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Abstract 

The Risk-Adjusted Exponentially Weighted Moving Average (RA-EWMA) for Pois­

son data is developed in detail. The method is useful to monitor healthcare or to 

other counts that are generated dynamically over time. The approach used is mo­

tivated by and foll ws closely the approach used by Grigg and Spiegelhalter (2007) 

for dynamic binary outcomes. In simple terms, a Bayesian approach is applied that 

uses conjugate priors (gamma in the case of Poisson data) utilized iteratively to pro­

vide the method estimates as the posterior expected means. The main application 

is counts with covariates. The thesis provides the necessary formulas to update the 

method's estimates . Numerical calculations are presented to illustrate the use of the 

methods and to co pare it to the Standard Exponentially Weighted Moving Average 

(Standard EWMA), which is a standard monitoring method used in industrial appli­

cat ions . The numerical evidence provided in the thesis suggests that the RA-EWMA 

method is more sensitive than the Standard EWMA method to the presence of the 

underlying covariates. This was shown clearly on real data, specifically in the UK's 

death counts from lung diseases. 

ix 



Chapter 1 

Introduction and Thesis Objectives 

1.1 Quality Control in Healthcare 

The concepts and methods of total quality management (TQM) and continuous qual­

ity improvement (CQI) appeared right after World War II for improving the produc­

tion quality of goods and services. They were not implemented in the healthcare area 

until recent years. There is now a growing demand in healthcare for the development 

of statistical process control (SPC) tools to measure and improve healthcare processes 

and outcomes (Carey and Lloyd, 2001). 

Statistical process control techniques can be applied to different types of data such 

as clinical outcomes, risk management, and patient satisfaction. There is, however, 

a sharp distinguishing element between industrial and healthcare applications. For 

the most part, ind strial settings involved production of items manufactured under 

controlled processes, yielding largely homogeneous product. Typical healthcare ap­

plications, on the other hand, while many aspects of the processes are under careful 
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supervision, the end receivers are patients presenting great diversity in their personal 

profiles. This diversity, which are collectively called risk factors in the literature, can 

have a substantive effect on the process outcome. The delay in the development of 

quality control methods in healthcare is likely in part due to the differences between 

the application areas. Taking the risk factors into account is a necessary condition 

for the success of any statistical method in healthcare. 

1.2 Standard Monitoring 

Patient safety is enhanced by the use of healthcare processes, working practices and 

systematic activities that prevent or reduce the risk of harm to patients. Patients 

achieve healthcare benefits that meet their individual needs through healthcare de­

cisions and services, based on what assessed research evidence has shown provides 

effective clinical outcomes. Developing a proper flowchart to monitor the patient 

outcomes or the treatment procedure is important for patients to receive services 

as promptly as possible. The proper monitoring of a process can help healthcare 

providers choose the right services and treatments and avoid unnecessary delays at 

any stage of service delivery or the care pathway. 

Statistics is a c llection of techniques useful for making decisions about a process 

based on the analysis of the information collected. Statistical methods play a vital role 

in the quality control processes, they provide information used to control and improve 

the process. In statistical process control and monitoring, many of the techniques, 

such as the Shewhart control chart have been used for over 50 years. However, due 

to the increasing emphasis on variability reduction and process improvement, many 
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new statistical mo itoring and control techniques have been developed. Examples in­

clude the cumulative sum (CUSUM) and the exponentially weighted moving average 

(EWMA) control charts. In general, a major disadvantage of the Shewhart control 

chart is that it only uses the information about the last data and ignores the en­

tire previous history. This disadvantage makes the Shewhart control chart relatively 

insensitive to small shifts in the process . The CUSUM and EWMA control charts 

overcome this disadvantage and react quickly to even small changes. See Montgomery 

(2001) for details. 

The CUSUM is a type of control chart based on the total deviations of successive 

samples from the target value. Each point plotted on the chart represents the sum 

of the deviations at the previous point, and all deviations since. It has been shown 

to be efficient in detecting small shifts in the mean of a process. If we resort to the 

traditional signal of an out-of-control process when one or more points fall beyond the 

control limit, then the Shewhart control chart might fail to detect the shift whereas 

the CUSUM control chart will detect it. 

The exponentially weighted moving average is also a good method when we are 

interested in detecting small shifts. The performance of the EWMA is approximately 

the same as that of the CUSUM and it is easier to set up. The EWMA is usually 

used with individual observations. 

The EWMA control chart was introduced by (Roberts 1959), and detailed dis­

cussions can be found in Crowder (1987) and in Lucas and Saccucci (1990) . An 

exponentially weighted moving average applies weighting factors to the data points. 

The weighting for each data point decreases exponentially, giving much more impor­

tance to recent observations while still not discarding older observations entirely. It 
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is a well known method for time series forecasting and smoothing. The EWMA can 

be expressed as the following form by Harvey (1991) 

Current estimate = Previous estimate + discounted error. 

Hence is one type of Kalman filter. By enclosing the state-space models, this filtering 

method can be extended to deal with the estimation with covariates by Harvey (1991) 

and West and Har ison (1997). 

As with other control charts , both CUSUM and EWMA charts are used to monitor 

processes over time. The charts are time based so that they show a history of the 

process. 

The degree of weighing decrease is expressed as a constant smoothing factor K , a 

number between 0 and 1. K may be expressed as a percentage, so a smoothing factor 

of 5% is equivalent to K = 0.05. The EWMA statistic provides a smoothed estimate 

of the current level of the process. Because the EWMA chart uses information from 

all samples , the p: ediction for next outcome or outcomes will depend on previous 

observations, hence the response will be fast when the the shift in the mean of a 

process occurs. 

Recently, increased interest has been placed in monitoring heterogeneous time 

series in medical contexts . The aim is to monitor and control the outcome of a med­

ical procedure or process. The risk factors (i.e. patient covariates) have potentially 

an effect on the procedure outcomes. In general, the traditional EWMA method as 

described above treats all patients as having equal risk factors. This makes the meth­

ods ineffective in some cases and misleading in others when monitoring healthcare 

outcomes. For inst ance, a sudden increase in the number of failures in the outcomes 

4 



may be due to the treatment of several high risk patients and not to a change in 

the application of the healthcare service. The result is unnecessary false alarms in 

the monitoring. Likewise, treating several low-risk cases yielding an unalarming small 

number of failures may result in an undetected deterioration of the service when using 

the traditional EWMA. Grigg and Spiegelhalter (2007) have addressed these prob­

lems and have developed several promising approaches to incorporate risk factors in 

process monitoring and control of healthcare processes. Specifically, they provide a 

thorough analysis of processes with binary (i.e. success/failure) outcomes. 

In the medical context , count data often come up in a systematic and regular way. 

For example, each month the number of patients who die due to lung diseases in a 

particular area. These outcomes clearly have seasonal as well as other trends. If we 

want to discover the secrets behind process changes over time, we need to consider 

temperature, pollut ion as well as other factors which will affect the patients. 

1.3 Thesis Objectives and Overview 

In this thesis, we focus on the exponentially weighted moving average control chart 

with risk-adjustment which emphasis on the case of Poisson data. Specifically we aim 

to develop: 

• the theoretical aspects for the Poisson case; 

• its numerical implementation; and 

• a comparison with competing charts through simulations. 
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In Chapter 2, we review the standard and risk-adjusted EWMA methods for 

binary data as developed by Grigg and Spiegelhalter (2007), and reproduce some of 

the simulation studies and plots to illustrate the basic ideas of these two methods. 

In Chapter 3, we make the theoretical development of the EWMA and RA-EWMA 

methods for Poisson data. In Chapter 4, we first make a simulation-based comparison 

between EWMA and RA-EWMA for Poisson data, then apply the methods to the 

UK lung diseases death data and compare the results. Finally, we make concluding 

remarks and discuss further possible extensions in Chapter 5. 
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Chapter 2 

Standard and Risk-Adjusted 

EWMA for Binary Data 

In some medical a: plications, there is an interest in monitoring health outcomes 

over time while taking the severity of individual patient's condition into account. In 

general, the severity and other patient covariates are called risk factors. In their 

research, Grigg and Spiegelhalter (2007) provided a direct estimate of the current 

chance of an adverse event given a patient's covariate information. As we mentioned 

in Chapter 1, the order of patient arrival might mask the true change in the hidden 

risk for a patient . Adjusting for the different effects exerted by the risk factors for 

the patient will render more accurate information for the healthcare processes. 

In this chapter we review the risk-adjusted exponentially weighted moving aver­

age method for binary data developed by Grigg and Spiegelhalter (2007). Section 

2.1 introduces the asic idea of the standard exponentially weighted moving aver­

age smoothing method for binary data. Section 2.2 introduces the EWMA for the 
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Bayesian state-space model. Section 2.3 presents a comparison between the dynamic 

generalized linear model and the mean steady model. A simulation study is pre-

sented in Section 2.4 focusing on the performance of the standard EWMA and the 

risk-adjusted EWMA methods. Concluding remarks regarding the performance of 

the methods for bi ary outcomes are summarized at the end of the simulation study. 

2.1 The Exponentially Weighted Moving Average 

The standard exponentially weighted moving average is a well-known estimation and 

prediction tool in time series analysis. It has also being applied extensively in statisti-

cal process control and monitoring particularly to industrial processes (Montgomery 

2001). The basic form of the method is as follows. 

Let Yl, ... , Yt, .. . be a sequence of random variables at successive times . Assume 

that lE[Yt!f.Lt] = f.Lt for t= 1, 2, ... , where tis the index of time and f.Lt's are assumed to 

be from some dynamic process. The standard exponentially weighted moving average 

based on the observations Y1, ... , Yt is the statistic f],/ defined recursively by 

fJ,f = Kjlf-_l + (1- K)Yt (t = 1, 2, ... , 0 :S K :S 1) 

= K(Kjlf-2 + (1- K)Yt-l) + (1 - K)Yt 

= K2P,f-_2 + (1- K)(KYt-l + Yt) 

t 

= Ktjl~ + (1 - K) L Kt-iyi, 
i=l 

(2.1.1) 

(2.1.2) 

where P,~ is the est imate for f.Lo. In general, the P,~ is derived from the training data 

or early data by the given model. 
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The most frequent use of fltE is as an estimator of the process level at time t, 

namely 11-t· The parameter /'1, determines the speed of decay. In the case of K, = 0, the 

current estimate of the mean depends only on current data, and if K, = 1, the current 

estimate of the mean is totally dependent on the prior estimate of the mean. In the 

standard analysis vlithout risk factor adjustment, p,f is a forecast for l-£t+l· 

Based on the standard EWMA, the risk-adjusted exponentially weighted moving 

average (RA-EWMA) provides a smoothed estimate for the expected outcome for an 

observation taking into account its covariate values. For example, if we monitor the 

30-day mortality of patients after cardiac surgery by a particular surgeon, the patient's 

gender, age, diabet es status, and other preoperative factors can be considered as 

covariates for the patient (Steiner et al., 2000) . The derivation given in this section, 

the adjustment made for current differential risk is based on an approximation to the 

likelihood, which is assumed to be of exponential family form. 

