
USING SMOOTHING SPLINES TO SELECT 

SIGNIFICANT GENES IN MICROARRAYS 



USING SMOOTHING SPLINES TO SELECT 

SIGNIFICANT GENES IN MICROARRAYS 

By 

Ji Li, B.Eng 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree 

Master of Science 

McMaster University 



MASTER OF SCIENCE (2008) 

(Statistics) 

McMaster University 

Hamilton, Ontario 

TITLE: 

AUTHOR: 

SUPERVISOR: 

NUMBER OF PAGES: 

USING SMOOTHING SPLINES TO SELECT 

SIGNIFICANT GENES IN MICROARRAYS 

Ji Li, B.Eng 

(Shandong University, P.R.China) 

Professor Angelo Canty 

ix, 66 

11 



Abstrac t 

DNA microarray technology has been widely used in many applications such as gene 

discovery, disease research and drug investigation. This thesis is based on a project 

studying the genetics of Type 1 Diabetes. 

In this thesis we introduce a method to use smoothing splines to select significant 

genes in microarrays. This method is based on significance analysis of microarrays 

(SAM). We choose upper and lower significance cut-offs based on when the numerical 

derivative of the spline exceeds a threshold. We declare that any genes whose observed 

statistics are less than the lower cut-off or greater than the upper cut-off to be signif­

icant. We also explain how to use this method to calculate the number of significant 

genes and estimate false discovery rates. 

We use both Affymetrix and Illumina real data sets in our analysis and the results 

are satisfactory. We try to use the simulation study to test our method but we have a 

problem that we can not generate simulated data which is similar to the real microarray 

data. 
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Chapter 1 

Background 

1.1 Background in Genetics 

The life process includes a wide array of molecules and macromolecules that determine 

the structure of the cells. Macromolecules which include Deoxyribonucleic acid (DNA), 

proteins and polysa~ccharide dominate most of the activities of life. DNA is a nucleic 

acid that contains the genetic instructions used in the development and functioning of 

all known living organisms. The main role of DNA molecules is the long-term storage 

of information about the construction of macromolecules, allowing them to be made 

exactly in the accordance with the specifications and needs of the cells. 

Genes are the units of the DNA sequence that control the heritable characters of 

an organism. A gene can be defined as a part of D A that is destined for a functional 

RNA. The whole set of genes carried by an individual cell is called its genome. Almost 

every cell contains a complete copy of the genome in its nucleus. 
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Figure 1.1: The structure of Deoxyribonucleic Acid (DNA). 
This graphic is from http:/ jwww. access excellence. org. 

The genome defines the genetic construction of an organism or cell. The external 

appearance of an organism is the total set of characteristics displayed by an organism 

under a specific set of environmental factors. Today we can study the expression of 

many genes in an organism simultaneously using microarray technology. 

DNA is constru ted of chains of chemical building blocks called nucleotides. Each 

nucleotide consists of a phosphate group, a deoxyribose sugar molecule, and one of 

four different nitrogenous bases: guanine (G), cytosine (C), adenine (A), or thymine 

(T) . The sequence of these nucleotides in DNA controls genetic information. The 

information stored in the sequence of nucleotides is similar to a long word in a four-
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letter alphabet. DNA forms a double helix of two chains of nucleotides which run in 

opposite direction. By Watson-Crick rules G pairs with C only and A pairs with T 

only (Watson and Crick, 1953). We can see them in Figure 1.1. 

The process of t ranscription is to copy the information encoded in DNA of the 

genes into RNA which is a single stranded molecule. So RNA has only one nucleotide 

chain, not a double helix of two chains. Another difference between DNA and RNA 

is that RNA contains uracil (U) instead ofT. That is, the RNA bases are G, C, A 

and U which make RNA less stable than DNA. Figure 1.2 shows the structure of 

RNA compared to DNA. RNAs have two general classes, messenger RNA (mRNA) 

and functional RNA. Messenger RNA works in the translation process and functional 

RNAs which are the transfer RNAs (tRNA) and the ribosomal RNA (rRNA) are part 

of the complex protein synthesis machinery which translates mRNA into proteins. 

The messenger RNA is an exact copy of the DNA coding regions since the sequence of 

mRNA is identical o one strand of DNA with the replacement ofT by U. We can use 

mRNA analysis to identify polymorphisrns in coding regions of DNA and measure gene 

expression (Lee, 2004). Figure 1.3 shows the processes ofreplication and transcription. 

1. 2 Gene J~xpression and Microarrays 

Gene expression is the process by which mRNA and proteins are produced from the 

DNA of each gene. Gene expression has two stages. One stage is the transcription 

process of an RNA copying one strand of the DNA. The other stage is the translation 

process of the mRN A into protein which occurs in the cytoplasm. In the process of 

gene expression, RNA provides both mRNA and functional RNA (Lee, 2004) . 
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Figure 1.2: Ribonucleic Acid (RNA). 
This graphic is from http:/ jwww.accessexcellence.org. 

In the past, scientists conducted genetic analysis on a few genes at a time. With 

the development of DNA microarray technology, scientists can examine thousands of 

genes at once, which helps to find the complex relationships between genes. 

When a cell is ready to make a certain protein, a segment of the double-stranded 

DNA, which is responsible for that code, unknots to become two single strands tern-

porarily. The mRl\ As make a complementary copy of the coding region of one single 

strand of DNA. The more a gene is translated into protein, the more copies of mRNA 

are present inside the cell. DNA microarrays can detect the level of expression of 

a certain gene by testing for the presence and level of mRNAs associated with that 
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Figure 1.3: The central Dogma of Molecular Biology. 
This graphic is from http:j jwww.accessexcellence.org. 

particular gene. First the researcher collects the mRN A molecules present in the cell 

and labels each mRNA molecule by attaching a fluorescent dye. Then the researcher 

places the labeled RNA onto a DNA microarray slide. The mRNA will hybridize 

to its complimentary DNA on the microarray. The researcher can use a laser scanner 

to measure the areas of the fluorescent on the microarray. If a gene is very active, 

it produces many molecules of mRNA and the fluorescent area is very bright. On 

the other hand, if a gene is less active, it produces less mRNA and the area of the 

fluorescent spot is dark. If the gene is inactive, indicating that none of the mRNAs 

have hybridized to the DNA, the fluorescent area is black. Using DNA microarray 

technology, the res<~archers can examine the activity of different genes. 
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Affymetrix GeneChip (Affy) is the most widely used oligonucleotide array type. 

It can produce a large amount of chips at a reasonable cost. Affy uses masks which 

control the synthesis of oligonucleotides on the surface of a chip and of several hundred 

thousand squares, each of them containing many copies of an oligonucleotide. It pro­

duces hundreds of thousands of different oligos, and each of them appear in millions of 

copies. This large number of oligos are very useful in the experiment. For expression 

analysis, we use oligos with a length of 25 bases to detect each gene. First Affy chooses 

a region of each gene that seems to have a unique nucleotide sequence. For this partic­

ular region 11 to 20 oligos are chosen to be perfect matches (PM). Affy also generates 

11 to 20 mismatch oligos (MM) that are identical to the PM oligos except that the 13th 

nucleotide is changed to its complementary nucleotide (e.g. G to C or A to T). The 

hybridization is not uniform since all PM oligos for each gene have different sequences 

(Knudsen, 2004) . These two probes, PM and MM, are called a probe pair. For each 

probe, arrays are scanned and images are produced and analyzed. An intensity value 

is obtained to represent how much hybridization occurred for each oligonucleotide. For 

each probe set, the typical output consists of two vectors of intensity readings, one for 

PMs and one for M~\1s. 

