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Abstract

The Risk-Adjusted Exponentially Weighted Moving Average (RA-EWMA) for Pois-
son data is developed in detail. The method is useful to monitor healthcare or to
other counts that are generated dynamically over time. The approach used is mo-
tivated by and follows closely the approach used by Grigg and Spiegelhalter (2007)
for dynamic binary outcomes. In simple terms, a Bayesian approach is applied that
uses conjugate priors (gamma in the case of Poisson data) utilized iteratively to pro-
vide the method estimates as the posterior expected means. The main application
is counts with covariates. The thesis provides the necessary formulas to update the
method’s estimates. Numerical calculations are presented to illustrate the use of the
methods and to compare it to the Standard Exponentially Weighted Moving Average
(Standard EWMA), which is a standard monitoring method used in industrial appli-
cations. The numerical evidence provided in the thesis suggests that the RA-EWMA
method is more sersitive than the Standard EWMA method to the presence of the
underlying covariatss. This was shown clearly on real data, specifically in the UK’s

death counts from lung diseases.



Chapter 1

Introduction and Thesis Objectives

1.1 Quality Control in Healthcare

The concepts and methods of total quality management (TQM) and continuous qual-
ity improvement (CQI) appeared right after World War II for improving the produc-
tion quality of goods and services. They were not implemented in the healthcare area
until recent years. "There is now a growing demand in healthcare for the development
of statistical process control (SPC) tools to measure and improve healthcare processes
and outcomes (Carey and Lloyd, 2001).

Statistical process control techniques can be applied to different types of data such
as clinical outcomes, risk management, and patient satisfaction. There is, however,
a sharp distinguishing element between industrial and healthcare applications. For
the most part, industrial settings involved production of items manufactured under
controlled processes, yielding largely homogeneous product. Typical healthcare ap-

plications, on the other hand, while many aspects of the processes are under careful



supervision, the end receivers are patients presenting great diversity in their personal
profiles. This diversity, which are collectively called risk factors in the literature, can
have a substantive effect on the process outcome. The delay in the development of
quality control methods in healthcare is likely in part due to the differences between
the application areas. Taking the risk factors into account is a necessary condition

for the success of any statistical method in healthcare.

1.2 Standard Monitoring

Patient safety is enhanced by the use of healthcare processes, working practices and
systematic activities that prevent or reduce the risk of harm to patients. Patients
achieve healthcare benefits that meet their individual needs through healthcare de-
cisions and services, based on what assessed research evidence has shown provides
effective clinical outcomes. Developing a proper flowchart to monitor the patient
outcomes or the treatment procedure is important for patients to receive services
as promptly as possible. The proper monitoring of a process can help healthcare
providers choose the right services and treatments and avoid unnecessary delays at
any stage of service delivery or the care pathway.

Statistics is a collection of techniques useful for making decisions about a process
based on the analysis of the information collected. Statistical methods play a vital role
in the quality control processes, they provide information used to control and improve
the process. In statistical process control and monitoring, many of the techniques,
such as the Shewhart control chart have been used for over 50 years. However, due

to the increasing eraphasis on variability reduction and process improvement, many



new statistical mornitoring and control techniques have been developed. Examples in-
clude the cumulative sum (CUSUM) and the exponentially weighted moving average ‘
(EWMA) control charts. In general, a major disadvantage of the Shewhart control
chart is that it only uses the information about the last data and ignores the en-
tire previous history. This disadvantage makes the Shewhart control chart relatively
insensitive to smal! shifts in the process. The CUSUM and EWMA control charts
overcome this disadvantage and react quickly to even small changes. See Montgomery
(2001) for details. i

The CUSUM is a type of control chart based on the total deviations of successive
samples from the target value. Each point plotted on the chart represents the sum
of the deviations as the previous point, and all deviations since. It has been shown
to be efficient in detecting small shifts in the mean of a process. If we resort to the
traditional signal of an out-of-control process when one or more points fall beyond the
control limit, then the Shewhart control chart might fail to detect the shift whereas
the CUSUM control chart will detect it.

The exponentially weighted moving average is also a good method when we are
interested in detecting small shifts. The performance of the EWMA is approximately
the same as that of the CUSUM and it is easier to set up. The EWMA is usually
used with individuel observations.

The EWMA control chart was introduced by (Roberts 1959), and detailed dis-
cussions can be found in Crowder (1987) and in Lucas and Saccucci (1990). An
exponentially weighted moving average applies weighting factors to the data points.
The weighting for each data point decreases exponentially, giving much more impor-

tance to recent observations while still not discarding older observations entirely. It



is a well known method for time series forecasting and smoothing. The EWMA can

be expressed as the following form by Harvey (1991)
Current estimate = Previous estimate + discounted error.

Hence is one type of Kalman filter. By enclosing the state-space models, this filtering
method can be extended to deal with the estimation with covariates by Harvey (1991)
and West and Harrison (1997).

As with other control charts, both CUSUM and EWMA charts are used to monitor
processes over time. The charts are time based so that they show a history of the
process.

The degree of weighing decrease is expressed as a constant smoothing factor , a
number between 0 and 1. k may be expressed as a percentage, so a smoothing factor
of 5% is equivalent to k = 0.05. The EWMA statistic provides a smoothed estimate
of the current level of the process. Because the EWMA chart uses information from
all samples, the prediction for next outcome or outcomes will depend on previous
observations, hence the response will be fast when the the shift in the mean of a
process occurs.

Recently, increased interest has been placed in monitoring heterogeneous time
series in medical contexts. The aim is to monitor and control the outcome of a med-
ical procedure or process. The risk factors (i.e. patient covariates) have potentially
an effect on the procedure outcomes. In general, the traditional EWMA method as
described above treats all patients as having equal risk factors. This makes the meth-
ods ineffective in some cases and misleading in others when monitoring healthcare

outcomes. For instance, a sudden increase in the number of failures in the outcomes



may be due to the treatment of several high risk patients and not to a change in
the application of the healthcare service. The result is unnecessary false alarms in
the monitoring. Likewise, treating several low-risk cases yielding an unalarming small
number of failures may result in an undetected deterioration of the service when using
the traditional EWMA. Grigg and Spiegelhalter (2007) have addressed these prob-
lems and have developed several promising approaches to incorporate risk factors in
process monitoring and control of healthcare processes. Specifically, they provide a
thorough analysis of processes with binary (i.e. success/failure) outcomes.

In the medical context, count data often come up in a systematic and regular way.
For example, each month the number of patients who die due to lung diseases in a
particular area. These outcomes clearly have seasonal as well as other trends. If we
want to discover the secrets behind process changes over time, we need to consider

temperature, pollution as well as other factors which will affect the patients.

1.3 Thesis Objectives and Overview

In this thesis, we focus on the exponentially weighted moving average control chart
with risk-adjustment which emphasis on the case of Poisson data. Specifically we aim

to develop:
e the theoretical aspects for the Poisson case;
e its numerical implementation; and

e a comparison with competing charts through simulations.



In Chapter 2, we review the standard and risk-adjusted EWMA methods for
binary data as devzloped by Grigg and Spiegelhalter (2007), and reproduce some of
the simulation studies and plots to illustrate the basic ideas of these two methods.
In Chapter 3, we make the theoretical development of the EWMA and RA-EWMA
methods for Poisson data. In Chapter 4, we first make a simulation-based comparison
between EWMA and RA-EWMA for Poisson data, then apply the methods to the
UK lung diseases death data and compare the results. Finally, we make concluding

remarks and discuss further possible extensions in Chapter 5.



Chapter 2

Standard and Risk-Adjusted
EWMA for Binary Data

In some medical applications, there is an interest in monitoring health outcomes
over time while taking the severity of individual patient’s condition into account. In
general, the severity and other patient covariates are called risk factors. In their
research, Grigg and Spiegelhalter (2007) provided a direct estimate of the current
chance of an adverse event given a patient’s covariate information. As we mentioned
in Chapter 1, the order of patient arrival might mask the true change in the hidden
risk for a patient. Adjusting for the different effects exerted by the risk factors for
the patient will render more accurate information for the healthcare processes.

In this chapter we review the risk-adjusted exponentially weighted moving aver-
age method for binary data developed by Grigg and Spiegelhalter (2007). Section
2.1 introduces the basic idea of the standard exponentially weighted moving aver-

age smoothing method for binary data. Section 2.2 introduces the EWMA for the



Bayesian state-space model. Section 2.3 presents a comparison between the dynamic
generalized linear model and the mean steady model. A simulation study is pre-
sented in Section 2.4 focusing on the performance of the standard EWMA and the
risk-adjusted EWMA methods. Concluding remarks regarding the performance of

the methods for binary outcomes are summarized at the end of the simulation study.

2.1 The Exponentially Weighted Moving Average

The standard exponentially weighted moving average is a well-known estimation and
prediction tool in time series analysis. It has also being applied extensively in statisti-
cal process control and monitoring particularly to industrial processes (Montgomery
2001). The basic form of the method is as follows.

Let y1,...,¥t, ... be a sequence of random variables at successive times. Assume
that E[y:|u:] = pe for ¢t = 1,2, ..., where t is the index of time and p;’s are assumed to
be from some dynamic process. The standard exponentially weighted moving average

based on the observations ¥, ..., ; is the statistic /i, defined recursively by
AE=kpE, + (1 —-K)y t=1,2,..,0<Kk<1) (2.1.1)
= k(K y + (1 = K)ye-1) + (1 = K)ys

= K20 5 + (1 — K)(Kye1 + %)

t
= ks + (11— k)Y K&y, (2.1.2)
=1

where 4F is the estimate for yo. In general, the 4F is derived from the training data

or early data by the given model.



The most frequent use of £i,Z is as an estimator of the process level at time ¢,
namely p:. The parameter k determines the speed of decay. In the case of kK = 0, the
current estimate of the mean depends only on current data, and if k = 1, the current
estimate of the mean is totally dependent on the prior estimate of the mean. In the
standard analysis without risk factor adjustment, 2F is a forecast for psy;.

Based on the standard EWMA, the risk-adjusted exponentially weighted moving
average (RA-EWMA) provides a smoothed estimate for the expected outcome for an
observation taking into account its covariate values. For example, if we monitor the
30-day mortality of patients after cardiac surgery by a particular surgeon, the patient’s
gender, age, diabetes status, and other preoperative factors can be considered as
covariates for the patient (Steiner et al., 2000). The derivation given in this section,
the adjustment made for current differential risk is based on an approximation to the
likelihood, which is assumed to be of exponential family form.

