
AN OBJECT ORIENTED PLATFORM FOR 
IMPLEMENTING INTERIOR-POINT ALGORITHMS 



AN OPEN SOURCE OBJECT ORIENTED 
PLATFORM FOR RAPID DESIGN OF 

HIGH-PERFORMANCE PATH FOLLOWING 
INTERIOR-POINT METHODS 

by 

VOICU CHI~, M.Sc. 

A Thesis 
Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 
for the Degree 

Master of Science 

McMaster University 
©Copyright by Voicu Chi§, 2008 



MASTER OF SCIENCE (2008) 
(Mathematics and Statistics) 

McMaster University 
Hamilton, Ontario 

TITLE: An open source object oriented platform for rapid design of high­
performance path following interior-point methods 
AUTHOR: Voicu Chi§, M.Sc. 
SUPERVISOR: Dr. Tamas Terlaky, Dr. Yuriy Zinchenko 
NUMBER OF PAGES: ix,126 



Abstract 

Interior point methods (IPMs) is a powerful tool in convex optimization. From 
the theoretical point of view, the convex set of feasible solutions is represented 
by a so-called barrier functional and the only information required by the 
algorithms is the evaluation of the barrier, its gradient and Hessian. As a 
result, IPM algorithms can be used for many types of convex problems and 
their theoretical performance depends on the properties of the barrier. In 
practice, performance depends on how the data structure is exploited at the 
linear algebra level. In this thesis, we make use of the object-oriented paradigm 
supported by C++ to create a platform where the aforementioned generality 
of IPM algorithms is valued and the possibility to exploit the data structure 
is available. We will illustrate the power of such an approach on optimization 
problems arrising in the field of Radiation Therapy, in particular Intensity 
Modulated Radiation Therapy. 
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Introduction 

Interior point methods (IPMs) provide important tools to solve convex op­

timization problems. In [11], Nesterov and Nemirovskii have shown that 

theoretically efficient IPM algorithms can be developed in a very general 

setting. For a convex optimization problem such as 

inf (c, x) 
xED 

where ( ·, ·) is an inner product and D is a closed convex set in a finite­

dimensional real vector space, the only information about the convex set D 

needed by IPM algorithms is a so-called barrier functional on the interior of 

D. Theoretical efficiency of the algorithms depends on the properties of the 

barrier which result from the structure of D. For example, when D is the 

intersection of an affine space with a special type of a convex cone, a so-called 

self-scaled cone, a barrier with particularly useful properties is available for 

D. As a result, so-called primal-dual algorithms can be developed in this 

setting. Their observed practical behaviour is better than the behaviour 

of pure primal algorithms that only use a barrier with no other appealing 

properties. 

The properties of the barrier determine the set of algorithms that can be 

used to solve the problem. In this thesis, we set the basis of a new optimiza-

tion solver with a modular design that exploits this degree of generality and, 

in particular, utilizes the power of primal-dual barriers in the nonsymmetric 

setting. 

A number of very powerful IPM-based packages already exist: SDPT3 

[19], SeDuMi [16], CSDP [2], DSDP [1], SDPA [6], to name just a few. How-

lll 
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ever, most of these solvers are very specialized to a particular problem type 

and data structure, e.g., CSDP is designed to solve only the so-called positive 

semidefinite optimization problems and performs exceptionally well primar­

ily on problem instances with dense data structures. These packages exhibit 

a somewhat rigid design: modifying these solvers to accommodate convex 

optimization problems of other types by extending the implemented algo­

rithms becomes extremely difficult, if at all possible. In addition, many op­

timization problems have an easily identifiable block-density pattern, while 

few optimization packages are capable of taking full advantage of this struc­

ture at the linear algebra level. The main goal of our work is to propose a 

modular framework that can be used to create an optimization engine capa­

ble to overcome the above mentioned shortcomings of existing IPM-based 

solvers. In particular, we focus on implementing primal-dual path-following 

algorithms in the non-symmetric cone setting, with the underlying hypoth­

esis being that such optimization problems offer end-users more adequate 

modelling capabilities, while the primal-dual algorithms allow very efficient 

computational strategies similar to those already exhibited in practice by 

the path-following algorithms in the symmetric cone setting. 

Through this design we aim to 

• allow easy development of IPM algorithms for optimization problems 

beyond standard symmetric cone optimization problems; 

• allow easy switch between different linear algebra packages that sup­

ply routines required by IPM algorithms; in particular, one can use 

platform-tuned linear algebra packages; 

iv 
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• allow the user to exploit the type/structure of the matrices involved 

in the linear algebra and so 

- speed up additions/multiplications; 

- speed up factorizations/inversions, for example for k-update ma-

trices or block-structured matrices; 

- save memory when storing sparse, symmetric, diagonal etc. ma­

trices; 

- obtain better numerical accuracy through customized linear al­

gebra techniques such as factorization of block matrices; 

• allow easy switch between different numerical precisions of data; 

• allow accomodation of techniques motivated by numerical accuracy 

such as storing the iterates of the algorithms in a scaled space (see 

Y AS _k_EVS in Section 5.2); 

• allow the optimization problem to be given in either primal or dual 

form; 

• allow modelling of optimization problems in their natural formulation 

(see Semidefinite optimization in matrix variable in Chapter 3); 

• provide an appropriate framework for the development of an open­

source library of derived classes that are tuned for optimization prob­

lems with specific data structures. 

Using the object-oriented paradigm supported in C++, the algorithms 

implemented in this framework make use of a special class named "barrier". 

v 
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Through the methods of the barrier class, the algorithms can evaluate the 

barrier, compute its gradient or Hessian. In particular, this framework al­

lows the implementation of primal-dual algorithms for optimization over 

nonsymmetric cones, see [8], where the barrier is log-homogenous but not 

self-scaled. Geometric optimization and optimization over p-eones are situa­

tions where log-homogenous barriers are the natural barriers. Interior point 

methods in this setting have drawn recent attention with hopes that their 

performance for large problems might be better then first-order methods 

applied to the original optimization problem, or classical IPMs applied to 

an equivalent optimization problem over symmetric cones. In particular, 

our interest in optimization problems over p-eones stems from the fact that 

problems of this kind arise in optimal radiation therapy treatment planning. 

The large-scale and nearly dense nature of these optimization problems make 

them inaccessible to any of the state-of-the-art solvers available today. How­

ever, there is a clear need to advance our capacities in solving such problems 

as dictated by this important application. 

In what follows we will go into a bit more details of our design formalism. 

The Y AS design is split in two levels: 

• Basic Linear Algebra layer; 

• Interior Point Methods layer. 

The goal of the Basic Linear Algebra layer is to provide a transparent 

access to hardware-tuned linear algebra routines. This layer consists of: 

• the low -level routines, further grouped into: 

vi 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

- BLAS routines include matrix-matrix multiplications and addi­

tions for different types of matrices; 

- LAPACK routines are used for inverting, factorizing, solving lin­

ear systems with different types of matrices. 

• the Y AS_ K _block class allows the storage of one or more blocks of 

the same type and dimension and provides methods to do linear alge­

bra operations. By a block of a certain type we refer to a matrix with 

an exploitable structure, such as a matrix that is sparse, symmetric, 

diagonal etc. 

• the Y AS_ K _ mb class allows the storage of one or more matrices of 

blocks of the same type and dimension and provides methods to do 

linear algebra operations. By a matrix of blocks we refer to a matrix 

that can be splited into blocks. 

The Interior Point Methods layer consists of: 

• Y AS_ k _ EV S is a class that is a container of a k-tuple of elements 

of a vector space. The class provides methods such as adding, scaling 

or computing the norm of objects of this type. 

• Y AS_ barrier is a class which is of obvious importance for interior 

point methods. Through the methods of Y AS_ barrier, one can eval­

uate the barrier, its gradient or its Hessian. 

• Y AS_ LO is a class used to replicate a linear operator. 

vii 
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• Y AS_ norm_ eq is a class that is derived from Y AS_ LO allowing the 

user to form a compressed and expanded versions of normal equations 

and to solve the latter. 

The thesis is divided in three parts: Interior Point Methods, The 

Design of Y AS and Optimization in IMRT. 

In the first part, we collect some theoretical results about interior point 

methods concluding with an algorithm for nonsymmetric cones due toNes­

terov [ ] . We start with the formulation of the problems that we want to 

tackle with YAS. Next, we present the theory of interior point methods as 

applied to such problems, starting from the general form 

inf (c, x), 
xED 

where D a closed convex set and c, x vectors, and building up to conic 

optimization. 

The second part of the thesis is about the design of YAS. Up to this 

point, the base layer of the solver, the linear algebra layer, is completely 

established. The top layer, the interior point methods layer, is roughly 

described emphasizing the resulting advantages. This second part of the 

thesis has the style of a software manual, where the classes and the routines 

of the solver are well documented. We start with an Overview where we say 

what can be done with the solver, the resulting advantages, and not how to 

do it. We then proceed to describing the Linear Algebra Layer. We follow 

the same pattern starting with more general ideas, slightly more specific 

than the ones in Overview, but still not enough for the actual use of the 

viii 
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software. We are avoiding technicalities at the beginning. Then we proceed 

with detailed documentation for each routine/class. 

Finally, the third part of the thesis concerns with optimization prob­

lems arising from IMRT. We present a model and then isolate the resulting 

optimization problem and conclude with remarks about its computational 

tractability. We then describe a prototype code in MATLAB that is im­

plementing Nesterov's algorithm for nonsymmetric cones, and use this to 

tackle the optimization problem presented before. We compare our result 

with SeDuMi and SDPT3. We want to point out that real situations like 

this ask for enough flexibility to model the data with different types, at least 

dense and sparse, and so a solver with a modular design is preferable. While 

working on the prototype code, we have also found an unexpected situation 

where the flexibility that we provide in the IPM layer might prove useful. 

However, at this point we can not confirm this with strong numerical results 

since the software is in incipient form. 

ix 
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Part I 

Interior Point Methods 

1 Problem formulation 

Let X be a finite dimensional real vector space endowed with an inner 

product (·, ·) : X x X ---t R. Let c E X and let D ~ X be a closed 

convex set, i.e., a closed set such that if x, y E D and n E [0, 1] then 

ax+ (1- n)y E D. We focus on solving convex optimization problems of 

the following type 

inf (c, x) 
xED 

(1) 

In particular, we are interested in problems of type (1) that are amenable 

to the so-called interior point methods. For the later to hold, one has to be 

able to equip b, the interior of D, with a certain barrier functional f : b ---t 

R. See Section 2.2 for a detailed discussion of the barrier functionals. 

Theoretically, a barrier exists for any closed convex set, see [ ] . But in 

practice we need to be able to compute this barrier efficiently. Fortunately, 

for many well-structured closed convex sets such computable barriers are 

already known. Even if such a formulation is not readily available, in many 

cases a linear transformation of the decision variable x E X suffices to put 

an optimization problem into the desirable equivalent form. To this extend, 

1 
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in addition to (1) we introduce four more types of well-structured convex 

optimization problems. 

In what follows, X andY are finite dimensional real vector spaces each 

endowed with an inner product ( ·, ·), with the underlying space being clear 

from the context. Let c EX, bEY and A: X ---t Y be a linear operator. 

Denote with A* : Y ---t X its adjoint, i.e., the unique linear operator such 

that (Ax, y) = (x, A*y), for all x E X, y E Y. Taking the adjoint of a 

linear operator is an involution, i.e., (A*)* = A. Denote K c X a closed 

convex cone, i.e., a closed convex set such that if x E K and t E [0, oo) 

then tx E K. Recall that the dual cone K* C X is the closed convex cone 

defined by K* = { s EX : (s, x) 2:: 0 \;fx E K}; taking the dual of the closed 

convex cone is an involution, i.e., (K*)* = K. 

Convex conic optimization problem. Consider the problem 

inf (c, x) 
X 

s.t. Ax= b (2) 

xEK 

and its dual problem 

sup (b, y) 
y,s 

s.t. A*y + s = c (3) 

s E K* 

2 
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The points x E K n {x: Ax= b} are called primal feasible and (y, s) E 

Y x K* n {(y, s) : A*y+s = c} are called dual feasible. Feasible points that 

are in the interior of the cone are called strictly feasible. 

Problems (2) and (3) are strongly connected. If x and (y, s) are feasible 

points then weak duality holds, i.e., 

(c, x) - (b, y) = (x, s) 2:: 0 

In particular, if one denotes with val the optimal value of (2) and val* 

the optimal value of (3) it follows that val 2:: val*. Under fairly mild as­

sumptions val and val* are equal, a property referred to as strong duality. 

For example, if (2) and (3) have strictly feasible points then strong duality 

holds. If one has strong duality, in many cases it is possible to recover an 

optimal solution to (3) from a solution to (2) and vice-versa. Thus, for most 

practical applications (2) and (3) are thought of as equivalent problems. 

If the cone K or K* is equipped with a particularly nice barrier, the 

so-called log-homogenous barrier, the connection between (2) and (3) goes 

well beyond the weak or strong duality as above. Primal-dual methods are 

a class of algorithms that exploit this connection. They are believed to be 

the most efficient in practice. One such algorithm is discussed in Section 

2.6. 

Examples: 

1. Linear optimization (LO). Let X = Rn, Y = Rm and the inner 

products on Rn and Rm be both given by (x, y) = xT y. Let K = R+. be the 

nonnegative orthant in Rn. One can show K* = R+.. Let cERn, bERm, 

A: Rn---+ lRm be a linear operator with its adjoint A* : Rm---+ Rn. Note that 

3 
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if A is represented by am x n matrix A so that A(x) =Ax then A*= AT. 

Then problem (2) and (3) are referred as linear optimization problems in 

the primal and, respectively, dual form. 

2. Second-Order Cone Optimization (SOCO). Let X= Rn, Y = 

Rm and the inner products on Rn and Rm be both given by (x, y) = xTy. 

Let K = {x ERn: Xn 2:: Jx~ + ... + x~_1} be the second-order cone (also 

called Lorentz cone or ice-cream cone) in Rn. One can show K* = K. 

Let c E Rn, b E Rm, A : ]Rn ----+ lRm be a linear operator with its adjoint 

A* : lRm ----+ ]Rn. Then problem (2) and (3) are referred as second-order conic 

optimization problems in the primal and, respectively, dual form. 

3. Semidefinite Optimization (SDO). Let X = snxn the vector 

space of real symmetric n X n matrices. Let the inner product on snxn be 

(x, y) = tr(xy), Vx, y E snxn. Let Y = lRm with the inner product (x, y) = 

XT y. Let K = s~xn' the cone of positive-semidefinite symmetric matrices. 

One can show K* = K. Let c E snxn, b E Rm. Let A : snxn ----+ Rm be 

a linear operator. One can show that there exists Ai E snxn, i = l,m 

such that A( X) = ( (Ai, X) , ... , (Am, X)). In this case, its adjoint A* : 

Rm----+ snxn is given by A*(y) = 2::,1 YiAi, y E Rm. Then problem (2) and 

(3) are referred as semidefinite optimization problems in the primal and~ 

respectively, dual form. 

In many applications the natural formulation has the form of the dual 

problem. For example, in control theory the sufficient stability criteria is 

expressed in terms of a linear matrix inequality such as pT P F - P j I. 

Also, in linear optimization, a constraint of the form Ax 2:: b is obviously a 

dual constraint because it is equivalent with Ax - s = b, s E JR~. Although 

4 
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one can rephrase it as A(x1 - x2)- 8 = b, xb x2 , 8 E JR.~, this procedure dou­

bles the dimension of the problem. Most solver such as SeDuMi, MOSEK, 

SDPT3 implementing interior point algorithms require the input to be in 

the form of (2). We allow input in both primal and dual formats. 

The conic optimization modelling framework has several limitations. 

First, conic constraints do not arise naturally in applications. Convex opti­

mization problems can be put in the form of a conic optimization problem 

using the, so-called, lifting procedure. However, during this transforma-

tion the complexity of the new problem to be solved is increased. Second, 

primal-dual algorithms require certain information, to be made more precise 

at a latter point, regarding both K and K*. In many cases, this information 

is available for K but not for K*. Therefore, we are interested in solving 

problems of the following types: 

Convex optimization problem in dual form. Let D C X be a closed 

convex set, not necessarily a cone. Consider the problem 

{ 

sup (b, y) 

s.:. c- A*y ED 

(4) 

Convex optimization problem in primal form. Let D C X be a 

closed convex set. Consider the problem 

5 
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inf (c, x) 
X 

s.t. Ax= b (5) 

xED 

Remark 1.1 Note that problems (1), (5) and (4) are equivalent. The equiv­

alence follows from the fact that interior point algorithms can be developed 

for (1) if a barrier on b is available. A barrier f on b naturally gives a 

barrier on {y : c- A*y E b}, namely y 1-7 f(c- A*y). Therefore (5) can 

be seen as a particular case for (1). Consider now a convex optimization 

problem in primal form ( 4). Assume N is a basis for the null space of A and 

Xo is such that Axo =b. It follows that {x: Ax= b} n D = {Ny + Xo} n D 

and from here the equivalence: 

inf (c, x) { 
x inf (b, Ny + x0) 

s.t. Ax= b # Y 

s.t. x0 + Ny ED 
xED 

Therefore, ( 1), ( 5) and ( 4) are equivalent. 

~{ sup- (N*b, y) 
y 

s.t. x0 +NyED 

In the rest of this thesis we use "convex optimization problem" to refer 

problems formulated as (1), "primal convex conic optimization problem" for 

(2), "dual convex conic optimization problem" for (3), "convex optimization 

problem in dual form" for (5), "convex optimization problem in primal form" 

for (4). 

We emphasize that we are interested in solving problems in their nat­

ural formulation. For this purpose, we choose to distinguish between ( 1), 

( 5) and ( 4) although they are equivalent. Also, the use of abstract linear 

6 
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operators mapping vector spaces into vector spaces allows us to model the 

linear operator x f--+ yx + xy ( x and y are matrices of appropriate size) in­

stead of replacing it with a linear operator that acts on the vector obtained 

by stacking the lines of x. 

7 
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2 Main ingredients in Interior Point Algo­

rithms 

The goal of this part is to present several interior point algorithms. We 

start with the ideas of the interior point methods that go back to the 1950s. 

The key concept is the central path, a curve that leads to the optimal set 

and whose definition depends on a certain functional. After this we present 

Nesterov's and Nemirovskii's [ ] choice for the functional, the so-called 

barriers, followed by several algorithms relying on the properties required 

for the functional. Then we consider the barriers in the context of conic 

optimization and quote results from [ ] and [ ] showing how the dual­

ity theory is enriched. We finish with the presentation of a primal-dual 

predictor-corrector algorithm due to Nesterov [ ] that is motivated by the 

previous results. 