Affymetrix provides various chips, the MGU74Av2 mouse chip which we use in 

this thesis is one of these chip types. Each particular chip type can hybridize different 

arrays. For each of t hese arrays, millions of molecules of a specific probe are attached 

on the chip with a very small area ( 400pm2). Each probe is represented by around 100 

pixels at a particular location of the image. Finally the software used to process the 

image stores the location and two statistical summaries, which are mean and standard 

deviation, for each probe in a file with CEL as the extension. The information mapping 
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probe Id's to locations on the chip are stored in a file with CDF extension. We notice 

that each chip type has a unique CDF file while each hybridization has a unique CEL 

file. So if a typical experiment has various hybridized arrays all from the same chip 

type, only one common CDF file is needed and various CEL files are created to store 

the complete probe level data (Irizarry et al., 2003b). We will recall this in Chapter 

3. 

Illumina Inc. recently introduced long-oligonucleotide bead-based array. One dif­

ference between Aftymetrix and Illumina is the oligonucleotide physical attachment. 

The oligonucleotides on Illumina BeadChip use a random self-assembly mechanism to 

be attached to microbeads. The microbeads are then put onto microarrays. Illumina 

arrays are randomly generated and produce on the order of 30 copies of the same 

oligonucleotide on the array. Another feature of the Illumina BeadChip is that all 

different bead types come from a master beads pool and randomly placed onto the 

wells on the array substrate (Luo, 2007). The Affymetrix arrays are constructed in 

a specific layout with each probe placed at a predefined location. Another difference 

between the two platforms is that multiple Illumina arrays are processed in the same 

way since they are placed on the same physical substrate while Affymetrix arrays are 

processed separately. Both Affymetrix and Illumina platforms yield highly compara­

ble data, especially for the differentially expressed genes (Barnes et al. , 2005). We use 

both in this thesis. 
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1.3 Robust Multi-array Average (RMA) 

In the analysis of high-density oligonucleotide arrays, we want to know how RNA pop­

ulations differ in expression in reaction to genetic and environmental differences. Non­

biological variation that may have many different effects on the data is also present. 

The variation could occur during the sample preparation, the manufacture and pro­

cessing of the arrays such as labeling, hybridization and scanning. It is important to 

remove sources of variation between arrays of non-biological origin. Normalization is 

a process for reducing this variation. We use Robust Multi-array Average (RMA) for 

the normalization i the analysis. 

Many expression measures are based on PM- M M with the intention of correcting 

for non-specific binding and background noise. There are some problems with this 

approach. MM may be detecting signal as well as non-specific binding. For some 

probes, changing t e middle base does not make a difference. Another problem is 

subtracting MM ad s noise with no obvious gain in bias. The RMA method introduced 

by Irizarry et al. {2003a) uses only background-corrected PM values. For each PM 

expression, model observed PM as the sum of a signal intensity Sii and a background 

noise Nii 

with i representing different arrays , j representing the probe. Here it is assumed that 

Sii has an exponential distribution, Nii has a normal distribution, and that Sii and 

Nii are independent . We want to adjust the PM intensities to remove the background 

effect. Consider P M ii = E[S/P M] to adjust for background on the raw intensity scale 
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using maximum likelihood. Define fs,PM = fs(s)fN(eii- s) . 

Use maximum likelihood to get .Xi, Pi and ffi and estimate PMii = E[SJPM = eii] = 

h(\,P,i,ffi;eij)· Then use quantile normalization on PMij and log2 transform to get 

PMtj· We assume that vast majority of genes should have equal expression on all 

arrays. The goal of quantile normalization is to make the distribution of probe intensi-

ties the same acros arrays. The quantile method works well on reducing the between 

array variances and giving the smallest distance between arrays. Quantile normaliza-

tion has three steps. First sort the probe intensities of each array. Then compute 

the mean over the smallest, the second smallest to the largest intensity of each array 

respectively. Then replace the smallest to the largest intensity of each array by the 

smallest to the largest value of the mean vector respectively. To obtain an expression 

measure, we assume that for each probe set, P Mti follows a linear model 

with ai representing the log scale expression level for the probe set on array i , /3j a 

probe effect with the assumption that I:i j]i = 0 and Eij representing an independent 

identically distribu;;ed error term with mean 0. To protect against outlier probes we 

use median polish, a robust procedure, to estimate model parameters. The estimate 

of ai is the expression measure for array i (Irizarry et al. , 2003a) . 
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1.4 Description of the Data 

Our experiment arises from research into Type I Diabetes. Type I diabetes (TID) is a 

complex disease caused by multiple genetic and environmental risk factors. The relative 

frequency of TID is quite different between populations, ranging from 0.7 /IOO, 000 

people per year in Peru to 45/IOO, 000 people per year in Finland. The rate of TID 

in Canada is approximately I5/IOO, 000 per year which is the third highest in the 

world. Scientist have also noticed that the relative frequency of childhood TID has 

risen rapidly over the past 50 years in Finland, England and several other countries 

(Llanos and Libman, I994). 

Recent research has found a number of genetic regions that contribute to TID 

susceptibility in mice. Idd4, Idd5 and Iddi3 are three of them. We have two parental 

strains of mice called Non-Obese Resistant (NOR) and Non-Obese Diabetic (NOD). 

These two strains are identical by descent in 88% of the genome. But the rate that NOD 

mice get Type I Diabetes is 82- 85% which is much higher than NOR mice (3- 5%) at 

the age of six mont s for female mice. These two strains differ in the regions of Idd4, 

Idd5 and Iddi3 that we mentioned above. Congenic strains are constructed by selective 

multi-generational inbreeding of these mice and derived from the parental NOD and 

NOR strains. For example, NOD.NOR-Idd4 strain is identical to the parental NOD 

strain except for region Idd4 which inherits from the NOR mice. NOR.NOD-Idd5 

strain is identical to the parental NOR strain except for region Idd5 which inherits 

from the NOD mice. Similarly, NOR.NOD-Iddi3 strain is identical to the parental 

NOR strain except for region Iddi3 which inherits from the NOD mice. NOR.NOD­

Idd5/I3 is a double congenic strain which is identical to the parental NOR strain 
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except for two regions, Idd5 and Iddl3, which inherit from the NOD mice. We will 

use these strains in Chapter 3. 

1.5 Thesis Outline 

In Chapter 2 we review the Significant Analysis of Microarrays method (SAM) for 

selecting significant genes in microarray data and give some definitions for False Dis­

covery Rate (FDR) and smoothing splines we use in this thesis. In Chapter 3 we give 

a detailed description of our datasets and method for finding significant genes using 

smoothing splines. In Chapter 4 we discuss our simulation study and the problems 

that arose with it. In Chapter 5 we make our conclusion and discuss some areas for 

future research. 
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Chapter 2 

SAM, FDR and Smoothing Splines 

2.1 Significance Analysis of Microarrays (SAM) 

Significance analysis of microarrays (SAM) is statistical technique for testing genes for 

differential expression between two conditions. SAM computes a statistic di for each 

probe set j based on the normalized log-expression values. The permutations are also 

used in estimating false discovery rates (FDR) and q-values (Storey and Tibshirani, 

2003). 

SAM selects dif erentially expressed genes from the microarray experiments using 

multiple hypothesis testing. In order to do so, we have to execute hypothesis tests on 

all genes to see if some genes are differentially expressed. In the hypothesis tests, the 

null hypothesis means that there is no change in expression levels between experimental 

conditions while the alternative hypothesis is that there are some changes. If there is 

enough evidence to show the changes, we reject the null hypothesis. We can calculate 

the probabilities of rejecting the null hypothesis when it is true or false to make the 
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decision. 

There are four important steps to test the differential gene expression. The first is 

to choose a statistic that can be formed for each gene with no relevant information loss. 

