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Abstract

The concept of relations is useful for applications in mathematics, logics and computer
science. Once an application structure is identified as a model of a particular relation-
algebraic theory. that theory becomes the preferred reasoning environment in this
application area. Examples of applications in computer science are database, graph
and games.

In [Kah03], Kahl proposed using the proof assistant Isabelle/Isar to provide a
collection of theories for abstract relation-algebraic reasoning. In [DG04], De Guzman
improved and populated the theories introduced by Kahl in [Kah03|. Finite maps
or finite relations between infinite sets do not form a category since the necessary
identities are infinite. In [KahO8], Kahl presented relation-algebraic extensions of
semigroupoids where the operations that would produce infinite results in category
have been replaced with their variants that preserve finiteness, but still satisfy useful
algebraic laws.

In this thesis, we will build a framework by building a hierarchy of Isabelle/Isar
theories to implement relational semigroupoid theories which are presented by Kahl
in [Kah08], focusing on the following:

Since the difference between semigroupoids and categories are that no identities
are assumed in semigroupoids, category theories in [DGO04] will be transferred into
our semigroupoid theories by modifying definitions, reformulating theorems, adding
theorems to help reprove theorems involving identities in their proofs.

New theorems and new theories will be added to implement subidentity and range
and their propersies. Then new theorems and new theories about restricted residual
and standard residual and their properties will be developed. In [Kah08], Kahl pro-
posed that in ordered semigroupoids with domain and range, if standard residuals
exist, then restricted residuals exist too and can be calculated via standard residuals.
A new theory will be built to prove this.
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Chapter 1

Introduction

1.1 Motivation

The concept of relation algebra is useful for applications in mathematics, logic and
computer science. Example applications in computer science are program semantics
[BKS97] [SS93], graph [SS93] [Kah01], databases [BKS97] [SS93], and fuzzy relations
[Win01]. Once an application structure is identified as a model of a particular relation-
algebraic theory, that theory will become the preferred reasoning environment in this
application area.

Finite maps or finite relations are used frequently in computing science, especially
in programming languages. Surprisingly, the mathematical foundations for dealing
with finite relations are not well-established. In section 1.3 of [Kah08], Kahl identified
three problems vwsith relation-algebraic treatment of finite relations:

e No complement (negation): this is not a big problem, but perhaps can be worked
around by using difference.

e No identities: many relational properties are normally defined using identities.

e No residuals: standard residuals do not exist.

Finite maps or finite relations between infinite sets do not form a category, since
the necessary identities are not finite. Identities are not assumed in semigroupoids.
In [KahO8], Kah! proposed relation-algebraic extensions of semigroupoids where the
operations that would produce infinite results in category have been replaced with
their variants that preserved finiteness, but still satisfy useful algebraic laws. The
resulting theories allow calculational reasoning in the relation-algebraic style with only
minor sacrifices. Kahl introduced the concept of restricted residuals in semigroupoids
since standard residuals do not generally exist in the semigroupoids of finite relations
between arbitrary sets.

In this thesis, we will develop the framework of the interesting semigroupoids and
other related weaker theories presented in [Kah08], especially restricted residual and

1



MSc Thesis — Jinrong Han McMaster University — Computer Science

standard residual and their properties. In this framework, we will systematically
organize algebraic structures and providing readable formal proofs both for machines
and humans, using 2008 Isabelle/Isar.

1.2 Related work

Since relation-algebraic reasoning typically follows a very calculational style, and, due
to the expressive power of its constructs and rules, also proceeds in relatively formal
steps, computer support for this kind of reasoning appears to be quite feasible. In
[Kah03], Kahl proposed using the proof assistant Isabelle/Isar to provide a collec-
tion of theories for abstract relation-algebraic reasoning. In [DG04], De Guzman
improved and populated the theories introduced by Kahl in [Kah03], from categories
via allegories up to heterogeneous relation algebras using Isabelle/Isar.

The difference of semigroupoids and categories is that no identities are assumed
in semigroupoids. Basic category theories in appendix B of De Guzman’s thesis
[DGO04] can be transformed into our semigroupoid system by modifying definitions,
reformulating theorems, deleting theorems which are closely related to identities and
adding new theorems to help reprove many theorems involving identities in their
proofs, in order to adapt them to our system.

1.3 Our approach

We first provide a framework for abstract weaker semigroupoids. Then we define
ordered semigroupoids with range and domain operators and also give their properties.
And finally we provide some applications based on it. Specifically, we define restricted
residuals and standard residuals and give their properties.

This thesis is organized as follows:

e In chapter 2, our chosen theorem prover Isabelle/Isar is discussed.

e Chapter 3 gives a quick look at how the theories are organized as well as their
dependencies.

e Chapter 4 focuses on explaining in detail the bottom theories of the hierar-
chy and presents the important decisions made in implementing these theories
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in Isabelle/Isar. Subidentities are also defined and discussed in this chapter,
because many theorems need to be proved via subidentity laws.

e Chapter 5 introduces theories involving domain and range. Range theories are
new theories which are dual theories of domain theories.

e Chapter 6 presents the new theories of our hierarchy and how we implemented
them by using subidentity laws and the properties of range and domain. These
new theories involve standard residuals and restricted residuals and their prop-
erties. The theorem that in ordered semigroupoids with domain and range, if
standard residual exists, restricted residual exists too and it can be calculated
via standard residual, will also be proved in the chapter.

e Chapter 7 covers possible future work of the system and conclusion.
Some theories, axioms and lemmas are referred in the above chapters without

showing their implementations in Isabelle/Isar. We provide appendix B for the inter-
ested readers for further reading.



Chapter 2

Isabelle/Isar

Isabelle/Isar were adopted to provide computer-aided proof assistance for research
and abstract relation-algebra reasoning by Kahl in [Kah03] and by De Guzman in
[DGO4] in the past. In order to make our research and reasoning persistent in Is-
abelle/Isar and make further applications based on them easily implemented, we
continue to use Isabelle/Isar for our proposed objectives.

In this chapter, we briefly illustrate Isabelle/Isar proving system. For other
provers, there are some discussions about IMPS, PVS in the second chapter of [DG04].

2.1 Isabelle/HOL

Isabelle [NPWO0S] is a generic system for implementing logical formalisms. It allows
mathematical formulas to be expressed in a formal language and provides tools for
proving those formulas in a logical calculus. Isabelle is developed at University of
Cambridge (Larry Paulson) and Technische Universitidt Miinchen.

Isabelle can be viewed from two main perspectives. On the one hand it may serve
as a generic framework for rapid prototyping of deductive systems. On the other hand,
major existing logics like Isabelle/HOL provide a theorem proving environment ready
to use for sizable applications. Isabelle/HOL [NPW03] is the specialization of Isabelle
for HOL, which abbreviates Higher-Order Logic.

2.2 Isabelle/Record

A record [NPWOS8] of Isabelle/HOL covers a collection of fields. Each field has a
specified type, which may be polymorphic. The field names are part of the record
type, and the order of the fields is significant. Every record structure has an implicit
pseudo-field, more. When a fixed record value is expressed using just its standard
fields, the value of more is implicitly set to (), the empty tuple.

4
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Each record declaration introduces a number of derived operations to refer collec-
tively to a record’s fields and to convert between fixed record types.

We are interested in the extensibility of records, which allow us build a new record
by extending existing one.

2.3 Isar Overview

Isar stands for Intelligible semi-automated reasoning. The Isar subsystem [NPWO08]
is an extension of Isabelle. It hides the implementation language almost completely.
Isar proofs [Nip07] are an extension of the apply-style proofs — tactic-style reasoning
in the Isabelle/HOL. Isar supports a calculational style of reasoning and allows us
to provide structured proofs which are presented like mathematical proofs and are
understandable for both humans and machines.

By integrating Isabelle/Isar with Proof General — a generic (X)Emacs interface
for interactive proof assistants, we arrive at a reasonable environment for live proof
document editing. For presentation of the final outcome, Isabelle/Isar provides an
integrated document preparation system [Wen08] based on current PDF /LaTeX hy-
pertext technology. Thus Isabelle/Isar proof documents may be both browsed on the
WWW/ and printed on paper in high quality.

2.3.1 A glimpse of Isar

An Isar proof can be either compound (proof — qed) or atomic (by). This is a typical
proof skeleton [Nip07]:

proof

assume "the-assm"

have ". . . — intermediate result

have ". . . — intermediate result

show "the-concl"
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qed
The following are main commands of Isar proof language [Wen08] [DG04]:

e Primitive commands: lemma, proof, fiz, then, have, show, ged, note.

Derived commands: also, finally, moreover, ultimately, with, hence, thus, etc.

Automatic commands: simp, auto, best, etc.

Other commands: this, rule, intro, elim, unfold, etc.

Derived proof commands are used for calculational style of reasoning. Commands
such as assumption, rule, intro, and unfold are often used to solve or simplify the
current goal by using existing facts, rules, theorems or definitions.

The above automatic commands are very useful in our implementations. simp uses
the simplifier which applies theorems with simp attribute automatically. auto uses the
simplifier and the classical reasoning, and best uses standard Isabelle inference and
best-first search. Isabelle allow users to tell these reasoners to add or delete specific
rules. Theorems with simp attribute or intro attribute will be applied automatically.
These automatic reasoners help users prove theorems easier and make proofs shorter.

For other commands, how they are used is referred to [NPW08] and [Nip07].

2.3.2 Isar locales

Locale [KWP99] [Bal07], an extension of the Isabelle proof assistant, aims to support
modular reasoning. Locales are based on contexts. The logic view of a context can
be seen as a formula schema

/\xl"'xn-[A1;...;Am]:>...

where variablesz; . .. x, are called parameters,the premisesAys;. .. ; A, are assump-
tions. A formula F is a theorem in the context if it is a conclusion

A B B [Are o5 A =5 P

6
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Isabelle/Isar’s notion of context [Bal07] goes beyond this logical view. Its con-
text record is in a consecutive order. Contexts also contain syntax information for
parameters and for terms depending on them.

Locales can be scen as persistent contexts. In a simplest form, a locale declaration
[Bal07] consists of a sequence of context elements declaring parameters (keyword
fixes) and assumptions (keyword assumes). One aspect of locales which we are
interested in are local expressions. Locale expressions provide an effective way of
constructing complex specifications from simple ones. A new locale [Bal07] can be
achieved through import existing locales. That is, a locale can be defined by adding
operations and properties to existing locales. Algebraic structures are commonly
defined in this way. Hence, a locale hierarchy can be easily obtained in a specific
application.

2.4 Isabelle Theory

A theory [NPWO08] in Isabelle is a collection of types, functions, and theorems, much
like a module in a programming language. The general format [NPWO08]| of a theory
T is:

theory T

imports By --- B,

begin

declarations, definitions, and proofs
end

where:

e Bj--- B, are the names of existing theories that T is based on. B;--- B, are
the direct parent theories of T. Everything defined in the parent theories
(and their parents, recursively) is automatically visible. To avoid name clashes,
identifiers can be qualified by theory names as in T.f and B.f. Each theory T
must reside in a theory file named T.thy.

e declarations and definitions represent the newly introduced concepts (types,
functions, etc).

e proofs are proofs about the newly introduced concepts.



Chapter 3

Theory Organization Overview

[HOL]
Semigroupoids

Ordered Semigroupoids

Domain Range

N/

Restricted Residuals

Bounds Standard Residuals CoQverse

OSGC with Standard Residuals

OSGC with Restricted Residuals

Figure 3.1: A Simplified View of Theory Organization

In this chapter, we give an overview of the organization of our theories. These
theories are commonly defined by adding some definitions, declarations and theorems
based on new concepts to existing theories. For example, theory Main in logic HOL is
extended to our first theory Semi, theory Semsi is then extended to theory OrdSemi.
A theory hierarchy obtained through these extensions is shown in appendix A.

This approach allows us to reason about weak theories (i.e., theories with fewer
symbols and less axioms) which mainly are located at the top of the hierarchy. This

8
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way also allows those theories with complicated structure to be built step by step
through import of theories with simple structure. We also benefit from reusing theo-
ries. It helps us systematically add a large number of new theories.

To effectively present the hierarchy, we are going to group our theories into several
subgroups to give a simplified view (see Figure 3.1). In each subgroup, theories are
closely built to provide solid support for our higher-level applications. Each subgroup
is also a subhierarchy. The theories of each subhierarchy are closely related to a
topic in [Kah08]. Semigroupoids and the concept of restricted residuals had not
been available before [Kah08]. Our goal is developing a framework of semigroupoid
theories, which is able to implement converse, domain, range, standard residuals if
they exists, and restricted residuals for finite relations, reasoning their properties and
then achieving the relationship [Kah08] between unrestricted residuals and restricted
residuals under som assumptions in our implementations.

. Semigroupoid [Kah08] is what we use as the foundation of our frame-
work since we are working in the setting of the relation-algebraic extensions for
finite relations between infinite types and no identity can be assumed. Compo-
sition morphisms as well as homsets are introduced here. Basic concepts such
as epi, mono and parallel, special objects such as terminal and initial, are also
included in the theory of semigroupoids.

e Ordered Semigroupoid [Kah08] extends semigroupoids by adding an
inclusion operator and properties which are based on the new operator. Here
we provide transitivity and monotonicity rules for reasoning with inclusion.
Subidentitics which is defined through inclusion operator and several related
important theorems are also introduced. We also present some lemmas which
are useful for showing properties of residuals. All these are in theory OrdSemi
which is short of Ordered Semigroupoids. The theories of semigroupoid and
ordered semigroupoids are developed by transforming the theories of category
and ordered category in [DG04]. We extended the theory of semigroupoids to
the theory of properties of operators on homsets and the theory of bounds.

e Ordered Semigroupoids with Domain and Range add domain
and range operators and related properties to ordered semigroupoids. We de-
fine domain operator in the way which is defined in [DG04]. The definition
of domain is based on [DMS03]. The theories of range are dual theories of
domain. This part contains the following theories: PreDomSemi, MonPreDom-

9
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Semi, DomSemi, PreRanSemi, MonPreRanSemi and RanSemi. We prepare
these theories for the implementation of restricted residuals.

e Restricted Residuals and Standard Residuals : this is an ex-
citing part of our implementations. Standard residuals are actually the regular
residuals. We also simply call them residuals which include two parts: left resid-
uals and right residuals. Theories about standard residuals are OrdSemiRes,
LResSemi, RResSemi, ResSemi and ResOSGC. Restricted residuals [Kah08]
are defined through domain and range operators. Restricted residuals also con-
tain two parts: left residuals and right residuals. The theories involving Re-
stricted residuals include OrdSemiRestrRes, RestrLResSemi, RestrRResSemi,
RestrResSemi, RestrResAndRes and RestrResOSGC.

We build a theory by taking at least one of the following steps:
e Establishing new structures for abstract relational algebraic by defining Isabelle
report or Isabelle locale.

e Defining new concepts such as subidentities, parellel morphisms by using con-
stdefs in Isabelle.

e Defining and proving lemmas about the properties of the structures of abstract
relational algebra.

e Defining auxiliary lemmas explicitly which will be very helpful to prove other
lemmas.

In the following chapters, we will proceed by discussing the theories in Figure 3.1
as well as mark our contribution in relation to [Kah08] and [DG04].

10



Chapter 4

Transformation of theories from categories to
semigroupoids

Semi

HomSetOpProps Ord$emi

OrdSemiBounds SemiAllRecord

HomSetOpOrdProps

ConvSemi

ISIdSemi /
ConvOrdSemi

Figure 4.1: Hierarchy of the theories this chapter involves

In this chapter, we focus on three aspects:

e Explain how we build Semi and OrdSemi and other theories, by modifying
definitions and reformulating theorems of theory Cat and OrdCat and other
theories in appendix B of [DG04]. Many definition and relational properties
are defined using identities in category system. We modified them to ensure
them adapt to our system. Here Semi and OrdSemi represent semigroupoids
[Kah08] and ordered semigroupoids [Kah08] respectively. Similarly, Cat and
OrdCat represent categories and ordered categories.

e Explain the new parts we add and why we add them. Many relational properties

11
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are proved using identities in category system. New theorems are added to help
reprove many theorems involving identities in their proofs.

e Present important decisions we made in implementing these theories.
Semi theory is based on the predefined Main theory of Isabelle/HOL. It is at the

bottom of our theories in Figure 3.1. OrdSemi theory is an extension of Semi. Other
theories are extensions of Semi directly or indirectly.

4.1 Semigroupoids (New Definition)

Theory Semi is built in the way that theory Cat in appendix B of [DG04] is built
except that Semi has no identity-related content of Cat because no identities are
assumed in Semigroupoids. For theorems in Cat which are proved by taking advantage
of the properties of identities, we reprove them in Semi by using new approaches.

Now we proceed by explaining the important definitions in Theory Sems. Under-
standing the definitions of Semi is very helpful to understand other theories.

4.1.1 Basic definitions

In Isabelle/Isar, we build theory Semi which is based on theory Main of Isabelle/HOL
that is an extension of all the basic predefined theories such as Int, Set, List and Map.

theory Semi

imports Main
A semigroupoid ( O, M, src, trg, ®) [Kah08] is a graph, where:

e O is a set of objects as vertices
e M is a set of morphisms as edges

e src and trg are functions such that for every morphism f from object A to object
B, we have src f = A and trg f = B

12
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e ( is a binary composition operator. The composition of two morphisms f and
g is defined iff trg f = src g, and so src(f ®g) = src f and trg(f ©g) = trg g.
The composition operator is associative.

The above structure is defined by using records in Isabelle:

record (o, 'm) Semigroupoid =

isObj :: ‘o = bool (Obj - [1000] 999)
isMor :: 'm = bool (Mor: - [1000] 999)
cmp :: 'm = m="m (infixr ®: 200)
Ssrc :: 'm = o (srce - [1000] 999)
Strg:: ' m= ‘o (trge - [1000] 999)
Where:

e isObj checks whether an element of type ‘o is in the semigroupoid

e isMor checks whether an element of type 'm is in the semigroupoid

e cmp is the composition of two morphisms in the semigroupoid

e Ssrc and Strg give the source object and target object respectively

Type variables ‘o and 'm prior to our record name Semigroupoid indicates that
the fields of Semigroupoid may involve these named type variables. Each field of
Semigroupoid has a specified polymorphic type. Each field also is provided with a
syntax to the user for convenience. For example, the type of field isObj is ‘o = bool,
its syntax is (Objz - [1000] 999) . The higher the number the higher the priority. The
annotation infixr means that the symbol ® can be used as an infix operator that

associates to the right. The token : [DG04] in a syntax annotation applies to the
structural parameters.

We write
a—b={R|RE€EM,srcR=a,trg R=Db}

13
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for the set of morphisms from object a to object b of a semigoupoid S = ( O, M, src,
trg, ®). It is called the homset [BW99] from a to b. In Isabelle/Isar, the definition of
homset is in the form {z. Pz} through keyword constdefs which is used to introduce
new concepts. The line following constdefs gives the type of homset.

constdefs
homset :: (o, 'm, ) Semigroupoid-scheme = o0 = 0o = m set  (infixr <1 300)

homset s a b == {f . isObj s a A isObj s b A isMors f A Ssrcsf=a A Strgsf= b}

(o, 'm, r) Semigroupoid-scheme comprises all possible extensions to the fields of
Semigroupoid record. The type of the pseudo-field more of the record Semigroupoid
is made explicit by providing type parameter T of Semigroupoid-scheme.

In Isabelle, the definition of a concept is usually followed by a user-level lemma for
readability. And then other lemmas about the properties of the new concept follow
the user-level lemma. The user-level lemma of homset is:

lemma (in Semigroupoid) hs-def:
a—b={f.ObjaAObjbAMorfAsrcf=aAtrgf=Db}
by (unfold homset-def, simp)

Semigroupoid locale is the first locale in our implementation which starts with the
keyword locale, followed by the keyword fixes which fixes the structure the locale
will be working on. We declare other locales in our implementation by import this
locale without using fixes. The axioms are listed through the commands assumes.
Then we use these axioms to obtain the derivation of properties of our structures.

locale Semigroupoid =

fixes C :: (o, 'm, ) Semigroupoid-scheme (structure)
assumes src-defined[intro?, simp]: Mor f = Obj (src f)
assumes trg-defined|intro?,simp]: Mor f = Obj (trg f)

assumes cmp-defined[intro? simp]: [ Mor f; Mor g; trg f = src g] = Mor (f © g)
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assumes cmp-sre[simp]: [ Mor f; Mor g; trg f = src g | = src (f © g) = src f

assumes cmp-trg[simp|: [ Mor f; Mor g; trgf =srcg] = trg f© g) = trg g

4.1.2 Theorems

The format of a lemma in our implementation is :

lemma (in localz)lemma-name:
lemma-statement

proof

Here lemma and in are keywords of Isabelle/Isar. locale indicates in which locale
the lemma is defined. For example, the above lemma hs-def is defined in locale
Semigroupoid. hs-def is visible in the scope of the locale Semigroupoid. It is also
visible in the scooe of other locales which are directly or indirectly extensions of the
locale Semigroupoid. The rule applies to other lemmas as well. The proving process
proof of a lemma follows lemma-statement.

In order to flexibly use the axioms in a locale and the definitions of new concepts,
we need to supply all kinds of variations of axioms and the user-level lemmas of new
concepts in Isabelle/Isar. Then we can directly or indirectly use these definitions and
axioms in different settings to achieve the result we are interesting in.

For example, the auxiliary lemmas homset,homset( of theory Semi are variations
of the user-level lemma hs-def. We prove these variations by using lemma hs-def
through adding it to the simplifier. And then these variations can be added to the
simplifier or as a1 introduction rule to inform Isabelle/Isar how to use them to prove
other theorems. Here homset0 is added as an introduction rule.

lemma (in Semigroupoid) homset:
fixesa: oand b :: oand f: m
assumes a[simp|: Obj a
assumes b[simp|: Obj b

assumes f[simp|: Mor f
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assumes src[simp|: src f = a
assumes trg[simp|: trg f = b
shows f:a < b

by (simp add: hs-def)

lemma (in Semigroupoid) homset0[intro?]:
assumes f [intro,simp|: Mor f
assumes [intro,simp]: src f = a
assumes [intro,simp]: trg f = b
shows f:a«< b
proof —
from f have Obj (src f) by (rule src-defined)
also from f have Obj (trg f) by (rule trg-defined)
ultimately show 7thesis by (simp add : hs-def)
qed

In the theory of semigroupoids, we reformulate the concepts of special morphisms

and parallel morphisms and the related theorems of the theory Cat in appendix B of
[DGO4].

The first theory Semi which serves as the basis of our hierarchy provides the basic
semigroupoid record, semigroupoid locale and some important concepts for easily
building other theories in our implementation.

4.2 Ordered Semigroupoids (OSG) (New Definitions, New
Theorems)

theory OrdSemi

imports Semi
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Theory OrdSemi is built by extending the existing theory Semi through adding a
new operator and the axioms for the new operator. Our higher level applications are
then based on OrdSemi.

In this theory. we redefine concepts and reformulate theorems of the theory OrdCat
in [DG04]. In orclered semigroupoids, we define subidentities without using identities,
and give the properties of subidentities in our own way, based on the need of higher
level implementations.

4.2.1 Basic definitions and theorems

In this part, we define OrderedSemigroupoid OrderedSemigroupoid and OrderedSemi-
groupoid locale by using Semigroupoid report and Semigroupoid locale in the theory
of semigroupoids.

record (‘o, 'm) OrderedSemigroupoid = (o, ‘m) Semigroupoid +

incl :: 'm = 'm = bool (infixr T 50)

locale OrderedSemigroupoid = Semigroupoid OS +

assumes incl-refl[intro,simp|: Mor f = f C f

assumes incl-trans[trans|:
[fCgghf:aebjg:a—bh:acb]=fCh

assumes incl-antisym[trans|:
[fEgegfifracbgiacb]—=f=g

assumes comp-incl-mon|intro,simp]:
[fCf;gg'5f:aeobf':ac—bg:beocg :boc]

= (fog E(f'og)
We add an ordering "C” on each homset of our structure to get a new record
OrderedSemigroupoid. The ordering is defined only between morphisms with the

same sources and targets,that is, it is a partial ordering. The axioms that resulted
from adding this new symbol are listed in the locale OrderedSemigroupoid.
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In the above locale declaration, the parameter OS is bound inside the locale Or-
deredSemigroupoid. This parameter (invisibly) accurs as argument to the locale Or-
deredSemigroupoid. Therefore, Locale OrderedSemigroupoid has the extensible record
type (‘o, 'm, T)OrderedSemigroupoid-scheme as its type. (see page 22 of [DG04])

In the theory of ordered semigroupoids, we reformulate most theorems of the
theory OrdCat in appendix B of [DG04], based on the axioms defined in the above
locale.

4.2.2 Subidentities

Subidentities are defined via idendities in category system [DG04]. We can not define
them in the way in our semigroupoid system.

’’0C-isSId s R == if isMor s R & (Csrc s R = Ctrg s R)
then incl s R (CId s (Csrc s R))
else arbitrary’’

The concept of subidentities (see section 2.3 of [Kah08]) is introduced in the theory
of ordered semigroupoids. We say a morphism R from a to a is a subidentity if and
only if for all objects b and all morphisms F: ¢ — b and G: b — a, we have R ©® F
C Fand G ® R C G . In Isabelle/Isar, this is written as:

constdefs

0OS-isSId :: (o, 'm, ) OrderedSemigroupoid-scheme = 'm = bool (isSIds -
[1000] 999)

OS-isSId s R == if (isMor s R & Ssrc s R = Strg s R)
then (let a = Ssrc s R in
(Vb.
(V£ f: homset s ab —incl s (cmp s Rf) f) &
(Vg. g : homset sba — incls (cmp s g R) g)

)

else arbitrary
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Notice how the ” if A then B else arbitrary” construct is used in the definition of
a new concept. The expression arbitrary is used for dealing with partial functions.

The following are some theorems which are achieved from the definition of subiden-
tities. One of them is ¢sSId-def which is a user-level lemma of the above definition for
readability. isSId-right, isSId-left, isSId and isSId-introl are four variations of isSId-
def. We inform Jsabelle/Isar by adding some of them to the simplifier or providing
some as introduce rules.