2.1 The central path 

In 1968, Fiacco and McCormick authored a book called "Nonlinear pro­

gramming: sequential unconstrained minimization techniques" [ ] . They 

introduce it to the reader as a book that provides "a unified body of the­

ory on methods of transforming a constrained minimization problem into a 

sequence of unconstrained minimizations of an appropriate auxiliary func­

tion" and also "some historical perspective for the basic approach with an 

effort toward synthesis". Following their remarks, it is safe to say that such 

ideas go back at least to the 1950s. The problem they consider is a general 

nonlinear optimization problem and the two main techniques presented are 

8 
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called interior point methods and exterior point methods. In the current 

literature of nonlinear optimization, these methods are also referred to as 

barrier methods and, respectively, penalty methods. 

We will illustrate the ideas of general interior point methods in our set-

ting. 

Consider a convex optimization problem 

{ 

inf (c,x) 

s.t. xED 

We will construct a family of optimization problems by adding to the ob-

jective a term which approaches infinity when the boundary is approached. 

In this way, the minimum of the new objective is pushed in the interior of 

the feasible region. We control this term with a parameter that allows us 

to increase or decrease the term's role in the objective. 

Let f : b ~ R be such that lim f ( x) = +oo . Consider the family of 
X-t8D 

optimization problems parametrized by J.l > 0: 

inf (c, x) + J.lf(x) 
xED 

(6) 

To preserve the convexity of the problem and guarantee uniqueness of 

minimizers we will assume f is strict convex. Assume that for every J.l > 0 

there exists Xp, E b minimizer of (c, x) + 1-lf(x). One can prove that: 

Theorem 2.1 1. 0 < J.l < 0' {::} (c, Xp,) ~ (c, Xa) 

2. Let (J.lk)k~I be a strictly decreasing sequence of positive numbers such that 

9 
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I-Lk --t 0. Denote with Xk the unique solution of inf (c, x) + 1-Lkf(x). Since D 
xED 

is bounded, we can assume that (xk) converges to some x* ED. Then 

lim (c, Xk) = (c, x*) = inf (c, x) 
k---+oo xED 

Proof. 

1. By definitions: 

(c, x/1-) + J.Lf(x/1-) ~ (c, Xu) + J.Lf(xu) 

and 

Multiplying the first inequality with!!, then adding and rearranging the /1-

terms we obtain: 

(1 - ~) (c, x/1-) ~ (1- ~) (c, Xu) 

And so JL <a<=> (c, x/1-) ~ (c, xu)· 

2. The first part of the statement follows by continuity. For the second 

part, denote L := {x : (c, x) = (c, x*) }. Assume (c, x*) > inf (c, x). Then 
xED 

L n b is nonempty. Therefore the optimization problem 

{ 

inff(x) 

s~t. x E Lnb 

has a unique solution x E L n b. It satisfies g(x) l_ L i.e. g(x) = JLC for 

some JL E JR. But this implies that x is also the solution of min JL ( c, x) + f ( x) 

and so JL > 0. 

Because (c, x) = (c, x*) ~ (c, xk) for all k, using the first part of this 

theorem, we have I-Lk ~ JL contradicting I-Lk --t 0. • 

10 
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The previous theorem shows that the curve { x 1-L : 11 > 0} is leading to a 

solution of the initial problem. 

Having such a curve in the interior of the domain, one way to follow 

it is the following. Start with 11o > 0 and with a point x0 that is a good 

approximation for x 1-Lo. Decrease 11o to 11I. If 11I is not much smaller than 11o, 

we expect that x0 will be farther from x/-L
1 

than it is from x/-Lo but will still be a 

relatively good approximation for it. Now do one step of some minimization 

algorithm of your choice to get XI which will be a better approximation for 

x/1-
1

• To be able to repeat this process, one should make sure that xi is as 

close to x I-Ll as was x0 to x 1-Lo. 

Note that the description above allows freedom to choose f and freedom 

to choose a minimization algorithm. 

In the optimization literature, Newton's method is a minimization algo­

rithm that is attractive due to its local quadratic convergence rate. However, 

in the general analysis, in order to check if the convergence rate is quadratic 

we need to be able to measure the distance between our current point and 

the minimizer. Of course this is not practical because the minimizer is not 

known. A fundamental result in nonlinear analysis that is eliminating this 

inconvenient is due to Kantorovich, see [ ] . It contains a set of assumptions 

under which Newton's method performs good. Nesterov and Nemirovskii 

[ ] proposed their own type of functionals on which Newton's method per­

forms well. They also have all the properties needed to generate a curve as 

before that leads to a solution of the problem. 

In the rest of this thesis by a barrier we mean the functional introduced 

by Nesterov and Nemirovskii. Iff is a barrier, then for each 11 > 0 we denote 

11 
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with x11 the unique solution of minJL (c, x) + f(x) and call the resulting curve, 
X 

{x11 : JL > 0}, the central path. Note that this definition for x11 is slightly 

different than before. In this case, the curve leads to a solution of the 

problem when JL ~ oo and not to 0. Also note that the definition depends 

on c. 

We continue with the presentation of the barriers and focus on the analy­

sis of Newton's method as it applies to them. 

2.2 Barriers on convex sets 

In this section we present the machinery needed for interior point algorithms 

for convex optimization problems. Given a closed bounded convex set DC 

X with nonempty interior b, our goal is to explain what is a barrier having 

bas its domain and state important properties that are used extensively by 

the algorithms. Following Renegar [ ] and Nesterov and Nemirovskii [ ] 

we present them using local norms. Therefore, we start by explaining what 

do we mean by local norms. We continue by introducing self-concordant 

functionals and stating results regarding the analysis of Newton's method 

as it applies to them. After this we introduce barrier functionals. We closely 

follow Renegar [ ] . 

In what follows, when we refer to f we also assume the following prop­

erties. First, f E C2(D), i.e., f is twice continuously differentiable on D. 

Denote with g(x) EX the gradient of gin x and with H(x) :X~ X the 

Hessian of f in x which is a linear operator. Second, we assume that H ( x) is 

self-adjoint and positive definite for any x E D, i.e., (H(x)y, z) = (y, H(x)z) 

for any y, z E X and (H(x )y, y) > 0 Vy E X\ {0}. In particular, this implies 
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that f is strict convex. 

Such a functional f gives rise to a family of inner products on X. For 

any x E D, define the inner product ( ·, ·) x by: 

(y, z)x = (y, H(x)z), Vy, z EX 

As usual, the inner product (-, ·)x induces a norm on X denoted with 

ll·llx and given by: 

It is known that the definitions of the gradient and Hessian depend on 

the norm. We denote with gx(Y) and Hx(Y) the gradient in y with respect 

to the norm induced by x and, respectively, the Hessian in y with respect 

to the norm induced by x. One can show that 

gx(Y) = H(x)-1g(y) and Hx(Y) = H(x)- 1 H(y) 

Also denote with Bx(x, 1) the ball of radius 1 centered in x where the 

distance is measured in the norm induced by x. 

We use the definition in Renegar [ ] to introduce self-concordant func­

tionals instead of the apparently more technical definition used in Nesterov 

and Nemirovskii [- ] . In [ ] it is proved that they are equivalent. 

Definition 2.1 We call f self-concordant if, in addition, the following con­

ditions are satisfied: 

1. Bx(x, 1) c D, Vx E D 

2. 1 - IIY - xllx :::; :::::: :::; l-IIY
1
-xllz, for all V -:/= 0 

Two results of obvious interest are 
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Theorem 2.2 If Di are two closed convex sets and fi :bi-t R, i = 1, 2, 

are two self-concordant functionals then !1 + !2 : b1 n b2 -t R is a self­

concordant functional. 

Theorem 2.3 Assume A : Rn -t JRm is an injective linear operator, b E 

JRm, D C JRm is a closed convex set and f : b -t lR is self-concordant. Then 

x ~ f(Ax- b) is self-concordant if the set {x :Ax-bED} is not empty. 

Theorem 2.4 Iff : b --+ lR is self-concordant and c E X then x ~ 

f(x) + (c, x) is self-concordant (on b). 

Self-concordant functionals have appealing properties if we apply New­

ton's method to find their minimum. Recall that an iteration of Newton's 

method applied to a functional f consists of moving into the minimizer of 

the quadratic approximation considered in the current point. 

Assuming our current point is x, the quadratic approximation for f in 

xis given by 

qx(Y) = f(x) + (g(x), Y- x) + l (y- x, H(x)(y- x)) 

Since H(x) is positive definite it follows that qx is strict convex. Its 

minimizer y* is the critical point of qx. Therefore, y* is computed from 

g(x) + H(x)(y*- x) = 0 

as y* = x- H(x)- 1g(x). We use the notation n(x) := -H(x)-1g(x) 

and refer to it as the Newton step in x. Remark that 9x(x) = -n(x). 

Therefore the Newton direction is exactly the steepest descent direction if 
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the gradient is computed w.r.t. the norm induced by x. We now present 

the results regarding Newton's method for self-concordant functionals. 

The first result refers to the local approximation of the functional by its 

quadratic approximation. 

Theorem 2.5 Assume f is self-concordant, xED andy E Bx(x, 1). Then 

l/( ) ( ) I < !!y-x!!! 
Y - qx Y - 3(1-l!y-x/LzJ 

The second result refers to the progress done by Newton's method. 

Theorem 2.6 Assume f is self-concordant and x E D. If z minimizes f 

and z E Bx(x, 1) then 

II II < llx-z/1! 
X+ - z X - 1-l!x-zl/x 

where x+ is the next iteration of the Newton algorithms i.e. x+ .-

x- H(x)-1g(x). 

Corollary 2. 7 If lix- zllz < ~ then 

Theorem 2.8 Assume f is self-concordant. If lln(x)iix < 1 then 

l!n(x+)ilx+ ~ (1~~S(~~ilx)
2 

In the general case, the convergence results for Newton's method require 

x to be sufficiently close to the minimizer. The only way to decide if we are 

sufficiently close to the minimizer is to know the minimizer. In the case 

of self-concordant functionals we can decide if we are close enough to the 

minimizer by looking at the size of the Newton step. 
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Theorem 2.9 Assume f is self-concordant. Iflln(x)llx <±for some xED 

then f has a minimizer z and 

I I 3lln(x)ll~ I Z -X+ lx ::::; (1-lln(x)ll:ll)3 

II II II ( )II 3jjn(x)ll~ 
z- X X ::::; n X X + (1-lln(x)ll:ll)3 

Now we introduce barrier functionals. 

Definition 2.2 A self-concordant functional f is called a barrier if the 

quantity v f := sup llgx ( x) 11; is finite. We refer to v f as the complexity 
X 

value of f. 

As in the case of self-concordant functionals, the following results are of 

interest 

Theorem 2.10 If Di are two closed convex sets and fi: bi ~JR., i = 1, 2, 

are two barrier then f := f1 + f 2 : D1 n D2 ~ JR. is a barrier and Vf ::::; 

Theorem 2.11 Assume A: JR.n ~ JRm is an injective linear operator, bE 

lRm, D C JR.m closed convex set, and f : b --+ lR is a barrier. Then x ~ 

!(Ax-b) is a barrier if the set {x: Ax-bED} is not empty with complexity 

value at most v f. 

Remark 2.1 Adding a linear functional to a barrier results in a self-concordant 

functional {see Theorem 2.4) but not necessarily a barrier. As an example 

consider x ~-----+ x - ln x. 
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Practical experience and complexity analysis of interior point methods 

show that we are interested in barriers with small complexity value. Nes­

terov and N emirovskii [ ·] show that v 1 ;:::: 1 for any barrier f. They also 

show that each open convex set containing no line is the domain of a barrier 

functional. If the set is in Rn, they also prove that there exists a univer­

sal constant C and a barrier on the set with complexity value less then 

C · n. Unfortunately, the proof is not constructive and therefore it has only 

theoretical value because, as we will see, interior point algorithms require 

computable gradients and Hessians for the barriers. 

It is worth mentioning that the objective that define the central path, 

see ( 6), are not barriers but self-concordant. 

We now state one important property of barriers: 

Theorem 2.12 Assume f is a barrier and x, y ED. Then (g(x), y- x) < 

This result can be used to prove that the central path is leading to 

a solution of the initial problem. We see that xJ..L, the unique solution of 

infJ.t (c, x)+ f(x ), is given by g(xJ..L) = -J..Lc. Therefore, for any y E D, we have 
X 

(c,xJ..L)-(c,y} = (c,xJ..L- y) = -t (g(xJ..L),xJ..L- y) = t (g(xJ..L),y- xJ..L) <tv,. 
It follows that (c, xJ..L} < tv 1 + (c, y) and from here: 

Theorem 2.13 (c, xJ..L) ::; lv 1 + inf (c, x). 
J..L xED 

One can also prove an analog relation for the case when the point is not 

on the central path: 

Theorem 2.14 For any xED we have 

17 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

(c, x) < lvf(l + llx- xf.£11x ) +in£ (c, x). f.£ ~ xED 

2.3 Several algorithms for convex optimization prob-

I ems 

We now have all the tools we need to state several algorithms for convex 

optimization problems 

{ 

~n (c,x) 

s.t. xED 

We assume a barrier f on iJ with complexity value v 1 is available. 

Denote with ff.£(x) := J.L (c, x) + f(x), J.l > 0, and with nf.£(x) the Newton 

step for ff.£ in x. 

The Short-Step Barrier Method. For a given t > 0, the algorithm 

will return x* such that ( c, x*) < t + inf ( c, x). 
xED 

Input: t > 0 (the desired accuracy) 

J.L1 > 0 and X1 such that llnf.£1 (x1) llx
1 
~ n (a point close enough 

to the central path) 

Let AJ ·- 1 (3 ·- 1 + _1_ 
u; .- 9' .- 8..jfTj 

Repeat: For k ~ 1: 

Let J.lk+l := J.lkf3 (we increase J.lk with factor (3) 

Let Xk+l := Xk + nf.£k+1 (xk) 

k := k + 1 

Until: J.lk > ~ 

The fact that at each iteration llnf.£k (xk) llxk ~ t implies llxk - xf.£k llx ~ 
~k 

i (Theorem 2.9). Therefore, we can get a bound on how far we are from 
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the optimal value (Theorem 2.14): 

(c, xk) < ..!...v J(l + ~) + inf (c, y) J.Lk yED 

This relation gives us the stopping condition. Also note that if we use 

1 + 8.}vy as the multiplying factor, we need O(yfi7jlog(J-l*/ J-l1)) iterations 

to get from the initial value f-lt to J-l*· Therefore, for given E > 0 we need 

O(yfi7jlog(ft; )) iterations to produce a point x* such that (c, x*) :::; E + 

in£ (c, y). 
yED 

Note that one could replace a = ~ and {3 = 1 + 8.}vy with any a > 0, 

{3 > 1 such that if we define 'Y := a/3 + (/3 - l)yfi7j then 'Y < 1 and 

(2:y)2 :::; a. The restrictions on a and {3 guarantee that at for each k we 

have llnJ.Lk (xk) llxk :::; a, so the algorithm stays on track. The only thing that 

is changing in this situation is the stopping condition. 

The Long-Step Barrier Algorithm. This algorithm is build on 

the idea that one should use for f-lk+t a much larger value then the safer 

f-lk ( 1 + 8.}vy) that is used by the barrier method. To get close to xJ.Lk+1 

the algorithm is not taking Newton steps. Instead is doing exact line search 

along the Newton directions until it gets close enough to xJ.Lk+1' As usual, the 

distance between x and xJ.Lk+1 is represented by the quantity llnJ.Lk+1 (x) llx· 

If llnJ.Lk+1 (x) llx < ~ the algorithm considers that x is close enough to x'l7k+l. 

The value ~ is the biggest value that allows one to apply Theorem 2.9. 

Input: E > 0 (the desired accuracy) 

f-lt > 0 and x 1 such that II nJ.L1 ( x 1) II < ~ (a point close enough 

to the central path) 

r > 1 (the factor to be used for increasing f-lk) 
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Repeat: For k ~ 1: 

Let J..lk+l := rJ..Lk Denote with Y1 := Xk 

i := 1 

Repeat: compute ti ~ 0 such that f 1-'k+l (Yi + tin,_,k+l (yi)) := 

min/ 1-'k+l (Yi + tn,_,k+l (yi)) t;::::o 

Yi+l := Yi + tin,_,k+l (Yi) 

i := i + 1 

Xk+l := Yi 

k := k + 1 

Until: J..lk+l ~ 4'!.f 

The fact that at each iteration lln,_,k (xk) llxk ~ i implies, from Theorem 

2.9, llxk- x,_,k llxk < £ and further, from the definition of self-concordancy 

(Definition 2.1), lixk- z(J..Lk)liz(p.k) ~ 3. Therefore, we can get a bound on 

how far Xk is from the optimal value (Theorem 2.14): 

From here we get the stopping criteria, i.e. J..lk ~ 4'!.f. 

The analysis of the complexity for the algorithm depends on the number 

of line searches needed to get from Xk having the property lln,_,k (xk) II < t 
to Xk+l, the point such that lln,_,k+l (xk+I) II < ~· Obviously, it depends on 

r, the factor by which J..lk is increased. We skip the details, but mention the 

main ideas. First, one can find an upper bound for the difference j,_,k+l (xk)­

f 1-'k+l ( x 1-'k+l) in terms of r. Then, one can show that there exists a constant 

T > 0, the same for all line searches, such that every line search decreases 

the value of j,_,k+l with at least T, i.e. j,_,k+l (yi) - j,_,k+l (Yi+l) ~ T for any i. 
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If follows that it takes O(rv1 logr( .!:.L )) line searches for the algorithm 
Ef.Ll 

to finish. Although the theoretical complexity of the long step algorithm 

is worse by a factor of ..Ji7j then the one of the short-step method, people 

agree that it is somehow more efficient in practice. 

A Predictor-Corrector Algorithm. The idea of the predictor-correct 

algorithm is to follow the central path by using a direction that approximates 

a tangent to the central path. After moving in this direction a fixed fraction 

of the distance to the boundary of the feasible region, the algorithm returns 

to the central path and repeats. 

Remember that the points on the central path (xf.L)f.L>O are given by 

g(xf.L) + CJ.t = 0. Differentiation with respect to J.t gives H(xf.L)x~ = -c. 