Assuming a distribution from the exponential family, the probability mass function 

or probability density function of Yt can be written as 

(2.1.3) 

where rJi is the nat ural parameter, we have g(p,i) = rJi and lE[Yt!P.i] = 11-i , where 

g( ·) is the canonical link function. " + " indicates that a parameter includes the 

effect of risk factors . <P is assumed to be a known scale parameter, namely dispersion 

parameter. 

From the Gene alized Linear Model (GLM), we have lE[YtiP.i] = v'(rJi) and 

'V[Yt!P.i] = v"(rJi)¢ by (McCullagh and Nelder 1983), where v'(-) is the first deriva­

tive of v(·) and v"(·) is the second derivative of v(·) with respect to the unknown 
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parameter. 

For example, assume 

Ytlf.Lt""' Bernoulli(p,t), t = 1, 2, .... 

The probability mass function can be given by 

= exp {Yt log(p,t) + (1 - Yt) log(1 - f.Lt)} 

= exp {Yt log(__!!:!.__) + log(1 - f.Lt)} 
1 - f.Lt 

= u(yt, <P) exp { ¢-1 [Yt77t - v( 77t)]} , 

where u(yt, ¢) = 1 and¢= 1. In above equation, we have 

and 

77t = log(__!!:!.__) 
1 - f.Lt 

v(rJt) = -log(1- f.Lt)· 

Now we assume a structure for rJt, a natural parameter includes the effects of 

covariates 

rJt = 77t + Ot, t = 1, 2, ... , (2.1.4) 

where Ot denote the risk adjustment level at time t associated with observation Yt, 

t = 1, 2, ... ,. Assume that Ot in equation (2.1.4) has the from bt = (3T Xt, where 

Xt be a vector of observed and centered covariates , thus Xt = 0 is the baseline. In 

addition, we consider the vector of coefficients (3 to be known usually from fitting the 

model to data gathered when the healthcare process was operating in control. Also, 
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the baseline expectation is taken to be f.Lt = g-1(rJt)· Hence equation (2.1.4) can be 

rewritten as 

(2.1.5) 

Using the standard GLM notation, the log-likelihood function arising from equa­

tion (2.1.3) can be written as 

Ll(J.Lt) = {YtrJ+- v(rJ+)}j¢ 

= {Yt[9(J.Lt) + 8t] - v[g(J.Lt) + 8t]} /¢. (2.1.6) 

Even though 8t is known, equation (2.1.6) is still complicated for inferences about f.Lt· 

If we use approximate analysis instead of the exact analysis, the form of the expec­

tation of f.Lt might be easier. Let yf be a risk-adjusted pseudo-baseline observation, 

assume it stratifies lE[yfiJ.Lt] = f.Lt, then the log-likelihood function of equation (2.1.3) 

would be 

Lz(J.Lt) = {yf[g(J.Lt)]- v[g(J.Lt)]}j¢. (2.1.7) 

What we want 1s to obtain a statistic yf whose contribution to the likelihood of 

f.Lt is equal to that made by the original data Yt. Then the inference of f.Lt based on 

equation (2.1.7) would be the same as that based on equation (2 .1.6) for all t . Thus 

the likelihood contributions made by yf and Yt would be exactly equal for any true 

value of f.Lt if the score functions of (2.1. 7) and (2.1.6) were identical at all f.Lt· The 

score function can he written as 

and 

L~ = g'(J.Lt)(yf- f.Lt)/¢ . 

11 
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The identity occurs if 

(2.1.10) 

hence we have 

yf = Yt- (J4- J.l-t) · (2.1.11) 

This equation indicates that the pseudo-observation needs to be the difference between 

original observation and its differential expectation J.J-i- J.l-t· We can use an estimated 

value to replace th unknown parameters. In this case, (2 .1.11) can be replaced by 

- ( A+ A ) Yt = Yt - J.l-t - J.l-t (2.1.12) 

where 

(2.1.13) 

In the same way a.s in the standard EWMA, the RA-EWMA at time t-1 can provide 

a forecast for the baseline expectation P,t at time t . 

If we wish to estimate the baseline mean parameter P,t of the exponential family 

data Yt, given risk-adjustment level Ot , we can define a RA-EWMA as 

;l~ = ~;1{:_ 1 + (1- ~)Yt (t = 1, 2, .. . , o::; ~::; 1) (2 .1.14) 

t 

= ~tft,~ + (1- ~) L:~t-if)i , (2 .1.15) 
i=l 

where P,~ is an estimate of p,0 . In general, the ;1~ is derived from the training data 

or early data by the given model. 

Noticing from equation (2.1.2) that ftf is a linear combination of ;1~, y1, Y2, .. . , 

Yt and these variables are independent it follows that the variance for the standard 

EWMA is 
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t 

V[Jtfl = (1- K;)2 LK;2(t-i)V[yi]· (2.1.16) 
i=l 

Note that V[ft~] is taken to be 0. If the dispersion parameter ¢ of the Yt is as-

sumed fixed and known, then using the basic finite geometric sum the above equation 

simplifies to 

V[ftf] = ~ ~ : (1 - K;2t)¢ , (2.1.17) 

which has limiting value ()2 = ¢(1- K;)/(1 + K;) as t---+ oo. 

2.1.1 Example: Mortality Rate After Cardiac Surgery 

In this section we present an example aimed at illustrating the implementation of the 

RA-EWMA and also to compare it with the standard EWMA. The data collected are 

the 30-day mortality after cardiac surgery in a UK Cardiac Surgery Center by one of 

the surgeons over the years 1992 and 1998. Specifically, 

{ 

1 if the tth patient died within 30 days after surgery; 
Yt = 

0 otherwise. 

Where tis patient number in the order the patients were treated and Yt is the associ-

ated outcome. Thus the probability mass function here is simply the Bernoulli mass 

function 

In this example, all the required data and preliminary analysis results were given by 

Steiner et al. (2000) . Our main objective is to show in detail how the the RA-EWMA 

is implemented. 
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A logistic regression model has been fitted to develop the risk equation. To fit 

this model, 2, 218 operations during year 1992 and 1993 have been choose as training 

data. The resulting equation is given by Grigg and Spiegelhalter (2007) 

where Xt is the centered Parsonnet score for acquired adult heart surgery, standardized 

to have mean zero in the training data. Originally introduced by Parsonnet (1989), 

the score is a preoperative predictor of mortality in cardiac surgery based on a variety 

of risk factors that include gender, age, diabetes status, number of catastrophic states, 

and others. The Parsonnet score has become very popular in heart studies in recent 

years. Hence the risk adjustment level is known, which is Ot = f3xt = .077xt for 

the tth patient. For simplicity, we choose 5 consecutive surgical outcomes for the 

year 1994-1998 under a particular surgeon. We denote the outcomes by vector y 

and y = (1, 0, 1, 0, 1?. The covariate vector is given by x = (44, -6, 22, 15, 42f. 

Hence the risk factor vector for the given patients can be calculated as t5 = f3x = 

(3.4, -.5, 1.7, 1.2, 3.2?. 

For the initial setup, the training data have 2, 218 observations, 142 patients 

died within 30 days after surgery, so this gives J.l,~ = 142/2218 .064. If we 

using the decay parameter "' = 0.9, then equation (2.1.2) gives the EWMA as 

p,E = (.158, .142, .228, .205, .285)r. In the estimation of the standard EWMA, we 

simply set the risk adjustment level to be zero for each of the observation. 

Next, we are goi g to calculate the RA-EWMA. Starting with an estimate for the 

natural parameter value of TJo of TJo = -3.0, which is equal to the intercept value of 

the generalized linear model fitted to the original data. We have P,~ = efJo / (1 + efJo) ~ 
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0.048. To calculate P,i, we have 

Plug in 

- ( ~ + ~ ) Y1 = Y1 - J.L1 - J.L1 , 

we get ih = 0.451. Next, by equation (2.1.14), 

p,f = r.P,~ + (1 - r.)ih = .088. 

By above recursive method, we finally get the EWMA and RA-EWMA values for y 

in Table 2.1. 

The EWMA estimates the current mortality probability for the tth patient and 

the RA-EWMA provides an estimate of mortality probability for the tth patient via 

P,i = g- 1(g(P,f_1) + Jt), where the risk adjustment level is given by Jt = .077xt. It 

is important to clarify that for a non-linear link function, for example, the log link 

function for Poisson data and the logistic link function for the Bernoulli data, the 

EWMA and the ris· -adjusted EWMA are estimating different quantities . Precisely, 

the EWMA is estimating the risk parameter under the assumption of homogeneity of 

patients, but the RA-EWMA is estimating the risk parameter for a standard patient 

with zero as the centered Parsonnet score (predictive score for acquired adult heart 

surgery) . This is the reason why these two methods use different starting values. Only 

when risk adjustment factors is factored into the RA-EWMA to provide a patient-

specific risk assessment can we reasonably make a comparison with the standard 

EWMA. 
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Table 2.1: The estimated values by EWMA and RA-EWMA methods for cardiac 

surgery outcomes Yt , t = 1, .. . , 5, under a particular surgeon in the UK. 

"' ci 

"' ci o. 

t 

0 

1 

2 

3 

4 

5 

AE 
f-Lt 

.064 

.158 

.142 

.228 

.205 

.285 

AR 
f-Lt Yt Xt 

.048 

.088 1 44 

.082 0 -6 

.149 1 22 

.113 0 15 

.137 1 42 

Risk Adjusted EWMA 
Standard EWMA 

A+ 
f-Lt 

.596 

.058 

.328 

.359 

.764 

Estimate of Current Expectation 

Yt 

.451 

.030 

.754 

-.210 

.349 

.o 

.. o ··································· 

...... ·················· .... 

a ······ 

------- 0 

:···-- - ----·-·- ~'c~;~o-----o-----o 
0 
ci 

time 

Figure 2.1: Graphical display of the estimated values by EWMA and RA-EWMA 

methods for the CaTdiac Surgery outcomes as given in Table 2.1. The black dots are 

the outcome Yt values. 
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Table 2.1 gives the estimated values of standard EWMA (pf), RA-EWMA (Pf), 

and the estimate of the current expectation Pi. Comparing the values of Pi and pf 

in Table 2.1, we see a sizable difference. This difference is because of the differential 

risks for the individual patients, some exhibiting Parsonnet scores far away from the 

baseline. For exam _le, the first and the last patients have high risk factor levels . Note 

that the estimate of the current expected value, J.ti, is very high for these two cases 

but the RA-EWMA estimates mitigate their effect. 

Figure 2.1 shows graphically the estimated values of standard EWMA pf , RA­

EWMA pf, and the estimate of the current expectation Pi. Note that, both in Figure 

2.1 and Table 2.1, the standard EWMA estimates the current mortality probability 

for the tth patient, the RA-EWMA estimates the current mortality probability for a 

baseline patient wit h Xt = 0. 