Assuming a dist:?ibutidn from the exponential family, the probability mass function

or probability density function of y; can be written as

f(yt|ﬂf,¢) = u(yt7¢) BXP{[MZF - V(n:-)]/QS}? t=1,2,.., (2'1'3)

where 7; is the natural parameter, we have g(uf) = n; and E[y:|uf] = pif, where
g(-) is the canonical link function. “+” indicates that a parameter includes the
effect of risk factors. ¢ is assumed to be a known scale parameter, namely dispersion
parameter.

From the Generalized Linear Model (GLM), we have E[y:|uf] = v/(n;) and
Viys|ud] = v"(ni )¢ by (McCullagh and Nelder 1983), where v/(-) is the first deriva-

tive of v(-) and v"(-) is the second derivative of v(-) with respect to the unknown



parameter.

For example, assume
Yi|pe ~ Bernoulli(u:), t =1,2,....
The probability mess function can be given by

Fyelpe) = ¥t (1 — pg) ™
= exp {y: log(pz) + (1 — ve) log(1 — pe)}

Mot
)+ log(1 - )}

= u(ys, ¢) exp {¢~ [yem: — v(me)]},

= exp {y: log(

where u(y;, #) = 1 and ¢ = 1. In above equation, we have

Mt
1—Mt)

e = log(

and
v(ne) = — log(1 — ).

Now we assume a structure for 7;7, a natural parameter includes the effects of
covariates

mF=m+8& t=1,2., (2.1.4)

where §; denote the risk adjustment level at time t associated with observation y;,
t = 1,2,...,. Assume that &; in equation (2.1.4) has the from 6, = BTx;, where
x, be a vector of observed and centered covariates, thus x; = 0 is the baseline. In
addition, we consider the vector of coefficients B to be known usually from fitting the

model to data gathered when the healthcare process was operating in control. Also,

10



the baseline expectation is taken to be u; = g~(n:). Hence equation (2.1.4) can be

rewritten as
9(f) = g(ue) + 6, t=1,2,.... (2.1.5)

Using the standard GLM notation, the log-likelihood function arising from equa-

tion (2.1.3) can be written as

Ly () = {yen* —v(n*)}/¢

= {velg(ue) + 0] — vig(ue) + ]}/ 9. (2.1.6)

Even though §; is known, equation (2.1.6) is still complicated for inferences about ..
If we use approximate analysis instead of the exact analysis, the form of the expec-
tation of u; might be easier. Let y? be a risk-adjusted pseudo-baseline observation,
assume it stratifies E[y}|u:] = ut, then the log-likelihood function of equation (2.1.3)
would be

Lo(pe) = {yf[9(pe)] — vig(we)]}/ 9 (2.1.7)

What we want is to obtain a statistic ¥ whose contribution to the likelihood of
u: is equal to that made by the original data y;. Then the inference of u; based on
equation (2.1.7) would be the same as that based on equation (2.1.6) for all ¢t. Thus
the likelihood contributions made by y? and y; would be exactly equal for any true
value of p if the score functions of (2.1.7) and (2.1.6) were identical at all y;. The

score function can be written as

Ly = g'(ue)(ye — p) /b (2.1.8)

and

= 9' () (¥ — 12) /- (2.1.9)

11



The identity occurs if
Li =L (2.1.10)

hence we have

Y -

Yt = ye — (1 — p)- (2.1.11)

This equation indicates that the pseudo-observation needs to be the difference between
original observation and its differential expectation u; — ;. We can use an estimated

value to replace ths unknown parameters. In this case, (2.1.11) can be replaced by

e = ye — (1 — fie) (2.1.12)

where
aF =97 (g() + &) (2.1.13)

In the same way as in the standard EWMA, the RA-EWMA at time ¢t —1 can provide
a forecast for the baseline expectation p; at time ¢.
If we wish to estimate the baseline mean parameter y; of the exponential family

data y;, given risk-adjustment level J;, we can define a RA-EWMA as

AR =kiR 4+ (1 -kr)G t=1,2,.., 0<k<1) (2.1.14)
t

=kaf+ 1 -K) D K, (2.1.15)
=1

where 4 is an estimate of po. In general, the i is derived from the training data
or early data by the given model.
Noticing from equation (2.1.2) that 4F is a linear combination of 4g, v1, %2, ..,

y: and these variables are independent it follows that the variance for the standard

EWMA is

12



Vi) = (1 - &)? Zt:h‘?(t_i)V[yi]. (2.1.16)

Note that V[aF] is taken to be 0. If the dispersion parameter ¢ of the v, is as-
sumed fixed and known, then using the basic finite geometric sum the above equation

simplifies to

VIAE) = 11 - )9, (21.17)

which has limiting value 02 = ¢(1 — k) /(1 + k) as t — oo.

2.1.1 Example: Mortality Rate After Cardiac Surgery

In this section we present an example aimed at illustrating the implementation of the
RA-EWMA and also to compare it with the standard EWMA. The data collected are
the 30-day mortality after cardiac surgery in a UK Cardiac Surgery Center by one of

the surgeons over the years 1992 and 1998. Specifically,

1 if the tth patient died within 30 days after surgery;
Yt =
(0 otherwise.

Where ¢ is patient number in the order the patients were treated and y; is the associ-
ated outcome. Thus the probability mass function here is simply the Bernoulli mass

function
flysp) =pft1—p)'™® (t=1,2,.., y=0,1).

In this example, all the required data and preliminary analysis results were given by
Steiner et al. (2000). Our main objective is to show in detail how the the RA-EWMA

is implemented.

13



A logistic regression model has been fitted to develop the risk equation. To fit
this model, 2, 218 operations during year 1992 and 1993 have been choose as training

data. The resulting equation is given by Grigg and Spiegelhalter (2007)
+ ~y
M =M e .077xt,

where :ct/ is the centered Parsonnet score for acquired adult heart surgery, standardized
to have mean zero in the training data. Originally introduced by Parsonnet (1989),
the score is a preoperative predictor of mortality in cardiac surgery based on a variety
of risk factors that include gender, age, diabetes status, number of catastrophic states,
and others. The Personnet score has become very popular in heart studies in recent
years. Hence the risk adjustment level is known, which is §; = Bz; = .077z; for
the " patient. For simplicity, we choose 5 consecutive surgical outcomes for the
year 1994-1998 under a particular surgeon. We denote the outcomes by vector y
and y = (1,0,1,0,1)T. The covariate vector is given by x = (44, —6,22,15,42)T.
Hence the risk factor vector for the given patients can be calculated as § = Ox =
(3.4,-.5,1.7,1.2,3.2)T.

For the initial setup, the training data have 2,218 observations, 142 patients
died within 30 days after surgery, so this gives u¥ = 142/2218 = .064. If we
using the decay perameter x = 0.9, then equation (2.1.2) gives the EWMA as
Af = (.158,.142,.228,.205,.285)T. In the estimation of the standard EWMA, we
simply set the risk adjustment level to be zero for each of the observation.

Next, we are going to calculate the RA-EWMA. Starting with an estimate for the
natural parameter value of 7y of np = —3.0, which is equal to the intercept value of

the generalized lineer model fitted to the original data. We have g = e /(1+¢0) ~

14



0.048. To calculate ], we have
s+ _ ¢ (R ok
iy =g (9(ig) + 61) = .596.

Plug in
o=y — (4f — ),

we get §; = 0.451. Next, by equation (2.1.14),
AR = kil + (1 - k) = .088.

By above recursive method, we finally get the EWMA and RA-EWMA values for y
in Table 2.1.

The EWMA estimates the current mortality probability for the #** patient and
the RA-EWMA provides an estimate of mortality probability for the t** patient via
af = g7 (g(af ) + 6:), where the risk adjustment level is given by &, = .077z;. It
is important to clarify that for a non-linear link function, for example, the log link
function for Poisson data and the logistic link function for the Bernoulli data, the
EWMA and the risk-adjusted EWMA are estimating different quantities. Precisely,
the EWMA is estimating the risk parameter under the assumption of homogeneity of
patients, but the RA-EWMA is estimating the risk parameter for a standard patient
with zero as the centered Parsonnet score (predictive score for acquired adult heart
surgery ). This is the reason why these two methods use different starting values. Only
when risk adjustment factors is factored into the RA-EWMA to provide a patient-
specific risk assessment can we reasonably make a comparison with the standard

EWMA.

15



Table 2.1: The estimated values by EWMA and RA-EWMA methods for cardiac
surgery outcomes y:, t = 1,...,5, under a particular surgeon in the UK.

t ﬂf ﬁf Ye T fii Ut
0 .064 .048
1 158 .088 1 44 .596 .451
2 142 082 0 -6 .058 .030
3 228 149 1 22 .328 .754
4 205 .113 0 15 .359 -.210
5 285 137 1 42 .764 .349
Risk Adjusted EWMA
24 e Standard EWMA
---------- Estimate of Current Expectation .A._,--o
g =7 *
£
) — eI
i 2 : . :

Figure 2.1: Graphical display of the estimated values by EWMA and RA-EWMA
methods for the Cardiac Surgery outcomes as given in Table 2.1. The black dots are

the outcome y; values.

16



Table 2.1 gives the estimated values of standard EWMA (i), RA-EWMA (4F),
and the estimate of the current expectation ;. Comparing the values of 4 and AF
in Table 2.1, we see a sizable difference. This difference is because of the differential
risks for the individual patients, some exhibiting Parsonnet scores far away from the
baseline. For example, the first and the last patients have high risk factor levels. Note
that the estimate of the current expected value, u;, is very high for these two cases
but the RA-EWMA estimates mitigate their effect.

Figure 2.1 shows graphically the estimated values of standard EWMA aF  RA-
EWMA £, and the estimate of the current expectation /. Note that, both in Figure
2.1 and Table 2.1, the standard EWMA estimates the current mortality probability
for the tth patient, the RA-EWMA estimates the current mortality probability for a

baseline patient with z; = 0.

2.2 EWMA from Conjugate State-Space Models

Denote the observed data up to time ¢ by d; = (1, ¥2, ..., %) In our previous anal-
yses, we took the viewpoint that u; was fixed and unknown, and that it could be
consistently estimated in repeated experiments. In this section we take a Bayesian
approach and work with the estimate f; given by the posterior mean of y;.