Therefore x~ = - H ( x f.L) - 1 c and so the tangent to the central path in x f.L is 

the vector -H(xf.L)-1c. If the current iterate xis not on the central path we 

call the vector ex := -H(x)-1c the predictor direction in x. Intuitively, if x 

is close enough to a point xf.L on the central path, the vector -H(x)-1c will 

be a good approximation for -H(xf.L)-1c. As a side remark, the predictor 

direction in x is also the direction of steepest descent for the functional ( c, ·) 

computed in x with respect to the norm induced by x. 

If x is a feasible point, presumably not close to the central path, the 

corrector steps are iterations that move towards x f.L the unique point on the 

central path such that (c, x) = (c, xf.L). Denote with L(x) = {y : (c, y) = 

(c, x) }. The corrector steps minimize the restriction off to the affine space 

L(x). Each step is doing an exact line search along the Newton direction, 

denoted with niL(x), of fiL(x)· We stop the correction steps at the point 

x* that satisfies llniL(x) (x*) llx.. ~ l4 • The choice of 1~ comes from the 
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implication llniL{x) (x*) llx* :::; 1
1
4 ==} I ln(x*) I lx* :::; ~ that makes the analysis 

similar with the analysis for the short-step barrier method. 

Input: J-t > 0 (desired accuracy; J-t is rather big as convergence is 

achieved when J-t ---t oo) 

x1 such that niL(x1 )(xt) :::; 1~ (a point close enough to the central 

path) 

u E (0, 1) (the predictor step length, i.e., the fraction from the 

distance to the boundary) 

Start: 

Repeat: 

k := 0 

k := k + 1 

compute sk := sup{ s : s > 0, Xk - scx~r; E D}. 

take the predictor step: xf := Xk - USkCx~r; 

Y ·- xP·.; ·-1· 1.- kl II.- ! 

denote L(yt) = {y : (c, y) = (c, Yt)} 

Repeat: 

compute ti ~ 0 such that 

Yi+1 := Yi + tiniL(yl) (Yi) 

Until: II n L(yl) (Yi+ t) II :::; 1~ 

compute 1-taprox from 1-taproxc + g(xk+1) = 0; 

Until: 1-taprox > 1-t 
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2.4 Barriers in conic optimization 

We will now look at the conic convex optimization problem i.e. the primal­

dual pair introduced in Chapter 1 as (2) and (3): 

min (c, x) 

s.t. Ax = b (2) 

xEK 

and 

max (b, y) 

s.t. A*y + s = c (3) 

s E K* 

Recall that X, Yare finite dimensional spaces, K c X is a closed convex 

cone, K* c X is the dual of K, c E X, b E Y and A : X ~ Y is a linear 

operator with adjoint A* : Y ~ X. A standard assumption is that A is 

surjective and so A* is injective. Therefore y is uniquely determined by s 

from A*y + s = c. We also assume that both problems are strictly feasible. 

Assume f is a barrier on k with complexity v 1. We will state results 

showing how f is building more connections between the primal and the 

dual problem. We will be dealing with three types of barriers. From general 

to particular they are: barriers (as defined for convex sets), log-homogenous 

barriers and self-scaled barriers. Unless otherwise specified f will be a bar­

rier. 

Remark 2.2 Saying that the cone is self-scaled is the same as saying that 

there exists a self-scaled barrier on it. The formulation is emphasizing that 

the cone has enough structure to support a self-scaled barrier. 

We can now define log-homogenous barriers and present their properties. 

Before introducing self-scaled barriers we need to develop more theory. 
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Definition 2.3 A barrier f : k ---t R is called log-homogenous if for all 

x E k, t > 0 we have: 

f(tx) = f(x)- VJ ln t 

Theorem 2.15 f is log-homogenous iff for all x E K and t > 0 

g(tx) = tg(x) 

Theorem 2.16 Iff is log-homogenous then the following hold: 

1. H(tx) = frH(x) 

2. //gx(x)//x = yfvj 

3. H(x)x = -g(x) ~ -x = gx(x) 

4. (-g(x), x) = v1 ~ (H(x)x, x) = VJ 

5.(g(x), (H(x))- 1g(x)) = v1 

6. f(u) ~ f(x) + (g(x), u- x) + w(r) 

H(u) ~ (l!r)2H(x) 

where r = //u- x//x < 1 and w(r) = -r -ln(1- r) 

We will now illustrate the idea that a barrier on k generates a barrier on 

K* and show more connections between the primal and the dual problems 

that result from this. 

Definition 2.4 Define the conjugate functional off as: 

f*(s) :=- inf [(x, s) + f(x)] 
xED 

Theorem 2.17 If f is a barrier then f* is a barrier on K* and v r < 

( 4v f + 1) 2 • Moreover, if f is log-homogenous so is f* and v f = v r. 

24 



M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics 

We use the analogous notations v r for the complexity of f*, as well as 

g* for its gradient and H* for its Hessian. 

Theorem 2.18 Iff is a barrier on k then -g is a bijection between k 

and K*. On the dual side, -g* is a bijection between K* and k. Moreover, 

if x E k and s E K* are such that s = -g(x) then 

-g*(s) = x and H(x)-1 = H*(s) 

Remark 2.3 We now have a different way of looking at the properties of 

log-homogenous barriers from Theorem 2.16. H ( x) maps X to X and we 

have seen - g is a bijection between k and K*. In Theorem 2.16, Property 

3 says that x is mapped by H ( x) and - g in the same point. Property 4 says 

that the duality gap at x and its image through - g is the same for all x and 

is equal to v 1. Same for Property 5. 

As every point x E k is creating an inner product through f, every 

point s E K* is creating an inner product through J*. Because any s E K* 

is the image of some x E K through - g, we can say that any point x E K 

is creating an inner product through f*. 

Definition 2.5 The inner product created by x E K through f* is denoted 

with(·,·): and is defined as (y, z): = (y, H*(-g(x))z): 

Remark 2.4 It follows from Theorem 2.18 that (y, z): = (y, H(x)-1z): 

The barrier f defines a central path { x ,_, : J.l > 0}, called the primal 

central path, where x ,_, is the unique solution of 
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{ 

m~n J1- (c, x) + f(x) 

s.t. Ax= b 

The barrier f* defines a central path {(yJL, sp.) : J1- > 0}, called the dual 

central path, where (yJL, sJL) is the unique solution of 

{ 

max J1- (b, y)- f*(s) 
y,s 

s.t. A*y + s = c 

Remark 2.5 1. Both primal and dual central paths exist because (2) and 

( 3) are assumed to be strictly feasible. 

2. Sometimes we call dual central path the curve {sJL : J1- > 0}. We can do 

this because A* is injective and so sJL uniquely determines Yw 

We will now see that, iff is log-homogenous, when following the primal 

central path one generates the dual central path as a by-product and vice-

versa. 

The optimality conditions that give xJL are 

{ 

Jl-C + g(xp.) ..L {x: Ax= b} 

Axp. = b 

Therefore an unique y JL exists such that 

{ 

Jl-C + g(xp.) = A*yJL 

AxJL = b 

Rearranging the terms we obtain 

{ 

c- A*(tyJL) = -~g(xp.) 
AxJL = b 

26 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

Denoting sf.£ := c- A*(!Yp,) and reconsidering our notation for Yp, as 

Yp, := !YJ.£ we get 

sf.£= -tg(xp,) 

Axp,=b 

A*(yp,) + Sp, = c 

Under the assumption that f is log-homogenous, it turns out that the 

pair (yp,, sp,) is the unique solution for the problem 

{ 

~~ J]; (b, y) - f*(s) 

s. t. A *y + s = c 

because the gradient of the objective at (yp,, sp,) is orthogonal on { (y, s) : 

A*y+s=c}: 

(Jl;b, -g*(sp,)) = \Jl;AXp,, -g*(!(Jl;sp,))) = (Jl;Axp,, -j};g*(Jl;sp,)) = 

(Jl;Axp,, -J];g*( -g(xp,))) = Jl; (Axp,, Xp,) 

Theorem 2.19 Iff is log-homogenous then its gradient is mapping the 

primal central path to the dual central path: 

and conversely, the gradient of f* is mapping the dual central path to 

the primal central path: 

Remark 2.6 One can show that iff doesn't have the log-homogenuity prop­

erty the path s J.£ in the dual space obtained by s ,_, : = -! g ( x ,_,) is still approach­

ing a dual optimum when J]; -t oo i.e. (x,_,, s,_,) ,_,~ 0. 
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One can also show: 

Theorem 2.20 Iff is a log-homogenous barrier than the following hold: 

1. for any x E k, s E K*: J(x) + J*(s) ~ -vf- VJ In<~;> 

2. for any J-L > 0: f(xp,) + f*(sp,) = -vf- VJ In t· 

2.5 Predictor step in conic optimization 

Symmetry and primal-dual algorith:ms 

In Section 2.3 we have presented a predictor-corrector algorithm for the 

convex optimization problem (1). If the current point is on the central path 

the predictor direction is the tangent to the central path at that point. If 

it is off the central path the predictor direction is an approximation to the 

tangent to the central path. Let's consider the primal central path and look 

at the tangent to the primal central path. Recall that the system giving the 

primal central path is: 

sp, = -;g(xp,) 

Axp, = b 

A*(yp,) + Sp, = c 

Taking the derivative with respect to J-L we get: 

s~ = :2 g(xp,) - ~H(xp,)x~ 

Ax' =0 
JL 

A*(y~) + s~ = 0 

Using -ig(xp,) = sp, (Theorem 2.19) and also H(tx) = faH(x) (Theorem 

2.16) and denoting the tangent directions s~, x~ with flsp, and, respectively, 

~Xp, we have: 
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~sp, + H(..fJixp,)~xp, = -tsp, 

A~x~ = 0 

A*(~y~) + ~s~ = 0 

If we consider the dual central path and derive the tangent directions we 

obtain: 

~Xp, + H*(v'Jisp,)~sp, = -txp, 

A~x~ = 0 

A*(~y~) + ~s~ = 0 

Theorem 2.21 The two systems are equivalent and therefore have the same 

solution (~xp,, ~sp,, ~Yp,)· 

Proof. Apply H(...fiixp,) to the first equation in the second system. 

All we need to check is that 

We have: 

H( ...fiixp,) ( -txp,) = -tsp, {=:} H(...fiixp,) (xp,) = sp, 

{=:} iH(xp,)(xp,) = sp, {::} -ig(xp,) = sp, 

the last relation being true (Theorem 2.19). 

Now rewrite the operator H(..;Jixp,)H*(..jJisp,) as H(xp,)H*(f-tsp,)· Be­

cause f-LSp, = -g(xp,) it follows from Theorem 2.18 that H(xp,)H*(f-Lsp,) is the 

identity. Therefore H( v'Jixp,)H*( ..fJisp,)~sp, = ~sp, is true. • 

In Section 2.4 we saw that in conic programing with log-homogenous 

barriers when we set up the primal central path we obtain the dual central 

path and vice-versa. This result is analogous. It says that when we set up 
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the equations for the tangent to the primal central path we also obtain the 

tangent to the dual central path and vice-versa. Both are representative for 

what is referred in the literature as symmetry. 

If the pair ( x, s) is not on the central path, the first idea would be to 

keep the same systems to compute the directions. The system that is set-up 

from the primal perspective is 

D.s + H(yJix)b.x = -ts 

AD.x = 0 

A*(b.y) + b.s = 0 

while from the dual perspective we obtain 

!:l.x + H*(yJis)!::is = -kx 

Ab.x = 0 

A*(b.y) + b.s = 0 

(7) 

(8) 

For x and s off the central path, the J-t used above has no meaning. One 

way to deal with this is to replace J-t with a quantity that depends only on 

x and s. On the central path we have J-t = ...!:L..< v ) • Therefore we could replace x,s 

J-t with ...!:L..( v ) . x,s 

A more insightful remark is that when we are off the central path systems 

(7) and (8) don't give the same solutions. In other words, the symmetry is 

lost. When we are on the central path the symmetry follows from two facts: 
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H(vfjix)x =sand H*(vfjis)-1 = H(vfjix) (see the proof of Theorem 2.21). 

To keep the symmetry one should replace (7) with: 

D.s + H(w)D.x = -s 

AD.x = 0 where w is such that H(w)x = s (9) 

A*(D.y) + D.s = 0 

and (8) with 

D.x + H*(w*)D.s = -x 

AD.x = 0 where w* is such that H*(w*)s = x (10) 

A*(D.y) + D.s = 0 

Theorem 2.22 If H*(w*) = H(w)-1 then system (9} and system {10} are 

equivalent. 

Corollary 2. 23 1. Consider system ( 9) and construct ( 1 0) with w* = 

-g(w). Then (9} and {10} are equivalent. 

2. Consider system {10} and construct (9}} with w = -g*(w*). Then (9} 

and ( 1 0) are equivalent. 

Remark 2. 7 1. When· we are on the central path, system ( 9) becomes 
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~s + H(..JP,x)~x = -s 

A~x=O 

A*(~y) + ~s = 0 

(11) 

which, strictly speaking, is not (7). The solution of (11) is the scaled 

solution of (9) by a factor of J-L. Analogously, (10) becomes 

~x + H*(..JP,s)~s = -x 

A~x=O 

A*(~y) + ~s = 0 

(12) 

and the solution of (10) is the scaled solution of (12) by a factor of J-L. 

2. Intuitively, the solution of (9) is an approximation to a tangent 

direction because when we are on the central path w becomes v'Jix. So 

the closest we are to the central path the more w approaches v'{ix. The 

same thing is valid for ( 10). Predictor-correct algorithms work with two 

neighborhoods of the central path. Roughly speaking, we need the pair to 

be in a smaller neighborhood in order to obtain reasonable approximation 

to a tangent direction. For the correction process we can afford to be in a 

larger neighborhood and still do it successfully. 

3. The choice to find an approximation to the tangent by preserving 

the symmetry, makes this a primal-dual algorithm. It follows the primal 

and the dual central path at the ·same time and the directions to move are 

decided by considering both the primal and dual problem. 
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Definition 2.6 The primal-dual central path is the curve {(xp,, sp,) : J.t > 0}. 

When setting up a system like (9) or (10) we must have w or w*. 

Definition 2. 7 For fixed x E k and s E K* a point w such that H( w )x = s 

is called a scaling point for the ordered pair ( x, s). 

One can prove that scaling points exist for any pair in the most general 

case: 

Theorem 2.24 Iff is a barrier, there exists at least one scaling point for 

any pair (x,s) E k x K*. 

How to determine scaling points is a serious issue. In what follows we 

briefly present self-scaled barriers. Several properties make them attractive, 

but in this context the uniqueness of scaling points for a pair and the ex­

plicit formula for it are important. After self-scaled barriers, we present 

an algorithm by Nesterov [ ] working with a log-homogenous barrier and 

where the correction process is not only finding a primal-dual pair in the 

small neighborhood but also a scaling point. 

Definition 2.8 A log-homogenous barrier f on K is called self-scaled if the 

follo'l.lling hold: 

1. For any x E k we have K; = K where K; is the dual of K w.r.t. (·, ·)x, 

i.e., K; := {z: (z, y)x ~ 0 Vy E K} 

2. for any x E K there exists a constant Cx such that J; = f + Cx where 

f; is the conjugate off with respect to (·, ·)x, (see also Definition 2.4) 

f;(s) = -in~ (y, s)x + f(y) 
yEK 
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Remark 2.8 1. The gradient gx and Hessian Hx for f are exactly the 

gradient and Hessian for J;. 

2. One can show that Ox needs to be Ox= -Vf- 2f(x). 

We now state several other results concerning self-scaled barriers. 

Theorem 2.25 Iff is a self-scaled barrier the following hold: 

1. H ( x) is a bijection between K and K for any x E k. 

2. for any ordered pair x, s E K there exists an unique scaling point wE k, 

i.e., s.t. H(w)x = s. 

3. if w is the scaling point for the pair x, s then -g(w) is the scaling point 

for s, x, i.e., H( -g(w))s = x. 

4- if x, w E k then f(Hz(w)x) = f(x) + 2(f(w)- f(z)) and g(Hz(w)) = 

Hz(w)-1g(x). 

Guler [ ] was the one to notice that self-scaled cones first introduced 

by Nesterov and Todd (see [ ] and []) are the same as symmetric cones. 

Symmetric cones are Cartesian products of five basic symmetric cones: the 

cone of positive definite matrices, the second-order cone, the cone of posi­

tive definite Hermitian matrices, the cone of positive semidefinite Hermitian 

quaternion matrices and a 27 -dimensional exceptional cone. In Section 4, 

we give the explicit formula for the scaling point for all self-scaled cones 

that we present. 
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2.6 A primal-dual predictor-corrector algorithm 

for nonsymmetric cones 

In this part we present a primal-dual predictor-corrector algorithm for log­

homogenous barriers from Nesterov [ ]. We start with defining a functional 

that measures how far a pair ( x, s) E K x K* is from the central path. 

We define the following functional to measure how far away is the pair 

(x, s) from the primal-dual central path { (x11 , s11 ) : f-l > 0}: 

n(x,s) :=f(x)+f*(s)+v!ln(~~) +vf 

Theorem 2.20 says that n(x, s) 2:: 0 for any pair (x, s) and is zero only 

for pairs on the primal-dual central path. 

Remark 2. 9 Results showing neccesary and sufficient conditions for a pair 

( x, s) to be on the primal-dual central path create tools to measure the dis­

tance between a pair and the path. The distance functional n introduced 

above resulted from Theorem 2.20. For self-scaled barriers, we know that 

for any two points (x, s) there exists a unique w such that H(w)x = s. On 

the other hand, for any given f-l > 0 we have H( ..jjix11 )x11 = sw A measure 

of the distance of a pair (x, s) from the point (x11 , s11 ) would be the quantity 

llw- ..jjix11 llw· The latest measure is called "local" because it measures the 

distance to a point on the path. n is called "global" because it captures how 

far away is the point from the path. 

Another quantity associated with a pair ( x, s) E k x K* is denoted with 

f-l(x, s) and is called the penalty value. For a given pair (x, s) there exists 

an unique pair (x11 , s11 ) on the primal-dual central path having the same 
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duality gap. We want J.L(x, s) to be equal to J.L· Because J.L = --..!:.1_< v ) we 
Xp.,Bp. 

define J.L(x, s) = (;~). 

