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Abstract 

We study selfish routing with user-specific preferences. The selfish routing model 

captures the selfish behaviour of users in a transportation system. Each user tries to 

minimize her own travel latency by choosing the shortest route, i.e. the route with 

the smallest latency, without taking other users' welfare into consideration. In this 

model, users are assumed infinitesimal, in the sense that the impact of the behaviour 

of any single user to the network is negligible. Under certain constraints , a steady 

state is known to exist, where no user has the incentive to deviate from her current 

route. This state is referred to as a traffic equilibrium. 

We extend the traditional selfish routing model by incorporating user pref­

erences. In traditional selfish routing, one assumes that users make their routing 

decisions merely based on path latencies, and furthermore all users perceive the same 

latency on any single edge. We observe that in reality users may have their personal 

preferences on the routes to travel on, e.g., some may be accustomed to certain routes 

and feel unwilling to try out new ones; some may enjoy the wonderful views available 

on some routes more than their care for the slightly longer travel time; some may be 

limited to certain r utes because they prefer public transportations, and so on. This 

observation motivates our work. We introduce to the model a set of edgewise user­

specific preferences which come as inherent properties of each user. The disutility of 

using each edge, which is the basis of a user's routing decision, is now a function of 

latency and user preference. 

In this work several equilibria related aspects of the extended model are stud­

ied. Since we are working with infinitesimal users, the distinct combinations of edge 
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preferences among all users might be either finite or infinite. There is qualitative 

difference between these two cases in terms of analysis, and both cases are discussed. 

We show existence and uniqueness of equilibria, give an upper bound on the price of 

anarchy, and study how taxation can help in this setting. 
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Chapter 1 

Introduction 

1.1 Selfish Routing 

Almost everybody t ravels on a day-to-day basis. People start off from different places, 

and bear different destinations in mind. Normally there will be more than one route 

that can lead a traveller to her destination, and it is up to her decision which route 

to travel on. Transportation resources, most notably roads, are shared among all 

travellers. Same as in other resource sharing systems, there is the phenomenon called 

congestion, that is when a lot of people are travelling on the same road, it usually 

takes a long time to get through - almost everyone has experienced being caught 

in a traffic jam. Fr m a bird 's-eye view, the freedom of choice on the route to travel 

on for everybody induces a variety of travel patterns. However, there is often an 

intention behind each traveller making her decision, which most probably is to get 

to her destination as fast as possible. When it comes to this point, people are very 

likely to be selfish, in the sense that they do not care about how their choices will 
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influence other fellow travellers. 

This commonplace experience is where the model of selfish routing originates 

from. The system is formulated as a directed network with a given set of node pairs 

called the origin-destination (0-D) pairs. With each 0-D pair, a fixed demand is 

associated, representing the amount of users to be routed correspondingly per unit 

of time. An 0-D pair together with its associated demand is usually referred to 

as a commodity. Each path in this network is prescribed with a latency function 

that quantifies the common congestion to be experienced by all users using the path 

according to the current routing pattern. Each user behaves selfishly, with the objec­

tive of minimizing travel latency for herself without taking other users' welfare into 

consideration. In this model, users are assumed infinitesimal, in the sense that the 

impact of the behaviour of any single user to the network is negligible. Under certain 

assumptions, a steady state exists, in which no user has the incentive to deviate from 

her current path. This steady state is then referred to as an equilibrium. Although 

selfish routing originated in transportation systems, it is also possible to adapt it to 

routing on data networks, e.g. the Internet. 

In this work, since we will be extending the selfish routing model, we shall 

sometimes refer to it as traditional selfish routing in order to differentiate it from our 

extended model. 

1. 2 User Preferences 

In the traditional selfish routing model described above, an implicit assumption is that 

users make their routing decisions merely based on path latencies, and furthermore all 
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users perceive the same latency on any single path. This means that every traveller 

judges the routes using exactly the same standard. We observe that this is too strong 

an assumption in many cases, if not unrealistic, as it rules out the heterogeneity 

among different users. Users are likely to have their personal preferences on the 

routes to travel on. For example, some users may be accustomed to certain routes 

and feel unwilling to try out new ones; some may enjoy the view available on some 

routes more than their care for the slightly longer travel time; some may be limited 

to certain routes because they prefer public transportations, and so on. This inherent 

heterogeneity among individual users, on an abstract level, can be summarized by 

nonuniform perceptions of path latencies in the network. And this motivated our 

work. 

We extend traditional selfish routing with user-specific preferences which come 

as inherent properti s of each user and are assumed constant. In our model, users 

are as selfish are they always are, but their decisions will involve both path latencies 

and personal preferences. It is interesting to point out that, during the writing of 

this thesis, we noticed the recent work of [MMMT07] in which the authors studied 

congestion games with player-specific constants, the idea of which is very similar to 

our user preferences. We see that their network congestion games are equivalent to 

selfish routings with atomic players, as opposed to non-atomic players or infinitesimal 

users, which is our case. In spite of the difference in types of games, their work shares 

much resemblance in motivation with ours, which on the other hand further supports 

the practical importance of our extension. 
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X 

d=1 

1 

Figure 1.1: Pigou's example 

1.3 Previous Work 

It has long been known that, in general, such selfish behaviour may not lead to optimal 

social welfare which is measured by the total latency experienced by all users on the 

network. The best example to illustrate this fact, as well as to obtain a first feeling of 

selfish routing, is Pigou 's example, which essentially originated from [Pig20] in 1920. 

In Pigou's example, shown in Figure 1.1 , the network consists of only two nodes and 

two parallel links. One of the links is prescribed with latency function x , i.e. linear to 

the amount of users using it; the other link bears constant latency 1 no matter how 

much traffic is put upon it. There is a total demand 1 of infinitesimal users to be 

routed from s tot. Then intuitively one should be able to predict how selfish users will 

travel through this network. All of them will choose the linear link which looks like a 

"safe shot", as the worst latency they can ever have is no worse than going through 

the constant link. Then if we look at the total latency experienced by all users, pure 

selfishness gives us 1, which is by multiplying the per-person latency with the total 

amount of users. Now imagine there is some central coordinator who regulates traffic 

in a half-half fashion, i.e., both links get half of the users travelling through them. 

As a result, the link latencies will be 1/2 and 1 respectively, and half of the users will 
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be happier than before, while the other half will just remain unchanged. The total 

latency in the coordinated case is 3/4, which is in fact the best result one can get in 

this example. So 1 versus 3/4, this is the loss of social welfare caused by selfishness 

(anarchy). 

It is natural to measure this inefficiency of selfishness by the ratio of the 

worst-case selfish social cost to the optimal social cost. This ratio is usually referred 

to as the price of anarchy [PapOl]. For instance, it is 4/3 in Pigou's example. The 

price of anarchy in networks with general topologies was first theoretically studied by 

Roughgarden and Tardos [RT02], where the authors produced a tight upper bound 

on it for networks with linear latency functions. Interestingly, the upper bound is 

4/3, implying that Pigou's example is the worst case among all networks with linear 

latency functions. Perakis [Per04] generalized it to networks where latency functions 

are non-separable a d asymmetric, and provided an alternative proof of the bound 

in [RT02]. Correa, Schulz, and Stier-Moses [CSSM04] then proposed the notion of 

,6-function, as an e:xtension to the anarchy value a in [Rou03], to categorize latency 

functions, thus generalizing the result to general latency functions. They also gave 

an even simpler pro f of the 4/3 bound for linear latencies. 

With this inefficiency of selfishness, it arises as a natural quest for system 

designers to think of means to cope with it. While it is possible to tackle this problem 

with modifications to network topologies or latency functions, most of the time it is 

more realistic to deal with selfishness by means of taxation. Faced with extra disutility 

taxes on each choice of route, users will have to trade off between latencies and taxes 

when making their routing decisions. In case users are homogeneous in the latency­

tax tradeoff, the classical marginal cost taxation due to [Pig20], i.e . the tax of using a 
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route is equal to the additional congestion induced to all other users, is known to be 

capable of inducing equilibria that minimize total latency [BMW 56]. The taxation for 

heterogeneous users, i.e. users with heterogeneous trade-offs between tax and latency, 

appeared much later in literature. Yang and Huang [YH04] studied this case and 

showed the existence of optimal taxes that induce equilibria that optimize the system 

performance. Similar results appeared also in [CDR03, KK04a]. 

Another direction of research on selfish routing is to extend or modify the 

model to accommodate more general or more specific problems. Aashtiani and Mag­

nanti [AM81] proved existence and uniqueness of equilibria on a model with non­

separable latency functions and elastic demands, that is the demand of each com­

modity is no longer a constant but depends on the cost of routing this commod­

ity. [CSSM04] considered the case where edges of the network have capacities, and 

bounded the ratio of the best equilibrium social cost to the optimal social cost, as the 

worst equilibrium in the capacitated model can be arbitrarily bad. In [KKVX07] the 

authors extended selfish routing by allowing a fraction of oblivious users, who make 

routing decisions based only on static characteristics of the network and are oblivious 

to congestion. Daganzo and Sheffi [DS77] introduced errors to user perceptions of 

latencies, and characterized equilibria in a stochastic sense. In the model of [MNS04], 

user strategies are edge based rather than path based, in which case by fixing a strat­

egy, a user is not bound to travel on a certain route. [FOV07] assigns priorities to 

each user where users with higher priorities experience less delay when traversing the 

same edge as compared to users with lower priorities. 
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1.4 Our Contribution 

In this work, we formally introduce edgewise user preferences as a given input to the 

traditional selfish routing setting. We model them using a penalty function t that 

maps each user to a nonnegative edgewise penalty value. The smaller the penalty 

value, the more preferable the particular edge to the user. Edgewise penalties con­

tribute to edge disut.ilities as an additive term, that is, the disutility of using edge e 

for user r is the summation of latency on e due to congestion, and the user-specific 

penalty value te ( r) f e. Since we are working with infinitesimal users, the range of t 

may be a finite set or an infinite set. In other words, there may be finitely or infinitely 

many different penalties among all users. There is a qualitative difference between 

these two cases in t erms of analysis, and both cases are discussed in this thesis. Our 

contributions include the following: 

• We extend the traditional selfish routing by incorporating user-specific prefer­

ences. We prove the existence of equilibria in the extended model as a direct 

application of [Sch73, Theorem 2]. We prove the uniqueness of equilibria, that 

is, for a given problem setting, all equilibria induce identical edge latencies. 