2.2 EWMA from Conjugate State-Space Models 

Denote the observed data up to timet by dt = (y1, Y2 , ... , Yt) · In our previous anal­

yses , we took the viewpoint that P,t was fixed and unknown, and that it could be 

consistently estimated in repeated experiments. In this section we take a Bayesian 

approach and work with the estimate Pt given by the posterior mean of J.tt · 

There is a tradit ion of deriving EWMAs from state-space models, in which the data 

dt up to time t provide a posterior distribution p(J.ttldt) for the mean parameter J.tt · 

A dynamic evolution process gives a forecast prior distribution p(J.tt+1 ldt) . After we 

have the new observation Yt+l, a Bayesian conjugate update is given by p(J.tt+IIdt+I) ex 

P(Yt+IIJ.tt+I)P(J.tt+IIdt ). The evolution process can be defined on the natural or mean 
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parameter scale. The following formula is defined as natural scale by West and 

Harrison ( 1997), 

(2.2.1) 

denoted simply as 77tldt "' CP(rt, St) for the conjugate prior on the natural scale, 

where St can be interpreted as precision parameter, the reciprocal of the dispersion 

parameter, and rtf st can be interpreted as location parameters. In certain situations, 

the mean scale J.ltldt "' CP(rt, St) is more convenient. It has mean IE[J.Ltldt] = rtf St 

and V[J.Ltldt] = IE[v"(77t)ldt]/st. The precision St is denoted as IP[J.Ltldt]- When the new 

observation Yt+l comes in, the posterior distribution can be expressed as 

(2.2.2) 

The mean steady model (MSM) leads the RA-EWMA as an estimator for the 

current mean f-Lt· Vve assume a mean steady evolution step, the forecasted mean is 

equal to the posterior mean but the precision is decreased by a factor "'· A posterior 

distribution f-Ltldt rv CP(rt, St) leads to a forecast prior J.lt+lldt"' CP(K,rt, K,St) - By 

the above assumptions, the update step is exact, the risk-adjustment step can be 

made only approximately, and the evolution step is justifiable only heuristically. 

We then have the following properties 

(2 .2.3) 

For the case of Bernoulli data, an approximate risk adjustment can be made after 

the new observatio Yt+l comes by using the pseudo-observation Yt+l in the conjugate 
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update of J.Lt+1, so that we have 

J.Lt+1lc4+1 rv CP(Krt + ¢-1fh+l, KSt + ¢-1) 

rv CP(rt+l , st+1) · (2.2.4) 

In the limiting form as t ~ oo, the posterior expectation and precision are given by 

lE[J.Lt+lldt+l] = KlE[J.Ltldt] + (1- K)Yt+l> 

JP>[J.Lt+lldt] = s = ¢-1(1- Kt1; 

that is, the posterior expectation tends to an EWMA on the fit's. 

2.3 Comparison Between DGLM and MSM 

(2.2.5) 

The Dynamic Generalized Linear Model (DGLM) is often considered the natural 

method for nonnorrnal data with covariates, but it is overcomplicated for many con­

texts. In this section, we give a comparison between the DGLM and the MSM for 

Bernoulli data. 

The DGLM is a Bayesian forecasting method for time series data when the risk 

factors have been described by a generalized linear model structure McCullagh and 

Neider (1983) . The parameters of the DGLM are allowed to change over time. In 

general, the evolution step and risk adjustment step are exact, but the parameter 

update step is approximate. 

2.3.1 Dynamic Generalized Linear Model 

The following steps outline the procedure for Bernoulli data. 
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1. Conjugate baseline mean. Assume a conjugate distribution for J.Lt , 

J.Lt ldt "'CP(rt , St) , t = 1, 2, .. . , (2.3.1) 

which for Bernoulli data will be f3(rt, St) · 

2. Natural baseline. Thanslate the above conjugate distribution to the natural 

scale for 7Jt ldt with mt = lE[7Jtldt] and Ct = V[7Jtldt] by the transformation equation 

T}t = g(J.Lt). For Bernoulli distribution, the link function is T}t = log(J.Lt/ (1 - J.Lt)), the 

results are given by 

Tt 
mt = l(rt)- I(St- rt) ~log ( ) , 

St- Tt 

Ct = l'(rt)- 1'(st- rt) ~ .2-_ + ( 1 
) , 

Tt St - Tt 
(2.3.2) 

where 1(·) and 1' (·) represent the digamma and trigamma function respectively. Now 

we can assume that the distribution 7Jtldt has the required mean and variance, but 

the precise form is left unspecified. 

3. Evolution. The process evolves by adding a term with a distribution [0, W], 

with mean zero and variance W, but the form unspecified. This evolution will give a 

forecast prior distribution for 7Jt+1 ldt , with 

(2.3.3) 

4. Risk-adjust ment . Given the risk term Ot+l at timet+ 1, we then have 

(2.3.4) 

5. Transform to mean scale distribution. A conjugate prior distribution can 

be obtained by the inverse transformation of the second stage. The distribution is 

20 



given by 

where 

and 

1 + eet r; ~ --­
qt 

2 + eet + e-et 
s;~-----­

qt 

(2.3.5) 

6. Conjugate update on mean scale. After we have observation Yt+l, we have 

the posterior distribution 

(2.3.6) 

7. Transform to natural scale and de-risk-adjust . If we let 

an approximate posterior on the natural scale can be obtained by using the transfor-

mation in Stage 2 . The transformation is as 

r** 
e* ~log t 

t (s;*- r;*)' 

* 1 1 
qt ~ r;* + ( s;* - r;*)" 

Hence, we have the updated natural scale expression 

(2.3.7) 
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then de-risk 

(2.3.8) 

8. Translate t o conjugate baseline. Using the inverse transformation of Stage 

5, we can obtain 

where 

and 

St+1 ~ ------­
Ct+l 

(2.3.9) 

The whole process, from step 1 to step 8, is a closed form in terms of the inputs 

rt, St, and Yt at time t and the outputs Tt+l and st+1· After this whole process, it is 

ready for next cycle in terms of the inputs rt+l, st+1 , and Yt+l at timet+ 1. 

2.3.2 Mean Steady Model 

The following steps outline the Mean Steady Model (MSM) procedure to derive the 

RA-EWMA forth Bernoulli example. 

1. Conjugate baselin,e mean. 

P.tldt"' CP(rt, s), t = 1, 2, .. . , (2 .3.10) 

where s = ¢-1(1- K;)-1 by previous equation. 
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2. Evolve as a MSM. 

(2.3.11) 

3. Update using approximate risk-adjustment. Using the pseudo-observation 

Yt+l from equation (2.1.12), hence we have 

rv C P(rt+l, s). 

From above equation, we can see that 

= (~rt) Is + ( ¢-1iit+l)/ s 

= ~(rtfs) + (¢-1/s)fit+l 

(2.3.12) 

since flt = rtfs and 1- ~ = 1/(¢s), immediately giving the form of the RA-EWMA. 

To compare the DGLM and MSM methods, we need a mapping between the 

evolution parameter W of DGLM and the smoothing parameter ~ of MSM. 

Under a DGLM, the posterior variance of the natural parameter can be given by 

the delta method as 

V[,utldt] I 
Ct = V[77tldt] ~ (d /d )2 • , 

,Ut 17t T/t =T/t 

(2.3 .13) 

where f!t is the MLE for 77t· We also can find the relation between the posterior 

variance of the mean parameter and posterior precision parameter s by West and 

Harrison (1997), the relation can be written as 

(2.3.14) 
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and dp,t/dryt = v"('r!t)· Thus from (2.3.13) and (2.3.14), we can approximate the 

posterior variance by Ct ~ 1/(sv"(fJt)) . 

2.4 Simulation Study for Binary Data 

In this section, we present a simulation study for Bernoulli data to compare the 

estimated values by the DGLM and MSM methods. The EWMA been derived by 

MSM method when set the risk-adjustment level 8t = 0 for all t and the RA-EWMA 

been derived when not all 8t = 0. 

In the first example, the risk factors have been set to zeros. In other words, let 

8t = 0, t = 1, .. . , T for all the observations. Let p,0 = 0.2, and W = 0.03. With these 

settings, Vt = p,0(1- p,0 ) = 0.16, Assuming¢= 1 and solving W ~ ¢(1- "')2/("'Dt), 

we get approximately "'= 0.93 as a reasonable approximation. 

For the Bernoulli data simulation, we setup the process as two stages. First, the 

trendless baseline natural parameter 'r/t, t = 1, ... , 60, were simulated as the train-

ing data by the distribution 'r/tl'r/t-1 "' N('r!t-1, W). For t = 61, ... , 260, 'r/tl'r/t-1 "' 

N(P'r!t- 1, W), with shift parameter p = 0.99 as the test data. 

In the second stage, using the simulated 'r/t, we calculate P,t by using the link 

function g(·), where g(-) for Binary data is the logistic function 

log(p,t) 
'r/t = 1 - log(p,t) · 

The homogeneous data were generated by sampling from Bernoulli(P,t), and the 

heterogeneous data were generated by sampling from Bernoulli(p,i) . Where p,i = 

g-1[g(p,t) + 8t] = exp(ryt)/[1 + exp(ryt)] . In this study, the risk-adjusted levels were 
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generated from Normal distribution with zero mean and variance 0.25. For the relative 

accuracy, each estimated series has been recorded for the above two methods, and 

then averaged over 500 simulations under each methods. 

<D 
0 

Figure 2.2: Simulated Binary homogeneous data. The estimated series by EWMA 

and DGLM methods are displayed whereas the vertical line at t = 60 marks the time 

the random walk begins to shift. 

Figure 2.2 and 2.3 show plots of the one-step predictions for the DGLM and RA­

EWMA with and without risk-adjustment. For the DGLM, equation (2.3.5) gives 

the one step predictive distribution and for RA-EWMA, equation (2.3.11) gives the 

one step predictive distribution. Only at the very beginning, the one step prediction 

shows difference between those two methods, all others are very similar. 

In Figure 2.2, the model assumes homogeneity. The estimated values by both 
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Figure 2.3: Simulated Binary heterogeneous data. The estimated series by RA-EWMA 

and DGLM methods are displayed whereas the vertical line at t = 60 marks the time 

the random walk begins to shift. The points denote the expectation of each observation 

conditional on their risk-adjustment level Ot 
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DGLM and RA-EWMA methods are captured the trend of the random walk, which 

is an unknown dynamic process we want to estimate. At the training stage, t from 

1 to 60, the estimated series by DGLM method appears captured the random walk 

faster comparing with the estimated series by RA-EWMA method. In the test stage, 

t > 60, these two methods perform almost identical except at the some peak or foot 

points along the estimated series. The vertical dish line at t = 60 separates the 

training data and test data. 

In Figure 2.3, the model assumes heterogeneity. The dots denote the differential 

risk, which indicate the expectation of each observation condit ional on their risk­

adjustment level Ot . Looking at the estimated results, they have same properties as 

those in Figure 2.2. 

Traditionally, the DGLM has been considered as a standard method for dynamic 

monitoring under nonnormal state-space modeling. In the first simulation, Ot was 

set to be zero for all the observations , which means that the risk factors have no 

effect across the ob ervations whereas in the second simulation, the known risk factor 

Ot to disadvantage the RA-EWMA. However , our simulation doesn't show obvious 

disadvantage by the risk factor . Through the simulation study, the two methods give 

very similar results. But, we notice that DGLM is complicated both computationally 

and conceptually. ln contrast , the RA-EWMA estimates by Mean Steady Model is 

straightforward and simple to implement. 
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Chapter 3 

The Risk-Adjusted EWMA for 

Poisson Data 

The Poisson distribution has a long history of applications to biostatistics problems. 