The next step is to calculate the null distributions for the statistics assuming that each 

gene has a different null distribution. The third step is to choose the rejection region. 

Both symmetric and one-side rejection regions are acceptable here, but we prefer to 

use asymmetric rej ection regions because we do not know how many differentially 

expressed genes are in the positive or negative direction. The last step is to control 

the false positive rate in a reasonable way. 

We are interested in finding significant differentially expressed genes. For each gene 

we define a statistic that is a function of the data (we use t-statistic). Then we set 

a significance region. The gene is said to be differentially expressed if the statistic 

lies in the region. therwise it is not. Suppose that we have G genes measured on 

n arrays under two different experimental conditions. Let xi1 and xi2 be the average 

gene expression for gene j under conditions 1 and 2, and let si be the pooled standard 

deviation for gene ;' . 

(
_!_ + _!_) . I::1 (xj i - Xji)2 + 2:2(Xj i - Xj2)2 

n1 n2 n 1 + n2 - 2 

Here nk is the number of arrays in condition k, and each summation is taken 

within its respective group. So the standard (unpaired) t-statistic for differential gene 

expression is: 

13 



x ·2- x ·1 
t . - J J 
J-

Sj 

We want to compare the values of ti across all genes. In order to do so, we have 

to make sure that the distribution of ti is independent of the gene expression levels. 

From the function above, we notice that the variance in ti could be high at low gene 

expression levels due to small values of Sj. Tusher et al. (2001) add a positive constant 

s0 to increase the value of the denominator such that the variance of ti is independent 

of the gene expression levels. The modified t-statistic is : 

(2.1) 

where s0 is chosen to be a certain percentile of the Sj values. Chu et al. (2005) 

give the procedure for calculating s0 : 

1. Let ri be the difference between Xjl and Xj2 , si be the pooled standard deviation 

for gene i, sa be the a percentile of the si, define df = rd(si +sa). 

2. Compute the 100 quantiles of the si values, denoted by q1 < q2 ··· < qwo -

3. For a E (0 , 0.05, 0.10, ... , 1.0), compute mad(df) given Si in [qj, qH 1) for j 

1, 2, ... , n, where mad is the median absolute deviation from the median, divided 

by 0.64. Define this value to be vj. Then compute the coefficient of variation of 
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the vi values, using the function 

sd( vt) 
cv ( 0:) - ----'-"------.,... 

- mean(vt') 

4. Choose a as t e minimum value of cv(o:), and compute s0 =sa.. Then s0 is used 

as the fixed value of s0 . 

The equation 2.1 is for the situation without day effect. Affy datasets have day 

effect. Therefore we can not use this equation to calculate di. We use a method that 

takes blocking into account in calculation of di . Below is the algorithm: 

1. Build a linear model Yii = f-Li + o:idayij + ,Oistrainij + Eij, where Yii is a normalized 

log2 expression for gene jon array i, day is a factor for day and strain is a factor 

for strain. 

2. Define 

d .- {Jj 
J-

Sj +So 
(2.2) 

where {Ji is the estimate of strain effect in the linear model, Sj is the standard 

error of ,Oi, s is calculated using the same way given above. 

SAM method given by Thsher et al. (2001) derives two cut points, t1 < t 2 , and uses 

the rejection rule d1 < t 1 or di > t 2 . This can lead to a more powerful test in situations 

where more genes are overexpressed than underexpressed. The SAM procedure is 

1. Compute the ordered statistics d(l) ::; dc2) · · · ::; d(a). 

2. Take B sets of permutations of group labels. For each permutation b compute 

statistics djb and corresponding order statistics d(f) ::; d(~) · · · ::; d(~). From 
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the set of B permutations, estimate the expected order statistics by d(j) 

(1/ B) ~~=I d(J) for j = 1, 2, ... ,G. 

3. Plot the d(i) values versus the d(i)· For a fixed .0., find the largest gene i 1 such 

that d(il) ~ median(d(1), ... , d(a)) and d(il)- d(i1 ) ~ -.0.. All genes with di ~ d(i1 ) 

are called neg tive significant. In the same way, find the smallest gene i 2 such 

that d(i2 ) ~ median(d(1), . .. , d(a)) and d(i2)- d(i2 ) ~ .0.. All genes with di ~ d(i2 ) 

are called positive significant. 

4. Let t 1 (.0.) = d(i1 ) and t 2 (.0.) = d(i2 ) · If there is no such i 1 exists, we set t 1(.0.) = 

-oo and claim that there is no negative significant gene. If there is no such i 2 

exists, we set t2 (.0.) = oo and claim that there is no positive significant gene. 

Figure 2.1 is the SAM plot of the average order statistics from the expected d(i) 

values against the observed d(i) values using one of our Affymetrix microarray data 

sets. 

2.2 False Discovery Rates (FDR) and q-values 

The situation is very complicated when testing multiple hypotheses. Each gene has 

possible Type I and Type II errors, and the overall error rate is hard to measure. 

Table 2.1 lists the possible outcomes from G hypothesis tests. 

Here V is the number of Type I errors, T is the number of Type II errors and 

R = V + T is the total number of significant hypotheses. Benjamini and Hochberg 

(1995) first defined the false discovery rate as 
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FDR = E [~IR > o] · Pr(R > 0) 
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4 

Storey (2002) defines a new false discovery rate, the positive false discovery rate as 

pFDR = E [~IR > o] 

The pFDR conditions on the event that positive findings have occurred. There 

are two clear appr aches to estimating the false discovery rate. The first is to fix the 
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Accepted Rejected Total 

Null True u v mo 

Alternative True T s ml 

Total w R G 

Table 2.1: Possible outcomes from G hypothesis tests 

acceptable rate o: beforehand and estimate a significance threshold to obtain this rate 

on average. The second is to fix the significance threshold and provide a conservative 

estimate of the rate using that threshold. In our study, a simple estimate of the FDR 

is the ratio of the average number of significant genes in B permutations and the 

number of significant genes. But this simple estimate tends to be biased upward. The 

permutations make all the genes to be non-differentially expressed. But in the data 

there is a proportion ( 1r0 < 1) of non-differentially expressed genes. To improve the 

estimate of the FDR, we multiply it by the estimate of 1r0 . We will give the algorithm 

in Chapter 3. 

The q-value for a gene is the lowest FDR at which the gene is called significant 

and measures how significant the gene is. The q-value is the FDR analogue of the 

p-value which gives us a hypothesis testing error measure for each observed statistic 

with respect to pFDR. Storey (2003) gives the definition of the q-value. For each gene 

g, find the largest value of~ for which that gene is significant , call this ~9 , then the 

q-value is estimated as 
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2.3 Smoothing Splines 

When we draw the SAM plot, we get a scatter plot which is hard to model using 

traditional parametric techniques. We are interested in the trend of the scatter plot 

without using any model. Using scatter plot smoothing, we can think that the vertical 

positions of each point to be a random variable y conditional on x with the value cor-

responding to the horizontal positions of the point. The trend could be a function such 

as f(x) = E[yjx] which can be written as Yi = f(xi) + Ei, E(Ei) = 0 in nonparametric 

regression. Here the function f is some unspecified smooth function that is estimated 

from the (xi, Yi)· 

In our study, we use cubic smoothing splines. Suppose we have a set of points 

(xi, YI), ... , (xn, Yn) where the value of x are in increasing order. We use the cubic 

function fi to connect the adjacent points (xi, Yi) and (xi+I, YHI), i = 1, ... , G - 1. 

Then piece them together to get a curve. This curve is described as a cubic spline. 