Notably, our niqueness result implies the validity of the conjecture made in 

[CDR03] after Proposition 2.5. 

• We show that the price of anarchy for traditional selfish routing given in [CSSM04] 

remains valid in our extended model. This shows that introducing nonnegative 

user-specific penalties does not degrade the efficiency of equilibria. 

• We study the existence of taxes that drive users into desirable flow patterns. We 

consider two separate objectives: to minimize the social cost, i.e. cost including 
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both latencies and penalties, and to minimize the total latency. When users have 

homogeneous tax sensitivities, we show that marginal cost taxation suffices to 

minimize the social cost. We also show that no optimal social cost tax exists 

when users have heterogeneous tax sensitivities in general by a counter example. 

For optimal total latency, we observe that the proving techniques in [KK04a] 

as well as their results apply in our model. 

1. 5 Organization 

In Chapter 2 we give some basics on selfish routing and present the formal formulation 

of our extended model. Chapter 3 discusses properties of equilibria in our model, 

including existence, uniqueness, and the price of anarchy. In Chapter 4 we study the 

existence of two kinds of optimal taxes: one that minimizes social cost, and one that 

minimizes total latency. Some problems and subtleties unexplored in the main body 

of the thesis will be discussed with more details in Chapter 5. 
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Chapter 2 

Preliminaries 

In this chapter, preliminary knowledge required in the rest of this thesis is reviewed. In 

Section 2.1 we go through a few basic concepts in game theory and give details about 

the model of traditional selfish routing. We then formally introduce user preferences 

by means of penalt" function in Section 2.2. In Section 2.3 our extended model is 

formally introduced. 

2.1 Selfish Routing Basics 

Before we actually move onto selfish routing, a few words about some fundamental 

concepts in game theory might be helpful in grasping the basic ideas of selfish routing. 

However we do not aim at precise definitions or rigorous proofs, for which one should 

refer to textbooks on game theory, e.g. [FT91]. 

A game in normal form consists of a set of players, a set of available strategies 

for each player, and a payoff function that maps strategy profiles to payoffs for each 
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player. A strategy profile is a set of strategies with one strategy from each player 's 

available strategy set. In other words, a strategy profile denotes the chosen strategy 

of each player. We will consider non-cooperative games, in which players are self 

centric and play to maximize their own payoffs while paying no attention to other 

players' payoffs. A (pure) equilibrium, or Nash equilibrium, is a strategy profile such 

that no player can achieve a larger payoff by unilaterally changing her strategy. Thus 

at equilibrium, assuming all players are rational, no player would have the incentive 

to change her chosen strategy, hence resulting in a steady state. A priori, no pure 

equilibrium may exist in a game. 

Selfish routing is an example of a non-cooperative game. The setting is a 

network, formulated as a finite directed graph. The set of users1 is an infinite set 

but with a finite measure representing the total amount of users using the network. 

Probably the best way to comprehend this is by thinking of points on a closed real 

interval. Users are grouped by their origins and destinations , i.e. where they come 

from and want to travel to, on the network. A strategy is a simple path on the network, 

and the set of available strategies for a user is the set of simple paths connecting her 

origin and destination, which we always assume is nonempty. A strategy profile will 

induce a path2 flow on the network, characterized by the amount of users using each 

path. The disutility, i.e. the negative payoff, of a user is the latency on her chosen 

path, given the path flow induced by current strategy profile. If path latency functions 

are continuous, then one can observe Wardrop's principle [War52]: 

At equilibrium, for each origin-destination pair, the latencies of all used 
paths are equal, and less than or equal to those of unused paths. 

1 In selfish routing, people often refer to players as users. 
2We shall use path to refer to simple path if not stated otherwise. 
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In traditional selfish routing, we do not distinguish between individual users 

with the same origin and destination, and we are only concerned with macroscopic 

variables such as flows. Thus there is the concept of equilibrium flow, which is the 

induced path flow of a Nash equilibrium of the game. 

In the aforementioned setup, we stated only that path latencies are functions 

of path flows. This ~s quite flexible in general which often implies complexity in the 

analysis. There is a more restrictive version, called the additive model, which is widely 

adopted in modeling real life problems. In the additive model, the latency of an edge 

is a function of path flows, and the latency of a path is given by the summation of 

the latency of its ed es. If we use lp (f) and le (f) to represent the latency on path p 

and on edge e respectively given a flow f , then the additive model can be expressed 

as lp(f) = L eEp le(f). If we further require that the latency of an edge depends 

only on the flow thr ugh that edge, then we have the case which is called separable 

latency functions. Csually when we refer to selfish routing, we mean selfish routing 

with separable laten y functions . 

The proof for the existence of equilibria in selfish routing is not trivial though. 

If the latency functions are continuous, nondecreasing, and separable, then the ex­

istence of equilibria is achieved by formulating equilibrium flows as solutions to a 

convex program [B W56]. With non-separable latency functions , if they are contin­

uous and nonnegative, then formulating equilibrium flows as solutions to a nonlinear 

complementarity problem and applying Brouwer's fixed-point theorem can show the 

existence of equilibria [AM81]. 
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2.2 Infinitesimal Users & Preferences 

Here we formalize the concept of infinitesimal users. The set of infinitesimal users 

is modeled using a closed real interval, and without loss of generality we use [0 , 1], 

endowed with Lebesgue measure A. Then whenever we want to quantify the amount 

of a subset of users, A will be used as the measure. For readers not familiar with the 

Lebesgue measure, it can be intuitively thought of as a way of measuring the volume 

or length of a set. One should note that this representation naturally implies that 

users are unweighted. 

To model user preferences we use a penalty function t on domain [0, 1]. The 

codomain of t is the set of edgewise penalty assignments which we will introduce 

formally in Section 2.3. As a preview, one important thing about the penalty function 

is that it may take on either finitely or infinitely many distinct values, and in the latter 

case it means users can not be grouped into a finite number of groups according to 

their preferences. This is the key point that distinguishes finite and infinite instances 

in the rest of this work. 

2.3 Our Model 

General Model. Let G = (V, E) be a finite digraph (possibly with parallel edges 

but no self loops) with P denoting the set of all simple paths in G. We shall use Pw 

for any node pair w E V x V to denote the set of all simple paths connecting win G. 

Let the real interval R = [0, 1] endowed with Lebesgue measure A denote the 

set of all users traveling through the network. Each user r E R is associated with 
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a pair of nodes, representing his origin and destination. This association is given by 

the 0-D function d : R - V x V. Let D be the range of d, i.e., D is the set of 

all 0-D pairs; then we require for each 0-D pair w E D, that Pw is nonempty. We 

also denote that Pr = Pd(r), which is the set of paths available for user r, for ease of 

exposition. 

A flow in our general model is a measurable function f : R - P, i.e. an 

assignment of users to paths. Notice that the definition of flow in the general model 

is different than the traditional sense. A flow f is said to be feasible if it satisfies the 

demands, that is, if a.e. 3 f(r) E Pr. Denote the set of all feasible flows by F. For 

each path pEP, the path flow (with respect to flow f) is defined as fP = ..\( {r E R: 

f ( r) = p}), represe ting the amount of users using path p in flow f. For each edge 

e E E, denote the edge flow by fe = Lp3 e fp· 

To model congestion effects, each edge e is associated with a real-valued latency 

function le, i.e., leUe) is the common latency to be experienced by all users using edge 

e when a.e. user travels according to f. Most of the time we will be dealing with les 

that are continuous and nondecreasing in this thesis. We also assume the additive 

model where path latencies are given by lp(f) = LeEp le(fe) for each path p. 

Each user can have his personal preferences on edges. This is captured by the 

edge penalty( dislike) function t: R- JR~ci where te(r) measures the penalty of using 

edge e for user r. Conceivably the most preferred edge for a user will be assigned the 

smallest penalty value. Also we let tP ( r) = LeEp te ( r) denote the penalty of using 

path p for user r. vVe will assume that tis measurable by default. 

3The acronym a. e. stands for almost every or almost everywhere. This is a terminology used 
with Lebesgue measures to denote that the subset of objects being quantified that do not satisfy the 
subsequent statement is a null set, i.e. a set with zero measure. 

13 
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We shall call the quadruple (G, d, l, t) a (general) instance of our problem. 

The rest of this section will be based on some instance ( G, d, l, t) if we do not make 

explicit declarations. 

The disutility a user sees comprises two parts: the latency imposed on edges 

and incurred by congestion, and the penalty as a result of her personal preference. 

Formally, the disutility of using edge e for user r when a.e. user travels according 

to flow f is defined as ue(r, f) = le(fe) + te(r). The path disutility is given by 

up(r, f) = LeEp ue(r, f) = lp(f) + tp(r) for each path p. Also let u(r, f) = UJ(r)(r, f) 

for simplicity in symbolism, where f(r) is the path chosen by user r in flow f. Then 

u(r, f) is the traveling disutility of user r in flow f. 

The social cost c induced by flow f is the total disutility of all users when 

almost everyone travels according to f. Formally the definition of the social cost is 

c(f) = JR u(r, f)d>.. Furthermore let us define an auxiliary cost function cp (j2) = 

JRUJ2(r)(r , f 1 )d>. for any flows f 1 and j2. Cf1(j2) can be interpreted as the total 

disutility induced by P on a constant latency network where for each edge e, the 

edge latency is given by le(f1). Note that we have c(f) = cJ(f) by definition. 