- Lemma isSId-def is actually a translation of the above definition of subidentities.
When a new concept is defined, we normally provide such a user-level lemma for
future use.

lemma (in OrderedSemigroupoid) isSId-def:

R:a—a=isSIdR = (V b.
(Vif:aeb— (ROHLCHE&
(Vg.g:bera— (gOR) Cg))

by (unfold OS-isSId-def, simp add: Let-def)

Based on the definition of subidentities, if R is a subidentity on a, it must be a left
subidentity. Lemma ¢sSId-left is introduced to show this.

lemma (in OrderedSemigroupoid) isSId-left[intro?, simp]:
assumes R-t: R:a < a

assumes R: isSld R

assumes f: f:a < b

shows (RO f) C f

proof —

from R-t R f show 7thesis by (unfold OS-isSId-def, simp)
qed
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If R is a subidentity on a, it must be a right subidentity. Lemma ¢sSId-right is
provided for this. The above lemma isSId-left and the following lemma #sSId-right
are very useful for proving inclusion-related theorems in our higher level
implementation.

lemma (in OrderedSemigroupoid) isSId-right|intro?, simp:
assumes R-t: R:a < a

assumes R: isSId R

assumes g: g: b < a

shows (g R)C g

proof —

from R-t R g show 7thesis by (unfold OS-isSId-def, simp)
qed

If R is a subidentity on a, it must be a left subidentity as well as a right subidentity.
lemma (in OrderedSemigroupoid) isSId:

assumes R-t: R:a < a

assumes R: isSId R

assumes f: f: a < b

assumes g: g: b < a

shows (RO Cf& (geR)Cg

proof —

from R-t R f g show ?thesis by (unfold OS-isSId-def, simp)

qed

Lemma ¢sSId-introl shows a way to prove that a morphism R is a subidendity. In
the lemma, the sufficient condition of isSId R is that R is a left subidentity as well
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as a right subidentity.
lemma (in OrderedSemigroupoid) isSId-introl:
assumes R-t: R: a<a
assumes il: Abf. f:a— b= (RO)Cf
assumes i2: Abg. g:b—a=(gOR)Cg
shows isSId R
proof —

from R-t il i2 show isSId R by(subst isSId-def, auto)
qed

In our further applications, we usually know that a subidentity J on an object
a includes morphism R, and need to prove that morphism R is also a subidentity
on an object a. For this situation, the following theorem isSId-intro2 is provided.
The process of directly proving isSId-intro2 is very complicated. In order to make its
proving easier and make its proof shorter for readability, two lemmas, isSId-intro2-
right and isSId-intro2-left, are provided to support its proving.

isSId-intro2-right show R is a right subidentity if J is a subidentity and it includes
R.

lemma (in OrderedSemigroupoid) isSId-intro2-right[intro|:
assumes j-t[intro, simpl: j : a < a

assumes j[intro, simp]: isSId j

assumes R-t[intro, simp]: R : a < a

assumes Rj[intro, simp]: R C j

assumes f[intro,simp]: f: ac—b

shows (ROf)Cf

proof —

let 2g=j0Of
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have 7g: a—b by auto
moreover have bfl:(R © f) C 7g & (7g C ) by auto

moreover have bf2: (R f) C 7g) & (g Cf)) = (R ® f) C f) by
(rule-tac incl-trans, auto)

ultimately show 7thesis by auto

qed

1sS1d-intro2-left proves R is also a left subidentity if J is a subidentity and it
includes R.

lemma (in OrderedSemigroupoid) isSId-intro2-left|introl:
assumes j-t[intro, simp]: j : a < a
assumes j|intro, simp]: isSId j
assumes R-t[intro, simp]: R: a < a
assumes Rj[intro, simp]: R C j
assumes glintro,simp|: g: b<a
shows (gOR)C g
proof —
let =g 0oj
have 7f: b«»a by auto
moreover have bfl:(g ® R) C 7f & (?f C g) by auto

moreover have bf2: (((g® R) C 7) & (fC g)) = ((g ® R) C g) by
(rule-tac incl-trans, auto)

ultimately show 7thesis by auto
qed

The conclusions of the above two lemmas provide the sufficient condition of isSId R,
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based on lemma isSId-introl. Therefore, with the assumptions of isSId j and R C j,
lemma isSId-intro2 easily reaches that R is a subidendity by applying those two
lemmas.

lemma (in OrderedSemigroupoid) isSId-intro2:
assumes j-t[intro, simpl: j : a < a

assumes j[intro, simp]: isSId j

assumes R-t[intro, simp|: R : a < a
assumes Rj[intro, simp|: R C j

shows isSId R

by (subst isSId-def, auto)

The following defines the set of subidentities on an object a. Following the def-
inition, we give four theorems: SId-def,SId-intro, SId-homset and SId. Please read
the corresponding part of appendix B for detailed information about these theorems.
This part is developed for further domain and range applications.

constdefs

OS-SId :: (o, 'm, r) OrderedSemigroupoid-scheme = ‘o = 'm set (SIdz - [1000]
999)

OS-SId s a == Collect (A m . m : homset s a a & OS-isSId s m)

In our higher level implementations, the properties of subidentites are used a lot.
Theorems proved via idendities in category system, are proved via subidentities in
our system.

4.3 Other theories (New theorem)

We also buid some other theories like HomsetOpProps, HomsetOpOrdProps, Ord-
SemiBounds, SemiAllRecords, ISIdSemi, ConvSemi and ConvOrdSemi. Here, Hom-
setOpProps, an direct extension of Semi, is a theory of properties of operations on
homsets. OrdSemiBounds and SemiAllRecords are direct extensions of OrdSemi, and
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ISIdSems is directly based on OrdSemiBounds. In OrdSemiBounds, upper and lower
bounds and top and bottom morphisms are introduced. Idempotent subidentities and
their properties are introduced in ISIdSemi. ConvOrdSemi is the theory of ordered
semigroupoids with converse (OSGC). These theories are achieved by transforming
the correspoinding parts in appendix B of [DG04] into our semigroupoids system. For
example, OrdSemiBounds is based on OrdCatBounds and SemiAllRecords is based on
AllRecord.

We provide these theories for the implementations of range, domain, standard
residuals and restricted residuals. These theories also provide solid support for the
future implementations of semi-Allegories [Kah08] and Kleene semigroupoids [Kah08].
Interested readers are referred to our appendix B for these theories. Here we choose
to discuss what we add.

We add a new theorem isid-issid in ISIdSemi which presents that an idempotent
subidentity on object a is also a subidentity on object a. At the same time we give it
stmp and intro in Isabelle/Isar by adding intro and simp following the theorem name.
Therefore, for our higher level applications, idempotent subidentitis automatically
have all the properties of subidentities.

lemma (in OrderedSemigroupoid) isid-issid[intro, simp]:
assumes [intro,simp]: R : ISId a

shows isSId R

proof —

have isISId R by (rule ISId, best)

moreover have R : a < a by (simp)

ultimately show 7thesis by auto

qed

A record of SemiAllegory is defined in SemiAllRecords. We present this record
in a separate theory in order to make it easier to have theories that do not need
these components, but components higher up in the record hierarchy. We add a field
All-rang in the record for convenience. So we can proceed to develop the theories of
range operation.
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record (‘o, 'm) SemiAllegory = (‘o, 'm) OrderedSemigroupoid +

meet :: 'm = m = m (infixr Mz 70)
conv :: 'm = 'm (-2 [1000] 999)
All-dom :: 'm = 'm (dom: - [1000] 999)
All-rang :: 'm = 'm (rangz - [1000] 999)
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Chapter 5

Domain and Range

PreRanSemi PreDomSemi

ConvOrdSemi

MonPreDomSemi  MonPreDomSemi

RanSemi

RDConvOrdSemi

Figure 5.1: Dependency graph of theories involving domain and range

The theories about domain and range are prepared for defining the concept of
restricted residuals. Domain theories are built in ordered semigroupoids by formulat-
ing the corresponding theories in ordered categories in appendix B of [DG04]. Range
is dual part of domain. In ordered semigroupoids with converse, range and domain
can be defined in terms of each other. This has been proved in the new theory
RDConvOrdSemi.

In this part, we focus on three aspects:

e How domain and range theories are developed;

e New theorems which are added in order to reprove theorems involving
identities in their proofs, and theorems which are reproved;

e New theorems in the new theory RDConvOrdSemiwhich is prepared for higher
level application.
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5.1 OSG with Domain

We build the theory of ordered semigroupoids with domain through a subhierarchy of
(PreDomSemi, MonPreDomSemi and DomSemi), which can be see from figure 5.1.
At the bottom of the subhierarchy, PreDomSemi gets the symbol of domain operator
from theory SemiAllRecord and gets the properties of multiplicatively-idempotent
subidentities from theory ISIdSemi. Therefore, we introduce PreDomSemi by:

theory PreDomSemi

imports SemiAl Record ISIdSemi

The three ax'oms that characterize the domain operator are introduced in the
definition of locale PreDomSemi.

locale PreDomSemi = OrderedSemigroupoid PDS +
assumes dom-ISId[intro,simp]: R : a <+ b => dom R : ISId a
assumes dom-selffintro,simp]: R:a«< b= R C dom R® R

assumes dom-ISId-cmp|intro,simp]: [R:a <> b; P: ISId a] = dom(P ® R) C P

we proceed by giving the derived properties of the domain operator such as
lp1,llp2, llp, dom-isISId-eq and dom-decomp which satisfies a decomposition law.
Especially we figure out new approach to reprove the following theorems in ordered
semigroupoids which are proved by using the properties of identities in ordered cate-
gories in appendix B of [DG04].

lemma (in PreDomSemi) isid-isbot:
assumes [intro, simp]: isBot W
assumes [intro, simp]: W : a < a
shows W : ISId a

proof —

have isSId W
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proof (rule-tac j=dom W in isSId-intro2, auto)
show W C dom W by (rule isBot, auto)
qed
moreover have W & W =W
proof —
have WO WL W
proof —
have W C dom W by (rule isBot, auto)
hence W ® WL W ® dom W by (rule comp-incl-mon2, best+)
also have ... C W by (auto)
finally show ?thesis by best+
qed
moreover have W C W ® W by (rule isBot, auto)
ultimately show ?thesis by (rule incl-antisym, best+)
qed
ultimately have isISId W by (rule-tac isISId-intro, best+)
thus ?thesis by (rule-tac ISId-intro, best+)

qed

The new theorem isSId-intro2, which is introduced in theory OrdSemi, is first used
for proving the above theorem isid-isbot, in order to avoid identities.

In order to reprove some lemmas such as dom-strict! and dom-left-inv using the
properties of subidentities, instead of proving them via identities, new theorem #sSId-
dom is introduced in the theory. At the same time, we add isSId-dom to the simplifier
and also inform Isabelle/Isar to use it as an introduction rule.

lemma (in PreDomSemi)isSId-dom|intro, simp]:
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assumes [intro: W: a < b

shows isSId (dom W)

proof —
have dom W : [SId a by (rule dom-ISId, auto)
thus 7thesis by auto

qed

The new theorem isSId-dom and theorem isSId-left are applied via "by auto” in
the line of "moreover have dom R ® R C R by auto” in the following proof of
lemma dom-strict1.

lemma (in PreDomSemi) dom-strict1:
assumes [intro|: isBot (dom R)
assumes cmp-isidbot: isBot (dom R @ R)
assumes [intro,simp]: R :a < b
shows isBot R
proof —
have isBot (dom R ® R) by (rule cmp-isidbot)
also have dom R ® R =R
proof —
have R C dom R ® R by (rule-tac llp [THEN iffD1], best+)
moreover have dom R ® R C R by auto
ultimately show ?thesis by (rule-tac incl-antisym, best+)
qed
finally show 7thesis by auto

qed
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Theorem isSId-dom and theorem isSId-left are automatically applied via "by
auto” in the line of "moreover have ... T R by auto” in the proof of lemma
dom-left-inv.

lemma (in PreDomSemi) dom-left-inv:

assumes [intro]: R:a < b

shows R =dom R ® R

proof —

have R C dom R ® R by (rule dom-self, auto)
moreover have ... C R by auto

ultimately show ?thesis by (rule incl-antisym, best+)

qed

For ordered Semigroupoids with monotonic predomain (MonPreDomSemi) and
ordered semigroupoids with domain (DomSemi), we simply build them by reformu-
lating theory MonPreDomCat and theory DomCat in appendix B of [DG04]. Mon-
PreDomSemi is an extension of PreDomSemi by introducing monotonicity of the
domain operator and DomSems is developed by adding rule dom-local to theory Mon-
PreDomSemi. So far our theory ordered semigroupoids with domain (DomSems) is
built. Interested readers are referred to our appendix B for detailed information about
these theories.

5.2 OSG with Range (New theories)

An ordered semigroupoid with domain also has range. In ordered semigroupoids with
converse and domain, range can be defined in terms of domain and converse: rang R
= conv(dom (conv R)) [KKah08] — note that subidentities are not necessary symmetric.
In Semi-Allegories [Kah08], range can be further defined as rang R = dom (conv R)
because all subidentities are symmetric. In our further implementations, range need
work in ordered semigroupoids without converse. This means the above definitions
are not available.
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In this section, range is defined analogously to domain. The theory of ordered
semigroupoids with range is built through a hierarchy of PreRanSemi, MonPre-
RanSemi and RanSemi, which can be see from figure 5.1.

Theory PreRonSemi gets the symbol of range operator from theory SemiAllRecord
and gets the properties of multiplicatively-idempotent subidentities from theory ISId-
Semi. Therefore, we introduce PreRanSemi by:

theory PreRanSemi
imports SemiAllRecord ISIdSemi

The three axioms that characterize the range operator are introduced in the defi-
nition of locale PreRanSemi.

locale PreRanSemi = OrderedSemigroupoid PRS+
assumes ran-ISId[intro,simp]: R : a <> b => rang R : ISId b
assumes ran-self{intro,simp]: R: a <+ b= R C R ® rang R

assumes ran-IS!d-cmp[intro,simp]: [R:a«> b; P:ISIdb] = rang (R®@P)C P

Here axioms ran-ISId, ran-self and ran-ISId-cmp are dual to dom-ISId, dom-self
and dom-ISId-cmp of locale PreDomSemi respectively.

Then we proceed by giving the derived properties of range, which are dual parts
of the properties of domain. For example, the corresponding part of ”lemma (in
PreDomSemi) dom-left-inv” is ”lemma (in PreRanSemi) ran-right-inv”:

lemma (in PreRanSemi) ran-right-inv:
assumes [intro]: R:a < b

shows R = R @ rang R

proof —

have R C R ©® rang R by (rule ran-self, auto)

moreover have ... C R by auto
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ultimately show ?thesis by (rule incl-antisym, best+)

qed

In short, domain operator is a left invariant, analogously range operator is a right
invariant. The dual parts of all the lemmas of theory PreDomSemi are presented in
the theory PreRanSemi, such as llp, ran-strictl, ran-strict2, ran-isISId-eq, isSId-ran,
isid-isbot and ran-decomp.

For ordered Semigroupoids with monotonic prerange (MonPreRanSemi) and or-
dered semigroupoids with domain (RanSemi), we simply build them in the way we
develop PreRanSemi. MonPreRanSem: is an extension of PreRanSemi by introducing
monotonicity of the range operator and RanSemi is developed by adding rule ran-
local to theory MonPreRanSemi. So far our theory ordered semigroupoids with range
(DomSemi) is built. Interested readers are referred to our appendix B for detailed
information about these theories.

5.3 OSGC with Range and Domain (New Theory, New The-
orems)

OSGC is short of ordered semigroupoids with converse operator. We provide im-
portant theorems involving domain, range and converse in the theory of OSGC with
range and domain operators — RDConvOrdSemi theory. These theorems will be used
to prove the properties of restricted residuals which will be introduced in the next
chapter.

In the section, the most important theorems we intend to prove are RDCOS-ran
and RDCOS-dom.

lemma (in RDConvOrdSemi) RDCOS-ran:
assumes [intro]:R : a < b

shows rang R = (dom(R™))~

Lemma RDCOS-ran shows that, in OSGC with domain, range can be defined as
rang R = (dom(R™))~.
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lemma (in RDConvOrdSemi) RDCOS-dom:
assumes [intro]R :a < b

shows dom R == (rang(R™))~

Dually, lemma RDCOS-ran shows that, in OSGC with range, domain can be
defined as dom k = (rang(R™))~ .

In order to prove lemma RDCOS-ran, i.e. rang R = (dom(R~))~, based on iff
rule in Isabelle/Isar, we provide theorem RDCOS-incll (i.e. (dom(R~))~ C rang R)
and theorem RDCOS-incl3 (i.e. rang R T (dom(R~))™) first.

lemma (in RDConvOrdSemi)RDCOS-incl1:

assumes [intro:R : a < b

shows (dom(R~))~ C rang R

proof —

have R C R ® rang R by auto

have R~ C (R © rang R)~ by auto

have d: R~ C (rang R)~ ® R~ by (rule-tac conv-cmp [THEN subst], auto)
from d have dom(R~) C dom((rang R)~ ® R™) by auto
moreover have ... C (rang R)~ by auto

ultimately have dom(R~) C (rang R)~ by (rule incl-trans, auto)
hence dd: (dom(R~))~ C ((rang R)™)~ by auto

from dd show 7thesis by (rule-tac conv-idem [THEN subst], auto)

qed

lemma (in RDConvOrdSemi)RDCOS-incl3:
assumes [intro:R : a < b

shows rang R C (dom(R™))~
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proof —
let 7R'= R~
have (7R’)~ = R by auto
moreover have (rang((?R’)~))~ C dom(?R’) by (rule ResOSGC-incl2, auto)
ultimately have r: (rang R)~ C dom(R™) by auto
from r have rr: ((rang R)~)~ C (dom(R~))~ by auto
from rr show ?thesis by (rule-tac conv-idem [THEN subst], auto)
qged
Dually, we provide theorem RDCOS-incl2 (i.e. (rang(R~))~ C dom R) and
theorem RDCOS-incly (i.e. dom R C (rang(R~))~) for proving lemma RDCOS-
dom, i.e. dom R = (rang(R™))~.
lemma (in RDConvOrdSemi)ResOSGC-incl2:
assumes [intro;R :a < b
shows (rang(R~))~ C dom R
proof —
have R C dom R ® R by auto
have R~ C (dom R ® R)~ by auto
have d: R~ C R~ ® (dom R)~ by (rule-tac conv-cmp [THEN subst], auto)
from d have rang(R~) C rang(R~ ® (dom R)™) by auto
moreover have ... C (dom R)~ by auto
ultimately have rang(R~) C (dom R)~ by (rule incl-trans, auto)
hence dd: (rang(R~))~ C ((dom R)™)~ by auto
from dd show ?thesis by (rule-tac conv-idem [THEN subst], auto)

qed
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lemma (in RDConvOrdSemi)RDCOS-incl4:
assumes [intro]R :a < b
shows dom R C. (rang(R™))~
proof —
let 7R'=R"~
have (?R’)~ = R by auto
moreover have (dom((?R’)~))~ C rang(?R’) by (rule RDCOS-incll, auto)
ultimately have r: (dom R)~ C rang(R™) by auto
from r have r: ((dom R)~)~ C (rang(R~))~ by auto
from rr show 7thesis by (rule-tac conv-idem [THEN subst], auto)
qed
After the above four lemmas are proved, obviously RDCOS-ran theorem holds

via RDCOS-incll and RDCOS-incl3. Similarly, RDCOS-ran holds via RDCOS-incl2
and RDCOS-incl}, too.

In the proofs of RDCOS-incll and RDCOS-incl2, the following rules have been
used. For R : a <> b,

e (rang R)~ is a subidentity on b and (dom R)™~ is a subidentity on a .

e (rang R)~: ISId b, and (dom R)~: ISId a .

In the current RDConvOrdSemi theory, see the following lemmas we have proved
before proving these four lemmas for achieving the above rules.

e RDCOS-convRan-left and RDCOS-convRan-right
& (rang R)~ is a subidentity on b

o RDCOS-convRan-left, RDCOS-convRan-right and RDCOS-convRan-I
< RDCOS-convRan-isISId which proves (rang R)~: ISId b.

e RDCOS-convDom-left and RDCOS-convDom-right
& (Dom R)~ is a subidentity on a
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e RDCOS-convDom-left, RDCOS-convDom-right and RDCOS-convDom-1
& RDCOS-convDom-isISId which proves (Dom R)~: ISId a.

At the end of RDConvOrdSemi theory, we introduce another two new theorems
which are based on RDCOS-ran and RDCOS-dom, to support proving the property
of restricted residuals in the new theory RestrResOSGC which will be presented in
the next chapter.

lemma (in RDConvOrdSemi)RDCOS-incl1:
assumes [intro;R :a <~ b

shows (dom(R~))~ C rang R

lemma (in RDConvOrdSemi)ResOSGC-incl2:
assumes [intro]:R : a <> b

shows (rang(R~))~ C dom R
See RDConvOrdSemi theory in appendix B for their proofs.

The theories of this chapter are provided for our higher level applications —
ordered semigroupoids with restricted residuals.

36



Chapter 6

Standard residuals and Restricted Residuals

OrdSemiRestrRes DivAllRecord OmiSemiRes

LResSemi RResSeni

ConvOrdS¢mi

RestrLResSemi RestrRResSemi ResSemi

RDConvOrdN

RestrResSemi

ResOSGC

RestrResOSGC
RestrResAndRes

Figure 6.1: Theory Dependency of restricted residuals and standard residuals

This chapter focuses on theories standard residuals and restricted residuals and
their properties. First we give the definition of standard residuals and their properties
based on the corresponding part in appendix B of [DG04]. Standard residuals are
also called residuals in this chapter. For semigroupoids of finite relations between
arbitrary sets, standard residuals do not generally exist. In [Kah08], Kahl introduced
the concept of restricted residuals. Following standard residuals, we give the definition
and properties of restricted residuals in Isabelle/Isar based on section 5 of [Kah08].

A number of new properties of standard residuals and restricted residuals will
be added in this chapter, based on chapter 4 of [FK98]. Also, the theorem [Kah08]
that in ordered semigroupoids with domain and range, if standard residuals exist,
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restricted residuals also exist and can be calculated via standard residuals, will be
proved.

6.1 Standard Residuals

In this section, we first introduce the theory of ordered semigroupoids with predicates
for standard residuals, OrdSemiRes, on which theory LResSemi and theory RResSemi
are based. The theory OrdSemiRes extends the theory OrdSemi by the definitions of
haveLeftRes and haveRightRes predicates. The following are the derived user-friendly
versions of these predicates.

lemma (in OrderedSemigroupoid) haveLeftRes-def:
[S:aeb;R:cobL:aoc]=
haveLeftRes SRL=(V X €a«—c. (XORLCS)=(XCL))

lemma (in OrderedSemigroupoid) haveRightRes-def:
[S:aebL:iaccgR:icob]=
haveRightRes SLR=(V X e€c+—b. (Lo XLCS)=(XCR))
For concrete relations, we have
e The standard left-residual R «— S
xy)eR~S) < Vz. (y,z2)eR=(x,2) €8S
e The standard right-residual S — L

(y,z2) €(S—L) << Wx. (x,y)eL=(x,2) €8S

Standard residuals provide standard methods to translate predicate logic formulas
involving universal quantifications into relation-algebraic formulas.

The theory of semigroupoids with standard residuals, ResSemi, is based on the the-
ories of standard left residuals and standard right residuals LResSems and RResSems,
respectively. The symbols of standard left-residual and standard right-residual are

38



McMaster University — Computer Science MSc Thesis — Jinrong Han

defined in the theory DivAllRecord. Due to symmetry, only the theory LResSemi is
discussed here.

The theory o left residuated semigroupoids, LResSemi, takes the standard left
residual symbol "<" from the theory DivAllRecord and gets its behaviors from the
theories OrdSemiRes. Therefore, LResSemi is an extension of DivAllRecord and Ord-
SemiRes.
theory LResSemi
imports OrdSemiRes DivAllRecord

Two axioms for the newly added symbol are introduced in the definition of the
locale LResSemi.
locale LResSemi = OrderedSemigroupoid LRS +
assumes leftRes-homset[intro,simp]: [R: ¢« b;S:a<—b]= (R~ S):a<c
assumes leftRes|intro,simp]: [R: ¢ <> b; S: a <> b ] = haveLeftRes SR (R < S)

The following properties of standard left residuals are derived in Isabelle/Isar.
Their proofs are omitted here.
lemma (in LResSemi) Ires-src:
assumes [simp|: trg R = trg S
assumes [simp|: Mor R
assumes [simp]|: Mor S

shows src (R — S) =src S

lemma (in LResSemi) lres-trg:
assumes [simp]: trg R = trg S
assumes [simp|: Mor R
assumes [simp|: Mor S

shows trg (R — S) = src R
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lemma (in LResSemi) Ires:
assumes [intro]: R: ¢ < b
assumes [introl: S:a < b
assumes [intro]: X : a < ¢

shows (X ®R)C S) = (XC (R« 89))
Two theorems based on the above theorem Ires are also provided for convenience.

lemmas (in LResSemi) Iresl = lres [THEN iffD1]
lemmas (in LResSemi) lres2 = lres [THEN iffD2]

The following are another two properties of standard left residuals in Isabelle/Isar.
Their proofs are also omitted here.

lemma (in LResSemi) incl-Ires:
assumes [intro]: T : a < ¢
assumes [intro]: R: ¢ < b

shows T C (R — (T ® R))

lemma (in LResSemi) Irescimp-incl:
assumes [intro]: R: ¢ < b
assumes [intro]: S:a < b

shows (R—S)®R)LCS

Now we merge the theories of standard left-residual and standard right-residual,
LResSemi and RResSemi, to give the theory of residuated semigroupoids, ResSemi.

theory ResSemi
imports LResSemi RResSemi
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begin

locale ResSemi == LResSemi RS + RResSemi RS

end

We'll use theory ResSemi together with theory RestrResSemi, which will be in-
troduced in the next section, to build theory RestrResAndRes in which restricted
residuals is defined via standard residuals under the assumption that standard resid-
uals exist.

6.2 Restricted Residuals (New theories)

We build the theories of Restricted Residuals in the way that standard Residuals
related theories are developed.

In this section, we first introduce the theory of ordered semigroupoids with predi-
cates for restricted residuals, OrdSemiRestrRes, on which theory RestrLResSemi and
theory RestrRResSemi are based. The theory OrdSemiRestrRes extends theory Dom-
Semi and theory RanSemi, which are introduced in chapter 5, by the definitions of
haveRestrLeftRes and haveRestrRightRes predicates. We define haveRestrLeftRes and
haveRestrRightRes predicates based on the definitions of restricted left-residual and
restricted right-residual in [KahO8]. The following are the derived user-friendly ver-
sions of these predicates.

lemma (in OrdSemiRestrRes) haveRestrLeftRes-def:
[S:taeobR:ceobL:awc =

haveRestrLeftRes SRL = (V X €a«< c¢. ((X® RCS) & (rang X C dom R))
=(XEL)

lemma (in OrdSemiRestrRes) haveRestrRightRes-def:
[Stae—bL:acocgGRicob]=

haveRestrRightRes SLR = (V X €c<— b . ((L®XLCS) & (dom X C rang L
)) = (XER))
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For concrete relations, we have

e (x,y)€(RFS) «—
Vz. (y,z) e R= (x,z) € Sand Jz. (y,z) e RA (x,2) €S

e (yyz) € (SH1L) «—
Vx. (x,y) € L= (x,2z) € Sand Jz. (x,y) € LA (x,2) €S

The theory of semigroupoids with restricted residuals, RestrResSemi, is based on
the theories of restricted left residuals and restricted right residuals RestrLResSemsi
and RestrRResSemi, respectively. The symbols of restricted left-residual and re-
stricted right-residual are defined in the theory DivAllRecord. Due to symmetry, only
the theory RestrLResSem: is introduced here.