There is a tradition of deriving EWMAs from state-space models, in which the data
d; up to time ¢ provide a posterior distribution p(u:|d;) for the mean parameter u;.
A dynamic evolution process gives a forecast prior distribution p(ut41|d;). After we
have the new observation y:,1, a Bayesian conjugate update is given by p(us41|des1)

D(Yes1|he+1)P(e41]d%). The evolution process can be defined on the natural or mean

17



parameter scale. The following formula is defined as natural scale by West and

Harrison (1997),

p(me|dy) o exprene — sev(me)], (2.2.1)

denoted simply as m|d; ~ CP(r,s;) for the conjugate prior on the natural scale,
where s; can be inserpreted as precision parameter, the reciprocal of the dispersion
parameter, and 7:/3; can be interpreted as location parameters. In certain situations,
the mean scale p;|d; ~ CP(rs,s;) is more convenient. It has mean E[u;|d;] = r:/s;
and V(u:|d;] = E[v"(n;)|d:]/s:. The precision s; is denoted as P[u;|d;]. When the new

observation ;4 comes in, the posterior distribution can be expressed as

pielde, Yea1r ~ CP(re + ¢ yer, se + ¢71). (2.2.2)

The mean steady model (MSM) leads the RA-EWMA as an estimator for the
current mean p;. We assume a mean steady evolution step, the forecasted mean is
equal to the posterior mean but the precision is decreased by a factor x. A posterior
distribution p.|d; ~ CP(r¢, s:) leads to a forecast prior piy1|d; ~ CP(kre, kSt). By
the above assumptions, the update step is exact, the risk-adjustment step can be
made only approximately, and the evolution step is justifiable only heuristically.

We then have the following properties

Elpes]de] = Ele|ds] = —

Pluss1|de] = kP[ue|de] = Ksy. (2.2.3)

For the case of Bernoulli data, an approximate risk adjustment can be made after

the new observatior y;4+; comes by using the pseudo-observation ¢;,1 in the conjugate
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update of w41, so that we have

fer1|dess ~ CP(kr + ¢ Yegr, k8: + ¢71)

~ CP(T'H.I, 5t+1)' (224)
In the limiting form as t — 0o, the posterior expectation and precision are given by

Elptt1|der1] = kKE[pe|de] + (1 — £)Fes1,

Plucsild] = s = ¢7'(1 - k)7 (2.2.5)

that is, the postericr expectation tends to an EWMA on the g;’s.

2.3 Comparison Between DGLM and MSM

The Dynamic Generalized Linear Model (DGLM) is often considered the natural
method for nonnorranal data with covariates, but it is overcomplicated for many con-
texts. In this section, we give a comparison between the DGLM and the MSM for
Bernoulli data.

The DGLM is a Bayesian forecasting method for time series data when the risk
factors have been described by a generalized linear model structure McCullagh and
Nelder (1983). The parameters of the DGLM are allowed to change over time. In
general, the evolution step and risk adjustment step are exact, but the parameter

update step is approximate.

2.3.1 Dynamic Generalized Linear Model

The following steps outline the procedure for Bernoulli data.
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1. Conjugate baseline mean. Assume a conjugate distribution for .,
ilde ~ CP(rym), t =12, (2.3.1)

which for Bernoulli data will be 3(ry, s¢).

2. Natural baseline. Translate the above conjugate distribution to the natural
scale for m¢|d; with m; = E[n|d;] and C; = V[n|d;] by the transformation equation
n = g(ue). For Bernoulli distribution, the link function is 1, = log(u:/(1 — p¢)), the

results are given by

7
me = y(re) — (st — 1) = log m>

1 1
Ce=%(re) =7 (se —m) = —+

m —(St =y (2.3.2)

where 7(+) and +/(-) represent the digamma and trigamma function respectively. Now
we can assume that the distribution 7;|d; has the required mean and variance, but
the precise form is left unspecified.

3. Evolution. The process evolves by adding a term with a distribution [0, W],
with mean zero and variance W, but the form unspecified. This evolution will give a

forecast prior distribution for 7:41|d;, with
Nes1|de ~ [me, Cy + W] (2.3.3)
4. Risk-adjustment. Given the risk term d;,; at time ¢ + 1, we then have
N lde, Oer1 ~ [me + 6441, Ce + W]
~ [ee, @] (2.3.4)

5. Transform to mean scale distribution. A conjugate prior distribution can

be obtained by the inverse transformation of the second stage. The distribution is
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given by

pif1lde, 601 ~ CP(r}, 87), (2.3.5)
where
14 e
TR Fe
qt
and

. . et e
SR —
gt

6. Conjugate update on mean scale. After we have observation y;,1, we have

the posterior distribution
piildess ~ CP(ry + ¢ yeyr, s + 971, (2.3.6)
" 7. Transform to natural scale and de-risk-adjust. If we let

sk * -1
Ty =T+ @ Y

*k * -1
St — St + ¢ 3

an approximate posterior on the natural scale can be obtained by using the transfor-
mation in Stage 2. The transformation is as

* %

- Tt
T
i L 1
RN )

Hence, we have the updated natural scale expression

Mialdess ~ [ef, g7, (2.3.7)
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then de-risk

"7t+1|dt+1 Y [6: — 041, Q:]

~ [mi41, Crya)- (2.3.8)

8. Translate to conjugate baseline. Using the inverse transformation of Stage

5, we can obtain

Per|digr ~ CP(re41,8041), t=1,2,..., (2.3.9)
where
14 emen
Tt+1 ~ —Ct+1
and

2 + emt+1 + e_mt+1

Ct+ 1

St41 =

The whole process, from step 1 to step 8, is a closed form in terms of the inputs
T4, S, and y; at tirne ¢t and the outputs r¢y; and s;y;. After this whole process, it is

ready for next cycle in terms of the inputs 711, S¢+1, and 341 at time ¢ + 1.

2.3.2 Mean Steady Model

The following steps outline the Mean Steady Model (MSM) procedure to derive the
RA-EWMA for the Bernoulli example.

1. Conjugate baseline mean.
,u'tldt &9 CP('I"t, S), t= 1,2, coey (2310)

where s = ¢$~1(1 - k)~! by previous equation.

22



2. Evolve as a MISM.
ptr1ldy ~ CP(kry, k8), t=1,2,..., (2.3.11)

3. Update using approximate risk-adjustment. Using the pseudo-observation

Us41 from equation (2.1.12), hence we have

per1|der ~ CP(krs + ¢ Ger1, k8 + ¢71)

~ CP('I"t+1, 8). (2312)
From above equation, we can see that

fres1 = (KTe + ¢ Geg1) /s
= (kre)/s + (™ 'Tet1)/s
= k(r:/8) + (¢71/8)Grs1

= rit + (1 — K)Fea1

since iy = 1¢/s and 1 — k = 1/(¢s), immediately giving the form of the RA-EWMA.
To compare the DGLM and MSM methods, we need a mapping between the
evolution parameter W of DGLM and the smoothing parameter x of MSM.
Under a DGLM, the posterior variance of the natural parameter can be given by

the delta method as
V[:u'tldt]
(dpse/dme)? ,,t=f,t’

where 7; is the MLE for 7,. We also can find the relation between the posterior

Ci = V[ne|dy] = (2.3.13)

variance of the mean parameter and posterior precision parameter s by West and

Harrison (1997), the relation can be written as

Vipeldi] = E[" (ne)|de] /s = v" (1) /s, (2.3.14)
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and dy;/dn: = v"(n). Thus from (2.3.13) and (2.3.14), we can approximate the

posterior variance by C; =~ 1/(sv”(7)).

2.4 Simulation Study for Binary Data

In this section, we present a simulation study for Bernoulli data to compare the
estimated values by the DGLM and MSM methods. The EWMA been derived by
MSM method when set the risk-adjustment level ; = 0 for all ¢ and the RA-EWMA
been derived when not all é; = 0.

In the first example, the risk factors have been set to zeros. In other words, let
6 =0, t=1,..,T for all the observations. Let yo = 0.2, and W = 0.03. With these
settings, Dy = po(1l — po) = 0.16, Assuming ¢ = 1 and solving W = ¢(1 — k)?/(kd;),
we get approximately k = 0.93 as a reasonable approximation.

For the Bernoulli data simulation, we setup the process as two stages. First, the
trendless baseline natural parameter 7, t = 1,...,60, were simulated as the train-
ing data by the distribution n|p—; ~ N(m—1, W). For t = 61,...,260, n|ni—1 ~
N(pne—1, W), with shift parameter p = 0.99 as the test data.

In the second stage, using the simulated 7;, we calculate p; by using the link

function g(-), where g(-) for Binary data is the logistic function

o = log(p+)
1 —log(ue)’

The homogeneous data were generated by sampling from Bernoulli(x:), and the
heterogeneous data were generated by sampling from Bernoulli(y;). Where p; =

9 Hg(ue) + 6¢) = exp(m:)/[1 + exp(ne)]. In this study, the risk-adjusted levels were
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generated from Normal distribution with zero mean and variance 0.25. For the relative
accuracy, each estimated series has been recorded for the above two methods, and

then averaged over 500 simulations under each methods.

Random Walk
DGLM
.......... EWMA

0 50 100 150 200 250

Figure 2.2: Simulated Binary homogeneous data. The estimated series by EWMA
and DGLM methods are displayed whereas the vertical line at t = 60 marks the time

the random walk bzgins to shift.

Figure 2.2 and 2.3 show plots of the one-step predictions for the DGLM and RA-
EWMA with and without risk-adjustment. For the DGLM, equation (2.3.5) gives
the one step predictive distribution and for RA-EWMA, equation (2.3.11) gives the
one step predictive distribution. Only at the very beginning, the one step prediction
shows difference between those two methods, all others are very similar.

In Figure 2.2, the model assumes homogeneity. The estimated values by both
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Random Walk
DGLM

.......... HA_EWMA
------ Differential Risk

0.1

0.0
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0 50 100 150 200 250

Figure 2.3: Simulated Binary heterogeneous data. The estimated series by RA-EWMA
and DGLM methods are displayed whereas the vertical line at t = 60 marks the time
the random walk begins to shift. The points denote the expectation of each observation

conditional on their risk-adjustment level d;

26



DGLM and RA-EWMA methods are captured the trend of the random walk, which
is an unknown dynamic process we want to estimate. At the training stage, ¢ from
1 to 60, the estimated series by DGLM method appears captured the random walk
faster comparing with the estimated series by RA-EWMA method. In the test stage,
t > 60, these two methods perform almost identical except at the some peak or foot
points along the estimated series. The vertical dish line at ¢ = 60 separates the
training data and test data.

In Figure 2.3, the model assumes heterogeneity. The dots denote the differential
risk, which indicate the expectation of each observation conditional on their risk-
adjustment level J;. Looking at the estimated results, they have same properties as
those in Figure 2.2.

