
An Algebraic Approach to Parameterised Loop Decomposition

An Algebraic Approach to Parameterised Loop Decomposition

By
Shiqi Cao B.Sc. (Hons)

A Thesis
Submit ted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University
© Copyright by Shiqi Cao, January 15, 2009

MASTER OF SCIENCE(2008)
COMPUTING AND SOFTWARE

McMaster University
Hamilton, Ontario

TITLE: An Algebraic Approach to Parameterised Loop Decomposition

AUTHOR: Shiqi Cao B.Sc. (Hons)(McMaster University)

SUPERVISOR: r. Wolfram Kahl

NUMBER OF PAGES: ix, 70

11

Abstract

Loop scheduling is to explore more possible parallelism by re-organizing the
loop body without changing its semantics; it results in more efficient utilization
of the underlying hardware. Recently, research has been shifting from well­
studied instruction level parallelism to thread level parallelism (TLP) in order
to follow the trends of CPU design; parts of the COCONUT project are moving
in this direction as well. Loops are usually represented in graph-like structures,
which, without algebraic properties, can make formal verification very difficult.

In this thesis, a new representation of a loop, called an extensible loop
specification, is pro osed, based on the code graph and loop specification con­
cepts already used in the COCONUT code generator. Extensible loop speci­
fications are intended to be used by TLP loop scheduling algorithms; their
algebraic properties derive from those of loop specifications and code graphs.

During the process of discovering a new loop representation, we use a
relational model to verify some transformations of control flow graphs where
transitions are labeled with code graphs.

iii

Acknowledgments

First, I would like to sincerely thank my supervisor, Dr. Wolfram Kahl, for his
guidance, supervision and support over past several years.

I would like to thank Scott West for his comments on my thesis.
I would also like to thank my aunt and her family for making me feel at

home during my studies in Canada. Finally, I would like to thank my parents
for everything they have done for me.

v

Contents

Abstract

Acknowledgments

List of Figures

1 Introduction

2 Code Graph and Semantics

3 Loop Specification and Semantics
3.1 Loop Specification
3.2 Semantics
3.3 Simplification . . .
3.4 Wrap into RWCFG

4 Construction of Loop Spec.
4.1 Extensible Loop Spec.
4.2 Composition
4.3 A Motivating Example . .
4.4 Parameterised Decomposition Algorithm

4.4.1 Motivation
4.4.2 Overview
4.4.3 First Step of The Algorithm ..
4.4.4 Second Step of The Algorithm .

5 Relation Weighted CFG
5.1 Definition
5.2 Dead-Branch Introduction
5.3 Edge Replacement

Vll

iii

v

ix

1

3

7
7
9

15
16

19
19
20
23
26
26
27
29
31

37
37
39
41

6 Conclusion and Future Work

A Relation Algebra
A.l Definition and Operators
A.2 Direct Sum
A.3 Lemmas

B Proof

C Haskell Implementation
C.l Loop Specification Definition
C.2 Loop Specification Interface
C.3 Implementation of Loop Specification Semantics
C.4 Extensible Loop Specification Definition
C.5 Convert from Loop Specification
C.6 Extensible Loop Specification Access Functions
C. 7 Composition of Extensible Loop Specification .
C.8 Implementing the First Step of Decomposition .
C.9 Implementing the Second Step of Decomposition .

Vlll

45

49
49
51
52

55

59
60
60
60
62
63
63
64
65
69

List of F'igures

3.1 Fibonacci ..
3.2 Three components of G'
3.3 Fibonacci'
3.4 [G] 1

3.5 [G]j, j > .
3.6 Examples of [Fibonacci]) .
3. 7 Steps to G"' . . .
3.8 Wrap Loop Specification into RWCFG

4.1 Composition of Extensible Loop Specification
4.2 Decomposed Fibonacci
4.3 Motivating Example
4.4 Code graph representation ..
4.5 Extensible loop specification representation .
4.6 X
4.7 Decomposition of MapTicker
4.8 Decomposition of MapTicker'
4.9 Decomposition of Map Ticker:W.
4.10 Final Decomposition of MapTicker'

5.1 Application of Never-Taken-Edge

lX

8
10
11
12
12
13
14
17

22
23
24
25
26
28
32
33
34
35

42

M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software

X

Chapter 1

Introduction

Correctness and efficiency are two different aspects of software development;
some applications like image and signal processing for medical purposes are
highly dependent on both. Technically, the two aspects do not cooperate
well; correctness, usually, is easy to deal with at a higher level in develop­
ment. Improving efficiency usually does not happen until several intermediate
transformations be ore implementation. During these several transformations,
correctness information becomes difficult to trace or may even be lost; ideally,
correctness information should be accessible, which would allow efficiency to
be improved while preserving correctness.

The CoCONUT (COde CONstructing User Tool) project aims to pro­
duce a software development framework, created especially for safety-critical,
high-performance scientific software. COCONUT emphasizes two areas, formal
capture of the entire design, and formal transferring between development
stages; we believe that with these two goals correctness and efficiency will be
simultaneously respected in every development stage. Capturing the entire
design requires a rich internal representation, and formal transformation re­
quires the representation to be rigorous; a good example is term graph with
choices introduced in [KAC06a]. This thesis mainly formalizes and enhances
some representations used in COCONUT, and also proposes a new formal rep­
resentation for future development. The contribution of this thesis includes
two parts,

• A new structure introduced in Chapter 419 , the extensible loop specifica­
tion, is defined with algebraic properties. Extensible loop specification
is base on loop specification [Tha06]; to make the foundation solid, in
Chapter 37 w present loop specification with a formal semantics.

• During exploring extensible loop specification, we also verify some graph

1

M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software

transformations used in [AK08a], it is presented in Chapter 537 with in­
troduction ofrelation-weighted control graphs(RWCFG) [SS93; SHW97].

The two parts of t · s thesis are not tightly related; only in Section 3.416 we
show how some lo p specifications can be embedded into RWCFGs directly.
Chapter 23 summarizes code graphs [KAC06b] with algebraic properties; which
is the foundation f loop specification(Chapter 37). Chapter A49 provides a
basis in relation algebra which is required in Chapter 537 •

2

Chapter 2

Code Graph and Semantics

This chapter serves as an entry point to Chapter 37 , it includes a summery of
code graph and some algebraic properties. Code graph is first introduced in
[KAC06b]; if you h ve read [KAC06b] or familiar with the topic, feel free to
skip this chapter.

A code graph [KAC06b] is a directed hypergraph with a sequence of
input and output i _ terface; the interface consists of two node sequences; each
edge is a function symbol, and nodes are labeled with type information.

Definition 2.1 A ode graph G = (N, £,In, Out, src, trg, elab) over an edge
label set Elab consists of

• a set N of nodes and a set£ of hyperedges (or edges),

• two node sequences In, Out : N* containing the input nodes and output
nodes of the code graph,

• two functions src, trg : £ -t N* assigning each hyperedge the sequence of
its source no es and target nodes respectively, and

• a function elab : £ -t Elab assigning each hyperedge its edge label,
where the label has to be compatible with the numbers of source and target
nodes of the edge. D

An acyclic code graph is used to represent a term graph, which is con­
ventionally represented by a non-hyper graph where nodes represent function
symbols and edges connect function calls with their arguments; whereas the
role of nodes and edges are switched in the code graph. A code graph is more
expressive than an n-hyper graph. In non-hyper graphs, there is a trade off
between exactly only one output of each function symbol and variable sharing;

3

M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software

if exactly only one output is enforced, every output tentacle from a node shares
the same variable, then a pre-defined "projector" nodes can be used to fake
multiple outputs. If each output tentacle from a node represents an output,
then variable shari g must be faked by a pre-defined node. The code graph
structure is rich enough to naturally express both; moreover, semantics of a
code graph node with more than one input tentacle in [KAC06b] is defined to
mean that the same result can be obtained in different ways.

There are many properties of code graphs defined in [KAC06b], we
select a minimums t which are used in later chapters.

Definition 2.2 A node in a code graph is called used iff an output node is
reachable from it, and supported iff it is either an input node or a target node
of a supported edge.

An edge in a code graph is called used iff at least one of its target nodes
is used, and supported iff all its source nodes are supported. D

Definition 2.3 A code graph is called:

• acyclic iff the node successor relation is acyclic,

• join-free iff each node occurs at most once in the concatenation of the
target node lists of all edges with the input node list of the graph. D

The theory f code graphs is formulated in the language of category
theory, in particular gs-monoidal categories over a set of primitive code graphs.
[KAC06b] contains all definitions, explanations and examples, we only present
a brief summary for later chapters. The next four definitions are presented
in hierarchy of dependency; Def. 2.44 introduces symmetric strict monoidal
category, which serves as a base; Def. 2.54 and Def. 2.65 are defined based on
Def. 2.44 ; then Def. 2.75 combines Def. 2.54 and Def. 2.65 together.

Definition 2.4 A symmetric strict monoidal category C = (C0 , @, 11., X) con­
sists of a category C0 , a strictly associative monoidal bifunctor Q9 with 11. as
its strict unit, and a transformation X that associates with every two objects
A and B an arrow XA B : A Q9 B -t B Q9 A with: ,

(F Q9 G);Xc,v XA,B;(G Q9 F) ,
XA®B,C = (liA @ XB ,C);(XA,C @ liB)

Definition 2.5 C = (C0 , @, 11., X, \7) is a strict s-monoidal category C iff

• (C0 , Q9, 11., X) is a symmetric strict monoidal category, and

4

D

M.Sc . Thesis - Shiqi Gao- McMaster- Computing and Software

• V' associates with every object A of C0 an arrow V' A : A ---+ A Q9 A,

such that ll:n = Y':n , and the coherence axioms

• commutativity of duplication: V' A;XA,A = V' A

and the monoidality axiom

are satisfied.

Definition 2.6 C = (Co ,®,]., X, !) is a strict g-monoidal category iff

• (C0 , ®,]. , X) is a symmetric strict monoidal category, and

• ! associates with every object A of C0 an arrow !A :A---+]. ,

0

such that ll:n =!1, and monoidality of termination holds: !A®B =!A®!8 0

Definition 2. 7 C = (C0 , Q9,]_, X, V' , !) is a strict gs-monoidal category iff

• (C0 , Q9,]_ , X, !) is a strict g-monoidal category, and

• (Co ,®,]. , X, V') is a strict s-monoidal category,

such that the coherence axiom

0

Code graphs can be considered as arrows between objects which are
sequences of node labels.

Q9 is a bifunctor, for code graph, in parallel it composes two code graphs
and input and output node sequences are concatenated. Object]_ is the left
and right unit of ®, the type of empty sequence corresponds to]_ in code
graph. V' duplicates input node sequence at output, it makes sharing inputs
possible. Xm ,n differs from Hm®n only in the fact that two parts of output are
swapped. ! terminates input by outputting an empty sequence. in is dual to
!n in the face that input is empty but the output is typed to n. The following
figures demonstrate the operators, f and g are two code graphs with only one
edge, one input , one output.

5

M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software

(a) f;g (b) f ® g (c) (f®g);X.

(d) f;"'V (e) f;! (f) i;f

6

Chapter 3

Loop Specification and
Semantics

Loop scheduling is a active topic in static program optimization in the field of
compiler design. However there is no uniform presentation of loops; some are
more like term graphs and some are more in the flavour of control flow graph.
The soundness of transformations of these graphs is not discussed formally
due to the lack of algebraic properties. A loop specification was introduced
in [Tha06] for the CocoNUT project. It is defined based on code graphs.
Loop carried dependencies are captured at interface of code graphs; each loop
carried dependency is assigned an integer as loop distance.

The meaning of loop specification is carefully explained in [Tha06]. In
Section 3.29 we take a further step to interpret it with an operational seman­
tics, which translates a loop specification into a set of code graphs. A formal
semantics is intended to be used as a verification framework for loop transfor­
mations. Moreover, it is desirable to base development (Chapter 419) on a well
defined and rigorous foundation .

In Section 3.416 , we show an implementation of simplified loop specifi­
cations in RWCFG, t he simplification algorithm is presented in Section 3.315 •

Wrapped by RWCFG vividly shows how loop-carried dependencies are con­
nected.

3.1 Loop Specification

Loop specification is an abstract presentation of loop, it abstracts one aspect of
loop, it omits how values are passed from different iterations, it only specifies
which iteration a value is from.

7

M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software

A Loop Specification is a pair (G, d) , G is a code graph with signature
G: K 0 F----+ C 0 F. K is the type of constants, it is an initial input to the loop
body and its value oes not change in every iteration. C is the type of control
information, its v ues are intended to be used to decide termination of the
loop. F is the type of loop carried values. d assigns an integer to each element
in F. The meaning of d(x) = d of the element x in F is that this input to
current iteration w !.S generated in d iteration(s) ago. In [Tha06], d iteration(s)
ago is denoted by - d, but backwards dependency are more common; our way
can avoid double negation when reading it. Besides this opposite treatment
of d, this thesis als uses a different arrangement of the code graph interface
from the original loop specification [Tha06], which used X : F 0 K----+ F 0 C.