The theory of restricted left-residual, RestrLResSemi, takes the restricted left-
residual symbol "F” from theory DivAllRecord and gets its behaviors from theory
OrdSemiRestrRes. Therefore, theory RestrLResSemi is an extension of DivAllRecord
and OrdSemiRestrRes.

theory RestrLResSemi
imports OrdSemiRestrRes DivAllRecord

The two axioms restrieftRes-homset and restrieftRes for the newly added symbol
are introduced in the definition of the locale RestrLResSemi.

locale RestrLResSemi = OrdSemiRestrRes RLRS +

assumes restrleftRes-homset|intro,simp|: [R: c < b;S:a—b]= (RFS):a

— C

assumes restrleftRes|intro,simp]: [R: ¢ <> b; S: a < b ] = haveLeftRes SR (R
F S)

The following properties of restricted left-residual are derived in Isabelle/Isar.
Their proofs are omitted here.
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lemma (in RestrLResSemi) restr-lres-src:
assumes [simp|: trg R = trg S

assumes [simp|: Mor R

assumes [simp|: Mor S

shows src (R - S) =src S

lemma (in RestrLResSemi) restr-lres-trg:
assumes [simp|: trg R = trg S

assumes [simp]: Mor R

assumes [simp|: Mor S

shows trg (R F S) = src R

lemma (in RestrLResSemi) restr-lIres:
assumes [intro: R: ¢ < b
assumes [intro]: S : a <> b

assumes [intro]: X : a < ¢

shows (X ® RC S) & (rang X C dom R)) = (X C (RF S))

Theorem restr-lres! and theorem restr-lres2 are provided for convinence.

lemmas (in RestrLResSemi) restr-lresl = restr-lres [THEN iffD1]

lemmas (in RestrLResSemi) restr-lres2 = restr-lres [THEN iffD2]

We also introduce another two properties of restricted left-residual in Isabelle/Isar.

Their proofs are ¢lso omitted here.

lemma (in RestrLResSemi) incl-restr-lres:

assumes [intro|: T : a < ¢
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assumes [intro]: R: ¢ < b
assumes TR]intro]: rang T C dom R

shows TC R+ (T ® R)

lemma (in RestrLResSemi) restr-lrescmp-incl:
assumes [intro]: R:c < b
assumes [intro]: S:a < b
shows (RFS)®RLCS
Finally, we merge the theories of restricted left-residual and restricted right-
residual, RestrLResSemi and RestrRResSemi, to give the theory of semigroupoids
with restricted residuals, ResSemi.
theory RestrResSemi
imports RestrLResSemi RestrRResSemi
begin

locale RestrResSemi = RestrLResSemi RRS + RestrRResSemi RRS
end

Theory ResSemi works together with theory RestrResSemi providing solid support
for our top theory RestrResAndRes which is presented in the next section.

6.3 New Theorems Added for Standard Residuals and Re-
stricted Residuals (New Theorems)

In this section, we’ll discuss the new properties we provide for standard residuals and
restricted residuals. Some of them hold for standard residuals and restricted residuals
both. Others are slightly different.

Two new auxiliary lemmas restr-lres-incll and restr-lres-incl2 are added in the
theory of the restricted left-residual — theory RestrLResSemi, to prove :
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e XCRFS = rang X C dom R

e XCRFS = XORLCS
The following is their proofs.

lemma (in RestrLResSemi) restr-lres-incll [intro]:
assumes [intro]: X : a <> ¢
assumes [intro: R: ¢ < b
assumes [intro]: S: a < b
assumes TR[intro]: X C R F S
shows rang X C dom R
proof —
from TR have ss: (X ® R C S) A (rang X C dom R)
by (rule-tac restr-lres [THEN iffD2], auto)
from ss show 7thesis by auto

qed

lemma (in RestrLResSemi) restr-lres-incl2[intro]:
assumes [intro]: X : a <> ¢

assumes [intro: R: ¢ < b

assumes [intro]: S: a < b

assumes XR[intro]: X TR F S

shows (X ® R L. §)

proof —
from XR have ss: (X ® R C S) A (rang X C dom R)
by (rule-tac restr-lres [THEN iffD2], auto)
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from ss show 7thesis by auto

qed

The above two theorems give two direct conclusions from the auxiliary lemmas
restr-lres which translates the definition of the restricted left-residual. Dually, new
auxiliary lemmas restr-rres-incll and restr-rres-incl2 are added in the theory of the
restricted right-residual — RestrRResSemi.

Another two new theorems restr-lres-incl-new and restr-rres-incl-new are intro-
duced in the theory RestrLResSemi and the theoryRestrRResSemi respectively. The
following is restr-lres-incl-new. See restr-rres-incl-new in appendix B.

lemma (in RestrLResSemi) restr-lres-incl-new:
assumes [intro]: R: ¢ < b
assumes [introl: S:a < b
shows rang (R + S) C dom R
proof —
let 7X =R} S
have [intro|: 7X : a < ¢ by auto
moreover have [intro]: ?7X C (R F S) by (rule incl-refl, best)
have (7X ® RC S) & (rang ?X C dom R)
by (rule restr-lres [THEN iffD2], auto)
thus 7thesis by (best+)

qed

6.4 Restricted Residuals and Standard Residuals (New The-
ory, New Theorems)

For semigroupoids of finite relations between arbitrary sets, standard residuals do
not generally exist. In [Kah08], Kahl provided a theorem to propose that in ordered
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semigroupoids with domain and range, if standard residuals exist, restricted residuals
also exist and can be calculated via standard residuals. This has been proved in the
new theory RestrResAndRes, which is an extension of theory OrdSemiRestrRes and

theory OrdSemikes.

theory RestrResAndRes
imports OrdSeniiRestrRes OrdSemiRes

The theorem Kahl proposed in [Kah08] can be translated into two parts:

e haveLeftRes S R L = haveRestrLeftRes SR L’
where: L' == L ® dom R

e haveRightRes S L R = haveRestrRightRes S L R’
where: R ==rang L ® R

which are translated into the following two lemmas in our implementation.

lemma (in OrdSemiRestrRes) RestrRightRes-RightRes:
assumes [simp,intro]: S: a <> b

assumes [simp,intro]: R : ¢ < b

assumes [simp,intro]: L : a < ¢

assumes [intro|:haveRightRes S L R

shows haveRestrRightRes S L (rang L ® R)

lemma (in OrdSemiRestrRes) RestrleftRes-LeftRes:
assumes [intro]: S: a < b

assumes [intro]: R: ¢ < b

assumes [intro]: L : a < ¢

assumes [intro|:haveLeftRes S R L

shows haveRestrLeftRes S R (L ® dom R)
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The proofs of these two lemmas are pretty long. In order to effectively present
how we prove them, a proof overview of the former lemma is provided here.

haveRightRes S L R = haveRestrRightRes S L (rang L ® R)
& — standard res. def, restr. res. def

LeXCS)=XCR)=(LoOXESAdomXLCrangL)= (XCrangL ®R)

& —three subgoals
(XCRAdomXCrangL) = (X CrangL ® R)

— dom-self: X C dom X ® X
(LeoXCS)=(XCRAXCrangLOR)=LoXLCS

— rang L is a subidentity
(LeoXCS)=(XCR)AXCrangL ®R) = dom X C rang L

— rule dom-ISId-cm, rule dom-incl-mon

The proof of lemma RestrRightRes-RightRes follows.

lemma (in OrdSemiRestrRes) RestrRightRes-RightRes:
assumes [simp,intro]: S: a <> b
assumes [simp,intro]: R : ¢ < b

assumes [simp,intro]: L : a < ¢

[
[
[
assumes [intro|:haveRightRes S L R

shows haveRestrRightRes S L (rang L ® R)

proof (rule haveRestrRightRes-def [THEN sym, THEN iffD1],best+)

show i:VXec « b. (L®XCSAdom XCrangL) = (X CrangL ® R))

proof (intro strip)
fix X
assumelintro]: X : ¢ <> b
show (LOXCSAdomXCrangL) = (X CrangL ® R)
proof —

have R:(L ® X C S) = (X C R) by (rule haveRightRes, best+)
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have LOXLCSAdomXCrangL = XCrangL ® R
proof —
have X: X C. dom X ® X by auto
from R have (L ® X C S A dom X C rang L)
= (dom X C rang L A X C R) by auto
also have ... = (dom X ® X C rang L ® R) by auto
from X have (dom X ® X CrangL ® R) = (X Crang L ® R)
by (rule incl-trans, auto)
ultimately show L ®© X T SAdom X CrangL = X Crang L ©®© R
by best+
qed
moreover have X CrangL © R=—=L ® X C S A dom X C rang L
proof (rule conjl)
show X CrangLOR=—=LO®XLCS
proof —
have [intro]: rang L ® R C R by auto
have [intro]:X CrangL ® R = X C R
by (rule-tac incl-trans, auto)
from R have[intro]: X C R = L ® X C S by auto
show X Crang L ® R= L ® X C S by auto
qed
next show X C rang L ® R = dom X C rang L
proof —
have dom (rang L. ® R) C rang L by auto
also have[intro]: X C rang L ® R = dom X C dom (rang L ® R)
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by (rule dom-incl-mon, auto)
have[intro]: dom X C dom (rang L ® R) =>dom X C rang L
by (rule-tac incl-trans, auto)
show X C rang L ® R = dom X C rang L by auto
qed
qed
ultimately show (L ® X E S A dom X C rang L) = (X C rang L ® R)
by (rule iffl, best+)
qed
qed
qed

Due to symmetry, lemma RestrLeftRes-LeftRes is proved in the similar way. See
theory RestrResAndRes in appendix B for its proof.

6.5 New Properties Added (New Theory, New Theorems)

We found that properties of standard residuals in chapter 4 in [FK98], specifically,
the following propositions

e Propositions 4.1

(5@ =(@Q <8

e Propositions 4.4(i)
(R 8) © (T~ R) E (T « S);
(S—L)o(U—8)LC (UL

e Propositions 4.4(iii)
IfSCS, R'CRand Q' C Q, then
(R=S)C (R~ S)and (S—=Q) C (5= Q)
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e Propositions 4.5(i)
(Fo (S<R)C (S« (FOR);
(Q—=UV)oTE((Q®T)~1)

hold for standard residuals in ordered semigroupoids. These properties have been
formalized in semigroupoid setting in

e lemma (in ResOSGC) resOSGC-eq:
assumes [ntro|:Q : a < b
assumes [ntro|:S : a < ¢
shows (S — Q) = (Q~ —~ S7)~

Here, ResO3GC, which is the locale declared in the new theory of OSGC with
standard residuals.

e lemma (in LResSemi) Irescom-incl-fs:
assumes [intro]:S : a < ¢
assumes [intro]:R : b < ¢
assumes [intro|:T : d < ¢
shows (R —S) ® (T —~ R) C (T = S)

lemma (in RResSemi) rrescom-incl-fs:
assumes [intro|:S : a < ¢

assumes [introl:L :a < b

assumes [intro]:U : a < d

shows (S~L)o(U—~S)C (U—-1L)

e lemma (in LResSemi) Irescom-incl-ohk:
assumes [introl: S: a < ¢
assumes [intro]: S" a < ¢
assumes [intro]: R: b < ¢

assumes [intro: R b < ¢
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assumes Slintro]: S C S’
assumes Rlintro]: R"C R

shows (R — S) C (R’ — S)

lemma (in RResSemi) rrescom-incl-ohk:
assumes [intro]: S: a < ¢

assumes [intro|: S”: a < ¢

assumes [intro]: Q :a < b

assumes [intro]: Q" a < b

assumes S[intro]: S C S’

assumes Qintro]: Q' C Q

shows (S— Q) C (S'— Q)

e lemma (in LResSemi) lrescom-incl-ex:
assumes [intro]:F : a < b
assumes [intro]:R : b < ¢
assumes [intro]:S : d < ¢
shows (F ©® (S~ R))C (S~ (F ®R))

lemma (in RResSemi) rrescom-incl-ex:
assumes [intro|:U : a < b
assumes [intro:Q : a <> ¢
assumes [intro]:T : ¢ < d

shows (Q = U)o T)E(QOT) —U)
respectively.

Among the above propositions, proposition 4.1 and proposition 4.4(i) also hold for
restricted residuals. They have been proved in
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e lemma (in RestrResOSGC) restr-resOSGC-eq:
assumes [introj:Q : a <> b
assumes [intro|:S : a < ¢
shows (S4Q)=(Q~ FS™)~

Here, RestrResOSGC is the locale declared in the new theory of OSGC with
restricted residuals. We prove this lemma by using the newly introduced two
lemmas RDCOS-domRan1 and RDCOS-domRan?2 in chapter 5.

e lemma (in RestrLResSemi) restr-lrescom-incl-fs:
assumes [intro]:S : a < ¢
assumes [ntro]:R : b < ¢
shows (R-S)® (TFR)C (TFS)

lemma (in RestrRResSemi) restr-rrescom-incl-fs:
assumes [ntro|:S : a < ¢

assumes [introl:L : a < b

assumes [ntro|:U : a < d

shows (S4L) ®© (U4S)C (UAL)

respectively.

For proposition 4 4 (iii), in ordered semigroupoids with domain and range, when R
C R, dom R’ T dom R holds obviously. Therefore, when R’ C R,

V X. (rang X = dom Rand XC (R — S)) — dom R' C rang X .
Hence, for such X, X C (R, — S') does not hold.

Based on the above analysis, proposition 4.4 (iii) does not hold for restricted
left-residual. Dually, it also does not hold for restricted right-residual.

In proposition 4.4 (iii), if R C R and Q' C Q are replaced with R = R and Q" =
Q, it holds for restricted residuals. This has been proved in the following two lemmas
for restricted left-residual and restricted right-residual, respectively.
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lemma (in RestrLResSemi) restr-lrescom-incl-ohk:
assumes [introl: S: a <> ¢

assumes [intro]: S a < ¢

assumes [intro]: R: b < ¢

assumes S[intro]: S C S’

shows (R S) C (RF S

lemma (in RestrRResSemi) restr-rrescom-incl-ohk:
assumes [introl: S: a < ¢
assumes [intro]: S: a < ¢
assumes [intro]: Q :a < b
assumes S[intro]: S C S’
shows (SH4Q) C (S'HQ)
For proposition 4.5 (i), with the assumptions rang F' C dom R and dom T T rang
@, it holds for restricted right-residual. This has been proved in the following two
lemmas for restricted left-residual and restricted right-residual, respectively.
lemma (in RestrLResSemi) restr-lrescom-incl-ex:
assumes [intro]:F : a < b
assumes [intro]:R : b < ¢
assumes [intro]:S : d < ¢
assumes FR: rang F C dom R

shows (F® (SFR))C (S+ (F®R))

lemma (in RestrRResSemi) Restr-rrescom-incl-ex:

assumes [intro:U : a <> b
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assumes [intro:Q : a <> ¢

assumes [intro|:T : ¢ < d

assumes TQ: dom T C rang Q

shows (Q1U)® T)C ((Q® T) 4U)

See appendix B for the proofs of the above newly introduced lemmas about the
properties of standard residuals and restricted residuals.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work completed for this thesis was to develop a framework by building a hierarchy
of Isabelle/Isar theories to implement relational semigroupoid theories first presented

by Kahl in [Kah08§].

Basic category theories in appendix B of De Guzman'’s thesis [DG04] have been
transformed into our semigroupoid theories such as Semi, OrdSemi, OrdSemiBounds,
SemiAllRecord, ISIdSemi, PreDomSemi and ResSemi, by modifying definitions, re-
formulating theorems, deleting theorems which are closely related to identities and
adding new theorems to help reprove many theorems involving identities in their
proofs, in order to adapt them to our system (about 77 pages).

New definitions, new theorems and new theories are added to implement the
theory of restricted residuals and its properties, as well as the properties of standard
residual (about 46 pages).

e Three new theories PreRanSemi, MonPreRanSemi, RanSemi are added for
range operator.

e A new theory RDConvOrdSemi is added to prove a number of theorems
involving range, domain and converse for providing properties for the newly
introduced concept — restricted residuals.

e A number of new properties have been introduced in the new theories,
RestrLResSemi, RestrRResSemi and RestrResOSGC, for restricted residuals
as well as in LResSemi, RResSemi and RestrResOSGC for standard residuals.

e New theory RestrResAndRes is provided to prove that in ordered

semigroupoids with domain and range, if standard residual exists, restricted
residual exists too.
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7.2 Future Work

The following are a number of possible future extensions of our system.

e Implement semi-allegory theories [Kah08] which involves meet, converse and
domain operators. Converse and domain operators, and their properties have
been provided in the current system.

e Implement Kleene semigroupoid theories [Kah08].

e Define the restricted symmetric quotient [Kah08] in ordered semigroupoids
with converse, based on the existing restricted left-residual and restricted
right-residual theories in the system, and provide its properties.

Since our work is done by deploying a hierarchy of Isabelle/Isar theories and the
hierarchy is based on Isabelle/Isar locales and Isabelle records, the above work can
be easily implemented by extending our Isabelle records and Isabelle/Isar locales and
"import” our theories.
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Appendix A

Theory dependency Graph

In chapter 3, we gave an overview of our theory hierarchy. Here we provide a detailed
graph of our theory collection. We also provide makers to classify our contribution
on theories in relation to [Kah08] and [DG04].

e (New definitions) marks theories in which new definitions were provided. If
the corresponding concepts exist in categories, it has been defined in a
completely new way in our implementation based on our need.

e (New theorems) marks theories in which new theorems were added for helping
reprove theorems during the process of transforming theories from category
system to our system ,or for supporting further implementations, or for
providing new properties.

e New theories marks new theories we added to the hierarchy (i.e., these
theories are not present in [DG04| and [Kah03]). They are different from those
theories which have been built by transforming theories from category system
into semigroupoid system.
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[Pure]

[HOL]
Semi
[ HomsetOpProps | [ Ordsemi |
HomsetOpOrdProps| [ OrdSemiBounds | [ SemiAllRecord | [  OrdSemiRes |

[ isidsemi | ConvSemi | [ DistrAllRecord
PreDomSemi l | PreRanSemi | | ConvOrdSemi I | DivAllRecord J
Mon”reDomSemi | [ MonPreRanSemi J r LResSemi | I RResSemi

DomSemi RanSemi ResSemi

FDConvOrdSemi_| [ ordsemiRestrRes | [ ResosGC |

| RestrLResSemi | | RestrRResSemiJ | RestrResAndRes |

RestrResSemi

RestrResOSGC

Figure A.1: Theory Dependency Graph
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Appendix B B.1.2 Auxiliary Lemmas

lemmas (in Semigroupoid) cmp-assoc-sym = cmp-assoc [THEN sym)
Proofs of Relational Semigroupoids in Isabelle/Isar i (i Beiprimpeid) ha-def
aeb={f.0baAObjbA MorfAsrcf=aAtrgf=D>b}
hy («mfnl/i 'rﬂ'nwt‘l-l’t'f‘ uhnp)

B.1 Semigroupoids

For each constant definition, we will provide a user level lemma for readability.
theory Semi

imports Main lemma (in Semigroupoid) homset:
begin fixes a:: ‘oand b :: ‘o and f :: 'm
assumes a[simp]: Obj a
assumes b[simp|: Obj b
assumes f[simp|: Mor f

B.1.1 Basic Definitions assumes src{simp]: src f = a
assumes trg[simp]: trg f = b
record (o, 'm) Semigroupoid = shows f:a < b
isObj == "o = bool (Objr - [1000] 999) by (simp add: hs-def)
isMor :: 'm = bool (Mor1 - [1000] 999)
emp i 'm="m='m (infixr &1 200) lemma (in Semigroupoid) homset0[intro?):
Ssre :: 'm = "o (srer - [1000] 999) assumes [ [intro,simp|: Mor f
Strg : 'm = o (trgn - [1000] 999) assumes [intro,simp|: sre [ = a
assumes [intro,simp|: trg f = b
constdefs shows f:ae b
homset :: ("o, 'm, 'r) Semigroupoid-scheme = 'o = ‘o = 'm set  (infixr <1 300) proof —
homset s a b == {f . isObj s a A isObj s b A isMor s [ A Ssrcs [ = a A Strgs [ = b} from [ have Obj (src [) by (rule src-defined)
also from f have Obj (trg f) by (rule trg-defined)
locale Semigroupoid = ultimately show ?thesis by (simp add : hs-def)
fixes C :: ('o, 'm, 'r) Semigroupoid-scheme (structure) qed
assumes src-defined[intro?,simp): Mor f = Obj (src [)
assumes (rg-defined[intro?,simp): Mor f => Obj (trg f) lemma (in Semigroupoid) homset1[intro?|:
assumes cmp-defined|intro?,simp): [ Mor f; Mor g; trg f = src g ]| = Mor (f ® g) assumes m: Mor f
assumes cmp-src[simp]: [ Mor f; Mor g; trg f = src g ] = sre (f @ g) = src f shows f : src f < trg f
assumes cmp-trg(simp): [ Mor [: Mor g: trg f = srcg] = trg ([ © g) = trg g proof (rule homsel0)
note m
next
— All user-level laws use homset premises! from m show n: sre f = src f by simp
next
assumes cmp-assoc[simp): [ [:a e b g: b g h:ced] from m show nn:trg [ = trg f by simp
= (fegoh=feo(goh) next
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from m show Mor f by simp from f have trg f = b by (rule homset-trg)

qed also from g have src ¢ = b by (rule homset-src)

ultimately show ?thesis by simp
lemma (in Semigroupoid) homset-capand|dest?): qed
firaeo b= ObjaAObjbANMorfAsrcf=aAtrgf=10b have [intro,simp]: Mor f by (rule homset-Mor,best+)
by (simp add: hs-def) have [intro,simp]: Mor g by (rule homset-Mor,best+)

have [intro,simp): Mor ([ = g) by (rule cinp-defined, simp-all)
lemma (in Semigroupoid) homset-def1: have src (f © g) = a
fiaeb=(MorfAsrcf=aAtrgf=10b) proof —

proof (rule iffT)

have src (f = g) = src f by (rule cmp-src, simp-all)
assume [ :a < b

also have ... = a by (rule homsel-src, auto)
thus Mor f A sre f = a A trg f = b by (simp add: homset-ezpand) ultimately show ?thesis by simp
next qed
assume Mor f Asrcf=aAtrgf =1b also have trg (f ® g) = ¢
thus [ : a < b by (simp add: homset0) proof
qed have trg (f = g) = trg g by (rule cmp-trg, simp-all)
also have ... = ¢ by (rule homset-trg, auto)
lemma (in Semigroupoid) homset-srcObjlintro?,simp): f : a < b = Obj a ultimately show ?thesis by simp
by (drule homset-ezpand, simp) qged

ultimately show ?thesis by (rule-tac homset0, auto)
lemma (in Semigroupoid) homset-trgObjlintro?,simp): f : a <> b = Obj b qed
by (drule homset-expand, simp)

The following two lemmas are moved here from LResSemi.thy and RResSemi.thy
respectively. Because they are not actually related to standards residuals in their
statements and their proofs. They in the theory can be share by all the theories
which are entensions of semigoupoids.

lemma (in Semigroupoid) homset-Mor[intro,simp]: f : a & b = Mor
by (drule homset-ezpand, simp)

1 i igroupoid) homsel-src[simp): [ : sref = ; ;i
ol e o st e lemma (in Semigroupoid) target-cq[simp:
Yy Tpand, simp assumes t: trg R = trg S

lemma (in Semigroupoid) homset-trg[simp|: f:a < b= trgf = b Zz:ﬁxzz BZ;:Z{ %Z:g
by (drule homset-ezpand, simp) Shiowa G+ Wé S' o tig R
proof —
v A " ; p have S : src S < trg S by (rule homset1, best

lemma (in Semigroupoid) cmp-homset[intro!,simp): s b by tig & lz,y((rule \ [THEN Mﬂ)n])
assumes [ [intro,simp]: f : @ & b finsilly Show Fbaes
assumes g [intro,simp): g 1 b & ¢ od ’ )
shows (f®g):ae ¢ 4
proof — o . X

Y . lemma (in Semigroupoid) source-eq[simp):
have [intro,simp|:trg f = src g assume(s g Z _ z;rc ‘)5, A
proof — Co

assumes [intro,simp]: Mor L
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assumes [intro,simp|: Mor § from il have trg f = b by (rule homset-trg)

shows S € src L & lrg S moreover from i2 have trg f = d by (rule homsel-trg)
proof — ultimately show b = d by simp

have S : src § < trg § by (rule homsetl, best) qed

also have src S = src L by (rule s [THEN sym])
finally show Zihesis .

qed B.1.4 Parallel Morphisms
I
constdefs
B.1.3 Derived Properties Semi-parallel :: (‘o, 'm, 'r) Semigroupoid-scheme = 'm = 'm = bool (infix |1 200)
Semi-parallel s f g == (isMor s f & isMor s g & Ssrc s f = Ssrc s g & Strg s f = Strg s
In semigroupoids, idendities do not generally exist. Here we give the definition of 9)

idendites under some assumptions. The properities of idendities are not provided

because idendities do not generally exist and we don’t use them in our proofs. lsmma., (in.Semigrougoid) parallel:def:

(f Il 9) = (Mor f & Mor g & src f = src g & trg f = trg g)

constdefs by (unfold Semi-parallel-def, simp)
Semi-isId:: ('o, 'm, 'r) Semigroupoid-scheme ='m = bool (isIdx - [1000] 999)
Semi-isld s i == if (isMor s i & Ssrc s i = Strg s i) lemma (in Semigroupoid) parallel-intro[intro:
then (let a = Ssrc s i in assumes T-f(intro]: f: a — b
(Vbfg. assumes T-g[intro]: g : a < b
f: homset s a b — shows f || ¢
g : homset s ba — proof (subst parallel-def)
(cmpsif=[f&empsgi=yg)) show Mor f A Mor g A src f =srcgAirgf =1trgg
else arbitrary proof (subst homset-src)
from T-f have f: Mor f by (simp)
lemma (in Semigroupoid) isld-def[simp): from T-g have ¢g: Mor g by simp
itaea=isldi=(V.bfyg. from T-f have fI: a = src f & b = trg [ by (simp)
fiaeb—g:beoa —i0f=f&kgoi=yg) from T-g have gl:a = src g & b = trg g by simp
by (unfold Semi-isId-def ,simp add: Let-def) from f1 g1 have fg: src f = src g & trg f = trg g by simp
from f g fg show ?thesis by auto
next
from T-f have f2: src f = a by (rule-tac homset-src, simp)
lemma (in Semigroupoid) homset-inj: from T-f f2 show f: src f «>b by (auto)
assumes il: f:a < b qed
assumes i2: [:c e d qed

shows a=cAb=d |
proof (rule conjl)

from il have src f = a by (rule homset-src) lemma (in Semigroupoid) parallel-intro-new:
moreover from i2 have src f = ¢ by (rule homset-src) assumes f-t[introl,simp|: f : a < b
ultimately show a = ¢ by simp assumes g-t[intro!,simp|: g : a < b

next shows f || ¢

66 67



MSc Thesis — Jinrong Han McMaster University — Computer Science

proof (subst parallel-def, intro conjI)

show Mor f by (rule homset-Mor, best+)

next

show Mor g by (rule homset-Mor, best+)

next

have src [ = a by (rule homset-src, best+)
moreover have src ¢ = a by (rule homset-src, besi+)
ultimately show src f = src g by simp

next

have trg f = b by (rule homset-trg, best+)
moreover have trg g = b by (rule homsel-trg, best+)
ultimately show trg f = trg g by simp

qed

lemma (in Semigroupoid) parallel-symmetric:

assumes [[introl]: f || ¢

shows ¢ || f

proof (rule parallel-def [THEN iffD2])

from [ have Mor f A Mor g A src f =src g Ntrgf =trgg
by (rule parallel-def [THEN iffD1])

thus Mor g A Mor f A src g = src f A trg g = trg f by simp

qed

Lemma homset-eq is used to prove a subgoal of Lemma parallel.

