
A GRAPH TRANSFORMATION AND VISUALIZATION

FRAMEWORK

A GRAPH TRANSFORMATION AND VISUALIZATION

FRAMEWORK

By

SCOTT WEST, B.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Scott West , December 2008

MASTER OF SCIENCE (2008)
(Computer Science)

McMaster University
Hamilton, Ontario

TITLE: A Graph Transformation and Visualization Framework
AUTHOR: Scott \Vest, B.Eng. (McMaster University)
SUPERVISOR: Dr. Wolfram Kahl
NUMBER OF PAGES: vii, 66

11

Abstract

The study of graph transformation has applications in many fields. The development
of visual , interactive tools that operate on graphs is a subject which has received
relatively little attention in the area of functional programming. This thesis presents
a framework for developing, visualizing, and interacting with graphs in the pure
functional programr ing language Haskell. Additionally, an embedded domain specific
language is developed for the purposes of graph transformation within the framework.

lll

Acknowledgements

I would like to firstly thank my family who have always supported and en
couraged me in the most important ways throughout my life.

Also, I am also very thankful to Dr. Wolfram Kahl for enabling and encour
aging me to pursue graduate studies. His comments and ideas are always informative
and they greatly helped shape my work.

Lastly I would like to thank my friends who helped me stay balanced during
the stressful times.

IV

Contents

1 Introduction
1.1 Goals ...
1.2 Organisation .

2 Background and Related Work
2.1 Canvas Frameworks
2.2 Object-Oriented or Functional?
2.3 Graphs
2.4 Graph Editing and Transformation Frameworks .

3 A Middle Road to 00 in Haskell
3.1 The O'Haskell Option .
3.2 OOHaskell Review

3.2.1 Building Records .
3.2.2 Up- / Down-casting
3.2.3 Experiences with OOHaskell

3.3 Interface Style Rationale
3.4 Object Implementation Technique .
3.5 Constructo:-s and Variables .
3.6 Problems and Summary

4 Canvas Overview
4.1 High-level Design

4.1.1 Figure
4.1.2 Connection Figures
4.1.3 Drawing
4.1.4 Drawing View .
4.1.5 Tools

4.2 Extensibility
4.3 Intermediate Representation

v

1
1
2

3
3
4
5
5

7
7
8
8
9

10
11
12
13
15

16
16
17
17
18
18
19
19
21

404 Developer 's Guide 0 0 0 0 0 0 0 0 0
4.401 Figure Interface 0 0 0 0 0
4.402 Connection Figure Interface
4.403 Drawing Interface 0

405 Implementation Details 0 0 0 0 0 0 0

5 Graph Transformation Environment
501 Category Theory Background
502 Haskell Monad Primer 0 0
503 Backtracking Monads 0 0 0
504 Selection Monad Definition 0
505 Selection Operations
506 Transformation Environment 0

6 Replicating SPO
601 SPO Background 0 0 0 0 0
602 Creating a Match 0 0
603 Implementing the SPO Approach

7 Petri Net Example
701 Petri Net Label
702 Petri Net Main-file
703 Petri Net Discussion

8 FUture Work and Conclusion
801 Future Work 0
802 Conclusion 0 0

Vl

22
22
25
27
29

30
30
32
34
35
37
39

43
43
45
48

51
51
57
60

61
61
62

List of Figures

5.1 Pushouts.
5.2 Commuting monad diagrams.

6.1 Example of SPO with no conditions on matching
6.2 Example of SPO with some identification of nodes
6.3 SPO deletions.

7.1 Petri net editor and animator resulting from the Petri module.

Vll

31
33

44
45
46

52

Masters Thesis - S. West McMaster University - Computing and Software

Chapter 1

Introduction

Graphs, as a model, are used and re-used many times in computer science. They
offer both a functional and visual model for describing many problems. Some models
of computation are represented as graphs, such as Petri nets. However, graphs may
also be used to describe less mathematically intense concepts, such as UML class
diagrams. In academia and in practice, there is a need to employ these existing
concepts, and also model entirely new problems with graphs.

It is clear that very often graphs represent working models of a problem, and
often these models need to be updated and refined. Consider constructing a class
diagram in UML, refactoring and other modifying operations continually take place,
transforming the underlying graph. This is one instance of graph transformation.

1.1 Goals

The current number of graph transformation frameworks for functional languages is
exceedingly small, even smaller when narrowing to those including visualizations of
the graphs. As such, a framework for visualizing graphs in a functional-language
setting is proposed in this thesis. A portion of this work is an adaptation of existing
frameworks in object-oriented settings. This is a novel approach to implementing a
graph visualization in the functional style.

Supplementi g this visualization is an embedded domain specific language
(EDSL) which is designed for expressing graph transformations. This language has
the power to replicate existing graph transformation approaches. This allows for
familiar concepts t be used by those who are already acquainted with graph trans
formation theory.

Additionally the above two concepts should work together to create an in
teractive, visual , graph transformation system. This provides the developers with
the ability to visualize, and thus more easily comprehend the behaviour of graph

1

Masters Thesis - S. West McMaster University - Computing and Software

transformations that may be under heavy development; in other words, a type of
graph-development-sand box.

Lastly, the entire framework should be very expressive. As the problems and
models represented by graphs can be very diverse, the ability to represent as many
of these as possible is a distinct advantage.

To summarize, the contribution of this thesis aims to fulfill the following goals:

• Creating a painless visualization of graphs.

• Constructing an expressive embedded domain specific language (EDSL) in Haskell
to build graph transformations.

• Linking the above two in a way that allows for easy extension to different kinds
of graphs.

1. 2 Organisation

This thesis is organized into several chapters. The initial background, found in Chap
ter 2 outlines the existing visualization and GUI libraries in Haskell. Additionally,
this section also provides the definition for graphs which forms the basis of many of
the concepts found in the rest of the document.

The visualization aspect of the framework is modeled after an existing object
oriented design, [Joh92]. We provide a modification/simplification of the OOHaskell
approach [KL05] in Chapter 3 to facilitate the translation from an object-oriented
design into a functional language such as Haskell. The implementation of the visu
alization is not provided in this thesis, as it is immense. The overall design of the
visualization, using the object-oriented approach , is given in Chapter 4.

Also, a graph transformation EDSL is given in Chapter 5. It provides a col
lection of combinators to express graph transformations in an intuitive and compre
hensible way. We show that our EDSL can be used to implement the single-pushout
approaches in Chapter 6.

A bridge between the visualization and the transformation is also given. The
ability to allow very non-functionally-styled code to coexist and work with more native
Haskell code is very important. As such we present a method of integrating the two
approaches in Chapter 7. This integration allows the Haskell developer to work in
a familiar style, while still leveraging the power of an interactive visualization. A
succinct definition of the working model is given in Section 7.1 and the high-level
GUI is given in Section 7.2 as literate Haskell code. Finally we have future work and
a few concluding remarks in Chapter 8.

2

Masters Thesis - S. West McMaster University - Computing and Software

Chapter 2

Backgrolllnd and Related Work

In this chapter, we ~ ;ee the explanation of the fundamental concepts which will form
the basis of the work to come. Canvas frameworks are covered in Section 2.1; Sec
tion 2.2 reviews object-oriented frameworks in functional settings; our definition of
a graph may be found in Section 2.3, and finally in Section 2.4, we see other visual
graph transformation frameworks.

2.1 Canvas Frameworks

We define a canvas as a drawing area where the items that are drawn keep some
information about themselves, and can be rearranged later. This is in contrast to pure
drawing canvases which allow things to be drawn to them, but this is like drawing on
paper: what is drawn cannot be rearranged at some point in the future.

There are many existing "canvas" frameworks. These canvas frameworks do
not tackle the gene· al problem of graphs, but they do provide a base on which to
build one. These include:

• SOE - Used in Hudak's textbook [HudOO] , this graphics interface provides only
limited functionality.

• wxHaskell - A binding of wxWidgets to Haskell. wxWidgets is a cross-platform
C++ library which utilizes the native widgets of the underlying platform.

• qtHaskell - Multi-platform C++ GUI toolkit rebound to Haskell. The Qt im
plementation includes a built-in canvas, though not provided by the Haskell
binding yet.

• Gtk2Hs - Gtk, "GIMP Tool-Kit", multi-platform C GUI toolkit bound to
Haskell. No canvas is included, but drawing primitives are available via the
Cairo drawing system.

3

Masters Thesis - S. West McMaster University - Computing and Software

Both Gtk2Hs and and wxHaskell are fairly mature platforms, and qtHaskell is still
very new. These toolkits are all more-or-less direct translations of their underlying
imperative counterparts. Generally, they have very little in the way of a functional
programming approach to user interfaces.

Such functional style GUI frameworks do exist however. They often provide
a combinator approach to composition of GUis, and model the interactions between
components in a more functional style. Such Haskell frameworks include:

• Fudgets - A completely original Haskell widget system, unmaintained. [CH93]

• FranTk [Sag99] - A binding to the Tk GUI toolkit, using an early functional re
active programming (FRP) framework, Fran [EH97]. Currently unmaintained.

• Fruit - Widgets based on the arrow FRP approach [CEOl].

• TV - "Tangible Values" combinators to combine visualization and control of
values [Ell07].

• FieldTrip - A preliminary OpenGL based library for building animated and
interactive 3D geometry. http: I /haskell. org/haskellwiki/FieldTrip.

• Reactive - A more recent implementation of functional reactive programming
(FRP) concepts. http: I /haskell. org/haskellwiki/reacti ve.

2.2 Object-Oriented or Functional?

As an early design decision, an object-oriented (00) style was chosen to be employed
for the graphical "canvas" portion of the visualization. This was to take advantage
of the already numerous 00 canvas designs. In particular , we used HotDraw [Joh92]
as a starting-point for our design. As the design of the canvas itself is not the main
focus of this thesis, this was found to be an acceptable deviation from the functional
style of program design.

There has been some work done already on integrating object-oriented con
cepts into Haskell. These approaches have ranged from library- to extension-level
implementations. A library-level implementation does not use any language exten
sions, where other approaches require the language to be modified to provide the
necessary object framework.

One library-level approach is OOHaskell [KL05] . It employs type-level pro
gramming to implement a special record syntax applicable to 00 programming. It
allows concepts such as interfaces and abstract classes to be represented, by virtue of
the type-level programming that is employed.

4

Masters Thesis - S. West McMaster University - Computing and Software

Another avenue that was not pursued is to extend the Haskell language itself,
such as in O'Haskell [Nor02]. Here, Haskell is extended with sub-typing and monadic
objects. The combination of the two allows for inheritance and also "objects" as a
stateful data-type.

Further comparison and review of these approaches will be provided in Chap-
ter 3.

2.3 Graphs

Here give some background on the fundamental concepts underlying graph trans
formations. We define the working graph definition that we use for the remainder
of the thesis , as well as an introduction to category theory which is important for
understanding Chapter 5 and Chapter 6.

Definition 2.3.1. A graph is a tuple (N, E , L, src , trg, labN, labE), where:

• N is the possi bly infinite set of nodes.

• E- the possibly infinite set of edges.

• L - the possi ly infinite set of labels.

• src : E - N is a total function mapping an edge to its source node.

• trg: E-N-· a total function mapping an edge to its target node.

• labN : N - L - a labelling function to associate labels with nodes.

• labE : E - L - a labelling function to associate labels with edges. D

Graphs are useful in many contexts, including computation. Term graph rewriting
is one such way to model computation. In this case, the graphs represent terms ,
and transformation of term-graphs represent steps of the computation. In fact , this
technique is used in [P JL92] to evaluate expressions (represented as graphs) to model
the execution of a f nctional programming language.

2.4 Graph Editing and Transformation Frameworks

Although the field is somewhat small, there are examples of graph editing and trans
formation frameworks. DiaGen [MV95] is a Java-based diagram editing generator. It
offers the developer a way to produce graph editors that work on arbitrary kinds of

5

Masters Thesis- S. West McMaster University - Computing and Software

graphs, similar to what is offered in this thesis. DiaGen is based on hyper-graphs,
and the underlying transformation model uses hyper-graph grammars. The frame
work also provides "direct manipulation" of the contents of the graph, allowing the
diagram to be directly modified by the user in an interactive manner.

The concepts in Chapter 6 are used in existing graph rewriting systems such
as AGG [Tae99]. AGG is an attributed graph transformation system. It is based
on the single pushout approach to graph transformation with negative application
conditions (NACs). It is a visual environment in which the productions are specified
graphically. The implementation is in Java, and the attribute types must be valid
Java types. The interface provides sets of graph transformations to select, and bears
some similarity to traditional UML diagram editors.

6

Masters Thesis - S. West McMaster University - Computing and Software

Chapter 3

A Middle Road to 00 in Haskell

Here we give an overview of existing 00 techniques, and also develop a modification
to an existing technique for our needs. Firstly we give a brief justification for the
dismissal of O'Hask ll [Nor02] in Section 3.1. In Section 3.2 we discuss our experi
ences with the OOHaskell approach, and motivate a slight compromise in elegance,
prompted by increased maintainability and efficiency. We then briefly outline the
idioms we do use in ur approach, namely a particular setup of existential types (Sec
tion 3.3) , and record-object creation (Section 3.4) in tandem with a generalised monad
and reference setup. We then give a method of creating the objects (Section 3.5) and
go over a few flaws • resent in our technique (Section 3.6).