The cubic function can be written as 

for xi ~ x ~ Xi+I , i = 1, ... , G - 1. The first and second derivatives of the cubic 

function are continuous but the third derivative may be discontinuous at xi, ... , xa. A 

cubic smoothing spline j minimizes the penalized residual sum of squares 

G 

L {Yi- }(xi)}2 +A j {}" (x)} 2dx 
i=I 

where A > 0 is the smoothing parameter and j" (x) is the second derivative of 
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](x). The first term measures the fit to the data while the second term penalizes 

curvature in f. The smoothing parameter >. controls the relative weight of the two 

parts in the equation. Large values of>. produce smoother curves while small values 

of >. produce more wiggly curves. With >. ---+ oo, the spline line approaches the least 

squares line. With >. ---+ 0, the bias decreases while variance increases. If >. = 0, the 

spline fit connects all the data points together. The R function smooth.spline uses 

cross-validation to calculate >.. 

Cross-validation works by leaving the points (xi, Yi) out one at a time and esti-

mating the fit at xi based on the remaining G- 1 points. Fori = 1, ... , G, we get G 

numbers of fits at x1 computed by taking out the ith point, denoted by f-i(xi; >.). We 

calculate the squares of the error between Yi and f-i(xi; >.) and get the sum of squares 

after we have done all the points. 

The cross-validation sum of squares is constructed as 

We compute CV(>.) for a number of values of>. and select 5. that minimize CV(>.). 

Recall the linear regression that a fitted model can be written as y = X/3, where 

/3 = (XTX)-1 XTy. Then y can be written as y = Hy where H = X(XTX)-1 XT 

is known as the hat matrix. Similarly, for a smoothing parameter >., the fitted values 

can be written as y = S>s, where y is the G x 1 vector of observed responses Yi, y is 

the G x 1 vector of fitted values Yi =]>.(xi), S>. is a G x G matrix that depends on >., 

called a smoother matrix. One definition of degrees of freedom for a linear smoother 

is tr(S>.), which is the sum of the diagonal elements of S>,. There is a monotonically 
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decreasing relationship between,\ and the degrees of freedom of a smoother. For each 

value of,\> 0, the degrees of freedom is unique (Ruppert et al., 2003). 

In our method, we use the degrees of freedom to do the analysis instead of..\. We 

rewrite the cross-validation sum of squares as 

Here v is the degrees of freedom of a smoother. The value of CV(v) is big for 

small value of v since it leads to a worse fitting spline. Large value of v leads to a too 

good fitting, which means ](x) --t Yi· The difference between Yi and ](xi; v) could be 

very small while the difference between Yi and f-i(xi; v) could be large since f-i(xi; v) 

does not involve (xi, Yi) in the fitting. We can see that the plot of v against CV(v) is 

U-shaped. We also can find v that minimize CV(v). In our case, xi= J(i)> Yi = d(i) · 

2.4 Permutation Tests 

In our study, we want to select the genes that show a statistically significant difference 

in gene expression between two conditions. To get the p-value for a test of significance, 

we estimate the sampling distribution of the test statistic when the null hypothesis 

holds by permutation resampling. Permutation resamples are drawn without replace-

ment and in a way that is consistent with the null hypothesis. A permutation test is 

a type of statistical significance test in which a reference distribution is obtained by 

calculating all possible values of the test statistic under rearrangements of the labels 

on the observed data.. An important assumption behind a permutation test is that the 
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observations are exchangeable under the null hypothesis. 

For our Affymetrix dataset, we have 4 arrays for strain 1 and 4 arrays for strain 

2 with day effect. The strain vector is (1 1 2 2 1 1 2 2) and the day vector is (1 1 

1 1 2 2 2 2) . For probe set j, the observations can be written as (xj11 Xj 11 Xj2l Xj2l 

Xjl2 Xjl2 Xj22 Xj22)· Here Xj 11 is for strain 1 in day 1, Xj2l is for strain 2 in day 1 

and so on. For pr be set j, the null hypothesis is /1jl = /1j2 · The total number of 

the null hypothesis is G since there are G probe sets in each array. The permutation 

matrix is a G x 8 matrix. We permute the vector of condition labels. Since day effect 

could change the distribution of gene expression, the observations are not exchangeable 

between days. The permutations are done within day. Under the null hypothesis , the 

first four columns are exchangeable and the last four columns are exchangeable for 

the permutation matrix. The number B of the set of permutations is 36. For each 

permutation, compute the statistics and the corresponding order statistics. We repeat 

the calculation of the statistics for each new label for B times. Then we calculate the 

average order statistics from the permutations (d(1) , . . . , d(c)) · 

For our Illumina dataset, we have 4 arrays for strain 1 and 4 arrays for strain 2 

without day effect. For probe set j, the observations can be written as (xj1 Xj1 Xj2 Xj2 

Xj1 Xj1 Xj2 Xj2). He e Xj1 is for strain 1 and Xj2 is for strain 2. For probe set j, the null 

hypothesis is /1jl = Jlj2 . The total number of the null hypothesis is G. Under the null 

hypothesis, all the columns of the permutation matrix are exchangeable. The number 

of the set of permutations B is 70. Then we calculate the average order statistics from 

the permutations (1L(1) , ... , d(a)) as above. 
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Chapter 3 

Select Significant Genes Using 

Smoothing Splines 

3.1 Objective 

We want to test for genes with differential expression between two conditions with or 

without day effect. When we refer to significant genes in the thesis, we mean those 

genes that show a statistically significant difference in gene expression between two 

conditions. In the usual SAM method, we have to select a value of fl. to get the 

significance region based on the distance from the line of slope 1 and calculate the 

number of significant genes. The problem is how to choose an appropriate fl . The 

most common way is to pick an arbitrary constant which gives a reasonable F DR. 

We notice that the significant genes are located in the tails of the SAM plot which 

are very far away from the line with slope 1. Our method is based on finding the 
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points where the slope of the plot is much greater than 1. Our objective is to detect 

the significant genes based on the derivative of the smoothed SAM plot and choose the 

significance upper and lower cut-offs directly from the derivative. We then declare the 

significant genes based on these cut-offs. We will describe this method statistically in 

the later sections. 

3.2 Dataset Description 

We use three dataset s in this thesis which are real datasets. Two of them are Affymetrix 

datasets coming from the experiments using mice. Another is Illumina dataset. We 

name the two Affy datasets as Zhenya and Tanya and Illumina dataset as illutanya. 

Dataset Zhenya has three strains consisting of NOD, NOR and NOD.NOR-Idd4. The 

experiment is completed in two days. There are two replicates for each strain on each 

day (day 1 and day 2) and for each sex (Male and Female) with 24 arrays in total. 

The Affymetrix Gene Chip MGU74Av2 has 12488 probe sets. Dataset Tanya has 

four strains consisti. g of NOR, NOR.NOD-Idd5, NOR.NOD-Idd13 and NOR.NOD­

Idd5/13. The experiment is completed in two days with three replicates for each strain 

in day 1 and two replicates in day 2. There are 20 arrays in total. For the Illumina 

dataset, there are 5 strains consisting of NOR, NOD, NOR.NOD-Idd5, NOR.NOD­

Idd13 and NOR.NO -Idd5/13. The experiment has four replicates for each strain and 

46628 probe sets without day effect. 
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3.3 Initial Analysis 

We first read the data from the files. Tables 3.1 and 3.2 give the descriptions of two 

conditions for each subdataset I used in the thesis. For example, Zhenya2 dataset tests 

for a sex effect within the strain NOD from Affymetrix MGU74Av2 chip with 12488 

probe sets. The data frame of dataset Zhenya2 for example with samples as the rows 

and the phenotypic variables as the columns is given in Table 3.3. 