lemma (in Semigroupoid) homset-eq:
[ Mor f; Mor g; src f =srcgitrg f=trgg] = g:srcf & trgf
by (rule homset-defl [THEN iffD2], simp)

lemma (in Semigroupoid) parallel[dest?]:

assumes il: [ || g

showsJd ab.f:a—=bAg:a—b

apply (rule-tac z=Ssrc C f in exl)

apply (rule-tac z=Strg C f in exl)

proof (rule congI)

from i1 have Mor f A Mor g A src f = src g A trgf = trg g
by (rule parallel-def [THEN ffD1])

from this have Mor f by auto

from this show f : src f « trg f by (simp add: homset1)

next

from il have i2: Mor f A Mor g A src f = src g ANtrgf =trg g
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by (rule parallel-def [THEN iffD1])
from i2 have Mor [ by auto
moreover from i2 have Mor g by auto
moreover from i2 have src f = src g by auto
moreover from i2 have trg f = trg g by auto
ultimately show ¢ : src [ « trg [ by (rule homset-eq)
ged

lemma (in Semigroupoid) parallel-1[dest?,intro?]:

assumes il: f || ¢

assumes i2: [ :a < b

shows g:a < b

proof (rule homset-defl [THEN iffD2], intro conjl)

from i1 have Mor f AN Mor g A stcf =src g ANtrgf =trgyg
by (rule parallel-def [TIIEN iffD1])

thus Mor g by simp

next

from il have Mor f A Mor g A src f = src g AN trgf = trg g
by (rule parallel-def [TIIEN iffD1])

then have src f = src g by auto

moreover from i2 have src f = a by (rule homset-src)

ultimately show src ¢ = a by simp

next

from 41 have Mor f AN Mor g A srcf =srcegANtrgf =trgyg
by (rule parallel-def [THEN iffD1])

then have trg f = trg g by simp

moreover from i2 have lrg f = b by (rule homset-trg)

ultimately show trg g = b by simp

qed

lemma (in Semigroupoid) parallel-2[dest?,intro?]:
assumes il: f || ¢

assumes i2: g:a < b

shows f: a < b

proof —

from il have g || f by (rule parallel-symmetric)
with i2 show ?thesis by (rule-tac parallel-1)
qed
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B.1.5 Special Morphisms Obj t = (terminalt = (Y . (A'f . f:ra e t)))

constdefs by (rule iffI, unfold Semi-terminal-def, simp-all)

Semi-isEpi :: ("o, 'm, 'r) Semigroupoid-scheme = "'m = bool (isEpir - [1000] 999) constdefs

Sc’"“”EP;th (=l T a’fibﬁ's"[‘:’;i; b = Strg s f i Semi-initial :: (o, 'm, ') Semigroupoid-scheme = "o = bool (initial - [1000] 999)
{\:nr "eh = Ssres fi b= Strg s fin Semi-initial s i == isObj s i & (V a. (3! f. [ : homset s i a))

g : homset sb ¢ —

h: homset s b ¢ —

(cmp s fg=cmpsfh)=(g=nh))
else arbitrary

lemma (in Semigroupoid) initial-def:
Obji=initiali = (Y a. (3! f.f:ie a))
by (rule iff1, unfold Semi-initial-def, simp-all)

lemma (in Semigroupoid) epi-def:
firae b= isEpif=(N cgh.

gibeoc — hibosc — (fog=foh)=(g=h)
by (unfold Semi-isEpi-def, simp add: Let-def)

end

B.2 Properties of Operators on Homsets

constdefs
Semi-isMono :: ("o, 'm, 'r) Semigroupoid-scheme = 'm = bool (isMono1 - [1000] 999) theory HomsetOpProps
Semi-isMono s [ == if isMor s [ imports Semi

then (let b = Ssrc s f: ¢ = Strg s fin begin

Vagh.

g : homsetsab —
h: homsel sab —

B.2.1 Idempotence

(ecmpsgf=cmpshf)=(g=h)) constdefs
else arbitrary homset-idempotent :: ('o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsldempotentr - [1000] 999)

lemma (in Semigroupoid) mono-def: homset-idempotent s f == ALL m . isMor s m — (f m m = m)
fibeoc= isMonof=(Vagh.

giaeb — hiaod — (gof=hof)=(@g="h) lemma (in Semigroupoid) hsldempotent-def:
by (unfold Semi-isMono-def, simp add: Let-def) hsldempotent [ = (Y m. Mor m — (f m m = m))

by (rule iffl, unfold h t-idempotent-def , ption+)

B.1.6 Special Objects

lemma (in Semigroupoid) hsIdempotent-intro[intro]:

constdefs [Am.[Morm]= (fmm=m)] = hsldempotent |
Semi-terminal = ('o, 'm, 'r) Semigroupoid-scheme = "o = bool (terminah - [1000] 999) by (subst hsldempotent-def, simp)
Sermi-terminal s t == if isObj s t
then (V a. (3! f. f: homset s a t)) lemma (in Semigroupoid) hsldempotent-intro-new:
else arbitrary assumes il: (A m . [ Morm | = (f m m = m))
shows hsldempotent f
lemma (in Semigroupoid) terminal-def: proof (subst hsldempotent-def, intro strip)

70 71



MSe Thesis — Jinrong Han McMaster University — Computer Science

from i1 show Am. Mor m = fm m = m by simp
ged

lemma (in Semigroupoid) hsIdempotent-intro2|intro):
[Aabm.[m:aeb]= fmm=m] = hsldempotent f
apply (rule hsldempotent-intro-new)

apply (drule homset1)

apply (simp)

done

lemma (in Semigroupoid) hsldempotent-intro2-new:

assumes il: Aabm.[m:a-b] = fmm=m

shows hsldempotent f

proof (rule hsIdempotent-intro-new, drule homsetl)

from i/ show Am. m € src m & trg m = fm m = m by simp
qed

lemma (in Semigroupoid) hsIdempotent|simp:
[ hsldempotent f; m:a = b] = fmm=m
by (drule hsldempotent-def [THEN #fD1], simp)

lemma (in Semigroupoid) hsldempotent-new:

assumes il: hsIdempotent f

assumes 2: m:a < b

shows fmm=m

proof —

from il have Vm. Mor m — fm m = m by (rule hsldempotent-def [THEN iffD1])
with 2 show %thesis by simp

qed

B.2.2 Commutativity

Need to redefine some constdefs without using the concept of parallel morphisms.

This will enable us to provide more structured proofs. We will follow definitions of

0S-isLBound and 0S-isUBound in OrdSemiBounds.thy

constdefs

homset-commutative :: ("o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsCommutativer - [1000] 999)

homset-commutative s f ==V m n . Semi-parallel s mn — (fm n = fn m)
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"homset_commutative s f == ALL m n . Semi_parallel s m n
\<longrightarrow> (f mn = f n m)"

The commented definition given above uses the parallel definition to illustrate
that m and n have the same homset. The problem with this definition is that proofs
of lemmas about commutativity are not well- structured.

Hence we provide a simpler definition of hsCommutative without the use of paral-
lel. This lemma looks just like the definition provided above but with the expansion
of parallel.

"homset_commutative s f == (ALL m n .(let a = Ssrc s m;

b =Strg s m; ¢ = Ssrc s n; d = Strg s n in isMor s m
\<and> isMor s n \<and> a = ¢ \<and> b = d \<longrightarrow>
(fmn=fnm))"

The following definition is slightly shorter, more readable, but is harder to show
than the one above. Problem is the presence implication instead of conjuctions. For
now. I will stick with the expansion parallel as described above.

"homset_commutative s f == (ALLm n . isMor s m
\<longrightarrow> (let a = Ssrc s m; b = Strg s m in
n : homset s a b \<longrightarrow> (f mn = f nm) ))"

But adapting the second definition from above for hsCommautative did not improve
the structure of the proof. Hence, we stick with the old definition.

lemma (in Semigroupoid) hsCommutative-def:
hsCommutative f = (Y mn. m || n — (fmn = fnm))
by (rule iffT, unfold homset-commutative-def, assumption+)

lemma (in Semigroupoid) hsCommutative-intro[intro]:
[Amn.[m|n]= (fmn=fnm)] = hsCommutative f
apply (rule hsCommutative-def |[THEN iffD2])

apply auto

done
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lemma (in Semigroupoid) hsCommutative-intro-new:
assumes i: Amn.[m|n]= (fmn=fnm)
shows hsCommutative f

proof (subst hsCommutative-def, auto)

from il show Am n. m | n => fm n = fn m by auto

qed

lemma (in Semigroupoid) hsCommutative-intro2[intro|:
[Aabmn.[m:a—bn:aeb]= fmn=fnm] = hsCommutative f
apply (rule hsCommutative-intro-new)

apply (drule parallel)

apply (erule ezE)+

apply (erule conjE)

apply simp

done

lemma (in Semigroupoid) hsCommutative-intro2-new:

assumes comm: Aabmn.[m:aobn:a—b]= fmn=[nm

shows hsCommutative f

proof (rule hsCommutative-intro-new, drule parallel)

from comm show Amn.3ab. m€a— bAn€ae b= fmn=fnmby auto
qed

the proof above is better compare to the following:

lemma (in Semigroupoid) hsCommutative-intro2-old:

assumes il[intro, simp): Aabmn.[m:ae—bn:aeob]= fmn=fnm
shows hsCommutative f

proof (subst hsCommutative-def, intro strip, drule parallel, (erule ezE)+, auto)
have Amnab. mea—bAn€a— b= fmn=fnmby auto

qed

The new proof is using hsCommutative-intro-new instead of hsCommutative-def.
This change improved the proof; we had to apply two methods back instead of five
methods.

lemma (in Semigroupoid) hsCommutative:
[ hsCommutative f; m: a > byn:a—b] = fmn=fnm
by (drule hsCommutative-def [THEN iffD1], auto)
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lemma (in Semigroupoid) hsCommutative-new:
assumes il: hsCommutative f

assumes m-t[introl: m : a < b

assumes n-tlintro: n: a < b

shows fmn=fnm

proof —

B v 0" iy r N ) gty Corrraar
fioin il have V wi . wi || w — {J i w — [ w i) by (rule lisConvinulalive-def [THEN
iffD1])

with m-t n-t show ?thesis by auto

qed

B.2.3 Associativity

Looking at the proofs of the derived lemmas below for associativity of homsets, we see
that the proof for intro2-new is not well-structured. We will try to give another defini-
tion of homsel-associative that does not involve parallel. This new definition with the
expansion of parallel is suppose to be simpler which would make hsAssoc-intro2-new
proof nicer.

constdefs
homset-associative :: (‘o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsAssocr - [1000] 999)
homset-associative s f == ALL m n p . isMor s m & isMor s n & isMor s p
& (let a = Ssre s n; b= Strg s nin
Ssrcsm=a& Strgsm="b& a= Ssrcspb& b= Strg s p)
> (f Smn)p=fm(fnp))

lemma (in Semigroupoid) hsAssoc-def:

hsAssoc f = (¥ m n p. Mor m A Mor n A Mor p A srcm = srcn A trgm = trgn
Asren=srcpAlrgn=trgp — (f (fmn)p=[m(fnp)))

by (rule iff1, unfold homset-associative-def, auto simp add: Let-def)

lemma (in Semigroupoid) hsAssoc-intro[intro]:

[Amnp.[ Morm; Morn; Mor p; src m = src n; trg m = trg n;
sren=srepytrgn=trgp] = (f (fmn)p=Ffm(fnp)]
= hsAssoc f

apply (subst hsAssoc-def)

apply (intro strip)

apply (erule conjE)+

apply simp
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done

lemma (in Semigroupoid) hsAssoc-intro-new:
assumes il[intro, simp]: A m n p . [ Mor m; Mor n; Mor p; src m = src n; trg m = try
n;

sten=srcp;trgn=trgp | = (f (fmmn)p=[fm(fnp))
shows hsAssoc [
by (subst hsAssoc-def, intro strip, (erule conjE)+, auto)

lemma (in Semigroupoid) hsAssoc-intro2[introl:

assumes if: Nabmnp.[m:acbn:acbpiacb] =
f(fmn)p=Ffm(fnp)

shows hsAssoc [

proof (rule hsAssoc-intro)

fix m and n and p

assume m|intro, simp|: Mor m

assume nlintro, simp]: Mor n

assume plintro, simp|: Mor p

assume s-mn [intro, simp|: st¢c m = sre n

assume s-np [intro, simp|: src n = src p

assume (-mn [intro, simp|: lrg m = trg n

assume t-np [intro, simp|: trg n = trg p

note i4

moreover have m : src p < trg p by (rule-tac homset0, auto)

moreover have n : src p « lrg p by (rule-tac homset0, best+)

moreover have p : src p — lrg p by (rule-tac homset0, auto)

ultimately show f (f m n) p = fm (f n p) by best+

ged

lemma (in Semigroupoid) hsAssoc[simp]:
[ hsdssoc fim:ae bin:ae bipiacsb]l= f(fmn)p=Ffm(fnp)
by (drule hsAssoc-def [THEN iffD1], auto)

lemma (in Semigroupoid) hsAssoc-new:
assumes il: hsAssoc f

assumes m-t: m: a < b

assumes n-t: n:a < b

assumes p-t: p:a < b
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shows f (fmn) p=fm (fnp)
proof —
from il have V m n p. Mor m A Mor n A Mor p A strc m = sren A trgm = trgn
Asren=srcpAtrgn=trgp — f (fmn)p=fm(fnp)
by (rule hsAssoc-def [THEN iffD1])
with m-t n-t p-t show ?lhesis by auto
qed

To make the proof for hsAssoc-intro2-new well-structured, we expanded the par-
allel definition in the underlying homset-associative-def.

B.2.4 Totality

constdefs

homset-totalBinOp = ('o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsBinTotal - [1000] 999)

homset-totalBinOp s f == ALL m n . Semi-parallel s m n — Semi-parallel s m (f m n)

lemma (in Semigroupoid) hsBinTotal-def:
hsBinTotal f = (Y mn. m || n — m | (f m n))
by (rule iffI, unfold homset-totalBinOp-def, assumption+)

lemma (in Semigroupoid) hsBinTotal-intro[introl:
[Amn.[m|n]= m]| (fmn)] = hsBinTotal f
by (subst hsBinTotal-def, (rule alll)+, rule impl, simp)

lemma (in Semigroupoid) hsBinTotal-intro-new:
assumes i: Amn.[m|n]= m| (fmn)
shows hsBinTotal f

proof (subst hsBinTotal-def, (rule alll)+, rule impl)
from il have ?thesis by (auto)

qed

lemma (in Semigroupoid) hsBinTotal-intro2[intro]:
[Aabmn.[m:ae—bnia—b]= fmn:a< b]=> hsBinTotal f
apply (rule hsBinTotal-intro)

apply (drule parallel)

apply (erule exE, erule exE, erule conjE)

apply (rule parallel-intro, assumption, simp)
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done

lemma (in Semigroupoid) hsBinTotal-intro2-new:

assumes i Aabmn.[m:a—=bn:acb]= fmn:aeb
shows hsBinTotal f

proof (rule hsBinTotal-intro, drule parallel)

from i/ show A\mn. dab. m€ a = bAn€Eaa— b= m |i Jm n by auto
qed

lemma (in Semigroupoid) hsBinTotal[intro?, simp|:

[ hsBinTotal f; m:a— bin:a—b]= fmn:a—b
apply (drule hsBinTotal-def [THEN iffD1])

apply (frule-tac f=m and g=n in parallel-intro, assumption)
apply (drule-tac z=m in spec)

apply (drule-tac z=n in spec)

apply simp

apply (erule parallel-1, assumption)

done

lemma (in Semigroupoid) hsBinTotal-new:

assumes il: hsBinTotal f

assumes m-t: m : a < b

assumes n-l: n:a < b

shows fmmn:a e b

proof —

from il have V m n. m || n — m || (f m n) by (rule hsBinTotal-def [THEN iffD1])
with m-t n-t have i2: m || (f m n) by auto

from i2 m-t show ?thesis by (rule parallel-1)

qed

The Isar proof is better than the tactic proof

The use of with m-t instead of from i2 m-t above will not work, apparently because
the order of the assumptions matters.
lemma (in Semigroupoid) hsBinTotal-Mor[intro?, simp|:
[ hsBinTotal f;y m: a < b:n:a < b] = Mor (fmn)
by (drule hsBinTotal, auto)

lemma (in Semigroupoid) hsBinTotal-Mor-new:
assumes il: hsBinTotal f
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assumes m-t: m: a < b

assumes n-f: n:a b

shows Mor (f m n)

proof —

from il m-t n-t have fm n : a < b by (rule hsBinTotal)
thus ?thesis by (rule homset-Mor)

gea

lemma (in Semigroupoid) hsBinTotal-src[simp):
[ hsBinTotal f: m : a «> byn:a— b] = src (fmn)=a
by (drule hsBinTotal, aulo)

lemma (in Semigroupoid) hsBinTotal-src-new:

assumes il: hsBinTotal f

assumes m-t: m: a « b

assumes 7n-t: n: a < b

shows src (fmn) = a

proof —

from il m-t n-t have fm n : a «< b by (rule hsBinTotal)
thus ?thesis by (rule homset-src)

qed

lemma (in Semigroupoid) hsBinTotal-trg[simp):
[ hsBinTotal f:m :a = byn:a—b] = trg (fmn)=10b
by (drule hsBinTotal, auto)

lemma (in Semigroupoid) hsBinTotal-trg-new:

assumes i1: hsBinTotal [

assumes m-t: m: a < b

assumes n-t: n:a < b

shows trg (fmn) =b

proof —

from il m-t n-t have fm n : a < b by (rule hsBinTotal)
thus fthesis by (rule homset-trg)

qed

B.2.5 Collections of Properties

constdefs
homset-AC :: ("o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
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(hsAC1 - [1000] 999)
homset-AC s f == homset-associative s f & homset-commutative s [

lemma (in Semigroupoid) hsAC-def: hsAC f = (hsAssoc f A hsCommutative f)
by (rule iffI, unfold homset-AC-def, assumption+)

lemma (in Semigroupoid) hsAC-introlintro):
[ hsAssoc f; hsCommutative f | => hsAC f
by (subst hsAC-def, rule conjl)

lemma (in Semigroupoid) hsAC-intro-new:
assumes il: hsAssoc f

assumes i2: hsCommutative f

shows hsAC f

proof (subst hsAC-def)

from ¢! i2 show hsAssoc f A hsCommutative f ..
qed

lemma (in Semigroupoid) hsAC-Alsimp):
[ hsAC f ] = hsAssoc f
by (drule hsAC-def [THEN iffD1], erule conjE)

lemma (in Semigroupoid) hsAC-A-new:

assumes il: hsAC f

shows hsAssoc f

proof —

from il have hsAssoc f A hsCommutative [ by (rule hsAC-def [THEN iffD1])
thus fthesis ..

qed

lemma (in Semigroupoid) hsAC-C[simp):
[ hsAC f ] = hsCommutative f
by (drule hsAC-def [THEN iffD1), erule conjE)

lemma (in Semigroupoid) hsAC-C-new:

assumes iI: hsAC [

shows hsCommutative f

proof —

from il have hsAssoc f A hsCommutative f by (rule hsAC-def [THEN iffD1])
thus ?thesis ..

80

McMaster University — Computer Science MSc Thesis — Jinrong Han

qed

constdefs

homset-ACI :: ("o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsACI - [1000] 999)

homset-ACI s f == homset-AC s | & homsel-idempotent s f

lemma (in Semigroupoid) hsACI-def: hsACI f = (hsAC f A hsIdempotent f)
by (rule ifI, unfold homset-ACI-def, assumption+)

lemma (in Semigroupoid) hsACI-intro[intro]:
[ hsAC f; hsIdempotent f | => hsACI f
by (subst hsACI-def, simp)

lemma (in Semigroupoid) hsACI-intro-new:

assumes ¢I: hsAC f

assumes ¢2: hsldempotent f

shows hsACI f

proof —

from il i2 show Zthesis by (subst hsACI-def, rule conjI)
qed

lemma (in Semigroupoid) hsACI-AC|[simp]:
[ hsACI f | = hsAC §
by (drule hsACI-def [THEN iffD1], erule conjE)

lemma (in Semigroupoid) hsACI-AC-new:

assumes 4I: hsACI f

shows hsAC f

proof —

from i have hsAC f A hsldempotent f by (rule hsACI-def [THEN iffD1])
thus “thesis ..

qed

lemma (in Semigroupoid) hsACI-I[simp]:

[ hsACI f | = hsldempotent f

by (drule hsACI-def [THEN iffD1], erule conjE)

lemma (in Semigroupoid) hsACI-I-new:
assumes i1: hsACI f
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shows hsldempotent f

proof —

from il have hsAC f A hsldempotent f by (rule hsACI-def [THEN iffD1])

thus ?thesis ..

qed

constdefs

homset-TACI :: ("o, 'm, 'r) Semigroupoid-scheme = ('m = 'm = 'm) = bool
(hsTACI - [1000] 999)

homset-TACI s | == homset-ACI s f & homset-totalBinOp s f

lemma (in Semigroupoid) hsTACI-def: hsTACI f = (hsACI f A hsBinTotal f)
by (rule iffl, unfold homset-TACI-def, assumption+)

lemma (in Semigroupoid) hs TACI-intro[intro]:
[ hsBinTotal f; hsACI f | => hsTACI f
by (subst hs TACI-def, rule conjI)

lemma (in Semigroupoid) hs TACI-intro-new:

assumes il: hsBinTotal f

assumes i2: hsACI f

shows hsTACI f

proof —

from i2 il show ?thesis by (subst hsTACI-def, rule conjl)
qed

Note that in the above proof, “from il i2" fails.