3.1 The o ~ Haskell Option

There have already been a couple attempts at embedding 00 methods into the
Haskell programmi g language. They include the OOHaskell library [KL05] which is
covered in the next section, and the O'Haskell extension to the Hugs Haskell inter
preter [Nor02]. O 'Haskell added the concept of monadic objects to simulate stateful
objects in Haskell. Monads are gone over in more detail in Section 5.2. Additionally,
the idea of subtyping was introduced, making inheritence feasible.

The objects in O'Haskell are introduced by making a "template". This tem
plate is essentially a class-level description of an object. They create objects in what
is called the "Cmd" monad, from this template. This is very similar to the tactic
that OOHaskell and we use.

The O'Haskell method was examined for appropriateness, though considered
to be unsuitable due to maintenance reasons. Proper maintenence is crucial when
selecting a piece of software that will form an integral part of the base of a project.
The maintenence issue is even more important because O'Haskell is implemented as
an extension to the askelllanguage. This means that only interpreters and compilers

7

Masters Thesis - S. West McMaster University - Computing and Software

supporting the extension will be able to understand it . The use of an extension may be
warranted if it is also widely supported. However, O'Haskell is a generally unaccepted
extension, not supported in any of the commonly used Haskell compilers.

The combination of the reasons mentioned above make the use of O'Haskell
as our underlying object-oriented structure ill-advised.

3.2 OOHaskell Review

The OOHaskell library is a piece of software utilizing type-level programming to
supply extensible records in Haskell, a feature which is currently lacking in the Haskell
'98 standard [PJ+03] . It builds on the HList work [KLS04] to do this. Also there is
a overview of techniques using mutable state, inheritance, and other object-oriented
concepts.

3.2.1 Building Records

As mentioned, the HList library offers the ability to build extensible records. Exten
sible records are very important to an object-oriented approach because they provide
essential structure to bind functions to. Also because they are extensible, one may
update or add more to them, as is the case with inheritance and overriding in 00.
For this, the HList approach uses heterogeneous lists to build its records. The basic
elements of these lists are :

emptyRecord :: Record HNil
(·*·) :: HExtend e l l' :=;. e ---+ l ---+ l'
(.= .) :: l ---+ v ---+ F l v

Where the above represent the empty record , record construction, and creation of
label-value fields. F here denotes the type of a field. For example, one could use the
above to build a record

record1 :: Class1 ---+ IO Class1
record1 self = return (

a.=. 3
·*· b .= . "Some string"
·*· emptyRecord

The interpretation of the above is that this record has two fields. One field can be
accessed with label a , and the other with b. These labels refer to an Integer and

8

Masters Thesis - S. West McMaster University - Computing and Software

a String, respectively. They are appended together using the ·*· operator, and is
terminated with the emptyRecord type. Compared to existing Haskell syntax, this is
similar to the usage of the list constructor (:) and the empty list ([]) .

Note that a and b from the recordl definition need not have any values of
their type. As a rule, they should never have their values evaluated, so they can be
constructed using a "undefined" value. Also, since their role is specifically as labels ,
they are wrapped i . a Proxy type to help make the purpose of the type as a label
clear. A label may be something like

data A= A
a :: Proxy A
a = proxy

The HList-type records, being extensible, allow for easily adding more fields.
Since these records are glorified lists , one can add more fields by simply append
ing, using ·*· . A ditionally, updates can be performed using the . < . operator.
l .=. v . < . r will update the value at the already-existing label l with the value v in
the record r. Other operators are also made available for related operations such as
umon.

In OOHaskell, one is able to use inheritance by first instatiating the super
class, then appendi g more records to it. If we wanted to take our recordl from
above and extend it , it would look something like:

record2 self = do
super ~ recordl self
return (

c .=. True
·*· d .=. 11, 2, 3]
·*· super

)

The above example constructs a recordl first and names the resulting record super.
This super then forms the base of the record we're about to create. We can add
methods and overri e methods using the previously mentioned :11 and . < . operators.

The self argument we see in the record definitions is a convenience so that one
may be able to call methods of the class from within the not-yet-constructed methods
of that class. This is similar to the usage of the this keyword in other object oriented
languages.

3.2.2 Up-/Down-casting

Once the basic extensible records are available, OOHaskell then uses them to build
up more complicated object-oriented structures. Using the extensible records, one is

9

Masters Thesis- S. West McMaster University - Computing and Software

also able to modify the records in complicated ways. For instance, an "interface" IS

given in the form of

type Classl = Record (
A:=: Int

: * : B :=: String
: *: HNil

Here , the :=: and : * : are type-level equivalents of the field creation (.=.) and record
construction (·*·) functions given earlier. Such infix type-operators can be used to
more clearly express the types of classes.

If we are given the above interface, we are able to "narrow" , or up-cast, records
satisfying some permutation of the Classl-type into Classl. The pre-condition for
this to occur is known as record sub-typing. Note that this narrow operation is
destructive: it prunes the extra fields out of the record. This eliminates the possibility
of down-casting later.

An alternative to the destructive up-casting is given, using the Typeable type
class. This is run-time typing which allows the original types to be recovered. This
information is embedded during the narrowing process , which allows down-casting to
occur later. This down-casting operation is safe, wrapping successful casts in Just;
otherwise Nothing is returned.

3.2.3 Experiences with OOHaskell

The ability of OOHaskell to properly replicate the object-oriented style is quite im
pressive, given that it does not use any esoteric extensions to the Haskell language,
as O 'Haskell does. The OOHaskell approach puts forth a technique that allows a
developer to quickly establish a class-based design. It allows the developer to easily
create basic classes , with mutable state using STRef or IORef references. From here,
it is also very straight-forward to extend the basic classes by both overriding and
adding new methods to the class.

The ability to treat 00-concepts in a natural way is the main strength of
OOHaskell. It allows the user to create nearly a one-to-one connection with an
object-oriented design. It is implemented without extending the Haskell language
which is also very appealing, though it does make use of some common extensions to
the Haskell 98 standard.

However, as the classes grow, and their use increases, it becomes more infea
sible to continue using the OOHaskell approach. The type signatures of the classes
become harder to define and keep track of. This is caused by the heavy use of

10

Masters Thesis - S. West McMaster University - Computing and Software

type-classes and their role in tracking pre-conditions of record operations, such as
narrowing, lookups , etc.

Additionally, due to the large amount of type-level programming, the compila
tion performance continually decreases as the use of the OOHaskell records increases.
The scale of type-leYel programming occurring using this method is not typical of the
average Haskell program. Therefore, this may be one area that can be made more
performant in time, but will only occur as compiler-side optimizations are introduced.

This use of the type-system in Haskell seemed to be the cause of long compile
times in early versi ns of the framework. It took approximately 20 minutes on a
2GHz machine to compile, and occupied 300MB of memory. Using our less ambitious
approach explained later in this chapter , compile times shrink down to one minute on
a functionally equivalent code-base. The simplified approach we take does increase
boiler-plating slighLy though.

3.3 Interface Style Rationale

It seems that OOHaskell , although rejected, provides a number of basic techniques
which are desirable to us. Programming to an interface is one such technique, as
interfaces can be described in OOHaskell using type signatures.

However , since we cannot leverage the power of extensible records , we must
have a different approach. The standard Haskell solution when interfaces are needed
is to use type-classes, which are very similar to interfaces.

Type-classes , though, are slightly too rigorous for our uses. Since we are
designing a canvas , we need our canvas to be able to hold many different types of
figures at the same time. This is achieved by defining the interface exposed by any
figure; the natural analogue to Java-like interfaces in Haskell are type-classes. Java
like interface types then correspond to existential types [1094] over the respective
type classes.

For example, the interface for figures is defined by the FigureC type class, and
the existential type Figure can contain values of any type f for which an instance of
FigureC has been defined:

data Figure = forall f o FigureC f ::::} Figure f

This usage of existential types to separate the interface and implementing type also
helps to resolve highly recursive classes. Classes which recursively utilize other classes
can use the opaque existential type to avoid module recursion when compiling.

For convenience, after creating such an existential type, one can re-expose the
class instance for the underlying type. This is done by defining an instance of the
class for the existential type. With the previous example, this would look like:

11

Masters Thesis - S. West McMaster University - Computing and Software

instance FigureC Figure where
fig_moveBy (Figure f) p = fig_moveBy f p

The existential type now essentially just defers the definition of its member functions
to the enclosed type.

We will have several instances of FigureC. Such figures range from simple
graphical changes (display rectangles, triangles, ellipses, etc), to more complicated
instances such as connecting figures , and labelled figures.

3.4 Object Implementation Technique

The previous section gives a method of creating interfaces for the classes in a reason
able way. There is still a need for a technique to create the "skeleton" of the classes.
Where OOHaskell had used the type-level extensible records of HList [KLS04], we
now substitute regular Haskell records. However, we do sacrifice the brevity of hav
ing extensible records. Though, the tail polymorphism outlined in [KL05] does help
somewhat in this regard.

A small example may make the approach more clear. First we create a struc
ture to bind our functions to,

data Person m ref other = Person
{ getName :: m String
, setN a me :: String ~ m ()
, getld ::mInt
, setld :: Int ~ m ()
, other :: other
}

The m and ref are intended to be an instance of the HasRef m ref type-class. The
other parameter allows additional functionality to be added to the object.

The type-class definition for HasRef is as follows:

class (Typeable1 m, Typeable1 ref, Monad m) =} HasRef m ref where
newRef :: v ~ m (ref v)
readRef ::ref v ~ m v
writeRef ::ref v ~ v ~ m ()

The object-oriented encoding we use relies mainly on two things: having a monad,
and having references. The Has Ref type-class ensures we have these things, if we
are given an instance of it. It is a simple type-class which we use to abstract away

12

Masters Thesis - S. West McMaster University - Computing and Software

the existence of references ref for a particular monad m. The use of Typeablel as
super-classes become important when using interface in Section 4.2

One natural choice here are the IO monad, along with the IORef references.
Thus we provide a default implementation, HasRef IO IORef. Similarily we provide
one for ST s monads, as they include STRefs.

Note that often times uniquely generated identifiers are needed. Haskell pro
vides these in the form of Unique, which returns results in the IO monad. For more
general usage though, this could be extended by using the State T monad transformer
and adding an Integer which is incremented as unique values are produced.

Given the above record, we can then extend it using the "tail" portion of the
record. Namely, we create another record which supplies further methods , and load
it into the tail-section.

Such a record may look like:

type SkilledPerson m ref other =
Person m ref (SkilledPersonDelta m ref other)

data SkilledPersonDelta m ref other = SkilledPersonDelta
{skill :: m String
, skilLother :: other
}

We can combine th delta and the Person to get a SkilledPerson. This is done by
simply setting the other field of person to contain a SkilledPersonDelta. Except for
the monad generalisation using Has Ref , this is the same technique given in the tail
polymorphic mutable-state section given in [KL05]. We have found it very useful for
reducing boiler-plat ing and excessive code duplication.

3.5 Constructors and Variables

As in [KL05], the instance variables of a class are then represented by IORefs or
STRef , depending on the choice of underlying monad either IO or ST. The Refs are
essentially strongly- typed pointers.

We also adopt the OOHaskell "functions as constructors" method. A reason
able approximation of the OOHaskell technique is attained by essentially replacing
the specialized .=. operator with the more regular record-assignment =. Also , the
concatentation ·*· just becomes the field seperator , and because of this we eschew
the empty record ai the end.

For example, for the Person record we gave in the previous section, we could
have a constructor as follows:

13

Masters Thesis- S. West McMaster University - Computing and Software

person :: Has Ref m ref ~
String -----> Int -----> Person m ref other -----> m (Person m ref other)

person name ident self = do
nameRef ~ newRef name
identRef ~ newRef ident
return

(Person
{getName = readRef nameRef
, setName = writeRef nameRef
, getfd = readRef identRef
, setfd = writeRef identRef
}

We can see that the initial name and identification number are parameters to the
person constructor-function. They are subsequently passed to the state-creation func
tion newRef, which will allow us to have mutable state for the resulting object.

The as-of-yet unexplained argument is the self parameter, of type Person.
From the name one could guess that its role is similar to the this keyword often found
in object-oriented languages such as Java and C++. This is the exact same concept
as the techinque seen in Section 3.2.

For us, the self argument, just like in [KL05] , makes it possible to call methods
on the not-yet-constructed object that is in the midst of being defined. We could
rewrite the getName method to use the self parameter, appending the ID number to
the end of a name.

getName =do
str ~ readRef nameRef
num ~ getfd self
return (str-++- "-"-++-show num)

To actually generate the object, we must use the monadic fixed-point combinator over
the constructor-function. It appears slightly strange to allow some "other" Person
to occupy the self argument. This is solved by always using the mfix function to
construct the objects. This is what allows us to have the self-referencing behaviour
outlined above.