For example , let d = 2 of an input , then the value it needs was generated
two iterations ago. As an example, Figure 3.18 arises in an implementation

INT INT INT

l~z1~J'1 s;cc I
INT INT

~~~"w 
Figure 3.1: Fibonacci 

of generating Fibonacci numbers. The sequences of inputs and outputs are 
indicated by arrows from, respectively to, numbered triangles. Type K is 
constituted by red dashed arrow and C by blue dashed arrow. The black 
arrows from triangles denote type F, the integer on each arrow is loop distance. 
Named rectangles denote hyperedges, if there are more than one input or 
output to or, respectively from, a hyperedge, then arrows with integers reflect 
their positions in the sequences. 

Input 1 is a constant of type K. Output 1 returns control information. 
Inputs and outputs 2, 3, 4 constitute a sequence of type F. Input 4 is a 

8 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

counter, in each it ration the hyperedge "succ" increases the counter by 1 
and the result is used both as a loop carried value and control information. 
"isZero" returns it · second input if the first input is equal to 0 otherwise it 
returns the third input. In this example d = { 2 ~---+ 1, 3 ~---+ 2, 4 ~---+ 1}, Input 3 
consumes the output from 2 iterations ago. 

Let d be assigned to a loop carried input, d < 0 means the input de­
pends on the value generated after d iterations in the future. An input with 
d = 0 means an internal direct dependency being exposed intentionally, it can 
be hidden in the 1 op body completely. In this chapter we restrict d to be 
greater than 0. The main reason to drop d ~ 0 is that forward dependency is 
used with assumed implementation, like the staged-pipeline method, in mind, 
interpreting forwar dependency with a specific implementation is not general 
enough; also loop specifications with forward dependency usually are trans­
formed from non-forward dependency loop specification, in our opinion the 
emphasis should be on how to reason the transformation other than how to 
interpret forward dependency. In the rest of this chapter, we present a formal 
semantics for loop specification, then we show it can be converted to d = 1 
for any input with d > 1. 

3.2 Semant ics 

Operational semantics usually translates source language to well defined math­
ematical objects; therefore code graphs are an ideal codomain; this makes 
translation relatively simple because a loop specification is defined based on 
code graphs. The te hnique of translation is similar to unfolding a loop; given 
a number of iterati ns j, then j instances of the loop body are serially com­
bined with carefully connecting loop carried dependency interfaces. Therefore 
for each non-negative integer there is a corresponding code graph, a loop spec­
ification is translated to an infinite set of code graphs. The rest of this section 
explains details of the translation with examples. 

An interface shuffling is an auxiliary definition. When interpreting a 
loop specification, loop-carried dependencies with d = 1 and d > 1 are treated 
differently. Sa is a "function" that takes a sequence of loop carried dependency 
interface and returns two sequences, one for d = 1 and the other for d > 1. 
The proof of existence of S(; is also included in the definition since it simply 
applies the definition of permutations from [CG99]. 

Definition 3.1 Let G be a loop specification, G = ( G, d) and G : K ® F---+ 
C ®F. A shuffle Sa is a permutation{CG99j ofF according to d. Sa shuffles 
F into two parts Ae B, d(A) = 1 and d(B) > 1. Sa can be implemented only 

9 



M.Sc. Thesis- Shiqi Gao -McMaster - Computing and Software 

by X and ll. S(; is a permutation as well, then there is an implementation of 
it according to {CG99}. D 

Definition 3.2 Let G be a loop specification, G = ( G, d). G: K ®F ~ C®F 
is the signature of code graph G and Sa : F ~ A ® B. [G]J is a code graph 
of j iterations. G' = ( G', d) is another loop specification defined based on G. 

G' : K ® A ® B ® B' ~ K ® A ® B ® B', where B' = B 

G' = (\i'K ® liA®B®B');(liK ® ((JIK ® S~;);G;(!c ® Sa))® liB');(liK®A ® XB,B') 
d(B') = d(B)- 1 and d(A ®B)= 1. 

Then [G]J is defined as following, let W(X) = (JIK ® Sa);X;(JIK ® S(;);G 

[G]j = {W(llK®A®!B_®iB),ifj I 1 .. 
W((JIK®A ® I B ® JIB' );[G ]j-l;(JIK®A ® liB® !B' )), if J > 1 

D 

G' is an auxiliary ''loop specification" defined based on the shuffled G. G' 
reduces loop distances to 1 for original inputs with loop distance greater than 
1; therefore d' assigns all inputs typed by A ® B to 1. The extended interface 
B' is equal to B and all inputs in B' are 1 less than the counterpart in B. 
Syntactically G' is a code graph since K = K, F = A ® B ® B', C = K. 
However, the output Cis not used as control information. In the definition of 
G', !c terminates C from G and wiring K to the position of C. 

~4 
~~~--~·~~--~ 

Figure 3.2: Three components of G'

10

M.Sc. Thesis- Shiqi Gao - McMaster- Computing and Software

Figure 3.210 depicts the implementation of G', it is represented as a
serial composition of three components. The first component, Figure 3.2(a) 10 ,

just duplicates constant inputs. Figure 3.2(a) 10 actually depicts '\1 K 0 l[A 0
1[8 0 1[8 ,, which is equivalent to '\1 K 0 l[A® B®B'. Although the former is wordily
but its diagram is more readable than squeezing everything to node type.
The second compo ent, Figure 3.2(b)10 , terminates the output C from G and
bypasses B' and K to the next component. G is surrounded by S(; and Sa
in order to make some distance information available through new interface.
The third component, Figure 3.2(c) 10 , swaps Band B' generated from previous
component.