We say that a flow f* is at equilibrium iff it is feasible and, for a .e. user r, 

u(r, j*) ::; up(r, j*) , Vp E Pr. (EC) 

Notice that this equilibrium condition is equivalent to saying 

c(f*) ::; cr (!), V f E F. (EC') 

Going from (EC) to (EC') is a simple result of the monotonicity of Lebesgue inte-
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gration and the fact that null sets can be ignored when doing Lebesgue integration. 

The reverse direction can be seen by constructing a new flow that only varies with 

f* in those users that are not "satisfied", thus arriving at a contradiction to (EC') 

inequality. Due to the equivalence between the two formulations, we will simply use 

(EC) to refer to eith r formulation in the rest of this thesis. 

Discrete Model. Consider some instance (G, d, l, t) where the range oft is a finite 

set. In other words, t here are only finitely many different penalty assignments among 

all users. We shall say that such t is finite and ( G, d, l, t) is a finite instance. We will 

construct a so called discrete instance with respect to this finite instance, which will 

be a traditional selfish routing game with nonseparable latency functions. 

LetT= {t(r ): r E R} be the set of all penalty assignments. Note again that 

T is a finite set. For each 7 E T we let cr = (Vr, Er) be a copy of G labeled with 7. 

Denote the set of all labeled nodes as V = UrET vr and the set of all labeled edges 

as £ = UrETEr. Hence we have a huge yet finite digraph Q = (V, £) which is the 

result of aggregating several Gs with different labels together. Notice that each Gr is 

an isolated component of Q since we do not add extra edges to connect them. Thus 

the set of all simple paths in Q is simply given by P = UrET pr. As usual, we use P w 

to denote the set of simple paths connecting w in Q for each node pair wE V x V. 

The demand function 8 : V x V ---+ JR~0 , which gives the amount of users 

associated with each node pair (v~\ v?) in r;;, is defined as o(v?, v;2
) = .\( {r E R : 

d(r) = (v1, v2) and t(r) = 71 = 72} ). Note that this definition implies that o(v~\ v;2
) 

can take nonzero values only when 7 1 = 72 , i.e. when the two nodes are from the same 

isolated subgraph. 
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A (path) flow h on Q is a vector in IR~ci indexed by each path p7 E P of Q. It is 

said to be feasible if for each node pair w of Q, LprEPw hpr = b"(w), i.e., it satisfies the 

demands. Let 7-{ be the set of all feasible flows and note the convexity and compactness 

of 7-f. For each edge e7 of Q we shall denote edge flow by her = Lpr 3 e hpr . For a 

path p E P of G, we let hp = LrET hpr, i.e. the summation of flows on all copies of 

the same path. Similarly for an edge e E E, we let he= LrET her· 

The latency as a result of congestion differs slightly from the traditional selfish 

routing in the sense that it is nonseparable. The latency on an edge of Q depends 

not only on the flow through this edge, but also on flows through all its copies with 

other labels. Formally, the edge latencies induced by flow h on Q is given by fer (h) = 

le(he) = le(LrET he) for each edge er of Q. Note that copies of the same edge will 

have the same latency. Then assuming the additive model, for each path p7 of Q we 

have that the path latency induced by flow his given by fpr(h) = LerEpr fe(h). 

We shall call the quadruple (Q, b", f, T) a discrete instance with respect to 

instance (G, d, l, t). 

Same as in the general model, the disutilities in a discrete instance is given 

by the summation of the latencies and the penalties. However we do not have to 

distinguish between different users anymore when talking about disutilities (we did 

not make this distinction when defining flows either), since the penalties are now 

encoded into the disutility function of graph Q. Formally, the disutility of using edge 

e7 induced by flow h on Q is given by f.Ler (h) =fer (h)+ Te· Similarly path disutilities 

are given by P,pr(h) = LerEpr f.Ler = fpr(h) + Tp. 

Further, we use C(h) to denote the social cost induced by flow h, that is 

C(h) = LpEP P,p(h)hp = LeE£ J.Le(h)he. Again we define the auxiliary cost for any 
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flows h1
' h2 as chl (h2

) = LpEP /.Lp(h 1 )h; = LeE£ !1-e(h1 )h~ . 

In instance (9, 6, .e, T), a flow h* is said to be at Wardrop equilibrium iff it is 

feasible and for all node pair w of Q, 

This is the so called Wardrop's principle [War52], and it can be formulated in terms 

of variational inequalities due to [Smi79] : 

C(h*) - Ch* (h) ::; 0, Vh E H. (WP) 

Interrelationships. From the buildup of the discrete model, we already see its 

relationship to the general model. There are some very useful properties implied by 

this relationship which also explain our intuition in defining it this way. Now consider 

some finite instance (G, d, l , t) and its associated discrete instance (Q, 6, .e, T). Observe 

the surjective mappmg g: F--+ 7-l given by gp.,.(f) =.X.( {r E R: f(r) = p and t(r) = 

T}) for each path p7 of Q. In other words, gP.,. (f) is the amount of users with penalty 

T using path p according to flow f. Then the following properties can be verified 

trivially: 

• for any flow f E F, we have fe = 9eU) = L
7
ET 9e.,. (f) for each edge e of G; 

• for any flows j l, P E F, we have c11(j2) = Cg(Jl)(g(j2)); 

• f E F is at equilibrium iff g(f) is at Wardrop equilibrium. 
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The reasoning behind setting up the discrete model lies in the fact that it 

possesses some nice characteristics which are of critical help in studying equilibria 

related properties of the general model. 

Alphabet. Since we are dealing with general instances and discrete instances at 

the same time, it is not easy to make a distinction while being concise. One simple 

naming convention we adopt is that, we tend to use ordinary English letters for the 

general model and calligraphic and Greek letters for the discrete model. 
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Chapter 3 

Properties of Equilibria 

In this chapter, we will discuss equilibria related properties of our model defined in 

Section 2.3. First w will consider the existence of equilibria in Section 3.1. Then in 

Section 3.2 we give results for the uniqueness of equilibria. In Section 3.3 the price 

of anarchy in our model shall be discussed. 

3.1 Existence of Equilibria 

To study equilibria in our model, the most basic property in question is their existence. 

For finite instances , our discrete model is captured as a special case of the model 

studied in [AM81], ue to the very general disutility function T allowed there. Thus 

the existence of equilibria is guaranteed by [AM81, Theorem 5.3]. However, their 

approach can not be generalized to infinite instances in our model. Instead, we 

observe that our general model fits into the very general definition of non-atomic 

games due to [Sch73]. In particular, [Sch73, Theorem 2] implies existence of equilibria 
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in our model. With an attempt to make this thesis self-contained, we shall present 

a brief walk-through of their proof. However, we do not strive for preciseness nor 

completeness due to the depth of background involved, and because it is not a major 

topic of this thesis, nor is it our original work. 

Non-Atomic Games. First we introduce the setup of non-atomic games and give 

the correspondence between non-atomic games and our general model. We have the 

set of players T represented by the real interval [0, 1] endowed with Lebesgue measure 

.A. There is a finite activity pool of size n, that each user t E T can choose from. This 

corresponds to the set of paths in our model. We use the basis vector ei E IRn, i.e. the 

vector in IRn with 1 on the ith dimension and 0 on all other dimensions, to denote an 

activity (a pure strategy of a player). Each player is confined to a nonempty subset 

of activities, denoted by E( t) = { ei1 , •.. , eiJ, as in our model where each user faces 

a set of paths connecting her origin to her destination. Let P(t) = conv(E(t)) be 

the set of available mixed strategies for player t, where conv stands for convex hull. 

Also let P = conv( { e1 , ... , en}) be the set of all possible mixed strategies, which is 

a superset of P(t) for all t. AT-strategy is a measurable function x = (xl, ... , xn) 

from T toP. If a.e. x(t) is a basis vector, we say that x is a pure T-strategy. On the 

other hand, if a.e. x(t) E P(t) we say x is feasible. Obviously a pure (and feasible) 

T-strategy corresponds to a (feasible) flow in our general model. Let P denote the 

set of all feasible T-strategies. Then the set P is compact and convex. 

We need the payoff function to complete the construction of a game. We first 

introduce a utility function il: T x P---+ 1Rn. ili(t0 , x) measures the utility of player t0 

choosing pure strategy ei when every other player t chooses x(t). The utility function 

here plays the same role as the disutility function in our model which indicates the 

20 



Master Thesis - H ao X ia M eM aster - Computing and Software 

disutility of using a path for a user when a.e. user moves according to a fiow. 1 So, 

the payoff of player t in T-strategy xis defined as ht(x) = x(t) · u(t, x). 

There are two conditions to be satisfied by a non-atomic game in our discus-

sion: 

(a) For all players t E T, u(t, ·) is continuous; 

(b) For all feasible T-strategies x E P and i,j = 1, ... ,n, the set {t E Tlui(t ,x) > 

uJ(t,x)} is measurable. 

Apparently the disutility function in our model meets both requirements if the latency 

function l is continu us. 

Finally, a feasible T-strategy is said to be at equilibrium iff., a.e., 

'Vp E P(t), ht(x) 2: P. u(t, x), 

which again corresponds to our equilibrium condition (EC) when x is a pure T­

strategy. 

Existence of Equilibria. By the setup of non-atomic games, it is easy to see that 

existence of pure T-strategies at equilibrium in non-atomic games will be a sufficient 

proof for existence f equilibria in our general model. In order to achieve this, the 

authors first proved existence of equilibria when allowing mixed strategies. 

Theorem 3.1.1 ([Sch73, Theorem 1]). A non-atomic game fulfilling conditions (a) 

and (b) admits a T -- strategy at equilibrium. 