Names of Illumina datasets two conditions 

illut anya1 NOR vs NOR.NOD-Idd5 

illut anya2 NOR vs NOR.NOD-Idd13 

illut anya3 NOR VS NOR.NOD-Idd5/13 

illut anya4 NOR.NOD-Idd5 vs NOR.NOD-Idd5/13 

illutanya5 NOR.NOD-Idd13 vs NOR.NOD-Idd5/13 

illu anya6 NOD vs NOR 

Table 3.1: Description for Illumina subdataset 

To perform gene expression analysis, we need to summarize the probe set data 

available for each gene into one expression measure. For Affy dataset, we use RMA 

to do the normalization. For Illumina dataset, we use quantile normalization of the 

mean expression for a probe to do the normalization. 

Our new method is called SAMSPLINE. This method combines SAM and smooth­

ing spline methods together and gives an easy way to select significant genes without 

using b. . I will describe this method below. 

First of all, we need to calculate some statistics we will use in the future steps. 

The main algorithm here is based on SAM. We get the observed order statistics 
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Names of Affymetrix datasets two conditions 

Zhenya1 Strain NOD vs NOR for Male 

Zhenya2 Male vs Female for Strain NOD 

Zhenya3 Stain NOD vs NOD.NOR-Idd4 for Male 

Zhenya4 Male vs Female for Strain NOR 

Zhenya5 Stain NOD vs NOD.NOR-Idd4 for Female 

Zhenya6 Strain NOD vs NOR for Female 

Zhenya7 Male vs Female for Strain NOD.NOR-Idd4 

Tanya1 Strain NOR vs NOR.NOD-Idd5 

Tanya2 Strain NOR vs NOR.NOD-Idd13 

Tanya3 Strain NOR vs NOR.NOD-Idd5/13 

Tany 4 Strain NOR.NOD-Idd5 vs NOR.NOD-Idd5/13 

Tanya5 Strain NOR.NOD-Idd13 vs NOR.NOD-Idd5/13 

Table 3.2: Description for Affymetrix subdataset 

(d(1), ... , d(c)) following the equations 2.1 and 2.2 for the situations without or with 

day effect respectively. Next we calculate the average order statistics (d(1), .. . , d(c)) 

from the permutations. Since we have day effect as block for our Affy datasets, the 

permutations are done within blocks. The SAM plot is plotting the average order 

statistics from the permutations (d(1) , ... , d(c)) against the observed order statistics 

(d(l), ... , d(c))· 

Another parameter is 1f0 . 1f0 is an estimate of the proportion of unaffected genes 

in the dataset. We compute the 25% and 75% points of the permuted d* values first, 

denoted as q25 and q75. Compute 1f0 =min(#{di E (q25, q75)}/(0.5G) , 1). Here the 

di are the values for the original dataset and there are G such di values ( Chu et al. , 
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sample Strain Block( day effect) 

U74Av2_121003_E/01T _LH.CEL 1 1 

U74Av2_121003_E/02T _LH.CEL 1 1 

U74Av2_121003_Ef03T _LH.CEL 2 1 

U7 4Av2 _121003_E/04T _LH.C EL 2 1 

U74Av _121203_Ef01T_LH.CEL 1 2 

U74Av _121203_Ef02T_LH.CEL 1 2 

U74Av2_121203_E/03T _LH.CEL 2 2 

U74Av2_121203_E/04T _LH.CEL 2 2 

Table 3.3: Data frame for dataset Zhenya2 

2005). 

We use a cubic smoothing spline to smooth the SAM plot and find the numerical 

derivative of the smoothing spline over an equally spaced grid between (d(1), ... , d(a)) 

denoted as (i1 , . . . , XN ). We select a cut off value for the derivative (say 3) and draw a 

horizontal line. We find out that the horizontal line has at least one cross point with 

the derivative plot. If the cross point is on the negative side of the derivative plot, we 

find the first value i 1 whose expected order statistic is just smaller than the cross point 

and set t 1 = d(i1)· If the cross point is on the positive side of the derivative plot, we 

find the first value 1:2 whose expected order statistic is just bigger than the cross point 

and set t 2 = d (i2 ) . 'Ve define all the genes whose observed statistics are less than t 1 to 

be negative significant and all the genes whose observed statistics are greater than t 2 

to be positive signi cant. The number of significant genes is the sum of negative and 

positive significant genes. 

Another very important result we want to get from a dataset is the estimated FDR. 
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We now can use the values of if0 , the upper and lower significance cut-offs which were 

computed earlier to get F DR. Let d* be the G x B permuted statistics and d be the G 

observed statistics. Denote N 1 =Number of {dj : dj 2:: t 2 or dj::; t 1 } be the number of 

significant genes and N0 = s- 1 x Number of { dj : dj 2:: t 2 or dj ::; t 1 } be the average 

number of significant genes in the B permutations. The FDR can be estimated by 

Number Significant= 255 ; Mean FDR = 9.4 % ; 
Cutlow = -1.784; Cutup= 2.226 

-3 -2 - 1 0 2 3 

Expected Relative Difference 

Figure 3.1 : The output of function SAM.plot 

Figure 3.1 shows the output including the SAM plot , number of significant genes , 

FDR and the valw3s of the upper and lower significance cut-offs. The two horizontal 

lines are the values of the upper and lower significance cut-offs. The dots that are 

above the upper line represent the positive significant genes and the dots below the 

28 



lower line are the negative significant genes. The line through the dots is the smooth 

spline line. 

All these calculations seem to work fine in our method. But we found a problem in 

the output. The pr blem is that the cross-validation degrees of freedom (CVdf) which 

is the trace of the smoother matrix is very high. For example, the CV df for dataset 

Zhanya2 is 65.1. We mentioned in Chapter 2 that CVdf minimizes CV(v) such that 

we can get a fairly good fitting and smooth spline. In our case we want not only a 

smooth curve but also a smooth first derivative plot. We take a look at Figure 3.2 for 

dataset Zhenya2. I Figure 3.2, the degrees of freedom of the upper plot is 5 which is 

small. The spline line does not fit the data very well although the derivative is very 

smooth. The lower plot is for degrees of freedom equals to CVdf 65.1. The spline line 

fits the data very well but the derivative plot is wiggly. We want the spline line to be 

a good fit and on t e other hand we need a smooth derivative plot. We need to find 

a way to balance these two considerations to get a satisfactory result . 

We create an objective function to optimize the degrees of freedom. Let fv be the 

fitted spline with v degrees of freedom and ri(v) = d(i)- fv(d(i)) be the residuals. At 

first we define the objective function to be 

G N 

g(v) = L iri(v)l + L If:' (x1)i 
i=l j=l 

Here ( x1 , ... , x N) is an equally spaced grid between ( d(l), ... , d(G)). When we use this 

objective function to optimize the degrees of freedom, we found the optimized degrees 

of freedom is always equals to 2. Figure 3.3 shows the plot for degrees freedom against 

the objective value for dataset Zhenya2. 
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We then plot the degrees of freedom against the sum of the absolute residuals 

(upper) and the sum of the absolute fitted 3rd derivatives (lower) separately shown in 

Figure 3.4 to see the relative sizes of each sum in the objective function. We notice 

that the scale of sum of the absolute residuals is much smaller than the scale of sum of 

the absolute fitted rd derivatives. When we plot the degrees of freedoms against the 

object function, we almost get the lower plot. The minimum value for the lower plot 

is at 2 degrees of freedom. That is the reason we get the optimized degrees of freedom 

at 2 every time. We found out that the shape of the upper plot is monotonically 

decreasing and the shape of the lower plot is monotonically increasing. The maximum 

value for the upper is at 2 degrees of freedom and the maximum value for the lower 

plot is at CV df. We had the idea that we can rescale the sum of the absolute fitted 

3rd derivatives by d1viding by a constant C. 