The monadic fixed-point function, mfix [EL02], is typed as follows:

mfix :: MonadFix m =?(a-----> m a)-----> m a

(M onadFix is a subclass of Monad providing only mfix.) In the case of our Person
class , we can make a new object by supplying the proper initial values, and passing
the result to the fixed point combinator.

14

Masters Thesis - S. West McMaster University- Computing and Software

personObj +--- mfix (person 11 Jeff 11 12345)

One can see that in this case mfix bears some similarity in usage to the new operator
in languages such as C++ or Java. The type-name which would usually follow is now
followed by a function. Once again, this draws directly from the OOHaskell [KL05]
style.

One can merge the interface style given in Section 3.3 with this technique to
create larger and more diverse object-oriented programs. This is done by defining
instances of the appropriate type-class for record-types. For example, if there was a
type-class PersonClass, we would create an instance of it for Person. The last step is
to create an existent ial type around PersonClass to allow multiple differently-typed
PersonClass instances to coexist.

3.6 Proble1ms and Summary

The main drawback f these techniques is the considerble boiler-plating. In particular,
in OOHaskell where one can mainly operate directly on the extensible records, we
have replaced these pieces with a type-class, a record to hold the "object", and an
existential type, which incidentally needs to be re-instanced as a member of the type
class.

Every time one wants to create a new existential type, it must re-instance itself
as a member of the enclosed type-class. This can lead to some length and seldom
interesting definitions of the class-members. There may be some hope to alleviate
some of this through the use of Template Haskell, first proposed in [SP J02]. This is
so far an unexplored avenue of research , as it is somewhat tangential to the purpose
of this thesis.

It is important for users of our framework to understand the above style of
object-oriented programming in Haskell. It offers a reasonable degree of object
oriented style while still offering full compatibility with the Haskell language. Also, it
is used extensively, if not completely, in the translation of the HotDraw design into its
Haskell counterpart. Though, liberties were taken to utilize more functionally-styled
programming techniques where possible, such as in method definitions. However, the
scaffolding of the entire canvas system is built around the object technique that we
have briefly outlined here; thus it is important to comprehend its usage.

15

Masters Thesis - S. West McMaster University - Computing and Software

Chapter 4

Canvas Overview

The design of the canvas inherits many ideas from the HotDraw design [Joh92] and
the JHotDraw implementation [EG98] . This was done to reduce the amount of time
taken on this part of the framework, not looking to reinvent the wheel in terms of
canvas design.

A high-level view of the design is given in Section 4.1. A functional approach
to extending this design is given in Section 4.2. An intermediate representation of the
canvas drawing as a graph is given in Section 4.3. Lastly, in Section 4.4 a developer's
guide is provided, the API of the most important classes.

4.1 High-level Design

At a high level, the design goes together in the following way:

• Figure - the base canvas visual element.

• Drawing - collects and manages figures.

• Drawing View - a particular view of a drawing.

• Tool - acts upon a drawing, view, or figure.

This design can also be examined from the model-view-controller (MVC) point
of-view. The closest approximation to the MVC design pattern is to consider figures
and drawings as the model; the drawing view is naturally the view, and the tools are
the controller.

Of course there are many more elements to the design. However, knowing
these is sufficient to understand the parts of the framework that are relevant for our
graph transformation system.

16

Masters Thesis - S. West McMaster University- Computing and Software

4.1.1 Figure

Figures are the entit ies on the canvas which can be seen and interacted with. They
are the basic elements on the canvas, as places, transitions, tokens, and arcs are the
basic elements of a Petri net. Given the graphical nature of the figures, they offer
facilities for:

• Drawing them.'elves; this is done via the Cairo rendering engine [Cai08].

• Storing and updating their dimensions; this includes position and information
such as width and height. Currently the interface dictates that this information
is represented as a rectangle. More complicated shapes may be supported in
the future, for more accurate "collision detection" with other figures.

• Listening interface for other figures, the drawing, etc. For example, an edge
must "listen" t o the figures it is attached to. Otherwise, it would be unable to
redraw itself when its source or target figures changed location or size.

• Transforming state to a string representation, and parse from a string as well.
Obviously a requirement for saving and loading figures.

• Generate con ection points for connection figures (edges). This allows figures
to dictate where they may be connected to by edges.

• Manage what drawing and parent figure it has, if any. Since figures may not
exist on a drawing , it is useful to be able to determine if a figure is currently on
a drawing or not. Also , figures may be nested inside other figures , if the other
figures support it. This means that they will be deleted when their parent is
deleted , and moved when their parent moves.

• Create modifying handles to change its dimensions. Handles are essential for
modifying figures after they are created. A modification could be resizing the
extents of the figure , for example.

The associated types in the framework are given by the FigureC type-class
and also the Figure type. The Figure type is existential, admitting only instances of
the FigureC type-class. In practice we use Figure whenever we want to talk about
figures, much like we would in an 00 language. FigureC is used to define the Haskell
interface to the type.

4.1.2 Connection Figures

A sub-class of figures are the connection figures. In a graph setting, these model the
edges that run between nodes. They are special in that they are the first basic kind

17

Masters Thesis - S. West McMaster University- Computing and Software

of figure which relies on other figures . They must modify themselves to match their
source and target figures' position. Therefore, they are the first instance we have seen
of something which must "listen" to a figure's change of state.

In addition, they are also special because figures are generally created in an
interactively piece-wise fashion. That is, the source and target are selected separately
by the user. Thus, we have to allow connection figures to be incomplete for some
amount of time while they are being created. This is accomplished by allowing the
end points of the figure to be either concrete connections to figures or just points. Any
connection that is not currently being created or edited should have both a source
and target connector associated with it.

The following additional functionality is thus added to the base figure:

• Storage and retrieval of possible start and end connectors.

• Organizing a list of intermediate points for edges with many segments.

The relevant type-class and existential type are ConnFigC and ConnFig, re
spectively.

4.1.3 Drawing

Now that we have a brief outline of the basic building blocks of the graph, we can
start to think about how to put them together. On a very simple level a Drawing
is just a collection of figures. It is one of the most basic elements of the framework,
as its only real additional responsibility is to be queried about what (if any) figure
is at some location. It is the object-oriented equivalent of what will later be our
graphs. Drawings must be instances of the DrawingC type-class and also wrapped in
the Drawing existential type, as needed.

4.1.4 Drawing View

The drawing itself is not responsible for visualizing itself, it just contains the knowl
edge of how to draw itself if need be. It is useful to consider the ability to draw itself
the knowledge of what to draw, but nowhere to actually draw it. The place where
the drawing actually takes place (the "paper") so to speak is the drawing view. A
drawing view, like the V of MVC, is one particular view of the drawing.

Therefore, it is not surprising that the drawing view may have some distortions
to the original visualization such as translation or scaling. A GtkDView is offered by
default in the framework , using a Cairo backend. So far only linear operations are
supported at the level of Cairo, so doing more complicated transformations would
have to wait until Cairo offers such capabilities or the drawing back-end is changed.

18

Masters Thesis - S. West McMaster University- Computing and Software

Additionally, the drawing view is responsible for "overlay" material. This
includes the handles present on some figures, and the selection of figures as well.
Any drawing view must be an instance of the D ViewC type-class and the associated
existential type is D View.

4.1.5 Tools

Tools are a way to modify the canvas and figures interactively. Tools contain hooks
for detecting mouse presses , releases, movement, and dragging. It seems that this
is enough versatility to replicate a good number of behaviours that are common in
canvas-like applications.

Tools have access to the drawing view, as they operate on the transformed
(scaled, translated) view of the drawing presented in the view. This is a necessity,
as the tool is a user-facing component of the design and therefore must use the user
facing visualization, and merely accessing the drawing would be insufficient.

The tools which are included by default are the panning and zooming tool, the
selection tool (which includes moving figures and handles) . Also, there is an included
creation tool , which can handle figure creation if the figure requires only a "drag"
(to specify the new figure 's extents) or "click" (to specify that a default-sized figure
should be placed under the cursor) interaction scheme.

The same naming scheme holds for tools as well, with the type-class and
existential type bei g ToolC and Tool, respectively.

4.2 Extensibility

Once we have the basic elements outlined above, we can start to incorporate them into
a style more suitable to functional programming. So far the entire design is assumed
to be implemented in an object-oriented style, which we now try to escape from.
We must therefore make an abstraction away from the more detailed, object-oriented
view of a canvas.

To a functio al programmer, a figure is just the on-screen representation of
some data-type, such as a string, integer, etc. So, we try to expose that directly
through the use of the FigureLabel type-class. The FigureLabel type-class is a distilled
version of the functionality offered by the figure classes. We use a technique of "em
bedding" a FigureLabel instance into the special LabelledFig figure. This LabelledFig
figure is sort of a figure with a hole in it. By this we mean that LabelledFig is not a
complete definition fa figure, and needs to wrap itself around a FigureLabel instance
so that it may defer the things it does not know to that instance.

Really, what is desired is the ability to specify figures with varying levels of
detail. If only basic changes need to occur, only modifying the way a figure is drawn

19

Masters Thesis - S. West McMaster University - Computing and Software

(for example moving from a rectangle to an ellipse), then it should be easy and
straight-forward to do so. If however, deeper modifications are required, then there
should be support to do that as well.

Using the FigureLabel/ LabelledFig method allows us to partially specify the
representation of the data in a succinct way without getting very deep into the in
ternals of how figures are meant to operate. The FigureLabel type-class provides an
interface to specify how a particular node should be:

• Drawn, according to its current bounding rectangle.

• Interacted with, given that it has been clicked on. This interaction could be
as simple as adding a token to a place in a Petri net, or it could spawn a
complicated dialog that modifies the figure in complicated ways.

• Dimensioned. The dimension can either be nothing (and thus be changed by
the user) or set to some constant value, which cannot be updated by the user
by means of resizing handles.

• Parsed and saved as a string.

Thus we have a type-class interface that looks like the following rather direct
translation of the above:

class (Show a, Typeable a)==? FigureLabel a where
draw :: a ---+ Rect ---+ Render ()
size ::a---+ Maybe Point
parseLabel :: Parser a
interface :: HasRef m ref==? LabelFig m ref---+ DView m ref---+ IO ()

The preceding bit of Haskell tells us that before the a type can have an instance of
FigureLabel we have to first have instances of Show and Typeable available for it. For
simple data-types the Glasgow Haskell Compiler (GHC) can provide these definitions
automatically using the deriving keyword.

The draw function takes the payload of the LabelledFigC instance and the
size of the figure , and constructs a visualization, which is represented by a Render
computation.

Definition 4.2.1. The Maybe type represents data which may exist, or not. It is
defined as:

data Maybe a = Just a I Nothing

20

Masters Thesis- S. West McMaster University- Computing and Software

The size function allows us to specify some constant size for the figure by
returning Just if there is a default size. Otherwise Nothing is returned and the figure
can be resized as the user wishes.

The Show super-class is used for saving to files. For loading, a compatible
parser parseLabel must be provided.

The function interface is currently the only way to specify custom interaction;
it is invoked when the figure is double-clicked on. It could be used to open a menu or
a dialog box, or to directly invoke some useful action on the graph. This interactive
behaviour is why we the result of the function is an m computation.

Since the general style we try to employ is not use a particular monad, it is
common to see IO an the monad m. However, the purpose of this function is to largely
to deal with user interaction, so this is not strange. To deal with the associated typing
issues, we have also developed a small group of functions. These functions facilitate
the execution of IO actions in the context of interface where it must not be assumed
that the monad m is in fact IO. This is achieved using the Typeablel constraints
on HasRef (see Section 3.4), which allow interface to determine at run-time (and
possibly at compile time in case of specialisation) whether m is indeed IO. If the
IO action to be performed will be executed within an IO monad, then it is done.
Otherwise, a default action is executed in the non-10 monad. This default action is
likely to be return () a neutral operation. It is for this reason we require the Typeablel
super-class for m and ref in Section 3.4.

The basic drive of the FigureLabel type-class and the associated LabelledFig
figure is to allow simple figures to be created with a minimum amount of programming
overhead, as we demonstrate in the next section. Obviously, for more involved figures,
the developer would need to delve deeper into the canvas design to create the more
complicated figures.

4.3 Intermediate Representation

Given that the ability to define many aspects of the visualization is realized in the
previous section , and in Chapter 5 we give a method of transformation and selection
from a graph, we do need a representation of that graph.

For this purpose we have the GV lab m ref data-type, representing a visual
graph with node la· els of type lab, running in a monad m with references ref. As
mentioned in Section 3.4, we require availability of a HasRef m ref instance.

We give nod and edge labels asymmetric treatment here. This is due to the
relative ease with which one can implement a hypergraph in which the edges are
again nodes, and then the node labels can be partitioned into both hypergraph-node
and hypergraph-edge labels. It should be said that this approach does not allow the

21

Masters Thesis - S. West McMaster University - Computing and Software

same amount of flexibility that having edge labels would have, such as changing line
thickness, style, etc.

