriers on convex sets

Several algorithms for convex optimization problems 0 0

Barriers in conic optimization 0 0 0 0

205 Predictor step in conic optilnization

Sym1netry and pri1nal-dual algorithms

2.6 A prhnal-dual predictor-corrector algorithm

for nonsymmetric cones 0 0 0 o o 0 0 o o 0 0 0

3 Semidefinite optimization in matrix variable

4 Barriers for some well-structured sets

4.1 The non-negative orthant: logarithmic barrier

4.2 The second-order cone: logarithmic barrier

4.3 The cone of se1nidefinite positive matrices:

logarithmic barrier 0 0 0 0 0 0

4.4 The p-cone . 0 0 • •

II The design of Y AS

1

1

8

8

12

18

23

28

35

46

52

52

52

54

54

58

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

5 Overview

5.1 LA Layer

5.2 IPM layer

6 The Linear Algebra Layer

6.1 Low-level routines ...

6.1.1 BLAS routines

6.1.2 LAPACK routines

6.2 YAS K block

6.2.1 Properties of YAS_K_Block

6.2.2 Methods of YAS K block ..

6.3 YAS K mb

7 Appendix A. Y AS defined types

III Optimization in IMRT

8 Problem formulation

9 A MATLAB prototype

10 Benchmarking

11 Conclusions

ii

58

58

61

64

66

70

77

84

87

94

104

105

108

108

117

118

121

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Introduction

Interior point methods (IPMs) provide important tools to solve convex op­

timization problems. In [11], Nesterov and Nemirovskii have shown that

theoretically efficient IPM algorithms can be developed in a very general

setting. For a convex optimization problem such as

inf (c, x)
xED

where (·, ·) is an inner product and D is a closed convex set in a finite­

dimensional real vector space, the only information about the convex set D

needed by IPM algorithms is a so-called barrier functional on the interior of

D. Theoretical efficiency of the algorithms depends on the properties of the

barrier which result from the structure of D. For example, when D is the

intersection of an affine space with a special type of a convex cone, a so-called

self-scaled cone, a barrier with particularly useful properties is available for

D. As a result, so-called primal-dual algorithms can be developed in this

setting. Their observed practical behaviour is better than the behaviour

of pure primal algorithms that only use a barrier with no other appealing

properties.

The properties of the barrier determine the set of algorithms that can be

used to solve the problem. In this thesis, we set the basis of a new optimiza-

tion solver with a modular design that exploits this degree of generality and,

in particular, utilizes the power of primal-dual barriers in the nonsymmetric

setting.

A number of very powerful IPM-based packages already exist: SDPT3

[19], SeDuMi [16], CSDP [2], DSDP [1], SDPA [6], to name just a few. How-

lll

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

ever, most of these solvers are very specialized to a particular problem type

and data structure, e.g., CSDP is designed to solve only the so-called positive

semidefinite optimization problems and performs exceptionally well primar­

ily on problem instances with dense data structures. These packages exhibit

a somewhat rigid design: modifying these solvers to accommodate convex

optimization problems of other types by extending the implemented algo­

rithms becomes extremely difficult, if at all possible. In addition, many op­

timization problems have an easily identifiable block-density pattern, while

few optimization packages are capable of taking full advantage of this struc­

ture at the linear algebra level. The main goal of our work is to propose a

modular framework that can be used to create an optimization engine capa­

ble to overcome the above mentioned shortcomings of existing IPM-based

solvers. In particular, we focus on implementing primal-dual path-following

algorithms in the non-symmetric cone setting, with the underlying hypoth­

esis being that such optimization problems offer end-users more adequate

modelling capabilities, while the primal-dual algorithms allow very efficient

computational strategies similar to those already exhibited in practice by

the path-following algorithms in the symmetric cone setting.

Through this design we aim to

• allow easy development of IPM algorithms for optimization problems

beyond standard symmetric cone optimization problems;

• allow easy switch between different linear algebra packages that sup­

ply routines required by IPM algorithms; in particular, one can use

platform-tuned linear algebra packages;

iv

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

• allow the user to exploit the type/structure of the matrices involved

in the linear algebra and so

- speed up additions/multiplications;

- speed up factorizations/inversions, for example for k-update ma-

trices or block-structured matrices;

- save memory when storing sparse, symmetric, diagonal etc. ma­

trices;

- obtain better numerical accuracy through customized linear al­

gebra techniques such as factorization of block matrices;

• allow easy switch between different numerical precisions of data;

• allow accomodation of techniques motivated by numerical accuracy

such as storing the iterates of the algorithms in a scaled space (see

Y AS _k_EVS in Section 5.2);

• allow the optimization problem to be given in either primal or dual

form;

• allow modelling of optimization problems in their natural formulation

(see Semidefinite optimization in matrix variable in Chapter 3);

• provide an appropriate framework for the development of an open­

source library of derived classes that are tuned for optimization prob­

lems with specific data structures.

Using the object-oriented paradigm supported in C++, the algorithms

implemented in this framework make use of a special class named "barrier".

v

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Through the methods of the barrier class, the algorithms can evaluate the

barrier, compute its gradient or Hessian. In particular, this framework al­

lows the implementation of primal-dual algorithms for optimization over

nonsymmetric cones, see [8], where the barrier is log-homogenous but not

self-scaled. Geometric optimization and optimization over p-eones are situa­

tions where log-homogenous barriers are the natural barriers. Interior point

methods in this setting have drawn recent attention with hopes that their

performance for large problems might be better then first-order methods

applied to the original optimization problem, or classical IPMs applied to

an equivalent optimization problem over symmetric cones. In particular,

our interest in optimization problems over p-eones stems from the fact that

problems of this kind arise in optimal radiation therapy treatment planning.

The large-scale and nearly dense nature of these optimization problems make

them inaccessible to any of the state-of-the-art solvers available today. How­

ever, there is a clear need to advance our capacities in solving such problems

as dictated by this important application.

In what follows we will go into a bit more details of our design formalism.

The Y AS design is split in two levels:

• Basic Linear Algebra layer;

• Interior Point Methods layer.

The goal of the Basic Linear Algebra layer is to provide a transparent

access to hardware-tuned linear algebra routines. This layer consists of:

• the low -level routines, further grouped into:

vi

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

- BLAS routines include matrix-matrix multiplications and addi­

tions for different types of matrices;

- LAPACK routines are used for inverting, factorizing, solving lin­

ear systems with different types of matrices.

• the Y AS_ K _block class allows the storage of one or more blocks of

the same type and dimension and provides methods to do linear alge­

bra operations. By a block of a certain type we refer to a matrix with

an exploitable structure, such as a matrix that is sparse, symmetric,

diagonal etc.

• the Y AS_ K _ mb class allows the storage of one or more matrices of

blocks of the same type and dimension and provides methods to do

linear algebra operations. By a matrix of blocks we refer to a matrix

that can be splited into blocks.

The Interior Point Methods layer consists of:

• Y AS_ k _ EV S is a class that is a container of a k-tuple of elements

of a vector space. The class provides methods such as adding, scaling

or computing the norm of objects of this type.

• Y AS_ barrier is a class which is of obvious importance for interior

point methods. Through the methods of Y AS_ barrier, one can eval­

uate the barrier, its gradient or its Hessian.

• Y AS_ LO is a class used to replicate a linear operator.

vii

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

• Y AS_ norm_ eq is a class that is derived from Y AS_ LO allowing the

user to form a compressed and expanded versions of normal equations

and to solve the latter.

The thesis is divided in three parts: Interior Point Methods, The

Design of Y AS and Optimization in IMRT.

In the first part, we collect some theoretical results about interior point

methods concluding with an algorithm for nonsymmetric cones due toNes­

terov [] . We start with the formulation of the problems that we want to

tackle with YAS. Next, we present the theory of interior point methods as

applied to such problems, starting from the general form

inf (c, x),
xED

where D a closed convex set and c, x vectors, and building up to conic

optimization.

The second part of the thesis is about the design of YAS. Up to this

point, the base layer of the solver, the linear algebra layer, is completely

established. The top layer, the interior point methods layer, is roughly

described emphasizing the resulting advantages. This second part of the

thesis has the style of a software manual, where the classes and the routines

of the solver are well documented. We start with an Overview where we say

what can be done with the solver, the resulting advantages, and not how to

do it. We then proceed to describing the Linear Algebra Layer. We follow

the same pattern starting with more general ideas, slightly more specific

than the ones in Overview, but still not enough for the actual use of the

viii

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

software. We are avoiding technicalities at the beginning. Then we proceed

with detailed documentation for each routine/class.

Finally, the third part of the thesis concerns with optimization prob­

lems arising from IMRT. We present a model and then isolate the resulting

optimization problem and conclude with remarks about its computational

tractability. We then describe a prototype code in MATLAB that is im­

plementing Nesterov's algorithm for nonsymmetric cones, and use this to

tackle the optimization problem presented before. We compare our result

with SeDuMi and SDPT3. We want to point out that real situations like

this ask for enough flexibility to model the data with different types, at least

dense and sparse, and so a solver with a modular design is preferable. While

working on the prototype code, we have also found an unexpected situation

where the flexibility that we provide in the IPM layer might prove useful.

However, at this point we can not confirm this with strong numerical results

since the software is in incipient form.

ix

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Part I

Interior Point Methods

1 Problem formulation

Let X be a finite dimensional real vector space endowed with an inner

product (·, ·) : X x X ---t R. Let c E X and let D ~ X be a closed

convex set, i.e., a closed set such that if x, y E D and n E [0, 1] then

ax+ (1- n)y E D. We focus on solving convex optimization problems of

the following type

inf (c, x)
xED

(1)

In particular, we are interested in problems of type (1) that are amenable

to the so-called interior point methods. For the later to hold, one has to be

able to equip b, the interior of D, with a certain barrier functional f : b ---t

R. See Section 2.2 for a detailed discussion of the barrier functionals.

Theoretically, a barrier exists for any closed convex set, see [] . But in

practice we need to be able to compute this barrier efficiently. Fortunately,

for many well-structured closed convex sets such computable barriers are

already known. Even if such a formulation is not readily available, in many

cases a linear transformation of the decision variable x E X suffices to put

an optimization problem into the desirable equivalent form. To this extend,

1

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

in addition to (1) we introduce four more types of well-structured convex

optimization problems.

In what follows, X andY are finite dimensional real vector spaces each

endowed with an inner product (·, ·), with the underlying space being clear

from the context. Let c EX, bEY and A: X ---t Y be a linear operator.

Denote with A* : Y ---t X its adjoint, i.e., the unique linear operator such

that (Ax, y) = (x, A*y), for all x E X, y E Y. Taking the adjoint of a

linear operator is an involution, i.e., (A*)* = A. Denote K c X a closed

convex cone, i.e., a closed convex set such that if x E K and t E [0, oo)

then tx E K. Recall that the dual cone K* C X is the closed convex cone

defined by K* = { s EX : (s, x) 2:: 0 \;fx E K}; taking the dual of the closed

convex cone is an involution, i.e., (K*)* = K.

Convex conic optimization problem. Consider the problem

inf (c, x)
X

s.t. Ax= b (2)

xEK

and its dual problem

sup (b, y)
y,s

s.t. A*y + s = c (3)

s E K*

2

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

The points x E K n {x: Ax= b} are called primal feasible and (y, s) E

Y x K* n {(y, s) : A*y+s = c} are called dual feasible. Feasible points that

are in the interior of the cone are called strictly feasible.

Problems (2) and (3) are strongly connected. If x and (y, s) are feasible

points then weak duality holds, i.e.,

(c, x) - (b, y) = (x, s) 2:: 0

In particular, if one denotes with val the optimal value of (2) and val*

the optimal value of (3) it follows that val 2:: val*. Under fairly mild as­

sumptions val and val* are equal, a property referred to as strong duality.

For example, if (2) and (3) have strictly feasible points then strong duality

holds. If one has strong duality, in many cases it is possible to recover an

optimal solution to (3) from a solution to (2) and vice-versa. Thus, for most

practical applications (2) and (3) are thought of as equivalent problems.

If the cone K or K* is equipped with a particularly nice barrier, the

so-called log-homogenous barrier, the connection between (2) and (3) goes

well beyond the weak or strong duality as above. Primal-dual methods are

a class of algorithms that exploit this connection. They are believed to be

the most efficient in practice. One such algorithm is discussed in Section

2.6.

Examples:

1. Linear optimization (LO). Let X = Rn, Y = Rm and the inner

products on Rn and Rm be both given by (x, y) = xT y. Let K = R+. be the

nonnegative orthant in Rn. One can show K* = R+.. Let cERn, bERm,

A: Rn---+ lRm be a linear operator with its adjoint A* : Rm---+ Rn. Note that

3

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

if A is represented by am x n matrix A so that A(x) =Ax then A*= AT.

Then problem (2) and (3) are referred as linear optimization problems in

the primal and, respectively, dual form.

2. Second-Order Cone Optimization (SOCO). Let X= Rn, Y =

Rm and the inner products on Rn and Rm be both given by (x, y) = xTy.

Let K = {x ERn: Xn 2:: Jx~ + ... + x~_1} be the second-order cone (also

called Lorentz cone or ice-cream cone) in Rn. One can show K* = K.

Let c E Rn, b E Rm, A :]Rn ----+ lRm be a linear operator with its adjoint

A* : lRm ----+]Rn. Then problem (2) and (3) are referred as second-order conic

optimization problems in the primal and, respectively, dual form.

3. Semidefinite Optimization (SDO). Let X = snxn the vector

space of real symmetric n X n matrices. Let the inner product on snxn be

(x, y) = tr(xy), Vx, y E snxn. Let Y = lRm with the inner product (x, y) =

XT y. Let K = s~xn' the cone of positive-semidefinite symmetric matrices.

One can show K* = K. Let c E snxn, b E Rm. Let A : snxn ----+ Rm be

a linear operator. One can show that there exists Ai E snxn, i = l,m

such that A(X) = ((Ai, X) , ... , (Am, X)). In this case, its adjoint A* :

Rm----+ snxn is given by A*(y) = 2::,1 YiAi, y E Rm. Then problem (2) and

(3) are referred as semidefinite optimization problems in the primal and~

respectively, dual form.

In many applications the natural formulation has the form of the dual

problem. For example, in control theory the sufficient stability criteria is

expressed in terms of a linear matrix inequality such as pT P F - P j I.

Also, in linear optimization, a constraint of the form Ax 2:: b is obviously a

dual constraint because it is equivalent with Ax - s = b, s E JR~. Although

4

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

one can rephrase it as A(x1 - x2)- 8 = b, xb x2 , 8 E JR.~, this procedure dou­

bles the dimension of the problem. Most solver such as SeDuMi, MOSEK,

SDPT3 implementing interior point algorithms require the input to be in

the form of (2). We allow input in both primal and dual formats.

The conic optimization modelling framework has several limitations.

First, conic constraints do not arise naturally in applications. Convex opti­

mization problems can be put in the form of a conic optimization problem

using the, so-called, lifting procedure. However, during this transforma-

tion the complexity of the new problem to be solved is increased. Second,

primal-dual algorithms require certain information, to be made more precise

at a latter point, regarding both K and K*. In many cases, this information

is available for K but not for K*. Therefore, we are interested in solving

problems of the following types:

Convex optimization problem in dual form. Let D C X be a closed

convex set, not necessarily a cone. Consider the problem

{

sup (b, y)

s.:. c- A*y ED

(4)

Convex optimization problem in primal form. Let D C X be a

closed convex set. Consider the problem

5

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

inf (c, x)
X

s.t. Ax= b (5)

xED

Remark 1.1 Note that problems (1), (5) and (4) are equivalent. The equiv­

alence follows from the fact that interior point algorithms can be developed

for (1) if a barrier on b is available. A barrier f on b naturally gives a

barrier on {y : c- A*y E b}, namely y 1-7 f(c- A*y). Therefore (5) can

be seen as a particular case for (1). Consider now a convex optimization

problem in primal form (4). Assume N is a basis for the null space of A and

Xo is such that Axo =b. It follows that {x: Ax= b} n D = {Ny + Xo} n D

and from here the equivalence:

inf (c, x) {
x inf (b, Ny + x0)

s.t. Ax= b # Y

s.t. x0 + Ny ED
xED

Therefore, (1), (5) and (4) are equivalent.

~{ sup- (N*b, y)
y

s.t. x0 +NyED

In the rest of this thesis we use "convex optimization problem" to refer

problems formulated as (1), "primal convex conic optimization problem" for

(2), "dual convex conic optimization problem" for (3), "convex optimization

problem in dual form" for (5), "convex optimization problem in primal form"

for (4).

We emphasize that we are interested in solving problems in their nat­

ural formulation. For this purpose, we choose to distinguish between (1),

(5) and (4) although they are equivalent. Also, the use of abstract linear

6

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

operators mapping vector spaces into vector spaces allows us to model the

linear operator x f--+ yx + xy (x and y are matrices of appropriate size) in­

stead of replacing it with a linear operator that acts on the vector obtained

by stacking the lines of x.

7

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

2 Main ingredients in Interior Point Algo­

rithms

The goal of this part is to present several interior point algorithms. We

start with the ideas of the interior point methods that go back to the 1950s.

The key concept is the central path, a curve that leads to the optimal set

and whose definition depends on a certain functional. After this we present

Nesterov's and Nemirovskii's [] choice for the functional, the so-called

barriers, followed by several algorithms relying on the properties required

for the functional. Then we consider the barriers in the context of conic

optimization and quote results from [] and [] showing how the dual­

ity theory is enriched. We finish with the presentation of a primal-dual

predictor-corrector algorithm due to Nesterov [] that is motivated by the

previous results.

2.1 The central path

In 1968, Fiacco and McCormick authored a book called "Nonlinear pro­

gramming: sequential unconstrained minimization techniques" [] . They

introduce it to the reader as a book that provides "a unified body of the­

ory on methods of transforming a constrained minimization problem into a

sequence of unconstrained minimizations of an appropriate auxiliary func­

tion" and also "some historical perspective for the basic approach with an

effort toward synthesis". Following their remarks, it is safe to say that such

ideas go back at least to the 1950s. The problem they consider is a general

nonlinear optimization problem and the two main techniques presented are

8

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

called interior point methods and exterior point methods. In the current

literature of nonlinear optimization, these methods are also referred to as

barrier methods and, respectively, penalty methods.