We define C as 

Now the new objective function is 

Then we plot the degrees of freedom against the sum of the absolute residuals 

(upper) and the sum of the absolute fitted 3rd derivatives divided by C (lower) sep­

arately shown in Figure 3.5 and find out that the scales for both sums are roughly 

the same. When we add these two monotonically decreasing and increasing plots with 

similar scales together, we get a function with unique interior minimum value, shown 

in Figure 3.6. Then the optimized degrees of freedom is the one that minimize g(v). 
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We use this objective function to get the optimized degrees of freedom. For 

Zhenya2, the opti ized degrees of freedom is 16.41 shown in Figure 3.6. We can 

see the advantage of optimizing the degrees of freedom by comparing Figure 3.2 and 

Figure 3.7. The sp line line fitting the data in Figure 3.7 is better than the one in 

Figure 3.2 with df = 5 and the derivative is smoother than the one in Figure 3.2 with 

df = 65.1. We think that the degrees of freedom obtained by minimizing this objective 

function works well for balancing the fit of the spline to the data and smoothness of the 

first derivative plot. In our study, we only use one method to define the constant C. 

For different C, the optimized degrees of freedom could be different . We will discuss 

this further in Chapter 5. 

We use the minimum degrees of freedom to the samspline function. Table 3.5 shows 

the output of 12 comparisons for Affy datasets and Table 3.4 shows the output of 6 

comparisons for Illu ina datasets. As we see from Tables 3.4 and 3.5, almost all the 

minimum degrees of freedom are reasonably small compared to the CV df which means 

the objective function works well in finding a suitable degrees of freedom for all the 

datasets. The FDRs are in the reasonable range too. The figures for most of the real 

datasets look similar to Figure 3.7. But we still get some figures like Figures 3.8 and 

3.9. Our guess is that this is due to the dataset itself. For some datasets, it is possible 

to have none or a ve ry large number of significant genes. 
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data set dfmin Num.Sig FDR c CVdf 

illutanya1 15.34 86 1 309.29 71.34 

illutanya2 14.93 120 1 322.83 66.297 

illutanya3 12.33 210 0.3668 43.66 71.857 

illutanya4 10.26 67 0.3697 42.37 70.313 

illutanya5 10.88 24 1 47.65 73.452 

illutanya6 18.66 698 0.3807 10.81 65.447 

Table 3.4: Partial output for Illumina data sets with cutoff=3 

data set dfmin Num.Sig FDR c CVdf 

Zhenya1 12.84 226 0.06099 66.16 72.60 

Zhenya2 16.41 42 0.3934 234.44 65.10 

Zhenya3 17.52 77 0.05188 178.35 79.39 

Zhenya4 12.82 38 0.2921 86.69 63.65 

Zhenya5 12.66 98 0.06362 147.36 66.64 

Zhenya6 13.38 207 0.2117 57.16 61.64 

Zhenya7 24.12 17 0.1438 101.33 70.13 

Tanya1 17.77 1 0.01878 97.93 99.87 

Tanya2 21.44 1 0.01285 44.10 101.73 

Tanya3 14.65 28 0.06599 83.93 81.38 

Tanya4 21.53 21 0.1524 446.77 70.00 

Tanya5 24.05 5 0.2005 567.14 85.25 

Table 3.5: Partial output for Affy data sets with cutoff=3 
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Figure 3.2: The SAM and derivative plots for Zhenya2 with df=5 and df=65.1. 
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Chapter 4 

Simulation 

We are interested in significant genes. Using the method above , we did get some 

significant genes. But we have no idea if they are really significant or not . We wish to 

use a simulation study to test our method. 

First we generate the data set. We use two ways to generate the data set. One 

is using a t distribution with 3 degrees of freedom and the other is using a standard 

normal distribution. For each distribution, we set two strains, strain 1 and strain 2 

with 5 replicates each. Each sample has G = 10000 genes. For strain 1, the means 

for the observations are J.l-i and the standard deviations are o-i , i = 1, ... , G , where 

J.l-i "" Normal (5, I) and o-f ""' xf. For strain 2, 95% of the observations have mean J.l-i 

and the standard deviations o-i while 5% of them have mean J.l-i + di and the standard 

deviations o-i, where half of di are - 3o-i and half are 3o-i. These 5% of the observations 

are differentially expressed marked by row numbers from 1 to G0 . The R code to 

generate simulated data is given in Appendix E. Since we know which genes are truly 

differentially expressed, we can calculate the real FDR to see if our method is accurate. 
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We define the real FDR as the ratio of the number of false significant genes and the 

total number of significant genes. After we get the numbers of significant genes, we 

calculate how many row numbers of the significant genes are greater than G0 , these 

are false significant genes. The real FDR is this number divided by the total number 

of significant genes. 

The results below are based on a small simulation with 5 replicates and 100 per­

mutations. Table 4.1 lists the results for data simulated from a t distribution with 

3 degrees of freedom which is rescaled to have standard deviation equal to ui. with 

G = 10000 and Go = 500. For this data, we first set the cut off value equals to 3 and 

found out the numbers of significant genes ranged from 700 to 800, which are much 

higher than the number of truly significant genes and hence the real FDRs are very 

high (i.e. 0.4) . The estimated FDRs are extremely small (i.e. 0.03) which means they 

badly underestimate the truth. Even when we increase the cut off value from 3 to 4, 

the numbers of significant genes and the real FDR are still bigger than the number 

of truly significant genes but lower than the ones with cut off value equal to 3. We 

also find out that over 95% of the truly significant genes are included in the genes 

calculated to be significant. This shows that our method is working well on selecting 

significant genes. But also it selects some genes which are not significant to be sig­

nificant. Figure 4.1 shows the plots for t distribution simulated data. The upper one 

is the plot with the cut off value equal to 3 and the lower one with the cut off value 

equal to 4. We noti e that the SAM plot is similar to the real microarray data but the 

derivative plot is different. 

We think the F R estimation problem may be caused by the t distribution since 

it is a heavy tailed distribution. To test this we also use the normal distribution to 
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generate the simulated data. Table 4.2 shows the partial results for G = 10000 with 

Go = 500 and G = 20000 with G0 = 1000. We notice that the real FDR are still 

high. We increase the gene numbers from 10000 to 20000, the results are similar. 

Figure 4.2 shows the plots for normal distributed simulation data with G = 10000 and 

20000 respectively. ·we can see that the derivative plot is quite different from the ones 

using real data, especially in the tails. For most of the real datasets, the tails of the 

derivative plots are going up not down. We conclude that since we can not get the 

simulated data similar to the real data, our simulation study is not successfuL We 

conclude that further research is needed to generate simulated data which mimics real 

microarray data. 

cutoff=3 cutoff=4 

dfmin Num.Sig FDR RealFDR Num.Sig FDR RealFDR 

16.41 839 0.0367 0.4291 662 0.0185 0.2885 

19.38 800 0.0302 0.4087 645 0.0167 0.2791 

13.98 872 0.0446 0.4426 668 0.0221 0.2889 

15.38 814 0.0345 0.4140 633 0.0179 0.2669 

16.53 787 0.0301 0.3901 612 0.0156 0.2451 

Table 4.1: Simulation study for t distribution with G = 10000 and G0 = 500 for 

cutoff=3 and 4 
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Figure 4.1: The jiguTe fort distribution simulation data with G=10000 G0 =500. 
The upper plot with cutoff=3 and the lower plot with cutoff=4 
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Number- Slgnincant = 582; Mean FOR= 1.28%; 
Cutlow = -3.03 ; Cutup = 3.292 i 

~~l~ 
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Expected Relative Difference 

Cutoff taken to be 3 
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Number- Slgnlncant= 1063; Mean FOR= 1.12%; 
cuuow = -3.349; Cutup= 3.211 

-5 0 5 

Expected Relative Difference 
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Figure 4.2: The figure for normal distribution simulation data with cutoff=3. 
The upper plot with G=10000 G0 =500 and the lower plot with G=20000 G0 =1000 
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=10000 G0=500 G=20000 G0=1000 

Num.S ig FDR RealFDR Num.Sig FDR RealFDR 

333 0.0107 0.2744 1161 0.0131 0.2282 

521 0.0106 0.1938 1063 0.0112 0.1797 

672 0.0186 0.2842 1288 0.0176 0.2694 

556 0.0119 0.1871 1121 0.0098 0.2096 

582 0.0128 0.2216 1171 0.0144 0.2263 

Table 4.2: Simulation study for Normal distribution with G = 10000 and 20000 
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Chapter 5 

Discussion and Future Work 

In this thesis, we introduce a new method SAMSPLINE to select significant genes. 