GV is a combination of Erwig's inductive graph [ErwOl] Haskell implementa
tion and the underlying 00 drawing, essentially just a tuple of the two. It allows us
to operate on the structure of the graph at the same time as we are able to modify
the visualization of that graph through the drawing.

Many functions are defined through the G V interface that allow the graph
to be modified including adding nodes, edges, querying the degree of nodes, and
numerous other graph operations. The interface often returns monadic results due to
the use of 00 drawing objects.

It is important to note that we force ourselves to return new GV s if we modify
the graph in any way. This becomes important in Chapter 5 where we differentiate be
tween non-modifying and modifying transformations. We restrict the non-modifying
transformations to only use GV functions, which do not contain a graph-visual result.

4.4 Developer's Guide

4.4.1 Figure Interface

Figures form the basis of all the elements in a drawing. They are combined and
connected to produce more complicated and possibly nested graphs.

The Figure class itself must also be an instance of the Object class. This is to
support things like identification of Figures.

class (Typeable fig, Object fig m ref) ==? FigureC fig (m :: * --+ *) ref where

• fig _draw :: fig --+ m (Render ())

Create a Render computation representing the visual characteristics of the
Figure Assuming that the value of the FigureC is later wrapped into a Figure,
this will later be composed by the drawing into the larger picture. Coordi
nates used in this function should be not be relative to the bounding box of the
Figure, they should be absolute.

• fig_getBounds ::fig --+ m Rect

Return the bounding box of the Figure. The bounding box is represented as
a rectangle, even if the Figure itself does not have this shape. It is a sort of
rough-estimate of the size of the Figure.

22

Masters Thesis - S. West McMaster University - Computing and Software

• fig_setB ounds ::fig--+ Rect--+ m ()

Set the bounding box of the Figure. This follows the same reasoning and
bounds-semantics as the previous function for getting the bounds. Setting the
bounds is most often used by functions which modify the shape of the figure.

• fig_moveBy ::fig --+ Point --+ m ()

Moves the Figure by some amount specified by the Point parameter. One effect
of this will be to offset the bounding box by the vector (Point) specified.

• fig_addF igureListn ::fig--+ FigListn m ref--+ m ()

Add a FigListn to this Figure. Events from this Figure will be transmitted to
all of its FigL~stns.

• fig_remo veFigureListn ::fig --+ FigListn m ref --+ m ()

Removes a FigListn from the Figure. This FigListn will no longer receive any
events from this Figure. If the FigListn is not currently "attached" to this
Figure then nothing should happen.

• fig_clearFigListn ::fig --+ m ()

Removes all F igListns from this Figure.

• fig_createHandles :: fig--+ m [Handle m ref]

This function creates a list of Handles which will be able to control the extents
of the Figure.

• fig_cont a.ins ::fig --+ Point --+ m Bool

Query whether the Point supplied lies within this Figure. Note: Points that
lie within the Figure may not necessarily lie within the bounding box and vice
versa. The latter may be the case for shapes such as circles.

• fig_rectContains ::fig--+ Rect--+ m Bool

A convenience function to query the Figure if it lies completely within the
supplied Rect.

23

Masters Thesis- S. West McMaster University - Computing and Software

• fig_getParent ::fig---+ m (Maybe (Figure m ref))

Get the parent Figure of this Figure. If this Figure does have a parent , it will
be wrapped in a Just constructor, if not, the Nothing value will be returned.

• fig_setParent ::fig---+ Figure m ref---+ m ()

Set the paren to this Figure.

• fig_getDrawing ::fig---+ m (Maybe (Drawing m ref))

Get the owning Drawing of this Figure. Figures may be currently in a Drawing ,
or not. Figures with a Drawing associated with them will return a Just d value,
where d is the Drawing. Unassociated Figures will return Nothing.

• fig_setDrawing ::fig ---+Maybe (Drawing m ref) ---+ m ()

Sets the associated Drawing. If the drawing is to be set, the value should
be wrapped in a Just. Otherwise, if the Figure is to be unassociated from a
Drawing, then a value of Nothing should be passed.

• fig_setLayer::fig---+ Int---+ m ()

Set the drawing layer that this Figure should be presented on. The lowest (first
drawn) layers have the lowest numbers. A good number to start at would be
0. A typical interpretation of this in terms of composite figures would be a
"nesting" level.

• fig_getLayer ::fig---+ m Int

Retrieve the current drawing layer of the Figure.

• fig_findConnector ::fig---+ Point---+ m (Maybe (Connect m ref))

Take a candidate point, and produce a connection (Connect) which will bridge
this figure and an edge. If no suitable connection can be made , then Nothing
is returned. This may happen if the candidate point is outside the Figure.

• fig_click ::fig ---+ MouseEvent---+ DView m ref ---+ m ()

A way to embed Figure-specific behaviour. This function is called when the
Figure is double-clicked on. For example, this could be a pop-up dialog (requir
ing IO) or a perhaps just an internal change to the figure requiring no additional
user-input (m may beSTs here for instance).

24

Masters Thesis - S. West McMaster University - Computing and Software

• fig _delete :: fig --+ m ()

A way to notify· the figure that it has been removed from a drawing. This gives
the Figure a chance to perform any final actions.

• fig_read ::fig--+ FigureParser m ref

This function is a parser which can create a Figure of the same type as this
one. This is to account for differences in Figure specific details. For example, a
rectangular fig re would likely store width and height, where-as a ciruclar figure
would store radius. This is used in the loading process for Drawings.

• fig_show ::fig --+ m String

Returns a Str·ing representation of this Figure to be used during the saving
process of Drawings.

FigureParser is mentioned above. We define it here as a Parser which can
compute a Figure , the Figure 's reference, and also a list of associated Figures.

type FigureParser m ref= Parser (m (Figure m ref), Int , [Int])

We see m emerge here due to the fact that internally the objects are using refs as
references.

The associated Figures could be children Figures for composite-Figures, or
they could be start and end Figures for ConnFigs.

4.4. 2 Connection Figure Interface

ConnFigs (connection figures) must be an instance of the Figure class. Additionally,
since their visualization and existence is dependent on their source and target Figures ,
they also must be a instance of the FigListn (figure listener) class.

class (FigListn C cfig m ref, FigureC cfig m ref)=?
ConnFigC cfig m ref where

• cfig_setStartConn :: cfig --+ Maybe (Connect m ref) --+ m ()

Set the starting (Connect m ref) of the connection figure. You can make the
starting connection "free" by specifying Nothing here as a parameter instead of
Just.

25

Masters Thesis - S. West McMaster University - Computing and Software

• cfig _getStartConn :: cfig --t m (Maybe (Connect m ref))

Get the (Connect m ref) for the start of the connection figure. A Just value
means that a starting connector exists, Nothing otherwise.

• cfig_setEndConn :: cfig --t Maybe (Connect m ref) --t m ()

Analogous to the cfig _setStartConn function except for the ending connector.

• cfig _getEndConn :: cfig --t m (Maybe (Connect m ref))

Analagous to the cfig _getStartConn function except for the ending connector.

• cfig_setStartPt :: cfig --t Point --t m ()

Lacking a starting connector to provide the Figure with a starting point, this
function will supply a starting point for the ConnFig. This would be used for
example, during ConnFig creation, when actual start and end connectors are not
necessarily available. Though this interface could merge with cfig _setStartConn
and demand a Either Point (Connect m ref) to set either the start as a point or
connection, it was done this way to provide more informative function naming.
One can discern the required type by the name of the function quite easily.

• cfig_getStartPt :: cfig --t m Point

This retrieves the starting point. If a starting Connect is specified, it is used
to obtain the point. Otherwise this should be the point that was set with
cfig _setStartPt.

• cfig_setEndPt :: cfig --t Point --t m ()

Analogous function to cfig_setStartPt.

• cfig_getEndPt :: cfig --t m Point

Analogous function to cfig _getStartPt.

• cfig_addNode :: cfig --t Point --t m ()

Adds a node to the start of the list of nodes (Points).

26

Masters Thesis - S. West McMaster University- Computing and Software

• cfig _getN odes :: cfig ---+ m [Point]

Get the entire list of nodes which make up this ConnFig.

• cfig_setNode :: cfig---+ Int---+ Point---+ m ()

Set a particular entry in the list of nodes.

• cfig _update :: cfig ---+ m ()

Update the node to be aligned with the proper positions on the Drawing. This
is likely to be ailed in cases where the start or end Figure have been updated,
and now we have to realign this ConnFig to match their movement.

Lastly, two functions which are useful when dealing with ConnFigs are given.
Note that both are derived from the definition of the ConnFig interface, and thus
will work on any in, tance of ConnFig , and do not have to be redefined.

• getStartFig :: ConnFigC cfig m ref ::::} cfig ---+ m (Maybe (Figure m ref))
getStartFig cf =

cfig_getStartConn cf ~
maybe (return Nothing) (liftM Just o cn_getOwner)

Gets the starting Figure of this connection based on the starting connector.

• getEndFig :: ConnFigC cfig m ref::::} cfig---+ m (Maybe (Figure m ref))
getEndF ig cf =

cfig_getEndConn cf ~
maybe (return Nothing) (liftM Justo cn_getOwner)

Gets the ending Figure of this connection based on the ending connector.

4.4.3 Drawing Interface

A DrawingC instance is firstly an Object. Secondly, it is a FigListn (figure listener)
due to its requirem<mt to redraw itself when the Figures it contains change. Lastly,
it is a FigureContainer, for obvious reasons outlined in the previous design chapter.

class (Typeable drw, Object drw m ref,
FigListnC drw m ref, Figure Container drw m ref) ::::}
DrawingC drw m ref where

27

Masters Thesis- S. West McMaster University - Computing and Software

• draw_draw :: drw --+ m (Render())

A function which produces a Render computation, embodying cumulative ren
dering of all the Figures which this drawing contains. This also means drawing
things in the proper order, according to layer.

• draw_clone_map :: drw--+
m (drw,

Map (Figure m ref) (Figure m ref),
Map (ConnFig m ref) (ConnFig m ref)
)

A way to "clone" or copy a Drawing. The new Drawing is returned , along with
mappings of the Figures and ConnFigs in the old Drawing to the ones in the
newly created Drawing.

• draw_contains :: drw --+ Figure m ref --+ m Bool

A convenience function to query whether the Drawing contains the Figure sup
plied as a parameter.

• draw_findFigure :: drw--+ Point--+ m [Figure m ref]

This function allows all Figures which fall under the given point to be returned.

• draw_findFigure Without:: drw --+Figure m ref --+

Point --+ m [Figure m ref]

Similar to the previous function, but excludes the Figure given. This is for
situations when it is useful to find something during Figure creation, which is
not the Figure that is being created. For example, when creating a ConnFig: to
find a start or end Figure one has to exclude the ConnFig that is being created
from consideration, as it cannot be its own start/end Figure .

• draw_findFigures Within :: drw --+ Rect --+ m [Figure m ref]

Find all the Figures which lie completely within a given rectangle.

• draw_addDrawListn :: drw--+ DrawListn m ref --+ m ()

Add a DrawListn (drawing listener) to this drawing. It will be notified of
drawing events.

• draw_remDrawListn :: drw --+ DrawListn m ref--+ m ()

Remove a DrawListn from this drawing. Events will no longer be sent to this
listener.

28

Masters Thesis - S. West McMaster University- Computing and Software

4.5 Implementation Details

Visualization concerns are taken care of by a combination of object-oriented tech
niques, adapted to a functional style, and by way of the Gtk2Hs binding to ob
tain widgets. More specifically the Cairo drawing library is employed to attain a
PostScript-like syntax of drawing. This affords us the luxury of being able to render
not only to the screen, but also to PostScript, and PDF document formats directly,
as well as SVG file types.

29

Masters Thesis - S. West McMaster University - Computing and Software

Chapter 5

Graph Transformation
Environment

The graph selection and transformation environments are designed to be instances of
the Haskell Monad and MonadPlus type-classes. The purpose of these environments
is to hide the representation of the graph, and to allow complex computations to be
built from a limited number of low-level combinators .

5.1 Category Theory Background

As categories and category theory are the basis for many concepts in computer science,
it is not surprising to see their appearance in graph transformations as well.

Definition 5.1.1. A category C can be defined as in [Pie91]:

• A collection of objects Obj(C).

• A collection of arrows, or morphisms, between objects. If an arrow f exists
between objects A and B, we write f: A-----> B.

• Operations dom and cod denoting the domain and co-domain of an arrow. For
example , if f : A -----> B, then dom(J) = A and cod(!) = B. The collection of all
arrows which have domain A and co-domain B are represented by C(A, B).

• A binary operator o , composition. For any two arrows which share a common
domain and co-domain, composition is defined on those arrows. Iff : B -----> C
and g : A -----> B then fog : A -----> C. Some may also define a notational variant of
the composition operation, ; , which merely reverses the order of the arguments
of o.

30

Masters Thesis - S. West McMaster University - Computing and Software

• Every object A has an arrow idA which is the identity arrow. This arrow is a
left and right identity for composition. That is to say that f o idA = f = idEo f
for any f. 0

Because the definition is seemingly innocuous, there are many concepts which are
accurately modeled 3S a category. For example, Set is a category in which all objects
are sets, and all morphisms are total functions between sets. We can see immediately
that the identity arrow on each set is merely the identity function and that arrow
composition is function composition.