It has been traditionally the default distribution to model count data. In this chapter 

we develop its det ailed application under a risk-adjusted EWMA. Our derivations 

follow closely those done for binary data in Chapter 2 which in turn were described in 

detail by Grigg and Spiegelhalter (2007). There is no documented detailed analysis 

for the Poisson case in the literature. 

As in Chapter 2, let dt = (y1 , oo., Yt) denote the data up to time t, which are 

assumed to be independent Poisson variables, 

p,Ye-11-
f(y; J-L) = -,-, y = 0, 1, 2, 0000 

y. 

The log likelihood function can be written as 

log(! (y; J-L)) = y log(p) - J-L - log(y!). 
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Here the dispersion parameter ¢ = 1. We will use the log link function, 'rJ = g(Jl) = 

log(Jl) . 

Adopting a gamma conjugate prior 7r(Jlt) yields a posterior distribution p(Jlt!dt) 

for the mean parameter Jlt at time t which is also of the gamma form. Following the 

evolution process, this posterior distribution becomes the prior distribution 7r(Jlt+l) = 

p(Jlt!dt) for the ne:xt iteration. After the data Yt+l is observed, a Bayesian conjugate 

update is made, which gives posterior density p(f1t+lldt+1). 

Note that all the distributions involved for this Poisson case have closed forms. 

If we denote the prior by p(Jli!dt) for the mean of an observation with bt as the 

risk-adjustment level, the risk-adjust step can be made by conjugately updating the 

forecast prior for 11""/.+ 1 in light of the newly arrived data Yt+l· 

3.1 The Standard EWMA Model for Poisson Data 

Let p(Jlt !dt) denote the probability density function of Jlt conditional on the observa­

tions up to timet. The pdf is given by the gamma density 

(3.1.1) 

where Tt and St are computed from the first t observations. We can write equa-

tion (3.1.1) as 

(3.1.2) 

Consider now the next step and suppose the effect on the distribution is an update 

of the parameters as follows: p(f1t+1 ldt) follows a gamma distribution with parameters 
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rt+1 and st+1 such that 

(3.1.3) 

and 

(3.1.4) 

where 0 ~ K, ~ 1. T hus we will have 

(3.1.5) 

We then have the following properties which are a direct consequence from the gamma 

distribution 

lE[J.Lt+IIdt] = lE[J.Ltldt] =rtf St, 

V[J.Lt+IIdtl =rtf st = /'i,- 1V[J.Ltldt], 

IP'[J.Lt+IIdt] = /'i,IP'[J.Ltldt] = /'i,St; 

(3.1.6) 

(3.1.7) 

(3.1.8) 

With this specification of the state densities, the parameters f.Lt+l are related to the 

best one-step pred ictor of dt through the formula 

P,t+l = lE[J.Lt+IIdt] =rtf St. (3.1.9) 

The parameters rt and St can be quite arbitrary: Any nonnegative functions of dt will 

lead to a consistent specification of the state densities (Brockwell and Davis, 2002) . 

Once the observation Yt+l is available, the posterior distribution p(f.Lt+IIdt+d is 

given by a gamma distribution with parameters rt+1 = K,rt+¢- 1yt, and St+l = K,St+¢. 

In Poisson data without considering over-dispersion problem, we simply let ¢ = 1. 

We denote this step as 

J.l.t+IIdt+I rv CP(rt+l, St+l)· 
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Iterating the relation St+l, we see that 

St+l = 1 + K.St 

--4 1/(1- r;,) 

as t --4 oo. Similarly, 

+ + t-1 t 
= Yt + "'Yt-1 · · · "' Y1 + "' r1 

For large t, we have the approximations 

and 

st+1 = 1/(1- r;,) 

t-1 

Tt+l = L "'iYt-i, 
i=O 

From (3.1.9) the one-step predictors are linear and given by 

t-1 t-1 

P.t+1 = Tt+l! St+1 = (L "'iYt-i)f(L r;,i). 
i=O i=O 

(3.1.11) 

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

If we start with s0 = 1/(1- r;,), we will find that P.t+l has the following form 

P.t+1 = (1- r;,)yt + ri.fit, t = 0, 1, 2, ... , 

hence by (3.1.5), the one-step predictors can be found by exponential smoothing. 
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To obtain an ideal one step prediction of P.t+l by EWMA, we need a suitable decay 

parameter K.. The following steps give the Maximum Likelihood Method to obtain an 

estimate of K.. 

The conjugate prior distribution for Poisson data is a Gamma distribution. Fol-

lowing standard practice, at time t = 0 a non informative improper prior is adopted 

leading to parameter values r0 = so = 0. As a result, a proper posterior distribution 

for f.Lt can be obtai ed at timet = T, where Yr is the first nonzero observation. This 

is so because since the conjugate prior initial parameter values are r0 = s0 = 0, thus 

the parameter updates lead to the same 0 values until a non-zero count comes up 

for the first time. Thus, for all those cases, the posterior will also be an improper 

distribution. This in an inherent feature of the method. The problem vanishes if a 

proper gamma prior is adopted initially. 

Now we have, conditional on dt, the joint density of y1 , ... , YT is 
T 

p(y1, ... , YTIK.) = II P(Ytldt-1), 
t=r+1 

where the predictive probability density functions are given by 

In this predictive equation, P(YtltLt) is from Poisson distribution with pdf 

( I ) _ Yt -p.tj I P Yt /Lt - 11-t e Yt·, 

(3.1.16) 

(3.1.17) 

(3.1.18) 

and p(p,tldt-1) follows a gamma distribution with parameters rt = K.rt_1 and St = 

K.St-1· Actually, we can see that P(Ytldt-1) is a negative binomial distribution, the 

probability density function can be written as 

( I,J ) - r(a+yt) ba(1 b)(a+yt) 
P Yt ut-

1 - r(yt + 1)r(a) + ' (3.1.19) 
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where a = K,Tt-l and b = KSt-l· Hence the log-likelihood function for unknown 

parameter K can be written as 

T 

l(K) = logL("') = L {logr(a+yt)-log(yt!)-logr(a)+alog(b)-(a+yt) log(1+b)}. 
t=r+l 

(3.1.20) 

The derivative of equation (3 .1.20) in terms of unknown parameter K can be written 

as following. 

l'("'") = """' {'Y(KTt-1 + Yt) !(KTt-1) (KTt-1 + Yt) 
"' L_., Tt-l r( ) - r( )Tt-l- ( ) st-1 

_., KTt-1 + Yt KTt-1 KSt-1 + 1 t=r+l 
KSt-1 

+log ( ) + 1}, 
KSt-1 + 1 

(3.1.21) 

where 1( ·) is digamma function. Although we have not explored the computational 

aspects in detail, we envision that a Newton-Raphson approach can be used to aprox-

imate the MLE of '"· 

3.2 Mean Steady Model for Poisson Data 

The mean steady model is a fully parametric model which leads to the RA-EWMA 

as an estimator for the mean fLt· For Poisson data, the conjugate prior is a gamma 

distribution, the link function is a log function, and the forecast prior distribution 

J-Li+lldt for the mean of an observation with risk-adjustment can be obtained in closed 

form (Harvey and Fernandes, 1989). In this context, the risk-adjustment step can be 

made exactly by conjugately updating the forecast prior for p,i+1 based on observation 

Yt+l· For exponential family data, exact risk-adjustment requires that the canonical 

link function be baseline separable Grigg and Spiegelhalter (2007), the baseline value 
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can be separated from the risk-factor level either in additive or in multiplicative form. 

The example for Poisson data is in multiplicative from which can be given by 

TJi = g(J.Li) = g(J.Lt) + Ot 

==? log(~tt) = log(J.Lt) + Ot 

=} J.Lt = elog(J.<t)+.5t 

==;. J.Li = f.Lte"t . (3.2.1) 

By Mean Steady Model, the risk-adjusted exponentially weighted moving average 

method can be written as the following steps. 

1. Conjugate baseline mean. 

(3.2.2) 

where s = ¢-1 (1 - K)-1. 

2. Evolution as Mean Steady Model. 

f.Lt+1ldt"' CP(Krt, Ks). (3.2.3) 

3. Update using approximate risk-adjustment. Using pseudo-observation 

Yt+l, 

/Lt+1ldt+1 "'CP(Krt + ¢-1
Yt+l , KS + ¢-1

) 

"'CP(rt+l, s). (3.2.4) 

where Yt+l = Yt+l - (P,it-1 - P,t+l), and P,i+l = g-1(g(P,t+1) + 8t+d · From the above 

equation, it can be seen that 

P,t+l = K(rt/ s) + ( ¢-1
/ s Wt+1 

= KP,t + (1 - K)Yt+1> 
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which has the same form as equation (2.1.14). 
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Chapter 4 

Applica ion of Poisson Methods to 

Simulated and Real Data 

In this chapter we f cus on illustrations of the Poisson methods and case comparisons 

between the standard and the risk-adjusted EWMA. We follow the approach of Grigg 

and Spiegelhalter (2007) for the binary case where comparisons were made on cases 

rather than on extensive simulations to target average performance. With dynamic 

data, average performance is complicated, particularly in the presence of covariates. 

The format will be (a) show how to generate Poisson dynamic data, (b) apply the 

standard and risk-adj!-lsted EWMA methods to the simulated data, (c) apply the 

methods to a real data set (namely death counts from lung diseases in the UK for the 

years from 1974 to 1979) , and (d) summarize conclusions based on the cases studied. 
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4.1 Simulated Dynamic Poisson Data 

We first present a simulation of dynamic Poisson data with the risk factors set to 0. 

That is, let Ot = 0, t = 1, ... , T for all the observations. The conditions been set up are 

the same as Grigg and Spiegelhalter (2007) for dynamic binary data. Let p,0 = 0.2, 

and W = 0.03. By this setting, Dt = p,0 , <P = 1 and solving W ~ ¢(1- ~) 2 /(~Dt), we 

get approximately ~ = 0.925. 

In the first stage, rJt, t = 1, ... , 60, were simulated for the baseline natural parameter 

by the distribution rJtlrJt- 1 rv N(rJt- 1, W). Second, for t = 61, ... , 260, rJtlrJt- 1 rv 

N(PrJt- 1 , W), where the shift parameter is set to p = 0.99. Using the simulated 

data, rJt, to generate /-Lt by using the link function /-Lt = exp(rJt) · The homogeneous 

data were generated by sampling from Poisson(p,t), and the heterogeneous data were 

generated by sampling from Poisson(p,t). Where 1-Li = g- 1(g(p,t) +ot)· In this study, 

the risk-adjusted levels were generated from a normal distribution with mean zero 

and variance 0.25. The initial prior gamma distribution, the distribution of /-Lt at 

time t = 0 is noninformative if we choose the initial parameters r0 = 0 and s0 = 0. 

A proper distribution for 1-Lt at time t = T is obtained when first nonzero observation 

Yr arrives. In pract ise, we usually set the initial value of s0 other than zero hence set 

T = 0. 

In Figure 4.1 , we compare the estimated value by MSM-EWMA method for the 

simulated Poisson data with the estimated value by standard EWMA method. We 

found the performances of these two methods are almost identical except at the very 

beginning. In this Figure, we give two different initial s0 for the standard EWMA 

estimation. Our empirical results show that the estimations with larger initial s0 , 
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Figure 4.1: Simulated Poisson homogeneous data. The estimated series by MSM-

EWMA and EWMAs methods are displayed whereas the vertical line at t = 60 marks 

the random walk starting to shift. 
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Figure 4.2: Simulated Poisson heterogeneity data. The estimated series by EWMA 

and RA-EWMA methods are displayed. The vertical line at t = 60 marks the random 

walk starting to shift. 
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say s0 = 15, approach to MSM-EWMA much faster than with smaller initial s0 , say 

so= 1. 