SAM methodology chooses the significance region based on the distance from the line 

of slope 1 and the distances are the same for both positive and negative significance. 

But the positive and negative significance could be different. Our method chooses 

upper and lower significant cut off points directly from the derivative and declares 

that any genes with their observed statistics greater than the upper cut-off are positive 

significant and any genes with their observed statistics less than the lower cut-off 

are negative signifi ant. The biologist can use the list of significant genes for their 

Type 1 Diabetes study. The objective of Type 1 Diabetes research is understand the 

autoimmune respo se that results in the death of b-islet cells and to identify the genes 

that control this process in mice models and in human patients. 

We notice that we can get good results using this method for some datasets (say 

Figure 3.7). But for some datasets we can not get good results since the derivative 

plots are not as good as we expect (say Figure 3.8 and 3.9) . Another thing is the 
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value of cutoff horiz ntalline. As we can see from Figure 3.8, if we set the cutoff value 

to be a fixed number, we have no idea if it is the best choice for different datasets. 

Different datasets have different smoothing splines and the slopes of fitted splines are 

different. If we set the cut off line equals to 3 for all datasets, it will affect the results. 

But how to calculate the cutoff value? 

We also considered an automatic method for calculating the cutoff value. First fit 

a spline to the plot of the average of expected order statistics (d(1), ... , d(c)) against 

(dt1), ... , dta)) for each permutation b = 1, ... ,B. For each spline find the numerical 

derivatives using the method we described before. Then find an upper 95% pointwise 

envelope for the derivative curves. Then choose the cutoff value as the maximum 

value of the envelope. We use this method to find the cutoff value for Affy datasets 

and Table 5.1lists the results. From Table 5.1 we find out that all the cutoff values are 

around 2 to 3 and F'DR are very high. So we claim that this method is not working 

well. In the future e wish to find a better way to calculate the cutoff value based on 

the data set rather than a fixed value. 

data set dfmin cutoff Num.Sig FDR 

Zhenya1 12.84 1.6855 1516 0.2413 

Zhenya2 16.41 1.9883 72 0.4054 

Zhenya3 17.52 1.5103 717 0.3402 

Zhenya4 12.82 3.3836 30 0.2997 

Zhenya5 12.66 1.6903 744 0.2013 

Table 5.1: The output for Affy data sets without setting cutoff value 

Another problem is the value of C in the objective function. We can see from 

Figure 5.1 that for different values of C, the optimized degrees of freedom could be 
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different. We do not know if our method to calculate C is a good one or not. We wish 

a method could be developed to test it. 

The last problem we noticed is from Table 3.4. The FDR are equal to 1 for three 

datasets. We then calculate the number of false significant genes for each permutation 

and get its distribution. Table 5.2 shows the distributions for the Illumina datasets 

and the numbers of significant genes respectively. 

Name Nu ber Min 1stQu Median Mean 3rdQu Max Num.sig 

Illutanya1 70 16 45 93.5 288 408 3044 86 

Illutanya2 70 4 25.25 100 250 275 2768 120 

Illutanya5 70 0 3 8.5 52.1 24.25 1086 24 

Illutanya3 70 0 3 10.5 79.47 41.5 1614 210 

Illutanya4 70 0 0 1.5 24.77 4 726 67 

Illutanya6 70 10 46.25 119 265 252 3083 698 

Table 5.2: The Distribution of the number of significant genes for Illumina datasets 

We find out for the first three datasets, the means are greater than the numbers of 

significant genes. So when we calculate F DR, it is greater than 1. But F DR can not 

be greater than 1, the program sets it to be 1. We also notice that the medians are 

much smaller than the means and the maximum values are huge. For the other three 

datasets, the means are smaller than the number of significant genes. Therefore we can 

get a reasonable FDR. We can have a better look through Figure 5.2. Figure 5.2 is the 

histogram of the distribution of the number of significant genes for dataset illutanya2. 

We can see there are some outliers that are greater than 2500. Figure 5.3 shows the 

histogram for dataset illutanya4 with FDR equal to 0.3807. The value and number of 

the outliers are both small. Some statistician use median false discovery rate instead 
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of mean false discovery rate. If we use median FDR here, it would reduce the values 

of FDR for those t ree datasets above. But for the other datasets, the F DR could be 

extremely small since the median values are always much less than the mean values in 

our case. So we prefer mean FDR instead of median FDR. 
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Figure 5.1: The plot of the degrees freedom against the output of objective function for 
C = 100 and 500 for dataset Zhenya2 
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Appendix A 

R Code for SAMSPLINE 

# The function samspline is the main function for our method. It fits a cubic smooth­

ing spline to the SAM plot, choose the upper and lower significance cut-offs, calculate 

the numbers of significant genes and FDR and draw the SAM and derivative plots. 

#Arguments 

stats is a matrix with the values of observed order statistics. 

di.perm is the order statistics from the permutations. 

cutoff is the value of the horizontal line we draw on the derivative plot. In most cases, 

we set it equal to 3. 

#Values 

cut.up is the upper significance cut-off. 

cut.low is the lower significance cut-off. 

num.sig is the total number of significant genes. 

M eanF DR is the false discovery rate. 

siggene is a list of significant genes with the values of their observed order statistics, 

sO and the average rder statistics from the permutations. 
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spline is the output from function smooth. spline including components of spar, lambda, 

equivalent degrees of freedom and so on. 

samspline <- function(stats, di.perm, piO=calc.piO(Obs, di.perm), 
cutoff, alpha=0.05, spacing=0.01, plot=T, . .. ) { 

Obs <- stats$d.stat 
Exp <- stats$~xpected 

sp = smooth.s line(Exp, Obs, ... ) 
X<- (floor(min(Exp)/spacing):ceiling(max(Exp)/spacing))*spacing 
Y <- predict(sp, X)$y 
Xmid <- X [ -1] ·-diff (X) /2 
Dhat <- diff(Y)/diff(X) 
if (missing(c toff)) { 

R <- ncol(di.perm) 
Exp1 <- sort(Exp) 
derivs <- matrix(NA,nrow=length(Xmid), ncol=R-2) 
for (i in 1:(R-2)) { 

} 

} 

sp1 = smooth.spline(Exp1, di.perm[,i+1], ... ) 
Y1 <- predict(sp1, X)$y 
derivs[,i] <- diff(Y1)/diff(X) 

env = apply(derivs, 1, max) 
cutoff <- max(env) 

else { 
env=cutoff 
derivs=NULL 

} 

negs <- which(Xmid<O & Dhat>=cutoff) 
if (length(negs) > 0) { 

} 

xneg <- max(Xmid[negs]) 
i.neg <- max(which(Exp<=xneg)) 
cut.low <- Obs[i.neg] 

else { 
xneg <- min(Xmid) 
Eneg <- min(Exp) 
i.neg <- which.min(Exp) 
cut.low <- -Inf 
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} 