For our purposes, the following definition holds some interest:

Definition 5.1.2. A pushout (also called a pushout completion) along some mor
phisms f: A---+ Band g : A---+ Cis a triple (P, f' , g') such that the diagram in Figure
5.1 (a) commutes , and for all other (K, f" , g") such that Figure 5.1(b) commutes , u is
the unique morphism from P to K.

Definition 5.1.3. If a category C has pushouts for all objects A, B, D, and mor
phisms f : A ---+ B and g : A ---+ D , we say that C has pushouts.

f A ---B

g g'

C----P
f'

(a) A pushout candidate.

f A ---B

g ~
c~-~

K
(b) A pushout.

Figure 5.1: Pushouts.

A pushout can be seen as some kind of generalized union. Another useful way
to think about a pushout is if B and C represent two things that have common pieces
stored in A , then constructing the pushout means that the information in A is used
to glue B and C together.

Now, as one might guess, categories themselves can be objects in their own
category-category. In this case, the arrows between the objects in this category are
called functors.

31

Masters Thesis - S. West McMaster University - Computing and Software

Definition 5.1.4. A functor is an arrow between objects in the category of cate
gories . If C and D are categories, then a functor F : C ----* D is a morphism from
objects of C to objects of D. If A is an object of C then F(A) denotes the corre
sponding object in D.

Additionally, iff : A ----* B is an arrow in C, then the corresponding arrow in
Dis denoted F(J) : F(A) ----* F(B).

Lastly, the following must hold:

• For all objects A in C, F(idA) = idF(A)·

• For all composable arrows j,g, F(J o g)= F(J) o F(g).

5.2 Haskell Monad Primer

In category theory, as defined in [ML 71], monads are:

Definition 5.2.1. A monad on a category Cis:

• an endofunctor T : C----* C.

• a "unit" natural transformation, "7 : I de ----* T.

• a "join" natural transformation, f-L : T 2 ----* T.

Such that both Figures 5.2(a) and 5.2(b) commute. The notation "7T represents 'r/T(X) ,
while T'T7 represents T('r/X).

From [Pie91] a natural transformation is defined:

Definition 5.2.2. Let C and D be categories, and let F and G be functors from C
to D. A natural transformation "7 from F toG is a function that assigns to every
C-object A , a D-arrow, 'r/A : F(A) ----* G(A) such that for any C-arrow f: A----* B,

G(J) 0 'r/A = F(J) 0 'r/B

To see how the definition of a monad relates to computation, it may be infor
mative to look at the Haskell definition of a Monad .

In Haskell, the Monad type-class is often used to define computation. One
of the most easily understandable kinds of computation is the Maybe monad. It
embodies computations that can fail.

For example, if one were to write a slope function for a line, it may return
Just 2 as an answer or possibly Nothing if the line is vertical.

32

Masters Thesis - S. West McMaster University - Computing and Software

T3 TJ.L T2 T
rJT T2 TrJ

T

J.LT J.L ~~
'T2 T T

J.L (b)
(a)

Figure 5.2: Commuting monad diagrams.

Haskell has a, fairly strong basis in category theory, and as such many of the
concepts are explained using definitions found in category theory. One such definition
is that of a functor. Remember that a monad includes a functor, so it is reasonable
to assume that Haskell monads can replicate the idea of a functor in some way.

Definition 5.2.3. r he Functor type-class makes sure that the arrow-mapping prop
erty of categorical · unctors is maintained. The object mapping is guaranteed by
Haskell's type system.

class Functor f where
fmap ::(a - • b)---+ (fa---+ f b)

A simple definition for a Maybe-instance of Functor could be:

instance Functor Maybe where
fmap f (Just a)= Just (f a)
fmap f Nothing = Nothing

This makes a new function that will take values out of Just, apply the argument
function f , and then re-wrap the result in Just again. If the input is Nothing however,
we return Nothing. This is consistent with the definition of functors however , as
Nothing is a value of the Maybe type.

With the definition of Functor we can start to look at what makes a Monad:

Definition 5.2.4. The Monad type-class is defined in the following way,

class Monad m where
return:: a --t m a
(::;}=) :: m a---+ (a---+ m b)---+ m b

33

Masters Thesis - S. West McMaster University - Computing and Software

The definition of the return function for Maybe has an obvious choice: the Just
data-constructor. By its very definition it takes any type and wraps it in a Maybe.
The return operation also corresponds directly to the "unit" from functors, 'fl·

The infix operator ~, or bind, does not have a direct translation from the
categorical definition of monads. Looking to the type signature for ~ above, it is
possible to gain some intuitive understanding of the bind operator.

m ~ f essentially says that a computation m is performed with some result,
that result is then used as the input to the following function f, which results in
another computation.

In the case of Maybe the definition for bind is as follows:

(Just v) ~ f = f v
Nothing ~ f = Nothing

As before, we see that a Nothing value gives us no way to construct any more values.
If a value is found however, then we use that as the input to the next computation
and let that resulting computation be the result off.

We notice here that we have no requirement of Functor anywhere here. That
is because we can define fmap given a Monad m. We can define fmap as follows:

fmap :: Monad m ==? (a --+ b) --+ m a --+ m b
fmap f ma = ma ~ return o f

This shows that in some sense Monad implicitly includes the Functor type-class. In
effect, the rt natural transformation compacts two layers of computation together.
Given this, we can show that the definitions of rt and ~ are isomorphic.

m~f

rt(m)

rt((T(J))m)
m~id

5.3 Backtracking Monads

Since we would like a computation environment that provides as much expressiveness
as possible, so-called backtracking monads are used. Backtracking monads give a way
for computations to be defined with some kind of unwinding of the computation when
a failure occurs. For an overview of backtracking monad transformers, including a
treatment of fair choice and its application to logical programming, see [KSFS05].

Haskell will actually handle most of this for us through the definition of the
M onadPlus type-class.

34

Masters Thesis - S. West McMaster University - Computing and Software

class Monad rn =? MonadPlus m where
mzero :: m a
mplus :: m a ---+ m a ---+ m a

The MonadPlus definition adds the concept of failure , mzero, and union of compu
tations, mplus. If we assume that the computations expressed in the m a type have
multiple values, this gives us a backtracking monad.

To understand how this works more fully, consider the following Haskell code:

evenint :: [Integer]
evenint =do

n f- [1 .. 3]
guard (even n)
return n

Here , the monad is the list monad, []. Values of n are selected from the the list
containing numbers one to three. If the guard predicate fails , and the number is not
even, the monad will backtrack to the previous line and other values from the list
will be taken and tested. If the predicate is true, then we continue on and return the
even n.

One useful primitive seen above is conditional failure , or guard. The definition
of guard is informative and simple, so we give it here:

guard:: MonadPlus m =? Bool---+ m ()
guard True = return ()
guard False = mzero

5.4 Selection Monad Definition

The first monad we present is the SelectM monad.

data SelectM lab m ref v = SelectM (GV lab m ref ---+ m [v])

A SelectM type signature shows not only the result of the computation, but also the
type of the node labels. Therefore, having SelectM String IO IORef Integer is a
selection on a graph containing String nodes, and the computation itself returns an
Integer. The monad in which the computation takes place is the IO monad, using
IORefs for references.

A SelectM is really just a function that will take the underlying graph and
produce a list of results. As mentioned before, the list here is to facilitate backtracking
behaviour.

35

Masters Thesis - S. West McMaster University - Computing and Software

The effect is analogous to the application of monad transformers in [LHJ95]
and used in [LH96]. In particular it is sort of like a manual application of a ListT
and EnvT monad transformers to an m monad. Essentially this is a backtracking
reader monad as mentioned by Jones in [Jon95].

The GV type from Section 4.3 is the argument to the function wrapped in the
SelectM data-type constructor. This allows us to query the graph through the GV
interface. We only create SelectM computations using GV functions which do not
return a new GV as a result . This enforces the intended reader monad behaviour of
the computation.

We can then make this SelectM type an instance of the Monad type-class as
follows:

instance Monad (SelectM lab m ref) where
SelectM gf ~ f =

SelectM $ >-.g --+

gf g ~ liftM concat o mapM (($g) o unSelectM of)
return x =

S electM ().._ --+ return [x])

Although it is a reasonably dense definition , it essentially says this:

• ~ - run the first transformation (gf) on the input (g). unSelectM unwraps the
function that is contained in the SelectM data constructor. This will produce
a list of results. Take that list of results , and take the f and run it over each
member (again , producing another list of results). Now we have a list-of-lists
of results, so the last step is to concatenate them together (liftM co neat) .

• return - this function essentially returns a constant one-element list containing
X.

Without becoming too formal, we can see that the implementation satisfies
the monad laws.

• Left unit , return a ~ f = f a - The result a is passed as a singleton list into
the mapM function, which of course then will produce a singleton result , which
is then concatenated. So in fact the list of results that comes out off a is the
only result.

• Right unit, m ~return = m - By similar reasoning as previous, the result of
the computation m is unmodified by the return function. It merely wraps it in
a singleton list again , which is immediately thrown away again by use of the
liftM concat function.

36

Masters Thesis - S. West McMaster University - Computing and Software

• Associativity, (m~f)~g _ m~(Ax- f x~g)- Since the SelectM monad
definition for ~ essentially uses only function composition and mapping, it is
reasonable to conclude that the associativity of ~ holds.

Adding the instance for MonadPlus is much easier to understand:

instance MonadPlus (SelectM lab m ref) where
mzero = SelectM (A-- return [])
mplus (SelectM f) (SelectM g) =

SelectM (
AX -do

d t-- f :z;
·r2 +-- g x
r·etu1'1~ (r 1 * r2)

)

Failure is defined as the function always returning the empty list of results. Adding
two computations together is also very straight-forward in that we first compute the
results for the individual computations, then simply concatenate the results together.

For example, one could use SelectM to select two distinct nodes from a graph:

get2nodes = do
nl +-- sel_node
n2 +-- sel_node
guard (nl ¢ n2)
r-eturn (nl , n2)

5.5 Selection Operations

We use a function in the previous example called sel_node. The Selection module
includes a wide variety of primitive operations which can be used to build more com
plicated selections. The Selection module does not export the SelectM constructor we
see in the previous section. This is to try to help ensure that there are no side effects
occuring. Also, we t ry to design our exported functions so that their implementations
also have no side effects. This effectively makes the SelectM a true reader monad.

The initial f nctions that are provided by the framework are as follows;

• sel_node :: SelectM lab m ref (VNode lab)

returns some node from the graph; via backtracking we may get any node from
here.

37

Masters Thesis - S. West McMaster University - Computing and Software

• sel_edge :: SelectM lab m ref (VEdge lab)

returns some edge from the graph

• a---* b :: SelectM lab m ref (VNode lab) ~
SelectM lab m ref (VNode lab) ~
SelectM lab m ref (Vnode lab, VEdge lab, VNode lab)

"a -->> b"- returns a triple (s, e, t) where sis source-node, e is the connecting
edge, and t is the target node. a and b are computations each returning a node,
backtracking.

• seLval :: VNode lab ~ SelectM lab m ref (Maybe lab)

returns the label of a node n, non-backtracking.

• sel_in :: VNode lab ~ SelectM lab m ref [VEdge lab]

returns the incoming edges to n, non-backtracking.

• sel_out :: VNode lab ~ SelectM lab 'Tn Tej [VEdge lab]

returns the outgoing edges from n, similar to sel_in.

• sel_s,rc :: VEdge lab ~ SelectM lab 'Tn Tef (VNode lab)

returns the source node of e.

• seLtTg :: VEdge lab~ SelectM lab 'Tn Tef (VNode lab)

returns the target node of e.

• sel_scc :: SelectM lab m ref [VNode lab]

returns a list of strongly connected components from the underlying graph.

• sel_results :: SelectM lab m ref v ~ GV lab m ref~ m (Maybe v)

return a result of the selection. Nothing if no results.

• seLTeS1tltList :: SelectM lab rn ref v ~ GV lab m Tej ~ m [v]

return the list of results from the selection.

The general design goal of the Selection module is to create a "little language" to
perform a very dedicated task. This is not unlike the Little Theories method pre
sented in [FGT92]. The drive is to permit a similar style as to that in the Parsec
parser comb ina tors [LMOl]: primitive operations allowing the expression of useful
computations.

38

Masters Thesis - S. West McMaster University- Computing and Software

Given the limited set of above basic operations, we are able to define more
complicated computations very easily. The resulting definitions are also very under
standable. To show how one may build such selections, we may define onlyNode.
onlyNode will return only nodes that match satisfy some predicate, filtering out the
rest.

onlyNode :: (p ~ Bool) ~ SelectM p (VNode p)
onlyN ode p = do

n +-- seLnode
guard (p n)
return n

5.6 Transformation Environment

The transformation environment complements the selection environment. Where the
selection monad allows us to query the graph about features and calculate results
based on these, the transformation environment GraT allows us to directly augment
and modify the underlying graph.