1The difference between utility and disutility can be simply eliminated with a negative sign. 
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Proof Sketch. For each player t and feasible T-strategy x, define the set of best re­

sponses 

B(t, x) = {p E P(t) 1 Vq E P(t), P. u(t, x) 2: q. u(t, x)}. 

Observe that B(t, x) is convex and nonempty. 

Claim 1. For each player t E T the graph of B(t, ·) is closed in P x P. 

For any t, consider sequences Xn --+ Xo and Pn --+Po that satisfy 

Vq E P(t), Pn · u(t, xn) 2: q · u(t, xn), n = 1,2, ... 

The continuity of u(t, ·) in (a) ensures that the inequality should hold in the limit, 

which proves Claim 1. 

Then we define a set-valued function a: P--+ Pas 

a(x) ={yEp I a.e. y(t) E B(t, x)}. 

In other words, a(x) is the set of best mixed strategy profiles when the utility for 

each player is fixed at u(t, x). Note that any T-strategy x satisfying x E a(x) would 

also satisfy the equilibrium condition, and this is the direction where the proof goes. 

Claim 2. For each x, a(x) is nonempty and convex. 

The convexity of a(x) follows from that of B(t, x) . As for nonemptiness, it is 

easy to construct an element of a ( x) . Define 
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i.e. Ti is the set of players for whom ei is the best pure response. Apparently U~1 7i = 

T and Vt E T, ei E B(t, x). Also each Ti is measurable due to condition (b). Then 

we make them disjoint by letting S1 = T1 and Si = Ti\(U;:~ T1), i = 2, .. . ,n. Thus 

we have aT-strategy fj in a(x) where fj(t) = ei fortE Si, i = 1, ... , n. 

Claim 3. The graph of a is closed in P x P. 

This can be proved with the help of Claim 1 and [Aum65, Proposition 4.1]. 

Details are ignored here. 

The properties of a in Claim 2 and Claim 3 fulfill the conditions of the Fan­

Glicksberg fixed-point theorem, which guarantees the existence of i; s.t. i; E a(x). So 

the proof is finished . • 
Now we look at the existence of pure equilibria. We need a further constraint 

on the utility function u( t, . ) : 

(c) For a.e. player t E T, u(t, x) depends only on fr i; = Ur x 1(t)d>., ... 'fr xn(t)d>.). 

Obviously the disutility function in our model also fulfills condition (c). 

Theorem 3.1.2 ([Sch73, Theorem 2]). If in addition to conditions (a) and (b), the 

utility function u(·, ·) satisfies condition (c), then there exists a pure T-strategy at 

equilibrium. 

Proof Sketch. By Theorem 3.1.1, there is aT-strategy i; at equilibrium. With con­

dition (c), we know that a.e. B(t,x) = B(t ,fj) if frx =frY· Thus the direction of 

the proof is to show the existence of a pure T -strategy fj such that fr x = fr fj and 

a.e. fj(t) E B(t, x). This is intuitively true, since we can reassign each player to one 
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of her best pure responses, in a way that maintains fr x. For a rigorous and detailed 

proof please refer to [Sch73] and [Aum65]. • 

Hence we have existence of equilibria in our general model as a direct appli­

cation of Theorem 3.1.2. 

Theorem 3.1.3. Every instance (G, d, l, t) with continuous l admits a fiow at equi­

librium. 

One interesting fact to mention is that Theorem 3 .1. 2 essentially contains Nash 

theorem for finite games as a corollary [Sch73, Corollary]. This in some sense reflects 

the strength of this result. 

3.2 Uniqueness of Equilibria 

When a game admits more than one equilibria in general, which is obviously the case 

in our model, a natural question arising is how different those equilibria can possibly 

be and in which way they can differ. We will answer this question in this section. In 

fact we will show that for any instance ( G, d, l, t), as long as the penalty function t 

is bounded, all equilibria of it will give rise to identical edge latencies. This implies 

that the disutility of each path will remain the same among all equilibria for each 

individual user. In other words, no user can really tell one equilibrium from another, 

assuming users can only perceive disutilities, since all equilibria look exactly the same 

to her. And this is what we mean by uniqueness of equilibria. 

Similar studies have been conducted on traditional selfish routing, e.g. [Rou02, 

AM81] . We will extend their results to selfish routing with user preferences. First we 
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will start with finite instances, i.e. when there are only finitely many distinct penalty 

assignments among all users. For finite instances, uniqueness of equilibria is a result of 

the fact that Wardr p equilibria in the discrete model can be formulated as solutions 

to a convex program. The approach is a standard way of showing existence as well as 

uniqueness of equilibria in a wide range of problems. In particular our proof for the 

following proposition is very similar to previous work on traditional selfish routing 

from [Rou02, Proposition 2.5.1]. 

Proposition 3.2.1. For every finite instance (G, d, l, t) with continuous and nonde­

creasing l , if jl, j2 are flows at equilibrium, then leU;) = leU;) for all edges e of 

G. 

Proof. Let us consi -er the corresponding discrete instance (Q, 6, f, T). From the in-

terrelationships explored in the previous section, it is enough to show that any equi-

librium flows h1
, h2 of (Q, 6, f, T) must satisfy le(h!) = le(h;) for each edge e E E. 

One importa t property of the disutility function in the discrete model is its 

integrability. This n akes it possible to adopt techniques from convex optimization. 

Formally, define function K : JRI£1 - lR as 

(KF) 

where, with a slight abuse of symbols, we use h as an edge flow vector, that is, 

One can verify that the gradient of Kat his given by (&K/ &her) = (Jler (h) )erE£, 

i.e. the edge disutility vector due to flow h. Also observe the convexity of K; moreover, 

each additive component inside the summation is convex. Hence the optimization 
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problem 

minimize /( over r . 7-{ (KP) 

where r is the edge-path incidence matrix of Q and r · 7-i = {rh : h E 7-i}, i.e. the 

set of feasible edge flows, is a convex program over a compact region, in which case 

h solves (KP) iff it satisfies (WP), i.e., it is at equilibrium for (Q , 6, f , T) . 

Thus, if h1 , h2 are two equilibrium flows of (Q,6,f,T), then both h1
, h2

, 

together with any convex combination h8 = 8h 1 + (1- 8)h2
, e E [0, 1] will solve (KP). 

In other words, JC(h8 ) = JC(h1
) = JC(h2

). Hence JC(h8 ) = 8/C(h1
) + (1- 8)/C(h2

) , 

i.e. JC is linear between h1 and h2
. Since JC is the summation of convex components, 

each component must be linear between h1 and h2
. This means that each le must 

take a constant value over [h~, h~], thereby implying le(h~) = le(h~) for each edge e of 

G. Therefore, because of the relationship between (G, d, l , t) and (Q , 6, f , T) given by 

the mapping g, we have proved the proposition. • 

The uniqueness of equilibria in infinite instances is not so straightforward how­

ever, as the growth of dimension to infinity will ruin the convex program formulation 

of equilibria. We tackle the infinity problem using a limiting approach. Intuitively 

one can construct a finite instance to approximate an infinite instance with certain 

precision. Then with the help of some convergence results, the uniqueness in infinite 

instances will become apparent. However, our uniqueness result for infinite instances 

will not depend on uniqueness in finite instances in Proposition 3.2.1, which may be 

somewhat unexpected. The proofs are just analogous in nature, and the only reason 

we include Proposition 3.2.1 is to help the reader better understand the following 

proofs. 
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So the first st ep is give a rigorous definition of precision of a finite instance 

approximating an infinite one. 

Definition 3.2.2. F'or every instance (G,d,l,t), an instance (G,d,l,t') is an E­

approximation of (G, d, l, t) iff it is finite and a.e., VeE E, lte- t~l :::; E. 

Obviously, every instance (G, d, l, t) with bounded2 t admits an E-approxima­

tion for every E > 0. This can be achieved by partitioning the range of each te into fine 

enough intervals and rounding te ( r). In the following proposition, we shall explore 

further implications of this approximation. 

Proposition 3.2.3. For every instance (G, d, l , t), if (G, d, l, t') is an E-approximation 

of it, then any equilibrium flow J* of ( G, d, l , t) will satisfy 

for any feasible flow f, c'(J*)- cj.(J):::; 2(IVI- 1) · E, 

where c'(.) and c(.l) are the social cost function and auxiliary function of (G, d, l , t') 

respectively. 

Proof. First of all, notice that modifications to penalty function t do not affect the 

set of feasible flows F of a general instance. Then for any feasible flows jl, P we 

have 

lcJ1(J2
) - - cj1(J2)I = ll ( Uj2(r)(r, /

1
)- uj2(r)(r, /

1
)) d.\1 

:::; lltj2(r)(r)- tj2(r)(r)l d.\ (3.1) 

:::; l L lte(r)- t~(r)l d.\:::; (lVI- 1) ·E. 

eEJ2(r) 
2 Apparently unboundedness on subsets of zero measure does not matter according to Defini­

tion 3.2.2. 
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Using (3.1), we complete the proof for any feasible flow f by 

(3.1) (EC) (3.1) 

c'(f*)::; c(f*)+(IVI-1)·E::; cr(f)+(IVI-1)·E::; cj.(f)+2(IVI-1)·E. • 

Proposition 3.2.3 can be viewed as a relaxation of equilibrium condition (EC) 

or Wardrop's principle (WP). The factor 2(IVI- 1) is not a concern since it will be a 

constant for a given instance and its approximations. Note that an €-approximation is 

a finite instance by definition, and we have Proposition 3.2.1 as a result of Wardrop's 

principle applied on a finite instance. Now with a relaxed Wardrop's principle, we 

want to derive a relaxed yet strong enough result, which will imply the uniqueness of 

equilibria in general instances. 