} 

pos <- which(Xmid>O & Dhat>=cutoff) 
if (length(pos )>O) { 

} 

xpos <-min Xmid[pos]) 
i.pos <- max (which(Exp>=xpos)) 
cut .up <- Obs[i.pos] 

else { 

} 

xpos <- max (Xmid) 
Epos <- max (Exp) 
cut.up <- Inf 

samplot <- SAM .plot(stats, di .perm, cut.low, cut.up, piO) 
if (plot) { 

op <- par(no . r eadonly=T) 
par(mfrow=c(2 , 1)) 

samplot <-SAM lot(stats, di.perm, cut . low, cut .up , piO) 
lines(sp) 

} 

plot(Xmid, Dhat, xlab="Expected Relative Difference", 
ylab="Sl ope of Fitted Spline" , 
main=paste("Cutoff taken to be",round(cutoff,4))) 

abline(h=cutoff) 
par(op) 

return(list(cut .up=cut .up, cut . low=cut.low, NumberSignificant = 
samplot$Number ignificant, MeanFDR=samplot$MeanFDR, 
siggene=samplot $siggene, spline=sp)) 
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Appendix B 

R Code for Selecting Significant 

Genes 

# The function Signif is to calculate the number of significant genes. 

#Arguments 

stats is a matrix ·th the values of observed order statistics. 

expect is the average of expected order statistics. 

cut.low and cut.up are the upper and lower significance cut off points calculated in 

function samspline. 

#Values 

num.sig is the number of significant genes consisted of the numbers of total significant 

genes, positive significant genes and negative significant genes. 

siggene is a list of significant genes with the values of their observed order statistics, 

sO and the average order statistics from the permutations. 
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Signif <- functi on(stats, expect,cut . low, cut.up) { 
obs <- stats$d . stat 
pos.sig <- whi ch(obs >= cut.up) 
np <- length(pos . sig) 
neg . sig <- whi ch(obs <= cut.low) 
nn <- length(neg.sig) 
i nd <- which(obs >= cut .uplobs <= cut . low) 
siggene <- stat s[ind,] 

return(list(num .sig = c(nn+np, np, nn), siggene=siggene)) 
} 
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Appendllx C 

R Code for Finding the Optimized 

Degree of Freedom 

# The function dfreed is the objective function used in the function optimize to find 

the optimized degrees of freedom. 

#Arguments 

xis the variable of degrees of freedom from 2 to CVDF. 

stats is a matrix with the values of observed order statistics. 

perms is a permutation matrix with the values of expected order statistics. 

canst is the result calculated in the function dfspline. 

#Values 

sumsum is the sum of two sums. one is the sum of the absolute values of residuals of 

spline at degrees of freedom x and the other is the sum of the absolute values of fitted 

values of the predic ted spline at X mid divided by canst at degrees of freedom x . 

# dfmin is the optimized degrees of freedom. 
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dfreed <- functi on(x, stats, perms, const, spacing=0.01) 
{ 

spline = samspl i ne(stats, perms$permutations, cutoff=3, 
df=x, plot=F, spacing) 

Exp = stats$Expected 
X =(floor(min(Exp)/spacing):ceiling(max(Exp)/spacing))*spacing 
Xmid = X[-1]-spacing/2 
ppd = predict(spline$spline, Xmid, deriv=3) 
resid = residual s(spline$spline) 
absresid = abs(r esid) 
absderiv = abs(ppd$y) 
sumsum = sum(absresid )+sum( absderiv)/const 
return(sumsum) 

} 

dfmin =optimize dfreed,c(2,cvdf),stats=stats,perms=perms, const 
const)$minimum 
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Appendix D 

R Code for dfspline Function 

# The function df spline is our main function to combine all the functions together and 

get the results. It has three parts. Calculate const, the optimized degrees of freedom 

and use the optimized degrees of freedom to calculate the numbers of significant genes, 

FDR and return the results. 

#Arguments 

stats is a matrix with the values of observed order statistics. 

perms is a permutation matrix with the values of expected order statistics. 

#Values 

results includes the optimized degrees of freedom, the number of significant genes , 

false discovery rate, constant and CV df. 

sig.gene is a list of significant genes with the values of their observed order statistics, 

sO and the average order statistics from the permutations. 

spline is the output from function smooth. spline including components of spar, lambda, 

equivalent degrees of freedom and so on. 
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dfspline <- func t ion(stats , perms, spacing=0.01){ 
spline1 = s amspline(stats, perms$permutations, cutoff=3, plot=F, spacing) 
cvdf = spline1$spline$df Exp = stats$Expected 
X= (floor(ml n(Exp)/spacing) : ceiling(max(Exp)/spacing))*spacing 
Xmid = X[- 1] - spacing/2 
ppd = predict (spline1$spline, Xmid, deriv=3) 
absderiv = abs(ppd$y) 
sum2 = sum(absderiv) 
spline2 = samspline(stats, perms$permutations, df=2, cutoff=3, 

plot=F, spacing) 
resid = residuals(spline2$spline) 
absresid = abs(resid) 
sum1 = sum(absresid) 
const sum2/ sum1 
dfmin = optimize(dfreed,c(2,cvdf),stats=stats,perms=perms, const 

const )$minimum 
spline = samspline(stats, perms$permutations, cutoff=3, 

df=df min,plot=F) 
out <- c(dfmi n, spline$num.sig, spline$MeanFDR, const, cvdf) 
names(out) <·- c("dfmin", "Num.Sig", "MeanFDR", "C" , "CVdf") 
return (list (:resul ts=out, sig . gene=spline$siggene , 

deriv=spline$deriv, spline=spline$spline)) 
} 
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Appendix E 

R Code for Simulation Study 

# The function datageneratet is to generate random dataset using t distribution with 

3 degrees of freedom. The function datagenerate is to generate random dataset using 

a standard normal distribution. 

#Arguments 

G is the total number of simulated genes. 

GO is the number of differently expressed genes. 

nr is the number of replicates of the same experiments. 

#Value 

The output exdata is the random dataset generated. 

datageneratet <- function(mu, sigma, G, GO, nr ){ 
mean <- rnorm(G ,mu,sigma) 
sds <- sqrt(rchi sq(G,1)) 
d1 <- rep(-3,length=G0/2) 
d2 <- rep(3,length=G0/2) 
d <- c(d1, d2, r ep(O, G-GO))*sds 
strain1 <- matri x(rt(nr*G,3),ncol=nr)*sds/sqrt(3)+mean 
strain2 <- matri.x(rt (nr*G ,3) ,ncol=nr) *sds/sqrt (3)+mean+d 
exdata <- cbind (strain1, strain2) 
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strain<- rep(1:2, each=nr) 
row.names(exdata ) <- (l:G) 
ex data 
} 

datagenerate <- f unction(mu, sigma, G, GO, nr ){ 
mean <- rnorm(G,mu,sigma) 
sds <- sqrt(rchi sq(G,l)) 
dl <- rep(-3,le gth=G0/2) 
d2 <- rep(3,length=G0/2) 
d <- c(dl, d2, r ep(O, G-GO))*sds 
strain!<- matri x(rnorm(nr*G, rep(mean, nr), rep(sds, nr)),ncol=nr) 
strain2 <- matri x(rnorm(nr*G, rep(mean+d, nr), rep(sds, nr)),ncol=nr) 
exdata <- cbind(strain1, strain2) 
strain<- rep(1:2, each=nr) 
row.names(exdata ) <- (l:G) 
exdata 
} 
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