rrr
INT INT INT

rfr~
INT INT INT

~~~ 
INT INT 

~~\? 
Figure 3.3: Fibonacci' 

Figure 3.311 is G' , where G is loop specification generating Fibonacci 
numbers Figure 3.18 • Output 1 was after succ; now it bypasses the constant, 
input 1. The original input interface was K 0 F , K is input 1, F is 2 and 3 
and 4. Following the Def. 3.19 , A is constituted by input , referring to Figure 
3.18 , 2 and 4; B by input 3, since loop distance of input 3 is 2. Therefore input 
interface of Fibonacci' swaps 3 and 4 from original G, because A contains all 
inputs with d = 1. Moreover the new input 5 is B' , loop distance of it is 2- 1. 
The output interface bypasses input 1, terminates one of duplicated output of 
succ that was used as C. Swapping B and B' results input 5 is bypassed as 
output 4. 

[G]J is defined inductively on, j, number of iterations. The definition 
splits into two case , base case j = 1 and inductive part j > 1. Both terms 

11 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

are wrapped by (IIK 0 SG); ... ;(JIK 0 S(;);G, Figure 3.4(a) 12 and Figure 3.4(c) 12 

respectively. The opening part, IIK 0 SG, ensures [G]j is typed by the same 
signature as G; this is convenient since the signature of [G']j_1 is known 
when implementing [G]j, otherwise the type information must be returned by 
[G']j_1 somehow. As mentioned previously, the closing part, IIK 0 S(;, exposes 
some distance information by Sa. 

Figure 3.4: [G] 1 

Figure 3.412 illustrates the definition for the base case which is decom­
posed into serial components. Figure 3.4(b )12 shows disconnection of all input 
with loop distance greater than 1, together these are typed as B . As in first 
iteration, an input depending something from two or more iterations ago is 
undefined; we explicitly take this responsibility from user. In Fibonacci exam­
ple Figure 3.18 , if "counter" initially is assigned to 2 then in the first iteration 
"isZero" attempts to use constant input 1, which is undefined. 

(b) (c) (IlK ® S(;);Q 
(rrK®A ® jB ® rrB' na'nj-l;(IIK®A ® rrB ®'B') 

Figure 3.5: [G]j , j > 1 

Figure 3.512 depicts the inductive part in the same manner as Figure 
3.412 • They only differ in (b) from each other. From a loop specification 
view, according to the definition of "loop specification" G' , the output nodes 
typed by B actually get the value from input node typed by B' , which has 
loop distance d - 1 assuming there is only one element in B and original loop 

12 



M.Sc. Thesis- Shiqi Gao - McMaster- Computing and Software 

\f \f 
3:1NT 4~1NT 1:1NT \f 

'f 11 'f '"' ':'"' 
'''"' '''"' "'"' 'f ¥ 'f 1 s+c ~ 2:1NT e:INT O:INT 

'''"' '''"' ""'~ 
~~+'w ''"'~ 

(a) j = 1 9 

\f 
3:1NT 7:1NT 

'f 11 'f 
2:1NT 8:1NT O:INT 

$1$('f 
4:1NT 1:1NT 13:1NT 

~ ls+cl 
12:1NT 

~\v 
6:1NT 15:1NT 

~'w ~'w 
(b) j = 2 (c) j = 4 

Figure 3.6: Examples of [Fibonacci]} 

distance is d, also passing from B' to B in G' takes 1 iteration, then input 
node typed by B gets the value generated d iterations ago from output node 
typed by B'. Again according to the definition of G', output node typed by 
B' is output node typed by B from shuffled G . The semantics of G' , [G'] , 
preserves the meaning. Therefore the input node with type B in shuffied G 
gets what it needs. 

13 



M.Sc. Thesi~ · - Shiqi Gao -McMaster - Computing and Software 

(a) G (b) G (c) G" 

www 

(d) G"' 

Figure 3. 7: Steps to G"' 

Three examples in Figure 3.613 are semantics for one, two, four itera­
tions of loop specification of Fibonacci. Node identifiers on the left of colons 
are exposed to make referring easier. Figure 3.6(a) 13 illustrates the semantics 
definition of the base case. The isolated input 3 is due to the loop distance 
of input 3 is greater than 1. In Figure 3.6(b )13 input 3 is consumed by an 
edge from second iteration. In Figure 3.6(c) 13 node 6 and 7 are generated in 
iteration 1 and 3 and consumed in iteration 2 and 4, respectively. Input 1 
is the only constant in the loop specification; in all three code graphs, the 
constant is fed to all edges from different iterations. In these three examples 
all edges are connected to correct nodes required by the original loop speci­
fication; therefore they satisfy the loop specification of Fibonacci. They are 
generated by a Haskell implementation of Def. 3.210 • 

14 



M.Sc. Thesis- Shiqi Gao - McMaster- Computing and Software 

3.3 Simplification 

In t his section we resent another translation, from loop specification to loop 
specification; this translation reduces all loop distances which are greater than 
1 to 1. 

In Def. 3.210 , it is shown that loop distances are reduced as recursive 
calling continues and eventually all loop distances become to 1. G' is defined 
based on G , where all loop distance of inputs are decreased by 1 if the originals 
are greater than 1. A similar technique can be used to reduce all loop distances 
to 1 in general. 

Let Simp() be the simplification function. It accepts a loop specification 
G with a decomposition on F, such that e : K ® F ---+ C ® F where F = 

F1 ® F2• F2 is an auxiliary interface, these inputs and outputs help to reduce 
loop distance; for example , B' in Def. 3.210 is an auxiliary interface; initially, 
F2 is equal to ]. , the unit object of ®. Sa from Def. 3.19 is used to separate 
F1 into two parts, A ® B , only, and all, inputs with loop distance greater than 
1 are in B . As similar to G' in Def. 3.210 , parallel composing e with lis' is 
followed by swapping input 3 and 5; then the loop distances of inputs in B is 
1 and inputs in B' are one less than their counterparts in the original B. Let 
G" be the loop specification represented by Figure 3.7(c) 14 • 

The loop dist ance of inputs in A and BinG" are all equal to 1, but in 
general there are stil l some inputs with loop distances greater than 1 only in B'. 
Therefore a tail recursive call of Simp() is needed. Squeezing input/output 5 
between 2 and 3 as in Figure 3.7(d) 14 matches the interface required by Simp(); 
the new interface is K ® (A ® B') ® (B ® F2), A ® B' and B ® F2 match F1 and 
F2 respectively in the next call of Simp() . Another reason to transfer Figure 
3.7(c)14 to Figure 3.7'(d) 14 is that the interface of a simplified loop specification 
suggests which part of interface should receive initial inputs. Simp() terminates 
when Sa does not decompose F1, such that Sa : A ® ]. . 

Definition 3.3 Formally Simp() can be defined as following, Let G be an 
input ofSimp() , such that e: K ®F1®F2---+ C®F1®F2; and Sp1 : F1 ---+ A®B. 

where 

Simp1G) = {G t• em 

em 

if B =]. 

otherwise 

em - (liK®A ® Xs®F2 ,S' );( e ® lis' );(lic®A®S ® XF2,S') 

d"(B') d(B)- 1 

d"(A ® B ® F2 ) - 1 D 

15 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

A simplified loop pecification only contains the inputs with loop distance 
equal to 1, then d can be omitted. Def. 3.19 clearly shows that Sa separates 
all and only inputs with loop distance greater than 1 to B. Each call of Simp() 
splits F1 to A and B, then redefine loop distance of B to 1 and combine it to 
F2 . Eventually when Simp() terminates, it means there is no input with loop 
distance greater than 1. 

Loop specification abstracts over implementations of how to achieve 
loop distance. A simplified loop specification implements loop distance through 
loop specification transformation. Practically, the "bypass" inputs introduced 
in simplified loop specification cost more registers; this method is used in 
[CBS96] and COCONUT project. Here we try to formally present it , but we 
only did half of it. It is semi-formal since here is only a formal definition 
of simplification but without showing semantics preserving before and after 
transformation. The difficulty is that the original interface changes after sim­
plification. 

3.4 Wrap into RWCFG 

The simplification function (Section 3.315 ) is one level less abstract than the 
general loop specifications, since it specifies how a loop distance which is 
greater than 1 can be translated to loop distances which are equal to 1. In this 
section, we show a way to implement a simplified loop specification, which is 
one more level less abstract; hope this can help reader to gain some intuitive 
understanding of lo p specification. 

In Figure 3.8, a loop specification is wrapped into Relation Weighted 
Control Flow Graph (RWCFG); RWCFG is control flow graph with relations 
as edges, it is formally introduced in Chapter 537 • The middle graph is a control 
flow graph and the left one exposes the detail of each edge. Each edge of the 
left graph is a code graph. As introduced in Chapter 23 , strict gs-monoidal 
category allows us to algebraically construct code graphs. 

• E =!K ® llF ®EXIT, where EXIT: C---+ C and EXIT~ llc. 

• T = llK ® llF ® (TIXEdc), where TIXE: C---+ C and TIXE = llc n EXIT. 

• L = (VK ® llF );(llK ® BODY), where BODY is a loop specification. 

E checks the terminating condition of a loop. EXIT is a subidentity of C, it 
also bypasses the loo _ carried values of type F whereas it blocks all constants 
since they are independent of the loop. T is taken whenever the terminating 
condition is not satisfled. TIXE is a subidentity as well, it defines all entries not 

16 



M.Sc . Thesis - Shiqi Gao- McMaster - Computing and Software 

.......... 

1\ 'fT 
F c 

~$ 
' c 'f '-(F] 

~T 
K F 

IL§~pj 
F C 

ec ~~ 
' (K,F,CJ (F,CJ 

L 
T 

E 

ac 

Figure 3.8: Wrap Loop Specification into RWCFG 

defined in EXIT. It only transmits K and F to the next iteration. L embeds a 
loop specification G, and bypasses all constants. The Kleene representation is 
D( T;L)* ;E . If the constants are not relevant, then they can be hidden in L by 
adopting co-termination iK. As illustrated on right in Figure 3.8, the result 
RWCFG can be more concise. 

• E =lip ® EXIT, where EXIT: C--+ C and EXIT~ lie. 

• T =lip ® (TIXE!e) , where TIXE: C--+ C and TIXE =lien EXIT. 

• L = ((iK;K) ® [p );BODY, where BODY is a loop specification. 

17 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

18 



Chapter 4 

Construction of Loop Spec. 

In Chapter 37 , we rnainly discussed operational semantics, simplification and 
embedding loop specifications into RWCFGs. In this chapter, a new structure 
Extensible Loop Specification is introduced, which is formally defined based 
on loop specification. A loop specification represents an entire loop body, but 
an extensible loop s ecification is mainly used to represent a piece of a loop 
body; an extensible loop specification can also represent an entire loop body, 
this is a special case. Chapter 37 is important that we would like to build the 
new structure, extensible loop specification, on the top of something rigorous; 
loop specification has a formal syntax but informal semantics, in Chapter 37 

we present a way to translate loop specifications to something having formal 
syntax and formal semantics; in our case loop specifications are translated to 
infinite sets of code graphs. 

A definition of extensible loop specification is presented in Section 4.119 , 

then composition is defined in Section 4.220 ; in Section 4.323 , an application 
shows some benefits of using extensible loop specification; motivation and steps 
of parameterised decomposition are in Section 4.426 

4.1 Extensible Loop Spec. 

An extensible loop specification includes a new part in the input and output 
interfaces of loop specification, as following; 

Unlike F, the interfaces Ein and Eout are not equipped with loop distances; 
they are intended to interface with other compatible extensible loop specifica­
tion. This new structure mixes loop specifications and code graphs; it inherits 

19 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

the properties of both; through Ein and Eaut, composing extensible loop speci­
fication is similar to serial composing code graphs, loop specification behavior 
is by the fact that F are assigned with loop distances. 

Definition 4.1 An extensible loop specification is a tuple ( G, d, Ein, Eaut), G 
is a code graph with signature: 

G : K 0 F 0 Ein --+ C 0 F 0 Eaut 

if G' is defined by swapping F and Ein, F and Eaut; then ( G', d) is a loop 
specification, where K' = K 0 Ein and C' = C 0 Eout· 0 

In Def. 4.120 , an extensible loop specification syntactically becomes a loop 
specification if Ein and Eaut are combined into K and C respectively. Then it 
can be implied that the loop carried values must be generated and consumed 
in the same extensi le loop specification. The advantages and disadvantages 
will be discussed in later sections. In two extreme cases, F is empty or Ein 
and Eaut are empty, extensible loop specification becomes a code graph or a 
loop specification respectively. Two different extreme cases are when only Ein 
or only Eaut is empty; these are called right-extensible or left-extensible loop 
specification. 

left-extensible K 0 F 0 Ein --+ C 0 F 

right-extensible K 0 F --+ C 0 F 0 Eaut 

Extensible lo p specification is a closed and more general domain for 
composing and dec mposing operations of loop specification. Also it intro­
duces the "module" concept to loop specifications, users can arrange semanti­
cally related edges into one extensible loop specification; it not only improves 
organization but may increases reusability. 

4.2 Composition 

A new extensible loop specification can be built by composing two extensible 
loop specifications; when composing them, the extended interface Ein and Eaut 
are serially composed whereas the other parts of interface are composed in par­
allel, the last step is to sort the new interface elements into standard extensible 
loop specification interface. Similar to function composition, composition of 
extensible loop specification is not communitive but associative. 

20 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

Definition 4.2 Let A = ( GA, dA, EAin' EAov.t), B = ( Gs, ds, EBin' Esov.t) be 
two extensible loop specifications, 

A® B is defined if EAov.t = EBin· 
Let C =A® B, then C is defined as, 

• Gc : (KA@ Ka)@ (Fs@ FA)@ EAin--+ ( CA@ Cs)@ (Fs@ FA)@ Esov.t 
Gc = A1;A2;A3;A4 

- A1 = JIKA @ X.FA®EA;n,KB®FB 

- A2 = GA@ liKB®FB 

- A3 = 1IcA 8> FA ® (X.KB®FB,EB ;n; Gs) 

- A4 = licA ® XFA ,CB®F8 ® Esov.t 

• Ecov.t = Esov.t 

0 

The above fo mally specifies how two extensible loop specifications are 
composed. A2 right-extends GA with loop specification aspect of interface 
of G B, G B is extended to the left with an appreciated interface after relo­
cating EBin to chase EAov.t by swapping Ks @ Fs and EBin· A1 and A2 
shuffie input , respectively, and output interface of A2;A3 to match desired 
signature. When G A is left-extensible then G B must be right-extensible in 
order to make A® B defined; in this case composition of extensible loop spec­
ification becomes pa allel composition of two loop specifications with shuffled 
interface. In another case if all loop specification parts are all empty, such that 
FA= KA = CA = :n. = Cs = Ks = Fs, then the composition becomes serial 
composition of code graph. Figure 4.122 visually presents the implementation 
of composition base on Def. 4.221 

Associativity of composition can be checked by expanding the left and 
right hand sides according Def. 4.221 • When proving equality of two sides, 
functoriality will be used to distribute identity over serial compositions. 

21 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

Figure 4. Composition of Extensible Loop Specification 

Lemma 4.1 There exist a unique left and a unique right identity of® to 
every extensible loop specification. Let X = ( Gx, dx , Ex in, Ex out) and Gx : 
Kx 0 Fx 0 Exin ~ Cx 0 Fx 0 Exout· The left and the right identity are 
UL = (liE;n' 0, EuLia' EuLin) and UR = (liEouP0, EuRin' EuRout), respectively; 
such that, 

UL®X=X=X® UR 

Proof: 
There exists a left identity, UL' = (Gu', 0, Eu'. , Eu' ).Let the signature of L Lm Lout 
UL' be Ku' 0 Fu' 0 Eu'. ~ Cu' 0 Fu' 0 Eu' . Since Gu' ®X= X, then L L L m L L L out L 
K' = F' = C' =]. and Eu'. = Eu' = Exin according to Def. 4.221 • Then Ltn Lout 
the signature of Ul is simplified to Ein ~ Ein· Then A2 in Def. 4.221 is equal 
to Gu' 0 JIK®F, which is expected to be an identity. Since the bifunctor 0 

L 

preserves identities, G u£ must be equal to liE;n. 0 

Unfortunately, composition and identities are defined but extensible 
loop specification still does not form a category. The reason is that let f and g 
be tow extensible loop specification, also f : A ~ B and g : B -+ C, in general 
f ® g is not typed to A~ C; this is a condition to be a category. 

In the next example(Figure 4.223), we show how extensible loop specifi­
cation can be used to organize loop body into pieces, where each piece should 
contain semantically related edges. Fibonacci loop specification is made up by 
two pieces, COUNTER and ADDER. COUNTER is right-extensible and ADDER 

22 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

is left-extensible, a loop specification is naturally obtained by composing two. 
Pink hollow arrows indicate Ein and Eout· Figure 4.2(a) 23 is the "loop over­
head"; it maintain ~ a loop counter; it does not need any constant input, it 
returns counter as control information through output 1. Now it can be con­
sidered as a separated "module" providing loop counter service. It only allows 
other parts to read the counter through its extended interface, output 3 in this 
case. Moreover, it is a better loop counter than for ( i =a; i < b; i ++) in 
language C. In C t he counter i can be overwritten in loop body whereas 
the counter in Figure 4.2(a) 23 will only be updated in its own "module" . This 
shows one advanta0 e of having loop specification behavior of extensible loop 
specification. 

TT TT 
INT INT 

INT INT 

'flfi' 'f r~'r 
INT INT INT INT INT INT 

f!z[;J l+lt~e~l 
INT INT INT 

(a) COUNTER (b) ADDER (c) COUNTER® ADDER 

Figure 4.2: Decomposed Fibonacci 

4.3 A Motivating Example 

Before introducing parameterised decomposition, we present an example to 
show some advanta0 es of extensible loop specification. The example is a kernel 
of a scientific computation developed in COCONUT. The kernel is presented 
in nested graphs, t he outer graphs are control flow and the inner graphs are 
code graphs(Chapt r 23 ). In [AK08a], optimized implementation of the kernel 
can be achieved by a sequence of graph transformation. All edges in the inner 
graphs are pseudo instructions. 

23 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

~ 

'f'f'f'f 
11 12 13 c 

tt~~ 
PUU]-

T'f\ 

~-~J 
lll~ . 
P1.12.13.CJ 

]11,12,13] 

\f'f'f 
11 12 13 

1¥ 
RESULTS 

t 

(a) 

'f 
{ARGS] 

'f 
ARGS 

~ 
11 12 13 

~t~ 

y 
v-- }$L 'f'f'f'f 
~~~~ ~~~ 

-P,.a:ust....-

l"fj
~ ~. ~~~ ~

lh.M1.12AC1

TY'fYj " ~ l c

~tt·~
~1,12,M:US.C]