Proposition 3.2.4. For every instance (G, d, l, t) with continuous and nondecreasing 

l and bounded t, if fiow f* is at equilibrium, then for any e > 0 there exists E > 0 such 

that any €-approximation of (G, d, l, t), say (G, d, l, t'), satisfies lle(f;)- le (f~)l ::; e 
for all edges e of G, where f' is any equilibrium flow of (G, d , l , t'). 

Proof. Fix an arbitrary equilibrium flow f* of (G, d, l , t). ForE> 0 to be determined 

later, let (G, d, l, t') be an E-approximation of (G, d, l, t). We shall also consider the 

discrete instance (9,6,£ , T) associated with (G , d,l ,t'). 

From Proposition 3.2.3 we know for all feasible flows f E F, we have c'(f*)­

cj.(f) ::; 2(IVI- 1) · E. An equivalent way to express this in context of the discrete 

instance is 

for all hE H , C(h*)- Ch·(h)::; 2(IVI- 1) · E (3.2) 

where h* = g(f*) is flow f* discretized for (Q, 6, R, T). 
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Let J' be an arbitrary equilibrium flow of (G, d, l, t'); hence h' = g(f') is an 

equilibrium flow of (9, <5, f, T). Now consider again the convex function K defined in 

(KF). Then h' minimizes K among all feasible flows of (9, <5, f, T). Thus we have, 

(3.2) 
2(jVj- 1) · E ? - L J-Le(h*)(h~r- h:,.) = -\?K(h*)(h'- h*) 

erE& 

> K(h')- K(h*) - \?K(h*)(h'- h*) 

To help make it clear, in the steps above we are actually bounding the gap 

between K and a tangent line. Note that no linear terms of K appear in the formulas 

as they vanished due to the second inequality. Since les are nondecreasing, each 

component inside the final summation is nonnegative. Therefore, for each edge e of 

G, we have 
h' r e (le(x)- le(h:))dx::; 2(!VI- 1). E. 

}h. 
e 

(3.3) 

It would be beneficial to note the analogy between the proof technique here and that 

used in proving the uniqueness of equilibria in finite instances, as they share similar 

intuition. 

Now it is time to determine an appropriate value for E. Intuitively, one could 

already observe from (3.3) that for each edge e of G, lle(h;)- le(h~)j ---+ 0 as E---+ 0. 

To put it formally, for arbitrary B > 0, for each edge e of G, let Et, E;, and Ee be 

29 



Master Thesis - H ao X ia 

defined as 

,;- = { ~:;(l,(x) -l,(h;))dx 

,; = { ~:;(l,(x) -l,(h;))dx 

min{ E~, c;} 
Ee = 2 (IV I - 1) . 

McMaster- Computing and Software 

otherwise. 

otherwise. 

Continuous and nondecreasing requirement of le guarantees Ee > 0. Thus by letting 

E = mineEE{Ee}, inequality (3.3) implies lle(h;)- le(h~)l ::; e for each edge e of G, 

which essentially finishes the proof. • 
Conceivably, the uniqueness of equilibria in general instances follows as a trivial 

corollary from proposition 3.2.4, since for any pair of equilibrium flows f 1 , P of 

(G, d, l, t), it can be derived that lle(J1) -leU;) I ::; 28 for any e > 0 on every edge e, 

which implies identity if we let e --t 0. 

Theorem 3.2.5. For every instance (G, d, l, t) with continuous and nondecreasing l 

and bounded t, if f 1
, P are flows at equilibrium, then le(J1) =leU;) for all edges e 

of G. 

3.3 Price of Anarchy 

In this section, we are interested in the price of anarchy of general instances in our 

model, that is, the ratio of social cost of an equilibrium flow to that of an optimal 
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flow. It characterizes the efficiency of equilibria in our considered model - in other 

words, the cost of missing a central coordinator. This work was motivated by similar 

studies in traditional selfish routing. In our model, the key generalization is the user-

specific preferences r penalties, which influence both equilibria and social costs. We 

want to explore the ::-oles of penalties in directing flows and incurring costs. 

As is generally known, latency functions play a big part in the price of anarchy. 

We use the concept of ,8-function introduced in [CSSM04] to categorize and quantify 

the influence of latency functions . 

Definition 3.3.1 ([CSSM04]). Let .C be a family of continuous and nondecreasing 

latency functions. For every function l E .C and every value v 2: 0, define 

1 
,B(v, l) = -l( ) max {x(l(v)- l(x))}. 

V V O~x~v 

In addition, define 

,B(l) = sup,B(v,l) and ,8(£) = sup,B(l). 
v~O IE£ 

In particular, the family of constant functions have ,8 value 0, and the family 

oflinear functions have ,8 value 1/4. The definition of ,8-function implies that l(x)y ~ 

,B(x, l)l(x)x + l(y)y , which will be used in proving the following theorem. 

Theorem 3.3.2. For every instance (G, d, l, t) with each le drawn from a continuous 

and nondecreasing function family .C, iff* is a flow at equilibrium, then for all feasible 

flows f, 

c(f*) 1 -- < ----::-:--:-:-
c(f) - 1- ,8(£) 
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where by convention we assume § = 1. 

Proof. We start by separating the cost caused by latencies from that caused by penal­

ties. For any two feasible flows f 1 and j2, we have 

cp(J2
) = L (lp(r)(l) + tp(r)(r))d).. = L lj2(r)(J1 )d).. + L tp(r)(r)d).. 

= L)eU1)J1 + 1 tp(r)(r)d).., 
eEE R 

and by using the definition of ,8-function, we have 

eEE eEE eEE 

Thus pulling things together, we get 

(3.4) 

(3.5) 

(3.6) 

Since t is non-negative by assumption, and .B(.C) is also non-negative by def­

inition, we complete the proof by adding a non-negative term .B(.C) JR tr(r)(r)dA. to 

the right hand side of (3.6): 

c(J*) < .B(.C) L leU:)!:+ .B(.C) r tr(r)(r)d).. 
eEE JR 

+ L leUe)!e + r tf(r)(r)d).. 
eEE JR 

(~) .B(.C)c(J*) + c(J). • 
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This bound n the price of anarchy is the same as that in traditional selfish 

routing [CSSM04], which reveals that introducing user-specific penalties does not 

degrade the efficiency of equilibria. 
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Chapter 4 

Optimal Taxes 

In this chapter, we study how helpful taxation can be in regulating equilibrium flows. 

In Section 4.1 we formalize the notion of edgewise tax and integrate it into our 

equilibrium model. Then we split our work on taxes into two parts: Section 4.2 will 

focus on taxes that induce equilibria with optimal social cost; Section 4.3 will discuss 

taxes that induce equilibria with optimal total latency. 

4.1 Introducing Taxes 

Knowing that pure selfishness might not induce flows that optimize public welfare, 

we are interested in edgewise taxation that helps drive selfish users into desirable flow 

patterns. Formally, for some instance ( G, d, l, t) , a tax b is a vector in JR~ indexed 

by each edge e E E, i.e. be presents the tax put on edge e by the administrator, just 

like the tolls on highways. Every user comes with a positive tax sensitivity, given by 

35 



Master Thesis- Hao Xia M eM aster - Computing and Software 

the sensitivity function a : R--+ IR>o 1
. For each user r E Rand each edge e E E, the 

product a(r )be contributes to the disutility as an additive term. Thus tax sensitivity 

quantifies how a user balances between tax and latency in the ultimate formation of 

her disutility which in turn determines her choice of route. Recall that the penalty 

function t is so arbitrary that it allows us to incorporate tax and sensitivity into it. 

Therefore, in order to unify the representation, we define taxed penalty function to.b 

as follows: for each user r, to.b(r) = t(r) + a(r)b. Note that to.b still qualifies for 

a penalty function, so we do not have to redefine equilibrium etc. for (G, d, l , to.b). 

Sometimes we shall call ( G, d, l, to.b) a taxed instance. 

In terms of tax sensitivity a, there are three cases in general: a is a constant 

function, in which case we can assume a = 1 without loss of generality; a is not 

constant but takes on finitely many values; a takes on infinitely many values. The 

first case will be referred to as homogeneous, while the other two will be referred to 

as heterogeneous. In the homogeneous case, we shall ignore a and use notions like tb 

directly. 

Before moving on, we need make clear the exact meaning of desirable flow 

patterns. In this work, we shall discuss two different objectives to be optimized 

separately: the social cost, i.e. the total cost consisting of latencies and penalties, 

and the total latency. 

1 As usual we require that a is measurable. 
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4.2 Optimal Social Cost 

We first investigate the possibility of using taxes to drive users into flow patterns 

that optimize the social cost. We begin with finite instances with homogeneous tax 

sensitivity. In this case, since user-specific penalties do not contribute to congestion 

in the system, intuitively the traditional marginal tax, where the tax of using an edge 

is equal to extra congestion caused to all users in the system, should serve for the 

purpose. Following the method in [BMW56], we verified that this is indeed the case, 

as can be seen from the following results. 

Proposition 4.2.1. For every finite instance ( G, d, l, t) where le is differentiable and 

Xle (X) is convex for each edge e, a feasible flow r minimizes the SOCial COSt C iff r 

is at equilibrium for (G, d, l*, t), where l;(x) = xl~(x) + le(x) and l~(x) = d~le(x). 

Proof. Consider the discrete instance (9, 8, f, T) associated with (G, d, l, t). Notice 

that feasible flow r minimizes the social cost c(f) = JR u(r, f)d>. = fR(lJ(r)(f) + 

tf(r) (r) )d>. iff h0 = g(r) minimizes C(h) = Lp.,.EP P,p.,. (h)hp.,. = Lp.,.EP(fp.,. (h) +Tp)hp.,.. 