For barriers that are not self-scaled the existence of a scaling point for a 

pair (x, s) E k x K* is stated in Theorem 2.24. However how to determine a 

scaling point is not clear. One main ingredient in Nesterov [ ] refers exactly 

to this issue. It gives a new interpretation to Newton's method applied to 

the problem 

{ 

mJnf~t(x) := J.L (c, x) + f(x) 

s.t. Ax= b 

Fix J.L > 0 and u E k. The Newton step ~u in u is the solution of 

J.LC + g(u) + H(u)~u = A*y, A~u = 0 

Rearranging and using -g(u) = H(u)u (Theorem 2.16) we get 

c- tA*y = tH(u)(u- ~u), A~u = 0 

Denoting x(J.L, u) := u- ~u and s(J.L, u) := c- tA*y and using fjH(x) = 

H(tx) (Theorem 2.16) the above equality says x(J.L, u) = H(...fou)s(J.L, u). 

In other words, Newton's method gave a pair (x(J.L, u), s(J.L, u)) and a 

scaling point ...fou for it. 

In Section 2.4 we have often seen that the size of the Newton step is 

an indicator of how far away we are from the central path. Intuitively, the 

closest u is to the minimizer x IL the better are the properties of the pair 

(x(J.L, u), s(J.L, u)). All the results in the theorem bellow are already proved 

when u = x~t: 
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Theorem 2.26 Assume ll~ullu ~ f3 < 1. Then the pair (x(J-L,u), s(J-L,u)) 

is strictly feasible and the following relations hold: 

1. s(J-L, u) = H(VJiu)x(J-l, u) 

2. llwll!cJ.L,u) ::; (1!~)2 llwll~u' llwll~(p,u) ::; c1!~)2 (llwll~u? for any wE k 
3. n(x(J-L, u), s(J-L, u)) ::; 2(-f3 -ln(l- f3)) + f32 

4. II-H( y'jLu)g*(s(J-L, u)) - ( -g(x(J-l, u))) ll~u ::; ;~~yji 
_..:Y!_ ~ 

5. J-Le ..;vJ::; (
1 

:Jr:)2 ::; J-L(X(J-L,u),s(J-L,U))::; (
1
_i:)2 ::; J-Le..;vJ-

+VVJ n 

Remark 2.10 1. Relation 1 is just repeating the fact that .JJiu is a scaling 

point for the pair (x(J-l, u), s(J-l, u)). 

2. Relation 2 is about the difference between measuring with the 

norm induced by x(J-l, u) or by y'iiu and, respectively, the norm induced by 

s(J-L, u) or by yjiu. 

3. Relation 3 is saying that the point is well centered. 

4. We need an upper bound for the quantity in Relation 4 in order 

to upper bound the growth of the proximity measure along the predictor 

step that will be defined with the use of y'Jiu, x(J-l, u) and s(J-l, u). In the 

case of self-scaled barriers, any strictly feasible pair ( x, s) has an unique 

scaling point w which is also the scaling point for (-g*(s), -g(x)) the pair 

obtained through the barriers. See Figure 1. 

For log-homogenous barriers, although H( .JTiu) scales x(J-l, u) in s(J-l, u), 

it doesn't scale -g*(s(J-L, u)) into -g(x(J.L, u)). The upper bound in relation 

4 controls exactly this difference. See Figure 2. 

Also recall that if u is on the central path it follows from Theorem 

2.16 that y'iiu is a scaling point for both (-g*(s(J-L,u)),-g(x(J-L,u))) and 
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-g*(s) ~ / / ~, .. , \ ~ -g(x) 
• • 

Figure 1: The case of symmetric cones. 

H(w) 

-g"(s) ~.....:!.__. -g(x) 
• 

Figure 2: The case of nonsyrnmetric cones. 
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(x(J..L, u), s(J..L, u)). Intuitively, the closer a pair is to the central path the 

better the scaling behaves. 

5. Relation 5 control the penalty value for the pair (x(J..L, u), s(J..L, u)). 

We assume u E k and J..L > 0 satisfy the assumption of the previous 

theorem. To simplify notations, denote with w := y!Jiu, x := x(J..L, u) and 

y := y(J..L, u). We define the predictor direction (~x, ~s) in the symmetric 

way (9): 

One can prove 

~s + H(w)~x = s 

A~x=O 

A*(~y) + ~s = 0 

Theorem 2.27 The following relations hold: 

1. (~x, s) + (x, ~s) = (x, s) 

2. (c,x- ~x)- (b,y- ~y) = 0 

3. (ll~xllw) 2 + (ll~sll~) 2 = (x, s) 

4. lvJ + (~x,g(x)) + (g*(s), ~s)l ~ ~ (x, s) 112 ilg(x)- H(w)g*(s)ll~ 
~2 

~ 1-~ ((3 + ..jili). 

We now look at how is n growing when we move along the direction 

(~x, ~s) that we have just defined. 

Denote w(t) = -t -ln(l- t) and n E (0, ~!~). 

n(x ± Q~X, S ± Q~S)- n(x, s) = f(x ± Q~X) + f*(s ± Q~S) 

+v f ln (x±o:A~~±o:As} - f (X) - f* ( s) - ll f ln <~;> 

Theor~ 2
·
27 J(x ± n~x) + f*(s ± n~s)- f(x)- f*(s) + liJ ln(l ± n) 
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Theorem 2.16 (6) 
:::; ±a[ (.6.x, g(x)) + (g*(s), .6.s)] + Vf ln(l ±a)+ 

+w(a ll.6.xllaJ + w(a ll.6.slls)· 
Theorem 2.27 (4) 2 

:::; a/_~((3 + FJ) +w(a ll.6.xllx) + w(a ll.6.sjjJ. 
One can show that t t------t w ( 0) is convex and so 

w(a ll.6.xllx) + w(a ll.6.slls) = w( V a2 jj.6.xll~) + w( V a2 jj.6.sll~) 
:::; w( J a 2 jj.6.xll! + a 2 ll.6.sll:) = w(a ll.6.xll! + ll.6.sll:). 
From Theorem 2.16 (2) and Theorem 2.27 (3) follows 

Vll.6.xll~ + ll.6.sll::::; c1:])2 Vll.6.xll! + ll.6.sll! 
< (JLx,s)l/2 < ~+.jiTj 
- (1-~) - (1-~) 

It follows: 

Theorem 2.28 Iff is a log-homogenous barrier then: 

n(x ± a.6.x, s ± a.6.s)- n(x, s):::; (32 (a~;~)+ w (a~;~) 

for all a E (0, ~l-:Jh,.). Iff is a self-scaled barrier then 

!l(x ± a.6.x, s ± a.6.s)- !l(x, s):::; w ( a~i.$7) for all a E ( 0, ~l~). 

Remark 2.11 Note that because a E ( 0, ~l"Jht) we know that x ± a.6.x, 

s ± a.6.s are feasible. 

Using this result, one can prove: 

Theorem 2.29 Fix (3, 'Y E (0, 1). If a > 0 is s.t. !l(x- a.6.x, s- a.6.s)­

n(x, s) = (32'"'(+w('Y) (see Figure 3b. for the behavior of the right-hand side} 

then 

1. the penalty level for (x- a.6.x, s- a.6.s) is bounded by 
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J-L(x - a~x 8 - 0!~8) > J-L exp (""_1.=.§_ - .:M....) ' - '~+~ ~ 

see Figure 4; note how the increase in f3 is decreasing the lower bound 

on the new J-L. 

2. the centrality of (x- a~x, 8- a~8) is bounded by 

see Figure 3a.; note how the right-hand side grows when f3 or"'( approach 

1 culminating with the case when both approach 1. 

To summarize. Fix /3, "Y E (0, 1). If we have J-L > 0 and u E K close 

enough to xJL, i.e., with the size of the Newton step less then /3, then we 

can construct a pair of points (x(J-L, u), 8(J-L, u)) and (symmetric) directions 

(~x(J-L, u), Ll8(J-L, u)) such that if we compute a> 0 such that 

f!(x(J-L, u) -ailx(J-L, u), 8(J-L.u) -a~8(J-L, u)) = f!(x(J-L, u), 8(J-L, u)) +/32"'(+w( "Y) 

then the penalty level and the centrality for the pair (x- a~x, 8- 0!~8) 

are bounded by 

( 
1- f3 2/3 ) J-L(x- a~x, 8- a~8) ~ J-Lexp "Y f3 - --
+ yfVj yfVj 

and, respectively, 

f!(x - a~x, 8- 0!~8) :::; 2w(f3) + /32 (1 + "Y) + w( "Y) 
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beta 

Figure 3: a.2w(fi) + ,82 (1 +I')+ w(l') 
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.. ···:········· 
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Figure 4: exp ('Y_ld!_- ..:Y!....) 
{3 + ..jiTj ..jiTj 

In order to repeat the previous procedure, having the point (x-n~x, s­

n~s) we need to be able to compute a new point u E k close enough to 

XJL(x-a.6.x,s-a.6.s)' i.e., with the size of the Newton step less then /3. The 

proximity measure O(x, s) provides information about how far away is x 

from the minimizer XJL(x,s) in terms of level curves of fJL(x,s): 

Theorem 2.30 Given (x, s) E k x K* the following relation is true: 

But for a self-concordant functional one can guarantee a certain progress 

in the objective at every Newton step: 

Theorem 2.31 Iff is self-concordant then for any u E k a Newton step 

for the problem 

43 



M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics 

{ 

i~f f(x) 

s.t. Ax= b 

decreases the objective by at least w*(ll~ullu) where w*(t) = t-ln(l+t) 

and ~u is the Newton step in u. 

If we start in x- a~x and apply Newton's method to /p(x-a.D.x,s-a.D.s) 

as long as the size of the Newton step is bigger then f3 we can decrease the 

value of fp(x-o.D.x,s-a.D.s) by at least w* (/3) at each iteration. 

Because O(x- a~x, s- a~s) ::; 2w(f3) + /32(1 + "Y) + w("Y) we need at 

most 2wCB)+.B
2
(l+,)+w('y) iterations to obtain a point u E K close enough to 

w.(.B) 

Xp(x-o.D.x,s-a.D.s) • 

We have, therefore, described the following algorithm: 

Input: /3, 'Y E (0, 1) (the parameter controlling the small neighborhood 

of the central path and, respectively, the large neighborhood) 

t > 0 (the desired accuracy i.e. (x, s) ::; t) 

J.L > 0 and u E k such that ll~ullu ::; f3 where ~u is the Newton 

step applied in u for fJ.t: 

Proceed: 

k :=0 

{ 

J-LC + g(u) + H(u)~u = A*y 

A~u=O 

J-ll := J-L 

Repeat: k = k + 1. 

Compute y and ~u the solutions of 
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{ 

f-LkC + g( uk) + H( uk)~u = A*y 

A~u=O 

Define x = uk - ~u, s := c- .l..A*y, w := !Jikuk 
1-£k v r"k 

Compute ~x and ~s from 

D.s + H(w)D.x = s 

AD.x = 0 

A* (D.y) + D.s = 0 
Compute a> 0 be such that 

n(x- afl.x, s- afl.s) = n(x, s) + {3 2
'"'( + w('Y) 

Define x* := x- afl.x and s* := s- afl.s 

Pk+l := J-L(x*' s*); uk+l := x* 

Repeat 

Compute y and ~u the solutions of 

{ 

f-Lk+lc + g(uk+t) + H(uk+l)D.u = A*y 

A~u=O 

Uk+l := Uk+l + l+IID.~IIuk+l ~U 
Until IID.ulluk+l :::; {3 

Until: ...!!..L < t 
1-£k+1 
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3 Semidefinite optimization in matrix vari-

able 

The natural formulation of problems in control theory is in matrix variable. 

One way to solve such problems is to vectorize the matrix variable, i.e., to 

write the matrix as a vector of appropriate size by stacking the lines or the 

columns. When vectorizing, one also needs to change the linear operators 

defining the constraints. We will illustrate these ideas on the following 

example: 

sup -tr(P) 

P~O 

pT'PF-P-jl 

(13) 

wDhere Ppand [:
1 
ar:

2
2] x 2dmFatrice[~1~t~1:leal elements, P symmetric. 

enote = an = . 
Y2 Ya !21 !22 

It follows that 

pTpp [ Ill fu!l2] [ 2hfu fuh2 + hd12] 
= Y1 +Y2 

!12!11 ff2 !21!12 + fuf22 !12!11 + !21!22 

[ !?1 !22!21] 
+Ya 

!21!22 fi2 

Therefore the equivalent problem is 
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fn/22 + /21!12- 1] + 
/12/11 + /21/22 

which is the same as 

(14) 

( [1 0] [J'ft - 1 fu/12] ) where A1 := diag , 
2 0 0 !12!11 !12 

( [0 1] [ 2/21/n fu/22 + !21/12 - 1] ) A2 := diag , , 
1 0 · !21!12 + fn/22 - 1 /12/u + !21!22 

A3 := diag ( [O 0] , [ /?1 !22!2~ - 1] ) 
1 0 /21!22 !22 

In the general case when P and F are n x n matrices the equivalent 

problem is 
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{ 

sup (c, y) 

"''?(n+l}/2 y· A. ~ O 
L...n=l t t-

(15) 

where c is a vector in lR n(n2+1) and Ai's, i = 1, n(ntl}' are 2n X 2n block­

diagonal matrices. The evaluation of the linear constraint in (15) requires 

n{n
2
+l} (2n2) = O(n4) scalar-scalar multiplications and n(n

2
+l) - 1 matrix ad-

ditions. In total, 0 ( n 4 ) operations. The evaluation of the linear operator in 

(13) requires three matrix-matrix multiplications and one matrix additions. 

In total, O(n3 ) operations. 

In implementations, the evaluation of the linear operator in matrix vari­

able is cheaper than the evaluation of the linear operator in vectorized form. 

Not also in terms of number of operations but also because matrix-matrix 

multiplications are preferred to scalar-scalar multiplications. 

Recall the convex cone optimization problem (2) and (3), from Chapter 1. 

Consider X = Skxk with the inner product (x, y) := tr(xy) for x, y E Skxk. 

Consider Y = Rmxn with inner product (x,y) = tr(xTy) for x, y E Rmxn. 

Let K = S!xk,the cone of semidefinite positive matrices. One has K* = 

s!xk. Let c E skxk' b E Rmxn and A : skxk ---? ]RmXn be a linear operator 

with adjoint A* : ]RmXn ---? skxk. Then the problems 

inf (c, x) 
X 

s.t. Ax= b (16) 
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sup (b, y) 
yEJR.mXn,sESixk 

s.t. A*y + s = c 

s E S!xk 

(17) 

are referred as semidefinite optimization problems in matrix variable in 

the primal and, respectively, dual form. In applications, the usual input is 

a problem in the dual form. However, primal-dual algorithms require both 

A* and A. In what follows we present results that describe the set of linear 

operators A* : ]RmXn ~ skxk and A : skxk ~ Rmxn and show how to 

compute A if A* is given and vice-versa. 

Definition 3.1 (Linear pencil in matrix variable). Assume p E N, Xi E 

JRkxm, Yi E Rnx\ i = 1, p. We call a linear pencil in matrix variable the 

linear operator P : Rmxn ~ skxk 

Definition 3.2 (Linear function in matrix variable). Assume p EN, Xi E 

Rmxn, Yi E Skxk, i = 1, p. We call a linear function in matrix variable the 

linear operator F : Rmxn ~ skxk 

Theorem 3.1 Assume F : Rmxn ~ Skxk, F(y) = (xt, y) Y1 is a linear 

function in matrix variable, where Xl E Rmxn' Yl E skxk. Then the adjoint 

F* : skxk ~ Rmxn is given by 
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Proof. 

(:F(y),x) = tr(:F(y)x) = tr((xt,y)ylx) = (xt,y) (ybx) 

(y, :F*(x)) = tr(yT:F*(x)) = tr(yT (y1, x) x1)) = (yt, x) (y, x1) 

Therefore, for any y E skxk any X E ]Rmxn, we have showed 

(:F(y), x) = (y, :F*(x)) 

• 
Corollary 3.2 Assume :F : ]RmXn -? skxk' :F(y) = :Ef=l (xi, y) Yi is a 

linear function in matrix variable, where p E N, Xi E ]RmXn' Yi E skxk. 

Then the adjoint :F* : skxk -? ]RmXn is given by 

Theorem 3.3 Assume p : ]RmXn -? skxk' P(y) = XlYYl + yf yT xf is a 

linear pencil in matrix variable, where x 1 E JRkxm, y1 E lRnxk. Then the 

adjoint P* : skxk-? ]RmXn is given by 

P*(x) = 2xf xyf 

Proof. 

(P(y), x) = (x1YY1 + (x1YY1)T, x) = 2tr(X1YY1X) 

(y, P*(x)) = (y,2xfxyf) = 2tr((xfxyf)Ty) = 2tr(y1xx1y) = 2tr(x1YY1X) 

Therefore, for any y E skxk any X E ]Rmxn, we have showed 

(P(y),x) = (y, P*(x)) 
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• 
Corollary 3.4 Assume p : ~mxn ----+ skx k' p (y) = :Ef=l XiYYi + Yt yT xr 

is a linear pencil in matrix variable, where p E N, Xi E ~kxm, Yi E ~nxk. 

Then the adjoint P* : skxk ----+ ~mxn is given by 

Theorem 3.5 If A* : ~mxn ----+ Skxk is a linear operator then there exists a 

linear pencil in matrix variable P A* and a linear function in matrix variable 

FA* such that 
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4 Barriers for some well-structured sets 

4.1 The non-negative orthant: logarithmic barrier 

The logarithmic barrier on JR++, the interior of JR+., is defined by 

Theorem 4" 1 If f is the logarithmic barrier on the non-negative orthant 

then 

1. f is a self-scaled barrier 

2. v1 = n 

3. g(x) = ( -...!.., ... , _..l_), Vx E 1Rn++ 
Xl Xn 

4. H ( x) is the n x n matrix having the vector ( ~, ... , -::\-) on the diagonal 
xl Xn 

and zero otherwise 

5. H-1(x) is the nxn matrix having the vector (x~, ... , x!) on the diagonal 

and zero otherwise 

6. The unique scaling point of a pair (x, s) is w = (J¥;, ... , ~). 
Equivalent, H(w) = diag(:~, ... , ;:). 

4o2 The second-order cone~ logarithmic barrier 

The logarithmic barrier on the interior of the second order cone 

is defined by 
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f(x) = -ln(x~- "£~/ xr) 

Theorem 4.2 Iff is the logarithmic barrier on the second order cone then 

1. f is a self-scaled barrier 

2. VJ = 2 

3. g(x) = d~xx 

4. H(x) = detfx)2XXT + de;(x)diag(1, 1, ... , 1, -1), 

since H(x) = Vg(x) = 2\7 (de~x) xT + d~x V(x) = 

= (de;x)2XXT + de~xdiag(1, 1, ... , -1) 

For any vector y E Rn, from Sherman-Morisson formula we get 

( 
T A)-1 - A -1 - A-lyyT A-1 

yy + - 1+yT A-ly • 

Letting y = de~xx and A= d?txdiag(1, 1, ... , -1) we have 

A - 1 = de~x diag(1, 1, ... , -1) 

and also 

A-1y =X 

Therefore 

5. H-1(x) = de~xdiag(1, 1, ... , -1)-
1
+Y-r 

detxx x 

= de~xdiag(1, 1, ... , -1) + XXT 
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4.3 The cone of semidefinite positive matrices: 

logarithmic barrier 

The logarithmic barrier on S~~n the set of positive definite matrices and the 

interior of s~xn is defined by 

f(x) = -lndet(x), X E S~~n 

Theorem 4.3 Iff is the logarithmic barrier on S~xn then 

1. f is a self-scaled barrier 

2. v1 =n 

3 ( ) -1 snxn . g X = -X , X E ++ 

6. Although there is an explicit formula for computing the scaling point 

w, it is not efficient in practice. See [ ] for one more efficient proce­

dure. 