We will illustrate the ideas of general interior point methods in our set-

ting.

Consider a convex optimization problem

{

inf (c,x)

s.t. xED

We will construct a family of optimization problems by adding to the ob-

jective a term which approaches infinity when the boundary is approached.

In this way, the minimum of the new objective is pushed in the interior of

the feasible region. We control this term with a parameter that allows us

to increase or decrease the term's role in the objective.

Let f : b ~ R be such that lim f (x) = +oo . Consider the family of
X-t8D

optimization problems parametrized by J.l > 0:

inf (c, x) + J.lf(x)
xED

(6)

To preserve the convexity of the problem and guarantee uniqueness of

minimizers we will assume f is strict convex. Assume that for every J.l > 0

there exists Xp, E b minimizer of (c, x) + 1-lf(x). One can prove that:

Theorem 2.1 1. 0 < J.l < 0' {::} (c, Xp,) ~ (c, Xa)

2. Let (J.lk)k~I be a strictly decreasing sequence of positive numbers such that

9

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

I-Lk --t 0. Denote with Xk the unique solution of inf (c, x) + 1-Lkf(x). Since D
xED

is bounded, we can assume that (xk) converges to some x* ED. Then

lim (c, Xk) = (c, x*) = inf (c, x)
k---+oo xED

Proof.

1. By definitions:

(c, x/1-) + J.Lf(x/1-) ~ (c, Xu) + J.Lf(xu)

and

Multiplying the first inequality with!!, then adding and rearranging the /1-

terms we obtain:

(1 - ~) (c, x/1-) ~ (1- ~) (c, Xu)

And so JL <a<=> (c, x/1-) ~ (c, xu)·

2. The first part of the statement follows by continuity. For the second

part, denote L := {x : (c, x) = (c, x*) }. Assume (c, x*) > inf (c, x). Then
xED

L n b is nonempty. Therefore the optimization problem

{

inff(x)

s~t. x E Lnb

has a unique solution x E L n b. It satisfies g(x) l_ L i.e. g(x) = JLC for

some JL E JR. But this implies that x is also the solution of min JL (c, x) + f (x)

and so JL > 0.

Because (c, x) = (c, x*) ~ (c, xk) for all k, using the first part of this

theorem, we have I-Lk ~ JL contradicting I-Lk --t 0. •

10

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

The previous theorem shows that the curve { x 1-L : 11 > 0} is leading to a

solution of the initial problem.

Having such a curve in the interior of the domain, one way to follow

it is the following. Start with 11o > 0 and with a point x0 that is a good

approximation for x 1-Lo. Decrease 11o to 11I. If 11I is not much smaller than 11o,

we expect that x0 will be farther from x/-L
1

than it is from x/-Lo but will still be a

relatively good approximation for it. Now do one step of some minimization

algorithm of your choice to get XI which will be a better approximation for

x/1-
1

• To be able to repeat this process, one should make sure that xi is as

close to x I-Ll as was x0 to x 1-Lo.

Note that the description above allows freedom to choose f and freedom

to choose a minimization algorithm.

In the optimization literature, Newton's method is a minimization algo­

rithm that is attractive due to its local quadratic convergence rate. However,

in the general analysis, in order to check if the convergence rate is quadratic

we need to be able to measure the distance between our current point and

the minimizer. Of course this is not practical because the minimizer is not

known. A fundamental result in nonlinear analysis that is eliminating this

inconvenient is due to Kantorovich, see [] . It contains a set of assumptions

under which Newton's method performs good. Nesterov and Nemirovskii

[] proposed their own type of functionals on which Newton's method per­

forms well. They also have all the properties needed to generate a curve as

before that leads to a solution of the problem.

In the rest of this thesis by a barrier we mean the functional introduced

by Nesterov and Nemirovskii. Iff is a barrier, then for each 11 > 0 we denote

11

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

with x11 the unique solution of minJL (c, x) + f(x) and call the resulting curve,
X

{x11 : JL > 0}, the central path. Note that this definition for x11 is slightly

different than before. In this case, the curve leads to a solution of the

problem when JL ~ oo and not to 0. Also note that the definition depends

on c.

We continue with the presentation of the barriers and focus on the analy­

sis of Newton's method as it applies to them.

2.2 Barriers on convex sets

In this section we present the machinery needed for interior point algorithms

for convex optimization problems. Given a closed bounded convex set DC

X with nonempty interior b, our goal is to explain what is a barrier having

bas its domain and state important properties that are used extensively by

the algorithms. Following Renegar [] and Nesterov and Nemirovskii []

we present them using local norms. Therefore, we start by explaining what

do we mean by local norms. We continue by introducing self-concordant

functionals and stating results regarding the analysis of Newton's method

as it applies to them. After this we introduce barrier functionals. We closely

follow Renegar [] .

In what follows, when we refer to f we also assume the following prop­

erties. First, f E C2(D), i.e., f is twice continuously differentiable on D.

Denote with g(x) EX the gradient of gin x and with H(x) :X~ X the

Hessian of f in x which is a linear operator. Second, we assume that H (x) is

self-adjoint and positive definite for any x E D, i.e., (H(x)y, z) = (y, H(x)z)

for any y, z E X and (H(x)y, y) > 0 Vy E X\ {0}. In particular, this implies

12

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

that f is strict convex.

Such a functional f gives rise to a family of inner products on X. For

any x E D, define the inner product (·, ·) x by:

(y, z)x = (y, H(x)z), Vy, z EX

As usual, the inner product (-, ·)x induces a norm on X denoted with

ll·llx and given by:

It is known that the definitions of the gradient and Hessian depend on

the norm. We denote with gx(Y) and Hx(Y) the gradient in y with respect

to the norm induced by x and, respectively, the Hessian in y with respect

to the norm induced by x. One can show that

gx(Y) = H(x)-1g(y) and Hx(Y) = H(x)- 1 H(y)

Also denote with Bx(x, 1) the ball of radius 1 centered in x where the

distance is measured in the norm induced by x.

We use the definition in Renegar [] to introduce self-concordant func­

tionals instead of the apparently more technical definition used in Nesterov

and Nemirovskii [-] . In [] it is proved that they are equivalent.

Definition 2.1 We call f self-concordant if, in addition, the following con­

ditions are satisfied:

1. Bx(x, 1) c D, Vx E D

2. 1 - IIY - xllx :::; :::::: :::; l-IIY
1
-xllz, for all V -:/= 0

Two results of obvious interest are

13

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Theorem 2.2 If Di are two closed convex sets and fi :bi-t R, i = 1, 2,

are two self-concordant functionals then !1 + !2 : b1 n b2 -t R is a self­

concordant functional.

Theorem 2.3 Assume A : Rn -t JRm is an injective linear operator, b E

JRm, D C JRm is a closed convex set and f : b -t lR is self-concordant. Then

x ~ f(Ax- b) is self-concordant if the set {x :Ax-bED} is not empty.

Theorem 2.4 Iff : b --+ lR is self-concordant and c E X then x ~

f(x) + (c, x) is self-concordant (on b).

Self-concordant functionals have appealing properties if we apply New­

ton's method to find their minimum. Recall that an iteration of Newton's

method applied to a functional f consists of moving into the minimizer of

the quadratic approximation considered in the current point.

Assuming our current point is x, the quadratic approximation for f in

xis given by

qx(Y) = f(x) + (g(x), Y- x) + l (y- x, H(x)(y- x))

Since H(x) is positive definite it follows that qx is strict convex. Its

minimizer y* is the critical point of qx. Therefore, y* is computed from

g(x) + H(x)(y*- x) = 0

as y* = x- H(x)- 1g(x). We use the notation n(x) := -H(x)-1g(x)

and refer to it as the Newton step in x. Remark that 9x(x) = -n(x).

Therefore the Newton direction is exactly the steepest descent direction if

14

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

the gradient is computed w.r.t. the norm induced by x. We now present

the results regarding Newton's method for self-concordant functionals.

The first result refers to the local approximation of the functional by its

quadratic approximation.

Theorem 2.5 Assume f is self-concordant, xED andy E Bx(x, 1). Then

l/() () I < !!y-x!!!
Y - qx Y - 3(1-l!y-x/LzJ

The second result refers to the progress done by Newton's method.

Theorem 2.6 Assume f is self-concordant and x E D. If z minimizes f

and z E Bx(x, 1) then

II II < llx-z/1!
X+ - z X - 1-l!x-zl/x

where x+ is the next iteration of the Newton algorithms i.e. x+ .-

x- H(x)-1g(x).

Corollary 2. 7 If lix- zllz < ~ then

Theorem 2.8 Assume f is self-concordant. If lln(x)iix < 1 then

l!n(x+)ilx+ ~ (1~~S(~~ilx)
2

In the general case, the convergence results for Newton's method require

x to be sufficiently close to the minimizer. The only way to decide if we are

sufficiently close to the minimizer is to know the minimizer. In the case

of self-concordant functionals we can decide if we are close enough to the

minimizer by looking at the size of the Newton step.

15

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Theorem 2.9 Assume f is self-concordant. Iflln(x)llx <±for some xED

then f has a minimizer z and

I I 3lln(x)ll~ I Z -X+ lx ::::; (1-lln(x)ll:ll)3

II II II ()II 3jjn(x)ll~
z- X X ::::; n X X + (1-lln(x)ll:ll)3

Now we introduce barrier functionals.

Definition 2.2 A self-concordant functional f is called a barrier if the

quantity v f := sup llgx (x) 11; is finite. We refer to v f as the complexity
X

value of f.

As in the case of self-concordant functionals, the following results are of

interest

Theorem 2.10 If Di are two closed convex sets and fi: bi ~JR., i = 1, 2,

are two barrier then f := f1 + f 2 : D1 n D2 ~ JR. is a barrier and Vf ::::;

Theorem 2.11 Assume A: JR.n ~ JRm is an injective linear operator, bE

lRm, D C JR.m closed convex set, and f : b --+ lR is a barrier. Then x ~

!(Ax-b) is a barrier if the set {x: Ax-bED} is not empty with complexity

value at most v f.

Remark 2.1 Adding a linear functional to a barrier results in a self-concordant

functional {see Theorem 2.4) but not necessarily a barrier. As an example

consider x ~-----+ x - ln x.

16

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Practical experience and complexity analysis of interior point methods

show that we are interested in barriers with small complexity value. Nes­

terov and N emirovskii [·] show that v 1 ;:::: 1 for any barrier f. They also

show that each open convex set containing no line is the domain of a barrier

functional. If the set is in Rn, they also prove that there exists a univer­

sal constant C and a barrier on the set with complexity value less then

C · n. Unfortunately, the proof is not constructive and therefore it has only

theoretical value because, as we will see, interior point algorithms require

computable gradients and Hessians for the barriers.

It is worth mentioning that the objective that define the central path,

see (6), are not barriers but self-concordant.

We now state one important property of barriers:

Theorem 2.12 Assume f is a barrier and x, y ED. Then (g(x), y- x) <

This result can be used to prove that the central path is leading to

a solution of the initial problem. We see that xJ..L, the unique solution of

infJ.t (c, x)+ f(x), is given by g(xJ..L) = -J..Lc. Therefore, for any y E D, we have
X

(c,xJ..L)-(c,y} = (c,xJ..L- y) = -t (g(xJ..L),xJ..L- y) = t (g(xJ..L),y- xJ..L) <tv,.
It follows that (c, xJ..L} < tv 1 + (c, y) and from here:

Theorem 2.13 (c, xJ..L) ::; lv 1 + inf (c, x).
J..L xED

One can also prove an analog relation for the case when the point is not

on the central path:

Theorem 2.14 For any xED we have

17

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

(c, x) < lvf(l + llx- xf.£11x) +in£ (c, x). f.£ ~ xED

2.3 Several algorithms for convex optimization prob-

I ems

We now have all the tools we need to state several algorithms for convex

optimization problems

{

~n (c,x)

s.t. xED

We assume a barrier f on iJ with complexity value v 1 is available.

Denote with ff.£(x) := J.L (c, x) + f(x), J.l > 0, and with nf.£(x) the Newton

step for ff.£ in x.

The Short-Step Barrier Method. For a given t > 0, the algorithm

will return x* such that (c, x*) < t + inf (c, x).
xED

Input: t > 0 (the desired accuracy)

J.L1 > 0 and X1 such that llnf.£1 (x1) llx
1
~ n (a point close enough

to the central path)

Let AJ ·- 1 (3 ·- 1 + _1_
u; .- 9' .- 8..jfTj

Repeat: For k ~ 1:

Let J.lk+l := J.lkf3 (we increase J.lk with factor (3)

Let Xk+l := Xk + nf.£k+1 (xk)

k := k + 1

Until: J.lk > ~

The fact that at each iteration llnf.£k (xk) llxk ~ t implies llxk - xf.£k llx ~
~k

i (Theorem 2.9). Therefore, we can get a bound on how far we are from

18

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

the optimal value (Theorem 2.14):

(c, xk) < ..!...v J(l + ~) + inf (c, y) J.Lk yED

This relation gives us the stopping condition. Also note that if we use

1 + 8.}vy as the multiplying factor, we need O(yfi7jlog(J-l*/ J-l1)) iterations

to get from the initial value f-lt to J-l*· Therefore, for given E > 0 we need

O(yfi7jlog(ft;)) iterations to produce a point x* such that (c, x*) :::; E +

in£ (c, y).
yED

Note that one could replace a = ~ and {3 = 1 + 8.}vy with any a > 0,

{3 > 1 such that if we define 'Y := a/3 + (/3 - l)yfi7j then 'Y < 1 and

(2:y)2 :::; a. The restrictions on a and {3 guarantee that at for each k we

have llnJ.Lk (xk) llxk :::; a, so the algorithm stays on track. The only thing that

is changing in this situation is the stopping condition.

The Long-Step Barrier Algorithm. This algorithm is build on

the idea that one should use for f-lk+t a much larger value then the safer

f-lk (1 + 8.}vy) that is used by the barrier method. To get close to xJ.Lk+1

the algorithm is not taking Newton steps. Instead is doing exact line search

along the Newton directions until it gets close enough to xJ.Lk+1' As usual, the

distance between x and xJ.Lk+1 is represented by the quantity llnJ.Lk+1 (x) llx·

If llnJ.Lk+1 (x) llx < ~ the algorithm considers that x is close enough to x'l7k+l.

The value ~ is the biggest value that allows one to apply Theorem 2.9.

Input: E > 0 (the desired accuracy)

f-lt > 0 and x 1 such that II nJ.L1 (x 1) II < ~ (a point close enough

to the central path)

r > 1 (the factor to be used for increasing f-lk)

19

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Repeat: For k ~ 1:

Let J..lk+l := rJ..Lk Denote with Y1 := Xk

i := 1

Repeat: compute ti ~ 0 such that f 1-'k+l (Yi + tin,_,k+l (yi)) :=

min/ 1-'k+l (Yi + tn,_,k+l (yi)) t;::::o

Yi+l := Yi + tin,_,k+l (Yi)

i := i + 1

Xk+l := Yi

k := k + 1

Until: J..lk+l ~ 4'!.f

The fact that at each iteration lln,_,k (xk) llxk ~ i implies, from Theorem

2.9, llxk- x,_,k llxk < £ and further, from the definition of self-concordancy

(Definition 2.1), lixk- z(J..Lk)liz(p.k) ~ 3. Therefore, we can get a bound on

how far Xk is from the optimal value (Theorem 2.14):

From here we get the stopping criteria, i.e. J..lk ~ 4'!.f.

The analysis of the complexity for the algorithm depends on the number

of line searches needed to get from Xk having the property lln,_,k (xk) II < t
to Xk+l, the point such that lln,_,k+l (xk+I) II < ~· Obviously, it depends on

r, the factor by which J..lk is increased. We skip the details, but mention the

main ideas. First, one can find an upper bound for the difference j,_,k+l (xk)­

f 1-'k+l (x 1-'k+l) in terms of r. Then, one can show that there exists a constant

T > 0, the same for all line searches, such that every line search decreases

the value of j,_,k+l with at least T, i.e. j,_,k+l (yi) - j,_,k+l (Yi+l) ~ T for any i.

20

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

If follows that it takes O(rv1 logr(.!:.L)) line searches for the algorithm
Ef.Ll

to finish. Although the theoretical complexity of the long step algorithm

is worse by a factor of ..Ji7j then the one of the short-step method, people

agree that it is somehow more efficient in practice.

A Predictor-Corrector Algorithm. The idea of the predictor-correct

algorithm is to follow the central path by using a direction that approximates

a tangent to the central path. After moving in this direction a fixed fraction

of the distance to the boundary of the feasible region, the algorithm returns

to the central path and repeats.

Remember that the points on the central path (xf.L)f.L>O are given by

g(xf.L) + CJ.t = 0. Differentiation with respect to J.t gives H(xf.L)x~ = -c.

Therefore x~ = - H (x f.L) - 1 c and so the tangent to the central path in x f.L is

the vector -H(xf.L)-1c. If the current iterate xis not on the central path we

call the vector ex := -H(x)-1c the predictor direction in x. Intuitively, if x

is close enough to a point xf.L on the central path, the vector -H(x)-1c will

be a good approximation for -H(xf.L)-1c. As a side remark, the predictor

direction in x is also the direction of steepest descent for the functional (c, ·)

computed in x with respect to the norm induced by x.

If x is a feasible point, presumably not close to the central path, the

corrector steps are iterations that move towards x f.L the unique point on the

central path such that (c, x) = (c, xf.L). Denote with L(x) = {y : (c, y) =

(c, x) }. The corrector steps minimize the restriction off to the affine space

L(x). Each step is doing an exact line search along the Newton direction,

denoted with niL(x), of fiL(x)· We stop the correction steps at the point

x* that satisfies llniL(x) (x*) llx.. ~ l4 • The choice of 1~ comes from the

21

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

implication llniL{x) (x*) llx* :::; 1
1
4 ==} I ln(x*) I lx* :::; ~ that makes the analysis

similar with the analysis for the short-step barrier method.