Instead of “rule conjI" “auto" will also work."

lemma (in Semigroupoid) hs TACI-ACI [simp):
[ hsTACI f | = hsACI f
by (drule hsTACI-def [THEN iffD1), erule conjE)

lemma (in Semigroupoid) hsTACI-ACI-new:

assumes il: hsTACI [

shows hsACI f

proof —

from i1 have hsACI f A hsBinTotal f by (rule hsTACI-def [THEN iffD1])
thus ?thesis ..

qed
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lemma (in Semigroupoid) hsTACI-T [simp]:
[ hsTACI f | = hsBinTotal f
by (drule hsTACI-def [THEN iffD1], erule conjE)

lemma (in Semigroupoid) hs TACI-T-new:

ciiraon e L TAATF

assumes il: hsTAC! |

shows hsBinTotal f

proof —

from i1 have hsACI f A hsBinTotal f by (rule hsTACI-def [THEN iffD1])
thus ?thesis ..

qed

B.2.6 Self-Distributivity

lemma (in Semigroupoid) hsSelfDistr1[simp]:
assumes TACI[simp|: hsTACI f
assumes T-m[intro,simp): m : a < b
assumes T-n[intro,simpl: n: a < b
assumes T-p[intro,simp): p: a & b
shows fm (fnp)=f (fmn) (fmp)
proof
have fm (fup)=f (fmm) (fnp)
by (subst hsIdempotent [of f m a b, THEN sym], auto)

also have ... = fm (fm (f n p))

by (rule-tac hsAssoc, auto)
also have ... = fm (f (fmn) p)

by (subst hsAssoc [of f, THEN sym], auto)
also have ... = f (fm (fmn)) p

by (rule-tac hsAssoc [THEN sym)], auto)
also have ... = f (f (fmn) m) p

by (subst hsCommutative [of f]. auto)
also have ... = [ (fmn) (fm p)

by (rule-tac hsAssoc, auto)
finally show ?thesis .
qed

lemma (in Semigroupoid) hsSelfDistr2[simp):
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assumes TACI[simp]: hsTACI f
assumes T-m[intro,simp): m : a < b
assumes T-n[intro,simp]: n: a < b
assumes T-p[intro,simpl: p: a < b
shows f (fnp) m=f (fnm) (fpm)
proof —
have [ (fnp) m = f (fnp) (fmm)
by (subst hsIdempotent [of f m a b, THEN sym)], auto)

also have ... = f (f (fnp) m) m

by (rule-tac hsAssoc [THEN sym|, auto)
alsohave ... = f (fn (fpm)) m

by (subst hsAssoc [of f], auto)
also have ... = fn (f (fp m) m)

by (rule-tac hsAssoc, auto)
also have ... = fn (fm (fp m))

by (subst hsCommutative [of f], auto)
also have ... = f (fnm) (fp m)

by (rule-tac hsAssoc [THEN sym), auto)
finally show ?Zthesis .
qed

lemmas (in Semigroupoid) hsSelfDistr = hsSelfDistr1 hsSelfDistr2

end

B.3 Ordered Semigroupoids: Inclusion Relation

theory OrdSemi
imports Semi
begin

record (o, 'm) OrderedSemigroupoid = (o, 'm) Semigroupoid +
incl :: 'm = "'m = bool (infixr T1 50)

locale OrderedSemigroupoid = Semigroupoid OS +

assumes incl-refiintro,simp|: Mor f = fC f

assumes incl-trans(irans|:
[fCg9gChfiambgiambhiasb]=fCh
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assumes incl-antisym/[trans):
[fCgg9Cfifiaobigiacnb]l=[f=g
assumes comp-incl-mon|intro,simp:
[fCfi9gCy's5fiae=bflracbgibocg bec]
= (fogE( 4g)

The next two lemmas below are derived from the axiom comp-incl-mon.

lemma (in OrderedSemigroupoid) comp-incl-monl|intro,simp]:
assumes i: f C f’

assumes f: f:a < b

assumes g: g : b & ¢

assumes [ f':a < b

shows (f ¢ g) C (f'© g)

proof —

have gg:g C g by (rule-tac incl-refl, rule homset-Mor, rule g)
from i f g f’ gg show #thesis by (rule-tac comp-incl-mon, auto)
qed

lemma (in OrderedSemigroupoid) comp-incl-monl-new:
assumes i: f C f'

assumes [intro): [ a « b

assumes [introl: g : b« ¢

assumes [intro]: f':a < b

shows (f @ g) C (f'® g)

proof -

have g C g by (rule-tac incl-refl, auto)

with i show ?thesis by (rule-tac comp-incl-mon, auto)
qed

The intro attributes save us from naming the typing assumptions and auto suffices
rather than naming the rules homset-Mor and g.

lemma (in OrderedSemigroupoid) comp-incl-monZ2[intro,simp):
assumes i: g C ¢’

assumes f-t[intro]: f : a < b

assumes g-t[intro]: g : b < ¢

assumes f'-t[intro]: g': b« ¢

shows (f © ¢g) C (f ® ¢)

proof —

have f C f by (rule-tac incl-refl, auto)

85



MSc Thesis — Jinrong Han McMaster University — Computer Science

with i show ?thesis by (rule-tac comp-incl-mon, auto)
qed

B.3.1 Transitivity Rules for Calculational Reasoning

lemma (in OrderedSemigroupoid) incl-monotonicity:

assumes i: fLC g

assumes F-mon: (Auv.[uCviu:a—bv:a—b]= Ful Fu)
assumes [-t[intro]: f : a < b

assumes g-t[intro]: g : a — b

assumes F-tlintro]: A u.u:(a— b)) = Fu: (4 B)

shows FfC Fg

proof —

from ¢ F-mon show %thesis by auto

qed

lemma (in OrderedSemigroupoid) incl-mon:

assumes eq: h = F [

assumes i: fC g

assumes F-mon:  Auv.[uCviu:aeo bviaeb]= Ful Fu)
assumes f-t[intro): f : a < b

assumes g-t[intro]: g : a & b

assumes h-t[intro]: h: A < B

assumes F-t[intro): A u.u:(a < b) = Fu: (A< B)
shows hC F g

proof -

note eq

also from ¢ F-mon have F f C F g by auto

finally show ?thesis .

qed

lemma (in OrderedSemigroupoid) mon-incl:

assumes i: fC g

assumes eq: F g=h

assumes F-mon: (Auvv.[uCviu:ae—bvia—b]= Ful Fuv)
assumes f-t[intro|: f : a < b

assumes g-t[intro]: g : a < b

assumes h-t[intro]: h : A — B

assumes F-t[intro]: A u.u:(a e b) = Fu: (A< B)

shows F fC h
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proof —

from ¢ F-mon have F f T F g by auto
also from e¢q have ... = h .

finally show ?thesis .

qed

leinina (in OrderedSeinigioupoid) subst-incl:
assumes ¢¢: [ =g

assumes i: FgC h

assumes f-t[intro]: f : a & b

assumes g-L[introl: g : a < b

assumes h-tlintro): h: A < B

assumes F-t[intro]: A u. u: (a < b) = Fu: (A < B)
shows F fC h

proof -

from eq have F f = F g by auto

also from i have ... C h.

finally show ?thesis .

qed

lemma (in OrderedSemigroupoid) incl-subst:

assumes eq: f = g

assumes i : hC F [

assumes f-t[intro]: f : a & b

assumes g-t[introl: g: a < b

assumes h-t[intro]: h: A < B

assumes F-t[introl: A w.u: (a — b) = Fu: (A < B)

shows h C F g

proof —

note 7

also from eq have F f = F g by auto

finally show ?thesis .

qed

lemma (in OrderedSemigroupoid) subst-incl-new:

[f=9:FgChif:a—bg:a—bh:Ae B
Auv.u:(ae=b) = Fu: (A= B)]= FfCh

by (drule mon-incl, simp-all)

lemma (in OrderedSemigroupoid) incl-mon-trans:
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[hEFfifCg (Auvv.[uCvuiac—bviacsb]= Ful Fu)

Jiaeobgiae b h:co d
(Au.u:(ae=b) = Fu:(ce d)
]=hCFyg

by (rule-tac incl-trans, assumption, simp-all, simp-all)

lemma (in OrderedSemigroupoid) incl-mon-trans-new:
assumes iI: h C F f

assumes i2: fC g

assumes F-Mon: Avv.[uCv;u:a—bvia—b]=FulCFv
assumes [-t[intro]: f : a < b

assumes g-t[intro]: g : a < b

assumes h-t[intro]: h : ¢ < d

assumes F-t[introl: A u. u: (a & b) = Fu: (c < d)
shows hC Fg

proof —

note il

also from i2 F-Mon have F f C F g by best

finally show ?thesis by best

qed

lemma (in OrderedSemigroupoid) incl-incl-trans:

assumes il: fC g

assumes i2: h C k

assumes eg: F g= G h

assumes F-mon: Auv.[vCvu:aeo brviaesb]= Ful Fuv
assumes G-mon: Azy . [zCyiz:codiy:cod]=GzC Gy
assumes [-t[introl: f 1 a < b

assumes g-t[intro]: g : a < b

assumes h-tlintro]: h: ¢ < d

assumes k-t[intro]: k: ¢ < d

assumes F-tlintro): Au.u:(a < b)=> Fu: (A< B)

assumes G-tlintro): Az .z:(c = d) = Gz:(A < B)

shows FfLC Gk

proof (rule-tac g=F g in incl-trans)

from i1 F-mon show F f C F g by auto

next

from eg i2 G-mon show F g C G k by auto

next

show F f € A — B by auto
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next

show F g € A «— B by auto

next

show G k € A < B by auto

qged

B.3.2 Properties of Automorphisms

constdefs
OS-transitive :: ('o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = bool
(transitiver - [1000] 999)
OS-transitive s R == if isMor s R & (Ssrc s R = Strg s R)
then incl s (emp s R R) R
else arbitrary

lemma (in OrderedSemigroupoid) transitive-def:
R:a < a = transitive R = (R ® RC R)
by (unfold OS-transitive-def, simp)

lemma (in OrderedSemigroupoid) transitive-ezpand:
assumes n: transitive R
assumes m: R:a < a
shows R© RCR
proof —
from n m show ?thesis by (rule-tac transitive-def [THEN iffD1])
qged

lemma (in OrderedSemigroupoid) transitive-intro[intro):

assumes n: R & RC R

assumes m: R:a < a

shows transitive R

proof —

from n m show ?thesis by (rule-tac transitive-def [THEN iffD2])
qed

The following lemmas are useful for showing properties of residuals.

lemma (in OrderedSemigroupoid) indirect-ineq:

[Rraeb:S:ab]= (RES)=¥VC.C:ab— CCR—CLCYS))
apply (rule ifJT)

apply (intro strip)
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apply (rule-tac incl-trans)
apply auto
done

lemma (in OrderedSemigroupoid) indirect-ineq:
assumes [inlro]: R : a < b
assumes [introf: S : a < b
shows (RCS)=( C.C:a=b—CLCR—CLCS)
proof —
have (RC §) = (V C.C:ab— CCR— CCS)
proof —
assume incl: RC S
showVC. Cea—-b—CLCR—CLCS
proof (intro strip)
fix C
assume [intro]: C € a < b
assume [intro): C C R
also from incl have R C S by simp
finally show C C S by best+
qed
qed
moreover have (Y C .C:a < b— CC R— CCS)=(RLC S) by(auto)
ultimately show ?thesis by (rule iffI, best+)
qed

lemmas (in OrderedSemigroupoid) indir-ineql = indirect-ineq [THEN iffD1]
lemmas (in OrderedSemigroupoid) indir-ineq2 = indirect-ineq [THEN iffD2]

lemma (in OrderedSemigroupoid) indirect-equality:
[Riaeb;S:acb]=(R=8)=( C.C:aeb— ((CCR)=(CCS)))
apply (rule iffT)

apply (intro strip)

apply auto

apply (rule incl-antisym [THEN sym])

apply (rule-tac indirect-ineq [THEN iffD2])

apply auto

done

lemmas (in OrderedSemigroupoid) indir-eql = indirect-equality [THEN iffD1)
lemmas (in OrderedSemigroupoid) indir-eq2 = indirect-equality [THEN iffD2)
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B.3.3 Subidentities

constdefs

08-isSId :: ('o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = bool (isSId - [1000] 999)

08§-isSld s R == if (isMor s R & Ssrc s R = Strg s R)
then (let a = Ssre s R in
(Vb.
(Vf. f:homset sab - —incls (emps R f) f) &
(Vg. g: homset s b a — incls (cmp s g R) g)

else arbitrary

lemma (in OrderedSemigroupoid) isSld-def:

R:ae a= isSIdR = (V b.
(Vff:aob—(RoOHCf&
(Vg.g: b a— (92 R)Cyg))

by (unfold 0S-isSld-def, simp add: Let-def)

lemma (in OrderedSemigroupoid) isSId-left[intro, simp):
assumes R-t: R:a < a

assumes R: isSId R

assumes f: f:a < b

shows (R® f)C f

proof —

from R-t R f show ?thesis by (unfold OS-isSId-def, simp)
qed

lemma (in OrderedSemigroupoid) isSId-right[intro, simp):
assumes R-l: R:a < a

assumes R: isSId R

assumes g: g : b < a

shows (g ® R)C g

proof —

from R-t R g show ?thesis by (unfold 0S-isSld-def, simp)
qed

lemma (in OrderedSemigroupoid) isSld:

assumes R-l: R:a < a
assumes R: isSId R
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assumes f: f:a < b

assumes ¢: g: b & a

shows (R f)Cf& (9= R)Cyg

proof —

from R-t R f g show ?thesis by (unfold OS-isSId-def, simp)
qed

lemma (in OrderedSemigroupoid) isSId-introl:
assumes R-t: R: a—a
assumes i: Abf. f:aeo b= (R f)Cf
assumes i2: N\bg. g:b—a= (g R)Cyg
shows isSId R
proof —

from R-t il i2 show isSId R by(subst isSId-def, auto)
qed

lemma (in OrderedSemigroupoid) isSId-intro2-right[intro]:
assumes j-t[intro, simpl: j : a <> a
assumes j|intro, simp): isSId j
assumes R-t[intro, simp]: R: a < a
assumes Rj[intro, simp): R C j
assumes f[intro,simp): f: a<b
shows (R f)C f
proof —
let g=50f
have ?g: a—b by auto
moreover have bfI:(R @ f) C ?9 & (%9 C f) by auto
moreover have bf2: (R = [/)C %) & (%9 C f)) = ((R @ [) C f) by (rule-tac
incl-trans, auto)
ultimately show ?thesis by auto
qed

lemma (in OrderedSemigroupoid) isSId-intro2-left|intro):
assumes j-t[intro, simp): j: a & a

assumes j[intro, simp|: isSId j

assumes R-t[intro, simp]: R: a < a

assumes Rj[intro, simp]: R C j

assumes g[intro,simp|: g: b—a

shows (g R)C g
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proof —

let f=g@j

have ?f: b—a by auto

moreover have bfl:(g © R) C ?f & (?f C g) by auto

moreover have bf2 : (((¢ @ R) C ?) & (% C g)) = ((¢ =~ R) C g) by (rule-tac
incl-trans, aulo)

ultimately show ?thesis by auto
qed

lemma (in OrderedSemigroupoid) isSId-intro2:
assumes j-t[intro, simpl: j : a < a

assumes j[intro, simp): isSId j

assumes R-t[intro, simp): R: a < a
assumes Rj[intro, simp): R C j

shows isSId R

by (subst isSId-def, auto)

constdefs
08-SId :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = 'o = 'm set (SId1 - [1000] 999)
08-SId s a == Collect (A m . m : homset s a a & OS-isSId s m)

lemma (in OrderedSemigroupoid) SId-def:
Slda={m.m:a< a& isSIdm }
by (unfold OS-SId-def, simp)

lemma (in OrderedSemigroupoid) Sld-intro[intro]:
[R:a< a;isSIR] = R: SIlda
by (unfold OS-SId-def, simp)

lemma (in OrderedSemigroupoid) SId-homset[intro,simp):
R:Slda= R:aa

by (unfold OS-SId-def, simp)

lemma (in OrderedSemigroupoid) SId[intro?, simp):

R: SId a = isSId R

by (unfold OS-SId-def, simp)

end
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B.4 Ordering Properties of Operators on Homsets

theory HomsetOpOrdProps
imports OrdSemi HomsetOpProps
begin

B.4.1 Monotonicity of Unary Operators

constdefs

homset-Mon :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = ('m = 'm) = bool
(hsMom - [1000] 999)

homset-Mon s [ == ALL m n . incl s m n — incl s (f m) (f n)

lemma (in OrderedSemigroupoid) hsMon-def: hsMon [ = (Y mn. m T n — fm C fn)
by (unfold homset-Mon-def, simp)

lemma (in OrderedSemigroupoid) hsMon-intro[intro?):
[Amn.[mCn]=> fmC fn] = hsMon f
by (subst hsMon-def, intro strip, simp)

lemma (in OrderedSemigroupoid) hsMon-intro-new:
assumes il: Amn.[mCEn]= fmC fn
shows hsMon f

proof (subst hsMon-def, intro strip)

from il show A mn. m C n=> fm C fn by simp
qed

lemma (in OrderedSemigroupoid) hsMon[intro?, simp|:
[hsMon f: mTn] = fmCfn
by (drule hsMon-def [THEN iffD1], auto)

lemma (in OrderedSemigroupoid) hsMon-new:

assumes il: hsMon [

assumes i2: m C n

shows fm C fn

proof —

from il have (Y mn. m C n — fm C fn) by (rule hsMon-def [THEN iffD1])
with i2 show ?thesis by auto

qed
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B.4.2 Monotonicity of Binary Operators
To improve the structure of the proofs of

hsBinMon1-intro-new and hsBinMon2-intro-new, we have to rewrite the underly-
ing definition of homset-BinMonl by expanding the parallel definition.

constdefs
homset-BinMonl :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = ('m = 'm = 'm) = bool
(hsBinMonh - [1000] 999)

homset-BinMonl s f == ALL m n p . isMor s m & isMor s n & isMor s p &
(let @ = Ssrc s m: b = Strg s m in
a=S8srcsn&b=Slgsn&
a=Ssrcsp& b= Strgsp) &
incl s mn — incls (fmp) (fnp)

The following is the original definition of homset-BinMonl.

"homset_BinMonl s f == ALL m n p . Semi_parallel s m n
\<longrightarrow> Semi_parallel s m p
\<longrightarrow> incl s m n
\<longrightarrow> incl s (f m p) (f n p)" *)

lemma (in OrderedSemigroupoid) hsBinMonl_def:

"hsBinMonl f = (\<forall> m n p. m \<parallel> n \<longrightarrow>
m \<parallel> p \<longrightarrow> m \<sqsubseteg> n
\<longrightarrow> f m p \<sgsubseteq> f n p)"
by (unfold homset_BinMonl_def, simp)

lemma (in OrderedSemigroupoid) hsBinMonl1-def:

hsBinMonl f = (Y mnp. Mor m A Mor n A Mor p A src m = srcn A trgm = trg n A
stem=srcpAlrgm=IrgpAmCn— [fmpC fnp)

by (unfold homset-BinMonl1-def, simp add: Let-def)

lemma (in OrderedSenvigroupoid) hsBinMonl-intro-0[intro¥]:
[Amnp.[mC n; Mor m: Mor n; Mor p; src m = sre n:

trgm = trg n; src m = src p:trgm = trg p |
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= fmp C fnp] = hsBinMonl f
by (subst hsBinMonl-def, intro strip, auto)

lemma (in OrderedSemigroupoid) hsBinMonl-intro-0-new:
assumes il: A mnp.[ mC n; Mor m; Mor n; Mor p; src m = src n;
trgm=1trgn;srcm=srcp;trgm=trgp] = fmpC fnp

shows hsBinMonl f

proof (subst hsBinMonl-def, intro strip, auto)

from i1 show Am n p.
[Mor m: Mor n; Mor p; src p = src n; trg p = trg n; src m = src n;
trgm=trgn; mC n] = fmpC fnpby simp

qed

lemma (in OrderedSemigroupoid) hsBinMonl-intro[intro?]:

assumes i Aabmnp.[mCnm:ae—bn:ac—bpia—b]
= fmpCfnp

shows hsBinMonl! f

proof (rule hsBinMon1-intro-0)

fix m and » and p  — This makes Isabelle accept the “show™!

assume incl|intro, simp]: m C n

assume [intro]: Mor m

assume [intro]: Mor n

assume [intro|: Mor p

assume [intro,simp|: sr¢c m = src n

assume [intro,simpl: trg m = trg n

assume s-mp: src m = Src p

assume (-mp: trg m = lrg p

note i/ — More elegant than the next line. See also rule-tac il in the next lemma

moreover have m C n by simp

moreover have m : src m < trg m by (rule-tac homsetl, best+)

moreover have n : src m < trg m by (rule-tac homset0, auto)

moreover from s-mp {-mp have p : src m < trg m by (rule-tac homset0, auto)

ultimately show fm p C fn p by best+

qed

lemma (in OrderedSemigroupoid) hsBinMon!-intro-new[intro?:

fixes f — makes no difference

assumes il: ANabmnp. [mCnom:aeobniaobpiacb]
— fmpCfnp

shows hsBinMonl f
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proof (rule hsBinMonl-intro-0)

fix a and b and m and n and p

assume [simp, intro]: m C n

assume [simp, intro|: Mor m

assume [simp, intro|: Mor n

assume [simnp, intro]: Mor p

assume sn[simp, introl: src m = src n — these “diverging equations” need special treat-
ment below

assume tn[simp, intro: trg m = trg n

assume sp[simp, intro): src m = src p

assume (p[simp, intro|: trg m = trg p

assume |[simp, intro]: a = src p

assume [simp, intro]: b = trg p

have [simp, intro]: src n = src p by (subst sn [THEN sym)|, rule sp)
have [simp, intro]: trg n = trg p by (subst tn [THEN sym), rule tp)
have [simp, intro]: Obj a by auto

have [simp, intro]: Obj b by auto

have [simp, intro]: m : a < b by (rule homset, auto)

have [simp, introl: n : a < b by (rule homset, auto)

have [simp, intro]: p : a — b by (rule homset, auto)

show fm p C fnp by (rule il, auto) — from il didn’t work.

— How does rule i1 work? How does it differ from from i1

qed

lemma (in OrderedSemigroupoid) hsBinMonl1[intro?, simp|:
[ hsBinMonl fimCnim:a—bn:a—bp:ia—b]= fmpCfnp
by (drule hsBinMonl-def [THEN iffD1], auto)

lemma (in OrderedSemigroupoid) hsBinMonl-new:

assumes il: hsBinMonl1 f

assumes i2: m C n

assumes m-t: m: a < b

assumes n-t: n:a < b

assumes p-t: p:a < b

shows fmpC fnp

proof —

from i/ have V m n p. Mor m A Morn A Morp A stc m = sren A trgm = trgn A

srem=srcpAtrgm=trgpAmCn— fmpC fnp

by (rule hsBinMoni-def [THEN iffD1])

with i2 m-t n-t p-t show %thesis by simp
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qed

constdefs
homset-BinMon2 :: (o, 'm, 'r) OrderedSemigroupoid-scheme = ("m = 'm = 'm) = bool
(hsBinMon2x - [1000] 999)
homset-BinMon2 s f == ALL m n p . isMor s m & isMor s n & isMor s p
Qg 3

V- (1 1A
o (o

= Str T
a=Ssrcsn& b= Strgsn
& a= Ssrcsp& b= Strgsp)

& incl s mn — incls (fp m) (fp n)

lemma (in OrderedSemigroupoid) hsBinMon2-def:

hsBinMon2 f = (V. mnp. Mor m A Mor n A Mor p A src m = src n
Atrgm = trgn A src m = srcp A trgm = trg p
AmCn— fpmCfpn)

by (unfold homset-BinMon2-def, simp add: Let-def)

lemma (in OrderedSemigroupoid) hsBinMon2-intro-0[intro?]:

[Amnp.[mC n Morm; Mor n; Mor p; src m = src n; trg m = irg n;
srem = srcp;, trgm =trgp ]| = fpmC fpn] = hsBinMon2 f

by (subst hsBinMon2-def, intro strip, auto)

lemma (in OrderedSemigroupoid) hsBinMon2-intro(intro?]:

assumes i Aabmnp.[mCnym:aebnia—bpiac—b]
= fpmCfpn

shows hsBinMon2 f

proof (rule hsBinMon2-intro-0)

fix m and n and p

assume incl[intro, simpl: m C n

assume [intro, simp]: Mor m

assume [intro, simp): Mor n

assume [intro, simp]: Mor p

assume [intro, simp): src m = srcn

assume [intro, simp: trg m = trg n

assume s-mplintro, simp|: src m = src p

assume t-mplintro, simp|: trg m = trg p

from il have Aabmnp.[mCEnmm:a—bn:a—bpia—b]
= fpmC fpn by simp

moreover have m C n by simp

moreover have m : src m < lrg m by (rule homset1, best+)
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moreover have n : src m < trg m by (rule homset(, auto)

moreover from s-mp t-mp have p : src m « trg m by (rule-tac homset0, auto)
ultimately show fp m C fp n by best+

qed

lemma (in OrderedSemigroupoid) hsBinMonZ2[intro?, simp):
Mhe BinAlon? f' mC » s oe b nia

s b mee ey B —5 By om T o
Gipra o] y P M=/ pPn

by (drule h,sBin}l[unQ-d("f [THEN iffD1], auto)

i resaind C

lemma (in OrderedSemigroupoid) hsBinMon2-new:

assumes ¢/: hsBinMon2 f

assumes i2: m C n

assumes m-t: m: a < b

assumes n-t: n:a < b

assumes p-t:p:a o b

shows fpmC fpn

proof —

from il have (Y m n p . Mor m A Mor n A Mor p A src m = src n
Atrgm = trgn A stcm = srcp A lrgm = trgp
AmCEn— fpmC fpn)by (rule hsBinMon2-def [THEN ffD1])

with i2 m-t n-t p-t show ?thesis by simp

qed

lemma (in OrderedSemigroupoid) hsBinMon2-from-1-and-Commut-0:
assumes m|intro,simp]: hsBinMonl f

assumes c[intro,simp|: hsCommutative f

assumes i[intro,simpl: m T n

assumes T-mlintro,simp|: m : a < b

assumes T-n[intro,simp|: n: a < b

assumes T-plintro,simp]: p: a < b

shows fpmC fpn

proof —

have fp m = fm p by (rule-tac hsCommutative [of f], auto)
also have ... C fn p by (rule-tac hsBinMonl [of f], auto)

also have ... = fp n by (rule-tac hsCommutative [of ], auto)
finally show ?thesis .
qed

lemma (in OrderedSemigroupoid) hsBinMon2-from-1-and-Commut:
assumes mintro,simp): hsBinMonl f
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assumes c|intro,simp): hsCommutative f

shows hsBinMon?2 f

apply (rule hsBinMon2-intro [of f])

apply (rule hsBinMon2-from-1-and-Commut-0 [of f])
apply auto

done

lemma (in OrderedSemigroupoid) hsBinMonl-from-2-and-Commut-0:
assumes m|intro,simp|: hsBinMon2 f

assumes c|intro,simp): hsCommutative f

assumes i[intro,simp|: m C n

assumes T-m[intro,simp): m : a < b

assumes T-n[intro,simp]: n: a < b

assumes T-plintro,simp): p: a < b

shows fmpC fnp

proof —

have fm p = fp m by (rule-tac hsCommutative [of f], auto)
also have ... C fp n by (rule-tac hsBinMon2 |of f]. auto)

also have ... = fn p by (rule-tac hsCommutative [of f], aulo)
finally show ?thesis .
qed

lemma (in OrderedSemigroupoid) hsBinMonl-from-2-and-Commut:
assumes mlintro,simp|: hsBinMon?2 f

assumes c[intro,simp|: hsCommutative f

shows hsBinMonl f

apply (rule hsBinMon1-intro [of f])

apply (rule hsBinMonl1-from-2-and-Commut-0 [of f])

apply auto

done

constdefs

homset-BinMon :: ('o, 'm, 'r) OrderedSemigroupoid-scheme = ('m = 'm = 'm) = bool
(hsBinMom - [1000] 999)

homset-BinMon s f == homset-BinMonl s f & homset-BinMon2 s f
lemma (in OrderedSemigroupoid) hsBinMon-def:

hsBinMon f = (hsBinMonl f A hsBinMon2 f)
by (rule iffI, unfold homset-BinMon-def, assumption+)
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lemma (in OrderedSemigroupoid) hsBinMon-def-new:
hsBinMon f = (hsBinMonl f A hsBinMon2 f)
proof —

have hsBinMon f = (hsBinMonl f A hsBinMon2 f)
proof —

assume iI: hsBinMon [

hence hsBinMonl [ by (unfold homset-BinMon-def, simp)
moreover from il have hsBinMon2 f by (unfold homset-BinMon-def, simp)

ultimately show ?thesis ..
qed

moreover have hsBinMonl f A hsBinMon2 [ = hsBinMon [

proof —
assume hsBinMonl f A hsBinMon2 f
thus ?thesis by (rule hsBinMon-def [THEN iffD2])
qed
ultimately show ?thesis by (rule iffI)
qed

lemma (in OrderedSemigroupoid) hsBinMon-intro-0[intro?):

[ hsBinMonlt f: hsBinMon2 f | => hsBinMon f
by (subst homnset-BinMon-def, rule congl)

lemma (in OrderedSemigroupoid) hsBinMon-intro[intro?]:

[Aabmnpg. [ mEmpEgm:acbn:a—bpiacbqgacb]=f

mp C fng] = hsBinMon f

apply (unfold homset-BinMon-def, rule conjI)
apply (rule hsBinMonl-intro)

apply (subgoal-tac incl OS p p, simp, simp)
apply (rule hsBinMon2-intro)

apply (subgoal-tac incl OS p p, simp, simp)
done

lemma (in OrderedSemigroupoid) hsBinMon-1[intro?, simp|:

[ hsBinMon f | = hsBinMonl f
by (drule hsBinMon-def [THEN iffD1], erule conjE)

lemma (in OrderedSemigroupoid) hsBinMon-2[intro?, simp):

[ hsBinMon f | = hsBinMon2 f
by (drule hsBinMon-def [THEN iffD1], erule conjE)
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lemma (in OrderedSemigroupoid) hsBinMon|intro?, simp]:
assumes m|inlro,simp|: hsBinMon f

assumes i[intro,simp]: m C n

assumes j[intro,simp|: p C ¢

assumes T-ml[intro,simp]: m : a < b

assumes T-n[intro,simp|: n: a < b

asswmes 1-pliniro,sinpj: p : « — b

assumes T-g[intro,simp): ¢: a < b

assumes T-1[intro,simp]: fmp:a < b

assumes T-2[intro,simpl: fnp:a < b

assumes T-2[intro,simpl: fn q:a — b

shows frnpC fng

proof —

have fm p C fn p by (rule-tac hsBinMonl [of f], auto)
also have ... C [n ¢ by (rule-tac hsBinMon2 [of f], auto)
finally show ?thesis by best+

qed

end

B.5 Structure Record for SemiAllegories

theory SemiAllRecord
imports OrdSemi
begin

We present this record in a separate theory in order to make it easier to have
theories that do not need these components, but components higher up in the record
hierarchy.