This is vastly different from the selection environment where it is impossible to
change the structure of the graph. The transformation environment is strictly more
powerful than the selection environment , as it is able to do everything the selection
environment can and more.

data Gra T lab m ref v =
GraT ((BigMap lab m ref, GV lab m ref)~

m [(Biglv!ap lab m ref , GV lab m ref , v)])

The GraT monad could have also almost been described in terms of a back
tracking StateT [LHJ95] transformed m monad, with BigMap and GV as state. How
ever, this becomes impossible as we must maintain some internal properties. One is
that we copy the GV on every operation. This is to ensure that we can still back
track in the face of changes to the underlying drawing, which would normally make
backtracking not work. Since this produces a new G V , and thus new references for
the nodes and edges, we must also add the homomorphism from the old to the new
GV to the BigMap state.

The GraT data-type is fundamentally different from the SelectM. Firstly, we
can see that it has two extra results , and an extra input.

type BigM ap lab m ref = BigM ap
(Map (VN ode lab m ref) (VN ode lab m ref))
(Map (VEdqe lab m ref) (VEdge lab m ref))

39

Masters Thesis- S. West McMaster University - Computing and Software

The extra input/output pair of BigMaps are partial homomorphisms used to es
tablish connections between the underlying graph (the GV value seen as another
input/output pair) before and after the operation. As we can see , BigMap is really
two maps, one for the nodes, and one for the edges. Lastly, we have the result of the
computation, the v type in the list of results.

instance Monad (GraT lab m ref) where
GraT s ~~ =

GraT (
).. (b, g) ---t do

(g', b') f---- gv_copy g
gr _res f---- s (compMap b' b, g')
sels f---- mapM (>.(b",g" , r) ---t (unGraT (! r)) (b",g")) gr_res
return (con cat sels)

)
return x = GraT (>.(b , g) __:___.,return [(b,g,x)])

The ~operator has some significant differences from the SelectM definition. Firstly,
we see that we use the gv_copy function to copy the input graph. This function returns
a copy of the graph, as well as a mapping so we can translate nodes and edges from the
pre-copy graph to the post-copy graph. This is the purpose of the BigMap mentioned
earlier.

Now that we have a copy of the input, we run that through the left-hand GraT,
and save the results. Then, we perform the right-hand function on the list of results ,
in the mapM line. We obtain now a list of lists of results, which we concatenate
together and return.

The return definition is much more straight-forward, simply not modifying the
mapping or the underlying graph while returning the argument value, x.

The left and right unit monad laws hold as before for the SelectM monad.
However, the associativity of ~ is not as clear as it was before. Since we have now
copy the underlying graph, and also must take care to compose the resulting maps.
However, assuming these operations associate properly (map composition does) the
GraT monad is also associative in ~.

As stated above, the GraT computation is also able to backtrack, very much
like the SelectM computation. However, unlike the Monad instance, there are prac
tically no differences between the GraT and SelectM MonadPlus instance:

instance MonadPlus (GraT lab m ref) where
mzero = Gra T ().._ ---t return [])
mplus (GraT f) (GraT g)=

GraT(

40

Masters Thesis - S. West McMaster University - Computing and Software

AX--+ do
r1 +-- f x
T2 +-- g X

Teturn (Tl * r·2)
)

The GmT monad is more powerful than the SelectM. It can do everything that the
SelectM monad can, and we actually allow the developer to inject SelectM in to the
GmT monad using the selToGm function. This enables us to integrate the selection
and transformation monads, performing a selection then passing the results to the
transformation.

This means also that we can recycle all of the existing SelectM functions into
the GmT computation when we need them, eliminating the need to define them
twice.

The GmT r odule does contain some other functions though, which are useful
for modifying the underlying gTaph.

These include:

• addNode :: FigureLabellab::::} lab--+ GmT lab m ref (VNode lab m ref)

add and return a new node to the graph with the FigureLabel value a .

• connect:: VNode lab m ref--+ VNode lab m ref--+
GmT lab m Tef (VEdge lab m Tef)

connect the n des s and t, returning the resulting edge.

• deleteNode :: VNode lab--+ GmT lab m ref ()

delete a node, and also the incident edges.

• deleteEdge :: 'l Edge lab --+ GmT lab m ref ()

delete an edge .

• runTmnsform :: GmT lab m ref v --+ GV lab m ref --+

m (Maybe (GV lab m Tel)) I

runs a GraT computation on the supplied GV graph. The resulting (new)
gTaph is returned, and Nothing is returned on failure.

The above functions provide the basic tools with which one can create trans
formations. They form the basic tools that can be used to create more complicated
combinators.

41

Masters Thesis - S. West McMaster University - Computing and SoftwaJ:·e

The interface to the GraT module, as the Selection module above, does not
export the data constructor. Also, it is not permitted to allow the BigMap homo
morphisms to become publically available. Though the restriction on modification
is lifted, compared to the SelectM monad, we still must be careful allowing arbi
trary computations m into the monad. Thus, the proper way to interact with the
GmT monad is through its exported access functions. One may execute a GmT
computation by using the T'ltnTmnsforrn function.

42

Masters Thesis- S. West McMaster University - Computing and Software

Chapter 6

Replicating SPO

The single- and double-pushout approaches to graph transformation are a formula
tion that has already been established. In the following section we first give a brief
overview of the pus out approaches. Then, to help show the legitimacy and versa
tility of the approach in Chapter 5 we also offer an implementation of the pushout
approaches translated from our own method.

6.1 SPO Background

In graph transformation theory, there are several ways to model how graph transfor
mations should be performed. Two of them are the single pushout (SPO) approach
and the double pushout (DPO) approach. As may be expected, these pushouts oc
cur in the graph category where objects are graphs, and arrows are partial graph
morphisms, as stated in [Roz97]. In particular , for the single-pushout approach, we
reproduce the definitions from [EHK+97], in this section for convenience.

Definition 6.1.1. A production p : L ~ R consists of a production name p, an
injective partial graph morphism r, or production morphism. Land Rare graphs ,
and referred to as the left- and right-hand-side (LHS and RHS respectively) of p.

The partiality of r indicates that deletions can occur in the production.
Once we have a production, we can then start to think about which graphs

this production can be applied to. This links directly with the LHS of the production,
and the property that it must have a match in the candidate graph to be transformed.

Definition 6.1.2. A match m is a total function from the LHS of a production p
to a graph G.

So given a production p : L ~ Rand match m for graph G, if we can find a
pushout completion , then we can apply the production to G and obtain our target
graph H.

43

Masters Thesis - S. West McMaster University- Computing and Software

L R
r

m

G H

Figure 6.1: Example of SPO with no conditions on matching

We can motivate the use of pushouts by looking back to our general under
standing of pushouts as generalized unions. The LHS object is the structure common
to both the source graph and the RHS of the rule. So essentially, once we have the
match, we can take our source graph at the nodes specified in the LHS, and trans
form them to be the RHS. This then gives us our target graph (the source graph after
transformation).

Contrast Figures 6.1 and 6.2, examples taken from [KahOl], to see the differ
ence in pushout completions when there are some common elements in the match and
production morphism.

There are some cases where the behaviour of the derivation needs to be exam
ined. These cases involve conflicts between the production morphism and the match.
A production morphism may implicitly specify deletion by leaving some nodes or
edges out of its domain. However, the match is total , and therefore must identify
these deletions in the source graph. Consider the case of Figure 6.3(a). The a node is
simultaneously preserved and deleted at the same time. The result is that the node
is deleted, due to the fact that we first identify items using the match, then we derive
the resulting graph, meaning that deletion happens second.

Secondly, we may delete a node which is either the source or target of an edge
in the source graph, as in Figure 6.3(b). The "dangling edge" that is apparent is also
deleted by the same reasoning as the previous case.

Respectively, these two conditions are defined as:

Definition 6.1.3. Give a match m : L ----> G and a production r L ----> R, m 1s

44

Masters Thesis - S. West McMaster University - Computing and Software

L

Figure 6.~~: Example of SPO with some identification of nodes

d-injective if m(x) = m(y) implies that x , y E dom(r) or x, y tJ. dom(r).

Definition 6.1.4. Give a match m : L ~ G and a production r : L ~ R , m

is d-complete iff reach edge e E GE with sourceG(e) E mv(Lv- dom(r)v) or
targetG(e) E mv(L"· - dom(r)v) we have e E mE(LE- dom(r)E).

Lastly, the absence of any such confusions is defined.

Definition 6.1.5. ive a match m : L ~ G and a production r : L ~ R, m is
conflict-free if for very m(x) = m(y) ===? x, y tJ. dom(r) or x, y E dom(r).

6.2 Creating a Match

The matching mod le produces a matching morphism from a source graph into a
target graph. The homomorphism produced is then returned from in a SelectM
monad. This approach allows additional conditions on the match to be added after,
as may be required to build more specific matchings. pay

We define a Match as a function which takes a labelled graph, GV , and pro
duces a SelectM computation that contains a morphism. This GraphMorph represents
a morphism between the argument graph, and the implicit underlying graph of the
SelectM computation.

45

Masters Thesis - S. West McMaster University - Computing and Software

r-1

9

u

(a) A deletion conflict. (b) Implicit edge deletion

Figure 6.3: SPO deletions.

type Match lab m ref= GV lab m ref-----+
SelectM lab m ref (GraphMorph lab m ref)

D

Constructing the SPO matching morphism is done by branching out from some node.
This kick-starts the matching process.

match :: Has Ref m ref =? Match lab m ref
match lhs = case gv _nodes lhs of

n : _ -----+ matchN ode (GraphM orph M. empty M. empty) n lhs
_ -----+ return (GraphM orph M. empty M. empty)

Matching a single node in fact leads to matching all the outgoing edges from that
node. Once all reachable edges and nodes have been matched, we pick another node
and branch out on that. Of course, we must stop at some point, this is handled by
the guard - the condition states that if the domain of the match morphism is contains
all the elements of the source graph or if we've already matched the candidate node,
then we are done.

matchNode :: HasRef m ref=?
GraphMorph lab m ref -----+ VNode lab m ref-----+ Match lab m ref

matchN ode partM atch n lhs
I non TotalM atch lhs partM atch V n 'M . notM ember' nod eM ap =

do
n' <---- seLnode

46

Masters Thesis - S. West McMaster University- Computing and Software

let
newMatch = partMatch{ nmor = M.insert n n' nodeMap}
outEdges = gv _out lhs n

foldedM atch ~ foldM (matchEdge lhs n) newM atch outEdges
let remaining = gv _nodes lhs \\ M. keys (nmor foldedM atch)
case remaining of

[] --> return foldedMatch
n" : _ --> matchN ode foldedM atch n" lhs

I otherwise = return partM atch
where

nod eM ap = nmor partM atch

The guard conditio , nonTotalMatch is false when the target nodes of the morphism
cover all nodes in the graph. Another way to look at this is it is non-total when
the set of keys of the node map are not equal to the set of nodes in the LHS of the
production.

non TotalM atch :: Has Ref m ref ::::}
GV lab m ref--> GraphMorph lab m ref--> Bool

nonTotalMatch lhs (GraphMorph nodeMor _) =

fromList (M.keys nodeMor) '¥= fromList (gv_nodes lhs)

The edge matching has a precondition that the source of the edge must already exist
in the mapping given.

The recursive call in this computation means that we branch outwards , adding
nodes and edges as we go.

matchEdge :: HasRef m ref::::}
G V lab m ref ---+ VN ode lab m ref -->

GraphM orph lab m ref --> VEdge lab m ref -->

SelectM lab m ref (GraphMorph lab m ref)
matchEdge lhs src partialM atch e = do

let trg = gv _trg lhs e
match' ~ rnatchNode partialMatch trg lhs
let Just match Trg = M .lookup trg (nmor match')

Just matchSrc = M .lookup src (nmor match')
e' ~ seLout1 matchSrc
src' ~ seLsrc e'
trg' ~ seLtrg e'
guard $ src' = matchSrc 1\ trg' = match Trg
return $ match' { em or = M. insert e e' (em or match') }

47

Masters Thesis- S. West McMaster University - Computing and Software

6.3 Implementing the SPO Approach

We model our Haskell-production as close to the categorical definition as we can. The
Production structure contains a right-hand-side, a left-hand-side and also a graph
morphism.

data Production lab m ref
= Production{

prod_lhs :: GV lab m ref,
prod_rhs :: GV lab m ref,
prod_mor :: GraphMorph lab m ref
}

Deletion is modelled by the following function. It is able to determine which nodes
and edges have been specified to be deleted. Additionally, it deals with the d-injective
and d-complete deletion conflicts.

So-called "dangling" edges are dealt with by the behaviour of the ConnFig
figures underlying the edges. They delete themselves when one of their source or
target nodes are deleted.

When matched edges or nodes are simultaneously preserved and deleted, the
deletion takes priority. This is modelled through the order of operations, first the
nodes are matched, then they are deleted. Thus, deletion will occur to both, after
they have both been identified to the same node in the graph that is to be transformed.

spoDelete :: (HasRef m ref, MonadFix m ,
UniqueMonad m, FigureLabel lab) ::::?