Input: J-t > 0 (desired accuracy; J-t is rather big as convergence is

achieved when J-t ---t oo)

x1 such that niL(x1)(xt) :::; 1~ (a point close enough to the central

path)

u E (0, 1) (the predictor step length, i.e., the fraction from the

distance to the boundary)

Start:

Repeat:

k := 0

k := k + 1

compute sk := sup{ s : s > 0, Xk - scx~r; E D}.

take the predictor step: xf := Xk - USkCx~r;

Y ·- xP·.; ·-1· 1.- kl II.- !

denote L(yt) = {y : (c, y) = (c, Yt)}

Repeat:

compute ti ~ 0 such that

Yi+1 := Yi + tiniL(yl) (Yi)

Until: II n L(yl) (Yi+ t) II :::; 1~

compute 1-taprox from 1-taproxc + g(xk+1) = 0;

Until: 1-taprox > 1-t

22

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

2.4 Barriers in conic optimization

We will now look at the conic convex optimization problem i.e. the primal­

dual pair introduced in Chapter 1 as (2) and (3):

min (c, x)

s.t. Ax = b (2)

xEK

and

max (b, y)

s.t. A*y + s = c (3)

s E K*

Recall that X, Yare finite dimensional spaces, K c X is a closed convex

cone, K* c X is the dual of K, c E X, b E Y and A : X ~ Y is a linear

operator with adjoint A* : Y ~ X. A standard assumption is that A is

surjective and so A* is injective. Therefore y is uniquely determined by s

from A*y + s = c. We also assume that both problems are strictly feasible.

Assume f is a barrier on k with complexity v 1. We will state results

showing how f is building more connections between the primal and the

dual problem. We will be dealing with three types of barriers. From general

to particular they are: barriers (as defined for convex sets), log-homogenous

barriers and self-scaled barriers. Unless otherwise specified f will be a bar­

rier.

Remark 2.2 Saying that the cone is self-scaled is the same as saying that

there exists a self-scaled barrier on it. The formulation is emphasizing that

the cone has enough structure to support a self-scaled barrier.

We can now define log-homogenous barriers and present their properties.

Before introducing self-scaled barriers we need to develop more theory.

23

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Definition 2.3 A barrier f : k ---t R is called log-homogenous if for all

x E k, t > 0 we have:

f(tx) = f(x)- VJ ln t

Theorem 2.15 f is log-homogenous iff for all x E K and t > 0

g(tx) = tg(x)

Theorem 2.16 Iff is log-homogenous then the following hold:

1. H(tx) = frH(x)

2. //gx(x)//x = yfvj

3. H(x)x = -g(x) ~ -x = gx(x)

4. (-g(x), x) = v1 ~ (H(x)x, x) = VJ

5.(g(x), (H(x))- 1g(x)) = v1

6. f(u) ~ f(x) + (g(x), u- x) + w(r)

H(u) ~ (l!r)2H(x)

where r = //u- x//x < 1 and w(r) = -r -ln(1- r)

We will now illustrate the idea that a barrier on k generates a barrier on

K* and show more connections between the primal and the dual problems

that result from this.

Definition 2.4 Define the conjugate functional off as:

f*(s) :=- inf [(x, s) + f(x)]
xED

Theorem 2.17 If f is a barrier then f* is a barrier on K* and v r <

(4v f + 1) 2 • Moreover, if f is log-homogenous so is f* and v f = v r.

24

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

We use the analogous notations v r for the complexity of f*, as well as

g* for its gradient and H* for its Hessian.

Theorem 2.18 Iff is a barrier on k then -g is a bijection between k

and K*. On the dual side, -g* is a bijection between K* and k. Moreover,

if x E k and s E K* are such that s = -g(x) then

-g*(s) = x and H(x)-1 = H*(s)

Remark 2.3 We now have a different way of looking at the properties of

log-homogenous barriers from Theorem 2.16. H (x) maps X to X and we

have seen - g is a bijection between k and K*. In Theorem 2.16, Property

3 says that x is mapped by H (x) and - g in the same point. Property 4 says

that the duality gap at x and its image through - g is the same for all x and

is equal to v 1. Same for Property 5.

As every point x E k is creating an inner product through f, every

point s E K* is creating an inner product through J*. Because any s E K*

is the image of some x E K through - g, we can say that any point x E K

is creating an inner product through f*.

Definition 2.5 The inner product created by x E K through f* is denoted

with(·,·): and is defined as (y, z): = (y, H*(-g(x))z):

Remark 2.4 It follows from Theorem 2.18 that (y, z): = (y, H(x)-1z):

The barrier f defines a central path { x ,_, : J.l > 0}, called the primal

central path, where x ,_, is the unique solution of

25

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

{

m~n J1- (c, x) + f(x)

s.t. Ax= b

The barrier f* defines a central path {(yJL, sp.) : J1- > 0}, called the dual

central path, where (yJL, sJL) is the unique solution of

{

max J1- (b, y)- f*(s)
y,s

s.t. A*y + s = c

Remark 2.5 1. Both primal and dual central paths exist because (2) and

(3) are assumed to be strictly feasible.

2. Sometimes we call dual central path the curve {sJL : J1- > 0}. We can do

this because A* is injective and so sJL uniquely determines Yw

We will now see that, iff is log-homogenous, when following the primal

central path one generates the dual central path as a by-product and vice-

versa.

The optimality conditions that give xJL are

{

Jl-C + g(xp.) ..L {x: Ax= b}

Axp. = b

Therefore an unique y JL exists such that

{

Jl-C + g(xp.) = A*yJL

AxJL = b

Rearranging the terms we obtain

{

c- A*(tyJL) = -~g(xp.)
AxJL = b

26

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Denoting sf.£ := c- A*(!Yp,) and reconsidering our notation for Yp, as

Yp, := !YJ.£ we get

sf.£= -tg(xp,)

Axp,=b

A*(yp,) + Sp, = c

Under the assumption that f is log-homogenous, it turns out that the

pair (yp,, sp,) is the unique solution for the problem

{

~~ J]; (b, y) - f*(s)

s. t. A *y + s = c

because the gradient of the objective at (yp,, sp,) is orthogonal on { (y, s) :

A*y+s=c}:

(Jl;b, -g*(sp,)) = \Jl;AXp,, -g*(!(Jl;sp,))) = (Jl;Axp,, -j};g*(Jl;sp,)) =

(Jl;Axp,, -J];g*(-g(xp,))) = Jl; (Axp,, Xp,)

Theorem 2.19 Iff is log-homogenous then its gradient is mapping the

primal central path to the dual central path:

and conversely, the gradient of f* is mapping the dual central path to

the primal central path:

Remark 2.6 One can show that iff doesn't have the log-homogenuity prop­

erty the path s J.£ in the dual space obtained by s ,_, : = -! g (x ,_,) is still approach­

ing a dual optimum when J]; -t oo i.e. (x,_,, s,_,) ,_,~ 0.

27

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

One can also show:

Theorem 2.20 Iff is a log-homogenous barrier than the following hold:

1. for any x E k, s E K*: J(x) + J*(s) ~ -vf- VJ In<~;>

2. for any J-L > 0: f(xp,) + f*(sp,) = -vf- VJ In t·

2.5 Predictor step in conic optimization

Symmetry and primal-dual algorith:ms

In Section 2.3 we have presented a predictor-corrector algorithm for the

convex optimization problem (1). If the current point is on the central path

the predictor direction is the tangent to the central path at that point. If

it is off the central path the predictor direction is an approximation to the

tangent to the central path. Let's consider the primal central path and look

at the tangent to the primal central path. Recall that the system giving the

primal central path is:

sp, = -;g(xp,)

Axp, = b

A*(yp,) + Sp, = c

Taking the derivative with respect to J-L we get:

s~ = :2 g(xp,) - ~H(xp,)x~

Ax' =0
JL

A*(y~) + s~ = 0

Using -ig(xp,) = sp, (Theorem 2.19) and also H(tx) = faH(x) (Theorem

2.16) and denoting the tangent directions s~, x~ with flsp, and, respectively,

~Xp, we have:

28

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

~sp, + H(..fJixp,)~xp, = -tsp,

A~x~ = 0

A*(~y~) + ~s~ = 0

If we consider the dual central path and derive the tangent directions we

obtain:

~Xp, + H*(v'Jisp,)~sp, = -txp,

A~x~ = 0

A*(~y~) + ~s~ = 0

Theorem 2.21 The two systems are equivalent and therefore have the same

solution (~xp,, ~sp,, ~Yp,)·

Proof. Apply H(...fiixp,) to the first equation in the second system.

All we need to check is that

We have:

H(...fiixp,) (-txp,) = -tsp, {=:} H(...fiixp,) (xp,) = sp,

{=:} iH(xp,)(xp,) = sp, {::} -ig(xp,) = sp,

the last relation being true (Theorem 2.19).

Now rewrite the operator H(..;Jixp,)H*(..jJisp,) as H(xp,)H*(f-tsp,)· Be­

cause f-LSp, = -g(xp,) it follows from Theorem 2.18 that H(xp,)H*(f-Lsp,) is the

identity. Therefore H(v'Jixp,)H*(..fJisp,)~sp, = ~sp, is true. •

In Section 2.4 we saw that in conic programing with log-homogenous

barriers when we set up the primal central path we obtain the dual central

path and vice-versa. This result is analogous. It says that when we set up

29

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

the equations for the tangent to the primal central path we also obtain the

tangent to the dual central path and vice-versa. Both are representative for

what is referred in the literature as symmetry.

If the pair (x, s) is not on the central path, the first idea would be to

keep the same systems to compute the directions. The system that is set-up

from the primal perspective is

D.s + H(yJix)b.x = -ts

AD.x = 0

A*(b.y) + b.s = 0

while from the dual perspective we obtain

!:l.x + H*(yJis)!::is = -kx

Ab.x = 0

A*(b.y) + b.s = 0

(7)

(8)

For x and s off the central path, the J-t used above has no meaning. One

way to deal with this is to replace J-t with a quantity that depends only on

x and s. On the central path we have J-t = ...!:L..< v) • Therefore we could replace x,s

J-t with ...!:L..(v) . x,s

A more insightful remark is that when we are off the central path systems

(7) and (8) don't give the same solutions. In other words, the symmetry is

lost. When we are on the central path the symmetry follows from two facts:

30

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

H(vfjix)x =sand H*(vfjis)-1 = H(vfjix) (see the proof of Theorem 2.21).

To keep the symmetry one should replace (7) with:

D.s + H(w)D.x = -s

AD.x = 0 where w is such that H(w)x = s (9)

A*(D.y) + D.s = 0

and (8) with

D.x + H*(w*)D.s = -x

AD.x = 0 where w* is such that H*(w*)s = x (10)

A*(D.y) + D.s = 0

Theorem 2.22 If H*(w*) = H(w)-1 then system (9} and system {10} are

equivalent.

Corollary 2. 23 1. Consider system (9) and construct (1 0) with w* =

-g(w). Then (9} and {10} are equivalent.

2. Consider system {10} and construct (9}} with w = -g*(w*). Then (9}

and (1 0) are equivalent.

Remark 2. 7 1. When· we are on the central path, system (9) becomes

31

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

~s + H(..JP,x)~x = -s

A~x=O

A*(~y) + ~s = 0

(11)

which, strictly speaking, is not (7). The solution of (11) is the scaled

solution of (9) by a factor of J-L. Analogously, (10) becomes

~x + H*(..JP,s)~s = -x

A~x=O

A*(~y) + ~s = 0

(12)

and the solution of (10) is the scaled solution of (12) by a factor of J-L.

2. Intuitively, the solution of (9) is an approximation to a tangent

direction because when we are on the central path w becomes v'Jix. So

the closest we are to the central path the more w approaches v'{ix. The

same thing is valid for (10). Predictor-correct algorithms work with two

neighborhoods of the central path. Roughly speaking, we need the pair to

be in a smaller neighborhood in order to obtain reasonable approximation

to a tangent direction. For the correction process we can afford to be in a

larger neighborhood and still do it successfully.

3. The choice to find an approximation to the tangent by preserving

the symmetry, makes this a primal-dual algorithm. It follows the primal

and the dual central path at the ·same time and the directions to move are

decided by considering both the primal and dual problem.

32

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Definition 2.6 The primal-dual central path is the curve {(xp,, sp,) : J.t > 0}.

When setting up a system like (9) or (10) we must have w or w*.

Definition 2. 7 For fixed x E k and s E K* a point w such that H(w)x = s

is called a scaling point for the ordered pair (x, s).

One can prove that scaling points exist for any pair in the most general

case:

Theorem 2.24 Iff is a barrier, there exists at least one scaling point for

any pair (x,s) E k x K*.

How to determine scaling points is a serious issue. In what follows we

briefly present self-scaled barriers. Several properties make them attractive,

but in this context the uniqueness of scaling points for a pair and the ex­

plicit formula for it are important. After self-scaled barriers, we present

an algorithm by Nesterov [] working with a log-homogenous barrier and

where the correction process is not only finding a primal-dual pair in the

small neighborhood but also a scaling point.

Definition 2.8 A log-homogenous barrier f on K is called self-scaled if the

follo'l.lling hold:

1. For any x E k we have K; = K where K; is the dual of K w.r.t. (·, ·)x,

i.e., K; := {z: (z, y)x ~ 0 Vy E K}

2. for any x E K there exists a constant Cx such that J; = f + Cx where

f; is the conjugate off with respect to (·, ·)x, (see also Definition 2.4)

f;(s) = -in~ (y, s)x + f(y)
yEK

33

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Remark 2.8 1. The gradient gx and Hessian Hx for f are exactly the

gradient and Hessian for J;.

2. One can show that Ox needs to be Ox= -Vf- 2f(x).

We now state several other results concerning self-scaled barriers.

Theorem 2.25 Iff is a self-scaled barrier the following hold:

1. H (x) is a bijection between K and K for any x E k.

2. for any ordered pair x, s E K there exists an unique scaling point wE k,

i.e., s.t. H(w)x = s.

3. if w is the scaling point for the pair x, s then -g(w) is the scaling point

for s, x, i.e., H(-g(w))s = x.

4- if x, w E k then f(Hz(w)x) = f(x) + 2(f(w)- f(z)) and g(Hz(w)) =

Hz(w)-1g(x).

Guler [] was the one to notice that self-scaled cones first introduced

by Nesterov and Todd (see [] and []) are the same as symmetric cones.

Symmetric cones are Cartesian products of five basic symmetric cones: the

cone of positive definite matrices, the second-order cone, the cone of posi­

tive definite Hermitian matrices, the cone of positive semidefinite Hermitian

quaternion matrices and a 27 -dimensional exceptional cone. In Section 4,

we give the explicit formula for the scaling point for all self-scaled cones

that we present.

34

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

2.6 A primal-dual predictor-corrector algorithm

for nonsymmetric cones

In this part we present a primal-dual predictor-corrector algorithm for log­

homogenous barriers from Nesterov []. We start with defining a functional

that measures how far a pair (x, s) E K x K* is from the central path.

We define the following functional to measure how far away is the pair

(x, s) from the primal-dual central path { (x11 , s11) : f-l > 0}:

n(x,s) :=f(x)+f*(s)+v!ln(~~) +vf

Theorem 2.20 says that n(x, s) 2:: 0 for any pair (x, s) and is zero only

for pairs on the primal-dual central path.

Remark 2. 9 Results showing neccesary and sufficient conditions for a pair

(x, s) to be on the primal-dual central path create tools to measure the dis­

tance between a pair and the path. The distance functional n introduced

above resulted from Theorem 2.20. For self-scaled barriers, we know that

for any two points (x, s) there exists a unique w such that H(w)x = s. On

the other hand, for any given f-l > 0 we have H(..jjix11)x11 = sw A measure

of the distance of a pair (x, s) from the point (x11 , s11) would be the quantity

llw- ..jjix11 llw· The latest measure is called "local" because it measures the

distance to a point on the path. n is called "global" because it captures how

far away is the point from the path.

Another quantity associated with a pair (x, s) E k x K* is denoted with

f-l(x, s) and is called the penalty value. For a given pair (x, s) there exists

an unique pair (x11 , s11) on the primal-dual central path having the same

35

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

duality gap. We want J.L(x, s) to be equal to J.L· Because J.L = --..!:.1_< v) we
Xp.,Bp.

define J.L(x, s) = (;~).

For barriers that are not self-scaled the existence of a scaling point for a

pair (x, s) E k x K* is stated in Theorem 2.24. However how to determine a

scaling point is not clear. One main ingredient in Nesterov [] refers exactly

to this issue. It gives a new interpretation to Newton's method applied to

the problem

{

mJnf~t(x) := J.L (c, x) + f(x)

s.t. Ax= b

Fix J.L > 0 and u E k. The Newton step ~u in u is the solution of

J.LC + g(u) + H(u)~u = A*y, A~u = 0

Rearranging and using -g(u) = H(u)u (Theorem 2.16) we get

c- tA*y = tH(u)(u- ~u), A~u = 0

Denoting x(J.L, u) := u- ~u and s(J.L, u) := c- tA*y and using fjH(x) =

H(tx) (Theorem 2.16) the above equality says x(J.L, u) = H(...fou)s(J.L, u).

In other words, Newton's method gave a pair (x(J.L, u), s(J.L, u)) and a

scaling point ...fou for it.

In Section 2.4 we have often seen that the size of the Newton step is

an indicator of how far away we are from the central path. Intuitively, the

closest u is to the minimizer x IL the better are the properties of the pair

(x(J.L, u), s(J.L, u)). All the results in the theorem bellow are already proved

when u = x~t:

36

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Theorem 2.26 Assume ll~ullu ~ f3 < 1. Then the pair (x(J-L,u), s(J-L,u))

is strictly feasible and the following relations hold:

1. s(J-L, u) = H(VJiu)x(J-l, u)

2. llwll!cJ.L,u) ::; (1!~)2 llwll~u' llwll~(p,u) ::; c1!~)2 (llwll~u? for any wE k
3. n(x(J-L, u), s(J-L, u)) ::; 2(-f3 -ln(l- f3)) + f32

4. II-H(y'jLu)g*(s(J-L, u)) - (-g(x(J-l, u))) ll~u ::; ;~~yji
..:Y! ~

5. J-Le ..;vJ::; (
1

:Jr:)2 ::; J-L(X(J-L,u),s(J-L,U))::; (
1
_i:)2 ::; J-Le..;vJ-

+VVJ n

Remark 2.10 1. Relation 1 is just repeating the fact that .JJiu is a scaling

point for the pair (x(J-l, u), s(J-l, u)).