4.4 The p-cone 

Consider the following set Kp = {(r, z) E 1R x JRn T ~ llzllp} where 

llziiP d;f (E~=l lziiP/IP 
Kp is a closed convex cone referred in the literature as the p-cone. 

In what follows, we present a barrier with complexity 4n on Kp due to 

Nesterov. We only present the end results; for all details see [ ]. 
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Let Qa d~ {(x, y, z) E IR! X IR: xa · yl-a ~ lzl} with n E [0, 1]. One can 

show that Qa is a closed, convex and self-dual cone. 

The following result 

Theorem 4.4 The point ( 7, x) is in Kp if and only if there exists x E IR~ 

satisfying the conditions: 

Remark 4.1 An equivalent statement is as follows. The point (7, x) E Kp 

if and only if there exist x, y E IRn such that 

(xi, Yi, zi) E Qlfp 

Yi = 7 

n 

Lxi = 7 

i=l 

allows us to change a problem whose variable ( 7, z) E JRn+l is constrained 

to belong to Kp into a problem whose variable (7, z, x, y) E JRn+l x IRn x IRn 

belong to the closed convex cone 

and also satisfy two more linear constraints 

Yi- 7 = 0 

E~=l Xi - 7 = 0. 
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Having a barrier f 1;p on Q1;p, the functional defined on Q by f(x, y, z) = 

L:~=l ft;p(xi, Yi, zi) is a barrier on Q. The primal-dual interior point algo­

rithm that was described can only be used if we can compute the values 

of f, its gradient, its Hessian and the values of f*, the conjugate of f (see 

Definition 2.4). 

In what follows, we present a barrier on Q a as presented in [ ] . We 

anticipate by saying that the complexity of the barrier on Qa is 4 which 

implies that the complexity of f is 4n. 

Theorem 4.5 For any a; E [0, 1] the function fa(x, y, z) = -ln(x2ay2(l-a)_ 

z2) - ln x- ln y is a self-concordant barrier for the closed convex self-dual 

cone Qa = {(x, y, z) E JR! x 1R: xa · yl-a ~ lzl} 

Unfortunately, the conjugate functional off a cannot be written in closed 

form. One can compute the values of J~, g~, H~ using the following result: 

Theorem 4.6 Let J~(s) = -min[(s, x) + !a(x)] be the conjugate functional 
X 

of fa· Denote with X 8 = (xi, x2, xj) the unique solution ofmin[(s, x)+ !a(x)]. 
X 

Then 

1. g~(s) = -X
8 

3. StXf = 1 + 2a:- o:sax3 and s2x~ = 3- 2a:- (1- o:)sax3 

4. f~(s) =- ~in(-Jn ( ( 1+2<>;;<>•szs f" (1+2(1-<>):;:,(1--a)sszs r(1-o}- X~)-

-ln 1+2et-et8axa _ 1n 1+2(1-a)-(1-a)83X3] _ 4 
81 82 
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Note that the function to be minimized in 4. can be written as 

1 (( a) 2a(1 )2a( 1-a)2(1-a)( 1 )2{1-a) 2) 
- ll 83 

81 
a + 2 - X3 83 s;- 1_a + 2 - X3 - X3 -

-ln83~ (l + 2- x3) -ln83 1-a (-1
- + 2- x3). 

81 a 82 1-a 
Denoting q := 1831 (~)a ( 1~a) 

1
-a E [0, 1], after removing the constants, 

we are interested in the following problem: 

The objective here is a self-concordant functional with complexity 4. 

Denoting r = ~, Nesterov shows: 

Theorem 4. 7 The solution of ( 18) is in [ -4r, 0]. Moreover, after applying 

at most seven times the bisection method to f' with the starting interval 

being [ -4r, 0], any point in the new interval used as a starting point for 

Newton method is guarantee to provide quadratic convergence. 
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Part II 

The design of YAS 

5 Overview 

In this chapter we want to 

• familiarize the user with the design of the solver and describe the 

advantages resulting from this design 

• make use of a terminology that anticipates the names and the purposes 

of the classes and routines to be described later. We use bold font to 

signal such terms. 

The routines and classes of YAS are grouped in two layers: 

• the Linear Algebra (LA) layer 

• the Interior Point Methods (IPM) layer 

5.1 LA Layer 

This layer's end goal is to provide the user classes that substitute matrices 

and allow linear algebra operations. They will be used in the implementation 

of the IPM layer to operate with and store matrices. 

These classes' design allows to: 

• efficiently store a matrix by splitting it into blocks of different types 

(such as dense, sparse, symmetric, upper-diagonal, lower-diagonal, 

sparse symmetric etc) 
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• efficiently add/multiply such matrices of blocks by exploiting the 

type of the consisting blocks (in particular taking advantage of Sparse 

BLAS routines) 

• factorize a matrix of blocks (LU, QR or Cholesky factorization) with 

algorithms that use the factorization of the building blocks 

• efficiently add/multiply, invert, factorize or solve linear systems as­

sociated with a block by exploiting the block's type (such as using 

ScaLAPACK and Sparse BLAS routines for sparse blocks) 

• invert or factorize update matrices without ignoring the available 

information (use Sherman-Morrison like formulas) 

• use different data precision to store the elements of a block (such as 

double or float) 

The above mentioned linear algebra operations on matrices of blocks 

or just on blocks make use of certain low-level routines (such as multi­

plication of two dense blocks). The LA Layer interfaces these routines. For 

example, Y AS _gemm is a function that multiplies two dense blocks and 

it is the only function used for this purpose in the rest of the code. The 

user can choose to modify its implementation without worrying about the 

rest of the code. In particular, one can use linear algebra packages specially 

designed for a certain computing platform (such as the for 

Intel processors, or the for AMD processors). For most low­

level routines, current implementation allows the switch between MKL 

andACML. 
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The LA Layer consists of 

• the low-level routines, further grouped into: 

- BLAS routines (matrix-matrix multiplications and additions for 

different types of matrices) 

- LAPACK routines (used for inverting, factorizing, solving linear 

systems with different types of matrices) 

• the Y AS_ K _block class (allows the storage of one or more blocks 

of the same type and dimension and provides methods to do linear 

algebra operations) 

• the Y AS_ f{ _ mb class (allows the storage of one or more matrices of 

blocks of the same type and dimension and provides methods to do 

linear algebra operations) 

We conclude this introduction of the LA Layer by remarking that the 

classes Y AS_ K _block and Y AS_ K _ mb have the same interface (i.e. the 

same methods). Because of this, any code that works with Y AS_ K _block 

objects also works with Y AS_ K _ mb objects and vice-versa, in the same 

way as the instruction a+ b works when the type of a and b is double as well 

as when it is float. Therefore, the user might want to start by modelling 

the data using blocks which is, of course, simpler. If the situation requires, 

i.e. the algorithm is too slow or requires too much memory, the data could 

be accommodated with matrices of blocks. 
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5.2 IPM layer 

This layer provides a framework to implement interior point algorithms. To 

get a sense of the motivation behind the design and the resulting advantages 

we briefly describe some of its classes: 

• Y AS_ k _ EV S is a class that is a container of a k-tuple of elements 

of a vector space. The class provides methods such as adding, scaling 

or computing the norm of objects of this type. 

An example, motivated by semidefinite programming, of a class de­

rived from Y AS _k_EVS is as follows. An object from this class 

stores a pair of matrices (X, Z) in a scaled spaces i.e. it stores a ma­

trix of blocks U and a pair of matrices of blocks (X, Z) such that 

X = U XUT and Z = u-I zu-r. The addition method in this de­

rived class is overloaded so that if the user is asking to add the object 

containing (U, XI, .ZI) with an object containing (U, x2, Z2) the result 

will be an object containing (U, XI+ x2, .ZI + Z2) where by XI+ x2 

and .ZI +Z2 we mean the usual addition of matrices. This vector space 

has the following property. If X := UVUT, Z := u-I vu-r, X* := 

U X*uT and Z* = u-I Z*U-T are all positive definite then there exists 

a unique u+ and a unique v+ such that X+ X* = u+v+(u+)T and 

Z+Z* = (U+)-I v+(u+)-T. In other words, if the pair (X, Z) is repre­

sented by the triplet (U, V, V) and (X*, Z*) by the triplet (U, X* ,Z*) 

then there exists u+, v+ such that the pair (X+ X*, Z + Z*) is 

represented by the triplet (U+, v+, v+). For this special situation 

the addition is implemented such that the resulting object contains 
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(U+, v+, v+) instead of the usual (U, V +X*, V + Z*). How to com­

pute u+ and v+ and what are the numerical advantages for keeping 

the variable in this form see [ ] . This technique is currently imple­

mented in SeDuMi. 

Note that this trick, motivated by numerical issues, is happening 

in backstage. The algorithm is only working with objects of type 

Y AS _k_EVS and is just asking for two such objects to be added. 

This results in very clean-looking algorithms. 

Our goal is to provide a library of such derived classes that the user 

might want to use for his problem. 

• Y AS _barrier is a class which is of obvious importance for interior 

point methods, as seen in Chapter 2. 

For a given derived classY AS _k_EVS, we provide derived classes of 

Y AS_ barrier that will represent the feasible region. For the exam­

ple above, the only thing that makes sense is a barrier for the second 

order cone. Given an object of type Y AS _k_EVS and a barrier asso­

ciated with this class, the algorithm might ask, through the methods 

of Y AS _barrier, to evaluate the barrier, its gradient or its Hessian on 

the element. Note that the gradient will be an object from the same 

classY AS k EVS. 

Again, our goal is make available a library of such barriers. Besides the 

usual barriers for the positive orthant, the second order cone and the 

semidefinite cone, the algorithm by Nesterov [20] for nonsymmetric 

cones shows that it makes sense to have in the library the barrier for 
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the p-cone, see Chapter 4. 

• Y AS_ LO is a class used to replicate a linear operator. Evaluation of 

the linear operator on an element of type Y AS_ k _ EV S can be done 

in the natural formulation. As in the case of Y AS_ k _ EV 8, through 

derived classes we can make put in backstage and efficient implemen­

tation of which the algorithm doesn't have to know. In particular, 

this has practical relevance in the case of semidefinite programming 

in matrix variable, see Chapter 3. 

• Y AS _norm_eq is a class that is derived from Y AS _LO allowing the 

user to form a compressed and expanded versions of normal equations 

and to solve the latter. 

We conclude this section by stressing the clean-looking algorithms that 

can be implemented by using objects from this classes. The algorithm tricks, 

including heuristics, aiming for faster convergence and the numerical tricks 

aiming for speed/ efficiency in memory storing/ accuracy are completely sep­

arated. 

Finishing up all details is "work in progress" 
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6 The Linear Algebra Layer 

This part describes the routines and classes in the LA Layer. The layers' 

end goal is to provide classes that substitute matrices. 

This layer consists of the low-level routines, the Y AS _K _block class 

and the Y AS K mb class. We start with some important conventions 

regarding matrix storage. 

Dense matrix storage convention. In Y AS, dense blocks are stored 

columnwise. For example, the dense block 

[1 2 3] 
4 5 6 

is stored as {1, 4, 2, 5, 3, 6}. 

CSC (Compressed Sparse Column) sparse storage convention. 

In YAS, storing a matrix (it is desired that the matrix is sparse, but the 

scheme works with any matrix) with m lines and n columns in the esc 
format requires: 

nnz 

pVals 

pRowlndx 

an integer variable storing the number of nonzero el-

ements in the matrix 

an array of length nnz with real elements to store the 

nonzero entries in the matrix 

an array of length nnz with integer elements such 

that the nonzero entry stored in pVals[i] sits on the 

row pRowl ndx[i] 
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pCollndxB an array of length n with integer elements 

pColslndxE an array of length n with integer elements 

the nonzero entries in the i - th column of 

the matrix are stored in p V als starting with 

position pCollndxB[i] and ending with position 

pCollndxE[i]- 1 

Note: B stands for Beginning while E for End 

We use the C / C + + convention that the positive integers start from 0 

not from 1. 

As an example, assume we want to use CSC format to store the matrix 

0.1 0 0 0.2 

0 0.4 0 0 

0 0.3 0.7 0.9 

Then nnz = 6, m = 3 and n = 4; 

pVals has 6 elements and they are pVals = {0.1, 0.4, 0.3, 0.7, 0.2, 0.9}. 

pRowlndx has 6 elements and they are pRowlndx = {0, 1, 2, 2, 0, 2} 

because 0.1 stands in row 0, 0.4 stands in row 1, 0.3 stands in row 2 etc. 

pCollndxB[O] = 0 and pCollndxE[1] = 1 because pVals[O] = 0.1 is the 

first nonzero element in column 0 and it is also the last element. 

pCollndxB[1] = 1 and pCollndxE[1] = 3 because pVals[1] = 0.4 is the 

first nonzero element in column 1 and pVals[3 -1] = 0.3 is the last nonzero 

element in the column 1. 

pCollndxB[2] = 3 and pCollndxE[2] = 4 because pVals[3] = 0. 7 is the 

first nonzero element in column 2 and it is also the last element. 
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pCollndxB[3] = 4 and pCollndxE[3] = 6 because pVals[4] = 0.2 is the 

first nonzero element in column 3 is pVals[6- 1] = 0.9 is the last nonzero 

element in column 3. 

6.1 Low-level routines 

The low-level routines are available through Y AS _blas.h, Y AS _lapack.h 

and implemented in Y AS _blas.cpp andY AS _lapack.cpp. 

Implementing routines as templates. Template is a C++ feature 

that we will use to, eventually, allow the switch between different data 

precision to be really simple. The first step to achieve this is to implement 

all low-level routines as templates. 

We illustrate this concept on a simple example. Assume we need a 

function max that takes two arguments, x and y, of the same type and 

returns 0 if they can not be compared, 1 if the first one is the biggest and 

2 otherwise. The type of the arguments can be a standard C++ type or 

user defined. If x and y are of type double it is enough to use x < y to 

find out what to return. If x andy are strings and we use the "dictionary 

order" than the decision requires more work. By defining max as a template 

function, one can make the function's behavior to vary with the type of the 

arguments. The following code defines the function max as a template 

function. It implements its standard behavior and specialize its behavior if 

the argument's type is char* and YAS_K_Block*, a user defined class. 

template < class type > int max( type *X, type *Y ) 

{if *X> *Y return 1; 

else return 2; 
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} 

int max( char *X, char *Y) 

{ 

I* different implementation* I 

} 

int max(Y AS _K _Block *X, Y AS _K _Block *Y) 

{ 

/ * another implementation * I 
} 

Defining YAS low-level routines as templates, allows us to use imple­

mentations that depend on the type of the parameters. 

For example, Y AS _gemm, used to multiply two dense blocks, has differ­

ent implementations for data stored as double and for data stored as float. 

This is conformal with the standard linear algebra libraries, such as BLAS, 

that use different routines for multiplication of matrices stored in double 

precision and for matrices stored in float precision, dgemm and sgemm 

respectively. This choice is motivated by both memory and speed concerns. 

The compiler checks the type of the parameters and use the corresponding 

code. If YAS_gemm will be called with data other than double or float 

the error routine will be called saying that nothing was done since the 

function is not overloaded for this type of data. It is possible to extend the 

YAS_gemm with implementations for other types of data precision such as 

quad precision. Such extensions require no modifications to the other parts 

of the solver as the user always calls YAS_gemm. 

Switching between different implementations for the same rou-
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tine. Each routine has one or more implementations. The user can switch 

between one or another using macros. This C++ feature is an elegant way 

to exclude or include parts of the code. We illustrate it on a simple example. 

If the following code is compiled 

#define use_MKL 

#ifdef use_MKL 

instruction 1; 

#endif 

then instruction 1 will be included. If we remove the line #define 

use_ M K L the compiler will not include in the code instruction 1. 

A macro is associated with each implementation of a given routine. 

These macros are collected in the first part of Y AS _blas.h signaled with a 

commented line as "Part A. Implementation to be used for each routine". 

For example, the routine Y AS _gemm, with data stored as double, has 

two implementations. One uses the MKL library and the other uses the 

ACML library. The user will see in Part A of Y AS _blas.h, after the com­

mented line /*-Implementation to be used by Y AS _gemm. Choose one­

* /, the following instructions: 

#define_Y AS _gemm_use_MKL_dbl 

and 

#define_Y AS _gemm_use_ACML_dbl 

The user will have to leave only one of these two macros active by com­

menting the other one. To add and use a different implementation, one has 

to define another macro in Part A of Y AS blas.h and then add the desired 

implementation in Y AS_ blas .c. 

68 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

The macros associated with different implementations for each routine 

are signaled in Part A ofY AS _blas.h by a commented line /*-Implementation 

to be used by <routine_name>. Choose one--* f. By convention, the name 

of each macro is <routine_ name>_ use_ <implementation_ name>. 

Processors manufactures develop and support linear algebra libraries 

tuned for their products. For example, Intel develops the 

while AMD develops the package. Any such library works on most 

processors but the claim is that the difference in the performance might be 

significant. Using the technique described above, most low-level routines 

have two implementations: one using MKL and the other using ACML. 

Structure of the file YAS blas.h and YAS lapack.h. Y AS _blas.h 

and Y AS _lapack.h are both divided in three parts that are signaled with 

commented lines as Part A, Part B and Part C. 