Traditionally, the DGLM has been considered as a standard method for dynamic
monitoring under nonnormal state-space modeling. In the first simulation, d; was
set to be zero for all the observations, which means that the risk factors have no
effect across the observations whereas in the second simulation, the known risk factor
d; to disadvantage the RA-EWMA. However, our simulation doesn’t show obvious
disadvantage by the risk factor. Through the simulation study, the two methods give
very similar results. But, we notice that DGLM is complicated both computationally
and conceptually. In contrast, the RA-EWMA estimates by Mean Steady Model is

straightforward and simple to implement.
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Chapter 3

The Risk-Adjusted EWMA for

Poisson Data

The Poisson distribution has a long history of applications to biostatistics problems.
It has been traditionally the default distribution to model count data. In this chapter
we develop its detailed application under a risk-adjusted EWMA. Our derivations
follow closely those done for binary data in Chapter 2 which in turn were described in
detail by Grigg and Spiegelhalter (2007). There is no documented detailed analysis
for the Poisson case in the literature.

As in Chapter 2, let d; = (yi1,...,y:) denote the data up to time ¢, which are

assumed to be independent Poisson variables,

ye_/-"
flyp) =2 V=012 (3.0.1)
The log likelihood function can be written as

log(f(y; 1)) = ylog(u) — pu — log(y!). (3.0.2)
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Here the dispersion parameter ¢ = 1. We will use the log link function, n = g(u) =
log (k).

Adopting a gamma conjugate prior 7(u;) yields a posterior distribution p(u:|d:)
for the mean parameter y; at time ¢t which is also of the gamma form. | Following the
evolution process, this posterior distribution becomes the prior distribution 7(usy1) =
p(pe|d:) for the next iteration. After the data y;4; is observed, a Bayesian conjugate
update is made, which gives posterior density p(t¢+1|dis1)-

Note that all the distributions involved for this Poisson case have closed forms.
If we denote the prior by p(u;i|d;) for the mean of an observation with d; as the
risk-adjustment level, the risk-adjust step can be made by conjugately updating the

forecast prior for u',; in light of the newly arrived data y;,;.
+1

3.1 The Standard EWMA Model for Poisson Data

Let p(ut|d:) denote the probability density function of u; conditional on the observa-
tions up to time ¢. The pdf is given by the gamma density

e—smturt—l

_ >0, 3.1.1
T(ros; " 0% L

P(Nt;rt, St) =

where 7; and s; are computed from the first ¢ observations. We can write equa-
tion (3.1.1) as

pi|di ~ CP(rs, st). (3.1.2)

Consider now the next step and suppose the effect on the distribution is an update

of the parameters as follows: p(u:+1|d:) follows a gamma distribution with parameters
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7441 and Sg41 such that

Ti41 = KT¢, (313)

and

St+1 = K8y, (314)
where 0 < k¥ < 1. Thus we will have
,U‘t+1|dt ~ CP(K)’T't, K',St). (315)

We then have the following properties which are a direct consequence from the gamma

distribution

Elpes1]de] = Elpe|de] = 72/ e, (3.1.6)
Viper1lde] = re/si = 671V pe|d], 3.1.7)
Plucsi|de] = wPlp|di] = se; (3.1.8)

With this specificetion of the state densities, the parameters u;; are related to the

best one-step predictor of d; through the formula

frerr = Elpry1|di] = 7¢/5¢. (3.1.9)

The parameters r; and s; can be quite arbitrary: Any nonnegative functions of d; will
lead to a consistent specification of the state densities (Brockwell and Davis, 2002).

Once the observation y;4; is available, the posterior distribution p(gus41|dis1) is
given by a gamma distribution with parameters 711 = kr;+¢ 1y, and 5,41 = K8 +¢.
In Poisson data without considering over-dispersion problem, we simply let ¢ = 1.
We denote this step as

Pty |y ~ CP('rt+1>5t+1)' (3.1.10)
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Iterating the relation s;,;, we see that

St41 = 1+ KSt
=14+k+k2s1

=1+r+r>+ -+ +Ks

—1/(1-kK)
as t — o0o. Similarly,

Te41 = Yt + KTt

=Yt Kye-1 o KT+ R
For large ¢, we have the approximations

sep1 = 1/(1 - k)

and
t—1
1
T4l = E K Yt—i,
=0

From (3.1.9) the one-step predictors are linear and given by

t-1 t—1
fie+1 = Teq1/Ser1 = (Z Kiyt—i)/(z K').
=0

1=0

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

If we start with so = 1/(1 — k), we will find that fi;,; has the following form

,ﬁ't+1 = (1 — I‘C)yt -+ mﬂt, t= 0, 1,2, .

hence by (3.1.5), the one-step predictors can be found by exponential smoothing.
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To obtain an ideal one step prediction of fi;+; by EWMA, we need a suitable decay
parameter k. The following steps give the Maximum Likelihood Method to obtain an
estimate of k.

The conjugate prior distribution for Poisson data is a Gamma distribution. Fol-
lowing standard practice, at time ¢ = 0 a non informative improper prior is adopted
leading to parameter values ro = sg = 0. As a result, a proper posterior distribution
for u; can be obtained at time ¢ = 7, where y, is the first nonzero observation. This
is so because since the conjugate prior initial parameter values are rq = so = 0, thus
the parameter updates lead to the same 0 values until a non-zero count comes up
for the first time. Thus, for all those cases, the posterior will also be an improper
distribution. This in an inherent feature of the method. The problem vanishes if a
proper gamma prior is adopted initially.

Now we have, conditional on d;, the joint density of yi, ..., yr is

T
Py, - yrle) = [ pyeldiov), (3.1.16)
t=7+1

where the predictive probability density functions are given by

p(yrldst) = / " el )l e e (3.1.17)

In this predictive equation, p(y:|u:) is from Poisson distribution with pdf

P(yelpe) = p"e™ [ye!, (3.1.18)

and p(ut|di—1) follows a gamma distribution with parameters 7, = xr;_; and s; =
kSi—1. Actually, we can see that p(y:|d;—1) is a negative binomial distribution, the
probability density function can be written as

I'(a+y:)

= mbaa + b)letye), (3.1.19)

P(ye|de-1)
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where a = kr;—; and b = ks;—;. Hence the log-likelihood function for unknown

parameter k can be written as

i)
l(k) =logL(k) = :2 {logT'(a+y:) —log(y:!) —log I'(a) +alog(b) — (a+y:) log(1+b)}.

t=7+1
(3.1.20)

The derivative of equation (3.1.20) in terms of unknown parameter x can be written

as following.
~ Y(kreoy + 1) y(Kreo1) (kre—1 + ur)
U'(x) = Ty - Teq — 3
( ) t2_+1 t I{F(Krt_l +yt) F(K;'r't_l) t-1 (K:St_l ¥ 1) t—1
KSt—1
+log ———+1}, 3.1.21
o (k8e—1 +1) } ( )

where 7(-) is digamma function. Although we have not explored the computational
aspects in detail, we envision that a Newton-Raphson approach can be used to aprox-

imate the MLE of k.

3.2 Mean Steady Model for Poisson Data

The mean steady model is a fully parametric model which leads to the RA-EWMA
as an estimator for the mean u;. For Poisson data, the conjugate prior is a gamma
distribution, the link function is a log function, and the forecast prior distribution
i 11|ds for the mean of an observation with risk-adjustment can be obtained in closed
form (Harvey and Fernandes, 1989). In this context, the risk-adjustment step can be
made exactly by conjugately updating the forecast prior for u;; based on observation
Yi+1. For exponential family data, exact risk-adjustment requires that the canonical

link function be baseline separable Grigg and Spiegelhalter (2007), the baseline value
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can be separated from the risk-factor level either in additive or in multiplicative form.
The example for Poisson data is in multiplicative from which can be given by
n = g(ui) = glue) + 6

= log(u;) = log(ut) + 6

= 'u:' o CIOE(Pt)+6t
= pt = pe, (3.2.1)

By Mean Steady Model, the risk-adjusted exponentially weighted moving average
method can be written as the following steps.

1. Conjugate baseline mean.
[.Ltldt ~ C.P(Tt, S), (322)

where s = ¢~1(1 — k)7L

2. Evolution as Mean Steady Model.
ptt1|de ~ CP(Kre, KS). (3.2.3)
3. Update using approximate risk-adjustment. Using pseudo-observation
Yet1,
pies1|desr ~ CP(kre + ¢ ey, 65 + ¢71)

~ CP(r¢41,8). (3.24)

where §e41 = Y1 — (A1 — Aer), and 45 = g71(9(fet1) + 8s41). From the above

equation, it can be seen that

frrr = K(re/s) + (67 /8)Terr

= kflt + (1 — K)Fet1,
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which has the same form as equation (2.1.14).
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Chapter 4

Application of Poisson Methods to

Simulated and Real Data

In this chapter we focus on illustrations of the Poisson methods and case comparisons
between the standard and the risk-adjusted EWMA. We follow the approach of Grigg
and Spiegelhalter (2007) for the binary case where comparisons were made on cases
rather than on extensive simulations to target average performance. With dynamic
data, average performance is complicated, particularly in the presence of covariates.
The format will be (a) show how to generate Poisson dynamic data, (b) apply the
standard and risk-adjusted EWMA methods to the simulated data, (c) apply the
methods to a real data set (namely death counts from lung diseases in the UK for the

years from 1974 to 1979), and (d) summarize conclusions based on the cases studied.

36



4.1 Simulated Dynamic Poisson Data

We first present a simulation of dynamic Poisson data with the risk factors set to 0.
That is, let 6; = 0, t =1, ..., T for all the observations. The conditions been set up are
the same as Grigg and Spiegelhalter (2007) for dynamic binary data. Let po = 0.2,
and W = 0.03. By this setting, 7; = o, ¢ = 1 and solving W = ¢(1 — k)?/(ki;), we
get approximately k = 0.925.

In the first stage, n;, t = 1, ..., 60, were simulated for the baseline natural parameter
by the distribution n:|n—; ~ N(m-1, W). Second, for t = 61,...,260, n|n—1 ~
N(pnt-1, W), where the shift parameter is set to p = 0.99. Using the simulated
data, n, to generate u; by using the link function p; = exp(n:). The homogeneous
data were generated by sampling from Poisson(u:), and the heterogeneous data were
generated by sampling from Poisson(y;). Where u; = g71(g(u¢) + d;). In this study,
the risk-adjusted lavels were generated from a normal distribution with mean zero
and variance 0.25. The initial prior gamma distribution, the distribution of u; at
time t = 0 is noninformative if we choose the initial parameters 7o = 0 and s = 0.
A proper distribution for y; at time ¢ = 7 is obtained when first nonzero observation
y, arrives. In practise, we usually set the initial value of sy other than zero hence set
T ={.

In Figure 4.1, we compare the estimated value by MSM-EWMA method for the
simulated Poisson data with the estimated value by standard EWMA method. We
found the performances of these two methods are almost identical except at the very
beginning. In this Figure, we give two different initial sy for the standard EWMA

estimation. Our empirical results show that the estimations with larger initial s,
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Figure 4.1: Simulated Poisson homogeneous data.