2. Relation 2 is about the difference between measuring with the

norm induced by x(J-l, u) or by y'iiu and, respectively, the norm induced by

s(J-L, u) or by yjiu.

3. Relation 3 is saying that the point is well centered.

4. We need an upper bound for the quantity in Relation 4 in order

to upper bound the growth of the proximity measure along the predictor

step that will be defined with the use of y'Jiu, x(J-l, u) and s(J-l, u). In the

case of self-scaled barriers, any strictly feasible pair (x, s) has an unique

scaling point w which is also the scaling point for (-g*(s), -g(x)) the pair

obtained through the barriers. See Figure 1.

For log-homogenous barriers, although H(.JTiu) scales x(J-l, u) in s(J-l, u),

it doesn't scale -g*(s(J-L, u)) into -g(x(J.L, u)). The upper bound in relation

4 controls exactly this difference. See Figure 2.

Also recall that if u is on the central path it follows from Theorem

2.16 that y'iiu is a scaling point for both (-g*(s(J-L,u)),-g(x(J-L,u))) and

37

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

-g*(s) ~ / / ~, .. , \ ~ -g(x)
• •

Figure 1: The case of symmetric cones.

H(w)

-g"(s) ~.....:!.__. -g(x)
•

Figure 2: The case of nonsyrnmetric cones.

38

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

(x(J..L, u), s(J..L, u)). Intuitively, the closer a pair is to the central path the

better the scaling behaves.

5. Relation 5 control the penalty value for the pair (x(J..L, u), s(J..L, u)).

We assume u E k and J..L > 0 satisfy the assumption of the previous

theorem. To simplify notations, denote with w := y!Jiu, x := x(J..L, u) and

y := y(J..L, u). We define the predictor direction (~x, ~s) in the symmetric

way (9):

One can prove

~s + H(w)~x = s

A~x=O

A*(~y) + ~s = 0

Theorem 2.27 The following relations hold:

1. (~x, s) + (x, ~s) = (x, s)

2. (c,x- ~x)- (b,y- ~y) = 0

3. (ll~xllw) 2 + (ll~sll~) 2 = (x, s)

4. lvJ + (~x,g(x)) + (g*(s), ~s)l ~ ~ (x, s) 112 ilg(x)- H(w)g*(s)ll~
~2

~ 1-~ ((3 + ..jili).

We now look at how is n growing when we move along the direction

(~x, ~s) that we have just defined.

Denote w(t) = -t -ln(l- t) and n E (0, ~!~).

n(x ± Q~X, S ± Q~S)- n(x, s) = f(x ± Q~X) + f*(s ± Q~S)

+v f ln (x±o:A~~±o:As} - f (X) - f* (s) - ll f ln <~;>

Theor~ 2
·
27 J(x ± n~x) + f*(s ± n~s)- f(x)- f*(s) + liJ ln(l ± n)

39

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Theorem 2.16 (6)
:::; ±a[(.6.x, g(x)) + (g*(s), .6.s)] + Vf ln(l ±a)+

+w(a ll.6.xllaJ + w(a ll.6.slls)·
Theorem 2.27 (4) 2

:::; a/_~((3 + FJ) +w(a ll.6.xllx) + w(a ll.6.sjjJ.
One can show that t t------t w (0) is convex and so

w(a ll.6.xllx) + w(a ll.6.slls) = w(V a2 jj.6.xll~) + w(V a2 jj.6.sll~)
:::; w(J a 2 jj.6.xll! + a 2 ll.6.sll:) = w(a ll.6.xll! + ll.6.sll:).
From Theorem 2.16 (2) and Theorem 2.27 (3) follows

Vll.6.xll~ + ll.6.sll::::; c1:])2 Vll.6.xll! + ll.6.sll!
< (JLx,s)l/2 < ~+.jiTj
- (1-~) - (1-~)

It follows:

Theorem 2.28 Iff is a log-homogenous barrier then:

n(x ± a.6.x, s ± a.6.s)- n(x, s):::; (32 (a~;~)+ w (a~;~)

for all a E (0, ~l-:Jh,.). Iff is a self-scaled barrier then

!l(x ± a.6.x, s ± a.6.s)- !l(x, s):::; w (a~i.$7) for all a E (0, ~l~).

Remark 2.11 Note that because a E (0, ~l"Jht) we know that x ± a.6.x,

s ± a.6.s are feasible.

Using this result, one can prove:

Theorem 2.29 Fix (3, 'Y E (0, 1). If a > 0 is s.t. !l(x- a.6.x, s- a.6.s)­

n(x, s) = (32'"'(+w('Y) (see Figure 3b. for the behavior of the right-hand side}

then

1. the penalty level for (x- a.6.x, s- a.6.s) is bounded by

40

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

J-L(x - a~x 8 - 0!~8) > J-L exp (""_1.=.§_ - .:M....) ' - '~+~ ~

see Figure 4; note how the increase in f3 is decreasing the lower bound

on the new J-L.

2. the centrality of (x- a~x, 8- a~8) is bounded by

see Figure 3a.; note how the right-hand side grows when f3 or"'(approach

1 culminating with the case when both approach 1.

To summarize. Fix /3, "Y E (0, 1). If we have J-L > 0 and u E K close

enough to xJL, i.e., with the size of the Newton step less then /3, then we

can construct a pair of points (x(J-L, u), 8(J-L, u)) and (symmetric) directions

(~x(J-L, u), Ll8(J-L, u)) such that if we compute a> 0 such that

f!(x(J-L, u) -ailx(J-L, u), 8(J-L.u) -a~8(J-L, u)) = f!(x(J-L, u), 8(J-L, u)) +/32"'(+w("Y)

then the penalty level and the centrality for the pair (x- a~x, 8- 0!~8)

are bounded by

(
1- f3 2/3) J-L(x- a~x, 8- a~8) ~ J-Lexp "Y f3 - --
+ yfVj yfVj

and, respectively,

f!(x - a~x, 8- 0!~8) :::; 2w(f3) + /32 (1 + "Y) + w("Y)

41

M.Sc. Thesis - Voicu Chis

a.

15

10

b.

5

0
1

.... -~- ...

gamma

McMaster - Mathematics and Statistics

···r·· ..

·········j···

0 0
beta

Figure 3: a.2w(fi) + ,82 (1 +I')+ w(l')

42

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

.. ···:·········

3 ..

beta

··:········ ····:···
······;····· :

····r······

·····t·········
•• 0 •••••• 0 • ~ •••• 0 0 •

. ~:
·····:······ ~ i ..
. ... -~·

1 0
gamma

Figure 4: exp ('Y_ld!_- ..:Y!....)
{3 + ..jiTj ..jiTj

In order to repeat the previous procedure, having the point (x-n~x, s­

n~s) we need to be able to compute a new point u E k close enough to

XJL(x-a.6.x,s-a.6.s)' i.e., with the size of the Newton step less then /3. The

proximity measure O(x, s) provides information about how far away is x

from the minimizer XJL(x,s) in terms of level curves of fJL(x,s):

Theorem 2.30 Given (x, s) E k x K* the following relation is true:

But for a self-concordant functional one can guarantee a certain progress

in the objective at every Newton step:

Theorem 2.31 Iff is self-concordant then for any u E k a Newton step

for the problem

43

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

{

i~f f(x)

s.t. Ax= b

decreases the objective by at least w*(ll~ullu) where w*(t) = t-ln(l+t)

and ~u is the Newton step in u.

If we start in x- a~x and apply Newton's method to /p(x-a.D.x,s-a.D.s)

as long as the size of the Newton step is bigger then f3 we can decrease the

value of fp(x-o.D.x,s-a.D.s) by at least w* (/3) at each iteration.

Because O(x- a~x, s- a~s) ::; 2w(f3) + /32(1 + "Y) + w("Y) we need at

most 2wCB)+.B
2
(l+,)+w('y) iterations to obtain a point u E K close enough to

w.(.B)

Xp(x-o.D.x,s-a.D.s) •

We have, therefore, described the following algorithm:

Input: /3, 'Y E (0, 1) (the parameter controlling the small neighborhood

of the central path and, respectively, the large neighborhood)

t > 0 (the desired accuracy i.e. (x, s) ::; t)

J.L > 0 and u E k such that ll~ullu ::; f3 where ~u is the Newton

step applied in u for fJ.t:

Proceed:

k :=0

{

J-LC + g(u) + H(u)~u = A*y

A~u=O

J-ll := J-L

Repeat: k = k + 1.

Compute y and ~u the solutions of

44

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

{

f-LkC + g(uk) + H(uk)~u = A*y

A~u=O

Define x = uk - ~u, s := c- .l..A*y, w := !Jikuk
1-£k v r"k

Compute ~x and ~s from

D.s + H(w)D.x = s

AD.x = 0

A* (D.y) + D.s = 0
Compute a> 0 be such that

n(x- afl.x, s- afl.s) = n(x, s) + {3 2
'"'(+ w('Y)

Define x* := x- afl.x and s* := s- afl.s

Pk+l := J-L(x*' s*); uk+l := x*

Repeat

Compute y and ~u the solutions of

{

f-Lk+lc + g(uk+t) + H(uk+l)D.u = A*y

A~u=O

Uk+l := Uk+l + l+IID.~IIuk+l ~U
Until IID.ulluk+l :::; {3

Until: ...!!..L < t
1-£k+1

45

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

3 Semidefinite optimization in matrix vari-

able

The natural formulation of problems in control theory is in matrix variable.

One way to solve such problems is to vectorize the matrix variable, i.e., to

write the matrix as a vector of appropriate size by stacking the lines or the

columns. When vectorizing, one also needs to change the linear operators

defining the constraints. We will illustrate these ideas on the following

example:

sup -tr(P)

P~O

pT'PF-P-jl

(13)

wDhere Ppand [:
1
ar:

2
2] x 2dmFatrice[~1~t~1:leal elements, P symmetric.

enote = an = .
Y2 Ya !21 !22

It follows that

pTpp [Ill fu!l2] [2hfu fuh2 + hd12]
= Y1 +Y2

!12!11 ff2 !21!12 + fuf22 !12!11 + !21!22

[!?1 !22!21]
+Ya

!21!22 fi2

Therefore the equivalent problem is

46

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

fn/22 + /21!12- 1] +
/12/11 + /21/22

which is the same as

(14)

([1 0] [J'ft - 1 fu/12]) where A1 := diag ,
2 0 0 !12!11 !12

([0 1] [2/21/n fu/22 + !21/12 - 1]) A2 := diag , ,
1 0 · !21!12 + fn/22 - 1 /12/u + !21!22

A3 := diag ([O 0] , [/?1 !22!2~ - 1])
1 0 /21!22 !22

In the general case when P and F are n x n matrices the equivalent

problem is

47

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

{

sup (c, y)

"''?(n+l}/2 y· A. ~ O
L...n=l t t-

(15)

where c is a vector in lR n(n2+1) and Ai's, i = 1, n(ntl}' are 2n X 2n block­

diagonal matrices. The evaluation of the linear constraint in (15) requires

n{n
2
+l} (2n2) = O(n4) scalar-scalar multiplications and n(n

2
+l) - 1 matrix ad-

ditions. In total, 0 (n 4) operations. The evaluation of the linear operator in

(13) requires three matrix-matrix multiplications and one matrix additions.

In total, O(n3) operations.

In implementations, the evaluation of the linear operator in matrix vari­

able is cheaper than the evaluation of the linear operator in vectorized form.

Not also in terms of number of operations but also because matrix-matrix

multiplications are preferred to scalar-scalar multiplications.

Recall the convex cone optimization problem (2) and (3), from Chapter 1.

Consider X = Skxk with the inner product (x, y) := tr(xy) for x, y E Skxk.

Consider Y = Rmxn with inner product (x,y) = tr(xTy) for x, y E Rmxn.

Let K = S!xk,the cone of semidefinite positive matrices. One has K* =

s!xk. Let c E skxk' b E Rmxn and A : skxk ---?]RmXn be a linear operator

with adjoint A* :]RmXn ---? skxk. Then the problems

inf (c, x)
X

s.t. Ax= b (16)

48

M.Sc. Thesis - Voicu Chis

and

McMaster - Mathematics and Statistics

sup (b, y)
yEJR.mXn,sESixk

s.t. A*y + s = c

s E S!xk

(17)

are referred as semidefinite optimization problems in matrix variable in

the primal and, respectively, dual form. In applications, the usual input is

a problem in the dual form. However, primal-dual algorithms require both

A* and A. In what follows we present results that describe the set of linear

operators A* :]RmXn ~ skxk and A : skxk ~ Rmxn and show how to

compute A if A* is given and vice-versa.

Definition 3.1 (Linear pencil in matrix variable). Assume p E N, Xi E

JRkxm, Yi E Rnx\ i = 1, p. We call a linear pencil in matrix variable the

linear operator P : Rmxn ~ skxk

Definition 3.2 (Linear function in matrix variable). Assume p EN, Xi E

Rmxn, Yi E Skxk, i = 1, p. We call a linear function in matrix variable the

linear operator F : Rmxn ~ skxk

Theorem 3.1 Assume F : Rmxn ~ Skxk, F(y) = (xt, y) Y1 is a linear

function in matrix variable, where Xl E Rmxn' Yl E skxk. Then the adjoint

F* : skxk ~ Rmxn is given by

49

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Proof.

(:F(y),x) = tr(:F(y)x) = tr((xt,y)ylx) = (xt,y) (ybx)

(y, :F*(x)) = tr(yT:F*(x)) = tr(yT (y1, x) x1)) = (yt, x) (y, x1)

Therefore, for any y E skxk any X E]Rmxn, we have showed

(:F(y), x) = (y, :F*(x))

•
Corollary 3.2 Assume :F :]RmXn -? skxk' :F(y) = :Ef=l (xi, y) Yi is a

linear function in matrix variable, where p E N, Xi E]RmXn' Yi E skxk.

Then the adjoint :F* : skxk -?]RmXn is given by

Theorem 3.3 Assume p :]RmXn -? skxk' P(y) = XlYYl + yf yT xf is a

linear pencil in matrix variable, where x 1 E JRkxm, y1 E lRnxk. Then the

adjoint P* : skxk-?]RmXn is given by

P*(x) = 2xf xyf

Proof.

(P(y), x) = (x1YY1 + (x1YY1)T, x) = 2tr(X1YY1X)

(y, P*(x)) = (y,2xfxyf) = 2tr((xfxyf)Ty) = 2tr(y1xx1y) = 2tr(x1YY1X)

Therefore, for any y E skxk any X E]Rmxn, we have showed

(P(y),x) = (y, P*(x))

50

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

•
Corollary 3.4 Assume p : ~mxn ----+ skx k' p (y) = :Ef=l XiYYi + Yt yT xr

is a linear pencil in matrix variable, where p E N, Xi E ~kxm, Yi E ~nxk.

Then the adjoint P* : skxk ----+ ~mxn is given by

Theorem 3.5 If A* : ~mxn ----+ Skxk is a linear operator then there exists a

linear pencil in matrix variable P A* and a linear function in matrix variable

FA* such that

51

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

4 Barriers for some well-structured sets

4.1 The non-negative orthant: logarithmic barrier

The logarithmic barrier on JR++, the interior of JR+., is defined by

Theorem 4" 1 If f is the logarithmic barrier on the non-negative orthant

then

1. f is a self-scaled barrier

2. v1 = n

3. g(x) = (-...!.., ... , _..l_), Vx E 1Rn++
Xl Xn

4. H (x) is the n x n matrix having the vector (~, ... , -::\-) on the diagonal
xl Xn

and zero otherwise

5. H-1(x) is the nxn matrix having the vector (x~, ... , x!) on the diagonal

and zero otherwise

6. The unique scaling point of a pair (x, s) is w = (J¥;, ... , ~).
Equivalent, H(w) = diag(:~, ... , ;:).

4o2 The second-order cone~ logarithmic barrier

The logarithmic barrier on the interior of the second order cone

is defined by

52

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

f(x) = -ln(x~- "£~/ xr)

Theorem 4.2 Iff is the logarithmic barrier on the second order cone then

1. f is a self-scaled barrier

2. VJ = 2

3. g(x) = d~xx

4. H(x) = detfx)2XXT + de;(x)diag(1, 1, ... , 1, -1),

since H(x) = Vg(x) = 2\7 (de~x) xT + d~x V(x) =

= (de;x)2XXT + de~xdiag(1, 1, ... , -1)

For any vector y E Rn, from Sherman-Morisson formula we get

(
T A)-1 - A -1 - A-lyyT A-1

yy + - 1+yT A-ly •

Letting y = de~xx and A= d?txdiag(1, 1, ... , -1) we have

A - 1 = de~x diag(1, 1, ... , -1)

and also

A-1y =X

Therefore

5. H-1(x) = de~xdiag(1, 1, ... , -1)-
1
+Y-r

detxx x

= de~xdiag(1, 1, ... , -1) + XXT

53

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

4.3 The cone of semidefinite positive matrices:

logarithmic barrier

The logarithmic barrier on S~~n the set of positive definite matrices and the

interior of s~xn is defined by

f(x) = -lndet(x), X E S~~n

Theorem 4.3 Iff is the logarithmic barrier on S~xn then

1. f is a self-scaled barrier

2. v1 =n

3 () -1 snxn . g X = -X , X E ++

6. Although there is an explicit formula for computing the scaling point

w, it is not efficient in practice. See [] for one more efficient proce­

dure.