Part A. Implementation to be used for each routine was mostly discussed 

in Switching between different implementations for the same routine. In 

addition, this part is used to link to the libraries needed by each implemen­

tation. This is done again through macros. 

As discussed, Y AS _gemm has two implementations, one using the MKL 

library and the other the ACML library. Therefore, the following code can 

be seen 

#ifdef _YAS_gemm_use_MKL_dbl 

#include < mkl.h > 

#endif 

#ifdef _YAS_gemm_use_ACML_dbl 

#include < acml.h > 
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#endif 

If the user creates a new implementation for Y AS _gemm where he is 

using some library he needs to add 

#ifdef _Y AS_gemm_use_Newlmplementation 

#include < userlibrary > 

#endif 

Part B. Debug settings for each routine. Each routine has parts of its 

code that is not changing its end goal and is needed only in some situations. 

For example, Y AS _gemm has a part of the code that is checking whether 

the dimensions of the blocks are compatible and activates the error routine 

if something is wrong. This part of the code is contained under the macro 

_ Y AS _gemm _SAFETY_ 0 N. The code is compiled only if this macro 

is defined. 

The macros that contains such special parts of the code for each routines 

are defined here, in Part B. 

Part C. Syntax for each routine. In this part, each routine is defined. 

The user can see not just the declaration of the te1nplate routine but also 

the declaration of the available overloads. 

6.1.1 BLAS routines 

These routines are available through Y AS _blas.h and implemented 

in Y AS_ blas.cpp. 

YAS gemm 
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Source 

Declared in Y AS _blas.h. Implemented in Y AS _blas.cpp. 

Description 

Performs matrix-matrix multiplication. If A, Band Care matrices with 

real entries, the operation is defined as C :=a· op(A) · op(B) + f3 • C, given 

that op(A), op(B) and C have compatible dimensions and a, f3 E JR. 

A, B and C are dense matrices. 

op(X) is either X or xr 

Syntax 

YAS_gemm(char transa, char transb, yaslnt m, yaslnt n, yaslnt k, 

templateT alpha, templateT *a, yasl nt Ida, templateT *b, yasl nt I db, 

templateT beta, templateT *c, yaslnt Ide) 

Implementations 

This template routine is overloaded for templateT = double and templateT = 

float. The following table shows existing implementations for each type. 

For details about different implementations for one routine see Low-level 

routines. Introduction. 
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templateT Impl. Macro Details 

name 

double MKL dbl #define_ YAS this implementation -

gemm_use_ uses dgemm rou-

MKL dbl tine from the MKL -

package 

ACML _dbl #define_ YAS this implementation -

gemm_use_ uses dgemm routine 

ACML dbl from the ACML 

package 

float MKL_flt #define_Y AS_ this implementation 

gemm_use_ uses sgemm routine 

MKL_flt from the MKL pack-

age 

ACML _flt #define_Y AS_ this implementation 

gemm_use_ uses sgemm routine 

ACML _flt from the ACML 

package 
Input parruneters 

transa char; determines op(A) 

transb 

if transa ='N' or 'n' then op(A) =A 

if transa ='T' or 't' then op(A) = AT 

char; determines op(B) 

if transb ='N' or 'n' then op(B) = B 

if transb ='T' or 't' then op(B) = BT 
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m 

n 

k 

alpha 

a 

lda 

yaslnt (see Appendix A) 

specifies the number of rows of op( A), which is the same as 

the number of rows of C 

yasl nt (see Appendix A) 

specifies the number of columns of op(B) which is the same 

as the number of columns of C 

yaslnt (see Appendix A) 

specifies the number of columns of op(A) which is the same 

as the number of rows of op(B) 

templateT 

specifies the scalar n 

templateT* 

an array representing the columnwise storage of a dense block 

with lda rows and ka columns where 

ka = k if op(A) =A 

ka = m if op( A) = AT 

yaslnt (see Appendix A) 

specifies the leading dimension of A 

if op(A) = A then lda must be at least max(l, m) 

if op(A) =AT then lda must be at least max(l, k) 
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b 

ldb 

beta 

c 

ldc 

templateT* 

an array representing the colurnnwise storage of a dense block 

with ldb rows and kb columns where 

kb = n if op( B) = B 

kb = k if op(B) = BT 

yasl nt (see Appendix A) 

specifies the leading dimension of B 

if op(B) = B then ldb must be at least max(l, k) 

if op(B) = BT then ldb must be at least max(l, n) 

templateT 

specifies the scalar f3 

templateT* 

an array representing the columnwise storage of a dense block 

with ldc rows and n columns 

yasl nt (see Appendix A) 

specifies the leading dimension of C 

its value must be at least max(l, m) 
Output parameters 

c overwritten by them by n matrix alpha·op(A)·op(B)+beta·C 

YAS CSC gemm 

Source 

Declared in Y AS _blas.h. Implemented in Y AS _blas.cpp. 

Description 
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Performs matrix-matrix multiplication. If A, B and C are matrices with 

real entries, the operation is defined as C := a· op(A) · B + /3 · C, given that 

op( A), B and C have compatible dimensions and a, j3 E JR. 

A is a sparse matrix stored in the CSC format; B, Care dense matrices. 

op( X) is either X or xr 

Syntax 

template < classT > int Y AS_ C SC _gemm( char transa, yasl nt m, 

yaslnt n, yaslnt k, templateT alpha, templateT *pVals, yaslnt *pRowlndx, 

yaslnt *pCollndxB, yaslnt* CollndxE, yaslnt nnz, templateT *b, yaslnt 

ldb, templateT beta, templateT *c, yaslnt ldc) 

Imple1nentations 

This template routine is overloaded for templateT = double. The follow­

ing table shows existing implementations for each type. For details about 

different implementations for one routine see Low-level routines. Introduc-

tion. 

templateT lmpl. Macro Details 

name 

double M K L dbl #define_ Y AS this implementation 

_CSC_gemm uses mkl dcscmm 

use M K L dbl routine from the MKL 

package 
Input parameters 

trans a char; determines op( A) 

if transa ='N' or 'n' then op(A) =A 

if transa ='T' or 't' then op(A) = AT 
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m 

n 

k 

alpha 

pVals 

pRowlndx 

pCollndxB 

pCollndxE 

nnz 

b 

yaslnt (see Appendix A) 

specifies the number of rows of op(A), which is the same as 

the number of rows of C 

yasl nt (see Appendix A) 

specifies the number of columns of B which is the same as the 

number of columns of C 

yaslnt (see Appendix A) 

specifies the number of columns of op(A) which is the same 

as the number of rows of B 

templateT 

specifies the scalar a 

templateT* 

see esc sparse storage convention 

yaslnt* 

see esc sparse storage convention 

yaslnt* 

see esc sparse storage convention 

yaslnt* 

see esc sparse storage convention 

yaslnt 

see esc sparse storage convention 

templateT* 

an array representing the colu1nnwise storage of a dense block 

with ldb rows and n columns where 
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ldb 

beta 

c 

ldc 

yasl nt (see Appendix A) 

specifies the leading dimension of B 

ldb must be at least max(l, k) 

templateT 

specifies the scalar (3 

double* or float*. 

an array representing the colunn1wise storage of a dense block 

with ldc rows and n columns 

yasl nt (see Appendix A) 

specifies the leading dimension of C 

its value must be at least max(l, m) 
Output parameters 

c overwritten by them by n matrix alpha·op(A)·op(B)+beta·C 

6.1.2 LAPACK routines 

These routines are available through Y AS _lapack.h and implemented in 

Y AS _lapack .cpp. 

YAS ge solv 

Source 

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp 

Description 

Solves a system of equations with a general square matrix and with 

multiple right hand side, AX = B. 

A, B and X are stored as dense matrices. 
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Syntax 

template <class templateT> int Y AS _ge_solv(yaslnt m, yaslnt nRHS, 

templateT* a, yasl nt lda, templateT* b, yasl nt ldb) 

Implementations 

This te1nplate routine is overloaded for templateT =double and templateT = 

float. The following table shows existing implementations for each type. 

For details about different implementations for one routine see Low-level 

routines. Introduction. 

templateT lmpl. Macro Details 

name 

double MKL dbl #define_Y AS this implementation 

_gemm_use uses dgesv routine 

MKL dbl from the MKL pack-

age 

float MKL_flt #define_Y AS this implementation 

_gemm_use 

_MKL_flt 

uses sgesv routine 

from the MKL pack-

age 
Input parameters 

m yasl nt (see Appendix A) 

nRHS 

the dimension of the square matrix A 

yaslnt (see Appendix A) 

the number of vectors on the right hand side; 

equals the number of columns of B 
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a 

lda 

b 

ldb 

templateT* 

array with lda rows and m columns 

A is stored in a as a dense matrix 

yaslnt (see Appendix A) 

specifies the leading dimension of A 

lda is at least max(l,m) 

templateT* 

array with ldb rows and n columns 

B is stored in bas a dense 1natrix 

yaslnt (see Appendix A) 

specifies the leading dimension of B 

ldb is at least max(l,m) 

Output parameters 

returns 1 for success and 0 for failure 

a the data in a is lost 

b is overwritten with the solution 

YAS symm PD solv 

Source 

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp 

Description 

Solves a system of equations with a square symmetric and positive­

definite matrix and with multiple right hand side, AX = B. 

A, B and X are dense matrices. 

79 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

Syntax 

template <class templateT> int Y AS _symm_PD _solv(yaslnt m, 

yasl nt nRH S, templateT* a, yasl nt ida, templateT* b, yasl nt ldb) 

Implementations 

This te1nplat.e routine is overloaded for templateT =double and templateT = 

float. The following table shows existing implementations for each type. 

For details about different implementations for one routine see Low-level 

routines. Introduction. 

templateT Impl. Macro Details 

double 

name 

M K L dbl #de fine_ Y AS this implementation 

_ symm _ P D uses dposv routine 

_use_MKL_dbl from the MKL pack­

age 

float MKL_flt #define_Y AS this implementation 

_ symm _ P D uses sposv routine 

_use_MKL_flt from the MKL pack­

age 
Input parameters 

m yaslnt (see Appendix A) 

nRHS 

the dimension of the square matrix A 

yaslnt (see Appendix A) 

the number of vectors on the right hand side; 

equals the number of columns of B 
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a 

lda 

b 

ldb 

templateT* 

array with lda rows and m columns 

A is stored in a as a dense 1natrix 

yaslnt (see Appendix A) 

specifies the leading dimension of A 

lda is at least max(1,m) 

templateT* 

array with ldb rows and n columns 

B is stored in b as a dense matrix 

yaslnt (see Appendix A) 

specifies the leading dimension of B 

ldb is at least max(l,m) 

Output parameters 

returns 1 for success and 0 for failure 

a the data in a is lost 

b is overwritten with the solution 

YAS triang solv 

Source 

Declared in Y AS _lapack.h. Implemented in Y AS _lapack.cpp 

Description 

Solves a system of equations with a triangular matrix and with multiple 

right hand side, AX = B. 

A, B and X are dense matrices. 
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Syntax 

template <class templateT> int Y AS _triang_solv(yaslnt m, yaslnt 

nRHS, char type, char unit, templateT* a, yaslnt lda, templateT* b, 

yaslnt ldb) 

Implementations 

This template routine is overloaded for templateT =double and templateT = 

float. The following table shows existing implementations for each type. 

For details about different implementations for one routine see Low-level 

routines. Introduction. 

templateT Impl. Macro Details 

double 

name 

M K L dbl #define_ Y AS_ this implementation 

triang _ solv uses dtrsm rou-

use M K L dbl tine from the MKL 

package 

float MKL_flt #define_Y AS_ this implementation 

triang _ solv uses str sm routine 

_use_MKL_flt from the MKL pack-

age 
Input parameters 

m 

nRHS 

yasl nt (see Appendix A) 

the dimension of the square matrix A 

yaslnt (see Appendix A) 

the number of vectors on the right hand side; equals the 

number of columns of B 
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type 

unit 

a 

lda 

b 

ldb 

char; specifies if A is lower-diagonal or upper-diagonal 

if type ='U' or 'u' then A is upper-diagonal 

if transa ='L' or 'l' then A is lower-diagonal 

char; specify if A is a unit matrix i.e. has only ones on 

the diagonal 

if unit = 'u' or 'U' then A is unit 

if unit ='n' or 'N' then A is not unit 

templateT* 

array with lda rows and m columns 

a is a dense block (see Dense 1natrix storage convetion) 

Note: A is completely stored in a even though A is trian­

gular and some data is unnecesarry and, in fact, ignored 

yasl nt (see Appendix A) 

specifies the leading dimension of A 

Ida is at least max(l,m) 

templateT* 

array with ldb rows and n columns 

B is a dense block (see Dense n1atrix storage convetion) 

yaslnt (see Appendix A) 

specifies the leading dimension of B 

ldb is at least max(l,m) 

Output parameters 

returns 1 for success and 0 for failure 
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b is overwritten with the solution 

6.2 YAS K block 

In what follows, by a block we refer to a matrix of a special type such as 

dense, sparse, symmetric, sparse symmetric, upper-diagonal, lower-diagonal 

etc. 

An object from the classY AS _K _block acts like a container for a block, 

hiding its type but providing the user the methods for all linear algebra 

operations needed in the implementation of interior point algorithms. Once 

an object of type Y AS _K _block is associated to a given block, the user 

doesn't have to worry about the actual type of the block. At the same time, 

in the backstage, both the storage and the linear algebra operations exploit 

the type of the block. For example, a n by n symmetric block requires 

the storage of n(n
2
+l) elements instead of n2 • Also, multiplying a sparse 

block with a dense block is usually faster than multiplying two dense blocks 

assuming the dimensions are the same. 

Storing more blocks of the same type and dimension in one ob­

ject from class Y AS_ K _block. The design of the class Y AS_ K _block 

is such that an object from this class can contain one or more blocks of a 

certain type and of the same dimension. 

This can be done in several ways. Assume we start with k blocks of 

dimension n by m, all of the same type. The first way is to stack the blocks 

vertically and store the resulting big block. It has the same type but its 

dimension is m by k · n. We refer to this as vertical stacking. The second 

way is to stack them horizontally and store the resulting big block. It has 
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the same type and its dimension is n by k · m. We refer to this as horizontal 

stacking. Finally, the third way is to store each block independently. We 

refer to this as sequential stacking. 

This feature, that apparently complicates the usage, pays off in different 

situations. For example, when a block is a vector and we need to multiply 

a matrix with several vectors. It is worth to have the vectors stored hori­

zontally because then one can use one matrix-matrix multiplication which 

is faster than doing several matrix-vector multiplications. 

Nevertheless, for simplicity, the user might decide that Y AS_ K _block 

object should contain only one block. 

Template data structures defined to store blocks. These struc­

tures are available through Y AS _simple_dejs.h. 

In YAS, a structure is defined for each (currently supported) type of 

block. The structure contains all the entries needed to store a block from 

that type. For example, for a dense block whose elements are of type double, 

the structure only requires a pointer to double. 

Note that the structure do not contain the dimension of the block. This 

information will be available through the classY AS _K _block. Therefore, 

a dense matrix is not completely determined by the structure associate to it. 

The true container of a dense block is an object from the Y AS _K _block 

class. 

It is important that these structures are defined as template struc­

tures. Together with the low-level template routines they will allow the 

Y AS_ K _block and Y AS_ K _ mb to be defined as template classes. 

For convenience, we illustrate the concept of a template structure on the 
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yas Dense structure. This structure is defined as 

template <class T float> struct yasDense {T float* pVals;}; 

If the user is defining a variable as 

yasDense < double > p; 

then the type of p.pVals is double*. 

The currently available structures, all defined as templatesj are listed 

and explained in Properties of YAS _ K _Block. 

YAS _ K _Block implemented as a template class The following 

code is an example of a class that is implemented as a template, It is 

a container for a dense block. It can be seen as a simplified version of 

YAS K Block. 

template < class T float > class dense_ block 

{public: 

int m; I I number of lines 

int n; I I number of columns 

T float *data; I I an array that can store m · n elements 

} 

The user can instantiate an object of type dense_block < double > 

in which case the type of the property data is double* and so the ele­

ments of the dense block are stored in double precision. If an object of 

type dense_ block < float > is instantiate, the elements will be stored in 

float precision. 

Template classes become really powerful when they make use of template 

routines and template structures. This is the case of the class Y AS_ K _block. 
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The implementation of Y AS _K _Block as a template wouldn't be possible 

without template routines and structures. 

TheY AS K block class is declared as 

template < class T float > 

classY AS K block 

{ 

} 

The reader will note that some properties and methods of the class 

involve the type T float. 

Objects of type Y AS_ K _block < double > store the data in double 

precision while objects of type Y AS_ K _block < float > store the data in 

single precision. Currently these these two types are available. To allow 

objects of type Y AS_ K _block < M yClass > the user has to make sure 

the low-level routines are overloaded for the type MyClass. In particular, 

extension to quad precision is subject of future work. 

6.2.1 Properties of YAS K Block 

In what follows, we list the the properties ofYAS_K_Block. We specify the 

type of the property and describe its scope. In some cases, the description 

also contains an exhaustive list of values the properties can take as well as 

the name of the constants that were created especially to be used for this 

property. 
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type 

Property type. yasType (see Appendix A) 

Description. This property is uniquely determined by the type of the 

block(s) (dense, sparse etc) that is (are) contained in the object and the 

stacking method being used. 

It can only take the values in the table below. Moreover, a constant is 

defined for each value in Y AS_ simple_ de f s. h. 

Constant Value 

_yas _zero_ block 0 

_yas _ meye _block 1 

_yas _dense_ block_ ver 100 

_yas _dense_ block_ hor 101 

_yas _dense_ block_ seq 102 

_yas_sparse_CSC _block_ver 200 

_yas_sparse_CSC _block_hor 201 

_yas_sparse_CSC _block_seq 202 

K,m,n 

Description 

zero block 

multiple of identity block 

vertically stacked dense 

block 

horizontally stacked dense 

bloc 

sequentially stacked dense 

block 

vertically stacked esc 
sparse block 

horizontally stacked esc 
sparse block 

horizontally stacked esc 
sparse block 

Property type. yaslnt, yaslnt, yaslnt (see Appendix A) 
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Description. The number of stored blocks, the number of lines for 

each block and, respectively, the number of columns of each block. If the 

formulation "each block" is not clear see Storing more blocks of the same 

type and dimensions in one object from classY AS _K _block 

pData,pDataDescription 

Property type. void*, void* 

Description. pData and pDataDescriptor are two pointers to a struc­

ture and, respectively,a type that are uniquely determined by the value 

stored in the type property (see Ten1plate data structures defined to store 

blocks). In what follows, for every possible value of the property Type, we 

show the value of pData and pDataDescriptor together with more details 

on how to use them. 