Figure 4.2 displays the estimated values between the standard EWMA and the 

risk-adjusted EWMA. We can see that these two estimations are almost identical and 

both capture the trend exhibited by the random walk. The reason for the similarity in 

performance might be due to the fact that the risk factor values are relatively small 

compared to the random walk. However , in some peak points, for example, when 

t runs from 160 to 170, and from 220 to 240, the estimated values by RA-EWMA 

method mitigate t e effect of the risk factor values. The vertical dashed line marks 

the change point between the trendless training data and the shifted data. 

4.2 Application: Death Counts from Lung Dis­

eases in the UK 

The dataset ldeaths , which is taken from Diggle (1990) , gives the monthly counts of 

death from bronchitis, emphysema and asthma in the UK for the years from 1974 

to 1979. The data were collected monthly and producing a total of 72 observations 

over the six years . The original data were split by gender. Diggle (1990) gives basic 

analyses for the data. He noted that the raw data had a seasonal behavior , but 

when decomposed into seasonal component and residuals, the residuals behaved in a 

random fashion . 
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Figure 4.3: Monthly deaths from lung diseases in the UK for the dataset ldeaths 

{1974-1979). 

4.2.1 Preliminary Analysis: Seasonal and Residual Compo-

nents 

Figure 4.3 shows the original ldeaths data split by gender and the total deaths over 

the given years. The data clearly show a strong seasonal pattern, with the minimum 

for each year occur ing in July and maximum in February. 

Since this is a t ime series data, we assume that the series Xt runs throughout 

time, but is observed only for t = 1, .. . , n, and we denote it by Xt. The series has 

mean flo · The covariance and correlation functions are given by Venables and Ripley 

(2002) 

(4.2.1) 
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and 

Pt = /t = corr(Xt+nX,.). 
/O 

(4.2.2) 

The values of the covariance and correlation function are assumed not to depend on 

T, where T can be any integer. 

The second moments are important in the practical analysis of time series since the 

theory for time series is based on the assumption of second-order stationarity after re-

moving any trends. Fort> 0 consider the n-t observed pairs (X1, Xl+t), ... , (Xn-t , Xn) . 

If we just take the standard correlation or covariance, we use different estimates of 

mean and variance for each of the subseries Xl+t, ... , Xn and X 1, ... , Xn-t, thus under 

the second order stationarity assumption, these have the same mean and variance 

(Brockwell and Davis, 2002). Therefore, we suggest to estimate the autocovariance 

by Venables and Ripley (2002) 

l n-t _ _ 
Ct = - L[Xs+t - X][Xs -X], - n < t < n 

n 
s=l 

and estimate the autocorrelation by Venables and Ripley (2002) 

Ct 
rt = -, - n < t < n. 

Co 

( 4.2.3) 

(4.2.4) 

The sequence { c1} and { r t} are the covariance sequence and correlation sequence of 

the second-order stationary time series. In equation (4.2.3) we use n as denominator 

even though there are only n - t terms in the sum. 

For data containing a trend, the sample autocorrelation function lp(h)l will exhibit 

slow decay as h increases, and for data with a substantial deterministic periodic 

component, lp(h)l will exhibit similar behavior with the same periodicity. Figure 4.4 

of the ldeaths series shows the seasonal pattern and the autocorrelations do not damp 
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Figure 4.4: Autocorrelation plot for the ldeaths data. 

down for large lags. In our dataset ldeaths, the counts have been collected monthly 

based. For each twelve months, the data index increased by one. By this property, 

The lags in Figure 4.4 are expressed in the unit time. For instance, the lag value 

of 1 indicates one year time unit which includes the data of twelve months. From 

this autocorrelation plot, we also can see that there is a clear pattern. When the 

values of lag are at no negative integers such as 0, 1 and so on, they have a locally 

highest autocorrelation value. The values will gradually down to the lowest after six 

points, and gradually increase to the highest in next six points. Hence we can say that 

the data have strongest negative autocorrelation in 6 months period, and strongest 

positive autocorrelation in 12 months period, which is clearly a seasonal pattern. 

The spectral approach to second-order properties is better able to separate short-

term and seasonal effects, the detailed theory and formula can be found in Bloomfield 

(2000). By the theory, the covariance sequence of a second-order stationary time series 
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can be written as 

'Yt =- eiwtdF(w) 1 1"' 
271" -7r 

(4.2.5) 

a finite measure on ( -1r, 1r] for the spectrum F. Under mild conditions that exclude 

purely periodic components of the series, the measure has a density known as the 

spectral density f, hence 'Yt can be expressed as 

(4.2.6) 

Where the frequency w in the first term is in units of radians/time and in the second 

term w1 is in unit of cycles/time, where time is in unit of 6.t. If the time series Xt 

has a frequency greater than one, the spectral density will be divided by frequency. 

The Fourier integral can be inverted as 

00 00 

f(w) = L 'Yte-iwt = 'Yo[1 + 2 LPtCos(wt)] . (4.2.7) 
-oo 

By the symmetry of "ft, f(w) = f( -w), we need only consider f on (0, 1r) . A smoother 

estimate of w can also be derived. The periodogram is related to the autocovariance 

function by 
00 00 

(4.2.8) 
-oo 

and 

1 1"' Ct = -
2 

eiwt I(w)dw . 
7r -7r 

(4.2.9) 

We omit the details which are given by Bloomfield (2000) and Brockwell and Davis 

(2002) . Figure 4.5 gives spectral density and cumulative periodogram estimates for 

the ldeaths data. The bandwidth in the spectral density plot is a measure of the size 

of the smoothing window. If there are periodic components in the series, there will 
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be peaks in the spectral density plot. Clearly, there is a peak at frequency equal to 

1, which indicates the data have periodic component with period 1. In regards to 

the ldeaths data, we conclude that the data have a one year period. In the spectral 

density plot, we us a smoother which equals to 3. The smoothing uses the modified 

Daniell smoothers Bloomfield (2000), which are moving averages giving half weight 

to the end values of the span. The smoothing will reduce those peaks, but they can 

be seen quite clearly in the plot of the cumulative periodogram, the two dashed lines 

display the 95% confidence band for the cumulative plot. 

From above analyses, we learned that the data have a one year (twelve months) 

period and a seasonal effect. The next question is how to decompose the raw data. 

In Brockwell and Davis (2002), the classical decomposition model been given by 

Xt = ffit .+ St + yt, (4.2.10) 

where mt is a slowly changing function known as a trend component, St is a function 

with known period d named as seasonal component, and yt is a stationary random 

noise, called residual component. Cleveland et al. (1990) proposed a method to 

detrend a time series using Local Polynomial Regression Fitting. The basic idea for 

this method can be described as follows. Since we already found the period is one 

year, we collect the sub-series, say all the data for January, February, as well as 

other months, smoothing them by replacing the data with the mean which gives the 

seasonal component. After the seasonal values been removed, we then smooth the 

remainder to find the trend. This leads to a decomposition of the raw data into three 

parts: seasonal component, remainder component, and trend component. 

Figure 4.6 shows the decomposition of the raw data. Which includes the Original 
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Figure 4.5: Spectral density estimates and Cumulative periodogram for the ldeaths 

data. 

data, seasonal component, remainder component, and the trend component. 

In next section, we will apply the EWMA and RA-EWMA methods to the residual 

component, and compare the results for different conditions. 

4.2.2 The E'WMA and RA-EWMA Methods for Lung Dis-

ease Death Data 

In this section, we apply the standard EWMA and RA-EWMA methods to the total 

deaths in the ldeaths data collected over 1974-1979. Two comparisons are pursued. 

First, the comparison between the non-seasonal component, trend component, and 

standard EWMA estimate applied to the non-seasonal component. Second, the com-

parison between the original data, the standard EWMA estimation on the original 

data, and the risk-adjusted EWMA using the transformation of seasonal component 
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Figure 4.6: The decomposition for the ldeaths data. 
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as risk factor. 

We first consider a standard exponentially weighted moving average analysis by 

assuming that the non-seasonal data are Poisson distributed with mean f.Lt and esti­

mate f.Lt by a standard EWMA with decay parameter "'; then compare this EWMA 

with the trend component and the non-seasonal data. Since we do not have historical 

data to estimate "'· we set "' = 0.925, this value is not uncommon in the use of the 

standard EWMA. Prom equation (2.2.5), we haves= ¢-1(1- "')-1 . Recall that for 

the Poisson data, the dispersion parameter <P is equal to 1. Treating the EWMA 

as the limiting posterior mean of an MSM without risk-adjustment, the posterior 

distribution for f.Lt after each observation is taken to be a gamma distribution with 

parameters Tt+1 = r t + Yt, and St+l = St + 1. The initial value of r 0 can be set as zero 

as discussed before 

Figure 4. 7 displays the relevant plots . Comparing the EWMA with the trend data, 

it is clear that the EWMA estimate follows the hidden trend of the Deaths Data. 

Assuming now that the original data are Poisson(p,t), we can dynamically estimate 

f.Lt by a RA-EWMA, where risk factors are assumed to affect the outcomes. In this 

example, we use a log linear regression to estimate the seasonal component as the 

risk factor. By equa.tion (3.2.1), we have the relation 1-Li = P,te0
t, where Dt is the risk 

factor. 

Figure 4.8 gives the EWMA control chart for non-seasonal component with trend. 

The dots represent the values of the non seasonal component. There are two glaring 

features shown this plot. First, the EWMA estimate plot is close to the trend. Second, 

the EWMA estimates have few points out of control around years 1976 and 1977, 

which were caused by several usually large observations. At the beginning of year 
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Figure 4.7: The estimates series by the standard EWMA method for the ldeaths data 

without seasonal component, non-seasonal component, and trend component. 

1977, there are also very low observed values, but the EWMA estimates are still in 

control. This is due to the fact that there exist several large observations before these 

particular small ob ervations. Hence influences the estimation after those high values . 

In the last analysis , we applied the standard Exponentially Weighted Moving Av­

erage and the risk-adjusted Exponentially Weighted Moving Average methods to the 

residuals from the deaths data, without seasonal component and trend component. 

In Figure 4.9, the EWMA control chart for non-seasonal data without trend compo-

nent (i.e. the residuals obtained by removing the seasonal and trend components) 

is displayed. The main message from this plot is that the EWMA chart is doing 

very well with nearly all the EWMA estimate values falling in the in-control region 

except for one point close to the upper limit, which is caused by the one high original 

observation. 
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Figure 4.8: The est-imates series by the standard EWMA method for the ldeaths data 

without seasonal component, with 3a as the control limit. 
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Figure 4.9 shows that the RA-EWMA is more sensitive to the data than the 

EWMA method. As the original data change, the effect is shown on RA-EWMA 

immediately whereas for the standard EWMA, the effect was masked by the previous 

observations. From a healthcare monitoring perspective, the sensitivity of the RA­

EWMA method can help healthcare providers make adjustments to the services and 

treatments provided, avoiding unnecessary delays. However, one outlier outcome 

might cause the RA-EWMA based monitoring system to sound alarm. This may or 

may not be a good thing to happen, depending on the true cause of the outlier. For 

instance, if it was due to the fact that something went wrong with that particularly 

patient, then the alarm would be justified. Note, however, that because the RA­

EWMA and the st andard EWMA are moderated by previous observations, it will 

not happen in all cases that an outlier will automatically cause the issuing of an 

alarm. 