4.4 The p-cone

Consider the following set Kp = {(r, z) E 1R x JRn T ~ llzllp} where

llziiP d;f (E~=l lziiP/IP
Kp is a closed convex cone referred in the literature as the p-cone.

In what follows, we present a barrier with complexity 4n on Kp due to

Nesterov. We only present the end results; for all details see [].

54

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Let Qa d~ {(x, y, z) E IR! X IR: xa · yl-a ~ lzl} with n E [0, 1]. One can

show that Qa is a closed, convex and self-dual cone.

The following result

Theorem 4.4 The point (7, x) is in Kp if and only if there exists x E IR~

satisfying the conditions:

Remark 4.1 An equivalent statement is as follows. The point (7, x) E Kp

if and only if there exist x, y E IRn such that

(xi, Yi, zi) E Qlfp

Yi = 7

n

Lxi = 7

i=l

allows us to change a problem whose variable (7, z) E JRn+l is constrained

to belong to Kp into a problem whose variable (7, z, x, y) E JRn+l x IRn x IRn

belong to the closed convex cone

and also satisfy two more linear constraints

Yi- 7 = 0

E~=l Xi - 7 = 0.

55

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Having a barrier f 1;p on Q1;p, the functional defined on Q by f(x, y, z) =

L:~=l ft;p(xi, Yi, zi) is a barrier on Q. The primal-dual interior point algo­

rithm that was described can only be used if we can compute the values

of f, its gradient, its Hessian and the values of f*, the conjugate of f (see

Definition 2.4).

In what follows, we present a barrier on Q a as presented in [] . We

anticipate by saying that the complexity of the barrier on Qa is 4 which

implies that the complexity of f is 4n.

Theorem 4.5 For any a; E [0, 1] the function fa(x, y, z) = -ln(x2ay2(l-a)_

z2) - ln x- ln y is a self-concordant barrier for the closed convex self-dual

cone Qa = {(x, y, z) E JR! x 1R: xa · yl-a ~ lzl}

Unfortunately, the conjugate functional off a cannot be written in closed

form. One can compute the values of J~, g~, H~ using the following result:

Theorem 4.6 Let J~(s) = -min[(s, x) + !a(x)] be the conjugate functional
X

of fa· Denote with X 8 = (xi, x2, xj) the unique solution ofmin[(s, x)+ !a(x)].
X

Then

1. g~(s) = -X
8

3. StXf = 1 + 2a:- o:sax3 and s2x~ = 3- 2a:- (1- o:)sax3

4. f~(s) =- ~in(-Jn ((1+2<>;;<>•szs f" (1+2(1-<>):;:,(1--a)sszs r(1-o}- X~)-

-ln 1+2et-et8axa _ 1n 1+2(1-a)-(1-a)83X3] _ 4
81 82

56

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Note that the function to be minimized in 4. can be written as

1 ((a) 2a(1)2a(1-a)2(1-a)(1)2{1-a) 2)
- ll 83

81
a + 2 - X3 83 s;- 1_a + 2 - X3 - X3 -

-ln83~ (l + 2- x3) -ln83 1-a (-1
- + 2- x3).

81 a 82 1-a
Denoting q := 1831 (~)a (1~a)

1
-a E [0, 1], after removing the constants,

we are interested in the following problem:

The objective here is a self-concordant functional with complexity 4.

Denoting r = ~, Nesterov shows:

Theorem 4. 7 The solution of (18) is in [-4r, 0]. Moreover, after applying

at most seven times the bisection method to f' with the starting interval

being [-4r, 0], any point in the new interval used as a starting point for

Newton method is guarantee to provide quadratic convergence.

57

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Part II

The design of YAS

5 Overview

In this chapter we want to

• familiarize the user with the design of the solver and describe the

advantages resulting from this design

• make use of a terminology that anticipates the names and the purposes

of the classes and routines to be described later. We use bold font to

signal such terms.

The routines and classes of YAS are grouped in two layers:

• the Linear Algebra (LA) layer

• the Interior Point Methods (IPM) layer

5.1 LA Layer

This layer's end goal is to provide the user classes that substitute matrices

and allow linear algebra operations. They will be used in the implementation

of the IPM layer to operate with and store matrices.

These classes' design allows to:

• efficiently store a matrix by splitting it into blocks of different types

(such as dense, sparse, symmetric, upper-diagonal, lower-diagonal,

sparse symmetric etc)

58

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

• efficiently add/multiply such matrices of blocks by exploiting the

type of the consisting blocks (in particular taking advantage of Sparse

BLAS routines)

• factorize a matrix of blocks (LU, QR or Cholesky factorization) with

algorithms that use the factorization of the building blocks

• efficiently add/multiply, invert, factorize or solve linear systems as­

sociated with a block by exploiting the block's type (such as using

ScaLAPACK and Sparse BLAS routines for sparse blocks)

• invert or factorize update matrices without ignoring the available

information (use Sherman-Morrison like formulas)

• use different data precision to store the elements of a block (such as

double or float)

The above mentioned linear algebra operations on matrices of blocks

or just on blocks make use of certain low-level routines (such as multi­

plication of two dense blocks). The LA Layer interfaces these routines. For

example, Y AS _gemm is a function that multiplies two dense blocks and

it is the only function used for this purpose in the rest of the code. The

user can choose to modify its implementation without worrying about the

rest of the code. In particular, one can use linear algebra packages specially

designed for a certain computing platform (such as the for

Intel processors, or the for AMD processors). For most low­

level routines, current implementation allows the switch between MKL

andACML.

59

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

The LA Layer consists of

• the low-level routines, further grouped into:

- BLAS routines (matrix-matrix multiplications and additions for

different types of matrices)

- LAPACK routines (used for inverting, factorizing, solving linear

systems with different types of matrices)

• the Y AS_ K _block class (allows the storage of one or more blocks

of the same type and dimension and provides methods to do linear

algebra operations)

• the Y AS_ f{ _ mb class (allows the storage of one or more matrices of

blocks of the same type and dimension and provides methods to do

linear algebra operations)

We conclude this introduction of the LA Layer by remarking that the

classes Y AS_ K _block and Y AS_ K _ mb have the same interface (i.e. the

same methods). Because of this, any code that works with Y AS_ K _block

objects also works with Y AS_ K _ mb objects and vice-versa, in the same

way as the instruction a+ b works when the type of a and b is double as well

as when it is float. Therefore, the user might want to start by modelling

the data using blocks which is, of course, simpler. If the situation requires,

i.e. the algorithm is too slow or requires too much memory, the data could

be accommodated with matrices of blocks.

60

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

5.2 IPM layer

This layer provides a framework to implement interior point algorithms. To

get a sense of the motivation behind the design and the resulting advantages

we briefly describe some of its classes:

• Y AS_ k _ EV S is a class that is a container of a k-tuple of elements

of a vector space. The class provides methods such as adding, scaling

or computing the norm of objects of this type.

An example, motivated by semidefinite programming, of a class de­

rived from Y AS _k_EVS is as follows. An object from this class

stores a pair of matrices (X, Z) in a scaled spaces i.e. it stores a ma­

trix of blocks U and a pair of matrices of blocks (X, Z) such that

X = U XUT and Z = u-I zu-r. The addition method in this de­

rived class is overloaded so that if the user is asking to add the object

containing (U, XI, .ZI) with an object containing (U, x2, Z2) the result

will be an object containing (U, XI+ x2, .ZI + Z2) where by XI+ x2

and .ZI +Z2 we mean the usual addition of matrices. This vector space

has the following property. If X := UVUT, Z := u-I vu-r, X* :=

U X*uT and Z* = u-I Z*U-T are all positive definite then there exists

a unique u+ and a unique v+ such that X+ X* = u+v+(u+)T and

Z+Z* = (U+)-I v+(u+)-T. In other words, if the pair (X, Z) is repre­

sented by the triplet (U, V, V) and (X*, Z*) by the triplet (U, X* ,Z*)

then there exists u+, v+ such that the pair (X+ X*, Z + Z*) is

represented by the triplet (U+, v+, v+). For this special situation

the addition is implemented such that the resulting object contains

61

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

(U+, v+, v+) instead of the usual (U, V +X*, V + Z*). How to com­

pute u+ and v+ and what are the numerical advantages for keeping

the variable in this form see [] . This technique is currently imple­

mented in SeDuMi.

Note that this trick, motivated by numerical issues, is happening

in backstage. The algorithm is only working with objects of type

Y AS _k_EVS and is just asking for two such objects to be added.

This results in very clean-looking algorithms.

Our goal is to provide a library of such derived classes that the user

might want to use for his problem.

• Y AS _barrier is a class which is of obvious importance for interior

point methods, as seen in Chapter 2.

For a given derived classY AS _k_EVS, we provide derived classes of

Y AS_ barrier that will represent the feasible region. For the exam­

ple above, the only thing that makes sense is a barrier for the second

order cone. Given an object of type Y AS _k_EVS and a barrier asso­

ciated with this class, the algorithm might ask, through the methods

of Y AS _barrier, to evaluate the barrier, its gradient or its Hessian on

the element. Note that the gradient will be an object from the same

classY AS k EVS.

Again, our goal is make available a library of such barriers. Besides the

usual barriers for the positive orthant, the second order cone and the

semidefinite cone, the algorithm by Nesterov [20] for nonsymmetric

cones shows that it makes sense to have in the library the barrier for

62

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

the p-cone, see Chapter 4.

• Y AS_ LO is a class used to replicate a linear operator. Evaluation of

the linear operator on an element of type Y AS_ k _ EV S can be done

in the natural formulation. As in the case of Y AS_ k _ EV 8, through

derived classes we can make put in backstage and efficient implemen­

tation of which the algorithm doesn't have to know. In particular,

this has practical relevance in the case of semidefinite programming

in matrix variable, see Chapter 3.

• Y AS _norm_eq is a class that is derived from Y AS _LO allowing the

user to form a compressed and expanded versions of normal equations

and to solve the latter.

We conclude this section by stressing the clean-looking algorithms that

can be implemented by using objects from this classes. The algorithm tricks,

including heuristics, aiming for faster convergence and the numerical tricks

aiming for speed/ efficiency in memory storing/ accuracy are completely sep­

arated.

Finishing up all details is "work in progress"

63

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

6 The Linear Algebra Layer

This part describes the routines and classes in the LA Layer. The layers'

end goal is to provide classes that substitute matrices.

This layer consists of the low-level routines, the Y AS _K _block class

and the Y AS K mb class. We start with some important conventions

regarding matrix storage.

Dense matrix storage convention. In Y AS, dense blocks are stored

columnwise. For example, the dense block

[1 2 3]
4 5 6

is stored as {1, 4, 2, 5, 3, 6}.

CSC (Compressed Sparse Column) sparse storage convention.

In YAS, storing a matrix (it is desired that the matrix is sparse, but the

scheme works with any matrix) with m lines and n columns in the esc
format requires:

nnz

pVals

pRowlndx

an integer variable storing the number of nonzero el-

ements in the matrix

an array of length nnz with real elements to store the

nonzero entries in the matrix

an array of length nnz with integer elements such

that the nonzero entry stored in pVals[i] sits on the

row pRowl ndx[i]

64

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

pCollndxB an array of length n with integer elements

pColslndxE an array of length n with integer elements

the nonzero entries in the i - th column of

the matrix are stored in p V als starting with

position pCollndxB[i] and ending with position

pCollndxE[i]- 1

Note: B stands for Beginning while E for End

We use the C / C + + convention that the positive integers start from 0

not from 1.

As an example, assume we want to use CSC format to store the matrix

0.1 0 0 0.2

0 0.4 0 0

0 0.3 0.7 0.9

Then nnz = 6, m = 3 and n = 4;

pVals has 6 elements and they are pVals = {0.1, 0.4, 0.3, 0.7, 0.2, 0.9}.

pRowlndx has 6 elements and they are pRowlndx = {0, 1, 2, 2, 0, 2}

because 0.1 stands in row 0, 0.4 stands in row 1, 0.3 stands in row 2 etc.

pCollndxB[O] = 0 and pCollndxE[1] = 1 because pVals[O] = 0.1 is the

first nonzero element in column 0 and it is also the last element.

pCollndxB[1] = 1 and pCollndxE[1] = 3 because pVals[1] = 0.4 is the

first nonzero element in column 1 and pVals[3 -1] = 0.3 is the last nonzero

element in the column 1.

pCollndxB[2] = 3 and pCollndxE[2] = 4 because pVals[3] = 0. 7 is the

first nonzero element in column 2 and it is also the last element.

65

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

pCollndxB[3] = 4 and pCollndxE[3] = 6 because pVals[4] = 0.2 is the

first nonzero element in column 3 is pVals[6- 1] = 0.9 is the last nonzero

element in column 3.

6.1 Low-level routines

The low-level routines are available through Y AS _blas.h, Y AS _lapack.h

and implemented in Y AS _blas.cpp andY AS _lapack.cpp.

Implementing routines as templates. Template is a C++ feature

that we will use to, eventually, allow the switch between different data

precision to be really simple. The first step to achieve this is to implement

all low-level routines as templates.

We illustrate this concept on a simple example. Assume we need a

function max that takes two arguments, x and y, of the same type and

returns 0 if they can not be compared, 1 if the first one is the biggest and

2 otherwise. The type of the arguments can be a standard C++ type or

user defined. If x and y are of type double it is enough to use x < y to

find out what to return. If x andy are strings and we use the "dictionary

order" than the decision requires more work. By defining max as a template

function, one can make the function's behavior to vary with the type of the

arguments. The following code defines the function max as a template

function. It implements its standard behavior and specialize its behavior if

the argument's type is char* and YAS_K_Block*, a user defined class.

template < class type > int max(type *X, type *Y)

{if *X> *Y return 1;

else return 2;

66

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

}

int max(char *X, char *Y)

{

I* different implementation* I

}

int max(Y AS _K _Block *X, Y AS _K _Block *Y)

{

/ * another implementation * I
}

Defining YAS low-level routines as templates, allows us to use imple­

mentations that depend on the type of the parameters.

For example, Y AS _gemm, used to multiply two dense blocks, has differ­

ent implementations for data stored as double and for data stored as float.

This is conformal with the standard linear algebra libraries, such as BLAS,

that use different routines for multiplication of matrices stored in double

precision and for matrices stored in float precision, dgemm and sgemm

respectively. This choice is motivated by both memory and speed concerns.

The compiler checks the type of the parameters and use the corresponding

code. If YAS_gemm will be called with data other than double or float

the error routine will be called saying that nothing was done since the

function is not overloaded for this type of data. It is possible to extend the

YAS_gemm with implementations for other types of data precision such as

quad precision. Such extensions require no modifications to the other parts

of the solver as the user always calls YAS_gemm.

Switching between different implementations for the same rou-

67

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

tine. Each routine has one or more implementations. The user can switch

between one or another using macros. This C++ feature is an elegant way

to exclude or include parts of the code. We illustrate it on a simple example.

If the following code is compiled

#define use_MKL

#ifdef use_MKL

instruction 1;

#endif

then instruction 1 will be included. If we remove the line #define

use_ M K L the compiler will not include in the code instruction 1.

A macro is associated with each implementation of a given routine.

These macros are collected in the first part of Y AS _blas.h signaled with a

commented line as "Part A. Implementation to be used for each routine".

For example, the routine Y AS _gemm, with data stored as double, has

two implementations. One uses the MKL library and the other uses the

ACML library. The user will see in Part A of Y AS _blas.h, after the com­

mented line /*-Implementation to be used by Y AS _gemm. Choose one­

* /, the following instructions:

#define_Y AS _gemm_use_MKL_dbl

and

#define_Y AS _gemm_use_ACML_dbl

The user will have to leave only one of these two macros active by com­

menting the other one. To add and use a different implementation, one has

to define another macro in Part A of Y AS blas.h and then add the desired

implementation in Y AS_ blas .c.

68

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

The macros associated with different implementations for each routine

are signaled in Part A ofY AS _blas.h by a commented line /*-Implementation

to be used by <routine_name>. Choose one--* f. By convention, the name

of each macro is <routine_ name>_ use_ <implementation_ name>.

Processors manufactures develop and support linear algebra libraries

tuned for their products. For example, Intel develops the

while AMD develops the package. Any such library works on most

processors but the claim is that the difference in the performance might be

significant. Using the technique described above, most low-level routines

have two implementations: one using MKL and the other using ACML.

Structure of the file YAS blas.h and YAS lapack.h. Y AS _blas.h

and Y AS _lapack.h are both divided in three parts that are signaled with

commented lines as Part A, Part B and Part C.

Part A. Implementation to be used for each routine was mostly discussed

in Switching between different implementations for the same routine. In

addition, this part is used to link to the libraries needed by each implemen­

tation. This is done again through macros.

As discussed, Y AS _gemm has two implementations, one using the MKL

library and the other the ACML library. Therefore, the following code can

be seen

#ifdef _YAS_gemm_use_MKL_dbl

#include < mkl.h >

#endif

#ifdef _YAS_gemm_use_ACML_dbl

#include < acml.h >

69

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

#endif

If the user creates a new implementation for Y AS _gemm where he is

using some library he needs to add

#ifdef _Y AS_gemm_use_Newlmplementation

#include < userlibrary >

#endif

Part B. Debug settings for each routine. Each routine has parts of its

code that is not changing its end goal and is needed only in some situations.

For example, Y AS _gemm has a part of the code that is checking whether

the dimensions of the blocks are compatible and activates the error routine

if something is wrong. This part of the code is contained under the macro

_ Y AS _gemm _SAFETY_ 0 N. The code is compiled only if this macro

is defined.

The macros that contains such special parts of the code for each routines

are defined here, in Part B.

Part C. Syntax for each routine. In this part, each routine is defined.

The user can see not just the declaration of the te1nplate routine but also

the declaration of the available overloads.

6.1.1 BLAS routines

These routines are available through Y AS _blas.h and implemented

in Y AS_ blas.cpp.

YAS gemm

70

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Source

Declared in Y AS _blas.h. Implemented in Y AS _blas.cpp.

Description

Performs matrix-matrix multiplication. If A, Band Care matrices with

real entries, the operation is defined as C :=a· op(A) · op(B) + f3 • C, given

that op(A), op(B) and C have compatible dimensions and a, f3 E JR.