_yas _zero_ block 

_yas _ meye _block 

pData =NULL 

pDataDescription = NULL 

pData = *Tfloat (see YAS_K_Block 

implen1ented as a template class) 

pDataDescription = NULL 
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_yas _dense_ block_??? 

McMaster - Mathematics and Statistics 

Usage. If pData=NU LL then the 

block is simply identity 

Otherwise, the scalar multiplying the 

identity is stored in a variable of type 

T float and pData should point to it 

pData = *YasDense < T float > 

pDataDescription = NULL 

Recall. template < classT float > 

struct yasDense{T float *PVals;} 
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Usage. If ??? = ver or ??? = hor 

then the blocks are stacked vertically 

and, respectively, horizontally into one 

big dense block which is stored into a 

yasDense < T float >structure and 

pData points to this structure. 

(to see how to store a dense block into 

a yasDense structure see Appendix A. 

YAS defined types.) 

if ??? = seq then there exists a 

pointer yasDense < T float > *p = 

new yasDense < T float > [K] and 

pData = p; 

The first block is stored in *pData, the 

second in *(pData + 1) etc 

_yas_sparse_CSC _block_???pData = *YasSparseCSC < Tfloat > 

pDataDescription = 

*yasSpar seC SC Descriptor 
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Recall. 1. struct 

yasSparseCSC{T float 

*pVals; yaslnt 

yaslnt 

*pRowlndx; 

*pColindxB; yaslnt 

*pColindxE;yasint nnz; }; 

2. typedef yaslnt 

yasSpar seC SC Descr; 

Usage. If ??? = ver or ??? = hor 

then the blocks are stacked vertically 

and, respectively, horizontally into one 

big sparse block which is stored into a 

yasSparseCSC < Tfloat >structure 

to which pData points. 

Usually the length of pV als is nnz but 

the user can choose to allocate more 

memory then required by nnz. This 

available length is stored in a variable 

of type yasSparseC SC Descr to which 

pDataDescription points. 
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errCode 

Property type. int 

McMaster - Mathematics and Statistics 

(to see how to store a sparse block into 

a yasSparseCSC structure see Appen­

dix A) 

if??? =seq then there exists a pointer 

yasSparseCSC < T float > *p = new 

yasSparseCSC < T float > [K] and 

pData = p; 

also, a pointer yasSparseCSCDescr 

*q =new yasSparseCSCDescr[K] ex­

ists and pDataDeseription = q; 

The first block is stored in *pData, the 

second in *(pData + 1) etc 

For the first block (*pData).pVals 

might refer to a memory bigger than 

the one required by (*pData). nnz. 

This bigger value is stored in 

*pDataDescri ption 

Similar, for the second block the 

total available memory is stored in 

* (pDataDescription + 1) 

Description. the methods of theY AS _K _block are using this vari-

93 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

able to store the error code in case some error is encountered during the 

execution. 

store Transpose 

Property type. char 

Description. it is set to 1 then the object contains the transpose of the 

blocked effectively stored in pData. 

6.2.2 Methods of YAS K block 

For convenience, the methods are grouped into: member access methods, 

interface unification methods, data managing methods and linear algebra 

methods. 

Member access methods 

The following methods should be used to read the properties of the class. 

Syntax Property returned 

yasType GetType() 

yas! nt GetK () 

yasl nt GetM () 

void* GetP Data() 

type 

K 

N 

pData 

void* GetP DataDescriptor() pDataDescriptor 

char GetStoreTranspose() storeTranspose 

int GetErrCode errCode 
The following methods should be used to write the properties of the 

class. 
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Syntax Property set 

void SetType(yasType typeB) type 

void SetK(yaslnt KB) K 

void SetN(yaslnt nB) N 

void SetData(void* pDataB) pData 

void SetP DataDescriptor( void* pDataDescriptor B) pDataDescriptor 

void S etStoreTranspose (char storeTransposeB) storeTranspose 

Interface unification methods 

The reader might want to skip these methods for now and come back to 

them after looking at theY AS _K _mb. Except for SetCDEUpdate, these 

methods have no practical importance for Y AS_ K _block, the user doesn't 

need them when working with blocks. They are implemented only to make 

Y AS_ K _ mb, Y AS_ K _block and the classes derived from them have the 

same interface. The reason for this is explained in Overview. LA Layer. 

Syntax Description 

yasl nt GetBlockM () returns 1 

void SetBlockM(yaslnt ME) doesn't do anything 

yasl nt GetBlockN () returns 1 

void SetBlockN(yaslnt N B) doesn't do anything 

yaslnt GetActiveBlockl() returns 1 

void SetActiveBlockl(yaslnt I B) doesn't do anything 

yaslnt GetActiveBlockJ() returns 1 

void SetActiveBlockJ(yaslnt J B) doesn't do anything 
In additions to the methods in the table above, we have 
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GetCDEUpdate 

Syntax. void GetCDEUpdate(yasint& rU, Tfloat *pAlpha, Y AS _K_block 

*pBlockC, Y AS_K_block *pBlockD, YAS_K_block *pBlockE) 

Description. this method doesn't do anything in this class. See the 

derived class of Y AS K block 

SetCDEUpdate 

Syntax. void SetCDEUpdate(yasint U, Tfloat *pAlpha, Y AS _K _block 

*pBlockC, YAS_K_block *pBlockD, YAS_K_block *pBlockE) 

Description. This method does *this :=*this + Ef=l Cl!i • ci . Di . Ei 

U stores the number of updates 

ai =*(pAlpha + i) 

Ci =*(pBlockC + i) 

Di =*(pBlockD + i) 

Ei =*(pBlockE + i) 

Data managing methods 

Before using an object of type Y AS _K _block, the user needs to load it 

with real data, i.e. matrices. 

Using the data managing methods, the user can allocate memory, delete 

allocated memory and copy data. 

Note that the methods do not work with the data contained in the block. 

In particular, the type of the block is not affecting the way these methods 

work. 
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New Data 

Syntax. void* NewData(yasType& rTypeB, yaslnt KB, yaslnt mB, 

yaslnt nB, void* pDataDesc:riptorB =NULL) 

Description. Allocates data storage and returns its pointer. Use de­

scriptor if additional information is needed. If operations fails, rTypeB is 

set to _yas _no_ type. 

DeleteData 

Syntax. int DeleteData(void* pDataB, yasType TypeB, yaslnt KB = 

0, yaslntmB = 0, yaslntnB = 0, void* pDataDescriptorB =NULL); 

Description. DeleteData frees data storage pointed to by pDataB. 

NewDatallescriptor 

Syntax. void* NewDataDescriptor(yasType& rTypeB, yaslnt KB, 

yaslnt mB, yaslnt nB); 

Description. Allocates data descriptor and returns its pointer. 

DeleteDataDescriptor 

Syntax. int DeleteDataDescriptor(void* pDataDescriptorB, yasType 

typeB, yaslnt KB, yaslnt mB = 0, yaslnt nB = 0); 

Description. DeleteDataDescriptor frees data descriptor pointed to by 

pDataDescriptor B. 

CloneData 

Syntax.virtual void* CloneData(yasType& rTypeB, yaslnt kStart, 

yaslnt kEnd,yaslnt iStart, yaslnt iEnd, yaslnt jStart, yaslnt jEnd, 
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void* pDataDescriptor B = NULL); 

Description. CloneData attempts to clone (part of) data from pData 

with a suggested type conversion to rTypeB. If the cloning is unsuccess­

ful, the function returns a NULL pointer and the rTypeB is changed to 

_yas _no_ type; the error code is set accordingly. If the cloning is success­

ful, the function returns a valid pointer to a new copy of the (portion of) 

the data. 

CloneDataDescriptor 

Syntax.virtual void* CloneDataDescriptor(yasType& rTypeB, yaslnt 

kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt j Start, yasl nt 

jEnd); 

Description. CloneDataDescriptor attempts to clone (part of) data 

descriptor with a suggested type conversion to rTypeB. The function be­

havior is consistent with CloneData. 

Copy Data 

Syntax.virtual int CopyData(void *pDataB, yasType typeB, yaslnt 

kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt j Start, yasl nt 

jEnd, void* pDataDescriptorB =NULL); 

Description. CopyData copies (part of) data from pData to pDataB 

and performs type conversion to typeB. The difference between, copy and 

clone is that the function assumes pDataB is already allocated. 

Copy DataDescriptor 

Syntax. virtual int CopyDataDescriptor(void *pDataDescriptor, yasType 
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typeB, yasl nt kStart, yasl nt kEnd, yasl nt iStart, yasl nt iEnd, yasl nt 

jStart, yaslnt jEnd); 

Description. CopyDataDescriptor copies (part of) data descriptor and 

performs type conversion to typeB. 

Linear algebra methods 

GetBkij 

Syntax. virtual Tfloat GetBkij(yaslnt kB, yaslnt iB, yaslnt jB); 

Description. Returns the ( i, j)-element of the k-th block. 

SetBkij 

Syntax.virtual int SetBkij(Tfloat val, yaslnt kB, yaslnt iB, yaslnt 

jB) 

Description. Sets ( i, j) - element of the k-th block. 

Transpose 

Syntax. virtual int Transpose(¥ AS_ K _block& r BlockB) 

Description. The method transposes the block data rBlockB, without 

changing block stacking structure. 

Sum 

Syntax. virtual int Sum(Y AS_K_block& rBlockA, YAS_K_block& 

rBlockB, Tfloat alpha= (Tfloat)l) 

Description. Computes the block-Kronecker sum *this .- alpha· 

rBlockA ffi rBlockB. 
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For example, if r Block A contains kA blocks At, ... , AkA and r BlockB 

contains kn blocks Bt, ... Bk8 then *this will contain the kA · kn blocks 

alpha· At+ Bt, alpha· At+ B2, ... , alpha· At+ Bk8 , alpha· A2 + Bt, ... , 

alpha· A2 + Bk8 , ••• ,alpha· AkA+ Bt, ... ,alpha· AkA+ Bk8 • 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

Prod 

Syntax. virtual int Prod(Y AS_ K _block& r Block A, Y AS_ K _block& 

rBlockB, Tfloat alpha= (Tfloat)l, Tfloat beta= (Tfloat)O) 

Description.Computes the block-Kronecker product *this := alpha· 

rBlockA 8 rBlockB +beta· (*this) 

For example, if rBlockA contains kA blocks At, ... , AkA and rBlockB 

contains kn blocks Bt, ... Bk8 then *this will contain the kA · kn blocks 

: At·Bt+beta·(*this)u, At·B2+beta·(*this)t2, ... , At·Bk8 +beta.(*this)tk8 , 

A2 · Bt +beta· (*this )21, ... , A2 · Bk8 +beta· (*this )2k8 , ••• , AkA · Bt +beta· 

(*this)kAb ... , AkA· Bk8 +beta· (*this)kAkB· 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

Note that if beta =I= 0 then *this must contain kA · kn blocks. 

Dot Sum 

Syntax. virtual int DotSum(Y AS_ K _block& r B lockA, Y AS_ K _block& 

rBlockB, Tfloat alpha= (Tfloat)l) 

Description. Computes the block-dot sum *this := alpha · r Block A 

.+ rBlockB 
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Note that rBlockA and rBlockB must contain the same number of 

blocks. 

For example, if each of r Block A and r BlockB contains k blocks AI, ... , Ak 

and, respectively, B~, ... Bk then *this will contain the k blocks alpha· AI+ 

Bt, alpha· A2 + B2, ... ,alpha· Ak + Bk· 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

Dot Prod 

Syntax. virtual int DotProd(Y AS_ K _block& r BlockA, Y AS_ K _block& 

rBlockB, Tfloat alpha= (Tfloat)l, Tfloat beta= (Tfloat)O) 

Description. Computes the block-dot product *this := alpha·r Block A 

.· rBlockB +beta· (*this) 

Note that rBlockA and rBlockB must contain the same number of 

blocks. 

Note that if beta =I= 0 then *this must contain the same number of blocks 

as rBlockA,rBlockB. 

For example, if each of r Block A and r BlockB contains k blocks AI, ... , Ak 

and, respectively, BI, ... Bk then *this will contain the k blocks alpha · AI · 

BI +beta· (*this)!, alpha· A2 · B2 +beta· (*this)2, ... ,alpha· Ak · Bk +beta· 

(*this )k· 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

Pro dB Be 

Syntax. virtual int ProdBBc(Y AS_ K _block& r BlockB, T float alpha= 
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(Tfloat)l, Tfloat beta= (T float)O) 

Description. Computes block-dot product *this := alpha· r BlockB .· 

(rBlockB) 0 +beta· (*this). 

Note that if beta f. 0 then this must contain the same number of blocks 

as rBlockB. 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

ProdBcB 

Syntax.virtual int ProdBcB(Y AS _K _block& rBlockB, T float alpha= 

(T float)l, T float beta= (T float)O) 

Description. Computes block-dot product *this:= alpha· (rBlockB)0 

.· (rBlockB) +beta· (*this). 

Note that if beta f. 0 then this must contain the same number of blocks 

as rBlockB. 

If this- > type = _yas _no_ type, the resulting type is assigned auto­

matically, otherwise the result is converted to the prescribed type. 

LU 

Syntax.virtual int LU(Y AS _K _block& rBlockA, Y AS _K _block& rBlockB, 

yasType method) 

Description. Performs LU-factorization of *this with a method of 

choice. 

The results are stored in rBlockA :=Land rBlockB := U 

If a LU decomposition update is to be computed, according to a method 

of choice, one would pass the necessary data via rBlockA and rBlockB. 
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QR 

Syntax.virtual int QR(Y AS _K _block& rBlockA, Y AS K block& 

rBlockB, yasType method) 

Description. Performs QR-factorization of *this. 

The results are stored in rBlockA := Q and rBlockB := R. 

If a Q R decomposition update is to be computed, according to a method 

of choice, one would pass the necessary data via rBlockA and rBlockB. 

Cholesky 

Syntax.virtual int Cholesky(Y AS _K _block& rBlockA, yasType method) 

Description. Performs Cholesky-factorization of *this. 

The result is stored in r BlockA := L. 

If a Cholesky decomposition update is to be computed, according to a 

method of choice, one would pass the necessary data via r B lockA. 

Inverse 

Syntax. virtual int Inver se(Y AS_ K _block& r B lockE, yasType method) 

Description. Attempts to compute the block inverse, if block is square. 

The result is put into *this. 

Solve 

Syntax.int Solve(Y AS _K _block& rBlockA, Y AS _K _block& rBlockB, 

yasType method) 

Description. Solves a system of linear equations with a chosen method. 

The result of rBlockA\rBlockB is stored in *this. 
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6.3 YAS K mb 

Just as in the case of Y AS_ K _block, an object from the classY AS_ K _ mb 

acts like a container for a matrix. Recall that objects of type Y AS_ K _block 

are containers for matrices of special types such as dense, sparse, symmet­

ric, upper-diagonal, lower-diagonal etc. The class Y AS_ K _ mb is more 

sofisticated then Y AS _K _block allowing the user to store a matrix which 

doesn't have a special type as a whole but can be spitted into blocks of 

special types. For example, the following matrix 

1 1 

1 1 

1 1 

1 1 

can be considered to be a sparse or dense matrix but, at the same time, 

can be seen as a matrix of blocks, the first block of type diagonal and the 

second block of type dense. This viewpoint is particularly helpful when the 

size of each block is big. 

Note that in the name of the class mb stands for matrix of blocks. 

Y AS K block and Y AS_ K _ mb have the same interface. Recall 

that our goal is to have the same interface for Y AS_ K _ mb andY AS_ K _block, 

i.e. have the same properties and methods. The benefits of this feature are 

explained in Overview. 

Active block in an object of type Y AS _K _mb. Among all blocks 

that make a matrix stored in an object of type Y AS_ K _ mb, at a given 

time just one block is considered active. The member access methods are 

acting on the active block. 

104 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

Recall that to guarantee the same interface for Y AS_ K _block and 

Y AS_ K _ mb we had to add to Y AS_ K _block the group of Interface uni-

fication methods. 

The action of those methods are changing as follows: 

Syntax Description 

yaslnt GetBlockM() 

void SetBlockM(yaslnt MB) 

yaslnt GetBlockN() 

void SetBlockN(yaslnt MB) 

yaslnt GetActiveBlockl() 

void SetActiveBlockl(yaslnt I B) 

yaslnt GetActiveBlockJ() 

void SetActiveBlockJ(yaslnt J B) 

returns the number of blocks in a 

row 

set the number of blocks in a row 

returns the number of blocks in a 

column 

set the number of blocks in a 

column 

returns the row coordinate of the 

active block 

sets the row coordinate of the 

active block 

returns the column coordinate of the 

active block 

sets the column coordinate of the 

active block 

7 Appendix A. YAS defined types 

In this part, we describe the YAS defined types. They are available through 

Y AS _simple_defs.h and are used throughout the solver. 

The first column of the table contains the name of the type. The second 
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column contains its the declaration, when is it used and some remarks. 

yasType 

yaslnt 

yasSparseCSC 

typedef int yasType 

holds positive integer values used to specify the type of a 

block 

see the property type in the class YAS _ K _block 

by default is set to be int but can be changed to any 

other C++ integer types 

typedef int yaslnt 

holds integer values; used throughout the solver for 

variables such as 

the number of lines/columns of a block/matrix of blocks. 

by default is set to be int but can be changed to any other 

C++ integer types 

template < class T float > struct yasSparseCSC {T float 

*pVals; yaslnt *pRowlndx; yaslnt *pCollndxB; 

yaslnt *pCollndxE; yaslnt nnz; }; 

This structure is a template structure 

(see YAS _K _block---+ Introduction for motivations and use 

of template classes) 

Its variables are enough for storing a matrix in esc sparse 

format. 

(see esc sparse storage convention for more details) 

106 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

yasDense 

matrix. 

template < dassT float > struct yasDense{T float 

*pVals;} 

This structure is a template structure 

(see YAS_K_block ~Introduction for motivations and 

use 

of template classes) 

pVals is used to store, columnwise, the elements of the 

(see Dense 1natrix storage convention) 

Note that yasDense is not used to store a dense block. 