Table 4.1 gives th numerical estimates by the standard EWMA, the RA-EWMA 

methods for the remainder component, namely the residuals, in the ldeaths data in 

the year of 1976. The second column of the table is the remainder component, for 

year 1976 after the decomposition for the original data. The calculated mean and 

standard deviation of the differences between the residuals and the estimated values 

(flf) by the standard EWMA method are given by 26.33 and 334.46 respectively. 

Similarly, the mean and standard deviation of the difference between the residuals 

and the estimated values (flf) by the RA-EWMA method are given by 37.08 and 

343.83 respectively. The latter gives larger mean and standard deviation. The results 

show that EWMA gives a smooth change, but RA-EWMA is more sensitive due to 
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Table 4.1: The numerical estimates by the standard EWMA and the RA-EWMA 

methods for remainder component, namely residuals, in the ldeaths data in the year 

of 1976. 

Month Residual AR 
f.lt 

AE 
f.lt 

01 1747 2067 2034 
02 2930 2020 2101 
03 2385 2163 2122 
04 1702 1969 2091 
05 1804 2089 2069 
06 1961 2028 2061 
07 1946 2056 2053 
08 1928 2048 2043 
09 2024 2047 2042 
10 2038 2054 2041 
11 2224 2056 2055 
12 2422 2069 2083 
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Chapter 5 

Conclusions and Future Studies 

In this thesis, we developed in detail the Risk-Adjusted Exponentially Weighted Mov­

ing Average for Poisson data, a method useful to monitor healthcare or other counts 

that are generated dynamically over time. The approach is motivated by and follows 

the approach used by Grigg and Spiegelhalter (2007) for dynamic binary outcomes. 

The basic idea is t use a Bayesian approach with conjugate priors (gamma in the 

case of Poisson dat a) that are used iteratively to provide the estimates. The main 

application is the counts with covariates. The necessary formulas are given to update 

the estimates from the method. 

The numerical evidence provided in the thesis suggests that the RA-EWMA 

method is more sensitive than the standard EWMA method to the presence of the 

underlying covariates. This was shown clearly on the real data, specifically in the 

UK's death counts from lung diseases. 

When we develop our formulas for both EWMA and RA-EWMA methods for 

Poisson data, we simply assume the dispersion parameter, namely ¢, as 1. But 
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in the most applications for Poisson data, the over-dispersion problem needs to be 

considered. The initial thinking can be addressed as following. In the monitoring 

process, we usually use test data or training data to estimate the initial values such 

as ro, so, and /'\,. At the same time, we also can use the test data or training data 

to estimate the value of the dispersion parameter. Once we have the the estimated 

dispersion parameter, we can update equation (3.1.10) by rt+ 1 = K,Tt + ¢-1yt, and 

St+l = K,St + ¢ instead of by rt+l = K,Tt + Yt, and st+l = K,St + 1. 

In this thesis, we take {3 and other parameters such as a 2 to be known. In practice, 

however, the process parameters are estimated from data gathered when the process 

was operating in control. This is the approach followed in nearly all the quality control 

applications. In rea.l healthcase process, the risk factor might change over time due 

to the reassessment of the patients. For example, when a patient is reassessed in 

the quarter assessment or full assessment, there may be some new covariates which 

become significant hence the old risk factor coefficients need to be updated. In the 

monitoring process , it is recommended that one periodically reassesses the risk model. 

In our application, we simply use the transformation of seasonal information as risk 

factor, this might be inadequate for a real process. Hence the method may not pick 

effectively the hidden information in the raw data. 

In real healthcare monitoring processes, there are many possible applications and 

further research problems. One important issue is the derivation of appropriate con­

trol limits to signal out-of-control excursions of the healthcare process. In the thesis 

we used the convent ional ±3a, but quite likely better control limits should be used for 

the RA-EWMA. In order to calibrate the method for a particular healthcare process, 

one needs to compute the associated average run lengths to guide practitioners. 
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So far, only discrete outcomes (i.e. binary or Poisson) have been discussed in de­

tail. But there are many healthcare processes where continuous outcomes are being 

monitored, for inst ance the remission times of patients receiving a particular treat­

ment . A log-normal or gamma distribution for the data may be more appropriate. 

Nothing has been done in this direction. 
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Appendix A 

Notatio1a Index 

Symbol Description Page 

CQI continuous quality improvement 1 

CUSUM cumulative sum 3 

DGLM dynamic generalized linear model 19 

EWMA exponentially weighted moving average X 

GLM generalized linear model 9 

MLE maximum likelihood estimation 23 

MSM me n steady model 18 

RA-EWMA risk-adjusted exponentially weighted moving average X 

SPC statistical process control 1 

TQM total quality management 1 
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Appendix B 

R Program for Simulation Studies 

and Application 

B.l Simulation Study for Bernoulli Data 

###==============================================================### 
### ### 
### Review for the Bernoulli data example ### 
### Mortality rate after Cardiac surgery ### 
### ### 
### Main referenced Paper ### 
### A simple risk-adjusted exponentially weighted moving average ### 
### Olivia Grigg and David Spiegelhalter ### 
### Journal of the American Statistical Association, March 2007 ### 
### ### 
###==============================================================### 

# The R code need to use library Rlab 

# Rlab is a collection of functions and datasets to be used in 
# the class ST370-Probability and Statistics for Engineers at 
# North Carolina State University. 

library(Rlab) 

# For more information see the class labs at : 
# http ://www.courses.ncsu.edu/ST370/distance/rlab/rlab.html 
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# These labs are based on Slab and Mlab 
# by Doug Nychka and Dennis Boos. 

# The following R code has been used to 
#plot Figure 2 . 1 
# the simple sample for the surgery data 

ra.ewma <- c(. 088,.082,.149,.113,.137) 
std.ewma <- c( . 158, . 142,.228,.205,.285) 
hat. ewma <-c (. 596, . 058, . 328, . 359, . 764) 

#Figure 2 . 1: EWMA and RA-EWMA for Cardiac surgery data 
y <- c(1,0,1,0 , 1) 
plot( y, type= >p', pch=20, xlab='time', ylab='estimation') 

points(ra . ewma , type='b', lty=1) 
points(std.ewma ,type='b', lty=2) 
points(hat.ewma ,type='b', lty=3) 

msg <- c('Risk adjusted EWMA', 'Standard EWMA', 
'Est imate without risk adjustment') 

legend(2,0.9, - ty=c(1,2,3),msg, bty='n') 

# Formulas refer ence this thesis Section 2.4. 
# Simulation study for Binary Data 

# Random-walk 
# To generate random data for mu_t's, to compare 
# the estimated series by DGLM and EWMA 

# If want get the same simulation data 
# we can use seed() 

# set n1 for the number of trendless training data 
# set n2 for the number of shifted data 
n1 <- 60 
n2 <-200 
n <- n1 + n2 

# w is for the variance to generate random data 
w <- 0.03 
# given the init ial value of muO 
muO <- 0.2 
et aO <- log(mu0/ (1 - muO)) 
# set.seed to generate same sample 
#set. seed(1) 
mu <- eta <- NULL 
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eta[1] <- rnorm 1,eta0,w) 

# Loop for gener ating trendless training data 
for (i in 2:n1) 

#set . seed(i ) 
eta[i] <- rnorm(1,eta[i-1],w) 

} 

# shift parameter 
rho <- 0.01 

# Loop for gener ating shifted data 
for (i in (n1+1 ) :(n)){ 

#set. seed(i ) 
eta[i] <- rnorm(1,(1-rho) * eta[i-1] ,w) 

} 

# inversed link function for Binary data 
mu <- exp(eta)/ (1 + exp(eta)) 

# DGLM 
#Formulas refer ence this thesis Section 2.3.1. 
# There are deta iled description for each step. 
# the repetition to record estimated series 
# average to ge the final result 
# the amount depend on the required accuracy 
mm<-500 

# The Homogeneit y Bernoulli data 
yho <- rbern(n, mu) 

# Risk asjustment level at zeros 
de <- rnorm(n*~n. 0, 0) 
delta <- array(data=de, dim=c(260,mm)) 

# following code to do the DGLM estimation 
# the step number following the process number 
# in section 2 .3 .1: 
# Dynamic Genera lized Linear Model 

fs <- fr <- array(data = 0, dim = c(260,mm)) 
for (j in 1:mm ) { 

etaplus <- eta + delta[,j] 
muplus <- exp(etaplus)/(1 + exp(etaplus)) 

m <- NULL 
C <- NULL 
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} 

r <- s <- NULL 
rrt <-sst <-· NULL 

sst[1] <- s [1] <-1 

rrt [1] <- r [1] <- mu [1] 

for (t in 1 : (n-1)){ 

} 

# step 2 
m[t] <- log(r[t]/(s[t] - r[t])) 
C[t] <- 1/r[t] + 1/(s[t] - r[t]) 

# step L1 
et <- m[t] + delta[t+1 , j] 
qt <- C[t] + w 

# step 5 
rrt[t+1] <- (1 + exp(et))/qt 
sst[t+1] <- (2 + exp(et)+ exp(-et))/qt 

# step 7' 
rrrt <- rrt[t+1] + yho[t+1] 
ssst <- sst[t+1] +1 

eet <- l og(rrrt/(ssst - rrrt)) 
qqt <- 1/rrrt + 1/(ssst - rrrt) 

m[t+1] <- eet - delta[t+1,j] 
c [t+1] <- qqt 

# step 8 
r[t + 1] <- (1 + exp(m[t+1]))/C[t+1] 
s [t +1] <- (2 + exp(m[t+1])+ exp(-m[t+1]))/C[t+1] 

fs[,j] <- s s t 
f r [ , j] <- rrt 

# average the simulated estimate val.ues 
# to get the estimated parameter r_t and s_t 
# for all t . 
mfs <- rowMeans (fs, dims = 1) 
mfr <- rowMeans (fr, dims = 1) 

# Estimation by Mean Steady Model 
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# For bernoulli data phi = 1 
phi <- 1 
kappa<- 0.93 # for mu0=0 .2 

rar <- NULL 
rar[1] <- mu[1] 
ras <- phi~(-1) * (1- kappa)~(-1) 
rafr <- array(data = 0, dim = c(n,mm)) 

for (j in 1:mm { 

} 

for (t in 1 : (n-1)){ 

} 

# step 1 ,2 
muhat <- rar[t]/ras 

# step 3 
g <- log (muhat /(1 - muhat)) 
ginv <- exp(g + delta[t+1,j]) 

/(1 + exp(g + delta[t+1,j])) 
ytilde <- yho[t+1] - (ginv - muhat) 

# step 3 , update 
rar[t + 1] <-kappa* rar[t] + phi~(-1)* ytilde 

rafr[,j] <- rar/ras 

mrafr <- rowMeans(rafr, dims= 1) 
ymax <- max(mu, (mfr/mfs),mrafr) 