GraphMorph lab m ref ---+ Production lab m ref ---+ GraT lab m ref ()
spoDelete matchM or (Production lhs _ rule) = do

let delN odesLHS = gv _nodes lhs \\ M. keys (nmor rule)
delEdgesLHS = gv _edges lhs \\ M . keys (em or rule)
delNodes =map ((nmor matchMor)M.!) delNodesLHS
delEdges = map ((em or matchM or) M.!) delEdgesLHS

mapM _ deleteEdge delEdges
mapM _ deleteN ode delN odes

To avoid double-adding, we insert all nodes first, creating a map of the RHS nodes
to the new nodes created in the graph.

spoAddNode :: (HasRef m ref, MonadFix m,
UniqueMonad m, FigureLabel lab) ::::?

Map (VNode lab m ref) (VNode lab m ref) ---+ VNode lab m ref ---+

GraT lab m ref (Map (VNode lab m ref) (VNode lab m ref))

48

Masters Thesis - S. West McMaster University- Computing and Software

spoAddN ode m vn = do
l f-- selToGm $ seLnode_load vn
n f-- addN ode l
let m' = M.insert vn n m
return m'

This map is then given to the edge-adding transformation, which uses it to look up
between which new-nodes it should construct an edge.

spoAddEdge :: (HasRef m ref, UniqueMonad m,
MonadFix m, FigureLabel lab) =?

Map (VNode lab m ref) (VNode lab m ref) --t

GV lab m ref --t VEdge lab m ref --t GraT lab m ref ()
spoAddEdge m rhs ve = do

let src = gv _src rhs ve
trg = gv_trg rhs ve
Just src' == M.lookup src m
Just trg' == M.lookup trg m

connect src' trg'
return()

Insertions are then defined by the elements of the RHS which are not associated with
any element in the LHS of the production.

The spoAddN ode function creates the new nodes and returns the map linking
the nodes in the RHS with the new nodes created in the graph. The only remaining
task is to then take all candidate edges for insertion and add them.

spolnsert :: (HasRef m ref, FigureLabellab , MonadFix m,
UniqueM onad m) =?

Production lab m ref --t GraT lab m ref ()
spolnsert (?reduction _ rhs rule) = do

let insN odea = gv _nodes rhs \\ M. elems (nmor rule)
insEdges = gv _edges rhs \\ M. elems (emor rule)

m f-- foldM spoAddN ode M. empty insN odes
mapM _ (spoAddEdge m rhs) insEdges
return ()

We put these pieces together in the spoTransform computation. The construction is
very similar to the SPO approach: first the matching is performed, then the trans
formation takes place.

spoTransform :: (HasRef m ref , FigureLabellab , MonadFix m ,
UniqueM on ad m) =?

49

Masters Thesis - S. West McMaster University- Computing and Software

Production lab m ref ---+ Gra T lab m ref ()
spoTransform prod@(Production lhs __) = do

m f-- selToGra $ match lhs
spoDelete m prod
spofnsert prod

The above translation from our EDSL into the more formalized SPO approach shows
several things. Firstly, it shows that it is possible to construct the more well-known
approaches using our EDSL, which is useful for those who already have existing
transformations that are specified in terms of the single-pushout approach. Secondly,
it is a reasonably short and readable definition. This is an important attribute as one
of the qualities we wish to provide is clarity of expression.

50

Masters Thesis - S. West McMaster University- Computing and Software

Chapter 7

Petri Net Example

In this section, · we give a working example of how the framework can be used to
build a graph editor . The editor works with Petri nets as the underlying model. The
next two subsections are actual literate Haskell source files which are the complete
definition for the ed itor.

Section 7.1 details the model for the graph editor. This includes the visualiza
tion of the places and transitions, and also the behaviour of the graph transformation.
Additionally, it is contains the necessary definitions for the graph to be loaded and
saved.

In Section 7.2 the main GUI is given. Pulling together all of the graphical
interface elements, the main-file is responsible for what the user sees surrounding the
graph display.

Lastly, Section 7.3 features a discussion of the experience of using the frame
work. In particular the separation of functional and object-oriented aspects is re
viewed.

7.1 Petri Net Label

The purpose of our graph transformation and visualization framework is to facilitate
the creation of gra h editors. The framework should be able to create not just one
graph editor, but a whole class of editors. The goal is to strip away the underlying
details , and leaving only the functional description of the visualization and trans
formations to be defined. Petri nets have already been studied in the context of
formalized graph transformations [BCM05], so this seems like a useful area to set a
working example.

The code contained below defines the functions which are used by the editor
to transform and visualize the Petri nets. It is rather compact, and much of the

51

Masters Thesis - S. West McMaster University - Computing and Software

Eilefdit ~iew .tielp Eile fdit ~iew .tielp

Select

Pan Pan

Arc Arc

Place

transition

Fire Any

Figure 7.1: Petri net editor and animator resulting from the Petri module.

verboseness comes in the drawing of the figures, rather than in the length of the
transformation descriptions.

Although slightly more code is required to create the full editor with the
appropriate buttons, and initialize menus , this work is mostly boiler-plating.

The purpose of this example is to show how a fairly reasonable editor and
transformation system can be created in very few lines of code. Another purpose is
to introduce the idea of the back-tracking selection and transformation environments
used to model various operations on the graph in an elegant manner.

The definition of a Petri net is done node-wise, in the sense that we provide
the content of each of the nodes (places and transitions) , and the framework fills the
graph structure.

data Petri = Trans
J Place { num Tokens :: Int} deriving (Typeable , Show)

We define node label classification predicates:

isTrans, isPlace ::Petri ---> Baal
is Trans Trans = True
is Trans _ = False
isPlace = -, o isTrans

52

Masters Thesis- S. West McMaster University - Computing and Software

We first show how t e "firing of transitions" can be implemented as a simple trans
formation of the Pet ri net using the SelectM selection monad and the GraT trans
formation monad.

In the SelectM type signature of the transition search function trans, the first
parameter Petri indicates the payload of the nodes in the underlying graph of the
selection. The return type VNode Petri indicates that the result of the selection
computation is a visual node with payload of type Petri- this can typically be used
as anchor for further selections. Other return types , e.g. Bool or Integer, could be
used to extract orreponding kinds of information from the underlying graph.

trans:: HasRef s r =? SelectM Petri s r (VNode Petri s r)
trans = onlyN de is Trans

The onlyNode function receives a predicate and produces a computation that will
select a node that satisfies the predicate from the graph. This is a so called back
tracking computation, so if at some point the computation after this selection fails,
it will back-track to this selection and pick another node that satisfies the predicate.

The selection of appropriate source and target places is then accomplished us
ing the following pa· ameterised SelectM computation, which considers the argument
transition tr as a hyper-edge, and succeeds if all sources of tr are non-empty places,
and all of the its t argets are places. In the case of success, the two place lists are
returned in a pair.

The hyp_src and hyp_trg functions below merely return the list of source and
target nodes that each hyper-edge is connected to. This is part of some on-going work
to define a hyper-graph specific set of functions.

firingSel :: HasRef m r =?

VNode Petri m r -t

SelectM Petri m r ([VNode Petri m r], [VNode Petri m r])
firingSel tr = do

srcs t- hyp.src tr
seLall_guard validSrcPlace srcs
trgs t- hyp_trg tr
seLalLguard isPlace trgs
return (srcs, trgs)

Actually firing a tra. sition is done in the more powerful GraT monad by decrementing
the token count on all source places and incrementing the counts on the target places.
This method of firing even works when a place is connected to a transition more than
once.

moveToken :: HasRef m r =?

[VNode Petri m r] -t [VNode Petri m r] -t GraT Petri m r ()

53

Masters Thesis - S. West McMaster University - Computing and Software

move Token ss ts = do
mapM _ (updN ode dec Token) ss
mapM _ (updN ode inc Token) ts

Finally, the full transformation is composed by first lifting the extraction of the sources
and targets from the selection monad into the transformation monad, and then ap
plying the token movement computation:

tokenTrans :: HasRef m r => VNode Petri m r----> GmT Petri m r ()
token Trans tr = do

(s, t) *- selToGra (firingSel tr)
move Token s t

To facilitate the above selection computations, we provide a few simple predicates on
the Petri net items.

The emptyiness of the places can be determined with the following predicates,
which are essential for determining if a particular place is a valid candidate for firing
a token.

notEmptyPlace :: Petri ----> Boo!
notEmptyPlace = -, o emptyPlace

emptyPlace :: Petri ----> Boo!
emptyPlace (Place 0) = True
emptyPlace _ = False

A valid source place is then a place that is also non-empty.

validSrcPlace :: Petri ----> B ool
validSrcPlace p = isPlace p 1\ notEmptyPlace p

These update functions are to perform the basic operations on the places. They are
able to increase the number of tokens, or decrease them depending on if the place is
non-empty.

decToken, incToken :: Petri ----> Maybe Petri
decToken (Place 0) =Nothing
dec Token (Place i) = Just $ Place (i - 1)
decToken Trans= Nothing

inc Token (Place i) = Just $ Place (i + 1)
inc Token Trans = Nothing

54

Masters Thesis - S. West McMaster University- Computing and Software

The following defines an instance of the FigureLabel type-class. An instance of this
class is necessary so the editing framework knows how to display, save, load, and, in
some limited sense, interact with the graph.

Since the places and transitions are not nested, and are unlikely to be grown
or shrunk, we define constant sizes. This means that they are restricted to these
sizes in the visualization, although they will still behave as expected under zooming
conditions.

instance FigureLabel Petri where
draw = drawPetri
size Trans = Just $ Point 60 12
size (Place __) = Just $ Point 50 50
parseLabel = parsePetri -- compatible with Show instance
interface = runPredTrans isTrans tokenTrans

Connections can only be established from between transitions and places (in either
direction), but not between places, nor between transitions.

petriCompatible ::Petri ---t Petri ---t Bool
petri Compatible Trans (Place _) = True
petriCompatibte (Place _) Trans = True
petriCompatibl.e __ = False

This function will be passed to an adapted ConnFig combinator for the arrow drawing
"tool", which will 1odify the stock implementation of the connection figure. This
enforces the bipartiteness of the Petri net graph.

Parsing a Pf.tri string is just just trying to parse a Place or, if that fails, a
Trans.

parsePetri, parsePlace , parse Trans:: Parser Petri
parsePetri = try parsePlace < I > parseTrans
parsePlace = do

string "Place "
i f- try (decimal haskell) < I >

(do

)

string "{numTokens
i +-- decimal haskell
string "}"
return i

II

return$ Place$ fromlntegral i
parseTrans =string "Trans"~ return Trans

55

Masters Thesis - S. West McMaster University - Computing and Software

This parsing information, combined with the derived Show instance, automatically al
lows Petri net drawings to be saved and loaded with the standard framework load/save
functionality.

Drawing is defined using the Cairo interface of Gtk2Hs, which very close in
flavour to PostScript programming. The places are drawn as empty circle outlines if
there are no tokens present. If there is a non-zero number of tokens, then a token
symbol (a filled in circle) is drawn within the place, with a number to the upper right
side, to indicate how many tokens are present.

drawPetri :: Petri ___. Rect ___. Render ()
drawPetri (Place i) r =do

save
setSourceRGB 0 0 0
drawEllipselnRect r
stroke
if i =t- 0

then do
let w = rect Width r * 0.3
let h = rectHeight r * 0.3
let Point ex cy = rectCenter r
let tokenRect =

Rect
(Point (ex- w * 0.5) (cy- h * 0.5))
(Point (ex+ w * 0.5) (cy + h * 0.5))

drawEllipselnRect tokenRect
fill
textScaleToRect (show i) (rectShift (Point w (-h)) tokenRect)
stroke

else return ()
restore

The transitions are simply a filled-in rectangle.

drawPetri Trans r = do
save
setSourceRGB 0 0 0
drawRect r
fill
restore

As one can see, the size of the Petri net-specific code is small, and highly functional.
Adapting the use of monads to embody graph selection and transformation allows
elegant expression of graph operations.

56

Masters Thesis - S. West McMaster University - Computing and Software

7.2 Petri l\fet Main-file

This file is the main-file of the Petri net editor. Where the Petri.lhs file contained the
definitions of specific transformation , saving, loading, and visualizations, this module
pulls them together into an application.

module Main where

The following imports are essential for the creation of the editor. Many of them will
likely reappear in most applications developed within this framework.

import Control.Monad
import Control.Monad.Fix

The Gtk widget an Glade libraries.

import Graphics. UI. Gtk
import Graphics. UI. Gtk. Glade
import System. Glib

These define the object-oriented figures which will represent places/transitions (LoadFig)
and also the arcs (BezFig) in the graph.

import FigureCast
import BezHg
import LoadF'ig

The drawing view compatible with Gtk.

import GtkD View

The transformation computation functions are imported here.

import GraT

The necessarily too:s for our editor.

import Tool
import Selection Tool
import Grab Tool
import Bez Tool
import CreateTool

Miscellaneous funci ions to increase productivity, such as making buttons for tools
and transformations.