record (o, 'm) SemiAllegory = ('o, 'm) OrderedSemigroupoid +

meet i 'm = 'm = 'm (infixr M 70)
conv : 'm = 'm (-~ 1 [1000] 999)
All-dom :: 'm = 'm (doma - [1000] 999)
All-rang :: 'm = 'm (rang1 - [1000] 999)
end
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B.6 Semigroupoids with Converse

theory ConuvSemi

imports SemiAllRecord

begin

™ oo NaoaBnritiance

13.VU.4 AJCILIVID

locale ConuSemi = Semigroupoid C +

assumes conv-homset[intro,simp]: R:a &+ b= R~ : b a

assumes conv-idem[simp, intro]: Mor R = (R~)~ = R

assumes conv-cmplsimp, introl: [R:a e b S:beoc]= (R®S5)" =85~ o R~

B.6.2 Auxiliary Lemmas

lemma (in ConvSemi) conv-defined[simp]: Mor R => Mor (R™)
by (drule homsetl, auto)

lemma (in ConvSemi) conv-src[simp): Mor R = src¢ (R™) = irg R
by (drule homsetl, drule conv-homset, simp)

lemma (in ConvSemi) conv-trg[simp|: Mor R = trg (R~) = sr¢c R
by (drule homsetl, drule conv-homset, simp)

lemma (in ConvSemi) conv-equality[simp):

assumes [intro]: R: a < b

assumes [intro]: §:a b

shows (R~ =5")=(R=2S5)

proof (rule iffT)

assume [simp]: R~ = S~

have R = (R~)~ by (rule conv-idem [THEN sym)|, auto)

also have ... = (S7)~ by auto

also have ... = § by (rule conv-idem, auto)
finally show R = S .

next

assume [simp): R = S
show R~ = §~ by simp
qed

lemma (in ConvSemi) conv-equality-1:
assumes [intro]: R: a < b
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assumes [intro]: S : a — b

shows (R~ =8)=(R=57)

proof (rule ifJT)

assume [simp]: R~ = §

have R = (R~)~ by (rule conv-idem [THEN sym)], auto)

also have ... = §~ by auto
finally show R = §~ .
next

assume [simp]: R = S~
have R~ = (§)~ by simp

also have ... = S by (rule conv-idem, auto)
finally show R~ = S .

qed

end

B.7 Ordered Semigroupoids with Converse

theory ConvOrdSemi
imports ConuvSems
begin

B.7.1 Definitions

locale ConvOrdSemi = OrderedSemigroupoid OS + ConvSemi OS +
assumes conv-mon[intro,simpl: [RCE SiR:a— b;S:a—b] = R~ C S5~

B.7.2 Auxiliary Lemmas

lemma (in ConvOrdSemsi) conv-incl|intro):

assumes [intro]: R : a < b

assumes [intro]: S : a < b

shows (R“C S7)=(RLCYS)

proof (rule ifJT)

assume [simp]: R~ C §~

have R = (R~)~ by (rule conv-idem [THEN sym], auto)
also have ... C (57)~ by (rule conv-mon, auto)

also have ... = S by (rule conv-idem, auto)

finally show RC S .
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next

assume [simp): R C §

show R~ C S~ by (rule conv-mon, auto)
qed

lemma (in ConvOrdSemi) conv-ideml[introl:
assumes [intro]: R : a < b

shows (R™)" C R

proof —

have (R~)~ C (R~)~ by (rule incl-refl, best)
moreover have ... = R by (rule conv-idem, best)
ultimately show ?%thesis by auto

ged

lemma (in ConvOrdSemi) conv-idem2[intro|:

assumes [intro: R :a < b

shows RC (R™)~

proof —

have R C R by (rule incl-refl, best)

moreover have ... = (R™)~ by (rule conv-idem [THEN sym)], best)
ultimately show ?thesis by auto

qed

B.7.3 Properties of Homogeneous Relations

constdefs
All-symmetric = ("o, 'm, 'r)SemiAllegory-scheme => 'm = bool
(symmetric1 - [1000] 999)
All-symmetric s R == if isMor s R & (Ssrc s R = Strg s R)
then conv s R = R
else arbitrary

lemma (in ConvOrdSemi) symmetric-def: R : a < a = symmetric R = (R~
by (unfold All-symmetric-def, auto)

lemma (in ConvOrdSemi) symmetric-expand:
assumes n: symmetric R

assumes nn: R : a & a

shows R~ =R

proof —
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from n nn show ?thesis by (rule-tac symmetric-def [THEN iffD1])
qed

lemma (in ConvOrdSemi) symmetric-intro[intro):

assumes n: R~ = R

assumes nnlintro]: R: a < a

shows syimnmeiric i

proof —

from n nn show ?thesis by (rule-tac symmetric-def [THEN iffD2], auto)
qed

end

B.8 Bounds in Ordered Semigroupoids

theory OrdSemiBounds
imports OrdSemi
begin

B.8.1 Lower Bounds

constdefs
08-isLBound :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = 'm = 'm = bool
(isLBound - - - [100(),1000.1000] 999)

0S-isLBound struct R S M ==
isMor struct M &
(let @ = Ssre struct M; b = Strg struct M in
R : homset struct a b &
S i homset struct a b &
incl struct M R & incl struct M S)

lemma (in OrderedSemigroupoid) isLBound-def:

isLBound R S M = (Mor M A (let a = src M: b= trg M
mR:a—>bAS:a=bA MCRAMELCYS))

by (unfold OS-isLBound-def, auto)

lemma (in OrderedSemigroupoid) isLBound-def-new:
isLBound R S M = (Mor M A R:src M — trg M AS :srce M > trg M A MC RA
MCS)
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by (unfold OS-isLBound-def, simp add: Let-def)

It is nice to have isLbound-def without the let-def construct — we need not add
simp add: Let-def to auto.

lemma (in OrderedSemigroupoid) isLBound-ezpand|elim?):
assumes [: isLBound R S M

assumes [intro]: R : a < b unnecessary, but hygienic
assumes [intro]: S i a < b

assumes [introl: M : a < b

shows MC R&MLC S

apply (insert 1)

apply (drule isLBound-def-new [THEN iffD1])

apply (simp add: Let-def)

done

lemma (in OrderedSemigroupoid) isLBound-expand-new:

assumes [: isLBound R S M

assumes [iniro]: R : a < b — unnecessary, but hygienic

assumes [intro]: S :a < b

assumes [intro]: M : a & b

shows MCR&MLCS

proof (rule conjl)

from | have Mor M AR :srce M — trg M NS :srce M - trgM AN MCRAMCS
by (rule isLBound-def-new [THEN iffD1])

thus M C R by simp

next

from | have Mor M AR:srce M - trg MAS:srce M -ty MA MCRAMCS
by (rule isLBound-def-new [THEN iffD1])

thus M C S by simp

qed

lemma (in OrderedSemigroupoid) isLBound-1[elim?|:

assumes [: isLBound R S M

assumes [intro]: R: a & b

assumes [intro): S :a < b

assumes [intro]: M : a < b

shows M C R

proof —

from [ have M C R & M C S by (rule isLBound-expand, best+)
thus ?thesis ..
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qed

lemma (in OrderedSemigroupoid) isLBound-2[elim?]:

assumes [: isLBound R S M

assumes [intro]: R :a < b

assumes [inlro]: S :a < b

assumes [intro): M : a < b

shows M C §

proof —

from [ have M C R & M C S by (rule isLBound-ezpand, best+)
thus ?thesis ..
qed

lemma (in OrderedSemigroupoid) isLBound-contract:
assumes : M C R& MC S

assumes R-t[intro]: R : a < b

assumes S-t[intro]: §: a < b

assumes M-t[intro]: M : a < b

shows isLBound R S M

proof (subst isLBound-def, simp add: | Let-def, rule conjl)
show Mor M by auto

next

from M-t R-t S-t show R € src M « trg M A S € srce M « trg M by auto
qed

lemma (in OrderedSemigroupoid) isLBound-contract-new:
assumes . MC R&MLC S
assumes R-t[intro]: R : a < b
assumes S-t[intro]: S :a < b
assumes M-t[intro]: M : a < b
shows isLBound R S M
proof (subst isLBound-def-new, rule conjl)
show Mor M by auto
next
from M-t R-t S-t lshow Re sc M - trg MANS € src M «trg MAMCRAMEC
S
by auto
qed

lemma (in OrderedSemigroupoid) isLBound-introlintro?]:
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assumes [I: M C R

assumes [2: M C §

assumes R-t[intro]: R : a < b

assumes S-t[intro]: §:a < b

assumes M-t[intro]: M : a < b

shows isLBound R § M

proof —

from 1 [2 have M T R & M C S by (rule-tac conjl, best+)

thus ?thesis by (rule-tac isLBound-contract, best+)
qged

lemma (in OrderedSemigroupoid) incl-isLBound[intro?]:
assumes [: isLBound R S M

assumes ¢: Q C M

assumes R-{[intro]: R:a < b

assumes S-t[intro]: §:a — b

assumes M-tlintro]: M : a < b

assumes Q-t[intro]: Q : a < b

shows isLBound R § Q

proof —

from [ have M C R by (rule isLBound-1, best+)
with ¢ have r: Q C R by (rule incl-trans, auto)
from [ have M C S by (rule isLBound-2, best+)
with ¢ have s: Q T S by (rule incl-trans, auto)
from r s show ?thesis by (rule isLBound-intro, auto)
ged

lemma (in OrderedSemigroupoid) incl-isLBound-new:
assumes [: isLBound R S M

assumes ¢: Q C M

assumes R-t[intro]: R:a < b

assumes S-t[intro]: S :a — b

assumes M-t[intro]: M : a < b

assumes Q-t[intro]: Q : a < b

shows isLBound R S

proof

from [ have M C R by (rule isLBound-1, best+)
with ¢ have  C R by (rule incl-trans, auto)
moreover from [ have M C S by (rule isLBound-2, best+)
with ¢ have Q C S by (rule incl-trans, auto)
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ultimately show ?thesis by (rule isLBound-intro, auto)

qed

constdefs

0S-isMeet :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = 'm = 'm =» bool
(isMeets - - - 1000,1000,1000] 999)

Us-isiieet struct (£ 5 M == US-isL.Bound struct [ 5 M &

(ALL L : homset struct (Ssrc struct M) (Strg struct M) .
0S-isL.Bound struct R S L — incl struct L M)

lemma (in OrderedSemigroupoid) isMeet-def[iff?]:
assumes R-t[intro]: R:a < b

assumes S-t[intro]: § : a < b

assumes M-t[intro: M : a < b

shows isMeet R S M = (isLBound R S M & (ALL L : a < b . isLBound RS L — L
C M))

proof

from M-t have [simp|: src M = a by simp
from M-t have [simp]: trg M = b by simp

show ?thesis by (unfold OS-isMeet-def, simp)
qed

lemma (in OrderedSemigroupoid) isMeet-expand|elim?):

assumes m: isMeet R S M

assumes R-t[iniro]: R : a « b

assumes S-t[intro]: §: a < b

assumes M-t[intro]: M : a < b

shows isLBound R S M & (ALLL: a « b . isLBound R SL — L C M)
proof —

from m R-t S-t M-t show ?thesis by (rule-tac isMeet-def [THEN i[fD1])
qed

lemma (in OrderedSemigroupoid) isMeet-isLBound|elim?):
assumes m: isMeet R S M

assumes R-t[intro]: R: a < b

assumes S-tlintro]: S : a < b

assumes M-tlintrol: M : a < b

shows isLBound R S M
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proof —

from m have isLBound R S M & (ALL L : a < b . isLBound R S L — L C M)
by (rule-tac isMeet-ezpand, best+)

thus ?thesis by simp

qed

leuuna (in CideiedSeiiyivupoid) isMecl-Llvad{clin?].

assumes m: isMeet R S M

assumes [: isLBound R S L

assumes R-tlintro]: R: a < b

assumes S-{[iniro]: S :a — b

assumes M-t[intro]: M : a & b

assumes L-t[intro]: L : a <> b

shows LC M

proof

from m have isLBound R S M & (ALL L : a < b . isLBound R S . — L C M)

by (rule-tac isMeet-expand, best+)

then have ALL L :a « b . isLBound R S L — L C M by simp
with | L-t show ?thesis by simp
qed

lemma (in OrderedSemigroupoid) isMeet-contract:

assumes [: isLBound R S M & (ALL L : a « b.isLBound R SL — LC M)
assumes R-t[intro]: R:a < b

assumes S-t[intro]: S :a < b

assumes M-t[intro]: M : a < b

shows isMeet R S M

proof —

from [ R-t S-t M-t show ?thesis by (rule-tac isMeet-def [THEN iffD2])

qed

lemma (in OrderedSemigroupoid) isMeel-inlro[intro?):

assumes b: isLBound R S M

assumes [: ALLL:a«< b.isLBound RSL—LC M

assumes R-tlintro]: R:a < b

assumes S-t[intro]: S :a < b

assumes M-t[intro]: M : a — b

shows isMeet R S M

proof —

from b | have isLBound R S M & (ALL L : a « b . isLBound R SL - LC M)
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by (rule congl)
thus ?thesis by (rule-tac isMeet-coniract, best+)
qed

B.8.2 Upper Bounds

constdefs
08-isUBound :: ("o, 'm, 'r)OrderedSemigroupoid-scheme = 'm = 'm = 'm = bool
(isUBound - - - [1000,1000,1000] 999)
0S-isUBound struct R S J == isMor struct J &
(let @ = Ssrc struct J: b = Strg struct J in
R : homset struct a b & S : homset struct a b &
incl struct R J & incl struct S J)

lemma (in OrderedSemigroupoid) isUBound-def:
isUBound RS J = (Mor JAR:srcJ —trgJ ANS:srceJ >trgJ ARCJ&SCJ)
by (unfold OS-isUBound-def, simp add: Let-def)

lemma (in OrderedSemigroupoid) isUBound-ezpand:
assumes u: isUBound R S J

assumes R-t[intro]: R : a < b — unnecessary, but hygienic
assumes S-{[intro]: S : a < b

assumes M-t[intro]: J : a < b

shows RC J& SC J

by (insert u, drule isUBound-def [THEN iffD1], simp)

lemma (in OrderedSemigroupoid) isUBound-ezpand-new:

assumes u: isUBound R S J

assumes R-t[intro]: R : a < b — unnecessary, but hygienic

assumes S-t[inlrol: § i a < b

assumes M-tlintro]: J : a — b

shows RC J & SC J

proof

from u have ( Mor JAR:src J o trgJ AS:srcJ o trgJARCJ&SCJT)
by (rule isUBound-def [THEN fJD1])

thus R C J by simp

next

from v have (Mor JAR:srcJ —trgJ AS:srceJ > trgJ ARCJ&SCT)
by (rule isUBound-def [THEN §[JD1])

thus S C J by simp
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qed

lemma (in OrderedSemigroupoid) isUBound-1:

assumes u: (sUBound R S M

assumes R-t[intro]: R: a < b

assumes S-t[intro]: S :a b

assumes M-t[intro]: M : a < b

shows RC M

proof —

from v have RC M & S C M by (rule-tac isUBound-ezpand, best+)
thus ?%thesis ..

qed

lemma (in OrderedSemigroupoid) isUBound-2:

assumes u: isUBound R S M

assumes R-tlintro]: R:a < b

assumes S-tlintro]: S :a < b

assumes M-t[intro|: M : a < b

shows S C M

proof —

from v have RC M & § C M by (rule isUBound-ezpand, best+)
thus ?thesis ..

qed

lemma (in OrderedSemigroupoid) isUBound-contract:
assumes w: RC J& SC J

assumes R-t[introl: R:a < b

assumes S-t[intro]: §: a — b

assumes J-tlintro]: J : a < b

shows isUBound R S J

proof (subst isUBound-def, simp add: u Let-def, rule conjI)
from J-t show Mor J by simp

next

from J-t R-t S-t show R € src J & trg J A S € src J « trg J by simp
qed

lemma (in OrderedSemigroupoid) isUBound-contract-new:
assumes w: RC J& SC J

assumes R-t[intro]: R: a < b

assumes S-t[intro]: S : a < b
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assumes J-t[intro]: J : a < b

shows isUBound R S J

proof (subst isUBound-def, rule conjl)

from J-t show Mor J by simp

next

from u J-t R-t S-t show Re€ sre J «— trgJ NS € sreJ - trgJ ARCJ&SCJby

qed

lemma (in OrderedSemigroupoid) isUBound-intro[intro?):
assumes ul: RC M

assumes u2: S C M

assumes R-t[intro]: R : a < b

assumes S-t[intro]: S : a < b

assumes M-t[introl: M : a < b

shows isUBound R § M

proof —

from ul w2 have RC M & S T M by (rule conjI)
thus fthesis by (rule isUBound-contract, best+)
qed

constdefs
0S8-isJoin :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = 'm = 'm = bool
(isJoins - - - [1000,1000,1000] 999)
08-isJoin struct R S J == 0S-isUBound struct R S J &
(ALL U: homset struct (Ssrc struct J) (Strg struct J) .
08-isUBound struct R S U — incl struct J U )

lemma (in OrderedSemigroupoid) isJoin-def:

assumes R-t[intro]: R : a < b

assumes S-t[introl: §: a < b

assumes J-t[intro]: J : a = b

shows isJoin R § J = (isUBound RS J A (ALL U : a b .isUBound RS U — J C
U))

proof —

from J-t have src J = a by simp

moreover from J-t have trg J = b by simp

ultimately show ?thesis by (unfold OS-isJoin-def, simp)
qed
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lemma (in OrderedSemigroupoid) isJoin-expand[elim?):

assumes j: isJoin R S J

assumes R-tlintro]: R:a — b

assumes S-t[intro]: S :a < b

assumes J-t[intro]: J : a < b

shows isUBound R S J A (ALL U : a < b . isUBound R S U — J C U)

proof

from j R-t S-t J-t show ?thesis by (rule-tac isJoin-def [THEN iffD1])
qed

lemma (in OrderedSemigroupoid) isJoin-isUBound[elim?):

assumes j: isJoin R S J

assumes R-t[intro]: R : a « b

assumes S-t[intro]: S : a < b

assumes J-t[introl: J : a < b

shows islUBound R S J

proof —

from j have isUBound R S J A (ALL U : a <+ b . isUBound R S U — J C U)
by (rule isJoin-expand, best+)

thus “thesis by simp

qed

lemma (in OrderedSemigroupoid) isJoin-UBound|elim?]:

assumes j: isJoin R S J

assumes u: isl/Bound R S U

assumes R-t[intro]: R: a < b

assumes S-([intro]: S :a — b

assumes J-t[intro]: J : a < b

assumes U-t[intro]: U: a < b

shows J C U

proof —

from j have (isUBound R § J A (ALL U : a < b . isUBound R S U — J C U))
by (rule isJoin-ezpand, auto)

hence ALL U : a «» b . isUBound R S U — J C U by simp

with u U-t show ?thesis by simp

qed

lemma (in OrderedSemigroupoid) isJoin-contract:

assumes u: isUBound R S J & (ALL U : a < b. isUBound R SU — J C U)
assumes R-l[intro]: R : a < b
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assumes S-t[intro]: S : a < b

assumes j-t[introl: J : a < b

shows isJoin R § J

proof —

from u show ?thesis by (rule-tac isJoin-def [THEN iffD2], best+)
qed

lemma (in OrderedSemigroupoid) isJoin-introlintro?|:

assumes b: isUBound R S J

assumes u: ALL U :a < b.isUBound RSU — JC U

assumes R-t[intro]: R: a — b

assumes S-t[intro]: S :a < b

assumes J-t[intro]: J : a < b

shows isJoin R § ]

proof —

from b u have isUBound R S J & (ALL U : a < b . isUBound RS U — J C U)
by (rule conjI)

thus ?thesis by (rule isJoin-contract, auto)

qed

B.8.3 Predicate for Greatest Element

constdefs

08-isTop :: (o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = bool (isTopr - [1000] 999)
0S-isTop s R == isMor s R & (ALL S . § : homset s (Ssrc s R) (Strg s R) — incls S
R)

lemma (in OrderedSemigroupoid) isTop-def:
R:aeo b= isTopR=(ALLS.S:a< b— SCR)
by (unfold OS-isTop-def, simp)

lemma (in OrderedSemigroupoid) isTop-ezpand:

assumes t: isTop R

assumes R-t[intro]: R : a < b

shows ALLS.S:a—=b—SCR

proof —

from t R-t show ?thesis by (rule-tac isTop-def [THEN iffD1])
qed

lemma (in OrderedSemigroupoid) isTop-contract|intro?):
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assumes t: ALLS . S:a—b—SCR

assumes R-l[intro]: R: a < b

shows isTop R

proof —

from t R-t show ?thesis by (rule-tac isTop-def [THEN iffD2])
qed

lemma (in OrderedSemigroupoid) isTop:

assumes ({: isTop R

assumes R-t[intro]: R : a < b

assumes S-L[intro]: § : a — b

shows SC R

proof —

from t have ALLS . S : a < b — § C R by (rule isTop-expand, best+)
thus ?thesis by auto

qed

B.8.4 Predicate fo Least Element

constdefs

0S-isBot :: (o, 'm. 'r) OrderedSemigroupoid-scheme = 'm = bool (isBot - [1000] 999)
0S-isBot s R == isMor s R & (ALL S . S : homsel s (Ssrc s R) (Strg s R) — incl s R
$)

lemma (in OrderedSemigroupoid) isBot-def:

R:ae— b= isBot R=(ALLS.S:a<—b—RLCY)
by (unfold OS-isBot-def, simp)

lemma (in OrderedSemigroupoid) isBot-expand:

assumes (: isBot R

assumes R-t[intro]: R: a < b

shows ALLS .S:a+<b— RCS

proof —

from ¢ R-L show ?thesis by (rule-tac isBot-def [THEN iffD1])
qed

lemma (in OrderedSemigroupoid) isBot-contract|intro?|:
assumes t: ALLS.S:a<b— RCS

assumes R-t[intro]: R: a < b

shows isBot R
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proof —
from | R-t show ?thesis by (rule-tac isBot-def [THEN iffD2])
qed

lemma (in OrderedSemigroupoid) isBot:

assumes (: isBot R

assumes R-tintro): R:a — b

assumes S-tfintro]: S : a < b

shows RC §

proof —

from [ have ALL S .S :a < b— RC S by (rule isBot-expand, best+)
thus ?thesis by auto

qed

lemma (in OrderedSemigroupoid) isbot-incl-isbot:
assumes [intro,simp|: isBot P

assumes [intro,simp]: P : a < b

assumes [intro,simp]: R : a < b

assumes incl: R C P

shows isBot R
proof —

have ALLS . S:a—>b— RC S

proof (intro strip)

have ALLS .S :a— b— P C § by (rule isBot-ezpand, auto)

fix S

assume [intro,simp): S: a «» b

from incl have R C P by simp

also have P C § by (rule-tac isBot, best+)

finally show R C S by best+

qed

thus fthesis by (rule isBot-contract, best)
qed

end

B.9 Idempotent Subidentities

theory [SIdSemi
imports OrdSemiBounds
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begin

Multiplicatively idempotent subidentities can serve as tests in ICAT and as domain
elements in KAD [Desharnais-Moeller-Struth-2003].

B.9.1 Definition: Multiplicatively ldempotent Subidentities
constdefs
08-isISId :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = bool (isISId - [1000] 999)
08-isISId s R == if isMor s R & (Ssrc s R = Strg s R)
then 0S-isSId s R & cmp s RR = R
else arbitrary

lemma (in OrderedSemigroupoid) isISId-def:
R:ae a=>isISIdR = (isSLR& R * R=R)
by (unfold OS-isISId-def, simp)

lemma (in OrderedSemigroupoid) isISId-intro[intro]:
[ RoR=R:isSIdR; R: a«— a] = isISId R
by (rule-tac isISId-def [THEN iffD2], auto)

lemma (in OrderedSemigroupoid) isISId-0:
[ésISIHR; R:a > a] = isSHR& R® R=R
by (rule-tac isISId-def [THEN iffD1])

lemma (in OrderedSemigroupoid) isISId-1[intro,simp|:
[isISIER; R: a « a] = isSId R
by (drule-tac isISId-0, auto)

lemma (in OrderedSemigroupoid) isISId-2[simp):
[isISHR;R:a < a]= R®R=R
by (drule-tac isISId-0, auto)

B.9.2 Definition: Set of Multiplicatively Idempotent Subiden-
tities
constdefs

08-181d :: ("o, 'm, 'r) OrderedSemigroupoid-scheme = "o = "m set (ISId - [1000] 999)
08-1S1d s a == Collect (A m . m : homset s a a & OS-isISId s m )
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lemma (in OrderedSemigroupoid) ISId-def:
ISlda={m.m:a akisISIdm}
by (unfold OS-ISId-def, simp)

lemma (in OrderedSemigroupoid) ISId-introlintro]:
[R:a« a;isiSIHR] = R : ISId a
by (unfold OS-ISId-def, simp)

lemma (in OrderedSemigroupoid) ISId-homset|intro,simp]:
R:ISlda= R:a<a
by (unfold OS-1SId-def, simp)

lemma (in OrderedSemigroupoid) ISId[intro?,simp]:
R : ISId o« = isISId R
by (unfold OS-ISId-def, simp)

This lemma is added to help proving those lemmas which were proved via Id
lemma (in OrderedSemigroupoid) isid-issid[intro, simp]:
assumes [intro,simp): R : ISId a
shows isSId R
proof —
have isISId R by (rule ISId, best)
moreover have R : a < a by (simp)
ultimately show %thesis by auto
qed

B.9.3 Some Useful Properties

The following lemmas are going to be used in dealing with preimage and image
operations later as noted in [J. Desharnais, et. al.]