TTTTT
~lfi
.,..,.,

'f'f'f'f
~~~~ 

(b) 

Figure 4.3: Motivating Example 

The outer graph in Figure 4.3(a)24 is a loop, the loop body is the (outer) 
edge containing edge "81" ,"82" and "83". In Figure 4.3(b) 24 , the loop body 
is splitten into three (outer) edges, this is a just code graph decomposition. 
Next we show a bet ter representation based on extensible loop specifications. 

Figure 4.325 is the loop body from Figure 4.3(b )24 • Figure 4.526 is the 

24 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

same loop body but represented by extensible loop specification. In the top 
edge in Figure 4.325 output 1 actually is a loop carried dependency, since the 
middle and bottom edges just bypass it. Figure 4.526 shows a more clear 
representation, sue that in the most left figure in Figure 4.526 output 2 is a 
loop carried dependency, which is consumed by edge Sl in the next iteration. 
The beneficial of u~·ing extensible loop specification is that it can express loop 
carried dependency, then the output 2 does not have to pass into other outer 
edges. 

Another advantage is a result of the previous one, only information 
needed in the next stage is passed to the next stage; since less information is 
passed, then the representation becomes more concise. 

(11,12,13( 

~1.M1,12.13,C( 

(11 ,12,M2.13,C( 

~1.12,13,C( 

Figure 4.4: Code graph representation 

25 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

T 
11 

~ 
C 11 M1 

' . ..L l 
~ww 

Figure 4.5: Extensible loop specification representation 

4.4 Parameterised Decomposition Algorithm 

Figure 4.223 is used as an example of composition, but Figure 4.2(a) 23 and 
Figure 4.2(b )23 are generated by an parameterised decomposition algorithm 
applied on Figure 4.2(c) 23 • In this section we present the algorithm for decom­
posing an extensible loop specification. 

4.4.1 Motivat ion 

Developing decomposition operation is partially inspired by Decoupled Soft­
ware Pinpelinning(DSWP). DSWP decomposes a loop into several parts, it 
is intended to execute a loop by multi-threads [ORSA05] and to improve 
fetch of recursive data structure[RVVA04]. DSWP uses an alternative graph 
representation for l ops, instructions are denoted by nodes and edges repre­
sent instruction dependency and loop-carried dependency. Briefly, the DSWP 
algorithm[ORSA05] discovers strongly connected components as basic units, 
these basic units form a direct acyclic graph; then distributing basic units into 
different threads. In this section we present a fundamental tool for decom­
posing an extensible loop specification; such decomposition can potentially be 
used for extracting multi-threads from existing loops. Ideally, if a loop X is 
decomposed into X1 ® ... ® Xn, then each Xi can be distributed to a thread. 
Inter-thread communication is needed for each composed extensible interface; 
moreover, inserting buffers for each inter-thread communication allows differ-

26 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

ent parts to execute in different logic iteration. Extensible loop specification 
is an algebraic treatment to loop manipulation with formal semantics. Multi­
thread is a complex scheduling problem, it is not in the scope of this paper. 
The basic decomposition algorithm we developed is deterministic and is in­
tended to be used by scheduling algorithms. 

4.4.2 Overview 

Decomposition is a closed unary operator on extensible loop specification. An 
ideal decomposition would be completely reverse of composition, such that X 
can be decomposed to XL and XR and X = XL ® XR . Without any hint, 
decomposition is not unique, a quick proof is that: let XL or XR be left or re­
spectively right unit of®, these are two decompositions. In order to determine 
a unique decomposition, user can specify constraints through two different 
steps. The first ste is to allow user specify a unique interface decomposition 
as parameter. Let X = ( Gx , dx, Ex in' Ex out), 

G x : K @ F @ Ex in --+ C @ F @ EX out 

then assuming the following interface decomposition is specified by user, but 
Efn and E~ut are not specified by user since they are not exposed in the interface 
of Gx. 

GxL : KL @ FL @ Ex in--+ CL @ FL @ E~ut' 

GxR : KR @ FR @ E:n --+ CR @ FR @ Ex out· 

(4.1) 
(4.2) 

Let XL and XR be two extensible loop specifications, they are intended to 
decompose X . When composing two extensible loop specifications, the right 
operand consumes the value generated in left operand by gluing Ein and Eout. 
This means the direction of dependency is from left to right ; therefore edges 
in the left operand can not consume any value generated in right operand. 
Further, if an edge epends on a node in right operand then this edge must be 
in the right operand; another conclusion about left operand is that if an edge 
is depended in left operand then it must be in the left operand. Following 
this idea, for a given X and a given interface decomposition, there exist the 
"smallest" XL and the "smallest" XR , and they contain all and only edges 
which must be belong to them. In the sense of "smallest", it means that in 
every other decomposition of X, namely X£ and X~ , X£ can be obtained by 
adding more edges and nodes to XL, so can X~ to XR. In general XL® XR =I= 

X, there exists another extensible loop specification connecting XL and XR , 
namely XM. 

X · E' --+ E' M · out in 

27 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

Strictly speaking, XM is a code graph since loop specification aspect disappears 
as KM = FM = eM = 1. In the first step, with a user given interface 
decomposition, X is decomposed into three parts, XL, XM, XR, 

(4.3) 

Equ. 4.328 implicitly requires completeness and disjointness of edge sets of 
three parts, 

TT 
INT INT 

~ 
INT INT 

tt 
Figure 4.6: X 

In some cases, extensible loop specifications can not be decomposed 
by given interface decompositions; Figure 4.4.228 is a simple counter exam­
ple, when decomposing X with a given interface decomposition FL = 1 and 
FR = 2, the edge "OP" must be in XR since it consumes input 2, also it must 
be in XL since output 1 depends on it; therefore this decomposition is impos­
sible. A checking method to determine decomposable will be mentioned when 
presenting algorithm of computing XL and XR. 

Ein from X is not allowed to be partially included into XR, neither is 
Eou.t to XL. Ein becomes extensible input of XL and Eou.t becomes extensible 
output of XR. This decision is influenced by how composition is defined; if 
both Ein and Eou.t were decomposed to left and right parts, then they would 
have had to make ew interface components; the reasons they can not join 
existing interface components are, 

F there is no loop distance assigned to Ein and Eou.t. 
K or C makes the signature of XL ® XM ® XR different from X, since 

part of Ein and Eou.t is combined into K and C respectively. 
Ein or E~u.t makes XL® XM ® XR undefined in general, since new Ein and 

new E~u.t are not equal. 

28 



M.Sc. Thesis - Shiqi Gao - McMaster- Computing and Software 

4.4.3 First Step of The Algorithm 

The algorithm is presented in imperative manner; it is given a extensible loop 
specification X and an interface decomposition Equ. 4.127 and Equ. 4.227 ; N 
and£ are the node sets and edge set in Gx. The algorithm returns XL, XM, 
XR if given inputs are decomposable otherwise it does not return anything. 
When Nor £ is subscripted, then it is a subset of Nor £ induced by the 
subscription, a subscript can be a list of elements in N or £, or it can be a 
list of reference toN, like K, F, C, E. If Nor£ appears as a subscript, then 
it acts like a "type'' indicating where all list elements are from. When Nor 
£ is promoted fro subscript to host, then it is a conversion from list to set; 
the other direction does not work. In the decomposition algorithm, src' and 
trg' are variants of rc and trg introduced in Def. 2.13 ; 

src' : p£ --+ pN, trg' : p£ --+ pN, 

src' ( es) = { n I e E es, n E src( e)}, trg'(es) = {n I e E es, n E trg(e)}. 

1. • NaxR +-- NFinR uNKR UNcR uNFoutR uNEout 

• NaxL +-- NFoutL UNcL uNKL uNFinL uNEin 

2. • (visitedRN, visitedR£) +-- breadth_firsLsearch( Gx,NaxR) 

• (visitedLN, visitedl£) +-- reverse_breadth_firsLsearch( Gx,NaxJ 

3. if EvisitedR n Evisitedl =!=- 0 then XL and XR are not found. 

4. £(;xR +-- Eax - EvisitedR 

5. NargR +-- srcax (£visitedR) 

6. NaxR +-- NaxR U NargR 

7. E{nN +-- srot(NaxR - NvisitedR) 

8. N'ax +-- Nax - Nax 
R R 

9. G'xR +-- remove_edges(Gx,EcxR) 

10. GxR +-- remove_nodes( G'xR,N'axR) 

11. XR +-- ( GxR, dx) 

12. £(; +-- Eax - Evisitedl 
XL 

13. N"argl +-- trgGx (£visitedL) 

14. NaxL +-- NaxL U NargL 

15. NE' 1 +-- Nax - Nvisitedl 
m L 

29 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

16. NE:n2 f--NGxL n (src~(£~x) u (NcR uNFoutR uNEout)) 

17. EinN f- sort(NE' 1 U NE' 2) 
tn tn 

18. N'cx f- Ncx- Ncx 
L L 

19. GxL f- remote_nodes(remove_edges( Gx, £~x),N'cx) 

20. XL f- ( GxL, dx) 

21. N'cx f- (Ncx uNcx ) - (NE' uNEout) 
M L R •n 

22. GxM f- remove_nodes(remove_edges( Gx, Ecx U Ecx ),N'cx ) 
L R M 

23. XM f- ( GxM, 0) 

Explanation 

In Line 129 , NcxR and NcxL are node set of XR and XL as suggested in their 
subscript. Initially, they only contain the given interfaces of XR and XL, 
respectively. Line 229 calculate all edges and nodes depending on XR and 
reversely depending on XL; in each case, it returns a list of nodes and a list of 
edges; nodes and edges are ordered by breadth first traversal. In this algorithm, 
XL, XR are obtained by deconstructing X, so the traversal algorithm only 
needs to discover reachable edges and nodes, then both breadth(BFS) and 
depth(DFS) first search are applicable here. However, if XL, XR are built in a 
constructive way, then all reachable nodes and edges also need to be in reverse 
topological order for XR and topological order for XR. then BFS should be 
used. Line 329 checks whether X with the given interface decomposition is 
decomposable; if two edge sets are not disjointed then the algorithm reports 
fail otherwise keeps finding EinN' E~u.tN' XM. 

In Line 529 , NargR contains all the nodes consumed by edge set EvisitedR, 

if a node not in NvisitedR is consumed by an edge in XR then connection must be 
made through extended interface E~u.tN· Line 629 updates NcxR by including 
NargR· In Line 729 , JVE:n is defined as all nodes are needed but not reachable 
from input interface of XR; these also include a special case that elements in 
output interface are not generated in XR. Compatibility between Ein and E~ut 
can be easily obtained by sorting both EinN and E~utN to NE:n and NE~ut· 
Using the sort function imposes a pre-condition on the algorithm that nodes 
must be linear ordering. E~ut is initially created as a set, one may ask that 
why there can not be duplicated elements in E~u.t; by the definition of code 
graph it is possible to have two outputs referring to the same node; however 
one can imagine that the decomposition algorithm "splits" a node, so if two 

30 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

edges consume an de then they "share" it in the body of GxR not in interface. 
Line 829 - Line 1129 remove all nodes and edges which are not used in GxR' 

Calculating XL is almost dual to XR, NaxL is initiated with output of 
XR rather than inputs, reverse_breadth_firsLsearch returns lists of nodes and 
edges reversely depending on output. In Line 1329 , trg' replaces its reverse 
counterpart src'. owever, join-free property of code graph is not preserved 
when reversing the direction of all edges. In XR, NE' only contains all unsup-

m 

ported nodes, since a node can not be supported twice. In XL, since a node 
can be used more than once, then NE' not only contains all unused nodes 

out 

but also used node~ in both GxL and outside, which is implemented by Line 
1630• 

Line 2130 - Line 2330 calculate XM, it is formed by two parts, 

• the edges and nodes not included in either GxL or GxR, 

• NE' and NE' . 
tn out 

Example 

MapTicker is the tricky loop overhead presented in [AK08b]; Figure 4.732 is 
a loop specification implementation of it . In this implementation, edge "clz" 
is a dummy edge t pretend a pure one input and one output computation. 
Edges in Figure 4.732 are SPU1 instructions. Low level implementation is 
really not comfortable for documentation or reading, here we use the decom­
position algorithm to organize semantically closed edges into "modules"; for 
example, edge "lqd 0", "clz", "stqd" can stay in the same module, then ap­
ply decomposition algorithm on Figure 4.7(a) 32 with decomposed interface 
CR = KR = 0, FR = { 4, 6, 7}; Figure 4.7(b) 32, Figure 4.7(c) 32 , Figure 4.7(d)3 2 

are results of the algorithm. MapTicker' replaces the dummy edge "clz" by 
"sf", the later has two inputs and one output. In two decompositions we 
find that MapTikcer'L = MapTikcer~ , this allows us to recognize reusability of 
MapTikcerL. 

4.4.4 Second Step of The Algorithm 

The decomposition algorithm has not completed yet, it needs to further de­
compose XM, for convenience let M = XM , into left and right parts, ML and 

1The Synergistic Processor Unit (SPU) is part of the SPE in the Cell Broadband Engine 
Processor. 

31 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

r 'f T TT 
REG REG <> <> REG 

lrotqffo~ro~ri2l 'f lqdo lhbrfmil ~ 
REG REG REG REG REG REG <> <> 