A, B and C are dense matrices.

op(X) is either X or xr

Syntax

YAS_gemm(char transa, char transb, yaslnt m, yaslnt n, yaslnt k,

templateT alpha, templateT *a, yasl nt Ida, templateT *b, yasl nt I db,

templateT beta, templateT *c, yaslnt Ide)

Implementations

This template routine is overloaded for templateT = double and templateT =

float. The following table shows existing implementations for each type.

For details about different implementations for one routine see Low-level

routines. Introduction.

71

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

templateT Impl. Macro Details

name

double MKL dbl #define_ YAS this implementation -

gemm_use_ uses dgemm rou-

MKL dbl tine from the MKL -

package

ACML _dbl #define_ YAS this implementation -

gemm_use_ uses dgemm routine

ACML dbl from the ACML

package

float MKL_flt #define_Y AS_ this implementation

gemm_use_ uses sgemm routine

MKL_flt from the MKL pack-

age

ACML _flt #define_Y AS_ this implementation

gemm_use_ uses sgemm routine

ACML _flt from the ACML

package
Input parruneters

transa char; determines op(A)

transb

if transa ='N' or 'n' then op(A) =A

if transa ='T' or 't' then op(A) = AT

char; determines op(B)

if transb ='N' or 'n' then op(B) = B

if transb ='T' or 't' then op(B) = BT

72

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

m

n

k

alpha

a

lda

yaslnt (see Appendix A)

specifies the number of rows of op(A), which is the same as

the number of rows of C

yasl nt (see Appendix A)

specifies the number of columns of op(B) which is the same

as the number of columns of C

yaslnt (see Appendix A)

specifies the number of columns of op(A) which is the same

as the number of rows of op(B)

templateT

specifies the scalar n

templateT*

an array representing the columnwise storage of a dense block

with lda rows and ka columns where

ka = k if op(A) =A

ka = m if op(A) = AT

yaslnt (see Appendix A)

specifies the leading dimension of A

if op(A) = A then lda must be at least max(l, m)

if op(A) =AT then lda must be at least max(l, k)

73

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

b

ldb

beta

c

ldc

templateT*

an array representing the colurnnwise storage of a dense block

with ldb rows and kb columns where

kb = n if op(B) = B

kb = k if op(B) = BT

yasl nt (see Appendix A)

specifies the leading dimension of B

if op(B) = B then ldb must be at least max(l, k)

if op(B) = BT then ldb must be at least max(l, n)

templateT

specifies the scalar f3

templateT*

an array representing the columnwise storage of a dense block

with ldc rows and n columns

yasl nt (see Appendix A)

specifies the leading dimension of C

its value must be at least max(l, m)
Output parameters

c overwritten by them by n matrix alpha·op(A)·op(B)+beta·C

YAS CSC gemm

Source

Declared in Y AS _blas.h. Implemented in Y AS _blas.cpp.

Description

74

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Performs matrix-matrix multiplication. If A, B and C are matrices with

real entries, the operation is defined as C := a· op(A) · B + /3 · C, given that

op(A), B and C have compatible dimensions and a, j3 E JR.

A is a sparse matrix stored in the CSC format; B, Care dense matrices.

op(X) is either X or xr

Syntax

template < classT > int Y AS_ C SC _gemm(char transa, yasl nt m,

yaslnt n, yaslnt k, templateT alpha, templateT *pVals, yaslnt *pRowlndx,

yaslnt *pCollndxB, yaslnt* CollndxE, yaslnt nnz, templateT *b, yaslnt

ldb, templateT beta, templateT *c, yaslnt ldc)

Imple1nentations

This template routine is overloaded for templateT = double. The follow­

ing table shows existing implementations for each type. For details about

different implementations for one routine see Low-level routines. Introduc-

tion.

templateT lmpl. Macro Details

name

double M K L dbl #define_ Y AS this implementation

_CSC_gemm uses mkl dcscmm

use M K L dbl routine from the MKL

package
Input parameters

trans a char; determines op(A)

if transa ='N' or 'n' then op(A) =A

if transa ='T' or 't' then op(A) = AT

75

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

m

n

k

alpha

pVals

pRowlndx

pCollndxB

pCollndxE

nnz

b

yaslnt (see Appendix A)

specifies the number of rows of op(A), which is the same as

the number of rows of C

yasl nt (see Appendix A)

specifies the number of columns of B which is the same as the

number of columns of C

yaslnt (see Appendix A)

specifies the number of columns of op(A) which is the same

as the number of rows of B

templateT

specifies the scalar a

templateT*

see esc sparse storage convention

yaslnt*

see esc sparse storage convention

yaslnt*

see esc sparse storage convention

yaslnt*

see esc sparse storage convention

yaslnt

see esc sparse storage convention

templateT*

an array representing the colu1nnwise storage of a dense block

with ldb rows and n columns where

76

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

ldb

beta

c

ldc

yasl nt (see Appendix A)

specifies the leading dimension of B

ldb must be at least max(l, k)

templateT

specifies the scalar (3

double* or float*.

an array representing the colunn1wise storage of a dense block

with ldc rows and n columns

yasl nt (see Appendix A)

specifies the leading dimension of C

its value must be at least max(l, m)
Output parameters

c overwritten by them by n matrix alpha·op(A)·op(B)+beta·C

6.1.2 LAPACK routines

These routines are available through Y AS _lapack.h and implemented in

Y AS _lapack .cpp.

YAS ge solv

Source

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp

Description

Solves a system of equations with a general square matrix and with

multiple right hand side, AX = B.

A, B and X are stored as dense matrices.

77

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Syntax

template <class templateT> int Y AS _ge_solv(yaslnt m, yaslnt nRHS,

templateT* a, yasl nt lda, templateT* b, yasl nt ldb)

Implementations

This te1nplate routine is overloaded for templateT =double and templateT =

float. The following table shows existing implementations for each type.

For details about different implementations for one routine see Low-level

routines. Introduction.

templateT lmpl. Macro Details

name

double MKL dbl #define_Y AS this implementation

_gemm_use uses dgesv routine

MKL dbl from the MKL pack-

age

float MKL_flt #define_Y AS this implementation

_gemm_use

_MKL_flt

uses sgesv routine

from the MKL pack-

age
Input parameters

m yasl nt (see Appendix A)

nRHS

the dimension of the square matrix A

yaslnt (see Appendix A)

the number of vectors on the right hand side;

equals the number of columns of B

78

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

a

lda

b

ldb

templateT*

array with lda rows and m columns

A is stored in a as a dense matrix

yaslnt (see Appendix A)

specifies the leading dimension of A

lda is at least max(l,m)

templateT*

array with ldb rows and n columns

B is stored in bas a dense 1natrix

yaslnt (see Appendix A)

specifies the leading dimension of B

ldb is at least max(l,m)

Output parameters

returns 1 for success and 0 for failure

a the data in a is lost

b is overwritten with the solution

YAS symm PD solv

Source

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp

Description

Solves a system of equations with a square symmetric and positive­

definite matrix and with multiple right hand side, AX = B.

A, B and X are dense matrices.

79

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Syntax

template <class templateT> int Y AS _symm_PD _solv(yaslnt m,

yasl nt nRH S, templateT* a, yasl nt ida, templateT* b, yasl nt ldb)

Implementations

This te1nplat.e routine is overloaded for templateT =double and templateT =

float. The following table shows existing implementations for each type.

For details about different implementations for one routine see Low-level

routines. Introduction.

templateT Impl. Macro Details

double

name

M K L dbl #de fine_ Y AS this implementation

_ symm _ P D uses dposv routine

_use_MKL_dbl from the MKL pack­

age

float MKL_flt #define_Y AS this implementation

_ symm _ P D uses sposv routine

_use_MKL_flt from the MKL pack­

age
Input parameters

m yaslnt (see Appendix A)

nRHS

the dimension of the square matrix A

yaslnt (see Appendix A)

the number of vectors on the right hand side;

equals the number of columns of B

80

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

a

lda

b

ldb

templateT*

array with lda rows and m columns

A is stored in a as a dense 1natrix

yaslnt (see Appendix A)

specifies the leading dimension of A

lda is at least max(1,m)

templateT*

array with ldb rows and n columns

B is stored in b as a dense matrix

yaslnt (see Appendix A)

specifies the leading dimension of B

ldb is at least max(l,m)

Output parameters

returns 1 for success and 0 for failure

a the data in a is lost

b is overwritten with the solution

YAS triang solv

Source

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp

Description

Solves a system of equations with a triangular matrix and with multiple

right hand side, AX = B.

A, B and X are dense matrices.

81

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Syntax

template <class templateT> int Y AS _triang_solv(yaslnt m, yaslnt

nRHS, char type, char unit, templateT* a, yaslnt lda, templateT* b,

yaslnt ldb)

Implementations

This template routine is overloaded for templateT =double and templateT =

float. The following table shows existing implementations for each type.

For details about different implementations for one routine see Low-level

routines. Introduction.

templateT Impl. Macro Details

double

name

M K L dbl #define_ Y AS_ this implementation

triang _ solv uses dtrsm rou-

use M K L dbl tine from the MKL

package

float MKL_flt #define_Y AS_ this implementation

triang _ solv uses str sm routine

_use_MKL_flt from the MKL pack-

age
Input parameters

m

nRHS

yasl nt (see Appendix A)

the dimension of the square matrix A

yaslnt (see Appendix A)

the number of vectors on the right hand side; equals the

number of columns of B

82

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

type

unit

a

lda

b

ldb

char; specifies if A is lower-diagonal or upper-diagonal

if type ='U' or 'u' then A is upper-diagonal

if transa ='L' or 'l' then A is lower-diagonal

char; specify if A is a unit matrix i.e. has only ones on

the diagonal

if unit = 'u' or 'U' then A is unit

if unit ='n' or 'N' then A is not unit

templateT*

array with lda rows and m columns

a is a dense block (see Dense 1natrix storage convetion)

Note: A is completely stored in a even though A is trian­

gular and some data is unnecesarry and, in fact, ignored

yasl nt (see Appendix A)

specifies the leading dimension of A

Ida is at least max(l,m)

templateT*

array with ldb rows and n columns

B is a dense block (see Dense n1atrix storage convetion)

yaslnt (see Appendix A)

specifies the leading dimension of B

ldb is at least max(l,m)

Output parameters

returns 1 for success and 0 for failure

83

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

b is overwritten with the solution

6.2 YAS K block

In what follows, by a block we refer to a matrix of a special type such as

dense, sparse, symmetric, sparse symmetric, upper-diagonal, lower-diagonal

etc.

An object from the classY AS _K _block acts like a container for a block,

hiding its type but providing the user the methods for all linear algebra

operations needed in the implementation of interior point algorithms. Once

an object of type Y AS _K _block is associated to a given block, the user

doesn't have to worry about the actual type of the block. At the same time,

in the backstage, both the storage and the linear algebra operations exploit

the type of the block. For example, a n by n symmetric block requires

the storage of n(n
2
+l) elements instead of n2 • Also, multiplying a sparse

block with a dense block is usually faster than multiplying two dense blocks

assuming the dimensions are the same.

Storing more blocks of the same type and dimension in one ob­

ject from class Y AS_ K _block. The design of the class Y AS_ K _block

is such that an object from this class can contain one or more blocks of a

certain type and of the same dimension.

This can be done in several ways. Assume we start with k blocks of

dimension n by m, all of the same type. The first way is to stack the blocks

vertically and store the resulting big block. It has the same type but its

dimension is m by k · n. We refer to this as vertical stacking. The second

way is to stack them horizontally and store the resulting big block. It has

84

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

the same type and its dimension is n by k · m. We refer to this as horizontal

stacking. Finally, the third way is to store each block independently. We

refer to this as sequential stacking.

This feature, that apparently complicates the usage, pays off in different

situations. For example, when a block is a vector and we need to multiply

a matrix with several vectors. It is worth to have the vectors stored hori­

zontally because then one can use one matrix-matrix multiplication which

is faster than doing several matrix-vector multiplications.

Nevertheless, for simplicity, the user might decide that Y AS_ K _block

object should contain only one block.

Template data structures defined to store blocks. These struc­

tures are available through Y AS _simple_dejs.h.

In YAS, a structure is defined for each (currently supported) type of

block. The structure contains all the entries needed to store a block from

that type. For example, for a dense block whose elements are of type double,

the structure only requires a pointer to double.

Note that the structure do not contain the dimension of the block. This

information will be available through the classY AS _K _block. Therefore,

a dense matrix is not completely determined by the structure associate to it.

The true container of a dense block is an object from the Y AS _K _block

class.

It is important that these structures are defined as template struc­

tures. Together with the low-level template routines they will allow the

Y AS_ K _block and Y AS_ K _ mb to be defined as template classes.

For convenience, we illustrate the concept of a template structure on the

85

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

yas Dense structure. This structure is defined as

template <class T float> struct yasDense {T float* pVals;};

If the user is defining a variable as

yasDense < double > p;

then the type of p.pVals is double*.

The currently available structures, all defined as templatesj are listed

and explained in Properties of YAS _ K _Block.

YAS _ K _Block implemented as a template class The following

code is an example of a class that is implemented as a template, It is

a container for a dense block. It can be seen as a simplified version of

YAS K Block.

template < class T float > class dense_ block

{public:

int m; I I number of lines

int n; I I number of columns

T float *data; I I an array that can store m · n elements

}

The user can instantiate an object of type dense_block < double >

in which case the type of the property data is double* and so the ele­

ments of the dense block are stored in double precision. If an object of

type dense_ block < float > is instantiate, the elements will be stored in

float precision.

Template classes become really powerful when they make use of template

routines and template structures. This is the case of the class Y AS_ K _block.

86

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

The implementation of Y AS _K _Block as a template wouldn't be possible

without template routines and structures.

TheY AS K block class is declared as

template < class T float >

classY AS K block

{

}

The reader will note that some properties and methods of the class

involve the type T float.

Objects of type Y AS_ K _block < double > store the data in double

precision while objects of type Y AS_ K _block < float > store the data in

single precision. Currently these these two types are available. To allow

objects of type Y AS_ K _block < M yClass > the user has to make sure

the low-level routines are overloaded for the type MyClass. In particular,

extension to quad precision is subject of future work.

6.2.1 Properties of YAS K Block

In what follows, we list the the properties ofYAS_K_Block. We specify the

type of the property and describe its scope. In some cases, the description

also contains an exhaustive list of values the properties can take as well as

the name of the constants that were created especially to be used for this

property.

87

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

type

Property type. yasType (see Appendix A)

Description. This property is uniquely determined by the type of the

block(s) (dense, sparse etc) that is (are) contained in the object and the

stacking method being used.

It can only take the values in the table below. Moreover, a constant is

defined for each value in Y AS_ simple_ de f s. h.

Constant Value

_yas _zero_ block 0

_yas _ meye _block 1

_yas _dense_ block_ ver 100

_yas _dense_ block_ hor 101

_yas _dense_ block_ seq 102

_yas_sparse_CSC _block_ver 200

_yas_sparse_CSC _block_hor 201

_yas_sparse_CSC _block_seq 202

K,m,n

Description

zero block

multiple of identity block

vertically stacked dense

block

horizontally stacked dense

bloc

sequentially stacked dense

block

vertically stacked esc
sparse block

horizontally stacked esc
sparse block

horizontally stacked esc
sparse block

Property type. yaslnt, yaslnt, yaslnt (see Appendix A)

88

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Description. The number of stored blocks, the number of lines for

each block and, respectively, the number of columns of each block. If the

formulation "each block" is not clear see Storing more blocks of the same

type and dimensions in one object from classY AS _K _block

pData,pDataDescription

Property type. void*, void*

Description. pData and pDataDescriptor are two pointers to a struc­

ture and, respectively,a type that are uniquely determined by the value

stored in the type property (see Ten1plate data structures defined to store

blocks). In what follows, for every possible value of the property Type, we

show the value of pData and pDataDescriptor together with more details

on how to use them.

_yas _zero_ block

_yas _ meye _block

pData =NULL

pDataDescription = NULL

pData = *Tfloat (see YAS_K_Block

implen1ented as a template class)

pDataDescription = NULL

89

M.Sc. Thesis - Voicu Chis

_yas _dense_ block_???

McMaster - Mathematics and Statistics

Usage. If pData=NU LL then the

block is simply identity

Otherwise, the scalar multiplying the

identity is stored in a variable of type

T float and pData should point to it

pData = *YasDense < T float >

pDataDescription = NULL

Recall. template < classT float >

struct yasDense{T float *PVals;}

90

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Usage. If ??? = ver or ??? = hor

then the blocks are stacked vertically

and, respectively, horizontally into one

big dense block which is stored into a

yasDense < T float >structure and

pData points to this structure.

(to see how to store a dense block into

a yasDense structure see Appendix A.

YAS defined types.)

if ??? = seq then there exists a

pointer yasDense < T float > *p =

new yasDense < T float > [K] and

pData = p;

The first block is stored in *pData, the

second in *(pData + 1) etc

_yas_sparse_CSC _block_???pData = *YasSparseCSC < Tfloat >

pDataDescription =

*yasSpar seC SC Descriptor

91

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

Recall. 1. struct

yasSparseCSC{T float

*pVals; yaslnt

yaslnt

*pRowlndx;

*pColindxB; yaslnt

*pColindxE;yasint nnz; };

2. typedef yaslnt

yasSpar seC SC Descr;

Usage. If ??? = ver or ??? = hor

then the blocks are stacked vertically

and, respectively, horizontally into one

big sparse block which is stored into a

yasSparseCSC < Tfloat >structure

to which pData points.

Usually the length of pV als is nnz but

the user can choose to allocate more

memory then required by nnz. This

available length is stored in a variable

of type yasSparseC SC Descr to which

pDataDescription points.

92

M.Sc. Thesis - Voicu Chis

errCode

Property type. int

McMaster - Mathematics and Statistics

(to see how to store a sparse block into

a yasSparseCSC structure see Appen­

dix A)

if??? =seq then there exists a pointer

yasSparseCSC < T float > *p = new

yasSparseCSC < T float > [K] and

pData = p;

also, a pointer yasSparseCSCDescr

*q =new yasSparseCSCDescr[K] ex­

ists and pDataDeseription = q;

The first block is stored in *pData, the

second in *(pData + 1) etc

For the first block (*pData).pVals

might refer to a memory bigger than

the one required by (*pData). nnz.