The following lemma maybe useful so that I do not do it for each proof.
lemma (in OrderedSemigroupoid) isid-incl-eql:
assumes incl: P& RC R + Q
assumes [intro, simp): P : ISId a
assumes [intro, simp]: Q : ISId b
assumes [intro, simpl: R : a < b

shows PO R=P= R® Q
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proof —
have PO RC P RO Q
proof —
have P : a < a by (rule ISId-homset, best)
moreover have isISId P by (rule ISId, best)
ultimately have P = P & P by (rule-tac isISId-2 [THEN sym]|, best)
hence P & R = (P ® P) & R by auto
also have ... = P @ P & R by (rule cmp-assoc, best+)
also from incl have ... C P ® R & Q by (rule comp-incl-mon2, best+)
finally show ?thesis .
qed
moreover have P R QC P& R
proof —
have P © R ® Q = (P ® R) ® Q by (rule cmp-assoc-sym, best+)
also have ... C P ¢ R by auto
show ?Zthesis by auto
qed
ultimately show ?thesis by(rule incl-antisym. best+)
qed

lemma (in OrderedSemigroupoid) isid-incl-eq2:
assumes e¢: P R=Po R Q

assumes [intro]: P : ISId a

assumes [intro]: Q : ISId b

assumes [introl: R : a < b

shows Po RC R = Q

proof —

from e¢g have P& R = P © (R ® Q) by simp
also have ... C (R ® Q) by (auto)

finally show ?thesis by (auto)

qged

lemma (in OrderedSemigroupoid) isid-incl-eq:

assumes [intro]: P : ISId a

assumes [intro]: Q : ISId b

assumes [iniro]: R:a & b

shows (P®RCR®Q =(PoR=POR® Q)

proof —

have PO RER - Q= P& R=P & R & Q by (rule isid-incl-eql, auto)
moreover have P ' R=P <R Q => P ' RC R ¢ Q by (rule isid-incl-eq2, auto)
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ultimately show ?thesis by (rule iffI, best)
qed

lemma (in OrderedSemigroupoid) incl-isid-eqla:

assumes incl: R & PC QR

assumes [intro]: P : ISId b

assumes [intre]: Q: ISId e

assumes [intro]: R : a < b

shows ROPLCL Qo R P

proof —

have [intro, simp]: isISId P by (rule ISId, best)

have P : b « b by (rule ISId-homset, best)

hence P = P @ P by (rule-tac isISId-2 [THEN sym], best)
hence R @ P =R © P P by simp

hence R ) P = (R ) P) <) P by (subst cmp-assoc, best+)
also from incl have ... C (Q © R) @ P by (rule comp-incl-monl, best+)
finally show ?thesis by (subst cmp-assoc-sym, best+)

qed

lemma (in OrderedSemigroupoid) incl-isid-eqlb:
assumes incl: R PC QR

assumes [intro|: P : ISId b

assumes [intro]: Q : ISId a

assumes [intro]: R : a — b

shows Qo R®PLR®P

proof —

have [intro, simp): isISId Q by (rule ISId, best)
have Q © R® PC Q @ (R @ P) by (auto)
thus ?thesis by (best)

qed

lemma (in OrderedSemigroupoid) incl-isid-eq1:

assumes inck R©® PC Q@ R

assumes [intro]: P : ISId b

assumes [intro]: Q : ISId a

assumes [intro]: R :a « b

shows R©o P=Q® R® P

proof —

from incl have R - P C Q & R « P by (rule incl-isid-eqla, best+)
moreover from incl have Q ' R v P C R« P by (rule incl-isid-eql1b, best+)
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ultimately show ?thesis by(rule incl-antisym, best+)
qed

lemma (in OrderedSemigroupoid) incl-isid-eq2:
assumes e¢: RO P=Q@ R - P

assumes [intro]: P : ISId b

nnnnnnnn e [301das)e 1) - JQI o~

assumes [intro): Q : ISId a

assumes [intro]: R: a < b

shows R:PCQ®R

proof —

have [intro, simp]: isISId P by (rule ISId, best)
from e¢q have R - P = Q = (R & P) by simp
hence R » P = (Q © R) = P by (subst cmp-assoc, best+)
also have ... C (Q ® R) by (best+)

finally show #thesis by (best)

qed

lemma (in OrderedSemigroupoid) incl-isid-eq:

assumes [iniro|: P : ISId b

assumes [intro]: Q : ISId a

assumes [intro]: R:a « b

shows (RO P=Q@wR®P)=(R&PC Q®R)

proof —

have RO P=Q® R P= R& PLC Q : R by (rule incl-isid-eq2, auto)
moreover have R PC Q& R= R~ P = (Q ® R & P by (rule incl-isid-eq1, auto)
ultimately show ?thesis by (rule iffI, best)

qed

end

B.10 Ordered Semigroupoids with Predomain
theory PreDomSemi

imports SemiAllRecord 1SIdSemi
begin
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B.10.1 Definitions

Desharnais introduced three equivalent axiomatizations of the domain operations on
the class of Test- semiring, one of these involves the complement operator. Since
we only have multiplicatively idempotent subidentities, we can only use those ax-
iomatizations that do not involve the complement operator. We will introduce one
axiomatization then show that the other can be derive from that.

locale PreDomSemi = OrderedSemigroupoid PDS +

assumes dom-ISId[intro,simp]: R : a <+ b = dom R : ISId a

assumes dom-self[intro,simp]: R : a & b= RC dom R = R

assumes dom-1SId-cmplintro,simp): [ R : a < b: P : ISId a | => dom(P ® R) C P

The axiom dom-homset can be written as a lemma using dom-I1SId and ISId-homset
as W.K. pointed out.

lemma (in PreDomSemi) dom-homset|intro,simp):
assumes [intro]: R: a < b

shows dom R : a < a

proof —

have dom R : ISId a by best

thus ?thesis by (rule ISId-homset)

qed

lemma (in PreDomSemi) llp1:

assumes r [intro: R : a < b

assumes p [intro]: P : ISId a

assumes i: dom R C P

shows RC P © R

proof —

have R C dom R ) R by (rule dom-self, auto)
also from i have ... C P & R by auto
finally show ?thesis by best+

qed

lemma (in PreDomSemi) llp2:
assumes nnl [intro): R: a < b
assumes nn2 [intro]: P : ISId a
assumes incl-isid: RC P & R
shows nnd.dom R C P

proof —
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have R=P @ R
proof —

from incl-isid have R C P @ R by simp

moreover have P~ RC R

proof —

have [intro]: isISId P by (rule ISId, best)

show P = R C R by (rule isSId-left, best+)

qed

ultimately show ?thesis by (rule incl-antisym, best+)
qed
also have dom(P @ R) C P by (rule dom-ISId-cmp, best+)
finally show ?thesis .
qed

We derive Up from dom-self and dom-1SId-cmp. This will be useful later in cal-
culating properties of the domain operator.

lemma (in PreDomSemsi) llp:

assumes r[intro]: R : a < b

assumes plintro): P : ISId a

shows (dom RC P)=(RC P © R)

proof —

from 7 p have dom RC P = RC P - R by (rule lip1)
moreover from 7 p have R C P © R = dom R C P by (rule lip2)
ultimately show ?thesis by (rule iffI, best)

ged

lemma (in PreDomSemi)isSId-dom|intro, simp):
assumes [intro]: W: a < b
shows isSId (dom W)
proof —
have dom W : ISId a by (rule dom-ISId, auto)
thus Zthesis by auto
qed

lemma (in PreDomSemi) isid-isbot:
assumes [intro, simp|: isBot W
assumes [intro, simp]: W : a < a
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shows W : ISId a

proof —

have isSld W

proof (rule-tac j=dom W in isSId-intro2, auto)
show W C dom W by (rule isBot, auto)

qed

vl cuver :AGVG '1”’ o ;;’ = "."
proof —

have W WCE W

proof —

have W C dom W by (rule isBot, auto)
hence W & WEC W © dom W by (rule comp-incl-mon2, best+)
also have ... C W by (auto)
finally show ?thesis by best+
qed
moreover have W C W @ W by (rule isBot, auto)
ultimately show ?thesis by (rule incl-antisym, best+)
qed
ultimately have isISId W by (rule-tac isISId-intro, best+)
thus fthesis by (rule-tac ISld-intro, best+)
qed

B.10.2 Algebraic Properties of the domain operator

The predomain operator is fully strict.

lemma (in PreDomSemi) dom-strictl:
assumes [intro|: isBot (dom R)
assumes cmp-isidbot: isBot (dom R & R)
assumes [intro,simp]: R : a < b
shows isBot R
proof —
have isBot (dom R = R) by (rule cmp-isidbot)
also have dom R © R=R
proof —
have R C dom R @ R by (rule-tac llp [THEN iffD1], best+)
moreover have dom R © R C R by auto
ultimately show ?thesis by (rule-tac incl-antisym, best+)
qed
finally show ?thesis by auto
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qed

B.10.3 Algebraic Properties of the domain operator

The predomain operator is fully strict.

)

assumes cmp-isidbot: isBot (P & R)
assumes [inlro]: isBol P

assumes [intro]: isBot R

assumes [intro]: R : a < b

assumes [intro]: P : ISId a

shows isBol (dom R)

proof —

have isBot (P @ R) by (rule cmp-isidbot)
hence R C P ¢ R by (rule-tac isBot, best+)
hence dom R T P by (rule-tac lp [THEN iffD2), best+)
thus ?thesis by (rule-tac isbot-incl-isbot, auto)
qged

lasmmia (In ProDomSemt) dom-gfidpd
A€ (ilk 4 TC 0w Ciile ) GOTT-5TeCl

lemma (in PreDomSemi) dom-stricl:

assumes [intro]: isBot (dom R ® R)

assumes [intro): isBot (P & R)

assumes [intro]: isBot P

assumes [infro]: R :a < b

assumes [intro]: P : ISId a

shows isBot (dom R) = isBot R

proof —

have isBot (dom R) = isBot R by (rule-tac dom-strictl, best+)
moreover have isBol R = isBot (dom R) by (rule-tac P=P in dom-strict2, auto)
ultimately show ?thesis by (rule iffI, best+)
ged

The predomain operator is an identity on multiplicatively idempotent subidenti-
ties.

lemma (in PreDomSemi) dom-isISId-eq:
assumes [intro]: P : ISId a
shows dom P =P

proof (rule incl-anlisym, aulo)
show dom PC P
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proof —
have dom (P = P) C P by (rule-tac dom-ISId-cmp, best+)
also have P & P = P
proof (rule isISId-2, auto)
show isISId P by(rule-tac ISId, auto)
qed
finally show ?thesis .
qed
next
show P C dom P
proof —
have [intro, simp]: isISId P by (rule-tac ISId, auto)
have P C dom P & P by (rule dom-self, best)
also have ... C dom P by ( best+)
finally show ?thesis by best+
qed
qed

The predomain operator is idempotent.

lemma (in PreDomSemi) dom-idemp:
assumes [intro]: R: a < b

shows dom (dom R) = dom R

by (rule dom-isISId-eq, best+)

The predomain operator is a left invariant.

lemma (in PreDomSemi) dom-left-inv:

assumes [intro]: R:a < b

shows R = dom R & R

proof —

have R C dom R @ R by (rule dom-self, auto)
moreover have ... C R by auto

ultimately show ?thesis by (rule incl-antisym, best+)
qed

The predomain operator satisfies a decomposition law.
lemma (in PreDomSemi) dom-decomp:
assumes [intro]: R: a < b
assumes [intro]: S : b« ¢
shows dom (R = S) C dom (R @ dom S)

128

McMaster University — Computer Science MSc Thesis — Jinrong Han

proof —

have R © S C dom (R © (dom S))® R S

proof —

have R ¢ S C (dom (R = dom S) ® (R ® (dom §))) ® §
proof —

have R~ SC R © dom S = S by (rule comp-incl-mon2, rule dom-self, best+)
hence R &' S C (R © dom §) © S by (subst cmp-assoc, best+)
also have ... C (dom (R ® dom §) = (R @ (dom S))) ® §
by (rule-tac comp-incl-monl, rule dom-self, best+)
also show ?thesis by (rule-tac calculation, best+)
qed
hence R = S C dom (R @ dom §) ¢ (R = (dom S)) & § by (subst cmp-assoc-sym,
best+)
hence R © § C dom (R ® dom S) = R ® (dom S) = § by (subst cmp-assoc-sym, auto)
also have (dom S) - § = S by (rule dom-left-inv [THEN sym)|, auto)
finally show #thesis .
qed

thus ?thesis by (rule-tac llp [THEN i[fD2], best+)
ged

B.10.4 Preimage Operator
constdefs
preimage :: ("o, 'm, 'r) SemiAllegory-scheme = 'm = 'm = 'm (&1 - - [1000,1000] 999)
preimage s R P == if isMor s R & OS-isISId s P
then All-dom s (cmp s R P)
else arbitrary

lemma (in PreDomSemsi) preimage-def:
[R:ae b P:1SIdb] = 6 R P = dom (R - P)
by (unfold preimage-def,auto)

lemma (in PreDomSemi) preimage-homset|intro,simp):
assumes [inlro: R : a < b

assumes [intro]: P : ISId b

shows d RP:a < a

proof —
have d R P = dom (R ® P) by (rule preimage-def, best+)
also have ... : a — a by (rule dom-homset, best)

finally show ?thesis .
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qed

lemma (in PreDomSemi) preimage-1S1d:

assumes [intro]: R: a < b

assumes [intro]: P : ISId b

shows 0 R P :ISIda

proof —

have 6 R P = dom (R - P) by (rule preimage-def, best+)
also have ... : ISId a by (rule dom-ISId, best)

finally show ?thesis .

qed

Lemma preimage connects the preimage operator with 1lp.

lemma (in PreDomSemi) preimagel:

assumes [intro]: R: a < b

assumes [intro|: P : ISId b

assumes [intro]: Q : ISId a

assumes preimage-incl: § R P C Q

shows R®PLC Q> R

proof —

have [intro,simp|: isISId P by (rule-tac ISId, auto)

have § R P = dom (R - P) by (rule preimage-def, auto)
with preimage-incl have [intro]: ... T Q by simp

have R P C Q ® (R ® P) by (rule-tac llp [THEN iffD1], best+)
also have ...C ) ® R by auto

finally show ?thesis by best+

qed

lemma (in PreDomSemi) preimage2:

assumes [inlro]: R:a — b

assumes [intro]: P : ISId b

assumes [intro]: Q : ISId a

assumes incl: R & PC Q « R

shows 4 RPC Q

proof —

have [intro,simp): isISId P by (rule-tac ISId, auto)

from incl have [intro]: R = P C Q ® (R + P) by (rule-tac incl-isid-eqla, best+)
have dom (R - P) T Q by (rule-tac llp [THEN iffD2], best+)

also have dom (R © P) = § R P by (rule preimage-def [THEN sym], best+)
finally show ?thesis .
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qed

lemma (in PreDomSemi) preimage:
assumes [intro]: R :a < b
assumes [intro]: P : ISId b
assumes [intro]: Q : ISId a
shows ({RPC Q) =(RGP
proof —

have § RPLC Q= R® P C Q « R by (rule preimagel, best+)
moreover have R © PC Q w R => 6 R P C Q by (rule preimage?2, best+)
ultimately show ?thesis by (rule il best+)

qed

m

&
&

n

end

B.11 Ordered Semigroupoids with Monotonic PreDomain

theory MonPreDomSemi
imports PreDomSemi
begin

B.11.1 Definition

We introduce monotonicity of the domain operator.

locale MonPreDomSemi = PreDomSemi MPDS +
assumes dom-incl-monfintro): [R: a < b: §:a - b: RC S| = dom R C dom §

end

B.12 Ordered Semigroupoids with Domain

theory DomSemi
imports MonPreDomSemi
begin
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locale DomSemi = MonPreDomSemi DS +
assumes dom-local[intro, simp]:[R : a—b; S : bec] = dom(R & dom S) C dom(R ¢ S)

lemma (in DomSemi) dom-cmp:

assumes [inlro]: R : a—b

assumes [intro]: § : bec

shows dom(R @ dom S) = dom(R & S)

proof —

have dom(R ) dom S§) C dom(R « §) by auto

morcover have dom(R © 8) C dom(R @ dom S) by (rule dom-decomp, auto)
ultimately show ?thesis by (rule incl-antisym, auto)

ged

end

B.13 Ordered Semigroupoid with Prerange

theory PreRanSemi
imports SemiAllRecord ISIdSemi
begin

B.13.1 Definitions

Desharnais introduced three equivalent axiomatizations of the Range operations on
the class of Test- semiring, one of these involves the complement operator. Since
we only have multiplicatively idempotent subidentities, we can only use those ax-
iomatizations that do not involve the complement operator. We will introduce one
axiomatization then show that the other can be derive from that.

locale PreRanSemi = OrderedSemigroupoid PRS+

assumes ran-ISId[intro,simp|: R : a < b = rang R : ISId b

assumes ran-self[intro,simp]: R:a <> b= RC R - rang R

assumes ran-ISId-cmplintro,simp]: [ R: a «» b: P : ISId b ] = rang (R ® P)C P

The axiom ran-homset can be written as a lemma using ran-ISId and ISId-homset
as W.K. pointed out.

lemma (in PreRanSemi) ran-homset[intro,simp):
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assumes [intro: R : a < b
shows rang R : b < b

proof —

have rang R : ISId b by best
thus ?thesis by (rule ISId-homset)
qed

lemma (in PreRanSemi) lipI:

assumes [intro]: R : a < b

assumes [intro]: P : ISId b

assumes i rang R C P

shows RCR& P

proof —

have R C R & rang R by (rule ran-self, best)
also from i have ... C R ' P by aulo
finally show ?thesis by best+

qged

lemma (in PreRanSemi) llp2:
assumes [intro: R:a — b
assumes [intro]: P : ISId b
assumes incl-isid: RC R & P
shows rang R C P
proof —
have R=R® P
proof —
from incl-isid have R C R - P by simp
moreover have R © PC R
proof —
have [intro|: isISId P by (rule ISId, best)
show R ® P C R by (rule isSId-right, best+)
qed
ultimately show ?thesis by (rule incl-antisym, best+)
qed
also have rang(R ® P) C P by (rule ran-ISId-cmp, best+)
finally show “thesis .
qed

We derive llp from dom-self and dom-ISId-cmp. This will be useful later in cal-
culating properties of the range operator.
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lemma (in PreRanSemi) llp:

assumes [intro]: R:a < b

assumes [intro]: P : ISId b

shows (rang RC P) = (RC R ¢ P)

proof —

have rang RC P = RC R = P by (rule llp1, best+)
moreover have i = i « F = rang K T F by (rule lips, besi+)
ultimately show ?thesis by (rule iffI, best+)

qed

lemma (in PreRanSemi)isSId-ran[intro, simp):
assumes [intro]: W: a < b
shows isSId (rang W)
proof -
have rang W : ISId b by (rule ran-1SId, auto)
thus ?thesis by auto
qed

lemma (in PreRanSemi) isid-isbot:

assumes [intro, simp|: isBot W

assumes [intro, simp: W : a < a

shows W : ISld a

proof —

have isSId W

proof (rule-tac j=rang W in isSIld-intro2, auto)
show W C rang W by (rule isBol, auto)

qed

moreover have W & W = W
proof —

have W&o WEC W

proof —

have W C rang W by (rule isBot, auto)
hence W @ W C W & rang W by (rule comp-incl-mon2, best+)
also have ... C W by (auto)
finally show ?lhesis by auto
qed
moreover have W C W © W by (rule isBot, auto)
ultimately show ?thesis by (rule incl-antisym, best+)
qed
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ultimately have isISId W by (rule-tac isISId-intro, best+)
thus ?thesis by (rule-tac ISId-intro, best+)
qed

B.13.2 Algebraic Properties of the range operator

The prerange operator is fully strict.

lemma (in PreRanSemi) ran-strictl:

assumes [intro|: isBot (rang R)

assumes cmp-isidbot: isBot (R © rang R)

assumes [intro,simp]: R : a < b

shows isBol R
proof —

have isBot (R @ rang R) by (rule cmp-isidbot)

also have R @ rang R = R

proof —

have R C R @ rang R by (rule-tac llp [THEN ifJD1], best+)

moreover have R & rang R C R by auto

ultimately show ?thesis by (rule-tac incl-antisym, best+)
qed

finally show ?lhesis .
qed

lemma (in PreRanSemi) ran-strict2:

assumes cmp-isidbot: isBot (P ) R)
assumes [intro]: isBot P

assumes [intro): isBot R

assumes [intro): P : a < b

assumes [intro): R : ISId b

shows isBot (rang P)

proof —

have isBot (P & R) by (rule cmp-isidbot)
hence P C P & R by (rule-tac isBot, best+)
hence rang P C R by (rule-tac llp [THEN i[JD2], best+)
thus ?thesis by (rule-tac isbot-incl-isbot, auto)
qed

lemma (in PreRanSemi) ran-strict:
assumes [intro|: isBot (R = rang R)
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assumes [intro]: isBot (R & P)
assumes [intro|: isBot P

assumes [intro]: R : a < b

assumes [intro]: P : ISId b

shows isBot (rang R) = isBot R

proof —

have isBot (rang R) = isBot R by (rule-tac ran-strictl, best+)

moreover have isBot R => isBot (rang R) by (rule-tac R=P in ran-strict2, auto)
ultimately show ?thesis by (rule iffI, best+)

qed

The prerange operator is an identity on multiplicatively idempotent subidentities.

lemma (in PreRanSemi) ran-isISId-eq:

assumes [intro]: P : ISId a

shows rang P = P
proof —

have [intro,simp]: P : a < a by (rule ISId-homset, auto)
have rang P C P

proof —

have rang (P @ P) C P by (rule-tac ran-ISId-cmp, best+)

also have P ® P = P

proof (rule isISId-2,auto)

show isISId P by (rule-tac ISId, auto)

qged

finally show “thesis .

qed

moreover have P C rang P

proof —

have [intro, simp]: isISId P by (rule-tac ISId, auto)

have P C P ® rang P by (rule ran-self, best)

also have ... C rang P by ( besl+)

finally show ?thesis by best+

qed

ultimately show ?thesis by (rule incl-antisym, best+)
qed

The prerange operator is idempotent.

lemma (in PreRanSemi) ran-idemp:
assumes [introl: R : a < b
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shows rang (rang R) = rang R
by (rule ran-isISId-eq, best+)

The prerange operator is a left invariant.

lemma (in PreRanSemi) ran-right-inv:

assumes [intro: R: a — b

shows R = R ¢ rang R

proof —

have R C R © rang R by (rule ran-self, auto)
moreover have ... C R by auto

ultimately show ?thesis by (rule incl-antisym, best+)
qged

The prerange operator satisfies a decomposition law.

lemma (in PreRanSemi) ran-decomp:
assumes [intro, simp): R: a < b

assumes [intro, simp]: §: b — ¢

shows rang (R = S) C rang ((rang R) @ S)

proof —

have R© SC (R © S) @ rang ((rang R) ® §)

proof -
have R © S C R © (((rang R) & S) @ rang ((rang R) & S))
proof —

have [simp): R © S T (R © rang R) ® S by ( rule comp-incl-moni, rule ran-self,
best+)
moreover have [simp]: ... = R ® ((rang R) @ S) by (rule cmp-assoc, best+)
moreover have [simp]: ... T R ® (((rang R) + S): rang((rang R) ® S))
by (rule-tac comp-incl-mon2, rule ran-self, best+)
ultimately show ?thesis by (rule-tac incl-trans, auto)

qed

hence R © S C (R ® ((rang R) & §)) @ rang ((rang R) ® S) by (subst cmp-assoc,
best+)

hence R = S C ((R & (rang R)) ® S) @ rang ((rang R) ® S) by (subst cmp-assoc,
best+)

also have R © rang R = R by (rule ran-right-inv [THEN sym], auto)
ultimately show ?thesis by auto

qed
thus ?thesis by (rule-tac llp [THEN i[JD2], best+)
qed
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B.13.3 postimage Operator

constdefs
postimage = ("o, 'm, 'r) SemiAllegory-scheme = 'm = ‘m = 'm (& - - [1000,1000] 999)
postimage s P R == if isMor s R & 0S-isISId s P

then All-rang s (cmp s P R)
else arbitrary

lemma (in PreRanSemi) postimage-def:
[R:ae—b;P:ISIda] => £ PR = rang(P = R)
by (unfold postimage-def, auto)

lemma (in PreRanSemi) postimage-homset[intro,simp):
assumes [intro]: R : a < b

assumes [intro]: P : ISId a

shows £ PR: b b

proof —

have ¢ P R = rang (P = R) by (rule postimage-def, best+)
also have ... : b — b by (rule ran-homsel, best)

finally show ?thesis .

qed

lemma (in PreRanSemi) postimage-ISId:

assumes [intro]: R: a < b

assumes [intro|: P : ISId a

shows ¢ PR :ISId b

proof

have £ P R = rang (P = R) by (rule postimage-def, best+)
also have ... : ISId b by (rule ran-ISId, best)

finally show ?thesis .

qged

Lemma postimage connects the postimage operator with llp.

lemma (in PreRanSemi) postimagel:
assumes [intro]: R : a < b
assumes [intro|: P : ISId a
assumes [intro|: Q : ISId b
assumes postimage-incl: £ P R C Q
shows P© RC R® Q
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proof —

have [intro,simp|: isISId P by (rule-tac ISId, auto)

have £ P R = rang (P @ R) by (rule postimage-def, auto)

with postimage-incl have [intro]: ... T Q by simp

have P = R C (P @ R) © Q by (rule-tac llp [THEN iffD1], best+)
also have ...C R © Q by auto

Bnallv shovr 2hecis By Boctd
ianally suow Yuicsis By uisid

lemma (in PreRanSemi) postimage2:

assumes [inlro, simpl: R: a « b

assumes [intro, simp|: P : ISId a

assumes [intro, simp): Q : ISId b

assumes incl: P © RC R ® Q

shows ¢ PRC Q

proof —

have [intro,simp|: isISId Q by (rule-tac ISId, auto)

from incl have [intro]: P« R = P ¢ R & Q by (rule isid-incl-eql, best+)
hence P - RC P« R« @ by aulo

hence P & RC (P © R) ® @ by (subst cmp-assoc, auto)

hence rang (P ® R) C Q by (rule-tac llp [THEN iffD2], best+)

also have rang(P & R) = £ P R by (subst postimage-def [THEN sym). auto)
finally show “thesis .
qed

lemma (in PreRanSemi) postimage:

assumes [inlro]: R:a < b

assumes [intro]: P : ISId a

assumes [intro): Q : ISId b

shows (PRC Q)=(P©RCR®Q)

proof —

have { PRC Q@ = P& RC R - Q by (rule postimagel, best+)

moreover have P &' RC R @ Q = £ P R C Q by (rule postimage?2, best+)
ultimately show ?thesis by (rule iffI, best+)

ged

end
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B.14 Ordered Semigroupoid with Monotonic PreRange

theory MonPreRanSemi
imports PreRanSemi
begin

B.14.1 Definition

We introduce monotonicity of the domain operator.

locale MonPreRanSemi = PreRanSemi MPRS +
assumes ran-incl-monfintrol: [ R: a < b; 5 :a & b RC S ] = rang R C rang §

end

B.15 Ordered Semigroupoids with Range

theory RanSemi
imports MonPreRanSem:
begin

locale RanSemi = MonPreRanSemi RS +
assumes ran-local[intro, simpl:[R : a—b; S : bec] = rang (rang R S) C rang (R
S)

lemma (in RanSemi) ran-cmp:

assumes [inlro]: R : a—b

assumes [intro]: S : bec

shows rang (rang R © S) = rang (R = S)

proof —

have rang (rang R © §) C rang (R ® S) by aulo

moreover have rang (R © S) C rang (rang R ¢ ) by (rule ran-decomp, auto)
ultimately show ?%thesis by (rule incl-antisym, auto)

qged

end
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B.16 Structure Record for Distributive Allegories

theory DistrAllRecord
imports SemiAllRecord

begin

record ('o, 'm) DistrAll = ('o, 'm) SemiAllegory +
join i 'm = 'm = 'm (infixr Lh 60)

bot ::'o="o="m (L1 - - [1000,1000] 999)
end

B.17 Structure Record for Division Allegories: Residuals

theory DivAllRecord
imports DistrAllRecord
begin

We include both restricted residuals and standard residuals in the record in order
to make it easier for theories without converse to use residuals.