The estimated series by MSM-

EWMA and EWMAs methods are displayed whereas the vertical line at t = 60 marks

the random walk starting to shift.
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Figure 4.2: Simulated Poisson heterogeneity data. The estimated series by EWMA
and RA-EWMA methods are displayed. The vertical line at t = 60 marks the random

walk starting to shift.

39



say so = 15, approach to MSM-EWMA much faster than with smaller initial so, say
so = 1.

Figure 4.2 displays the estimated values between the standard EWMA and the
risk-adjusted EWMA. We can see that these two estimations are almost identical and
both capture the trend exhibited by the random walk. The reason for the similarity in
performance might be due to the fact that the risk factor values are relatively small
compared to the random walk. However, in some peak points, for example, when
t runs from 160 to 170, and from 220 to 240, the estimated values by RA-EWMA
method mitigate the effect of the risk factor values. The vertical dashed line marks

the change point between the trendless training data and the shifted data.

4.2 Application: Death Counts from Lung Dis-
eases in the UK

The dataset ldeatt.s, which is taken from Diggle (1990), gives the monthly counts of
death from bronchitis, emphysema and asthma in the UK for the years from 1974
to 1979. The data were collected monthly and producing a total of 72 observations
over the six years. The original data were split by gender. Diggle (1990) gives basic
analyses for the data. He noted that the raw data had a seasonal behavior, but
when decomposed into seasonal component and residuals, the residuals behaved in a

random fashion.
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Figure 4.3: Monthly deaths from lung diseases in the UK for the dataset ldeaths
(1974-1979).

4.2.1 Preliminary Analysis: Seasonal and Residual Compo-

nents

Figure 4.3 shows the original [deaths data split by gender and the total deaths over
the given years. The data clearly show a strong seasonal pattern, with the minimum
for each year occurring in July and maximum in February.

Since this is a time series data, we assume that the series X; runs throughout
time, but is observad only for ¢ = 1,...,n, and we denote it by X;. The series has
mean . The covariance and correlation functions are given by Venables and Ripley
(2002)

Y = cov(Xppr, Xr), (4.2.1)
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and

pr = % = eorr{ Xsis; Xr): (4.2.2)
0

The values of the covariance and correlation function are assumed not to depend on
7, where 7 can be any integer.

The second moments are important in the practical analysis of time series since the
theory for time series is based on the assumption of second-order stationarity after re-
moving any trends. For ¢ > 0 consider the n—t observed pairs (X;, X1+4¢), ..., (Xn-t, Xn)-
If we just take the standard correlation or covariance, we use different estimates of
mean and variance for each of the subseries X4, ..., X,, and X3, ..., X,,_, thus under
the second order stationarity assumption, these have the same mean and variance
(Brockwell and Davis, 2002). Therefore, we suggest to estimate the autocovariance

by Venables and Ripley (2002)

1 n—t _ _
ct=EZ[Xs+t—X][Xs—X], -n<t<n (4.2.3)

s=1

and estimate the autocorrelation by Venables and Ripley (2002)
=2 _n<t<n (4.2.4)
Co

The sequence {c;} and {r;} are the covariance sequence and correlation sequence of
the second-order stationary time series. In equation (4.2.3) we use n as denominator
even though there are only n — ¢ terms in the sum.

For data containing a trend, the sample autocorrelation function |p(h)| will exhibit
slow decay as h increases, and for data with a substantial deterministic periodic
component, |p(h)| will exhibit similar behavior with the same periodicity. Figure 4.4

of the ldeaths series shows the seasonal pattern and the autocorrelations do not damp
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Autocorrelation

Figure 4.4: Autocorrelation plot for the ldeaths data.

down for large lags. In our dataset ldeaths, the counts have been collected monthly
based. For each twelve months, the data index increased by one. By this property,
The lags in Figure 4.4 are expressed in the unit time. For instance, the lag value
of 1 indicates one year time unit which includes the data of twelve months. From
this autocorrelation plot, we also can see that there is a clear pattern. When the
values of lag are a7’ no negative integers such as 0, 1 and so on, they have a locally
highest autocorrelation value. The values will gradually down to the lowest after six
points, and gradually increase to the highest in next six points. Hence we can say that
the data have strongest negative autocorrelation in 6 months period, and strongest
positive autocorrelation in 12 months period, which is clearly a seasonal pattern.
The spectral approach to second-order properties is better able to separate short-
term and seasonal affects, the detailed theory and formula can be found in Bloomfield

(2000). By the theory, the covariance sequence of a second-order stationary time series
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can be written as
1 " 4
Y=o /_ ] e“tdF(w) (4.2.5)
a finite measure on (—, 7] for the spectrum F. Under mild conditions that exclude

purely periodic components of the series, the measure has a density known as the

spectral density f, hence v; can be expressed as

- 2
ve [t ey as
i Je -1/2

Where the frequency w in the first term is in units of radians/time and in the second
term wy is in unit of cycles/time, where time is in unit of At. If the time series X
has a frequency greater than one, the spectral density will be divided by frequency.

The Fourier integral can be inverted as

flw) = Z e~ = [l + 2 Z pt cos(wt)]. (4.2.7)

By the symmetry of v;, f(w) = f(—w), we need only consider f on (0, 7). A smoother
estimate of w can also be derived. The periodogram is related to the autocovariance

function by

I(w) = i cie™™t = co[l + 2§:rt cos(wt))] (4.2.8)
and
o= % ’ e“tI(w)dw. (4.2.9)

We omit the details which are given by Bloomfield (2000) and Brockwell and Davis
(2002). Figure 4.5 gives spectral density and cumulative periodogram estimates for
the ldeaths data. The bandwidth in the spectral density plot is a measure of the size

of the smoothing window. If there are periodic components in the series, there will
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be peaks in the spectral density plot. Clearly, there is a peak at frequency equal to
1, which indicates the data have periodic component with period 1. In regards to
the ldeaths data, we conclude that the data have a one year period. In the spectral
density plot, we use a smoother which equals to 3. The smoothing uses the modified
Daniell smoothers Bloomfield (2000), which are moving averages giving half weight
to the end values of the span. The smoothing will reduce those peaks, but they can
be seen quite clearly in the plot of the cumulative periodogram, the two dashed lines
display the 95% confidence band for the cumulative plot.

From above analyses, we learned that the data have a one year (twelve months)
period and a seasonal effect. The next question is how to decompose the raw data.

In Brockwell and Davis (2002), the classical decomposition model been given by

X, =mu+ s+ Y, (4.2.10)

where m; is a slowly changing function known as a trend component, s; is a function
with known period d named as seasonal component, and Y; is a stationary random
noise, called residual component. Cleveland et al. (1990) proposed a method to
detrend a time series using Local Polynomial Regression Fitting. The basic idea for
this method can be described as follows. Since we already found the period is one
year, we collect the sub-series, say all the data for January, February, as well as
other months, smoothing them by replacing the data with the mean which gives the
seasonal componert. After the seasonal values been removed, we then smooth the
remainder to find the trend. This leads to a decomposition of the raw data into three
parts: seasonal component, remainder component, and trend component.

Figure 4.6 shows the decomposition of the raw data. Which includes the Original
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Spectral density
Smoother=3
Cumulative periodogram

Figure 4.5: Spectral density estimates and Cumulative periodogram for the ldeaths

data.

data, seasonal component, remainder component, and the trend component.
In next section, we will apply the EWMA and RA-EWMA methods to the residual

component, and compare the results for different conditions.

4.2.2 The EWMA and RA-EWMA Methods for Lung Dis-

ease Death Data

In this section, we apply the standard EWMA and RA-EWMA methods to the total
deaths in the ldeaths data collected over 1974-1979. Two comparisons are pursued.
First, the comparison between the non-seasonal component, trend component, and
standard EWMA estimate applied to the non-seasonal component. Second, the com-
parison between the original data, the standard EWMA estimation on the original

data, and the risk-adjusted EWMA using the transformation of seasonal component
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Figure 4.6: The decomposition for the ldeaths data.
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as risk factor.

We first consider a standard exponentially weighted moving average analysis by
assuming that the non-seasonal data are Poisson distributed with mean p; and esti-
mate y; by a stancard EWMA with decay parameter x; then compare this EWMA
with the trend component and the non-seasonal data. Since we do not have historical
data to estimate x. we set kK = 0.925, this value is not uncommon in the use of the
standard EWMA. From equation (2.2.5), we have s = ¢~!(1 — k)~!. Recall that for
the Poisson data, the dispersion parameter ¢ is equal to 1. Treating the EWMA
as the limiting posterior mean of an MSM without risk-adjustment, the posterior
distribution for . after each observation is taken to be a gamma distribution with
parameters 741 = 7t + ¥t, and ;41 = 8¢ + 1. The initial value of ry can be set as zero
as discussed before

Figure 4.7 displays the relevant plots. Comparing the EWMA with the trend data,
it is clear that the EWMA estimate follows the hidden trend of the Deaths Data.

Assuming now that the original data are Poisson(u; ), we can dynamically estimate
w: by a RA-EWMA, where risk factors are assumed to affect the outcomes. In this
example, we use a log linear regression to estimate the seasonal component as the
risk factor. By equation (3.2.1), we have the relation u;” = p:e, where 6; is the risk
factor.

Figure 4.8 gives the EWMA control chart for non-seasonal component with trend.
The dots represent the values of the non seasonal component. There are two glaring
features shown this plot. First, the EWMA estimate plot is close to the trend. Second,
the EWMA estimates have few points out of control around years 1976 and 1977,

which were caused by several usually large observations. At the beginning of year
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Figure 4.7: The estimates series by the standard EWMA method for the ldeaths data

without seasonal component, non-seasonal component, and trend component.

1977, there are also very low observed values, but the EWMA estimates are still in
control. This is due to the fact that there exist several large observations before these
particular small observations. Hence influences the estimation after those high values.

In the last analysis, we applied the standard Exponentially Weighted Moving Av-
erage and the risk-adjusted Exponentially Weighted Moving Average methods to the
residuals from the (deaths data, without seasonal component and trend component.
In Figure 4.9, the EWMA control chart for non-seasonal data without trend compo-
nent (i.e. the residuals obtained by removing the seasonal and trend components)
is displayed. The main message from this plot is that the EWMA chart is doing
very well with nearly all the EWMA estimate values falling in the in-control region
except for one point, close to the upper limit, which is caused by the one high original

observation.
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Figure 4.8: The estimates series by the standard EWMA method for the ldeaths data

without seasonal component, with 30 as the control limit.
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Figure 4.9 shows that the RA-EWMA is more sensitive to the data than the
EWMA method. As the original data change, the effect is shown on RA-EWMA
immediately whereas for the standard EWMA, the effect was masked by the previous
observations. From a healthcare monitoring perspective, the sensitivity of the RA-
EWMA method can help healthcare providers make adjustments to the services and
treatments provided, avoiding unnecessary delays. However, one outlier outcome
might cause the RA-EWMA based monitoring system to sound alarm. This may or
may not be a good thing to happen, depending on the true cause of the outlier. For
instance, if it was due to the fact that something went wrong with that particularly
patient, then the alarm would be justified. Note, however, that because the RA-
EWMA and the standard EWMA are moderated by previous observations, it will
not happen in all cases that an outlier will automatically cause the issuing of an

alarm.