# calculate the differencial risk 
drisk <- exp(etaplus)/(1 +exp(etaplus)) 

# the following code been used to plot Figure 2.2 
# Figure 2 . 2 : simulation RA-EWMA and DGLM for Bernoulli 
# homogeneous data 

plot(2:n, mu[-1], type='l',xlab = 't', 
ylab=expression(mu[t]), 
ylim=c(O,ymax + 0 .02),lwd=2, col=8) 

abline(v=n1,lty=2) 
points(2:n,mfr[-1]/mfs[-1], type='l',lwd=2) 
points(2:n,mrafr[-n], type='l',lwd=1) 
points(2:n,drisk[-1], type='p',pch=' . ' ,cex=2) 

msg <- c('Random Walk','DGLM' ,'EWMA','Differential Risk') 
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legend(200,0.2, msg, lty=c(1,1,1,3),lwd=c(2,2,1,2), 
col=c(8 , 1,1,1),bty='n') 

#================================================= 
# the following code been used to calculate the 
# estimated values for Figure 2 . 3 
#The code is same as that for Figure 2 . 1 
# except this i s for heterogeneous data 

# the DGLM estimation 
#Formulas refer ence this thesis Section 2.3.1. 
# There are detailed description for each step. 

# delta is the risk-adjustment level 
# generated from normal distribution 
# with mean 0 and variance 0. 25 
var = 0.25 
sds= sqrt(var) 
delta <- rnorm(n, 0, sds) 
etaplus <- eta + delta 
muplus <- exp(et aplus)/(1 + exp(etaplus)) 
yhe <- rbern(n, muplus) ## The Heterogeneity data 

de <- rnorm(n*mm, 0, sds) 
# array delta f or the risk-adjustment level 
delta <- array(data=de, dim=c(260,mm)) 

# following code to do the DGLM estimation 
# the step number following the process number 
# in section 2. 3 .1: 
# Dynamic Generalized Linear Model 

# the DGLM estimation srarted 
fs <- fr <- array(data = 0, dim 
for (j in 1:mm { 

etaplus <- eta + delta[,j] 

c(260,mm)) 

muplus <- exp(etaplus)/(1 + exp(etaplus)) 

m <- NULL 
C <- NULL 
r <- s <- NULL 
rrt <-sst <- NULL 

sst[l] <- s [1] <-1 

rrt[l] <- r [1] <- mu[1] 

for (t in 1 : (n-1)){ 
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} 

} 

# step 2 
m[t] <- log(r[t]/(s[t] - r[t])) 
C[t] <- 1/r[t] + 1/(s[t] - r[t]) 

# step L1 
et <- m[t] + delta[t+1,j] 
qt <- C[t] + w 

# step 5 
rrt[t+1] <- (1 + exp(et))/qt 
sst[t+1] <- (2 + exp(et)+ exp(-et))/qt 

# step -r 
rrrt <- rrt[t+1] + yhe[t+1] 
ssst <- sst[t+1] +1 

eet <- l og(rrrt/(ssst - rrrt)) 
qqt <- 1./rrrt + 1/ (ssst - rrrt) 

m[t+1] <- eet - delta[t+1,j] 
C[t+1] <- qqt 

# step 8 
r[t + 1] <- (1 + exp(m[t+1]))/C[t+1] 
s[t +1] <- (2 + exp(m[t+1])+ exp(-m[t+1]))/C[t+1] 

fs[,j] <-sst 
fr[,j] <- rrt 

# calculate the mean of mm times estimated values 
mfs <- rowMeans (fs, dims = 1) 
mfr <- rowMeans (fr, dims = 1) 

# the RA-EWMA estimation 
# Use MSM method 
# DGLM 
# Formulas reference this thesis Section 2.3 . 2 
# There are detailed description for each step . 

# For bernoulli data phi = 1 
phi <- 1 
kappa<- 0.93 #for mu0=0.2 

rar <- NULL 
rar [1] <- mu [1] 
ras <- phi~(-1) * (1 - kappa)~(-1) 
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rafr <- array(data 0, dim = c(260,mm)) 

for (j in 1:mm ) { 

} 

for (tin 1 : (n-1)){ 

} 

# step 1 ,2 
muhat <- rar[t]/ras 

# step 3 
g <- log(muhat /(1 - muhat)) 
ginv <- exp(g + delta[t+1,j]) 

/(1 + exp(g + delta[t+1,j])) 
ytilde <- yhe[t+1] - (ginv - muhat) 

# step 3, update 
rar[t + 1] <- kappa * rar[t] + phi-(-1)* ytilde 

rafr[,j] <- rar/ras 

# calculate the mean of the estimations 
mrafr <- rowMeans(rafr, dims = 1) 

# calculate the ylimit for the plot 
ymax <- max(mu, (mfr/mfs),mrafr) 

# calculate the differential risk 
drisk <- exp(etaplus)/(1 +exp(etaplus)) 

# Figure 2.3: Si mulation RE-EWMA and DGLM for Bernoulli 
# heterogeneous data 
plot(2:n, mu[-1] , type='l',xlab = 't', 

ylab=expression(mu[t]), 
ylim=c(O,ymax + 0.02),lwd=2, col=8) 

abline(v=n1,lty=2) 
points(2:n,mfr[·-1]/mfs[-1], type='l' ,lwd=2) 
points(2:n,mrafr [-n], type='l' ,lwd=1) 
points(2:n,drisk [-1], type='p' ,pch='. ',cex=2) 

msg <- c('Random Walk', 'EWMA', 'DGLM', 'Differential Risk') 
legend(200,0.2, msg, lty=c(1,1,1,3), 

lwd=c(2 , 2,1,2),col=c(8,1,1,1),bty='n') 
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B.2 Simulation Study for Poisson Data 

###==============================================================### 
### ### 
### Generate Po i sson data and programming ### 
### ### 
### Main referenced Paper ### 
### A simple risk-adjusted exponentially weighted moving average ### 
### Olivia Grigg and David Spiegelhalter ### 
### Journal of t he American Statistical Association, March 2007 ### 
g# #~ 

### Another ref erenced Paper ### 
### Time series models for Count or Qualitative Ovservations ### 
### A.C. Harvey and C. Fernandes ### 
### Journal of Business & Economic Statistics, October 1989 ### 
###==============================================================### 

# Generate Random-walk data for Poisson data 
# If want get the same simulation data 
# we can use seed() 

# set n1 for the number of trendless training data 
# set n2 for the number of shifted data 

n1 <- 60 
n2 <-200 
n <- n1 + n2 
w <- 0 .03 
muO <- 0.2 
etaO <- log(muO ) 
#set. seed(1) 
mu <- eta <- NULL 
eta[1] <- rnorm 1,etaO,w) 
for (i in 2:n1) { 

#set.seed(i ) 
eta[i] <- rnorm(1 , eta[i-1],w) 

} 

rho <- 0.01 
for (i in (n1+1 ) :(n)){ 

#set.seed(i ) 
eta[i] <- r norm(1, (1-rho) * eta[i-1] ,w) 
#eta[i] <- r norm(1,rho * eta[i-1],w) 

} 

mu <- exp(eta) 

#================================================= 
# the repetition to record estimated series 
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# average to get the final result 
# the amount depend on the required accuracy 

# the repetition mm set as 500 
mm<-500 

delta <- rnorm(n , 0, 0.25) 
etaplus = eta + delta 
muplus <- mu * exp(delta) 

yhe <- r pois(n, muplus) 
# The Heterogeneity poisson data 
# Baseline mean plus risk adjustment level 
# Risk asjustment level at 0 . 25 
de <- rnorm(n*mm , 0, 0.25) 

# risk adjust l evels 
delta <- arr ay(data=de, dim=c(260,mm)) 

# risk adjust l evels are zeros for 
# homogeneous data 
deltaO <- array data=O, dim=c(260)) 

# Possion data , dispersion parameter is equals to one 
phi <- 1 

# selected decay parameter 
kappa <- 0 . 925 

#================================================= 
# EWMA without _isk adjustment 

# The formulas please reference section 3.2 

# The following paper has some discuss about possion case 
#Harvey, A., ~1d Fernandes, C. (1989) 
# Time Series Models for Count or Qualitative Observations 
# Journal of Bus iness and Economic Statistics, 7, 407-417. 
# Section 2 

a <- NULL 
b <- NULL 

aO <- 0 
bO <- 1 

#the following code for Figure 4 .1 
# the compariso between different initial 
# value of sO f or RA-EWMA method, and MSM method 
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# the EWMA with initial s0=1 
muhat18 <- array (data = 0, dim= c(260)) 

# the predicted values of mu by MSM-EWMA 

for (t in 1 : (n-1)){ 

} 

# step l 
if (t==l ){ 

} 

at <- kappa * aO 
bt <- kappa * bO 

else { 

} 

at <- kappa * a[t-1] 
bt <- kappa * b[t-1] 

muhat18 [t] <- at/bt 

# step 2 , update 
a[t] <- at + yhe[t] 
b [t] <- bt + 1 

mpois1 <- muhat 18 

#the following code for Figure 4 .1 
# the EWMA with initial s0=15 
aO <- 0 
bO <- 15 

muhat18 <- array (data = 0, dim = c(260)) 

# the predicted values of mu by MSM-EWMA 

for (tin 1 : (n-1)){ 

# step 1 
if (t==1){ 

} 

at <- kappa * aO 
bt <- kappa * bO 

else { 

} 

at <- kappa * a[t-1] 
bt <- kappa * b[t-1] 

muhat18 [t] <- at/bt 

# step 2, update 
a[t] <- at + yhe[t] 
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b[t] <- bt + 1 
} 

mpois15 <- muhat 18 

# EWMA without risk adjustment 
# MSM-EWMA in Fi gure 4 . 1 
# For Poisson data phi = 1, 
phi <- 1 
kappa <- 0.925 

rarO <- NULL 
rarO [1] <- mu [1] 
rasO <- phi~(-1 ) * (1 - kappa)~(-1) 

# define an array to save the one step prediction values 
rafrO <- array( ata = 0, dim= 260 ) 

for (tin 1:(n-1)){ 

# step 1,2 
muhatO <- r arO[t]/rasO 

# step 3 
g <- log(muhatO) 
ginvO <- muhatO 
ytildeO <- yhe[t+1] - (ginvO - muhatO) 

# step 3, update 
rarO[t + 1] <-kappa* rarO[t] + phi~(-1)* ytildeO 

} 

rafrO <- rarO/ra sO 

# calculate the y limit for the plot 
ymax <- max(mu,mpois1,mpois15, rafrO) 

# Plot to compare the EWMA with different initial values b, 
# and EWMA in Ma in pap~r. without risk adjustment 

#Figure 4.1 EWMA with different initial values 
plot(1:n, mu, type='l' ,xlab = 't', ylab=expression(mu[t]), 

ylim=c(O,ymax + 0 .02),lwd=2, col=8) 
abline(v=n1,lty~2) 
points(1:n,rafr0 , type='l' ,lwd=2) # EWMA 

points(O: (n-2),mpois1[-n], type='l' ,lty=2,lwd=1) 
points(O: (n-2) ,mpois15[-n], type='l' ,lty=3,lwd=1) 
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msg <~ c('Random Walk','MSM-EWMA' ,'EWMA with s0=1', 
'EWMA with 0=15') 

legend(200,0.4, msg, lty=c(1,1,2,3),lwd=c(2,2,1,1), 
col=c(8,1,1,1),bty='n') 