Then we observe that the gradient of C is given by 

e:.,. C(h) = L (hel~(he) + le(he)) + LTe 
P eEp eEp 

eEp eEp 

Note that the convexity of each xle(x) implies the convexity of C. Therefore 

flow h0 is a global minimizer of C iff, 

L p,;.,. (h0 )(h~.,. - hp.,.) ~ 0, Vh E 7-l , 
p.,.EP 
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which in turn is equivalent to Wardrop's principle for (9, 8, f*, T), i.e. the discrete 

instance of (G,d,l*,t). This is also the criterion for r to be an equilibrium flow of 

(G,d,l*,t). • 
With the observation from Proposition 4.2.1, we know that if we apply l~(f~)f~ 

as tax for each edge e, where r is a feasible flow of optimal social cost, then there 

exists at least one equilibrium flow, namely r, that minimizes the social cost, just 

as the following corollary concludes. On the other hand, note that such an optimal 

flow r always exists due to continuity of the social cost function c and compactness 

of the feasibility region 7-l . 

Corollary 4.2.2. For every finite instance (G, d, l, t) where le is differentiable and 

Xle (X) is convex for each edge e, let r be a feasible flow with optimal social COSt. 

Then there exists a tax be = l~(f~)f~ such that ( G, d, l, tb) admits a equilibrium flow 

that minimizes the social cost for ( G, d, l, t). 

Now recall our result on uniqueness of equilibria from Theorem 3.2.5. Then 

we exploit the uniqueness of equilibrium edge flows to strengthen Corollary 4.2.2. 

Proposition 4.2.3. For every taxed instance ( G, d, l, tb), if two equilibria f 1 , P share 

identical edge flows , then they give rise to the same social cost for (G,d,l,t). 

Proof. Since f 1 and f 2 give rise to identical edge flows, the disutilities will be equal 

between f 1 and p for all available paths and hence the paths with the smallest 

disutility, for any user. Due to equilibrium condition (EC), a.e. user chooses the 

shortest path. Thus the social cost (with tax) for (G, d, l, tb) induced by f 1 and P 
are equal, i.e. , JR ub(r, jl )d)..= JR ub(r, j2)d>.. 
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Then again b cause of uniqueness of edge flows , we have L e f1be = L e f;be. 

Together with the fact that JR ub(r, f) d).. = JR bf(r)d).. + JR u(r, f) d).. = L e febe + c(J) , 

we have finished the proof. • 

Thus we naturally arrive at the following result on optimal social cost taxes 

in finite instances. 

Corollary 4.2.4. F'or every finite instance (G , d, l, t) where le is differentiable and 

strictly increasing, and Xle (X) is convex for each edge e, let jD be a feasible flow with 

optimal social cost. Then there exists a tax be = l~(J~)f~ such that any equilibrium 

of (G, d, l, tb) minimizes the social cost for (G , d, l, t). 

Remark. One might have noticed that the differentiability requirement of les in Corol­

lary 4.2.4 can actually be dropped. By replacing derivatives with subderivatives and 

slightly modifying the proof, one could get the same result. We will not go into details 

of it in this thesis. 

Next we tum to infinite instances. We shall build our results upon finite 

instances through a other limiting argument. Same as for finite instances, we are 

working towards showing that any equilibrium flow of ( G, d, l* , t) essentially minimizes 

the social cost for the original instance. Again, we no longer have a convex formulation 

of the optimum. 

We will explore further implications of the convergence result in Proposi­

tion 3.2.4. We know that if t is bounded and if each l; is continuous and strictly 

increasing , then all equilibrium flows of ( G, d, l*, t) give rise to identical edge flows 

and there exists a sequence of finite instances converging to ( G, d, l* , t) in terms of 

equilibrium edge flows. The convergence of edge flows then results in the conver-
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gence of social cost. On the other hand, for this sequence of finite instances we know 

from Proposition 4.2.1 that their equilibrium flows give rise to smaller social costs 

than any arbitrary feasible flow. Conceivably, this relationship will hold in the limit , 

i.e. the limit of equilibrium social costs will remain smaller than (or equal to) the limit 

of the social costs induced by arbitrary feasible flows. This is equivalent to saying 

that the equilibrium of (G, d , l* , t) induces the optimal social cost (with respect the 

original instance). The above argument is formally stated in Proposition 4.2.5 and 

Theorem 4.2.6. 

Proposition 4.2.5 . For every instance (G, d, l, t) with bounded t, if for each edge e, 

le is continuously differentiable and l; is strictly increasing, then for any () > 0 there 

exists E > 0 such that for any equilibrium flow f of ( G, d, l*, t) and any equilibrium 

flow J of any €-approximation of(G, d, l* , t), say (G, d, l*, [) , we have lc(f) - c(f)l < (), 

where c is the social cost function of ( G, d , l , [). 

Proof. For any () > 0, due to continuity of l, l* and finiteness of the graph G, there 

exists ()1 > 0 s.t. if lie - lei < ()1 for all edges e , then ll;(f)- l;(J) i < ()j3 for all 

paths p and ll~(fe)(fe ) 2 -l~(Je)(fe ) 2 1 < (Jj(3IEI) for all edges e. 

Then from Proposition 3.2.4, we know there exists E > 0 s.t . for any €­

approximation of ( G, d, l* , t), say ( G, d, l*, [), we have I f e - fe I < ()1 for each edge 

e, where J is an arbitrary equilibrium flow of ( G, d, l*, [) . Without loss of generality 

we can assume E < (Jj(3 IV I). Thus we have, for a.e. user r , 

iu*(r, f)- u*(r, !)I= I min{u;(r, f)}- min{u;(r, f)} I 
pEPr pEPr 
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Hence 

lc(f) - c(f) I I ( f u* ( r, f)d>. - ~ z~ Ue) Ue) 2
) 

JR eEE 

- ( f u*(r, f)d>.- ~ Z~(1e)(1e) 2 )1 
JR eEE 

< r lu*(r, f)- u*(r, 1)1d>. + ~ IZ~(fe)Ue) 2 -Z~(Je)(1e) 2 1 
JR eEE 

( 4 .1) 

< e. • 
Theorem 4.2.6. For every instance (G, d, l, t) with bounded t, if for each edge e, le 

is continuously differentiable and xle ( x) is strictly convex, then any equilibrium fiow 

r of ( G, d, l*, t) minimizes the social cost for ( G, d, l, t). 

Proof. For the sake of contradiction, assume that there is a feasible flow f such 

that c(f) < c(r) - E for some E > 0. Note that strict convexity of xle(x) implies 

l; is strictly increasing. Thus from Proposition 4.2.5 we can pick a finite instance 

( G, d, l*, f) such that for any equilibrium flow 1 of it, we have lc(r) - c(J) I < c/2, 

where c is the social cost function of ( G, d, l, f). Without loss of generality we can 

assume a.e. lte- fel < c/(2IVI) and hence lc(f)- c(f)l < c/2. 

Putting everything together, we get c(f) < c(f) + c/2 < c(r) - c/2 < c(f), 

contradicting Proposition 4.2.1 which says that 1 minimizes c. • 
Remark. In fact Theorem 4.2.6 remains true when the strict convexity requirement 

on xle(x) is weakened to just convexity, in consistency with Proposition 4.2.1. This 

can be achieved by elaborating Proposition 4.2.5, since we only need the fact that 

there exist one equilibrium (instead of all equilibria as in Proposition 4.2.5) for each 

instance in the convergent sequence, that converges in terms of the social cost. 
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With the above assumptions and propositions, we have enough to support the 

statement that the marginal tax drives users into flow patterns that optimize the 

social cost for general instances, as concluded by the following theorem. 

Theorem 4.2.7. For every instance (G , d, l, t) with bounded t, if for each edge e, 

le is continuously differentiable and xle ( x) is strictly convex, then there exists a tax 

be = l~ (!~) f~ such that any equilibrium of ( G, d , l , tb) minimizes the social cost for 

( G, d, l, t), where r is an arbitrary equilibrium flow of ( G , d, l* , t). 

Proof. Direct result from Theorem 4.2.6, Theorem 3.2.5, and Proposition 4.2.3. One 

subtle point to notice is that strict convexity of xle(x) implies that l is strictly in-

creasing. • 

Seeing that edgewise taxes are so strong that they can in a sense overwhelm the 

variety of user-specific preferences, one might be tempted to generalize this result to 

heterogeneous tax sensitivities, as is the case in traditional selfish routings. However, 

this in general turns out to be beyond the reach of edgewise taxes. One simple 

counter example is enough to illustrate this limitation in the power of edgewise taxes. 

Consider an instance with two nodes and two parallel edges, with latency functions 

x and 1/2 respectively. Half of the users (group A) have penalty 0 on both edges 

and have tax sensitivity 1; the other half of users (group B) have penalty 1/8 on 

the linear latency edge and 0 on the other, and have tax sensitivity 1/ 4. Figure 4.1 

illustrates this situation, in which plus signs separate latencies and penalties. The 

path flow with optimal social cost can be formulated as the solution to the following 
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Group A: 6 = ~, a= 1 

x+O 

Group B: 6 = ~, a= i 
x+! 

8 

Figure 4.1: Example instance with heterogeneous tax sensitivities, for which no edge­
wise tax exists s.t. the induced equilibria have optimal social cost. 

minimization problem: 

1 1 
minxA1 · (xAl + xBl) + xBl · (xAl + xBl + 8) + (xA2 + Xs2) · 2 s.t. 

1 
XAl + XA2 = 2 

1 
XB! + XB2 = 2 

where XA1 means the amount of users in group A that travel through edge 1 (with 

linear latency function), and so on so forth . One can easily verify that the only 

solution to the abo e problem is xA1 = XA2 = 1/4, x 81 = 0, x 82 = 1/2, i.e . when 

half of the users in group A travel through the edge with linear latency, and all other 

users travel through the edge with constant latency. If we want to make this flow 

pattern to be at equilibrium using a set of edgewise tax, then we basically need to 

find b1, b2 such that 

1 1 - + bl =- + b2 
4 2 

1 1 1 1 1 
- + - + bl 0 - > - + b2 0 -

4 8 4- 2 4' 
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which obviously does not admit any solution. In other words, no edgewise taxation 

can drive users into optimal social cost flow in this small example. 