~~~ 9'1r~~r~ 
REG REG REG <>

~ ¥
<>

~
(a) MapTicker

r r TT
~~~4:;~l>m~~ 

REG REG REG REG <> 

~~ 1;r:1 ~ 
REG 

~ 
(b) MapTickerL 

'f 
REG "I r~q~yi sl 

REG 

~ 
(c) 
MapTickerM 

TTT 
<> REG REG 

~1t1 ~ 
<> REG 

'f'f~~ 
REG <> REG 

~~1of 
<> 

~ 
(d) MapTickerR 

Figure 4.7: Decomposition of MapTicker 

MR; then a completed decomposition is X = (XL® ML) ® (MR ® XR)· De­
composing M requires the user to specify exactly how to split edge set of M 
into two parts. 

The precondition is that the given extended loop specification contains only the 
extended interface, the other parts of interface are equal to 11.; the given edge 
set £ML is intended to be used as edge set of M£. In the following algorithm, 
N and £ refers node set and edge set of GM. Deconstructive method is used 

32 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

<> REG REG <> 

~ ~ 
<> 

~ 7 

(a) MapTicker' rrrr 
REG <> REG REG 

T T TT ~~~1~~ 
Io REG <> REG 

lro·?"~~"L,',Jw lh+-:1~ 
1 

\f 
I merge states2 l r T sf 

l REG <> REG REG REG REG REG <> REG 

~~ '~l~' ~ ~tqiyisllrotqbt 121 ~ ~~yof 
REG REG REG <> 

~ ~ ~ ~ 
(b) MapTicker~ (c) MapTicker~ (d) MapTicker~ 

Figure 4.8: Decomposition of MapTicker' 

again to build ML and MR . Line 233 checks possibility of decomposition of M 
with user specified edge set. 

1. EcMR f- E - £cML 

2. if trg'(EcMR) n src'(EcMJ =/=- 0 then ML and MR are not found. 

3. NcM f- E~u.t" U src'(EcM ) U trg'(EcM ) L .'V L L 
4. HN f- sort(.AlcML n (src'(EcMR) U EinN )) 

33 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

5. GML +-- remo·oe_nodes(remove_edges( GM, £cMR),N- NaMJ 

6. ML +-- ( GML' 0 ) 

7. GMR +-- remo·ue_nodes(remove_edges( GM, £cMJ,NaML- NH) 

8. MR +-- ( GMR' 0) 

To demonstrate the above algorithm, it is applied to Figure 4.8(c) 33 . 

As argument to the algorithm, £cML is a singleton set containing only "rotqbyi 
8" , then £eM mus contain the other edge "rotqbyi 12" . The decomposition 

L 

of edge set is possi le to uniquely decompose MapTicker:W. Figure 4.1035 shows 
a final step of deco posing an extendable loop specification into two parts, it 
composes left middle to left and right middle to right , 

17 17 17 
REG REG REG 

~I ro;q,yi sl ~~ ro~bt 121 ~ 
REG REG 

~ ~ 
(a) (b) MapTicker~n 
MapTicker~L 

Figure 4.9: Decomposition of MapTicker:W 

34 



M.Sc. Thesis - Shiqi Gao - McMaster- Computing and Software 

'f ? 
REG REG 

yr=,byi121~ 

RE~REG o REG 

lro~ry1ol ~ ~ :V~ 1hbrrm;] ~ 
REG REG REG REG REG o REG <> REG 

~~ ~ ~ ~ G~y~ 
REG 

~~ 
(a) MapTicker~ ® MapTicker:WL (b) 

MapTicker:WR ® Map Ticker~ 

Figu e 4.10: Final Decomposition of MapTicker' 

35 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

36 



Chapter 5 

Relation Weighted CFG 

A relation weighted control flow graph(RWCFG)[SS93],[SHW97] is a control 
flow graph weighted by heterogeneous relations. Pure control flow graphs are 
completely abstract over how state transitions are achieved; theories of pure 
control flow graphs are formulated in Kleene algebra. Since more information 
is given about states, the capability of exploring more theories increases. When 
all states are given in formal specifications, specification of all transitions is 
given for free; RWCFG is a relational approach, RWCFG relationally specifies 
all transition and only start and end states, specification of other states can 
be derived just like axiomatic semantics. 

The two level nested control flow graphs in [AK08a] are very suitable 
to be modeled by WCFG; since the outer level is a control flow graph, the 
inner level are rel tions, inner level graphs are edges of control flow graph. 
We extend the original RWCFG structure with types, which label nodes in a 
control flow graph; these labels match the types of relations between two nodes. 
In this chapter, two theorems Section 5.239 and Section 5.341 in RWCFGs are 
presented after an xtended definition of RWCFGs Section 5.137 . 

5.1 Definit ion 

Def. 5.137 extends the original definition[SS93],[SHW97] with types; Def. 5.238 

shows how to relationally capture the behavior of RWCFG. Def. 5.339 defines 
a convenient way to refer to a node in the flow graph of a RWCFG. 

Definition 5.1 A typed RWCFG is p = ( G, s, e, e, a, T, T), provided 

• S = ( V, B) i3 a graph, called the situation graph. 

• G = ( Va, Be) is a graph, the underlying fiowgraph. 

37 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

• e : v --+ v G is a surjective graph homomorphism of s onto G; therefore, 
e is subject to: 

• T is a set of type objects 

• T : V c --+ T is a univalent typing relation. There is no type variable and 
polymorphism, T is a function. 

• e represents an input relation, satisfying, 

• a represents an output relation, satisfying, 

e is a node mapping from the set of nodes in S to the set of nodes G. Moreover 
e is a surjective graph homomorphism to preserve the structure of S in G. 
The three conditions are formed by adding surjective condition n ~ 8~;8 to 
graph homomorphism conditions. B;e ~ 8;Bc has three other equivalent 
forms , e~;B;8 ~Be, e~;B ~ Bc;e~, B ~ 8;Bc;8~. 

Def. 5.238 captures the entire RWCFG as a relation; it can be used to 
argue behaviors between RWCFGs. It is originally defined in (SS93]. 

Definition 5.2 Let P be a RWCFG, then P = ( G, S, 8 , e, a, T, T). I:(P) is 
called effect of P, such that 

There is a minor difference between the RWCFG definitions in [SS93] 
and [SHW97]. [SHW97] dropped disjointness of e and a. This change allows 
a situation node to be related to both input and output, let us call such node 
connector if it is only connected by input and output. The consequence is 
that in some cases he associated relation B can be more concise than the 
one in [SS93]. If one wants to relate one element in input to one element in 
output, [SS93] requires a "dummy" edge. However, a connector can be easily 
forgotten in some analysis purely on B, such as reachability. In order to be 
aware of such connectors, in some proofs e and a have to be carried around. 
A self loop can be a ded to connectors to make the connector visible, but it is 
not forced by the de nition. With disjointness of e and a, we can strengthen 
the definition of I:(P), i.e., e~;(B* n B;T~);a = e~;(B+ n B;T)a 

38 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

Proof: 
e~;(B+ n B;lf~);a 

c e~;(B* n B;lf)a 

e~;(B+ n B ;lf );aU e~;(JI n B;lf );a above 
C e~;(B+ n B;lf)a U (e~;JI;a n e~;B;lf ;a) semi-distribution 

- e~;(B+ n B;lf );aU ( e~;a n e~;B;lf ;a) 

e~;(B+ n B;lf)a U (JL n e~;B;lf~;a) 
- e~;(B+ n B;lf)a u JL 

identity of ; 

Lemma A.9 

- e~;(B+ n B;lf)a identity of U 

Definition 5.3 Let P = ( G, S, 8, e, a, T , r) be a typed RWCFG and S 

D 

( V, B) , G = ( V a, Be), Np is a set of partial identity relations, each element 
represents a positi n in G. For every x E Np, x is subject to: 

x =/:. J . x is not empty, 
x ~ dom (B) x is a partial identity, 

x; (8;8~);x = x;lf;:.r x focused on one class in the equivalence class 8;8~, 
x = ran (x;8;8~) x covers at least one class in 8;8~. D 

For convenience, let na E Np and ran (na;8) = {(a, a)} E Va x Va, na 
represents node a in V a . ne represents the initial node in B, it satisfies 
ne = dome, likewise, there exists a Nfp, a proper subset of Np, whose join 
represents accept nodes in Be. Such that, 

.Na = UNfp = dom a, where Nfp C Np 

Again ne and Na a e disjoint, such that ne n Na = JL. 

5.2 Dead-Branch Introduction 

In control flow graph, if an edge is never taken then removing or adding this 
edge does not change the behavior of the control flow graph. Usually never 
taken edge s appear as a branch of states; if a never taken edge is the only 
edge out going from a state then this state is a dead state. The next theo­
rem, Theorem 5.139 , formally proves the property of adding never-taken-edges, 
meanwhile a new RWCFG is constructed with the never-taken-edges. Also this 
theorem can be used as dead branch elimination by specifying P' . 
Theorem 5.1 (Never-Taken-Edge) 
Let p = ( G' s' 8' e' a, T, T) J G = ( v e' Be)' s = ( v' B) ' X' y E v e. 
Let P' = ( G', S', 8', e', a', T, r), where S' = ( V, BUR) , G' = ( Ve, Be u 
{(x, y)} ), 8' = 8, a'= a, e' = e. With the following assumptions, 

39 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

i. x =f. ea. 

ii. ran (B) n dom R = JL. 

then 'E(P) = 'E(P') 

Proof: 
Assumption i implies, 

ran (e~) n dom R = JL 

Also with Lemma A.9, 

(5.1) 

Next we show e~;((B U R)+n(B U R);"lr~) = e~;(B+nB;lf ), also a'= a, then 
'E(P) = 'E(P'): 

e~;((B U R)+ n (B U R) ;lf ) 
-;-=-----::::7""::::=--

- e~;((B u R);(B u R)* n (B U R);lf ) 
~--,=-::=· 

e~;(B;(B U R) ' U R;(B U R)*) n (B U R);lf ) Distribution 

- e~;((B+ u R;(B u R)*) n (B u R);lf ) Lemma A.l2 
-:----:---·~ ~ 

- e~;(B+ n (B U R);lf U R;(B U R)* n (B U R);lf ) Distribution 
~-~~~ ~ 

e~;(B+ n (B U R);lf ) U e~;(R;(B U R)* n (B U R);lf ) Distribution 

- e~;(B+ n (B U R);lf ) U JL Lemma A.13 

- e~;(B+ n (B U R);lf ) Identity of U 

e~;(B+ n (B;lf u R;lf) ) Distribution 
- e~;(B+ n (B;lf n R;lff) De Morgen 

- e~;(B+ n B;lf n R;lf~) Distribution 

- e~;(B+ n B;lf--) below 

The following show~ that with assumption ii we can prove B+ = B+ n R;lf : 

ran B n dom R = JL 
¢:? ran (JI;B) n do (R;JI) = JL 
¢:? ran (ran (B*);B) n dom (R;dom lr) = JL 
¢:? ran (B*;B) n dom (R;lf) = JL Lemma A.6 and Lemma A.7 
¢:? ran (B+) n do (R;lr) = JL 
¢:? ran (B+) n ran ((R;lrf) = JL 
=? B+ n ( R; lrf = JL Lemma A.15 
=? B+ n (R;lft = B+ Lemma A.8 

¢:? B+ n (R;lf) = B+ 

40 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

The last step is to show P' satisfies RWCFG definition. Since 8', e', a' is equal 
to their counterparts in P, the only not so trivial condition is homomorphism 
from S' to G'. B~ can be also defined with point free style, B~ = Be U 
8~;nx;lf;ny;8. Then the following is a proof of B';8' ~ 8';B~: 

c 

c 

B';8' 
(B u R);8' 
(B u R);8 
B;8UR;8 
8;Bcun8 
8;Bc u nx;R; ny;8 
8;Bc U IImx;R;ny;8 
8;Bc U 8;8-;nx;lf;ny;8 
8;(Bc U 8~;nx;lf;ny;8) 
8;(Bc U 8~;nx;lf;ny;8) 

8';B~ 

definition 
8'= 8 
distribution 
P is RWCFG and monotonicity of U 

condition of R 
identity of ; 
monotonicity of U and;, II~ 8;8~, R ~ lr 
distribution 
8'=8 

D 

Theorem 5.139 is inspired by a graph transformation in [AK08a, Page 28]. 
RWCFG provides more information of specification of state transfer, whereas 
in CFG such computation is abstractly represented by edge label. With this 
additional knowledge, a never taken edge can be expressed in RWCFG, but 
impossible in CFG. Moreover, inserting a never taken edge does not change 
the semantics in .RWCFG as shown in Theorem 5.139 • A useful application of 
a never taken edge is documented in [AK08a] . Adding such "dummy" edge 
in a RWCFG may have more opportunities to be simplified using standard 
control flow graph minimization algorithm. Figure 5.1 is a simple example 
that shows adding a never-taken-edge can simplify RWCFG. For simplicity 
only flow graphs of RWCFGs are drawn. The left graph is original RWCFG. 
Given the sufficient condition ran P n dom R = JL, the red dash edge inserted 
from the right node in the second row to left node in the third row in the 
middle graph is a never-taken-edge. Theorem 5.139 guarantees the left and 
middle graph has the same semantics. Then the right graph is the result after 
applying CFG minimization algorithm on the middle graph. Edge symbols in 
RWCFG are relations, if two edges share the same source and target nodes 
then they can be unioned into one edge or relation. 