This bigger value is stored in

*pDataDescri ption

Similar, for the second block the

total available memory is stored in

* (pDataDescription + 1)

Description. the methods of theY AS _K _block are using this vari-

93

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

able to store the error code in case some error is encountered during the

execution.

store Transpose

Property type. char

Description. it is set to 1 then the object contains the transpose of the

blocked effectively stored in pData.

6.2.2 Methods of YAS K block

For convenience, the methods are grouped into: member access methods,

interface unification methods, data managing methods and linear algebra

methods.

Member access methods

The following methods should be used to read the properties of the class.

Syntax Property returned

yasType GetType()

yas! nt GetK ()

yasl nt GetM ()

void* GetP Data()

type

K

N

pData

void* GetP DataDescriptor() pDataDescriptor

char GetStoreTranspose() storeTranspose

int GetErrCode errCode
The following methods should be used to write the properties of the

class.

94

M.Sc. Thesis- Voicu Chis McMaster- Mathematics and Statistics

Syntax Property set

void SetType(yasType typeB) type

void SetK(yaslnt KB) K

void SetN(yaslnt nB) N

void SetData(void* pDataB) pData

void SetP DataDescriptor(void* pDataDescriptor B) pDataDescriptor

void S etStoreTranspose (char storeTransposeB) storeTranspose

Interface unification methods

The reader might want to skip these methods for now and come back to

them after looking at theY AS _K _mb. Except for SetCDEUpdate, these

methods have no practical importance for Y AS_ K _block, the user doesn't

need them when working with blocks. They are implemented only to make

Y AS_ K _ mb, Y AS_ K _block and the classes derived from them have the

same interface. The reason for this is explained in Overview. LA Layer.

Syntax Description

yasl nt GetBlockM () returns 1

void SetBlockM(yaslnt ME) doesn't do anything

yasl nt GetBlockN () returns 1

void SetBlockN(yaslnt N B) doesn't do anything

yaslnt GetActiveBlockl() returns 1

void SetActiveBlockl(yaslnt I B) doesn't do anything

yaslnt GetActiveBlockJ() returns 1

void SetActiveBlockJ(yaslnt J B) doesn't do anything
In additions to the methods in the table above, we have

95

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

GetCDEUpdate

Syntax. void GetCDEUpdate(yasint& rU, Tfloat *pAlpha, Y AS _K_block

*pBlockC, Y AS_K_block *pBlockD, YAS_K_block *pBlockE)

Description. this method doesn't do anything in this class. See the

derived class of Y AS K block

SetCDEUpdate

Syntax. void SetCDEUpdate(yasint U, Tfloat *pAlpha, Y AS _K _block

*pBlockC, YAS_K_block *pBlockD, YAS_K_block *pBlockE)

Description. This method does *this :=*this + Ef=l Cl!i • ci . Di . Ei

U stores the number of updates

ai =*(pAlpha + i)

Ci =*(pBlockC + i)

Di =*(pBlockD + i)

Ei =*(pBlockE + i)

Data managing methods

Before using an object of type Y AS _K _block, the user needs to load it

with real data, i.e. matrices.

Using the data managing methods, the user can allocate memory, delete

allocated memory and copy data.

Note that the methods do not work with the data contained in the block.

In particular, the type of the block is not affecting the way these methods

work.

96

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

New Data

Syntax. void* NewData(yasType& rTypeB, yaslnt KB, yaslnt mB,

yaslnt nB, void* pDataDesc:riptorB =NULL)

Description. Allocates data storage and returns its pointer. Use de­

scriptor if additional information is needed. If operations fails, rTypeB is

set to _yas _no_ type.

DeleteData

Syntax. int DeleteData(void* pDataB, yasType TypeB, yaslnt KB =

0, yaslntmB = 0, yaslntnB = 0, void* pDataDescriptorB =NULL);

Description. DeleteData frees data storage pointed to by pDataB.

NewDatallescriptor

Syntax. void* NewDataDescriptor(yasType& rTypeB, yaslnt KB,

yaslnt mB, yaslnt nB);

Description. Allocates data descriptor and returns its pointer.

DeleteDataDescriptor

Syntax. int DeleteDataDescriptor(void* pDataDescriptorB, yasType

typeB, yaslnt KB, yaslnt mB = 0, yaslnt nB = 0);

Description. DeleteDataDescriptor frees data descriptor pointed to by

pDataDescriptor B.

CloneData

Syntax.virtual void* CloneData(yasType& rTypeB, yaslnt kStart,

yaslnt kEnd,yaslnt iStart, yaslnt iEnd, yaslnt jStart, yaslnt jEnd,

97

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

void* pDataDescriptor B = NULL);

Description. CloneData attempts to clone (part of) data from pData

with a suggested type conversion to rTypeB. If the cloning is unsuccess­

ful, the function returns a NULL pointer and the rTypeB is changed to

_yas _no_ type; the error code is set accordingly. If the cloning is success­

ful, the function returns a valid pointer to a new copy of the (portion of)

the data.

CloneDataDescriptor

Syntax.virtual void* CloneDataDescriptor(yasType& rTypeB, yaslnt

kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt j Start, yasl nt

jEnd);

Description. CloneDataDescriptor attempts to clone (part of) data

descriptor with a suggested type conversion to rTypeB. The function be­

havior is consistent with CloneData.

Copy Data

Syntax.virtual int CopyData(void *pDataB, yasType typeB, yaslnt

kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt j Start, yasl nt

jEnd, void* pDataDescriptorB =NULL);

Description. CopyData copies (part of) data from pData to pDataB

and performs type conversion to typeB. The difference between, copy and

clone is that the function assumes pDataB is already allocated.

Copy DataDescriptor

Syntax. virtual int CopyDataDescriptor(void *pDataDescriptor, yasType

98

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

typeB, yasl nt kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt

jStart, yaslnt jEnd);

Description. CopyDataDescriptor copies (part of) data descriptor and

performs type conversion to typeB.

Linear algebra methods

GetBkij

Syntax. virtual Tfloat GetBkij(yaslnt kB, yaslnt iB, yaslnt jB);

Description. Returns the (i, j)-element of the k-th block.

SetBkij

Syntax.virtual int SetBkij(Tfloat val, yaslnt kB, yaslnt iB, yaslnt

jB)

Description. Sets (i, j) - element of the k-th block.

Transpose

Syntax. virtual int Transpose(¥ AS_ K _block& r BlockB)

Description. The method transposes the block data rBlockB, without

changing block stacking structure.

Sum

Syntax. virtual int Sum(Y AS_K_block& rBlockA, YAS_K_block&

rBlockB, Tfloat alpha= (Tfloat)l)

Description. Computes the block-Kronecker sum *this .- alpha·

rBlockA ffi rBlockB.

99

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

For example, if r Block A contains kA blocks At, ... , AkA and r BlockB

contains kn blocks Bt, ... Bk8 then *this will contain the kA · kn blocks

alpha· At+ Bt, alpha· At+ B2, ... , alpha· At+ Bk8 , alpha· A2 + Bt, ... ,

alpha· A2 + Bk8 , ••• ,alpha· AkA+ Bt, ... ,alpha· AkA+ Bk8 •

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

Prod

Syntax. virtual int Prod(Y AS_ K _block& r Block A, Y AS_ K _block&

rBlockB, Tfloat alpha= (Tfloat)l, Tfloat beta= (Tfloat)O)

Description.Computes the block-Kronecker product *this := alpha·

rBlockA 8 rBlockB +beta· (*this)

For example, if rBlockA contains kA blocks At, ... , AkA and rBlockB

contains kn blocks Bt, ... Bk8 then *this will contain the kA · kn blocks

: At·Bt+beta·(*this)u, At·B2+beta·(*this)t2, ... , At·Bk8 +beta.(*this)tk8 ,

A2 · Bt +beta· (*this)21, ... , A2 · Bk8 +beta· (*this)2k8 , ••• , AkA · Bt +beta·

(*this)kAb ... , AkA· Bk8 +beta· (*this)kAkB·

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

Note that if beta =I= 0 then *this must contain kA · kn blocks.

Dot Sum

Syntax. virtual int DotSum(Y AS_ K _block& r B lockA, Y AS_ K _block&

rBlockB, Tfloat alpha= (Tfloat)l)

Description. Computes the block-dot sum *this := alpha · r Block A

.+ rBlockB

100

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Note that rBlockA and rBlockB must contain the same number of

blocks.

For example, if each of r Block A and r BlockB contains k blocks AI, ... , Ak

and, respectively, B~, ... Bk then *this will contain the k blocks alpha· AI+

Bt, alpha· A2 + B2, ... ,alpha· Ak + Bk·

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

Dot Prod

Syntax. virtual int DotProd(Y AS_ K _block& r BlockA, Y AS_ K _block&

rBlockB, Tfloat alpha= (Tfloat)l, Tfloat beta= (Tfloat)O)

Description. Computes the block-dot product *this := alpha·r Block A

.· rBlockB +beta· (*this)

Note that rBlockA and rBlockB must contain the same number of

blocks.

Note that if beta =I= 0 then *this must contain the same number of blocks

as rBlockA,rBlockB.

For example, if each of r Block A and r BlockB contains k blocks AI, ... , Ak

and, respectively, BI, ... Bk then *this will contain the k blocks alpha · AI ·

BI +beta· (*this)!, alpha· A2 · B2 +beta· (*this)2, ... ,alpha· Ak · Bk +beta·

(*this)k·

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

Pro dB Be

Syntax. virtual int ProdBBc(Y AS_ K _block& r BlockB, T float alpha=

101

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

(Tfloat)l, Tfloat beta= (T float)O)

Description. Computes block-dot product *this := alpha· r BlockB .·

(rBlockB) 0 +beta· (*this).

Note that if beta f. 0 then this must contain the same number of blocks

as rBlockB.

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

ProdBcB

Syntax.virtual int ProdBcB(Y AS _K _block& rBlockB, T float alpha=

(T float)l, T float beta= (T float)O)

Description. Computes block-dot product *this:= alpha· (rBlockB)0

.· (rBlockB) +beta· (*this).

Note that if beta f. 0 then this must contain the same number of blocks

as rBlockB.

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type.

LU

Syntax.virtual int LU(Y AS _K _block& rBlockA, Y AS _K _block& rBlockB,

yasType method)

Description. Performs LU-factorization of *this with a method of

choice.

The results are stored in rBlockA :=Land rBlockB := U

If a LU decomposition update is to be computed, according to a method

of choice, one would pass the necessary data via rBlockA and rBlockB.

102

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

QR

Syntax.virtual int QR(Y AS _K _block& rBlockA, Y AS K block&

rBlockB, yasType method)

Description. Performs QR-factorization of *this.

The results are stored in rBlockA := Q and rBlockB := R.

If a Q R decomposition update is to be computed, according to a method

of choice, one would pass the necessary data via rBlockA and rBlockB.

Cholesky

Syntax.virtual int Cholesky(Y AS _K _block& rBlockA, yasType method)

Description. Performs Cholesky-factorization of *this.

The result is stored in r BlockA := L.

If a Cholesky decomposition update is to be computed, according to a

method of choice, one would pass the necessary data via r B lockA.

Inverse

Syntax. virtual int Inver se(Y AS_ K _block& r B lockE, yasType method)

Description. Attempts to compute the block inverse, if block is square.

The result is put into *this.

Solve

Syntax.int Solve(Y AS _K _block& rBlockA, Y AS _K _block& rBlockB,

yasType method)

Description. Solves a system of linear equations with a chosen method.

The result of rBlockA\rBlockB is stored in *this.

103

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

6.3 YAS K mb

Just as in the case of Y AS_ K _block, an object from the classY AS_ K _ mb

acts like a container for a matrix. Recall that objects of type Y AS_ K _block

are containers for matrices of special types such as dense, sparse, symmet­

ric, upper-diagonal, lower-diagonal etc. The class Y AS_ K _ mb is more

sofisticated then Y AS _K _block allowing the user to store a matrix which

doesn't have a special type as a whole but can be spitted into blocks of

special types. For example, the following matrix

1 1

1 1

1 1

1 1

can be considered to be a sparse or dense matrix but, at the same time,

can be seen as a matrix of blocks, the first block of type diagonal and the

second block of type dense. This viewpoint is particularly helpful when the

size of each block is big.

Note that in the name of the class mb stands for matrix of blocks.

Y AS K block and Y AS_ K _ mb have the same interface. Recall

that our goal is to have the same interface for Y AS_ K _ mb andY AS_ K _block,

i.e. have the same properties and methods. The benefits of this feature are

explained in Overview.

Active block in an object of type Y AS _K _mb. Among all blocks

that make a matrix stored in an object of type Y AS_ K _ mb, at a given

time just one block is considered active. The member access methods are

acting on the active block.

104

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Recall that to guarantee the same interface for Y AS_ K _block and

Y AS_ K _ mb we had to add to Y AS_ K _block the group of Interface uni-

fication methods.

The action of those methods are changing as follows:

Syntax Description

yaslnt GetBlockM()

void SetBlockM(yaslnt MB)

yaslnt GetBlockN()

void SetBlockN(yaslnt MB)

yaslnt GetActiveBlockl()

void SetActiveBlockl(yaslnt I B)

yaslnt GetActiveBlockJ()

void SetActiveBlockJ(yaslnt J B)

returns the number of blocks in a

row

set the number of blocks in a row

returns the number of blocks in a

column

set the number of blocks in a

column

returns the row coordinate of the

active block

sets the row coordinate of the

active block

returns the column coordinate of the

active block

sets the column coordinate of the

active block

7 Appendix A. YAS defined types

In this part, we describe the YAS defined types. They are available through

Y AS _simple_defs.h and are used throughout the solver.

The first column of the table contains the name of the type. The second

105

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

column contains its the declaration, when is it used and some remarks.

yasType

yaslnt

yasSparseCSC

typedef int yasType

holds positive integer values used to specify the type of a

block

see the property type in the class YAS _ K _block

by default is set to be int but can be changed to any

other C++ integer types

typedef int yaslnt

holds integer values; used throughout the solver for

variables such as

the number of lines/columns of a block/matrix of blocks.

by default is set to be int but can be changed to any other

C++ integer types

template < class T float > struct yasSparseCSC {T float

*pVals; yaslnt *pRowlndx; yaslnt *pCollndxB;

yaslnt *pCollndxE; yaslnt nnz; };

This structure is a template structure

(see YAS _K _block---+ Introduction for motivations and use

of template classes)

Its variables are enough for storing a matrix in esc sparse

format.

(see esc sparse storage convention for more details)

106

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

yasDense

matrix.

template < dassT float > struct yasDense{T float

*pVals;}

This structure is a template structure

(see YAS_K_block ~Introduction for motivations and

use

of template classes)

pVals is used to store, columnwise, the elements of the

(see Dense 1natrix storage convention)

Note that yasDense is not used to store a dense block.

It only stores its elements. Use Y AS _K _block to store

a dense block.

107

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Part III

Optimization in IMRT

8 Problem formulation

The goal of this part is to formulate an optimization problem that is relevant

for radiation therapy and to get an insight on the computational difficulties

that result. A main concern is how to model the problem. We present the

model from [) .

Radiation therapy (RT) is used in cancer treatment to control the devel­

opment of malignant tumors by exposing them to ionizing radiation beams.

As all tissues are affected during the process, the main issue in RT is how

to spare the healthy ones while doing as much damage as possible to the

tumor.

Intensity modulated radiation therapy (IMRT) is an advanced type of ra­

diation therapy that allows high-precision control of the angle and intensity

of the beams. 'Treatment planning is the process during which these angles

and intensities are determined such that a prescribed quantity of radiation

is delivered to the tumor and, at the same time, the radiation delivered to

the vital organs is kept below a critical level. Also, the fact that healthy

tissues recover faster than tumor tissues is exploited by fractionating the

treatment.

108

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

Damage to vital organs is unavoidable for most types of cancer. For

example, for prostate cancer, although vital organs such as the heart or the

liver can easily be avoided, the blader is in the immediate vicinity of the

prostate. These organs are the main challenges in treatment planning. Spar­

ing them is made especially difficult due to inevitable movements inside the

body which introduce uncertainties. For example, periodic breathing, car­

diac motion, changes in intra-abdominal pressure as well as weight changes

over the course of treatment are controllable to a small extend.

Different ways to deal with the uncertainties were suggested and com­

pared in the literature. In what follows, we present the model from [] and

the resulting optimization problem. We will mention the assumptions of this

model but not the inconveniences, some not obvious, they cause. One such

inconvenience is that some assumptions are simplifying the real situation.

In many cases, they are justified by the need to produce a computationaly

tractable model. For all details, see [] .

With the use of a computed tomography (CT), the planner can visualize

the location and the size of the tumor as well as the surrounding tissues.

Assume there are K types of healthy tissues. The region on the CT where

the tumor can be seen is caller the gross tumor volume (GTV). Next, the

planner is identifying the clinical targeted volume (CTV) which is a region

consisting of GTV and additional areas suspected to be affected and requir­

ing treatment. The CT is discretized into voxels and so each voxel is either

in the tumor or in one of the K healthy tissues. Denote with N the total

number of fractions when radiation is applied.

Assumption 1. The beam angles have been preselected by an experi-

109

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

enced planner, so the task is to assign the intensity of every beam i.e. decide

the vector x where each component of xis the intensity of one beam.

Assumption 2. The uncertainty is modeled by assuming that on a

single fraction, one of then possible scenarios St, ... , sn can occur with prob­

ability P1, ... , Pn, respectively.

Let aii be a column vector that denotes the deterministic dose delivered

to voxel i in scenario j when all beams have intensity 1. Denote

T
ai,l

Ai := (19)

T
ai,n

Denote with Di(x) the total dose delivered to voxel i during all N frac­

tions for the given intensity vector x. Denote with Du(x), l = 1, .. , N, the

dose delivered to voxel i in the lth fraction.