4.3 Optimal Total Latency 

In this section, we aim at a different target to optimize: the total latency. This 

objective function is more easily understandable, especially to readers familiar with 

traditional selfish routing, as it is not influenced by user penalties. Thus the criterion 

of a flow being optimal can be fully characterized by its edge flows , i.e. one only has 

to check its edge flows in order to tell whether a flow is of optimal total latency, 

contrary to checking the routing of every user. 

With finite instances and finite tax sensitivities2
, i.e. when users can be grouped 

into a finite number of groups according to preferences and tax sensitivities, we notice 

the similarity between our model and traditional selfish routing with heterogeneous 

users. In particular, we observed that the proof techniques in [KK04a, Theorem 2] 

can be easily adapted to our scenario, which we shall present in the rest of this section. 

Throughout this section we will be considering a finite instance (G, d, l , t) 

where l is continuous and strictly increasing. Also assume that tax sensitivity function 

a is finite and strictly positive. Let (Q , o, f, T) be the associated discrete instance. 

Without loss of generality, we assume that all users with the same penalty T E T 

have the same tax sensitivity which we denote by a(T), since otherwise we can further 

divide users by allowing T to be a multiset. Note that the symbol a here is used in 

a slightly different way than before, since originally it was a function of users. We 

2 As usual we say tax sensitivity a is finite iff it takes on finitely many values. 
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first introduce yet another formulation of equilibrium flows due to [AM81], which is 

equivalent to theW. drop's principle we stated in (WP). They model traffic equilibria 

as solutions to a nonlinear complementarity problem [AM81, Proposition 4.1]. When 

adapted to our discrete model, it is as follows: 

(Tpr(h)- Yw)hpr = 0 

Tpr (h) - Yw 2:: 0 

Yw ( L hpr - bw) = 0 
p'~"EPw 

h, y 2:: 0, 

'VwEV 
(CP) 

VwEV 

where V is the set of all 0-D pairs in Q. h and y are the variables in this problem, 

with h being the path flow vector, andy being the minimum disutility vector. With 

flow h and tax b, for each path pT E P , the disutility Tp.,. is given as 

eEp eEp 

D . l t 7i ( ) - le(x) - - ...I!L_ HT lt th d' t'l't f t' 'T' t ror convemence, e .c-er x - a(T), Te - a(T). vve a er e ISU 11 y unc Ion 1 p'~" o 

be 

eEp eEp 

Notice that this modification does not affect feasibility of (CP). In particular the h 

solutions remain intact. Thus, after the modification of function T , the h solutions 

to (CP) still correspond to taxed equilibrium flows in (Q,b,f,T) with tax band 

sensitivity a. 
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Now we want to characterize an optimal total latency flow. As mentioned at 

the beginning of this section, the optimality can be fully described with edge flows. 

We assume that we are given an arbitrary feasible flow h0 E H of (9, b, .e, T) which 

minimizes LeEE hele(he) over the feasibility region H .3 Then our aim is to find a tax 

b so that any solution (h, u) to (CP) will satisfy, he = h~ for all edges e E E. Hence 

the presence of tax b induces equilibrium flows that minimize the total latency. First 

observe the following important proposition. 

Proposition 4.3.1. If h E H is a feasible flow for (9, b, .e, T), and h satisfies he :::; h~ 

for all edges e E E, then he= h~, VeE E. 

Proof. Assume for some edge e E E, 0 :::; he < h~. Then since le is strictly increasing 

and nonnegative, we have hele(he) < h~le(h~). As he :::; h~, for all edges e E E, we 

also know hele(he) :::; h~le(h~) , Ve E E. Thus we have LeEE hele(he) < LeEE h~l(h~), 

a contradiction to the optimality of h0
• • 

We incorporate the constraints in Proposition 4.3.1 into (CP) to restrict the 

solutions, while still keeping the form of an nonlinear complementarity problem. 

(Tp.,.(h)- Yw)hp.,. = 0 Vw E'D, 'lfp7 E Pw 

Tp.,.(h)- Yw 2 0 Vw E'D, 'lfp7 E Pw 

Yw ( I: hp.,. - bw) = 0 Vw E'D 
p-rEPw 

I: hp.,.- bw 2 0 VwE'D (BIG CP) 
p-rEPw 

be(h~ - he) = 0 VeE E 

3 Such an optimal flow exists due to compactness of H and continuity of l. 

46 



Master Thesis - H ao X ia McMaster- Computing and Software 

VeE E 

h,y,b;::=:o. 

Note that he is just a synonym for L
7
ET he.,. = LTET Lp::Je hp.,., as defined in the 

discrete model setup in Section 2.3. Also note that in (BIG CP) we now treat tax b 

as a variable of the problem. Then if (h*, y*, b*) is a solution to (BIG CP), we know 

(h*, y*) is a solution to (CP) with 

eEp eEp 

and from Proposition 4.3.1 we know h; = h~ for all edges e E E. Therefore, h* is 

a taxed equilibrium of (Q, 5, e, T) with tax b*, and h* minimizes the total latency. 

Moreover, since l is strictly increasing, due to the uniqueness of equilibria in Theo-

rem 3.2.5, all equilibria give rise to identical edge flows. Hence all taxed equilibrium 

flows of (Q, 5, e, T) with tax b* will minimize the total latency. 

So our problem becomes clear: to prove the existence of a solution to (BIG 

CP), which will cont ain as a part of it an edgewise tax such that all taxed equilibria 

minimize the total l tency. However, it is generally difficult to solve or to prove the 

existence of solutions for nonlinear complementarity problems. Luckily, the special 

structure of (BIG CP), namely Proposition 4.3.1, is capable of linearizing our problem. 

Since each function le.,. (he) depends only on he and all solutions (h*, y*, b*) of (BIG 

CP) will have h; = h~, Ve E E, replacing function le ... (he) with constant le ... (h~) 

in each Tp.,. will not change the solution set of (BIG CP). Hence we have a linear 
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complementarity problem equivalent to (BIG CP): 

(L)ler (h~) + fe) +~be - Yw)hpr = 0 Vw ED, \:/pTE Pw 
eEp eEp 

~(fer(h~) + fe) +~be - Yw ~ 0 \:/wED, \:/p7 E Pw 
eEp eEp 

Yw( ~ hpr - bw) = 0 Vw ED 
P7 Ef-'w 

~ hpr- bw ~ 0 
(BIG CP') 

Vw ED 
p7 Ef-'w 

be(h~- he) = 0 VeE E 

h~- he~ 0 VeE E 

h,y,b~O. 

Now complementarity slackness conditions can be used to transform (BIG 

CP') into a primal-dual pair of linear programs. The existence of solutions follows 

henceforth. 

Theorem 4.3.2. (BIG CP') admits a solution. 

Proof. Due to complementarity slackness conditions, (BIG CP') is equivalent to the 

following primal-dual pair of linear programs: 

min~ (hpr ~(ler(h~) + fe)) s.t. (LP) 
p 7 ET-' eEp 

Vw ED 

-h > -h0 
e - e VeE E 
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and 

max L OwYw- L h~be s.t. (DP) 
wEV eEE 

Yw- L be :S L(fe(h~) + fe) 
eEp eEp 

Vw E V, VeE E 

Since (LP) is feasible (e.g. h0 is a feasible solution), and its objective function is 

bounded from below by 0, the primal-dual pair (LP)-(DP) admits a solution (h*, y*, b*), 

which is also a solution for (BIG CP'). • 
Hence we have proved the existence and showed the calculation method (by 

formulating and solving the primal-dual pair of linear programs) of a tax (which 

corresponds to the vector b in (DP)) that induces equilibrium flows of optimal total 

latency. 

Theorem 4.3.3. For every finite instance (G, d, l, t) where l is strictly increasing, if 

tax sensitivity a is finite and strictly positive, then there exists tax b s. t. any equilib­

rium of ( G, d, l, tab) minimizes total latency. 

For infinite i stances, if one can show the existence of a convergent sequence 

of <:-approximations which admit a convergent sequence of optimal taxes, then it is 

easy to show that t he converging point of taxes would be optimal for the original 

infinite instance. We strongly suspect it is true, but have been unable to verify it yet. 
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Chapter 5 

Conclusions and Open Problems 

In this work, we incorporated user preferences into selfish routing for the first time, 

and systematically studied several equilibria related properties. Though we have tried 

hard to study different aspects of our model, and to make our results general and hold 

under weak assumptions, there are still problems left unexplored, some of which have 

been briefly mentio ed along the way. In this chapter, we shall review these open 

problems. 

Boundedness of Penalty Function t 

Recall that in the st atement of many theorems and propositions in this thesis, there 

is an assumption that the penalty function t is bounded. This assumption first ap­

peared in Section 3.2, in order to make a general instance "approximable". While this 

assumption is reasonable and acceptable in many real world problems we are trying 

to model, we must point out that it is not absolutely necessary in order to derive 
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other results. We will explore this point in this section. 

Recall our study on uniqueness of equilibria in Section 3.2. The main theorem, 

i.e. Theorem 3.2.5, was proved with a limiting argument. A crucial basis of the 

argument is the definition of €-approximation in Definition 3.2.2 and its implication 

described in Proposition 3.2.3. One could easily see that Definition 3.2.2 is actually 

more restrictive than is needed by Proposition 3.2.3, and we shall discuss possible 

relaxations. 

An immediate replacement for the definition of E-approximation is the follow-

ing: 

Definition 5.1.4. For every instance (G,d,l,t), an instance (G,d,l,t') is an €­

approximation of (G, d, l, t) iff it is finite and for each edge e E E, JR ite(r) -t~(r)id>.:::; 

E. 