Table 4.1 gives the numerical estimates by the standard EWMA, the RA-EWMA
methods for the remainder component, namely the residuals, in the ldeaths data in
the year of 1976. The second column of the table is the remainder component, for
year 1976 after thes decomposition for the original data. The calculated mean and
standard deviation of the differences between the residuals and the estimated values
(4F) by the standard EWMA method are given by 26.33 and 334.46 respectively.
Similarly, the mean and standard deviation of the difference between the residuals
and the estimated values (4f) by the RA-EWMA method are given by 37.08 and
343.83 respectively. The latter gives larger mean and standard deviation. The results

show that EWMA gives a smooth change, but RA-EWMA is more sensitive due to
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Table 4.1: The numerical estimates by the standard EWMA and the RA-EWMA
methods for remainder component, namely residuals, in the ldeaths data in the year
of 1976.

Month Residual agf  gf
01 1747 2067 2034
02 2930 2020 2101
03 2385 2163 2122
04 1702 1969 2091
05 1804 2089 2069
06 1961 2028 2061
07 1946 2056 2053
08 1928 2048 2043
09 2024 2047 2042
10 2038 2054 2041
11 2224 2056 2055
12 2422 2069 2083
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Figure 4.9: The estimates series by the standard EWMA and the RA-EWMA methods

for remainder component, with 30 as the control limit, for the ldeaths data.

the risk-adjustment.
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Chapter 5

Conclusions and Future Studies

In this thesis, we developed in detail the Risk-Adjusted Exponentially Weighted Mov-
ing Average for Poisson data, a method useful to monitor healthcare or other counts
that are generated dynamically over time. The approach is motivated by and follows
the approach used by Grigg and Spiegelhalter (2007) for dynamic binary outcomes.
The basic idea is to use a Bayesian approach with conjugate priors (gamma in the
case of Poisson data) that are used iteratively to provide the estimates. The main
application is the counts with covariates. The necessary formulas are given to update
the estimates from the method.

The numerical evidence provided in the thesis suggests that the RA-EWMA
method is more sensitive than the standard EWMA method to the presence of the
underlying covariates. This was shown clearly on the real data, specifically in the
UK’s death counts from lung diseases.

When we develop our formulas for both EWMA and RA-EWMA methods for

Poisson data, we simply assume the dispersion parameter, namely ¢, as 1. But
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in the most applications for Poisson data, the over-dispersion problem needs to be
considered. The initial thinking can be addressed as following. In the monitoring
process, we usually use test data or training data to estimate the initial values such
as 7o, So, and k. At the same time, we also can use the test data or training data
to estimate the value of the dispersion parameter. Once we have the the estimated
dispersion parameter, we can update equation (3.1.10) by 7.1 = &7 + ¢~ ly;, and
St+1 = KSt + ¢ instead of by 741 = kry + ¥z, and Sgp1 = KkS; + 1.

In this thesis, we take 3 and other parameters such as 02 to be known. In practice,
however, the process parameters are estimated from data gathered when the process
was operating in control. This is the approach followed in nearly all the quality control
applications. In real healthcase process, the risk factor might change over time due
to the reassessment of the patients. For example, when a patient is reassessed in
the quarter assessment or full assessment, there may be some new covariates which
become significant hence the old risk factor coefficients need to be updated. In the
monitoring process, it is recommended that one periodically reassesses the risk model.
In our application, we simply use the transformation of seasonal information as risk
factor, this might be inadequate for a real process. Hence the method may not pick
effectively the hidden information in the raw data.

In real healthcare monitoring processes, there are many possible applications and
further research problems. One important issue is the derivation of appropriate con-
trol limits to signal out-of-control excursions of the healthcare process. In the thesis
we used the conventional £30, but quite likely better control limits should be used for
the RA-EWMA. In order to calibrate the method for a particular healthcare process,

one needs to compute the associated average run lengths to guide practitioners.
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So far, only discrete outcomes (i.e. binary or Poisson) have been discussed in de-
tail. But there are many healthcare processes where continuous outcomes are being
monitored, for instance the remission times of patients receiving a particular treat-
ment. A log-normal or gamma distribution for the data may be more appropriate.

Nothing has been done in this direction.
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Appendix A

Notation Index

Symbol
CQI
CUSUM
DGLM
EWMA
GLM

MLE

MSM
RA-EWMA
SPC

TQM

Description

consinuous quality improvement

cunmulative sum

dynamic generalized linear model

exponentially weighted moving average

generalized linear model

maximum likelihood estimation

meen steady model

risk-adjusted exponentially weighted moving average
statistical process control

totel quality management

S7

Page

23
18



Appendix B

R Program for Simulation Studies

and Application

B.1 Simulation Study for Bernoulli Data

HHf==== #Hit#
#H# #it#
### Review for the Bernoulli data example 2
### Mortality rate after Cardiac surgery s
i #it#
### Main referenced Paper H#i
### A simple risk-adjusted exponentially weighted moving average ###
### Olivia Grigg and David Spiegelhalter i
### Journal of the American Statistical Association, March 2007 ###
e H
#fi============= ==###

# The R code need to use library Rlab

# Rlab is a collection of functions and datasets to be used in
# the class ST370-Probability and Statistics for Engineers at
# North Carolina State University.

library(Rlab)

# For more information see the class labs at:
# http://www.courses.ncsu.edu/ST370/distance/rlab/rlab.html
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# These labs are based on Slab and Mlab
# by Doug Nychka and Dennis Boos.

# The following R code has been used to

# plot Figure 2.1

# the simple sample for the surgery data
ra.ewma <- c(.088,.082,.149,.113,.137)
std.ewma <- c(.158,.142,.228,.205,.285)
hat.ewma <-c(.596,.058,.328,.359,.764)

# Figure 2.1: EWMA and RA-EWMA for Cardiac surgery data
¥ < ¢(1,0,1,0,1)
plot( y, type='p’, pch=20, xlab=’time’, ylab=’estimation’)

points(ra.ewma.type=’b’, 1lty=1)
points(std.ewnma,type=’b’, 1lty=2)
points(hat.ewnma,type=’b’, 1lty=3)

msg <- c(’Risk adjusted EWMA’, ’Standard EWMA’,
’Estimate without risk adjustment’)
legend(2,0.9, lty=c(1,2,3),msg, bty=’n’)

Formulas reference this thesis Section 2.4.
Simulation study for Binary Data

Random-walk
To generate random data for mu_t’s, to compare
the estimated series by DGLM and EWMA

If want get the same simulation data
we can use seed()

set nl for the number of trendless training data
set n2 for the number of shifted data

nl <- 60

n2 <-200

n <- nl + n2

H = +H* H H = H H=

# w is for the variance to generate random data
w <- 0.03

# given the initial value of mu0

mu0 <- 0.2

etal0 <- log(mu0/(1 - mu0))

# set.seed to generate same sample

#set.seed(1)

mu <- eta <- NULL
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etal[l] <- rnorm(1,etal,w)

# Loop for generating trendless training data
for (i in 2:n1){

#set.seed (i)

etal[i] <- rnorm(1,etali-1],w)

¥
# shift parameter
rho <- 0.01

# Loop for generating shifted data
for (i in (n1+1):(n)){
#set.seed (i)
etal[i] <- rnorm(1, (1-rho) * etal[i-1],w)

}

# inversed link function for Binary data
mu <- exp(eta)/(1 + exp(eta))

# DGLM

# Formulas reference this thesis Section 2.3.1.
# There are detailed description for each step.
# the repetition to record estimated series

# average to get the final result

# the amount depend on the required accuracy
mm<-500

# The Homogeneity Bernoulli data
yho <- rbern(n, mu)

# Risk asjustment level at zeros
de <- rnorm(n*mm, O, 0)
delta <- array(data=de, dim=c(260,mm))

# following code to do the DGLM estimation

# the step number following the process number
# in section 2.3.1:

# Dynamic Generalized Linear Model

fs <- fr <- array(data = 0, dim = c(260,mm))
for (j in 1:mm ){

etaplus <- eta + deltal,j]
muplus <- exp(etaplus)/(1 + exp(etaplus))

m <- NULL
C <- NULL
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r <- s <- NULL
rrt <-sst <- NULL

sst[1] <- s[1] <-1
rrt[1] <- r[1] <- mu[1]

for (t in 1:(n-1)){
# step 2
m[t] <- log(r[tl/(s[t] - r[t]))
Clt] <- 1/r[t] + 1/(s[t] - r[t])

# step &
et <- m[t] + delta[t+1,j]
qt <- C[t] +w

# step ©
rrt[t+1] <- (1 + exp(et))/qt
sst[t+1] <- (2 + exp(et)+ exp(-et))/qt

# step 7
rrrt <- rrt[t+1] + yho[t+1]
ssst <- sst[t+1] +1

eet <- log(rrrt/(ssst - rrrt))
qqt <- 1/rrrt + 1/(ssst - rrrt)

m[t+1] <- eet - deltalt+1,j]
Clt+1] <- qqt

# step &

rit + 1] <- (1 + exp(m[t+1]))/C[t+1]

st +1] <- (2 + exp(m[t+1])+ exp(-m[t+1]))/C[t+1]
¥

fsl,j] <~ sst
frl,3] < =%

}

# average the simulated estimate values

# to get the estimated parameter r_t and s_t
# for all t.

mfs <- rowMeans(fs, dims = 1)

mfr <- zrowMeans (fr, dims = 1)

# Estimation by Mean Steady Model
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# For bernoulli data phi =1

phi <- 1
kappa <- 0.93 # for mu0=0.2
rar <- NULL

rar[1] <- mul[1]
ras <- phi~“(-1) * (1 - kappa)~(-1)
rafr <- array(data = 0, dim = c(n,mm))

for (j in 1:mm ){
for (t in 1:(n-1)){

# step 1,2
muhat <- rar[t]/ras

# step 3
g <- log(muhat /(1 - muhat))
ginv <- exp(g + delta[t+1,j])
/(1 + exp(g + deltalt+1,3j]))
ytilde <- yho[t+1] - (ginv - muhat)