57

Masters Thesis - S. West McMaster University - Computing and Software

import GtkUtil

Lastly, the definitions of our Petri net graph pieces.

import Petri

The Gtk library requires that we initialize the GUI.

main:: IO ()
main= do

initGUI

For ease in building the components and layout of the GUI, we use the Glade [GN098]
library, bound to Haskell through the Gtk2Hs library.

Glade stores the GUI in an XML file which we must first load. Assuming the
loading succeeds we can then proceed to get widgets from the file.

We are able to pull out any widget we want , by name, that is defined in the
Glade file. We do this below, getting the important boxes, windows, drawing areas,
and menu items so we may assign them functionality within our code.

mGlade- xmlNew "gltest.xml"

gladeDescr - case mGlade of
Nothing ---+fail "Glade GUI file not found"
Just x ---+ return x

let get Widget :: Widget Class w =>
(GObject ---+ w) ---+ String ---+ IO w

get Widget = xmlGet Widget gladeDescr

w -get Widget cast To Window "window"
drawArea- getWidget castToDrawingArea "drawingarea"
drawBox - get Widget castToHBox "hboxl"
toolBox - get Widget cast To VButtonBox "buttons"
save!tem - getWidget castToMenuitem "menuitemSave"
open!tem - getWidget castToMenuitem "menuitemOpen"
pdf!tem - getWidget castToMenu!tem "menuitemExportPDF"
ps!tem -get Widget castToMenuitem "menuitemExportPS"

make WidgetScrollable drawBox drawArea

editState - setupEditorState drawArea

onKeyPress w o deleteHandle drawArea o snd $ editState

onActivateLeaf pdf!tem (exportH andler PDF w editState)
onActivateLeaf ps!tem (exportHandler PS w editState)

58

Masters Thesis - S. West McMaster University - Computing and Software

The drawing knows how to save itself, without any further information. This is
because the figures within the drawing are sufficient for the drawing to be saved.

However, the loading of a drawing is different. Loading requires the application
to know what kind of figures may be in the drawing. Since the figures themselves
define their parsing t hrough their type, we only have to submit a list of figure types,
indirectly passed in through/via undefined error values. We see the tail-polymorphic
records (indicted by the "P" in their type-names) cited here with () in the spot
reserved for tails.

onActivateL~af save!tem $ saveHandler w editState
onActivateL::af open!tem $ openHandler w editState

[to Figure (error "loadf ig petri" :: LabelledFigP Petri s r ())
, toFigure (toConnFig (error "bezFig" :: B ezFigP s r ()))

l

Next, we create a few "prototypes" of the figures we will want to appear on the
canvas. Since this is a Petri net editor , we will need to create LoadFigs that represent
the two types of nodes: places and transitions.

let placeProto = canst $ fmap LabelFig $ mfix $ load fig (Place 1) ()
transProto = canst $ fmap LabelFig $ mfix $ loadfig Trans ()
toolButton' = toolButton toolBox editState

The selection and grabbing tools are conveniently already provided by the framework,
as they are able to work on any kind of graph.

toolButton' "Select"
toolButton' "Grab"

~ (mkTool $ seltool ())
~ (mkTool $ grabtool ())

Additionally, we must also make tools and buttons to activate the tools based on the
prototypes we have made.

toolButton' "Place" ~ (mkTool $ create Tool placeProto ())
toolButton' "Transition"~ (mkTool $ create Tool transProto ())

Here, a bezier figure is created, then updated using an object transformer:
compatibleConnFig petriCompatible. This transformed bezier figure is then given to
the bezier tool , which will handle the interactive creation of the figure. The object
transformation enables us to enforce the bi-partite quality of the underlying graph.

toolButton' "Arc" ~ (mkTool $
beztool (!map (compatibleConnFig petri Compatible) o bezfig ()) ())

59

Masters Thesis - S. West McMaster University - Computing and Software

Also, we can construct buttons out of transitions as well. In this case, we reproduce
the transition that is automatically invoked by selecting a transition through the GUI.
However, in this case, since a transition is not interactively selected, for firing , one is
selected using the trans selection computation.

mkTransButton "Fire Any"
(selToGra trans ~ token Trans) editState toolBox

Lastly, we show the main window, and attach a handler so the application quits when
the the window is closed. The mainGUI function starts the Gtk interface.

widgetShowAll w
onDestroy w mainQuit
mainGUI
return ()

7.3 Petri Net Discussion

In the previous sections, we have seen that the creation of the Petri net editor can
be presented in a largely functional style. Even though the underlying graphical rep
resentation is built from an object-oriented system, the use of the FigureLabel and
LabelledFig allows this freedom. Also, the SelectM and GraT selection and transfor
mation monads allow expressive definitions of the firing of Petri net transitions.

To demonstrate the resulting system, we show two screen shots in Figure 7.1;
the transition between the two states depicted can be achieved either by clicking
the "Fire Any" button, or by directly double-clicking the firing transition. This tool
allows free intermingling of transition firing between editing and layout steps; the
Petri net shown has been assembled interactively in an entirely intuitive fashion.

60

Masters Thesis - S. West McMaster University- Computing and Software

Chapter 8

Future Work and Conclusion

8.1 Future Work

As an extension to the existing body of work, there are several areas where improve
ments and further research may be done.

Of primary importance is to develop a functional framework for canvas design,
rather than borrowi g existing ideas from the object-oriented body of work. There is
some hope here using the functional reactive programming technique, which closely
models Kleisli arrows. Such a technique has been used already in a graphical arcade
game [CNP03] . However, this would be a large body of work, likely the scope of
another Masters thesis itself.

Also, there may be some interesting possibilities extending the single pushout
approach analogy we use for computations to the double pushout approach. This may
involve a different arrangement of computation environments and ideas to compensate
for the sharing of the matching morphsim.

The canvas framework also does not give equal treatment to the surrounding
GUI, both in terms of functional style and integration. Since the GUI is mostly left
up to the implementor to design, it may be beneficial to abstract the common GUI
tasks out , and provide a coherent programming interface. The current GUI toolkit
that is used is not ompletely functional , so this may also be one area where more
functional design may be incorporated, once a functional GUI toolkit is available.
This change would suggest also that more separation between the GUI toolkit and
the framework is also needed. The ability to swap Gtk, Tk, or wxWidgets toolkits
would be very usef 1 and would increase general portability.

61

Masters Thesis - S. West McMaster University - Computing and Software

8.2 Conclusion

The framework that has been presented has been shown to provide a concise and
extensible environment for the creation of graph editors. This has been shown directly
in Chapter 7, where only a few pages of fully literate Haskell code are needed to
create a completely functional editor and interactive animator for Petri nets with
publication-quality drawings and intuitive interaction.

The technique which allows this to occur is the bridge from the object-oriented
canvas framework to a style more suitable to functional programming. Such a bridge
puts the succinct nature of functional programming to work for the developer.

Additionally, an EDSL for graph transformation was developed. The EDSL
offers a small selection of combinators which can give rise to increasingly complex
and expressive transformations. This method of building transformations is very
powerful, and can actually replicate more well-known ideas in graph transformation
theory, such as the single-pushout approach.

62

Masters Thesis - S. West McMaster University - Computing and Software

Bibliography

[BCM05] Paolo Baldan, Andrea Corradini, and U go Montanari. Relating SPO and
DPO graph rewriting with Petri nets having read , inhibitor and reset arcs .
Electr. Nctes Theor. Comput. Sci., 127(2):5- 28, 2005.

[Cai08] Cairo Dev lopers. Cairo Graphics. http: I /www. cairographics. org, 2008.

[CE01] Antony Courtney and Conal Elliott. Genuinely functional user interfaces.
In In Proceedings of the 2001 Haskell Workshop , pages 41- 69, 2001 .

[CH93] M. Carlsson and T. Hallgren. Fudgets - Graphical User Interfaces and I/ 0
in Lazy Functional Languages. Licentiate thesis, Chalmers University of
Technology, Gteborg, Sweden, May 1993.

[Cha02] Manuel Chakravarty, editor. Proc. Haskell Workshop 2002, Pittsburgh.
ACM Press, 2002.

[CNP03] Antony C urtney, Henrik Nilsson, and John Peterson. The Yampa arcade.
In Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell '03),
pages 7- 18, Uppsala, Sweden, August 2003. ACM Press.

[EG98] Thomas Eggenschwiler and Erich Gamma. JHotDraw Implementation.
http://www.jhotdraw.org, 1998.

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation. In Interna
tional Co' ference on Functional Programming, 1997.

[EHK+97] Hartmut Ehrig , Reiko Heckel, Martin Korff, Michael Lowe, Leila Ribeiro ,
Annika Wagner, and Andrea Corradini. Algebraic approaches to graph
transformation, part II: Single pushout approach and comparison with dou
ble pushout approach. In Rozenberg [Roz97], chapter 4, pages 247- 312.

[EL02] Levent Erkok and John Launchbury. A recursive do for Haskell. In
Chakravarty [Cha02], pages 29- 37.

63

Masters Thesis - S. West McMaster University - Computing and Software

[Ell07] Conal Elliott. Tangible functional programming. In International Confer
ence on Functional Programming, 2007.

[Erw01] Martin Erwig. Inductive graphs and functional graph algorithms. Journal
of Functional Programming, 11(05):467- 492, 2001.

[FGT92] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little
theories. In Automated Deduction, CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 567- 581. Springer-Verlag, 1992.

[GN098] GNOME Developers. Glade Interface Builder. http: I /glade. gnome. org,
1998.

[HudOO] Paul Hudak. The Haskell School of Expression, Learning Functional Pro
gramming through Multimedia. CUP, 2000. ISBN 0-521-64408-9 (paper
back) , ISBN 0-521-64338-4 (hardback).

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA
'92: conference proceedings on Object-oriented programming systems, lan
guages, and applications, pages 63- 76, New York, NY, USA, 1992. ACM.

[Jon95] Mark P. Jones. Functional programming with overloading and higher-order
polymorphism. In J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, volume 925 of LNCS, pages 97- 136. Springer, 1995.

[Kah01] Wolfram Kahl. A relation-algebraic approach to graph structure transfor
mation, 2001. Habil. Thesis, Fakultat fiir Informatik, Univ. der Bundeswehr
Miinchen, Techn. Bericht 2002-03.

[KL05] Oleg Kiselyov and Ralf Lammel. Haskell 's overlooked object system. Draft;
Submitted for journal publication; online since 30 Sep. 2004; Full ver
sion released 10 September 2005 at http: I /homepages. cwi. nl/ -ralf I
OOHaskell/ , 2005. (last accessed 19 Oct. 2008).

[KLS04] Oleg Kiselyov, Ralf Lammel, and Keean Schupke. Strongly typed hetero
geneous collections. In Haskell '04: Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 96- 107. ACM Press, 2004.

[KSFS05] Oleg Kiselyov, Chung-chie Shan, Daniel P. Friedman, and Amr Sabry.
Backtracking, interleaving, and terminating monad transformers. In ICFP
2005, Intl. Conf. on Functional Programming, volume 40(9) of ACM Sigplan
Notices, pages 192- 203. ACM , September 2005.

64

Masters Thesis - S. West McMaster University - Computing and Software

[LH96] Sheng Liang and Paul Hudak. Modular denotational semantics for compiler
construction. In ESOP '96, volume 1058 of LNCS, pages 219-234. Springer,
1996.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod
ular interpreters. In 22nd POPL. acm press, 1995.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi
nators for the real world. Technical Report UU-CS-2001-27, Department of
Computer Science, Universiteit Utrecht, 2001.

[L094] Konstantin Laufer and Martin Odersky. Polymorphic type inference and
abstract data types. A CM Transactions on Programming Languages and
Systems, 16(5):1411- 1430, 1994.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Springer
Verlag, 1971.

[MV95] M. Minas and G. Viehstaedt. Diagen: A generator for diagram editors
providing direct manipulation and execution of diagrams. In Proc. VL '95,
pages 203- 210, 1995.

[Nor02] Johan Nordlander., Polymorphic subtyping in O'Haskell. Science of Com
puter Programming, 43(2-3):93- 127, 2002.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. The
MIT Press , August 1991.

[PJ+Q3] Simon Peyton Jones et al. The Revised Haskell 98 Report. 2003. Also on
http://haskell.org/.

[PJL92] Simon L. Peyton Jones and D. Lester. Implementing Functional Lan
guages: A Tutorial. Prentice Hall International Series in Computer Science.
Prentice-Hall, 1992.

[Roz97] Grzegorz Rozenberg , editor. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997.

[Sag99] Meurig Sage. FranTk - a declarative GUI system for Haskell, 1999. URL:
http://haskell.cs.yale.edu/FranTk/.

[SP J02] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Chakravarty [Cha02], pages 1-16.

65

Masters Thesis - S. West McMaster University - Computing and Software

[Tae99] Gabriele Taentzer. AGG: A tool environment for algebraic graph trans
formation. In ACTIVE '99, volume 1799 of Lecture Notes in Computer
Science, pages 481- 488. Springer, 1999.

66

\ 003 24