5.3 Edge ]Replacement 

The next theorem can be used to formally justify sequential edge decomposi­
tion; sequential edge decomposition is presented in [AK08a]. In [AK08a], some 

41 



M.Sc. Thesis - Shiqi Gao - McMaster - Computing and Software 

ec ec ec 
0 0 

Figure 5.1: Application of Never-Taken-Edge 

edges in cont rol flow graph are decomposed into three parts; then after rear­
ranging edges, better instruction scheduling can be achieved. Decomposing an 
edge in a control flow graph intuitively looks correct , in our view, decomposing 
an edge is the same as replacing the old edge by another control flow graph. 
The next theorem gives a formal way to construct a new RWCFG by replacing 
an edge with another RWCFG; also the next theorem helps to show that an 
edge decomposition is a closed operator. 

Theorem 5.2 (Edge Replacement) 
Given pl = ( Gl , sl , el , el , al, Ti , Tl) and p2 = ( G2, 82, 82, e2, ~' T2, 72)· In pl 
replacing edge between node x and node y by P2 with two interface relations Jl 
and 11 is again a RWCFG, denoted as P1:(P2). Jl is between node x and input 
of P2 and 11 is between node y and output of P2 ; formally the conditions can 
be written as, 

Proof: 
Let 

then 

v = V1l±J v2 , 
e2 : V2 ~A, 

11 : vl ~A, 
recall Definition A.2 : L.v : V1 -t V, 

L.va : Val -t Va , 
The elements in P1~ (P 2) are 

42 

V G = V G1 l±J V G.J , 

~: V2 ~A, 
11: vl ~A; 

K v : V2 -t V , 
K v0 : Va2 -t Va. 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

• S=(V,a1Ua2Ua3) 

- a1 = (BL n nx;lf;ny) l±J B2 
~ ~ 

- a2 = t,v; /1 ;~;,.,;v 

- a3 = ,.,;v ; ~;IJ~;t,v) 

- f3I = (Bel n 8~;nx;lf;ny;8I) l±J Bc2 

- /32 = t,Vc; 8~;nx;lf;ne2;82;,.,;Va 

- /33 = ,.,;Vc/e;ma2;lf;ny;8l;t,v0 

• 8 = 81 l±J 82 = t,v;8l;t,Va U fo\;y;82;,.,;Va 

•T=7iU72 

The next step is to show B1;81 ~ 8 1;Bc1 , Proof 155 and Proof256 expand B1;81 

and 8 1;Bc1 respectively. Both of them are expanded to a form of joining of 
four terms. Proof 356 , Proof 457 , Proof 557 ,Proof 657 show that each term 
from B1;81 is less than or equal to their counterpart in 8 1;Bc1 • Therefore, 
B1;81 ~ 8 1;Bc1 is proven with monotonicity of U. D 

43 



M.Sc. Thesis- Shiqi Gao - McMaster- Computing and Software 

44 



Chapter 6 

Conclusion and Future Work 

It is personally believed that to achieve the goal of COCONUT it is a good idea 
to always think in formal methods. Although applying formal methods is time 
consuming and expensive, but it is worth, at least implicitly, to develop such 
meta-development framework. We hope that the work of this thesis could be 
some help to CocoNUT for moving forward in the rigorous development. 

Extensible loop specification can only compose from a list or decompose 
to a list, a more ge eral or desired structure is directed acyclic graph, or term 
graph, which needs to define 0 and necessary constants in extensible loop 
specification. 

It is possible to implement theories of RWCFG in a theorem prover; it 
would be more efficient to prove properties of two level nested graphs like in 
[AK08a]. 

45 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

46 



Appendices 

47 



Appendix A 

Relatiort Algebra 

A relation is a generalization of a function. Functions are deterministic whereas 
relations are, in general, nondeterministic. For example, iff is a function from 
natural numbers to natural numbers, f : N ~ N, for each input to f, there 
is a unique output . A relation from natural numbers to natural numbers 
R: N t-t N, which is a subset of N x N. If (x, y) is in relation R, we write xRy. 
If xRy and xRz, it does not follow that y = z. In this chapter a minimum set 
of topics are prese ted to support later chapters, mainly Chapter 537 • Section 
A.l 49 introduces the two primary operators composition ; and converse '--', 
which are not defined in set theory. Section A.251 introduces direct sum of 
relations in an abstract way such that it is described by axioms which only 
involve relation op rators and equality. Section A.352 includes some lemmas 
which are used in the later proofs. 

A.l Definition and Operators 

Formally, a relation is a set of pairs R of X x Y, 

Rc;XxY 

If X = Y, then R is called a homogeneous relation, otherwise it is called 
a heterogeneous relation. The empty relation is an empty set, denoted as 
JL, the universal r lation is X x Y, denoted as lr, the identity relation is 
{(a, a) I a EX}, denoted as lix, the identity relation must be homogeneous. 
Operators defined on relations can be divided into two groups, operators from 
set theory and relation operators. Set operators are union (U), intersect (n) 
and complement (-). All theorems in set theory are inherited as well. Lemma 
A.8 is proved in set theory. Relation operators are composition 0 and con­
verses (~), defined as, 

49 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

composition x(X; Y)y iff there exits z such that xXz and zYy. Derived 
properties are, 

unit: l[;X = X = X;l[ 

associativity: (X ; Y);Z =X;( Y;Z) 

distributivity over U: X;( Y U Z) =(X; Y) U (X;Z) and ( Y U Z);X = 

( Y;X) U ( Z;X) 

semi-distributivity over n: X;( Y n Z) ~ (X; Y) n (X;Z) and ( Y u 
Z);X ~ ( Y;X) n (Z;X) 

converse xX~ y iff yXx. Derived properties are, 

involution: x~ = X 

distributivity over U: (XU Yt =X~ U y~ 

distributivity over n: (X n Yt =X~ n y~ 

anti-distribu.tivity over ;: (X; Yt = y~;x~ 

distributivity over-: x = x~ 

dom (R) and ran (R) capture the domain and the range of relation R; dom (R) 
and ran (R) are two subidentities containing only elements in domain and range 
of R respectively; they are defined based on existing operators, 

Definition A.l Tr nsitive closure of relation R, written as R+, is defined as 
following, 

R+ = { i : N I i ~ 1 • Ri} 

Reflexive and transitive closure is then defined as R* = J[ U R+. 

Lemma A.l (Monotonicity of; and U) Given X~ Wand Y ~ Z , one 
has 

Theorem A.l (Dedekind Formula) 
Given Q, R , and S , one has 

50 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

Theorem A.2 
Given relations A, B, and C, one has 

Theorem A.251 is an equivalent form to Schroder equivalences; it is easier to 
apply and memorize than Schroder equivalences. "*" cyclically rotates to 
left, "<==" rotates to right. In each direction, two literals are conversed and 
complemented. 

A.2 Direct Sum 

[Kah06] and [KahOl] provide a relational specification of direct sum in an 
abstract way, four relation equations capture the definition of direct sum of 
two objects, which is a base of definition of direct sum of relations. 

Definition A.2 A direct sum of two objects A and B is a triple (S, t, K), S 
is an object and t, K are two injective mappings and the following conditions 
hold: 

0 

Let operator l±J be one way to construct direct sum and subscript t and K with 
direct summed object. For example, in the above case S = A l±J B with ts 

and Ks. Another convention is that ts is an injection for the left operand 
of l±J whereas Ks is for the right one. Then the signature of ts and Ks are 
A ---+ S and B ---+ S respectively. l±J is not communitive, since commuting 
two operands requires changing the role of t and K. l±J is not associative, for 
instanceS= (A l±J B) l±J C, T =A l±J (B l±J C) , ts =1- "T· 

The definition of direct sum of two relations is taken from [Kah06]. 

Definition A.3 Given relation X : A~ B and Y : C ~ V, letS =A l±J C 
and T = B l±J V. Direct sum of X and Y is denoted as X l±J Y with four 
injections ts ,tT ,Ks :KT, 

Lemma A.2 Given relation X : A~ B and Y : C ~ V, let Z =X l±J Y, 
S =A l±J C and T = B l±J V; then ts;Z;Kr = JL 

51 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

Proof: 
Ls;Zw;,T = '-s;(~-8;X;"r u ""s; y;""r );""7 Definition A.3 

Distribution 
Definition A.2 
Zero laws 

= '-s;'-s;X;'-r;""r u '-s;""~ Y;""r ;""r 
= '-s;'-s;X;JL u JL y;""r;""'T 
=JLUJL 
=JL 

A.3 Lemmas 

A set of lemmas is presented, all of them are used in later chapters; some of 
them are taken from other sources, some are proven immediately. 

Lemma A.3 dom X n dom Y = dom X;dom Y[KahOl] 

Lemma A.4 X = dom X;X[KahOl] 

Lemma A.5 X= X;ran X[KahOl] 

Lemma A.6 ran (X; Y) =ran (ran (X); Y)[KahOl] 

Lemma A.7 dom (X; Y) =ran (X;dom Y)[KahOl] 

Lemma A.8 X n Y = JL =? X ~ Y 

Proof: 
X n Y = (X n Y) U JL 

= (X n Y) U (X n Y) 
=X n ( Y u Y) 
=Xnlr 
=X 

=? X~ y 
{::} XnY=X 

Identity of U 
Assumption 
Distribution of n over U 

Lemma A.9 ran X n dom Y = JL =?X; Y = JL 

Proof: 
X;Y = (X;ranX);(dom Y;Y) 

= X;(ran X;dom Y); Y 
= X;(ran X n dom Y); Y 
=X;JL;Y 

=JL 

Lemma A.4, Lemma A.5 
Associativity 
Lemma A.3 
Assumption 

Lemma A.lO ran X n dom Y = JL =?X*; Y = Y 

52 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

Proof: 
X*; Y = (II u X* ;X); Y 

= (JI; Y) u (X*;X; Y) 
= Y U (X*;(X; Y)) 
= Y U (X*;JL) 

[Koz94] Proposition 2 
Distribution 
Identity of;, associativity 
Lemma A.9 

= YUJL 
=Y Identity of U 

Lemma A.ll ran X n dom Y = JL::::} X; Y* =X 
Proof: 

X; Y* = (X; Y*)'~ 
= (Y*~;xJr 

= (Y~*;xJr 

=X~ ran (R~) = dom Rand Lemma A.lO 
=X 

Lemma A.12 ran X n dom Y = JL::::} X;(X U Y)* = x+ 
Proof: 

X;( XU Y)* = )[; Y*;(X; Y*)* [Koz94] Proposition 7 
= )[; Y*;X* Lemma A.ll 

Lemma A.ll 

Lemma A.13 ran X n dom Y = JL::::} X;( Y; W n Z) = JL 

Proof: 
JL ~X;(Y;WnZ) 

~ x;y;wnx;z 
= JL;W n X;Z 
= JLnX;Z 
=Jl 

Distribution of; over n 
Lemma A.9 
JL;R = JL 
JLnR=JL 

Lemma A.14 dom X n dom Y = JL::::} X n Y = JL 
Proof: 

JL ~XnY 
= dom X;X n dom Y; Y Lemma A.4 
~ (dom X n dom Y; Y;X~);(X n (dom Xt;dom Y; Y) Dedekind Formula 
= (domXndom Y;Y;X~);(XndomX;dom Y;Y) 
= (dom X n dom y; Y;X~);(X n dom X n dom Y; Y) Lemma A.3 
= (dom X n dom Y; Y;X~);(X n JL; Y) Assumption 
= (dom X n dom Y; Y;X~);(X n JL) 
= ( dom X n dom Y; Y;X~);JL 
=Jl 

53 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

Lemma A.15 ran X n ran Y = JL::::} X n Y = JL 

Proof: 
ran X n ran Y = JL <=> dom (X~) n dom ( Y~) = JL 

::::} x~ n y~ = JL 
<=>(X n Yt = JL 
<=>(X n Y)~ = JL~ 

<=>XnY=JL 

54 



Appendix B 

Proof 

A collection of proofs are included here. All of them are needed in Chapter 
537 ,Theorem 5.242 • 

Proof 1 
B;e 

- ((B1 n nx;ll;ny) l±J B2 U iv; J1, ;e2;~>;v U ~>;v;OQ;v~;iv) 
; (t'V;81;{,Va u fl:v; 82;~>;va) Def. B, e 

- ((Bl n nx;ll;ny) l±J B2);(t'V;81;t,Va u ~>;v;82;t>;va) 
u iv; J-L ;e;;~>;v;~>;v;82;~>;va u 1>;00Q;v~;iv;i'08I;iva 
u "v; J-L ;e;;~>;v;t"V-;8I;i va U ~>;v;OQ;v~;tv;~>;082;~>;va Distribution 

- ((B1 n nx;ll;ny) l±J B2);(tv;81;tva U ~>;v;82;~>;va) 
u iv; J-L ;e;;~>;v;~>;v;82;~>;va u ~>;v;OQ;v~; iv;"v;el;"va 

u "v; J-L ;e2;JL8I·"va u t>;v;1112;v~dL82;t>;va Def. A.2 {,;~>;~ = JL = ~>;;i~ 

- ((B1 n nx;ll;ny) l±J B2);(tv;81;tva U ~>;v;82;~>;va) 
u iv; J-L ;e;;~>;v;~>;jr;82;~>;va u ~>;v;OQ;v~;tv;iv;8I;iva Property of JL 

- ((Bl n nx;ll;nv) l±l B2);(t'V;8I;iVa u ~>;v;82;~>;va) 
u "v;J-L;e2dfv2 ;82;~>;va u ~>;v;OQ;v~;lfv1 ;8I;iva Def. A.2 i;i~ = lf, ~>;;~>;~ = lf 

- iv; J-L ;e;;e2;~>;v0 u ~>;v;OQ;v~;el;iva 
u ((Bl n nx;llmy) l±J B2);(iv;8I;iVa u ~>;v;82;~>;va) Commu. of u, Identity of; 

"v; J-L ;e;;e2;t>;va u ~>;v;1112;v~;ei;"va 
u ((Bl n nx;ll;ny) l±J B2);t,v;8I;iVa 
U ((B1 n nx;llmy) l±J B2);~>;v;82;t>;Va Distribution 

- iv; J-L ;e;;e2;1>;va u 1>;00Qw~;ei;iva 

U (tv;(BI n nx;l ;ny);tv U ~>;'0B2;~>;v );tv;8I;tva 
u (t'V;(BI n nx;lr;ny);iv u />;0B2;t>;v );~>;082;/>;VG Def. A.3 

= "v; J-L ;e;;e2;~>;va u 1>;00Q;v~;ei;iva 
u iv;(BI n nx;lf;ny);8I;iVa u ~>;0B2;82;~>;vG Same as above 

55 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

Proof 2 
8;Bc 