# step 3, update
rar[t + 1] <- kappa * rar[t] + phi“(-1)* ytilde

}
rafr[,j] <- rar/ras
}

mrafr <- rowMeans(rafr, dims = 1)
ymax <- max(mu, (mfr/mfs),mrafr)

# calculate the differencial risk
drisk <- exp(eteplus)/(1 +exp(etaplus))

# the following code been used to plot Figure 2.2
# Figure 2.2: simulation RA-EWMA and DGLM for Bernoulli
# homogeneous data

plot(2:n, mu[-1], type=’1’,xlab = ’t’,
ylab=expression(mu[t]),
ylim=c(0,ymax + 0.02),1lwd=2, col=8)

abline(v=n1,1lty=2)

points(2:n,mfr[-1]/mfs[-1], type=’1’,1lwd=2)
points(2:n,mrafr[-n], type=’1’,lwd=1)
points(2:n,drisk[-1], type=’p’,pch=’.’,6 cex=2)

msg <- c(’Random Walk’,’DGLM’,’EWMA’,’Differential Risk’)
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legend (200,0.2, msg, lty=c(1,1,1,3),lwd=c(2,2,1,2),
col=c(8,1,1,1),bty="n’)

the following code been used to calculate the
estimated values for Figure 2.3

The code is same as that for Figure 2.1
except this is for heterogeneous data

the DGLM estimation
Formulas reference this thesis Section 2.3.1.
There are detailed description for each step.

delta is the risk-adjustment level

generated from normal distribution

with mean O and variance 0.25

var = 0.25

sds= sqrt(var)

delta <- rnorm(n, O, sds)

etaplus <- eta + delta

muplus <- exp(etaplus)/(1 + exp(etaplus))

yhe <- rbern(n, muplus) ## The Heterogeneity data

H H = HHH HHEHHFHR

de <- rnorm(n*mm, O, sds)
# array delta for the risk-adjustment level
delta <- array(data=de, dim=c(260,mm))

# following code to do the DGLM estimation

# the step number following the process number
# in section 2.3.1:

# Dynamic Generalized Linear Model

# the DGLM estimation srarted
fs <- fr <- array(data = 0, dim = c(260,mm))
for (j in 1:mm ){

etaplus <- eta + deltal,j]
muplus <- exp(etaplus)/(1 + exp(etaplus))

m <- NULL

C <- NULL

r <- s <- NULL

rrt <-sst <- NULL
sst[1] <- s[1] <-1
rrt[1] <- r[1] <- mul1i]

for (¢t in 1:(n-1)){
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# step 2
m[t] <- log(r([tl/(s[t] - r[t]))
Clt] <- 1/r[t] + 1/(s[t] - r[t])

# step 4
et <- m[t] + delta[t+1,]]
qt <- C[t] +w

# step b
rrt[t+1] <- (1 + exp(et))/qt
sst[t+1] <- (2 + exp(et)+ exp(-et))/qt

# step 7
rrrt <- rrt[t+1] + yhe[t+1]
ssst <- sst[t+1] +1

eet <- log(rrrt/(ssst - rrrt))
qqt <- 1/rrrt + 1/(ssst - rrrt)

m[t+1] <- eet - delta[t+1,]]
Clt+1] <- qqt

# step &
r(t + 1] <= (1 + exp(m[t+1]))/Clt+1]
s[t +1] <= (2 + exp(m[t+1])+ exp(-m[t+1]))/C[t+1]

}

fs[,j] <- sst
frl: 3] <= rre

}

# calculate the mean of mm times estimated values
mfs <- rowMeans(fs, dims = 1)

mfr <- rowMeans(fr, dims = 1)

# the RA-EWMA estimation

# Use MSM methoc

# DGLM

# Formulas reference this thesis Section 2.3.2
# There are detailed description for each step.

# For bernoulli data phi =1
phi <- 1
kappa <- 0.93 # for mu0=0.2

rar <- NULL

rar[1] <- mu[1]
ras <- phi~(-1) * (1 - kappa)~(-1)
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rafr <- array(data = 0, dim = c(260,mm))
for (j in 1:mm ){
for (t in 1:(n-1)){

# step 1,2
muhat <- rar[t]/ras

# step 3
g <- log(muhat /(1 - muhat))
ginv <- exp(g + deltalt+1,j])
/(1 + exp(g + deltal[t+1,j1))
ytilde <- yhe[t+1] - (ginv - muhat)

# step 3, update
rar[t + 1] <- kappa * rar[t] + phi~(-1)* ytilde
}

rafr([,j] <- rar/ras

# calculate the mean of the estimations
mrafr <- rowMeans(rafr, dims = 1)

# calculate the ylimit for the plot
ymax <- max(mu, (mfr/mfs),mrafr)

# calculate the differential risk
drisk <- exp(etaplus)/(1 +exp(etaplus))

# Figure 2.3: Simulation RE-EWMA and DGLM for Bernoulli
# heterogeneous data
plot(2:n, mul[-1], type=’1’,xlab = ’t’,
ylab=expression(mu(t]),
ylim=c(0,ymax + 0.02),1lwd=2, col=8)
abline(v=n1,1lty=2)
points(2:n,mfr[-1]/mfs[-1], type='1’,1lwd=2)
points(2:n,mrafr[-n], type=’1’,lwd=1)
points(2:n,drisk([-1], type=’p’,pch=’.’,6cex=2)

msg <- c(’Random Walk’,’EWMA’,’DGLM’,’Differential Risk’)

legend(200,0.2, msg, lty=c(1,1,1,3),
lwd=c(2,2,1,2),col=c(8,1,1,1) ,bty="n’)
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B.2 Simulation Study for Poisson Data

#it# i3
#Hit# #H
### Generate Poisson data and programming #HiH#
Hitdt #iH#
### Main referenced Paper i
### A simple risk-adjusted exponentially weighted moving average ###
### Olivia Grigg and David Spiegelhalter i
### Journal of the American Statistical Association, March 2007 ###
Hit# Hitd
### Another referenced Paper 4
### Time series models for Count or Qualitative Ovservations #it#
### A.C. Harvey and C. Fernandes e
### Journal of Business & Economic Statistics, October 1989 #H#
Ty I — —— e

Rigis g T

# Generate Random-walk data for Poisson data
# If want get the same simulation data
# we can use seed()

# set nl for the number of trendless training data
# set n2 for the number of shifted data

nl <- 60
n2 <-200
n <- nl + n2
w <- 0.03
mul0 <- 0.2
eta0 <- log(mu0)
#set.seed (1)
mu <- eta <- NULL
eta[1] <- rnorm{i,etal,w)
for (i in 2:n1){
#set .seed (i)
etali] <- rnorm(1,etali-1],w)

rho <- 0.01

for (i in (ni+1):(n)){
#set .seed (i)
etal[i] <- rmorm(1, (1-rho) * etali-1],w)
#eta[i] <- rnorm(1l,rho * etali-1],w)

mu <- exp(eta)

|
# the repetition to record estimated series
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# average to get the final result
# the amount depend on the required accuracy

# the repetition mm set as 500
mm<-500

delta <- rnorm(n, 0, 0.25)
etaplus = eta + delta
muplus <- mu * exp(delta)

yhe <- rpois(n, muplus)

# The Heterogeneity poisson data

# Baseline mean plus risk adjustment level
# Risk asjustment level at 0.25

de <- rnorm(n*mn, 0, 0.25)

# risk adjust levels
delta <- array(data=de, dim=c(260,mm))

# risk adjust levels are zeros for
# homogeneous data
delta0 <- array{data=0, dim=c(260))

# Possion data, dispersion parameter is equals to one
phi <- 1

# selected decay parameter
kappa <- 0.925

D —

# EWMA without risk adjustment

# The formulas please reference section 3.2

# The following paper has some discuss about possion case
# Harvey, A., and Fernandes, C. (1989)

# Time Series Models for Count or Qualitative Observations
# Journal of Business and Economic Statistics, 7, 407-417.
# Section 2

a <- NULL

b <- NULL

a0 <- 0

bo <- 1

# the following code for Figure 4.1
# the comparison between different initial
# value of sO for RA-EWMA method, and MSM method
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# the EWMA with initial sO=1
muhat18 <- array(data = 0, dim = c(260))

# the predicted values of mu by MSM-EWMA
for (t in 1:(n-1)){
# step 1
if (t==1){

at <- kappa * a0
bt <- kappa * b0

}
else {
at <- kappa * a[t-1]
bt <- kappa * b[t-1]
}

muhati8[t] <- at/bt

# step 2, update
alt] <- at + yhe[t]
blt] <- bt + 1

¥

mpoisl <- muhati8
# the following code for Figure 4.1
# the EWMA with initial s0=15
a0 <- 0
b0 <- 15
muhatl8 <- array(data = 0, dim = c(260))
# the predicted values of mu by MSM-EWMA
for (t in 1:(n-1)){
# step 1
if (t==1){

at <- kappa x* a0
bt <- kappa * b0

¥
else {
at <- kappa * a[t-1]
bt <- kappa * b[t-1]
}

muhati8[(t] <- at/bt

# step 2, update
a[t] <- at + yhe[t]
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blt] <- bt + 1
}

mpoisl5 <- muhati8

# EWMA without risk adjustment
# MSM-EWMA in Figure 4.1

# For Poisson data phi = 1,
phi <- 1

kappa <- 0.925

rarO <- NULL
rar0O[1] <- mul[1]
rasO <- phi~“(-1) * (1 - kappa)~(-1)

# define an array to save the one step prediction values
rafr0 <- array(cata = 0, dim = 260 )

for (t in 1:(n-1)){

# step 1,2
muhat0 <- rar0[t]/ras0

# step 3

g <- log(muhatO)

ginvO <- muhatO

ytildeO <- yhe[t+1] - (ginvO - muhatO)

# step 3, update
rarO[t + 1] <- kappa * rarO[t] + phi~(-1)* ytildeO
}

rafrO0 <- rar0/razsO

# calculate the y limit for the plot
ymax <- max(mu,mpoisl,mpoisib, rafr0)

# Plot to compare the EWMA with different initial values b,
# and EWMA in Mein paper. without risk adjustment

# Figure 4.1 EWMA with different initial values

plot(l:n, mu, type=’1l’,xlab = ’t’, ylab=expression(mu[t]),
ylim=c(0,ymax + 0.02),lwd=2, col=8)

abline(v=n1,1lty=2)

points(l:n,rafr0, type=’1l’,lwd=2) # EWMA

points(0: (n-2) ,mpoisl[-n], type=’1’,1lty=2,lwd=1)
points(0: (n-2) ,mpoisi5[-n], type=’1l’,1lty=3,1lwd=1)
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msg <- c(’Random Walk’,’MSM-EWMA’,’EWMA with sO=1’,
’EWMA with =£0=157)
legend (200,0.4, msg, lty=c(1,1,2,3),lwd=c(2,2,1,1),
col=c(8,1,1,1),bty="n’)