#================================================= 
# the following code for Figure 4.2 
# EWMA without risk adjustment 
# For Poisson data phi = 1, 
phi <- 1 
kappa<- 0.925 # for mu0=0.2 

rarO <- NULL 
rarO [1] <- mu [1] 
rasO <- phi-(-1) * (1- kappa)-(-1) 
rafrO <- array( ata = 0, dim= 260 ) 

for (tin 1:(n-1)){ 

# step 1,2 
muhatO <- r arO[t]/rasO 

# step 3 
g <- log(muhatO) 
ginvO <- muhatO 
ytildeO <- yhe[t+1] - (ginvO - muhatO) 

# step 3, update 
rarO[t + 1] <-kappa* rarO[t] + phi-(-1)* ytildeO 

} 

rafrO <- rarO/rasO 

#the following code for Figure 4.1 
# RA-EWMA, with risk adjustment 
# For Poisson data phi = 1, 
phi <- 1 

rar <- NULL 
rar[1] <- mean(yhe) 
ras <- phi-(-1) * (1 - kappa)-(-1) 
rafr <- array(data = 0, dim = c(260,mm)) 

for (j in 1:mm ){ 

for (tin 1: (n-1)){ 

# step l, 2 
muhat <- rar[t)/ras 
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# step 3 
g <- log(muhat) 
ginv <- muhat * exp(delta[t+1,j]) 
ytilde <- yhe[t+1] - (ginv - muhat) 

# step 3 , update 
rar[t + 1] <- kappa* rar[t] + phi-(-1)* ytilde 

} 

rafr[,j] <- rar/ras 
} 

mrafr <- rowMeans(rafr, dims 1) 
ymax <- max(mu, mrafr, rafrO) 

drisk <- exp(etaplus) 

# Figure 4 . 2 : C mparison between EWMA and RA-EWMA 
plot(1 :n, mu, type='l' ,xlab = 't', ylab=expression(mu[t]), 

ylim=c( , ymax + 0 .02),lwd=2, col=8) 
abline(v=n1,lty=2) 
points(1:n,rafr0, type='l' ,lwd=1) # EWMA 
points(1:n,mrafr , type='l',lwd=2) # RA-EWMA 

msg <- c('Random Walk' ,'EWMA','RA-EWMA') 
legend(150,0 .4, msg, lty=c(1,1,1), 

lwd=c(2 , 1,2),col=c(8,1,1) ,bty='n') 

#Figure 4 . 3 : Control Chart -­
#Comparison between EWMA and RA-EWMA 
q <- qcc(yhe[1: 60] , newdata=yhe[61 : 150], 

type="xbar. one", plot=FALSE) 
qcc.options(bg .margin="white") 
ewma(q,lambda = (1-kappa),xlab='time' ,ylab='Poisson data') 
points(1 : 150,mrafr[1 : 150] ,type='l',lty=2) 
msg <- c('Standard EWMA','RA-EWMA') 
legend(110,1.75 , lty=c(1,2),msg, bty='n') 
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B.3 Application for Lung Deaths Data 

###==============================================================### 
### ### 
### Application for Count data ### 
###Monthly Dea· hs from Lung Diseases in the UK ### 
### Main reference paper : ### 
### A simple ri sk-adjusted exponentially weighted moving average ### 
### Olivia Grigg and David Spiegelhalter ### 
### Journal of ·-he American Statistical Association, March 2007 ### 
### ### 
### Another ref erenced Paper ### 
### Time series models for Count or Qualitative Ovservations ### 
### A.C . . Harvey and C. Fernandes ### 
### Journal of Business & Economic Statistics, October 1989 ### 
### ### 
### The ldeaths data is from: ### 
### P. J . Diggle (1990) Time Series: ### 
### A Biostatist ical Introduction. Oxford, table A.3 ### 
### It now included in R package stats library ### 
### ### 
###===============================================================### 

#Step 1: Decompose the original data to seasonal, 
# trend, and remainder series 
# The R code need to use library stats and qcc 
# The data ldeat hs been used for this application is 
# in Library stats 
require (stats) 

# library is used to generate the Control Charts 
require(qcc) 

#======================================================== 
# preliminary ru1alysis for the ldeaths data 
# plot the orig.· nal death data separate by male, 
# female, and the total 
# Figure 4.4: Death data : Monthly deaths from lung diseases 
# in the UK 

ts .plot(ldeaths , mdeaths, fdeaths, lty = c(1, 3, 4), 
xlab = "year", ylab = "deaths") 

msg <- c('Total ' ,'Male','Female') 
legend(1978,3900,lty=c(1,3,4), msg, bty='n') 

# Autocorrelation plots for the multiple time series 
# of male and f emale deaths 
#Figure 4.5: Autocorrelation and autocovariance plots 
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# for the Deaths data 
par(mfrow=c(1,2) ) 
acf(ldeaths, ma:Ln='autocorrelation') 
acf(ldeaths, type = 'covariance', main='autocovariance') 

# Figure 4.6 : Spectral density estimates for the Deaths data 
par(mfrow = c(2 , 2)) 
spectrum(ldeaths , main='Series :deaths\n Raw Periodogram') 
spectrum(ldeaths , spans= c(3, 3), 

main='Series :deaths\n Smoother 5') 
spectrum(ldeaths , spans= c(5, 7), 

main='Series :deaths\n Smoother 7') 
cpgram(ldeaths, main='Series:deaths') 

#======================================================== 
# decompose the Total data into seasonal, trend, 
# and remainder three parts 
deaths <- stl (ldeaths, "periodic") 
seasonal <- deat hs$time .series[,1] 
trend <- deaths$time.series[,2] 
remainder <- deaths$time.series[,3] 

#Figure 4.7: The decomposition for the Deaths data 
ts.plot(remainder+mean(ldeaths), seasonal, trend, ldeaths, 

lty=c(1 ,2,3,4), xlab='year', ylab='deaths') 
msg <- c('Non-seasonal data','Seasonal component', 

'Trend','Ori ginal data') 
legend(1977,4000 ,lty=c(1,2,3,4), msg, bty='n') 

#======================================================== 
#Step 2: Compu· e the standard ewma without risk adjustment 
# without seasonal effect 
# The standard EWMA smooth with decay parameter kappa 
# The decay parameter is set as .925 
kappa<- 0.925 

x <- time(ldeaths) 
y <- trend + remainder 
n <- length(y) 

# std.ewma: the standard ewma value of ldeaths 
# This standard ewma with seasonal effect 
std.ewma <- ewmaSmooth(x,y,lambda=(1- kappa),start=mean(y)) 
#lines(std.ewma, col="red") 

#======================================================== 
#Compare deseas onal data (with trend), Compare among: 
# (a) The deseasonal data 
# (b) Trend Component 
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# (c) Standard EWMA by using deseasonal data 

# Figure 4.8: he non-seasonal component, trend, 
# and standard EWMA for the Deaths data 
ts.plot(remainder+trend, trend, lty=c(2,3), 

xlab='year' , ylab='deaths') 
lines(std.ewma, lty=1) 
msg <- c('Non seasonal data','Trend component', 

'EWMA without seasonal effect') 
legend(1976.5,3000,lty=c(2,3,1), msg, bty='n') 

#======================================================== 
# Apply the deseasonal data (y = trend + remainder) 
#to EWMA control chart 
x <- time(ldeaths) 
y <- remainder + trend 
n <- length(y) 
sample <- 1 :n 

#Figure 4 . 9: t he EWMA control chart for the Remainder 
# with trend 

q <- qcc(remainder +trend, type= 11 xbar.one 11
, plot=FALSE) 

qcc.options(bg. raargin= 11 white 11
) 

ewma(q,xlab='time',ylab='deaths') 
points(sample,tr end,type='l' ,lty=3) 
msg <- c('EWMA "ithout seasonal effect', 'Trend component') 
legend(30,3000, l ty=c(1,3), msg, bty='n') 

#========~=============================================== 
# Compare the r emainder component of the deaths data 
#(without trend, without seasonality), 
# 
# Compare among : 
# (a) The remainder 
# (b) Standard EWMA by using the remainder 
# (c) Risk Adjus ted EWMA (RA_EWMA) by using 

# ==>> ( Remai nder) as the data 
# ==>> The transformation of seasonal component 
# as the risk f actor 

# (b) Standard EWMA by using the original data 
kappa <- 0. 925 
x <- time(ldeaths) 
y <- remainder 

# std.ewma: the standard ewma value of ldeaths 
# This standard ewma with seasonal effect 
std.ewma <- ewmaSmooth(x,y,lambda=(1- kappa),start=mean(y)) 
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std.ewma <- std .ewma$y +mean(ldeaths) 

#======================================================== 
# (c) Risk Adjusted EWMA (RA_EWMA) 

muO <- mean(y) 
n <- length(y) 

phi <- 1 
# a simple transformation for the seasonal component 
#which used as risk-adjustment parameter. 
delta <-log( round(seasonal/100 + 8)) 

# setup the init ial values for code 
muhat <- muhatp_us <-NULL 
ytilde <- NULL 
r <- NULL 
rO <- muO 
s <- (phi)A(-1) * (1-kappa)A(-1) 

# initialize the values and parameters at t = 0 
t <- 0 
muhat[t+1] <- r O/s 
muhatplus[t+1] <- muhat[t+1] * exp(delta[t+1]) 

ytilde[t+1] <- y [t+1] - (muhatplus[t+1] - muhat[t+1] ) 
r[t+1] <-kappa* rO + phiA(-1) * ytilde[t+1] 

#calculate the estimated values at t from 1 to (n-1) 
for (tin (1:(n- 1))){ 

} 

muhat[t+1] <- r[t]/s 
muhatplus[t+1] <- muhat[t+1] * exp(delta[t+1]) 
ytilde[t+1] <- y[t+1] - (muhatplus[t+1] - muhat[t+1] ) 
r[t+1] <-kappa* rO + phiA(-1) * ytilde[t+1] 

ra .ewma <- muhat + mean(ldeaths) 

#Figure 4.10: the non-seasonal EWMA control chart 
# without trend 
remainders <- y 
q <- qcc(remainders, type="xbar.one", plot=FALSE) 
qcc.options(bg .margin="white") 
ewma(q,xlab='time',ylab='deaths',lambda=(1-kappa)) 
points(ra.ewma-mean(ra.ewma),type='l' ,lty=2) 
msg <- c('The r emainder','RA_EWMA','Standard EWMA' ) 
legend(40,800,Hy=c(3,2,1), lwd = c(3,1,1),msg, bty='n') 

#Figure 4.11: the EWMA and RA-EWMA for remainder component 
plot( remainder+ mean(ldeaths), type='p', pch=20, xlab='year', 
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ylab='deaths', ylim=c(1950,2200)) 
points(x,ra . ewma ,type='l', lty=1) 
points(x,std.ewma,type='l', lty=2) 

msg <- c('The r emainder' ,'RA_EWMA','Standard EWMA' ) 
legend(1976.5,2200,lty=c(3,1,2), lwd = c(3,1,1),msg, bty='n') 
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