It only stores its elements. Use Y AS _K _block to store 

a dense block. 
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Part III 

Optimization in IMRT 

8 Problem formulation 

The goal of this part is to formulate an optimization problem that is relevant 

for radiation therapy and to get an insight on the computational difficulties 

that result. A main concern is how to model the problem. We present the 

model from [ ) . 

Radiation therapy (RT) is used in cancer treatment to control the devel­

opment of malignant tumors by exposing them to ionizing radiation beams. 

As all tissues are affected during the process, the main issue in RT is how 

to spare the healthy ones while doing as much damage as possible to the 

tumor. 

Intensity modulated radiation therapy (IMRT) is an advanced type of ra­

diation therapy that allows high-precision control of the angle and intensity 

of the beams. 'Treatment planning is the process during which these angles 

and intensities are determined such that a prescribed quantity of radiation 

is delivered to the tumor and, at the same time, the radiation delivered to 

the vital organs is kept below a critical level. Also, the fact that healthy 

tissues recover faster than tumor tissues is exploited by fractionating the 

treatment. 
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Damage to vital organs is unavoidable for most types of cancer. For 

example, for prostate cancer, although vital organs such as the heart or the 

liver can easily be avoided, the blader is in the immediate vicinity of the 

prostate. These organs are the main challenges in treatment planning. Spar­

ing them is made especially difficult due to inevitable movements inside the 

body which introduce uncertainties. For example, periodic breathing, car­

diac motion, changes in intra-abdominal pressure as well as weight changes 

over the course of treatment are controllable to a small extend. 

Different ways to deal with the uncertainties were suggested and com­

pared in the literature. In what follows, we present the model from [ ] and 

the resulting optimization problem. We will mention the assumptions of this 

model but not the inconveniences, some not obvious, they cause. One such 

inconvenience is that some assumptions are simplifying the real situation. 

In many cases, they are justified by the need to produce a computationaly 

tractable model. For all details, see [ ] . 

With the use of a computed tomography ( CT), the planner can visualize 

the location and the size of the tumor as well as the surrounding tissues. 

Assume there are K types of healthy tissues. The region on the CT where 

the tumor can be seen is caller the gross tumor volume (GTV). Next, the 

planner is identifying the clinical targeted volume (CTV) which is a region 

consisting of GTV and additional areas suspected to be affected and requir­

ing treatment. The CT is discretized into voxels and so each voxel is either 

in the tumor or in one of the K healthy tissues. Denote with N the total 

number of fractions when radiation is applied. 

Assumption 1. The beam angles have been preselected by an experi-
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enced planner, so the task is to assign the intensity of every beam i.e. decide 

the vector x where each component of xis the intensity of one beam. 

Assumption 2. The uncertainty is modeled by assuming that on a 

single fraction, one of then possible scenarios St, ... , sn can occur with prob­

ability P1, ... , Pn, respectively. 

Let aii be a column vector that denotes the deterministic dose delivered 

to voxel i in scenario j when all beams have intensity 1. Denote 

T 
ai,l 

Ai := (19) 

T 
ai,n 

Denote with Di(x) the total dose delivered to voxel i during all N frac­

tions for the given intensity vector x. Denote with Du(x), l = 1, .. , N, the 

dose delivered to voxel i in the lth fraction. 

Assumption 3. The cumulative dose Di ( x) delivered to a voxel during 

the treatment is linearly additive i.e. Di(x) = z::=l Du(x). 

Di(x) and Dij(x) are random variables since the position of the voxel 

i is uncertain. In great generality, a sum of random variables is normally 

distributed and so: 

Assumption 4. Di(x) is normally distributed with mean J.L(x, i) and 

variance a2(x, i). 

Assumption 5. For fixed i, theN random variables Di1(x), ... , DiN(x) 

are independent and identically distributed. 

It follows that 
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and 

o-2(x, i) -

= 

= 

-

~(x, i) = N · E[Dn(x)] 
n 

= N · Lpia~x 
j=l 

= N · (PT Aix) 

N · Var[Dil (x)] 

N · [Aix- e(pT Aix)]T P[Aix- e(pT Aix)] 

N ·[(I- epT)Aix]T P[(I- epT)Aix] 

N · JJRAixJI2 

(20) 

(21) 

where, in the formula above, e = (1, 1, ... , 1), P = diag(p11 ... ,pn) and 

R = pl/2(J _ epr). 

Dil(x) = a[s(l)x where S(l) is the index of the scenario that occurs in 

fraction l. 

Constraints controling the bounds on the total dose per voxel. 

Suppose that voxel i belongs to a healthy structure Hk. To protect the Hk, 

physicians require that the dose Di(x) does not exceed some level mk. If 

the voxel belongs to the tumor, it is also required that the dose is above a 

certain constant. 

For this we fix a 8 and require that P(Di(x) > mk) ~ 8. Equivalently, 
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p (Di(x) - ~(x, i) > mk - J.t\X, i)) < 8 
a(x, z) a(x, z) -

By Assumption 4 we get 

mk - J.t(x, i) > 
( 

") _ Z1-~ a x,z 

where z1_~ is uniquely defined from P(Z > z1_~) = 8 with Z being 

normally distributed with mean 0 and variance 1. Using (20) and (21) we 

obtain the following second-order constraint: 

(22) 

In a completely analogous way, one can deal with constraints that require 

Di(x) to be above a minimum level mk. We obtain that P(Di(x) < mk) ~ 8 

is equivalent with 

(23) 

Remark 8.1 In[} it is showed that the same constraints {22} and {23} are 

arising if one is modeling the uncertainty using robust linear programming. 

We briefly describe this process in what follows. 

In a pure deterministic model i.e. where Di(x) are not random variables, 

asking the total dose on voxel i to be below a critical value mk is equivalent 

with asking that Di(x) := af x ~ mk. Here ai is the vector whose component 

j is the dose received by voxel i if the j - th beam is used with intensity 1. 

In the robust linear model, the constraint af x ~ mk is replaced by a 
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family of constraints aT x :::; mk where a belongs to some uncertainty set 

U. In other words, we don't know the precise value of a and so we require 

aT x :::; mk to hold for all a's in some set U. If the set U is the ellipsoid 

{a; + Wiui : II Ui II :::; 1} and wi = Zl-5 At RT I -IN then the following is true: 

In other words, we have replaced a family of linear constraints with one 

second-order constraint. 

DV constraints. Another type of constraints required by physicians 

are the so called dose-volume (DV) constraints which are of the form "no 

more than lOOvk% of healthy structure Hk may receive more than dk units 

of radiation ( Gy) ". An exact way to model this is to introduce for each voxel 

a binary variable but this makes the problem computationally intractable. 

A approximate way to model this is to add the constraint 

L (NpT Aix- dk)+ :::; gk 
iEHk 

(24) 

where (·)+ is the positive part and gk is a parameter chosen by the 

planner. Such a constraint can be reformulated as an equality constraint. 

DVH constraints. Assume a DV constraint combined with a constraint 

on the upper bound on the total dose per voxel says that for the healthy 

tissue Hk no voxel can receive more than 70 Gy and not more than 40% can 

receive more than 50Gy. The inconvenience with this formulation is that it 

allows a treatment where 39% of all voxels receive 69 Gy and the rest receive 

49 Gy. Such situations should be avoided. For this purpose one could use 
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more than one DV constraint. For example, no voxel can receive more than 

70 Gy, no more than 40% can receive more than 50 Gy, no more than 30% 

can receive more than 55 Gy, no more than 20% can receive more than 60 

Gy. In fact, there exists the so called dose-volume histograms (DVH) that 

specify for each real number between 0 and 100 the maximum allowed dose. 

A DVH is determined for each healthy organ. Accomodating all constraints 

in a DVH is equivalent with adding an infinite number of constraints. In · 

practice, DVH constraints are replaced by the so-called gEU D constraints, 

introduced in [ ]. For every a E ~'the gEUDa constraint for the healthy 

organ H k is defined as 

{ 

IJ 1 2: [Di(x)]a :::; mk: if a E ( -oo, 0] U [1, oo) 
k iEHk 

-IJ 1 L [Di(x)]a ~ mk: if a E [0, 1] 
k iEHk 

where IHkl is the number of elements in Hk. Note that these are convex 

constraints. For good results, such constraints are introduced for different 

values of a. We recognize here the p-cone type constraints, see Chapter 4. 

Another way to model the DV H constraints is described in ([ ]) and give 

rise to second-order cone constraints. 

Problem formulation. We are ready to state an optimization prob­

lem that is incorporating the DV and the total dose per voxel constraints 

presented above. For simplicity, we start with a problem that incorporates 

only the bounds on the total dose received by each voxel. 
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min WTminTTmin + WrmaxTTmax + E;=l WrjrTj + Ef=l WkTk 

II RA·xJJ < NpTAiX-UTmin ViE CTV 
t - Zl-6../Fi ' 

mr min - UT min :::; Tr min 

II RA·xJJ < UTmax-NpTAix ViE CTV 
t - Z1-6VN ' 

Urmax - mr max :::; Tr max 

a'f;x 2:: uri' ViE CTV, j = 1, .. , n 

mr - uri :::; rri , j = 1, ... , n (25) 

IJRAixll :::; uk-N~ix, Vi E Hk, k = 1, .. , K 
Zl-6 

rr min' rr max 2:: 0 

rri 2:: 0, j = 1, ... , n 

rk 2:: 0, k = 1, ... , K 

Note that in (25) Wrmin, Wrmax, Wri' Wk are weights that penalize the 

failure to reach the minimum total dose for CTV, to exceed the maximum 

total dose mrmax for CTV, to reach the minimum dose mr in scenario j for 

CTV and to exceed the maximum dose mk for structure Hk, respectively. 

The DV constraint (24) for the healthy tissue Hk is introduced in the 

problem by adding to the objective WkQk, with wk a penalty weight and Qk 

a variable, and the following constraints: 
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l:iEHk (NpT Aix- dk)+ :::; fk 

!k- 9k :::; qk 

qk ~ 0 

Conclusions. Regarding the computational difficulty of the problems 

above we make the following remarks. 

1. We have seen that when the DVH constraint is modeled through 

gEU D the resulting problem has p-cone constraints. This motivates our 

interest in algorithms for conic optimization problems for nonsymmetric 

cones like the one by Nesterov that was described in Chapter 2. In particu­

lar, we are interested in efficient barriers for the p-eones like the one due to 

Nesterov from Chapter 4. 

2. The Ai matrices in (19) are almost fully dense matrices since all the 

beams together reach almost all voxels. When they are combined, the big 

matrix is nearly dense with aproximately 40% nonzero elements. Moreover, 

it is made of completely dense blocks and totally sparse blocks such as 

diagonal blocks. 

3. The size of the problem is determined by the number of beams and 

on how fine is the discretization. The two lead to large scale optimization 

problems. For example, 1000 beams, approximately 4000 voxels that are 

resulting from a very coarse discretization, where the side of each voxel is 

1 em, and 8 different scenarios result in a problem with 4000 · 9 = 36.000 

variables and 4000 cones. 

4. Due to Remarks 2 and 3, the optimization problem that we have 

presented can not be solved by existing solvers such as SeDuMi, SDPT3, 
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DSDP etc. A solver that allows tuning the linear algebra and is capable to 

handle nonsymmetric cones is essential. 

9 A MATLAB prototype 

In the previous section we have described an optimization problem rele­

vant to IMRT treament planning and we have emphasized that the ma­

trix defining the linear constraints is nearly dense with approximately 40% 

nonzero elements. Also, a coarse discretization ussualy creates instances 

with approximately 5000 positive variables and 4000 second order cones of 

dimension 9. 

We have created an instance with 5458 positive variables, 3395 second 

order cones of dimension 9 and a constraint matrix with 38% nonzero ele­

ments and 1245 rows. Both SeDuMi [ . ] and SDPT3 [ J crash during the 

first iteration printing "Out of Memory". The test was run on an Intel Core 

(TM) 2 CPU 6600 @2.4 GHz computer with 2GB of RAM memory. 

Therefore, we have written a MATLAB implementation of Nesterov's 

primal-dual algorithm for nonsymmetric cones that was described in Sec­

tion 2.6. We have followed two objectives. First, we wanted a prototype 

to be used later when all the tools required to implement this algorithm 

in YAS are available and we can proceed to implementation. As we have 

mentioned, for IMRT, gEUD constraints motivate nonsymmetric conic op­

timization. Second, we wanted to explore the consequences of treating the 

constraint matrix as a dense matrix when this is the case. We expected a 

decrease of the time required at each iteration when compared with exist-
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ing solvers. Moreover, dense matrix operations can benefit from multiple 

processors platform. Therefore, it is desirable that a solver allows the user 

to model the data at least with dense and sparse matrices. 

We tried to replicate the shape of YAS by using functions that return 

the value, gradient or Hessian of a barrier at a given point. As expected, 

for a product cone the barriers for each member cone are used. We have 

implemented barriers for the positive orthant, the second order cone and the 

cone that is a product of second order cones with the same dimension. Note 

our choice of including the barrier for the product of second order cones in 

the set of basic barriers. Doing this caused a major improvement in the 

speed of our code as loops in MATLAB are extremely slow. Alternatively, 

we could have implemented the loops in C. However, we suspect that, like 

in our case, a barrier written for a family of cones of the same type and 

dimension will be much faster than the barrier obtained for the product 

cone. This issue, which we haven't anticipated, can be accommodated with 

the design of YAS and can imply speed improvements for such problems. 

10 Benchmarking 

In what follows we present the results of some experiments. We are only 

concerned with the time required by one iteration and not with the number 

of iterations, which depends on the algorithm that is used, or with the 

precision that we can solve the problem. The main computational effort in 

one iteration is to form the normal equations. 

As mentioned before, we are concerned with a conic problem with 5458 
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positive variables, 3395 second order cones of dimension 9 and a constraint 

matrix with 1245 rows and 38% nonzero elements. 

Ideally, IMRT optimization problems should not be solved on supercom­

puters bur rather on desktop machines. Therefore, we have started our 

testing on an Intel Core (TM) 2 CPU 6600 @2.4 GHz computer with 2GB 

of RAM memory. 

As mentioned, SeDuMi and SDPT3 have run out of memory at the 

first iteration when 3395 cones are considered. We were interested to see 

what is the maximum number of cones that can be supported. Their upper 

bound is 1500 cones in which case SeDuMi requires 141 seconds/iteration 

and SDPT3 requires 22 seconds/iteration while our implementation requires 

12 seconds/iteration. The upper limit for our implementation is 2000 cones 

and we require 33 seconds/iteration. 

Next, we have moved to a multiprocessors workstation and compared our 

implementation with SeDuMi. The workstation has 16 Dual Core AMD 

Athlon Opteron (885) processors at 2.4Ghz and 64Gb of RAM. Further, 

MATLAB for 64 bits is used together with SeDuMi 64. Using the MKL 

library through MATLAB we have speed up the computations in our im­

plementation by using more processors. We have recorded the following: 

119 



M.Sc. Thesis- Voicu Chis McMaster - Mathematics and Statistics 

SO cones Processors Sec /Iter SeDuMi Sec /Iteration Prototype 

1500 1 90 17 

4 90 7.5 

8 90 6 

16 90 5.7 

3395 1 143 33 

4 143 14 

8 143 10 

16 143 10 

6000 1 262 56 

4 262 26 

8 262 20 

16 262 20 

From this table one can see that, when only one processor is used, the 

time per iteration required by the prototype code is significantly less than 

the time required by SeDuMi. This is due to the fact that SeDuMi treats 

data as sparse while these instances have dense data. The prototype code 

treats data as dense. FUrthermore, multiplication of dense matrices can be 

parallelized and so the prototype code is faster when more processors are 

used. 

120 



M.Sc. Thesis - Voicu Chis McMaster - Mathematics and Statistics 

11 Conclusions 

In this thesis we have set the basis of a new IPM-based solver, YAS, with a 

modular design implemented using the object-oriented paradigm in C++. 

Through this design we aim to 

• allow easy development of IPM algorithms for optimization problems 

beyond standard symmetric cone optimization problems; 

• allow easy switch between different linear algebra packages that sup­

ply routines required by IPM algorithms; in particular, one can use 

platform-tuned linear algebra packages; 

• allow the user to exploit the type/structure of the matrices involved in 

the linear algebra by introducing a notion of k-tuple block-structured 

matrix with (low-rank) multiplicative updates; 

• allow easy switch between different numerical precisions of data to 

speed up computations; 

• allow transparent implementation of techniques motivated by numer­

ical accuracy such as storing the iterates of the algorithms in a scaled 

space (see Y AS _k_EVS in Section 5.2); 

• allow modelling of optimization problems in their natural formula­

tion (see Semidefinite optimization in matrix variable in Chapter 3) 

including supporting both primal and dual problem formulations; 

• provide a framework for the development of an open-source library of 

derived classes that are tuned for optimization problems with specific 
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data structure and problem classes, such as optimization over p-eones. 

Y AS's design is split in two levels: 

• basic linear algebra layer; 

• interior point methods layer. 

Basic linear algebra layer's goal is to provide a transparent access to 

hardware-tuned linear algebra routines. This layer consists of: 

• the low -level routines, further grouped into: 

- BLAS routines (matrix-matrix multiplications and additions for 

different types of matrices); 

- LAPACK routines (used for inverting, factorizing, solving linear 

systems with different types of matrices); 

• the Y AS_ K _block class (allows the storage of one or more blocks 

of the same type and dimension and provides methods to do linear 

algebra operations. By a block of a certain type we refer a matrix with 

an exploitable structure such as a matrix that is sparse, symmetric, 

diagonal etc); 

• the Y AS_ K _ mb class (allows the storage of one or more matrices of 

blocks of the same type and dimension and provides methods to do 

linear algebra operations. By a matrix of blocks we refer a matrix that 

can be splited into blocks). 
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The main contribution of this thesis is the design and implementation of 

the linear algebra layer for the new object-oriented platform. In particular, 

the following tasks are accomplished: 

• a detailed design of the linear algebra layer. The consisting classes 

and routines are described in all details. Resulting advantages are 

discussed; 

• implementation of most low-level routines; 

• implementation of Y AS_ K _block; 

• a rough design of the IPM layer. The main classes needed in this layer 

are identified. Resulting advantages are discussed. 

In addition, we present a "proof of concept". The problem considered 

is a large scale, dense optimization problems arrising in radiation therapy 

treatment planning. Time per iteration is compared with two of the state­

of-the-art IPM solvers SeDuMi and SDPT3 on a multi-processor computing 

server comprised of 16 AMD computing cores. 
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