- —— T

# the following code for Figure 4.2
# EWMA without risk adjustment
# For Poisson deta phi =1,

phi <- 1
kappa <- 0.925 # for mu0=0.2
rar0 <- NULL

rar0[1] <- mu[1]
rasO <- phi~(-1) * (1 - kappa)“~(-1)
rafr0 <- array(cdata = 0, dim = 260 )

for (t in 1:(n-1)){

# step 1,2
muhat0 <- rarO0[t]/rasO

# step 3

g <- log(muhatO)

ginvO <- muhatO

ytildeO <- yhe[t+1] - (ginvO - muhatO)

# step 3, update
rarO[t + 1] <- kappa * rarO[t] + phi~(-1)* ytildeO
3

rafr0 <- rar0/rasO
# the following code for Figure 4.1
# RA-EWMA, with risk adjustment
# For Poisson data phi =1,
phi <- 1
rar <- NULL
rar[1] <- mean(yhe)
ras <- phi~“(-1) * (1 - kappa) " (-1)
rafr <- array(data = 0, dim = c(260,mm))
for (j in 1:mm ){
for (t in 1:(n-1)){

# step 1,2
muhat <- rar([t]/ras
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# step 3

g <- log(muhat)

ginv <- muhat * exp(delta[t+1,j])
ytilde <- yhe[t+1] - (ginv - muhat)

# step 2, update
rar[t + 1] <- kappa * rar[t] + phi~(-1)* ytilde
}

rafr([,j] <- rar/ras

mrafr <- rowMeans(rafr, dims = 1)
ymax <- max(mu,mrafr, rafr0)

drisk <- exp(etzplus)

# Figure 4.2: Comparison between EWMA and RA-EWMA

plot(l:n, mu, type=’1l’,xlab = ’t’, ylab=expression(mu(t]),
ylim=c(0,ymax + 0.02),lwd=2, col=8)

abline(v=n1,1lty=2)

points(1:n,rafr0, type=’1l’,lwd=1) # EWMA

points(l:n,mrafr, type=’1’,lwd=2) # RA-EWMA

msg <- c(’Random Walk’,’EWMA’,’RA-EWMA’)
legend(150,0.4, msg, lty=c(1,1,1),
lwd=c(2,1,2),col=c(8,1,1),bty="n’)

# Figure 4.3: Control Chart --
#Comparison between EWMA and RA-EWMA
q <- qcc(yhe[1:60] , newdata=yhe[61:150],
type="xbar.one", plot=FALSE)
qcc.options (bg.margin="white")
ewma(q,lambda = (1-kappa),xlab=’time’,ylab=’Poisson data’)
points(1:150,mrafr[1:150],type=’1’,1ty=2)
msg <- c(’Standard EWMA’,’RA-EWMA’)
legend(110,1.75,1ty=c(1,2) ,msg, bty=’n’)
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B.3 Application for Lung Deaths Data

##ff==========s========= #it
HHE iziz
### Application for Count data ###
### Monthly Deaths from Lung Diseases in the UK Hid
### Main reference paper: HEE
### A simple risk-adjusted exponentially weighted moving average ###
### 0livia Grigg and David Spiegelhalter #it#
### Journal of the American Statistical Association, March 2007 ###
#EHE i
### Another referenced Paper i
### Time series models for Count or Qualitative Ovservations ###
### A.C. Harvey and C. Fernandes HHE
### Journal of Business & Economic Statistics, October 1989 ###
#H# #H#HH
### The ldeaths data is from: #i#H
### P. J. Diggle (1990) Time Series: #it#
### A Biostatistical Introduction. Oxford, table A.3 H##
### It now included in R package stats library ###
HH# #HiH
### ===###

# Step 1: Decompose the original data to seasonal,

# trend, and remainder series

# The R code need to use library stats and qcc

# The data ldeaths been used for this application is
# in Library stats

require(stats)

# library is used to generate the Control Charts
require(qcc)

#..._ R

# preliminary analysis for the ldeaths data

# plot the original death data separate by male,

# female, and the total

# Figure 4.4: Death data: Monthly deaths from lung diseases
# in the UK

ts.plot(ldeaths, mdeaths, fdeaths, 1ty = c(1, 3, 4),
xlab = "year", ylab = "deaths")

msg <- c(’Total’,’Male’,’Female’)

legend (1978,3900,1ty=c(1,3,4), msg, bty=’n’)

# Autocorrelation plots for the multiple time series

# of male and female deaths
# Figure 4.5: Autocorrelation and autocovariance plots
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# for the Deaths data

par (mfrow=c(1,2))

acf(ldeaths, main=’autocorrelation’)

acf(ldeaths, type = ’covariance’, main=’autocovariance’)

# Figure 4.6: ©Spectral density estimates for the Deaths data
par(mfrow = c(2, 2))
spectrum(ldeaths, main=’Series:deaths\n Raw Periodogram’)
spectrum(ldeaths, spans = c(3, 3),
main=’Series:deaths\n Smoother = 5°)
spectrum(ldeaths, spans = c(5, 7),
main=’Series:deaths\n Smoother
cpgram(ldeaths, main=’Series:deaths’)

7%)

+H

# decompose the Total data into seasonal, trend,
# and remainder three parts

deaths <- stl(ldeaths, "periodic")

seasonal <- deaths$time.series[,1]

trend <- deaths$time.series[,2]

remainder <- deaths$time.series[,3]

# Figure 4.7: The decomposition for the Deaths data
ts.plot(remainder+mean(ldeaths), seasonal, trend, ldeaths,
1ty=c(1,2,3,4), xlab=’year’, ylab=’deaths’)
msg <- c(’Non-seasonal data’,’Seasonal component’,

"Trend’, ’Original data’)
legend(1977,4000,1ty=c(1,2,3,4), msg, bty=’n’)

7 —

# Step 2: Compute the standard ewma without risk adjustment
# without seasonal effect

# The standard EWMA smooth with decay parameter kappa

# The decay parameter is set as .925

kappa <- 0.925

x <- time(ldeaths)
y <- trend + remainder
n <- length(y)

# std.ewma: the standard ewma value of ldeaths

# This standard ewma with seasonal effect

std.ewma <- ewmaSmooth(x,y,lambda=(1 - kappa),start=mean(y))
#lines(std.ewma, col="red")

Compare deseasonal data (with trend), Compare among:
(a) The deseasonal data
(b) Trend Component

H o H
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# (c) Standard EWMA by using deseasonal data

# Figure 4.8: The non-seasonal component, trend,

# and standard EWMA for the Deaths data

ts.plot(remainder+trend, trend, lty=c(2,3),
xlab=’year’, ylab=’deaths’)

lines(std.ewma, lty=1)

msg <- c(’Non seasonal data’,’Trend component’,
’EWMA without seasonal effect’)

legend (1976.5,3000,1ty=c(2,3,1), msg, bty=’n’)

H

# Apply the deseasonal data (y = trend + remainder)
#to EWMA control chart

x <- time(ldeaths)

y <- remainder + trend

n <- length(y)

sample <- 1:n

# Figure 4.9: +the EWMA control chart for the Remainder
# with trend

q <- qcc(remainder + trend, type="xbar.one", plot=FALSE)
qgcc.options(bg.margin="white")

ewna(q,xlab=’tine’ ,ylab=’deaths’)
points(sample,trend,type=’1’,1ty=3)

msg <- c(’EWMA without seasonal effect’,’Trend component’)
legend (30,3000, lty=c(1,3), msg, bty=’n’)

Compare the remainder component of the deaths data
(without trend, without seasonality),

i
#
#
# Compare among:

# (a) The remainder

# (b) Standard EWMA by using the remainder

# (c) Risk Adjusted EWMA (RA_EWMA) by using
#

#

#

#

==>> ( Remainder) as the data
==>> The transformation of seasonal component
as the risk factor

(b) Standard EWMA by using the original data
kappa <- 0.925
x <- time(ldeaths)
y <- remainder

# std.ewma: the standard ewma value of ldeaths

# This standard ewma with seasonal effect
std.ewma <- ewmaSmooth(x,y,lambda=(1 - kappa),start=mean(y))
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std.ewma <- std.ewma$y +mean(ldeaths)

# (c) Risk Adjusted EWMA (RA_EWMA)

mu0 <- mean(y)
n <- length(y)

phi <- 1

# a simple transformation for the seasonal component
# which used as risk-adjustment parameter.

delta <-log( round(seasonal/100 + 8))

# setup the initial values for code
muhat <- muhatplus <- NULL

ytilde <- NULL

r <- NULL

r0 <- muO

s <= (phi)~(-1) * (1-kappa)~(-1)

# initialize the values and parameters at t = 0
t <= 0

muhat [t+1] <- r0/s

muhatplus [t+1] <- muhat[t+1] * exp(delta[t+1])

ytilde[t+1] <- y[t+1] - (muhatplus([t+1] - mubat[t+1] )
r[t+1] <- kappa * rO + phi“(-1) * ytilde[t+1]

#calculate the estimated values at t from 1 to (n-1)
for (t in (1:(n-1))){
muhat [t+1] <- r[t]l/s
muhatplus[t+1] <- muhat[t+1] * exp(deltal[t+1])
ytilde[t+1] <- y[t+1] - (mubatplus[t+1] - muhat[t+1] )
, r[t+1] <- kappa * rO + phi“(-1) * ytilde[t+1]

ra.ewma <- muhat+ mean(ldeaths)

# Figure 4.10: the non-seasonal EWMA control chart

# without trend

remainders <- y

q <- qcc(remainders, type="xbar.one", plot=FALSE)
qgcc.options (bg.margin="white")

ewma (q,xlab=’time’,ylab=’deaths’,lambda=(1-kappa))
points(ra.ewma-mean(ra.ewma) ,type=’1’,1ty=2)

msg <- c(’The remainder’,’RA_EWMA’,’Standard EWMA’ )
legend (40,800,1ty=c(3,2,1), lwd = c(3,1,1),msg, bty='n’)

# Figure 4.11: the EWMA and RA-EWMA for remainder component
plot( remainder+ mean(ldeaths), type=’p’, pch=20, xlab=’year’,
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ylab=’deaths’, ylim=c(1950,2200))
points(x,ra.ewma,type=’1’, lty=1)
points(x,std.ewna,type="1’, 1lty=2)

msg <- c(’The remainder’,’RA_EWMA’,’Standard EWMA’ )
legend(1976.5,2200,1ty=c(3,1,2), 1lwd = c(3,1,1) ,msg, bty=’n’)
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