8;((Bc1 n 8J:;nx;T;ny;81) l±l Bc2 ) 

U 8;(t,\ra;8J:;nx;T;ne2 ;82;Kva) 
u 8;(;;:va;e;;na2;T;ny;81;t,va) 

8;((Bc1 n 8J:;nx;T;ny;81) l±l Bc2 ) 

U (t,\r;81 ;t,va U ,.,;v;82;KvaH~,va;8J:;nx;Tme2 ;82;Kva) 
U (t,\r;81;t,va U K\;82;KvaHKva;82ma2;T;ny ;81;t,va) 

- 8;((Bc1 n 8J:;nx;T;ny;81) l±l Bc2 ) 

U t,\r;81;t,va;t,Va;8J:;nx;T;ne2;82;Kva 
U Kv;82;Kva;t,Vc/8J:;nx;T;ne2;82;Kva 
U t,\r;81;t,va;Kva;e;;na2;T;ny;81;t,va 
u K\r;82;Kva;Kva;e;;n~;T;ny;81;t,va 

8;((Bc1 n 8J:;nx;T;ny;81) l±l Bc2 ) 

U t,\r;81div1 ;8J:; nx;T;ne2 ;82;Kva 
U K\r;82;JL;8J:;nx;T;ne2 ;82;Kva 
U t,\r;81;JL;82;na2 ;T;ny;81;t,va 
u Kv;82;llv2 ;82;na2 ;T;ny;8I;t,va 

- 8 ;((Bc1 n 8J:;nx;T;ny;8I) l±l Bc2 ) 

U t,\r;81;8J:mx;T;ne2 ;82;Kva U K\r;82;82;na2 ;T;ny;81;t,va 

e;(t,va;(Bcl n 8J:;nx;T;ny;81);t,Va u Kva;Bc2;Kva) 
U t,\r;81;8J:mx;T;ne2 ;82;Kva U K\r;82;82;na2 ;T;ny;81;t,Va 

- 8;t,va;(Bc1 n EjJ:;nx;T;ny;81);t,va U 8 ;;;:va; Bc2;Kva 
U t,\r;81;8J:;nx;T;ne2 ;82;Kva U K\r;82;82;na2 ;T;ny;81;t,va 

- (t,\r;81;t,va u Kv;82;Kva);t,Va;(Bcl n 8J:;nx;T;ny;81);t,Va 
U (t,\r;8I;t,va U Kv;82;Kva);;;:va;Bc2;Kva 
U t,\r;81;8J:;nx;T;ne2 ;82;Kva U K\r;82;82;na2 ;T;ny;81;t,va 

- t,\,r;81;t,va ;t,va; (Bc1 n 8J:;nx;T;ny;8I);t,va 

u K\r;82;Kva;t,Vc/ (Bcl n 8J:;nx;T;ny;81);t,va 
u t,\r;8I;t,va;Kva;Bc2;Kva 
u Kv;82;Kva;Kva;Bc2;Kva 
U t,\r;81;8J:mx;Tme2 ;82;Kva U Kv;82;82;na2 ;T;ny;81;t,va 

t,\r;81;"[V1 ;(Bc1 n 8J:;nx;T;ny;8I);t,va U Kv;82;llv2;Bc2;Kva 
U t,\r;81;8J:;nx;Tme2 ;82;Kva U K\r;82;82;na2 ;T;ny;81;t,va 

- t,\r;8dBcl n BJ:;nx;T;ny;8I);t,Va u Kv;82;Bc2;Kva 
U t,\r;81;8J:;nx;T;ne2 ;82;Kva U K\;82;82;na2 ;T;ny;81;t,Va 

56 

Expand Be 

Expand 8 

Distribution 

Def. A.2 
Def. A.2 
Def. A.2 
Def. A.2 

Simplification 
Expand l±l 

Distribute 8 

Expand 8 

Distribution 

Simplification 

Identity of; 



M.Sc. Thesis - Shiqi Gao -McMaster- Computing and Software 

Proof 3 

Proof 4 
ll;e2 = nx;ll;e:;_;ne2 ~ nx;lf;ne2 = IIv1 ;nx;lf;ne2 ~ 81 ;8~;nx;lf;ne2 

=? tv; 11 ;e:;_; e2;~ va ~ t'V;81;8~;nx;lf;ne2 ;82;~va 

Proof 5 
~;v- = na2 ;~;v-my ~ na2 ;lfmy = IIv2 ;na2 ;lf;ny ~ 8 2;82;na2 ;lf;ny 

=? ~v;~;v-;8I;t va ~ ~v;82;82na2 ;lf;ny;8I;tva 

Proof 6 

Theorem A.251 

¢:} 8~;nx;lf;ny;81 ~ e~;nx;lf;ny;81 

==;. 8~;B1;8 n e ;;nx;lf;ny;81 ~ Be1 n 8~mx;lf;ny;81 
==;. 8~;(BI n nx;lf;ny);81 ~ Be1 n 8~;nx ;lf;ny;8 1 

Theorem A.2sl 

Mono. of n 

--"-------
=} 81;8~;(B1 n nx;lf;ny);81 ~ 8I;(Be1 n 8~;nx;lf;ny;8 1 ) 

==;. (B1 n nx;lfmy);81 ~ 8I;(Be1 n 8~;nx;lf ; ny;81 ) ll ~ 8;8-
Recall monotonicity of ;, finally the following formula is proven, 

Proof 7 
Expanding ran (x;8;8-) = x to 

(B.l) 

Since x is a partial identity then Equ. B.l57 can be simplified to 

(B.2) 

57 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

8;8~;x;8;8~ is less than or equal to 8;8~ 
8;8~;x;8;8~ 

c 8;8~;[;8 ;8~ 

8;8~;8;8~ 

- 8;8~ 

Based on Equ. B.257 , it can be shown that x;8;8~ = 8;8~;x;8;8~, 
8;8~;x;8;8~ n ll = x 

=} (8;8~;x;8;8~ n ll);(8;8~) = x;8;8~ 

=;. 8;8~;x;8;8~; E-);8~ n [;8;8~ = x;8;8~ [KahOl] Lemma A.2.l(v) 
=} 8;8~;x;8;8~ n 8;8~ = x;8;8~ 

=} 8;8~;x;8;8~ = x;8;8~ 

(B.3) 

8;8~;x;8;8~ = 8;Er;x can be proven in the similar way. Then x;8;8~ = 
x;8;8~;x = 8;8~;x can be proven as well, due to the symmetric of proofs of 
two equalities, we only show a proof of one equality. 

x;8;8~;x 

(x;8;8~);(8;8"x) 

( 8;8~;x;8;8~); ( 8;8~;x;8;8~) 

8;8~;x;8;8~ 

8;8~;x 

58 



Appendix C 

Haskell Implementation 

A Haskell module is included; it implements the semantics of loop specification 
defined in Chapter 37 • Also it implements the definition of extensible loop 
specification, composition and parameterised decomposition of extensible loop 
specificat ion are implemented as well. The Fibonacci examples are created 
based on this module. Some of implementations are almost directly translated 
from the formal designs. The modules imported by this module are either 
from GHC standard library or from CocoNuT() project. 

module LoopSpec2 where 

import CodeGraph 
import CodeGraphOps 

import Avoid 
import Defa ult 
import PreiExts 

import qualified LoopSpec as WT 

import qualif ied Data.Map as Map 
import qualif ied Data .Set as Set 
import Data . list (partition, intersect, (\\) , sort) 
import Data .Maybe 

The bifunctor cgTyParComp mentioned in Chapter 23 includes two com­
ponents; the object component for the code graph category is just list concate­
nation. 

cgTyParComp = (*) 

The morphism component, cgParComp(®), is imported from module 
CodeGraphOps, which also provides morphism composition,cgComp(;) , and 

59 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

functions to create morphisms, like cgldentity(II), cgSwap(X), cgTerm(!) , 
cgCoTerm(i), cgDup(V) ; the specification of these operators can be found in 
Chapter 23 . 

lhs2TeX is used to generate the pretty printed source code. In the 
previous paragraph, the operators are printed as the symbols in the parenthesis 
in order to make the implementation more close to the specification. 

C.l Loop Specification Definition 

The following implements the loop specification definition Section 3.17 • The 
Haskell presentati n includes three parts , a code graph, an integer and a list 
of integers. The integer indicates where F starts in the input interface of the 
code graph, the list of integers are loop distances of F. 

data LoopSpec n ty op = LoopSpec (CodeGraph n ty op) lnt [lnt] 

C.2 Loop Specification Interface 

The following provides a set of access functions to loop specification. 

getCg :: LoopSpec n ty op- CodeGraph n ty op 
getCg (LoopSpec cg __ ) = cg 

getF,getC, get K :: (Ord n, Avoid n, Default n)::::} LoopSpec n ty op- [ty] 
getF (LoopSpec cg n _) =drop (n- 1) $ cgSrc cg 
getK (LoopSpec cg n -) =take (n- 1) $ cgSrc cg 
get( ls@(LoopSpec cg n _) =take m $ cgTrg cg 

where m =length (cgTrg cg)- length (getF Is) 

getD ::LoopS ec n ty op- [lnt] 
getD (LoopSpec __ d) = d 

getN :: LoopS ec n ty op - lnt 
getN (LoopSpec _ n _) = n 

C.3 Implementation of Loop Specification Se­
mantics 

Function mkSG and mkSGinv implement Def. 3.19 • mkSG" sorts F into two 
parts, trivial and non-trivial loop carried input, it returns the sorted interface 

60 



M.Sc. Thesis - Shiqi Gao - McMaster- Computing and Software 

with the original interface, such that (F, (A, B)). mkSG' generates a wiring 
code graph according to mkSG", the first argument f decides the interface of 
the wiring code graph, besides the wiring code graph it also returns new list 
of loop distance according to shuffled interface. mkSG' should be kept internal 
since an inappreciate f can break the function. 

mkSG :: ( rd n, Avoid n, Default n) =;. 

LoopSpec n ty op- (CodeGraph n ty op, [lnt]) 
mkSGinv :: (Ord n, Avoid n, Default n) =} 

LoopSpec n ty op - CodeGraph n ty op 
mkSG mkSG' id 
mkSGinv = fst o mkSG' swap 

mkSG' :: (Ord n, Avoid n, Default n) =} 

( ( [ n ], [ n]) -t ( [ n], [ n])) -t LoopS pee n ty op -t 
(CodeGraph n ty op, [lnt]) 

mkSG' f ls@(LoopSpec cg n d) = (sg, shuffled_d) 
where 

shuffled_i put = pupd2 ( uncurry ( *)) $ mkSG" Is 
sg = uncurry cgShuffle (f shuffled_input) $ cgNodeType cg 

d_map = Map.fromlist $zip (fst shuffled_input) d 
shuffled_d =map (fromMaybe (error 11 mkSG' 11

) o flip Map.lookup d_map) $ 
snd shuffled_input 

mkSG" :: (Ord n,Avoid n, Default n) =;. LoopSpec n ty op-t ([n], ([n], [n])) 
mkSG" (LoopSpec cg n d) = (loop(arriedlnput, splitedloop(arriedlnput) 

where 
loop(arriedlnput =drop (n- 1) $ cglnput cg 

splitedloopCarriedlnput = pupdD (map fst) $partition((= 1) o snd) $ 
zip loop(arriedlnput d 

Function semtloopSpec and gPrim are directly translated from the definition 
of [G]j and G', respectively, in Def. 3.210 

semtloopSpec :: (Ord n, Avoid n, Default n, Eq op, Show ty, Eq ty) =;. 

LoopSpec n ty op-t lnt -t CodeGraph n ty op 
semtloopSpec Is n = (Kk 0 sg) ; select; (Kk 0 sglnv) ; cg 

where 
cg = get(g Is 
k = getK Is 
b = cgNodeTypes cg bNode 
a = cgNodeTypes cg aNode 

61 



M.Sc. Thesis - Shiqi Gao - McMaster - Computing and Software 

g' = semtloopSpec (gPrim Is) (pred n) 
sglnv = mkSGinv Is 
(sg, _) = mkSG Is 

(aNode, bNode) = snd $ mkSG" Is 

firstlte = llk®a0 !b 0 ib 
otherlte = llk®a 0 ib 0 llb ; g' ; llk®a 0 llb0 !b 
select = if n - 1 then firstlte else otherlte 

gPrim :: (Ord n, Avoid n, Default n, Eq op, Show ty, Eq ty) =? 

LoopSpec n ty op ---+ LoopSpec n ty op 
gPrim Is= LoopSpec cg' n d' 

where 
k == getK Is 
c =get( Is 
b = cgNode Types cg bNode 
a = cgNodeTypes cg aNode 
n = getN Is 
cg == getCg Is 
sglnv = mkSGinv Is 
aTIMEb = cgTrg sg 

(aNode, bl\lode) = snd $ mkSG" Is 
(sg, d'_oLAxB) = mkSG Is 

cg' = (Vk 0 lla®b ; llk 0 (llk 0 sglnv ; cg ; !c 0 sg)) 0 llb ; llk®a 0 Xb,b 

d'_oLB' = dropWhile ( 1) d'_oLAxB 
d' =(map (const 1) d'_oLAxB) *(map pred d'_oLB') 

C.4 Extensible Loop Specification Definition 

The Haskell representation of an extensible loop specification includes four 
parts, a code graph, number of constant inputs nk, number of control outputs 
nc and a list of loop distance d. E in and Eou.t can be calculated based on these 
information. 

data ELoopSpec n ty op = ELoopSpec{ 
cg :: (CodeGraph n ty op) , 
nk :: lnt, 
nc :: lnt, 
d :: [lnt]} 

62 



M.Sc. Thesis - Shiqi Gao- McMaster- Computing and Software 

C.5 Convert from Loop Specification 

Function fromWTis converts the loop specification definition created by Wolf­
gang Thaller to extensible loop specification. 

fromWTis :: WT.LoopSpec n ty op---+ ELoopSpec n ty op 
fromWTis wtls =let wtlsFin = WT.IsFinputs wtls 

wtlsFout = WT.IsFoutputs wtls 
wtlsK = WT.IsKinputs wtls 
wtlsC = WT.IsCoutputs wtls 

in ELoopSpec{ nk = length wtlsK 
, nc = length wtlsC 
, d =map negate$ WT.IsDs wtls 
, cg = cgUpdateOutput (const (wtlsC * wtlsFout)) $ 

cgUpdatelnput (const (wtlsK * wtlsFin)) $ 
WT .lsCg wtls 

} 

C.6 Extensible Loop Specification Access Func­
tions 

Note: getEFTy(F) calculates loop carried interface, F, by just using input 
interface of the code graph, it also can use output interface of the code graph 
to calculate F . 

getEin , getEou·c , getEK, getEC, getEFin , getEFout 
:: (Ord n, Avoid n, Default n) ==> ELoopSpec n ty op---+ [x] ---+ [x] 

getEin (ELoopSpec cg n _ d) =drop (n +length d) 
getEout (ELoopSpec cg _ n d) =drop (n +length d) 
getEK (ELoopSpec cg nk _ _) = take nk 
getEC (ELoopSpec cg _ nc _) = take nc 
getEFin (ELoopSpec cg nk _ d) = take (length d) o drop nk 
getEFout (ELoopSpec cg _ nc d) = take (length d) o drop nc 

Ein , Eou.t , K, C , F 
.. (Ord n,Avoid n, Default n) ==> ELoopSpec n ty op---+ [ty] 

Kels = getEK els $ cgSrc $ Gels 
Gels = getEC els $ cgTrg $ Gels 
Fels = getEFin els $ cgSrc $ Gels 

63 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

Einels = getEin els $ cgSrc $ Gels 

Eoutels = getEout els $ cgTrg $ Gels 

getEinNode, getEoutNode, getEFinNode, getEFoutNode, getECNode 
:: (Ord n, Avoid n, Default n) :=;. ELoopSpec n ty op-+ [ n] 

getEinNode els = getEin els $ cglnput $ Gels 

getEoutNode els = getEout els $ cgOutput $ Gels 

getEFinNode els = getEFin els $ cglnput $ Gels 

getEFoutNode els = getEFout els $ cgOutput $ Gels 

getECNode els = getEC els $ cgOutput $ Gels 

getEKNode els = getEK els $ cglnput $ Gels 

getNK = nk 
getNC = nc 
getED = d 
G = cg 

getFoutPos :: (Ord n, Avoid n, Default n) :=;. 

ELoopSpec n ty op-+ lnt-+ lnt 
getFoutPos els fin =fin- getNK els + getNC els 

getFoutPoslist :: (Ord n, Avoid n, Default n) :=;. 

ELoopSpec n ty op-+ [lnt]-+ [lnt] 
getFoutPoslist els = map (getFoutPos els) 

C.7 Composition of Extensible Loop Specifi­
cation 