Obviously Definition 5.1.4 is a less restrictive version of the €-approximation 

in Definition 3.2.2, and it is also sufficient for the relaxed equilibrium condition in 

Proposition 3.2.3. In other words, this replacement of the definition does not weaken 

any other results in the thesis. Then the question is, what kind of penalty functions 

t admit €-approximations according to the relaxed definition? Following the line of 

thoughts in bounded penalty functions, we generalize it to the concept of subbound­

edness, as is given in the following definition: 

Definition 5.1.5. A measurable function f : R --t IR:::::o is subbounded iff for any 

E > 0, there is a k > 0 such that JRJ>k f(r)d>.:::; E, where Rf>k = {r E R: f(r) > k}. 

To give a general feeling of what has actually been relaxed between bound­

edness and subboundedness, we give two simple example functions. First consider 
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function jl : R ---+ lR such that jl(r) = ~ when r =f. 0 and f 1(0) = 0. Apparently 

P is neither bounde nor subbounded. Next we consider function P : R---+ lR given 

by j2(1) = 0, f 2 (r) = n when r E [Sn, Sn+I), where So = 0 and Sn = 2:.:.:7=1 2~, 

n = 1, 2, .... It is easy to verify that P is not bounded (even when allowing zero­

measure unboundedness) but it is sub bounded. 

Simply put, the subboundedness in Definition 5.1.5 requires that the un-

bounded portion of e. function f is negligible in the sense of integration. Since we will 

only be looking locally at properties of penalty functions instead of considering the 

entire instance in the subsequent discussion, for simplicity, we sometimes use the term 

f.-approximation on two penalty functions instead of two problem instances, e.g. we 

may say t' is an f.-approximation of t. Next we explore the relationship between 

approximability, subboundedness, and Lebesgue integrability. 

Proposition 5.1.6 . For a given penalty function t, the following three statements 

are equivalent: 

1. For each e, te is sub bounded; 

2. t admits an f.- approximation for every E > 0; 

3. For each e, JR te(r )d>. is finite. 

Proof. 1 ==? 2. For any given E > 0, for each e, pick ke such that JP te(r)d>.::; 
..l."te>ke 

c/2. Then define t~ as 

otherwise. 
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Apparently t~ is finite and lte(r)- t~(r)l :::;: c/ 2 for any r E R \ Rt.>k. · Thus we have 

:S: E, 

i.e. t' is an £-approximation oft. 

2 ==? 3. Let t' be an £-approximation of t. From Definition 5.1.4 we have 

for each e 

Because t' is finite by definition, it implies that JR t~(r)dA. is finite for each e, so is 

3 ==? 1. Let te have a finite Lebesgue integral over R. For the sake of 

contradiction, let us assume te is not subbounded, i.e. there is an E > 0 such that 

for any k > 0, JR te(r)dA. > E. Consider the sequence of real-valued measurable 
te> k 

functions Jr , h, !J , ... given by 

{ 

te(r) 
fn(r) = O n = 1, 2, ... 

otherwise. 

Then obviously the pointwise limit of the sequence of functions {fn} as n --+ oo is 

the zero function. Also, each fn is dominated byte, that is for all r E R , lfn(r)l :::;: 

te(r), and by assumption te has a finite Lebesgue integral. Therefore , by Lebesgue's 
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Dominated Convergence Theorem, we have 

0 = r lim fn(r)d>. = lim r fn(r)d>. = lim r te(r)d>.. 
} R n-+oo n-+oo} R n-+oo} Rte>n 

However, by the assumption of being not subbounded we have JR te(r)d>. > E > 0 
te>n 

for all n > 0, which implies limn-+oo JR te(r )d).. 2: E > 0, a contradiction. • 
te>n 

Proposition 5.1.6 accurately describes the required properties of penalty func-

tions to be approximable. In other words, for all results in this thesis, we can re-

place each requirement of t being bounded by t being sub bounded (or t having finite 

Lebesgue integral). And this is the best one can do to maintain the results without 

inventing a new proving approach. 

However , there is still one question left unanswered: do we essentially need 

any assumptions on tat all, besides being measurable? What motivates this question 

is [MilOO, Proposition 3.3] which also gives a partial answer to it. An immediate 

adaptation of their result says, for networks with only parallel links and strictly 

increasing latency f nctions, as long as t is measurable, all equilibria give rise to 

identical edge flow. That is to say, subboundedness (or finite integrability) of the 

penalty function is not necessary to derive uniqueness of equilibria in these simple 

networks. We tried to verify the validity of their result in networks with general 

topologies, but unfortunately we have not been able to see it yet. 
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Efficiency of Equilibria 

We have studied the price of anarchy in Section 3.3. There, we looked at the social 

cost, which combines latencies and penalties, as the objective to study. Our result says 

that the price of anarchy in traditional selfish routing remains valid after introducing 

user penalties. A very intuitive (and very unprecise) way of explaining this is that the 

newly introduced part can be viewed as a user-specific constant addition to latencies, 

which makes our model some sort of a "mixture" of constant latency networks and 

general latency networks. Because on constant latency networks the price of anarchy is 

one, which is the smallest possible by definition, the price of anarchy in our "mixed" 

model should not be anything greater than traditional selfish routing with general 

latency functions. 

However, there are scenarios where system analysts are not concerned with 

users' satisfaction as a whole, which is represented by the social cost. Sometimes they 

are more interested in the network performance measured by total latency. Therefore, 

ratios such as 

LeEE leU;)!; 
LeEE leU~)J~ 

and 
cU*) LeEE leU;)J; + JR tf*(r)(r)d>.. 

LeEE leU;) J; 

where !* is a flow at equilibrium and r is an optimal total latency flow, might be 

of interest to some researchers. To further clarify things, the first ratio indicates how 

user preferences will affect and degrade the total latency as compared to the optimal 

case, and the second ratio indicates how overall satisfaction is related to the network 

performance at equilibrium. Studying these ratios is to some extent similar to the 

work in [CDR03, KK04b], except that we are facing a much more arbitrary "add-
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on" to latencies. How will the penalty function interact with these ratios? What 

restrictions are required on the penalty function to admit finite bounds on the ratios? 

We will leave these questions open to future studies. 

Taxation in Infinite Instances 

Back in Chapter 4, Section 4.3 , we discussed taxes that drive users into optimal total 

latency flows. However, the whole discussion was based on finite instances, and we 

left the existence of optimal total latency taxes for infinite instances open. In this 

section we shall make one step closer to the possibility of extending the result to 

infinite instances, w ich we strongly suspect is feasible. 

First recall o r result in Section 4.3, particularly in Theorem 4.3.2. We know 

that for every finite instance (G, d, l, t) 1 and its associated discrete instance (Q , <5, f, T), 

with tax sensitivity function a , the optimal2 tax b and the taxed equilibrium flow h 

can be formulated using the following (LP)-(DP) pair: 

min L (hp-r L(le-r (h~) + fe)) s.t. 
pr Ep eEp 

Vw E 1) 

-h > -h0 
e- e VeE E 

1 We will by default assume strictly increasing latency functions in this section. 
2We shall use optimal to refer to optimal total latency in this section. 
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and 

max L bwYw- L h~be s.t. (DP) 
wE'D eEE 

Yw- Lbe :S L(fe,.(h~) +fe) 
eEp eEp 

Vw E V, VeE E 

where h0 is a given optimal flow. 

For every infinite instance (G, d, l , t) with t being bounded, there is a se­

quence of E-approximations {(G, d, l, tn)}n=l ,2, .. . converging to the original instance 

with n ~ oo and E ~ 0. For each one in the sequence, say (G, d, l , tn) , and its dis-

crete instance (Qn, bn, tn, Tn), the (LP)-(DP) pair would produce an optimal tax bn. 

Then if somehow the sequence of taxes { bn} converges to some tax b as n ~ oo, one 

could easily show that b is an optimal tax for the original instance (G, d, l, t). This is 

formalized in the following proposition. 

Proposition 5.3.7. For every instance (G,d,l,t) with continuous and strictly in­

creasing l and bounded t, let tax sensitivity a be finite and strictly positive. If there 

is a sequence of E -approximations { ( G , d, l, tn)} with E ~ 0 when n ~ oo, such that it 

admits a sequence of optimal taxes {bn} converging to some tax b, then b is an optimal 

tax for (G, d, l, t). 

Proof. For each (G, d, l, tn), assume it is an En-approximation of the original instance. 

Let tlbn = maxeEE{Ib~ -bel}. Then due to our convergence assumption we have 

tlbn ~ 0 when n ~ oo. Obviously (G, d, l , tn + abn) is an (en+ tlbn)-approximation 

of (G, d, l, t + ab), and (en+ tlbn) ~ 0 when n ~ oo. Thus from Proposition 3.2.4 
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we know that any sequence of equilibrium flows of {(G, d, l, tn + abn)} converges to 

the equilibrium flow of ( G, d, l, t + ab) in terms of edge flows. By assumption bn is an 

optimal tax for (G, d, l, tn), for all n = 1, 2, . .. , implying that their taxed equilibrium 

flows, i.e. equilibrium flows of (G, d, l, tn + abn) for all n, share the unique edge flow, 

which is the optimal edge flow. Therefore their convergent point should be the same 

edge flow, which means b is an optimal tax for (G, d, l, t) . • 

Thus, the problem is the existence of this sequence of E-approximations. Let 

us look at (DP), th solution to which gives the optimal tax for a finite instance. 

As E ~ 0 the number of constraints and the dimension of y are growing very fast, 

but the perturbation comes only from the RHS of the constraints, namely fe, and 

the magnitude of th<~ perturbation is congruently converging to 0. It looks promising 

that the argument above implies the existence of a convergent sequence of b solutions. 

However, we are unable to see it at this moment, and will leave it open. 
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