Assumption 3. The cumulative dose Di (x) delivered to a voxel during

the treatment is linearly additive i.e. Di(x) = z::=l Du(x).

Di(x) and Dij(x) are random variables since the position of the voxel

i is uncertain. In great generality, a sum of random variables is normally

distributed and so:

Assumption 4. Di(x) is normally distributed with mean J.L(x, i) and

variance a2(x, i).

Assumption 5. For fixed i, theN random variables Di1(x), ... , DiN(x)

are independent and identically distributed.

It follows that

110

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

and

o-2(x, i) -

=

=

-

~(x, i) = N · E[Dn(x)]
n

= N · Lpia~x
j=l

= N · (PT Aix)

N · Var[Dil (x)]

N · [Aix- e(pT Aix)]T P[Aix- e(pT Aix)]

N ·[(I- epT)Aix]T P[(I- epT)Aix]

N · JJRAixJI2

(20)

(21)

where, in the formula above, e = (1, 1, ... , 1), P = diag(p11 ... ,pn) and

R = pl/2(J _ epr).

Dil(x) = a[s(l)x where S(l) is the index of the scenario that occurs in

fraction l.

Constraints controling the bounds on the total dose per voxel.

Suppose that voxel i belongs to a healthy structure Hk. To protect the Hk,

physicians require that the dose Di(x) does not exceed some level mk. If

the voxel belongs to the tumor, it is also required that the dose is above a

certain constant.

For this we fix a 8 and require that P(Di(x) > mk) ~ 8. Equivalently,

111

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

p (Di(x) - ~(x, i) > mk - J.t\X, i)) < 8
a(x, z) a(x, z) -

By Assumption 4 we get

mk - J.t(x, i) >
(

") _ Z1-~ a x,z

where z1_~ is uniquely defined from P(Z > z1_~) = 8 with Z being

normally distributed with mean 0 and variance 1. Using (20) and (21) we

obtain the following second-order constraint:

(22)

In a completely analogous way, one can deal with constraints that require

Di(x) to be above a minimum level mk. We obtain that P(Di(x) < mk) ~ 8

is equivalent with

(23)

Remark 8.1 In[} it is showed that the same constraints {22} and {23} are

arising if one is modeling the uncertainty using robust linear programming.

We briefly describe this process in what follows.

In a pure deterministic model i.e. where Di(x) are not random variables,

asking the total dose on voxel i to be below a critical value mk is equivalent

with asking that Di(x) := af x ~ mk. Here ai is the vector whose component

j is the dose received by voxel i if the j - th beam is used with intensity 1.

In the robust linear model, the constraint af x ~ mk is replaced by a

112

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

family of constraints aT x :::; mk where a belongs to some uncertainty set

U. In other words, we don't know the precise value of a and so we require

aT x :::; mk to hold for all a's in some set U. If the set U is the ellipsoid

{a; + Wiui : II Ui II :::; 1} and wi = Zl-5 At RT I -IN then the following is true:

In other words, we have replaced a family of linear constraints with one

second-order constraint.

DV constraints. Another type of constraints required by physicians

are the so called dose-volume (DV) constraints which are of the form "no

more than lOOvk% of healthy structure Hk may receive more than dk units

of radiation (Gy) ". An exact way to model this is to introduce for each voxel

a binary variable but this makes the problem computationally intractable.

A approximate way to model this is to add the constraint

L (NpT Aix- dk)+ :::; gk
iEHk

(24)

where (·)+ is the positive part and gk is a parameter chosen by the

planner. Such a constraint can be reformulated as an equality constraint.

DVH constraints. Assume a DV constraint combined with a constraint

on the upper bound on the total dose per voxel says that for the healthy

tissue Hk no voxel can receive more than 70 Gy and not more than 40% can

receive more than 50Gy. The inconvenience with this formulation is that it

allows a treatment where 39% of all voxels receive 69 Gy and the rest receive

49 Gy. Such situations should be avoided. For this purpose one could use

113

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

more than one DV constraint. For example, no voxel can receive more than

70 Gy, no more than 40% can receive more than 50 Gy, no more than 30%

can receive more than 55 Gy, no more than 20% can receive more than 60

Gy. In fact, there exists the so called dose-volume histograms (DVH) that

specify for each real number between 0 and 100 the maximum allowed dose.

A DVH is determined for each healthy organ. Accomodating all constraints

in a DVH is equivalent with adding an infinite number of constraints. In ·

practice, DVH constraints are replaced by the so-called gEU D constraints,

introduced in []. For every a E ~'the gEUDa constraint for the healthy

organ H k is defined as

{

IJ 1 2: [Di(x)]a :::; mk: if a E (-oo, 0] U [1, oo)
k iEHk

-IJ 1 L [Di(x)]a ~ mk: if a E [0, 1]
k iEHk

where IHkl is the number of elements in Hk. Note that these are convex

constraints. For good results, such constraints are introduced for different

values of a. We recognize here the p-cone type constraints, see Chapter 4.

Another way to model the DV H constraints is described in ([]) and give

rise to second-order cone constraints.

Problem formulation. We are ready to state an optimization prob­

lem that is incorporating the DV and the total dose per voxel constraints

presented above. For simplicity, we start with a problem that incorporates

only the bounds on the total dose received by each voxel.

114

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

min WTminTTmin + WrmaxTTmax + E;=l WrjrTj + Ef=l WkTk

II RA·xJJ < NpTAiX-UTmin ViE CTV
t - Zl-6../Fi '

mr min - UT min :::; Tr min

II RA·xJJ < UTmax-NpTAix ViE CTV
t - Z1-6VN '

Urmax - mr max :::; Tr max

a'f;x 2:: uri' ViE CTV, j = 1, .. , n

mr - uri :::; rri , j = 1, ... , n (25)

IJRAixll :::; uk-N~ix, Vi E Hk, k = 1, .. , K
Zl-6

rr min' rr max 2:: 0

rri 2:: 0, j = 1, ... , n

rk 2:: 0, k = 1, ... , K

Note that in (25) Wrmin, Wrmax, Wri' Wk are weights that penalize the

failure to reach the minimum total dose for CTV, to exceed the maximum

total dose mrmax for CTV, to reach the minimum dose mr in scenario j for

CTV and to exceed the maximum dose mk for structure Hk, respectively.

The DV constraint (24) for the healthy tissue Hk is introduced in the

problem by adding to the objective WkQk, with wk a penalty weight and Qk

a variable, and the following constraints:

115

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

l:iEHk (NpT Aix- dk)+ :::; fk

!k- 9k :::; qk

qk ~ 0

Conclusions. Regarding the computational difficulty of the problems

above we make the following remarks.

1. We have seen that when the DVH constraint is modeled through

gEU D the resulting problem has p-cone constraints. This motivates our

interest in algorithms for conic optimization problems for nonsymmetric

cones like the one by Nesterov that was described in Chapter 2. In particu­

lar, we are interested in efficient barriers for the p-eones like the one due to

Nesterov from Chapter 4.

2. The Ai matrices in (19) are almost fully dense matrices since all the

beams together reach almost all voxels. When they are combined, the big

matrix is nearly dense with aproximately 40% nonzero elements. Moreover,

it is made of completely dense blocks and totally sparse blocks such as

diagonal blocks.

3. The size of the problem is determined by the number of beams and

on how fine is the discretization. The two lead to large scale optimization

problems. For example, 1000 beams, approximately 4000 voxels that are

resulting from a very coarse discretization, where the side of each voxel is

1 em, and 8 different scenarios result in a problem with 4000 · 9 = 36.000

variables and 4000 cones.

4. Due to Remarks 2 and 3, the optimization problem that we have

presented can not be solved by existing solvers such as SeDuMi, SDPT3,

116

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

DSDP etc. A solver that allows tuning the linear algebra and is capable to

handle nonsymmetric cones is essential.

9 A MATLAB prototype

In the previous section we have described an optimization problem rele­

vant to IMRT treament planning and we have emphasized that the ma­

trix defining the linear constraints is nearly dense with approximately 40%

nonzero elements. Also, a coarse discretization ussualy creates instances

with approximately 5000 positive variables and 4000 second order cones of

dimension 9.

We have created an instance with 5458 positive variables, 3395 second

order cones of dimension 9 and a constraint matrix with 38% nonzero ele­

ments and 1245 rows. Both SeDuMi [.] and SDPT3 [J crash during the

first iteration printing "Out of Memory". The test was run on an Intel Core

(TM) 2 CPU 6600 @2.4 GHz computer with 2GB of RAM memory.

Therefore, we have written a MATLAB implementation of Nesterov's

primal-dual algorithm for nonsymmetric cones that was described in Sec­

tion 2.6. We have followed two objectives. First, we wanted a prototype

to be used later when all the tools required to implement this algorithm

in YAS are available and we can proceed to implementation. As we have

mentioned, for IMRT, gEUD constraints motivate nonsymmetric conic op­

timization. Second, we wanted to explore the consequences of treating the

constraint matrix as a dense matrix when this is the case. We expected a

decrease of the time required at each iteration when compared with exist-

117

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

ing solvers. Moreover, dense matrix operations can benefit from multiple

processors platform. Therefore, it is desirable that a solver allows the user

to model the data at least with dense and sparse matrices.

We tried to replicate the shape of YAS by using functions that return

the value, gradient or Hessian of a barrier at a given point. As expected,

for a product cone the barriers for each member cone are used. We have

implemented barriers for the positive orthant, the second order cone and the

cone that is a product of second order cones with the same dimension. Note

our choice of including the barrier for the product of second order cones in

the set of basic barriers. Doing this caused a major improvement in the

speed of our code as loops in MATLAB are extremely slow. Alternatively,

we could have implemented the loops in C. However, we suspect that, like

in our case, a barrier written for a family of cones of the same type and

dimension will be much faster than the barrier obtained for the product

cone. This issue, which we haven't anticipated, can be accommodated with

the design of YAS and can imply speed improvements for such problems.

10 Benchmarking

In what follows we present the results of some experiments. We are only

concerned with the time required by one iteration and not with the number

of iterations, which depends on the algorithm that is used, or with the

precision that we can solve the problem. The main computational effort in

one iteration is to form the normal equations.

As mentioned before, we are concerned with a conic problem with 5458

118

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

positive variables, 3395 second order cones of dimension 9 and a constraint

matrix with 1245 rows and 38% nonzero elements.

Ideally, IMRT optimization problems should not be solved on supercom­

puters bur rather on desktop machines. Therefore, we have started our

testing on an Intel Core (TM) 2 CPU 6600 @2.4 GHz computer with 2GB

of RAM memory.

As mentioned, SeDuMi and SDPT3 have run out of memory at the

first iteration when 3395 cones are considered. We were interested to see

what is the maximum number of cones that can be supported. Their upper

bound is 1500 cones in which case SeDuMi requires 141 seconds/iteration

and SDPT3 requires 22 seconds/iteration while our implementation requires

12 seconds/iteration. The upper limit for our implementation is 2000 cones

and we require 33 seconds/iteration.

Next, we have moved to a multiprocessors workstation and compared our

implementation with SeDuMi. The workstation has 16 Dual Core AMD

Athlon Opteron (885) processors at 2.4Ghz and 64Gb of RAM. Further,

MATLAB for 64 bits is used together with SeDuMi 64. Using the MKL

library through MATLAB we have speed up the computations in our im­

plementation by using more processors. We have recorded the following:

119

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

SO cones Processors Sec /Iter SeDuMi Sec /Iteration Prototype

1500 1 90 17

4 90 7.5

8 90 6

16 90 5.7

3395 1 143 33

4 143 14

8 143 10

16 143 10

6000 1 262 56

4 262 26

8 262 20

16 262 20

From this table one can see that, when only one processor is used, the

time per iteration required by the prototype code is significantly less than

the time required by SeDuMi. This is due to the fact that SeDuMi treats

data as sparse while these instances have dense data. The prototype code

treats data as dense. FUrthermore, multiplication of dense matrices can be

parallelized and so the prototype code is faster when more processors are

used.

120

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

11 Conclusions

In this thesis we have set the basis of a new IPM-based solver, YAS, with a

modular design implemented using the object-oriented paradigm in C++.

Through this design we aim to

• allow easy development of IPM algorithms for optimization problems

beyond standard symmetric cone optimization problems;

• allow easy switch between different linear algebra packages that sup­

ply routines required by IPM algorithms; in particular, one can use

platform-tuned linear algebra packages;

• allow the user to exploit the type/structure of the matrices involved in

the linear algebra by introducing a notion of k-tuple block-structured

matrix with (low-rank) multiplicative updates;

• allow easy switch between different numerical precisions of data to

speed up computations;

• allow transparent implementation of techniques motivated by numer­

ical accuracy such as storing the iterates of the algorithms in a scaled

space (see Y AS _k_EVS in Section 5.2);

• allow modelling of optimization problems in their natural formula­

tion (see Semidefinite optimization in matrix variable in Chapter 3)

including supporting both primal and dual problem formulations;

• provide a framework for the development of an open-source library of

derived classes that are tuned for optimization problems with specific

121

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

data structure and problem classes, such as optimization over p-eones.

Y AS's design is split in two levels:

• basic linear algebra layer;

• interior point methods layer.

Basic linear algebra layer's goal is to provide a transparent access to

hardware-tuned linear algebra routines. This layer consists of:

• the low -level routines, further grouped into:

- BLAS routines (matrix-matrix multiplications and additions for

different types of matrices);

- LAPACK routines (used for inverting, factorizing, solving linear

systems with different types of matrices);

• the Y AS_ K _block class (allows the storage of one or more blocks

of the same type and dimension and provides methods to do linear

algebra operations. By a block of a certain type we refer a matrix with

an exploitable structure such as a matrix that is sparse, symmetric,

diagonal etc);

• the Y AS_ K _ mb class (allows the storage of one or more matrices of

blocks of the same type and dimension and provides methods to do

linear algebra operations. By a matrix of blocks we refer a matrix that

can be splited into blocks).

122

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

The main contribution of this thesis is the design and implementation of

the linear algebra layer for the new object-oriented platform. In particular,

the following tasks are accomplished:

• a detailed design of the linear algebra layer. The consisting classes

and routines are described in all details. Resulting advantages are

discussed;

• implementation of most low-level routines;

• implementation of Y AS_ K _block;

• a rough design of the IPM layer. The main classes needed in this layer

are identified. Resulting advantages are discussed.

In addition, we present a "proof of concept". The problem considered

is a large scale, dense optimization problems arrising in radiation therapy

treatment planning. Time per iteration is compared with two of the state­

of-the-art IPM solvers SeDuMi and SDPT3 on a multi-processor computing

server comprised of 16 AMD computing cores.

123

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

References

[1] Benson, S.J, Ye, Y., Zhang, X.: Solving Large-Scale Sparse Semidefinite

Programs for Combinatorial Optimization, SIAM J. Optim, 10(2), 443-

461 (2000)

[2] Borchers, B.: CSDP User's Guide, Optim. Meth. Soft. 11, 597-611

(1999)

[3] Chu, M., Zinchenko, Y., Henderson, S.G., Sharpe, M.B.: Robust Opti­

mization for Intensity Modulated Radiation Therapy Treatment Plan­

ning under Uncertainty. Phys. Med. Bioi., 50, 5463-5477 (2005)

[4] de Oliveira, M., Helton, B.: Numerical Optimization Assisted by Sym­

bolic Noncommutative Algebra. Slides of Talk given in the AdvOL Sem­

inar, McMaster University, (2007)

[5] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequen­

tial Unconstrained Minimization Techniques, John Wiley & Sons, New

York (1968). Republished, SIAM, Classics in Applied Mathematics,

Philadelphia (1990)

[6] Fujisawa, K., Kojima, M., Nakata, K.: SDPA User's Manual, Re­

search Reports on Mathematical and Computing Sciences, Department

of Mathematical and Computing Sciences, Tokyo Institute of Technol­

ogy, (2000)

[7] Giller, 0.: Barrier Functions in Interior Point Methods, Math. of Oper.

Res., 21, 860-885 (1996)

124

M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics

[8] Nesterov, Y., Todd, M.J.: Self-Scaled Barriers and Interior-Point Meth­

ods for Convex Programming. Math. of Oper. Res., 22, 1-42 (1997)

(9] Nesterov, Y., Todd, M.J.: Primal-Dual Interior-Point Methods for Self­

Scaled Cones. SIAM J. Optim., 8 (2), 324-364 (1998)

[10] Nesterov, Y.: Towards Nonsyrnrnetric Conic Optimization. CORE Dis­

cussion Paper, Catholic University of Lou vain, Louvain-la-Neuve, Bel­

gium (2006)

[11] Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms

in Convex Programming. SIAM, Philadelphia (1994)

[12] Niemierko, A.: A Generalized Concept of Equivalent Uniform Dose

(EUD). Med. Pshy., 26, 1100 (abstract) (1999)

[13] Renegar, J.: A Mathematical View of Interior-Point Methods in Convex

Optimization. SIAM, Philadelphia (2001)

[14] Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear

Optimization, Springer, New York (2006)

[15] Sturm, J.F.: Avoiding Numerical Cancellation in the Interior Point

Method for Solving Semidefinite Programs. Math. Progr., Ser. B 95,

219-247 (2003)

[16] Sturm, J.F.: Using SeDuMi 1.02, a MATLAB Toolbox for Optimization

over Symmetric Cones. Optim. Meth. Soft., 11-12, Special Issue on

Interior Point Methods, 625-653 (1999)

125

M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics

[17] Tapia, R.A.: The Kantorovich Theorem for Newton's Method. Amer.

Math. Monthly. 78(4), 389-392 (1971)

[18] Todd, M.J., Toh, K.C., TUtilncU, R.H.: On the Nesterov-Todd Di­

rection in Semidefinite Programming. SIAM J. Optim., 8 (3), 769-796

(1998)

[19] Toh, K.C., Todd, M. J., TUtilncU, R.H.: SDPT3-A MATLAB Software

Package for Semidefinite Programming, Optim. Meth. Soft., 11-12, 545-

581 (1999)

126

9071 85