® is translated directly from Def. 4.221 . 

® ::(Ord n, A toid n, Default n, Show ty, Eq ty, Eq op) :=;. 

ELoopSpec n ty op -+ ELoopSpec n ty op -+ ELoopSpec n ty op 
a ® b = ELoopSpec cg nk nc d 

where 
ka = Ka 
kb = Kb 

fa =Fa 
fb = Fb 

kb_fb = kb ® fb 

ca = Ca 
cb = cb 

64 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

nk = getNK a+ getNK b 
nc = getNC a+ getNC b 
d = getED b * getED a 

cg = al ; a2; a3; a4 

a 1 = llka ® :Xkb_fb,F.®E;n• 

a2 = Ga ® llkb_fb 

a3 = l:al8 fa 0 (XEinb,kb_fb ; Gb) 

a4 = l:a ® Xfa,cb®fb 0 nEout b 

C.8 Implementing the First Step of Decompo­
sition 

This section implements the algorithm specified in Subsection 4.4.329 . The 
following two auxillary functions , trg' and src' , directly implement the specifi­
cation in Subsection 4.4.329 • 

trg' :: (Ord op, Ord n, Avoid n, Default n, Show ty, Eq ty, Eq op, Shown) =} 

CodeGraph n ty op ---t Set.Set Edge ---t Set.Set n 
trg' cg = Set.fold (Set.union o Set.fromlist o cgEdgeResults cg) Set.empty 

src' :: (Ord op , Ord n, Avoid n, Default n, Show ty, Eq ty, Eq op, Shown) =} 

CodeGraph n ty op ---t Set.Set Edge ---t Set.Set n 
src' cg = Set.fold (Set. union o Set.fromlist o cgEdgeArgs cg) Set.empty 

Function eloopSpecDecomp implements the first step of decomposition algo­
rithm. It takes two inputs, an extensible loop specification and an interface 
of right extensible loop specification; the interface is specified by two lists of 
integers, the integers are positions in input or output interface of the original 
extensible loop specification, the first list specifies the input interface and the 
second list only specifies the control outputs. 

eloopSpecDecomp :: (Ord op, Ord n, Avoid n 
, Default n, Show ty 
, Eq ty, Eq op, Shown) =} 

ELoopSpec n ty op---t ([lnt], [lnt]) ---t 
(ELoopSpec n ty op, (ELoopSpec n ty op 

, ELoopSpec n ty op)) 
eloopSpecDecomp els (right, rightC) = (midELoopSpec, 

(leftELoopSpec, rightELoopSpec)) 

65 



M.Sc . Thesis - Shiqi Gao- McMaster - Computing and Software 

where 
errStr = 11 eLoopSpecDecomp: 11 

inputs = cglnput $ Gels 

outputs = cgOutput $ Gels 

elsFin = getEFinNode els 
elsFout = getEFoutNode els 
elsEin = getEinNode els 
elsEout = getEoutNode els 
elsK = getEKNode els 
elsC = getECNode els 

elsCG =Gels 

elsEdges = cgEdgelist elsCG 
elsNodes = cgNodelist elsCG 

ioMap = mkELoopSpeciOMap els 
dMap = mkELoopSpecLDMap els 

diff = listAsSet Set.difference 
union = listAsSet Set.union 
rmDup = Set.tolist o Set.fromlist 

rightFoutPos = getFoutPoslist els right 

rightNodesln = map (inputs!!) right 
rightNodesCout' = map (outputs!!) right( 
rightNodesFin = rightNodesln ' intersect' elsFin 
rightNodesFout = 

map (lookupWithErrorStr ( errStr *show ioMap) ioMap) 
rightNodesFin 

rightNodesK = rightNodesln ' intersect' elsK 
rightNodesC = rightNodesCout' 'intersect' elsC 
rightNodesEout = elsEout 
rightNodesEin = sort$ ( concatMap ( cgEdgeArgs elsCG) 

rightDescEdges * 
rightNodesFout * 
rightNodesC * 
rightNodesEout) 

'diff' rightDescNodes 

( rightDescNodes, rightDescEdges) = 

cgBFS elsCG (rightNodesFin * rightNodesK) 

rightNodesOut = rightNodesC * rightNodesFout * rightNodesEout 

66 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

rightNodes = rightNodesFin * rightNodesK * rightNodesEin * 
rightNodesOut * rightDescNodes 

invRightDescEdges = elsEdges \\ rightDescEdges 
invRightNodes = elsNodes \\ rightNodes 

rightCG" = cgDeiNodes ( cgDeiEdges invRightDescEdges elsCG) invRightNodes 
rightCG' = cgUpdatelnput (const (rightNodesK * 

rightNodesFin * 
rightNodesEin)) 

rightCG" 
rightCG = cgUpdateOutput ( const rightNodesOut) rightCG' 

rightELoopSpec = 
els { cg = rightCG 

, n k = length rightNodesK 
, nc = length rightNodesC 
, d = map (lookupWithErrorStr errStr dMap) rightNodesFin 
} 

Since there is possible to have duplication in output interface node list, leftNodesOut, 
leftNodesFout, leftN odes( are calculated in a complicated way. 
For the input interface node list , since there is no duplication, then \\ , i.e. , 
list difference, is safe to use. 

leftNode In = inputs\\ rightNodesln 
leftNode Out =map (outputs!!) (([0 .. length outputs- 1] \\ 

rightFoutPos) \\ 
rightC) 

leftNode Fin = elsFin \\ rightNodesFin 
leftNodesFout =map (outputs!!) ([getNC els .. length outputs- 1] \\ 

rightFoutPos) 
leftNodesK = elsK \\ rightNodesK 
leftNodesC =map (outputs!!) ([0 .. getNC els] \\ rightC) 
leftNodesEin = elsEin 
leftNodesEout1 = (concatMap (cgEdgeResults elsCG) 

leftAsceEdges * 
leftNodesFin * 
leftNodesK * 
leftNodesEin) 

'diff' leftAsceNodes 
leftNodesEout = sort$ leftNodesEoutl ' union ' 

(filter (flip elem leftNodes) $ 

67 



M.Sc. Thesis- Shiqi Gao -McMaster- Computing and Software 

concatMap ( cgEdgeArgs elsCG) invleftAsceEdges * 
rightNodesOut 

) 

invleftAsceEdges = elsEdges \\ leftAsceEdges 
invleftNodes = elsNodes \\ leftNodes 

(leftAsceNodes, leftAsceEdges) = 

cgRBFS elsCG (leftNodesFout * leftNodesC) 

leftNodes = leftNodesFin * leftNodesFout * leftNodesK * leftNodesEoutl * 
leftNodesEin * leftAsceNodes * leftNodesC 

leftCG" = cgDeiNodes (cgDeiEdges invleftAsceEdges elsCG) invleftNodes 
leftCG' = cgUpdatelnput ( const (leftNodesK * 

leftNodesFin * 
leftNodesEin)) leftCG" 

leftCG = cgUpdateOutput ( const (leftNodesC * 

leftELoopSpec = 

els { cg = leftCG 
, nk = length leftNodesK 
, nc = length leftNodesC 

leftNodesFout * 
leftNodesEout)) left( G' 

, d = map (lookupWithErrorStr errStr dMap) leftNodesFin 
} 

invMidN des= rmDup $ (leftNodes * rightNodes) 'diff' 
(leftNodesEout * rightNodesEin) 

midCG" = cgDeiEdges (leftAsceEdges * rightDescEdges) elsCG 
midCG' = cgDeiNodes midCG" invMidNodes 
midCG = cgUpdatelnput (const leftNodesEout) $ 

cgUpdateOutput (const rightNodesEin) midCG' 
midELoopSpec = 

els { cg = midCG 
,d = [] 

, nk = 0 
,nc = 0 
} 

mkELoopSpeciOMa creates loop carried input-output relation. 

mkELoopSpeciOMap :: (Ord n, Default n, Avoid n) ::::} 
ELoopSpec n ty op--+ Map.Map n n 

68 



M.Sc. Thesis- Shiqi Gao- McMaster- Computing and Software 

mkELoopSpeciOMap els = 

Map.fromlist $zip (getEFinNode els) (getEFoutNode els) 

mkELoopSpecLDMap creates a map, maps F to loop distance 

mkELoopSpecLDMap :: (Ord n, Default n, Avoid n) =? 

ELoopSpec n ty op---t Map.Map n lnt 
mkELoopSpecLDMap els = Map.fromlist $zip (getEFinNode els) (d els) 

C.9 Implementing the Second Step of Decom­
position 

Function eloopSpecDecompM implements the second step of the decompo­
sition algorithm presented in Subsection 4.4.431 • It takes two arguments, a 
extensible loop specification and a set of edges, the set of edges contains all 
edges which is all edges of ML, then all edges of MR can be calculated. 

eloopSpecDecompM :: (Ord op, Ord n, Avoid n 
, Default n, Show ty 
, Eq ty, Eq op, Shown) =? 

ELoopSpec n ty op ---t Set.Set Edge ---t 
Maybe (ELoopSpec n ty op, ELoopSpec n ty op) 

eloopSpecDecompM m eGML = 

if • $ Set.null $ (trg' cg eGMR n src' cg eGML) 
then Nothing 
else Just (ml, mR) 

where 
cg = Gm 
e = cgEdgeSet cg 
eGMR = e- eGML 
nGML = Set.fromlist (cglnput cg) U src' cg eGML U trg' cg eGML 
h N = sort $ Set. to list $ 

nGML n (src' cg eGML U Set.fromlist (cgOutput cg)) 
gML = cgDeiNodes (cgDeiEdgeSet eGMR cg) $ Set.tolist $ 

(cgNodeSet cg)- nGML 

ml = ELoopSpec{ nk = 0 
,nc = 0 
,d = [] 

69 



M.Sc. Thesis- Shiqi Gao- McMaster - Computing and Software 

, cg = cgUpdateOutput ( const hN) $ gML 
} 

gMR = cgDeiNodes (cgDeiEdgeSet eGML cg) $ Set.tolist $ 
nGML- (Set.fromlist hN) 

mR = ELoopSpec{ nk = 0 
, nc = 0 
, d = [ ] 

, cg = cgUpdatelnput (const hN) $ gMR 
} 

70 



Bibliography 

[AK08a] Christopher K. Anand and Wolfram Kahl. Coconut- code-graph­
centered parallelisation. Presentation at CASCON 2008 Work­
shop on Compiler-Driven Performance, October 2008. http: I I 
www.eecg.toronto.edul~steffanlworkshopsl08lcdpl. 

[AK08b] Christopher Kumar Anand and Wolfram Kahl. Code graph trans­
formations for verifiable generation of SIMD-parallel assembly code. 
In Andy Schurr, Manfred Nagl, and Albert Ziindorf, editors, Appli­
cations of Graph Transformations with Industrial Relevance, AC­
TIVE 2007, volume 5088 of LNCS, 2008. (to appear). 

[CBS96] Jordi Cortadella, Rosa M. Badia, and Fermin Sanchez. A mathe­
matical formulation of the loop pipelining problem. In XI Confer­
ence on Design of Integrated Circuits and Systems, pages 355- 360, 
Barcelona, November 1996. 

[CG99] A. Corradini and F. Gadducci. An algebraic presentation of term 
graphs, via gs-monoidal categories. Applied Categorical Structures, 
7(4):29 -331, 1999. 

[KAC06a] Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette. 
Control-flow semantics for assembly-level data-flow graphs. In 
Wendy MacCaull, Michael Winter, and Ivo Diintsch, editors, 
RelMiCS 2005, volume 3929 of LNCS, pages 147-160. Springer, 
2006. 

[KAC06b] Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette. 
Control-flow semantics for assembly-level data-flow graphs. In 
Wendy ~\1cCaull et al., editors, 8th Intl. Sem. Relational Methods in 
Computer Science, volume 3929 of LNCS, pages 147-160. Springer, 
2006. 

71 



M.Sc. Thesis- Shiqi Gao - McMaster- Computing and Software 

[Kah01] Wolfram Kahl. A relation-algebraic approach to graph structure 
transformation, 2001. Habil. Thesis, Informatik, UniBw Miinchen, 
Techn. Ber. 2002-03. 

[Kah06] Wolfram Kahl. Semigroupoid interfaces for programming with re­
lations i Haskell. In Renate Schmidt and Georg Struth, editors, 
Relations and Kleene Algebra in Computer Science, RelMiCS/AKA 
2006, vo lume 4136 of LNCS, pages 235- 250. Springer, 2006. (to ap­
pear) . 

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and 
the algebra of regular events. Infor. and Comput., 110(2):366-390, 
May 1994. 

[ORSA05] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David August. 
Automatic thread extraction with decoupled software pipelining. 
In Proceedings of the 38th IEEE/ ACM International Symposium 
on Microarchitecture (MICRO) , November 2005. 

[RVVA04] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and 
David I. August. Decoupled software pipelining with the synchro­
nization array. In PACT '04: Proceedings of the 13th International 
Conference on Parallel Architectures and Compilation Techniques, 
pages 177-188, Washington, DC, USA, 2004. IEEE Computer So­
ciety. 

[SHW97] Gunther Schmidt, Claudia Hattensperger, and Michael Winter. 
Heterogeneous relation algebra. In Chris Brink, Wolfram Kahl, 
and Gunther Schmidt, editors, Relational Methods in Computer 
Science, Advances in Computing, chapter 3, pages 39- 53. Springer­
Verlag, '.Vien, New York, 1997. ISBN 3-211-82971-7. 

[SS93] Gunther Schmidt and Thomas Strohlein. Relations and Graphs, 
Discrete Mathematics for Computer Scientists. EATCS-Mono­
graphs on Theoretical Computer Science. Springer, 1993. 

[Tha06] Wolfgang Thaller. Explicitly staged software 
pipelining. Master's thesis, McMaster Univer-
sity, Department of Computing and Software, 2006. 
http:/ /s rl.mcmaster.ca;-anand/papers/ThallerMScExSSP.pdf. 

72 



Index 

;, 50 
'-.../'50 
dom, 50 
li, 50 
ran, 50 
*,50 
+, 50 
I: , 38 
®, 21 
l±J, 51 

Code graph, 3 
£,3 
N, 3 
elab, 3 
In , 3 
Out, 3 
src, 3 
trg , 3 
acyclic, 4 
join-free, 4 
supported, 4 
used, 4 

Extendible loop specification, 19 

gs-monoidal, 5 

left-extensible, 20 
Loop specification, 8 

right-extensible, 20 

73 

RWCFG, 37 

Shuffle, 9 
Strict g-monoidal category, 5 

!, 5 
Strict s-monoidal category, 4 

v, 4 
Symmetric strict monoidal category, 4 

X, 4 
:n. , 4 
®, 4 