These are the best fits in X-Symbol — they have the same direction as the real
residual lines.

record ('o, 'm) DivAll = ('o, 'm) DistrAll +

rightRes ©: 'm = 'm = 'm (infixr —1 200)
leftRes = 'm = 'm = 'm (infixr <1 200)
restrrightRes = 'm = 'm = 'm (infixr -1 200)
restrleftRes :: 'm = 'm = 'm (infixr k1 200)
end

B.18 Standard Residuals in Ordered Semigroupoids
theory OrdSemiRes

imports OrdSemi
begin
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B.18.1 Left Residuals

constdefs
OS-haveLeftRes :: ('o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = 'm = 'm = bool
(haveLeftRes - - - [1000,1000,1000] 999)

OS-haveleftRes s S R I, == if isMor s S & isMor s R & (Strg s S = Strg s R)
& isMor s L & (Ssrc s L = Ssrc s S) & (Strg s L = Ssrc s R)
then (ALL X .Semi-parallel s X L —

(incl s (cmp s X R) S) = incls X L)

else arbitrary

lemma (in OrderedSemigroupoid) haveLeftRes-def:
[S:aebRicobLia—c] =
haveleftRes SR L =Y X €ae—c. (X®RLCS)=(XCL)
apply (unfold OS-haveLeftRes-def, simp)
apply (rule iffT)
apply (intro strip)
apply (drule-tac =X in spec)
apply (drule-tac f=X and g=L in parallel-intro, simp, drule mp, assumption)
apply (simp-all)
apply (intro strip)
apply (drule-tac f=X and g=L in parallel-2, assumption)
apply simp
done

lemma (in OrderedSemigroupoid) haveLeftRes-intro:

assumes i[intro, simp]:V X € a— ¢ (X ©® RC §) = (XC L)
assumes [intro]: S: e < b

assumes [intro]: R: c < b

assumes [inlrol: L : a « ¢

shows haveleftRes S R L

proof (rule haveLeftRes-def [THEN sym, THEN iffD1), best+)
from i show VX€a - ¢. (X : RC S) = (X C L) by simp
qed

lemma (in OrderedSemigroupoid) haveLeftRes:
assumes res: haveLeftRes S R L

assumes [inlro]: S :a — b

assumes [intro]: R: ¢ < b
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assumes [intro]: L : a < ¢

assumes [intro]: X : a < ¢

shows (X © RC S)=(XLC L)

proof —

from reshaveV X € a = ¢ (X O RC S)=(XC L)
by (rule-tac haveLeftRes-def [THEN iffD1], auto)

Ahase P0hnde bar naidn

thus ?thesis by auto

qed

lemma (in OrderedSemigroupoid) haveLeftRes-res-intro:
assumes [simp): X - RC S

assumes [intro]: haveLeftRes S R L

assumes [intro]: S :a < b

assumes [intro): R : ¢ < b

assumes [intro]: L: a < ¢

assumes [intro]: X : a — ¢

shows X C L

by (rule-tac haveLeftRes [THEN iffD1], auto)

lemma (in OrderedSemigroupoid) havelLeftRes-res-elim:
assumes [intro]: X C L

assumes [intro|: haveLeftRes S R L

assumes [intro]: S : a « b

assumes [intro: R : ¢ < b

assumes [intro]: L: a < ¢

assumes [intro]: X : a & ¢

shows X © RC §

by (rule-tac haveLeftRes [THEN i[JD2], auto)

B.18.2 Right Residuals

constdefs
0S-haveRightRes :: ('o, 'm, 'r) OrderedSemigroupoid-scheme = 'm = 'm = 'm = bool
(haveRightRes1 - - - [1000,1000,1000] 999)

OS-haveRightRes s S L R == if isMor s § & isMor s L & (Ssrc s S = Ssre s L)

& isMor s R & (Ssrc s R = Strg s L) & (Strg s R = Strg s S)

then (ALL X . Semi-parallel s X R —

(incl s (emp s L X) S) = incl s X R)
else arbitrary
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lemma (in OrderedSemigroupoid) haveRightRes-def:
[S:aebLia>cR:cob] =
haveRightRes SLR=(Y X €c—b.(Lz XCS) =(XCR))
apply (unfold OS-haveRightRes-def, simp)
apply (rule iffT)
apply (intro strip)
apply (drule-tac 2=X in spec)
apply (drule-tac f=X and g=R in parallel-intro, simp, drule mp, assumption)
apply (simp-all)
apply (intro strip)
apply (drule-tac f=X and g=R in parallel-2, assumption)
apply simp
done

lemma (in OrderedSemigroupoid) haveRightRes-intro:

assumes i [intro, simp|:V X € c > b. (L - XC S)=(XCR)
assumes [intro]: S : a < b

assumes [intro]: L: a < ¢

assumes [intro]: R:c o b

shows haveRightRes S L R

proof (rule haveRightRes-def |[THEN sym, THEN iffD1], best+)
from i show VXe€c«— b. (L - X T S)=(XLC R) by simp
qed

lemma (in OrderedSemigroupoid) haveRightRes:

assumes res: haveRightRes S L R

assumes [intro]: S :a < b

assumes [intro]: L : a < ¢

assumes [intro]: R: ¢ & b

assumes [intro]: X : ¢ & b

shows (L » X C §) = (X C R)

proof —

fromreshaveV X € c—b. (L@ XL §)=(XLCR)
by (rule-tac haveRightRes-def [THEN iffD1), auto)

thus ?thesis by auto

qed

lemma (in OrderedSemigroupoid) haveRightRes-res-intro:

assumes [intro]: L & X C S
assumes [intro|: haveRightRes S L R
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assumes [intro]: § : a < b
assumes [iniro): L : a « ¢
assumes [intro]: R: ¢ — b
assumes [intro]: X :
shows X C R

by (rule-tac haveRightRes [THEN #ffD1], auto)

ce b

lemma (in OrderedSemigroupoid) haveRightRes-res-elim:
assumes [simp]: X C R

assumes [intro]: haveRightRes S L R

assumes [intro]: S : a — b

assumes [intro): L : a < ¢

assumes [intro: R : ¢ & b

assumes [introl: X : ¢ & b

shows L - X C §

by (rule-tac haveRightRes [THEN iffD2], auto)

end

B.19 Semigroupoids with standard Left Residuals

theory LResSemi
imports OrdSemiRes DivAllRecord
begin

B.19.1 Definitions

locale I.ResSemi = OrderedSemigroupoid LRS +
assumes leftRes-homset[intro,simp]: [R: c o b S:ae—b] = (R~ S):ao ¢
assumes leftRes[intro,simp]: [ R : ¢ < b; S : a <> b ] = haveLeftRes S R (R — S)

B.19.2 Auxiliary Lemmas

lemma (in LResSemi) leftRes-src[simpl:
assumes [intro]: R : ¢ < b
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assumes [intro]: S : a < b

shows src (R« S) =a

proof —

have (R < §) : a « ¢ by (rule leftRes-homset, auto)
thus ?thesis by (rule homset-src)

qed

lemma (in LResSemi) leftRes-try|simp:

assumes [intro]: R: ¢ < b

assumes [intro]: S : a < b

shows (g (R~ S§) =¢

proof —

have (R — §) : a < ¢ by (rule leftRes-homset, auto)
thus ?thesis by (rule homset-trg)

qed

lemma (in LResSemi) left Res-defined[simp):

assumes [intro]: R: ¢ « b

assumes [intro]: S : a < b

shows Mor (R «— S)

proof (rule homset-Mor)

show (R « S) : a & ¢ by (rule leftRes-homset, auto)
qed

lemma (in LResSemi) lres-src[simp):
assumes [simp|: trg R = trg S
assumes [simp|: Mor R

assumes [simp|: Mor S

shows src (R — S) = src S

proof —

have R « S : src S < src R by (rule leftRes-homset, rule homset1, auto)

thus ?thesis by (rule homset-src)
qed

lemma (in LResSemi) lres-trg[simp]:
assumes [simp]: trg R = lrg S
assumes [simp|: Mor R

assumes [simp|: Mor S

shows trg (R «— §) = src R

proof -
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have R «— § : src S < src R by (rule leftRes-homset, rule homsetl, auto)
thus ?thesis by (rule homset-trg)
qed

lemma (in LResSemi) lres[simp]:
assumes [intro]: R : ¢ < b
assumes [{ulro): S :a v b

assumes [intro]: X : a < ¢

shows (X © R)C S) = (X C (R~ 9))

proof —

have haveleftRes S R (R «— S) by (rule leftRes, best+)
thus ?thesis by (rule haveLeftRes, best+)

qed

lemmas (in LResSemi) lresl = lres [TIIEN iffD1]
lemmas (in LResSemi) lres? = lres [THEN iffD2]

B.19.3 Equivalent axiomatization

lemma (in LResSemi) incl-lres[intro]:
assumes [intro): T : a < ¢
assumes [infro]: R : c < b
shows T C (R — (T ® R))
proof —
have (V X . X:a—o¢c—XCT— X CR~(T®R))
proof (intro strip)
fix X
assume [intro]:X € a & ¢
assume XT[simp]: X C T
hence [intro]: (X «» RC T - R) by (rule-tac comp-incl-monl, best+)
thus X C (R < (T @ R)) by (rule-tac lresi, best+)
qed
thus ?thesis by (rule-tac indir-ineq2, auto)
qed

lemma (in LResSemi) lresemp-incl:
assumes [intro]: R: ¢ & b
assumes [intro]: S :a < b

shows (R~ S)©® R)C §

proof —
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let X =R — S

have [intro]: X : a < ¢ by aulo

moreover have [intro]: ?X C (R < S) by (rule incl-refl, best)
have (?X @ R C S) by (rule lres [THEN iffD2], auto)

thus ?thesis by (best+)

qed

Residual properties in Furusawa-Kahl-1998

Proposition 4.4 (i)

lemma (in LResSemi) lrescom-incl-fs:

assumes [intro]:S : a < ¢

assumes [introl:R : b & ¢

assumes [intro]:T : d « ¢

shows (R — §) -/ (T~ R)C (T ~ 5)

proof —

have [intro] : (T < R) & T C R by (rule lrescmp-incl, auto)

have [intro] : (R — S) + R C S by (rule lrescmp-incl, auto)

have (R~ S) @ (T~ R)® T =(R+~ S)® ((T — R) ® T) by (rule cmp-assoc,
auto)

moreover have ... C (R < §) ©® R by auto

moreover have ... C S by auto

ultimately have [ : (R < S) ® (T «— R)) ® T C 8 by (rule-tac incl-trans, auto)

from | show ((R — S) @ (T — R)) C (T « S)by (rule-tac lres [THEN ifJD1], aulo)
qed

Proposition 4.4 (iii)

lemma (in LResSemi) lrescom-incl-ohk:
assumes [intro]: S : a & ¢

assumes [intro]: S" a < ¢

assumes [intro]: R: b« ¢

assumes [intro: R b < ¢

assumes S[intro]: S C S’

assumes R[intro]: R'C R

shows (R — S) C (R'— §)

proof (rule-tac indir-ineq2, best+)
show VC.C€a—=b— CC (R~ 8)— CLC (R'~ §
proof (intro strip)
fix C
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assume [intro]: C': a < b
assume Clintro]: C C (R — 5)
show C C (R'~ 8
proof —
have C & R'C C - R by auto
moreover have ... C S by (rule-tac lres2, auto)
ultimately have C = R'C § by (rule incl-trans, auto)
moreover have ... C S’ by auto
ultimately have I: C © R'C S’ by (rule incl-trans, auto)
from [ show ?thesis by(rule-tac lresl, auto)
qged
qed
qed

Proposition 4.5 (i)
lemma (in LResSemi) lrescom-incl-ex:
assumes [introl:F : a < b
assumes [introl:R : b — ¢
assumes [intro]:S : d — ¢
shows (F ® (S — R)) C (§ — (F @ R))
proof —
have[intro]: F C (R « (F ' R)) by auto
have (F @ (§ <~ R)) C ((R — (F = R)) ® (S — R)) by auto
moreover have ... C (S < (F @ R)) by(rule lrescom-incl-fs, auto)
ultimately show ?thesis by (rule incl-trans, auto)
qed

end

B.20 Semigroupoids with standard Right Residuals

theory RResSemi
imports OrdSemiRes DivAllRecord
begin

B.20.1 Definitions
locale RResSemi = OrderedSemigroupoid RRS +
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assumes rightRes-homset[intro,simp): [L:a— ¢; S:a o b] = (S—=L):c—b
assumes rightRes[intro,simpl: [ L : a < ¢; S : a < b | = haveRightRes S L (§ — L)

B.20.2 Auxiliary Lemmas

lemma (in RResSemi) rightRes-sre[simpl:

assumes [intro|: L : a < ¢

assumes [intro|: S : a < b

shows src (S — L) = ¢

proof —

have (S — L) : ¢ < b by (rule rightRes-homset, auto)
thus ?thesis by (rule homset-src)

qed

lemma (in RResSemi) rightRes-trg[simp):

assumes [intro]: L : a & ¢

assumes [intro]: S :a < b

shows (g (S —=L)=1

proof —

have (S — L) : ¢ < b by (rule rightRes-homset, auto)
thus fthesis by (rule homset-trg)

qed

lemma (in RResSemi) rightRes-defined[simp):
assumes [intro|: L : a < ¢

assumes [intro]: S : a — b

shows Mor (§ — L)
proof (rule homset-Mor)

show § — L : ¢ < b by (rule rightRes-homset, auto)
ged

lemma (in RResSemi) rres-sre:

assumes [simp|: src L = src S

assumes [simp|: Mor L

assumes [simp]: Mor §

shows src (§ = L) = trg L

proof —

have § — L : trg L « trg S by (rule rightRes-homset, rule homsetl. auto)
thus ?thesis by (rule homset-src)

qed
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lemma (in RResSemi) rres-trg:
assumes [simp|: src L = src S
assumes [simp|: Mor L
assumes [simp]: Mor S
shows trg (S —= L) = trg §

nronf
proot

have S — L : trg L « trg S by (rule rightRes-homset, rule homsetl, auto)

thus ?thesis by (rule homset-trg)
qed

lemma (in RResSemi) rres:

assumes [intro]: L: a < ¢

assumes [intro]: S :a < b

assumes [intro]: X : ¢ < b

shows (Le® XC S)=(XC(S— 1))
proof —

have haveRightRes S L (S — L) by (rule rightRes, best+)

thus ?thesis by (rule haveRightRes, best+)
qed

lemmas (in RResSemi) rresl = rres [THEN iffD1]
lemmas (in RResSemi) rres? = rres [THEN iffD2]

B.20.3 Equivalent axiomatization

lemma (in RResSemi) incl-rresintro]:
assumes [intro]: L : a < ¢

assumes [intro: T : c < b

shows TC (L T) — L)

proof —

have (Y X . X:cob— XC T — X C(L® T)= L)

proof (intro strip)

fix X

assume [intro]: X : ¢ & b
assume [simp|: X C T

hence [intro]: L @ X C L = T by (rule-tac comp-incl-monZ2, best+)

thus X C (L ® T)— L by (rule-tac rresl, best+)
qed
thus ?thesis by (rule-tac indir-ineq2, auto)
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qed

lemma (in RResSemi) rrescmp-incl:

assumes [intro]: S : a < b

assumes [intro]: L : a < ¢

shows L & (S =~ L)C §

proof —

let ¢X=§ = L

have [intro]: ?X : ¢ < b by auto

moreover have [intro]: ?X C S — L by (rule incl-refl, best)
moreover have (L © ?X C §) by (rule rres [THEN i[JD2], auto)
thus fthesis by (best+)

qed

——Residual properties in Furusawa-Kahl-1998——

Proposition 4.4 (i)

lemma (in RResSemi) rrescom-incl-fs:

assumes [inlro]:S : a < ¢

assumes [introl:L : a < b

assumes [intro]:U : a < d

shows (§ =~ L) & (U—= S)C (U — L)

proof —

have [intro] : L & (§ = L) C § by (rule rrescmp-incl, auto)

have [intro] : § @ (U — S§) € U by (rule rrescmp-incl, auto)

have L © ((§ = L) ® (U= S)) = (L ® (8§ — L)) ® (U — S) by (rule cmp-assoc-sym,
auto)

moreover have ... T § ® (U = §) by auto

moreover have ... U by auto

ultimately have r: L ® ((S — L) = (U — S)) C U by (rule-tac incl-trans, auto)
from r show ?thesis by (rule-tac rres [THEN iffD1], auto)

qed

c
c

Proposition 4.4 (iii)

lemma (in RResSemi) rrescom-incl-ohk:
assumes [intro]: S : a < ¢
assumes [intro]: S a — ¢
assumes [intro: Q: a — b
assumes [intro]: Q" a « b
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assumes S[intro]: S C §’
assumes Q[intro]: Q' C Q
shows (§ = Q) C (S'— @)
proof (rule-tac indir-ineq2, best+)
show VC.Cebe c— CC(S— Q) — CC (5= Q)
proof (intro strip)
fix C
assume [intro]: C' : b« ¢
assume Clintro]: C C (S — Q)
show CC (§'— Q)
proof —
have Q' ® CC Q ® C by auto
moreover have ... C S by (rule-tac rres2, auto)
ultimately have Q' © C C S by (rule incl-trans, auto)
morecover have ... C S’ by auto
ultimately have I: Q' ¢ C C S’ by (rule incl-trans, auto)
from [ show ?thesis by(rule-tac rresl, auto)
qed
qed
qed

Proposition 4.5 (i)

lemma (in RResSemi) rrescom-incl-ex:
assumes [intro]:U : a < b
assumes [intro]:Q) : a < ¢
assumes [intro]: T : ¢ « d
shows (@ =~ U) : T)E((Q© T) = V)
proof —
have[intro]: T C ((Q & T) — Q) by auto
have (@ =~ U) @ T)C (@ = U) © ((Q + T) — Q)) by auto

moreover have ... C ((Q @ T) — U) by(rule rrescom-incl-fs, auto)
ultimately show ?thesis by (rule incl-trans, auto)

qed

end

B.21 Semigroupoids with Standard Residuals

theory ResSemi
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imports LResSemi RResSemi
begin

B.21.1 Definitions

locale ResSemi = LResScu N5 + RRcsSciii RS

end

B.22 Restricted Residuals in Ordered Semigroupoids

theory OrdSemiRestrRes
imports RanSemi DomSemi
begin

B.22.1 Basic Definitions
locale OrdSemiRestrRes = RanSemi OSR + DomSemi OSR

B.22.2 Restricted Left Residuals

constdefs
0S-haveRestrLeftRes :: (‘o, 'm, 'r) SemiAllegory-scheme = 'm = "m = 'm = bool
(haveRestrLeftRes: - - - [1000,1000,1000) 999)

OS8-haveRestrLeftRes s S R L == if isMor s S & isMor s R & (Strg s S = Strg s R)

& isMor s L & (Ssrc s L = Ssrc s §) & (Strg s L = Ssrc s R)

then (ALL X .Semi-parallel s X L —

(éncl s (cmp s X R) S & incl s (All-rang s X) (All-dom s

R)) =incls X L)

else arbitrary

lemma (in OrdSemiRestrRes) haveRestrLeftRes-def:
[S:aesbR:cobjLiao ] =

haveRestrLeftRes SR L =(Y X €a e c.((X ® RC S) & (rang X C dom R)) = (X
E L)
apply (unfold OS-haveRestrLeftRes-def, simp)
apply (rule iffT)
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apply (intro strip)

apply (drule-tac z=X in spec)

apply (drule-tac f=X and g=L in parallel-intro, simp, drule mp, assumption)
apply (simp-all)

apply (intro strip)

apply (drule-tac f[=X and g=L in parallel-2, assumption)

apply simp

done

lemma (in OrdSemiRestrRes) haveRestrLeftRes-intro:

assumes i[intro, simp): V X € a « ¢ (X + RC S) & (rang X C dom R)) = (X C L)
assumes [intro]: S : a < b

assumes [introl: R:c < b

assumes [intro]: L : a < ¢

shows haveRestrLeftRes S R L

proof (rule haveRestrLeftRes-def [THEN sym, THEN iffD1], best+)

from i show VX€a < ¢. (X © RC S A rang X C dom R) = (X C L) by simp

qed

lemma (in OrdSemiRestrRes) haveRestrLeftRes:

assumes res: haveRestrLeftRes S R L

assumes [intro]: S : a & b

assumes [intro]: R: ¢« b

assumes [intro]: L : a < ¢

assumes [intro]: X : a < ¢

shows ((X ©® RC §) & (rang X C dom R)) = (X C L)

proof —

from res haveV X € a & ¢ .((X ® RC §) & (rang X C dom R)) = (X C L)
by (rule-tac haveRestrLeftRes-def [THEN iffD1], auto)

thus “thesis by auto

qed

lemma (in OrdSemiRestrRes) haveRestrLeftRes-res-intro:
assumes [simp]: X + RC S

assumes [simp|: rang X C dom R

assumes [intro]: haveRestrLeftRes S R L

assumes [intro]: S :a < b

assumes [intro]: R:c < b

assumes [introl: L: a « ¢
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assumes [intro]: X : a < ¢
shows X C L
by (rule-tac haveRestrLeftRes [THEN iffD1], auto)

lemma (in OrdSemiRestrRes) haveRestrLeftRes-res-elim:
assumes [intro]: X C L

assumes [intro|: haveRestrLeftRes S R L

assumes [intro]: S : a < b

assumes [intro]: R:c < b

assumes [intro]: L : a < ¢

assumes [introl: X : a « ¢

shows X © RC S & rang X C dom R

by (rule-tac haveRestrLeftRes [THEN iffD2], auto)

B.22.3 Restricted Right Residuals

constdefs
0S-haveRestrRightRes :: ("o, 'm, 'r) SemiAllegory-scheme = 'm = 'm = 'm = bool
(haveRestrRightRes: - - - [1000,1000,1000] 999)
0S-haveRestrRightRes s S L R == if isMor s S & isMor s L & (Ssrc s § = Ssrc s L)
& isMor s R & (Ssrc s R = Strg s L) & (Strg s R = Strg s S)
then (ALL X . Semi-parallel s X R — >
(incl s (emp s L X) S & incl s (All-dom s X) (All-rang s
L)) =incls X R)
else arbitrary

lemma (in OrdSemiRestrRes) haveRestrRightRes-def:
[SiaebLliaogRicob] =
haveRestrRightRes SLR= (Y X €c«b. (L © XC S) & (dom X C rang L)) =
(XCR)
apply (unfold OS-haveRestrRightRes-def, simp)
apply (rule iffT)
apply (intro strip)
apply (drule-tac =X in spec)
apply (drule-tac f=X and g=R in parallel-intro, simp, drule mp, assumption)
apply (simp-all)
apply (intro strip)
apply (drule-tac f=X and g=R in parallel-2, assumption)
apply simp
done
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lemma (in OrdSemiRestrRes) haveRestrRightRes-intro:

assumes ¢ [intro, simp): ¥V X € c — b. ((L & X C §) & (dom X C rang L)) = (X C R)
assumes [intro]: S : a < b

assumes [intro]: L : a < ¢

assumes [intro]: R : ¢ < b

shows haveRestrRightRes S [ R

proof (rule haveRestrRightRes-def [THEN sym, THEN iffD1], best+)

from i show VX€c & b. (L& X C S A dom X C rang L) = (X C R) by simp

qged

lemma (in OrdSemiRestrRes) haveRestrRightRes:

assumes res: haveRestrRightRes S L R

assumes [intro]: S : a < b

assumes [intro): L : a < ¢

assumes [introl: R: ¢ < b

assumes [intro]: X : ¢ < b

shows ((L © X C §) & (dom X C rang L)) = (X C R)

proof —

from reshaveV X € c > b. (L © X E S) & (dom X C rang L)) = (X C R)
by (rule-tac haveRestrRightRes-def [THEN iffD1], auto)

thus ?thesis by auto

qged

lemma (in OrdSemiRestrRes) haveRestrRightRes-res-intro:
assumes [introl: L & X E S

assumes [intro): dom X C rang L

assumes [intro]: haveRestrRightRes S L R

assumes [intro]: S : a < b

assumes [intro]: L : a < ¢

assumes [intro: R: ¢ < b

assumes [intro]: X : ¢ & b

shows X C R

by (rule-tac haveRestrRightRes [THEN iffD1], auto)

lemma (in OrdSemiRestrRes) haveResirRightRes-res-elim:
assumes [simp]: X C R

assumes [intro]: haveRestrRightRes S L R

assumes [intro]: S : a < b

assumes [intro]: L : a < ¢
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assumes [intro]: R:c < b have (Rt S) : a < ¢ by (rule restrleftRes-homset, auto)
assumes [intro]: X : ¢ < b thus ?thesis by (rule homset-trg)
shows (I, & X C §) & (dom X C rang L) qed

by (rule-tac haveRestrRightRes [THEN iffD2], auto)

lemma (in RestrLResSemi) restrleftRes-defined|simp):

assumes [inlro]: R:c « b
(o] '

end assumes [ilro]: S a
shows Mor (RF S)
proof (rule homset-Mor)
show (R + S) : a « ¢ by (rule restrleftRes-homset, auto)
qed

B.23 Semigroupoids with Restricted Left Residuals

lemma (in RestrLResSemi) restr-lres-src[simp):

theory RestrLResSemi assumes [simp|: trg R = trg §

imports OrdSemiRestrRes DivAllRecord assumes [simp): Mor R

begin assumes [simp]: Mor S
shows src (R+ S§) = sre S
proof —

have Rt S : src § & src R by (rule restrleftRes-homset, rule homsetl, auto)
thus ?thesis by (rule homset-src)

B.23.1 Definitions

locale RestrLResSemi = OrdSemiRestrRes RLRS + ged
assumes restrieftRes-homset|intro,simpl: [R: ¢« b;S:a—b] = (RFS):ae ¢ . i . .
assumes restrleftRes(intro,simp): [ R: ¢ <> b; § : a & b ] = haveLeftRes SR (R + S) lemma (in RestrLResSemi) restr-lres-trg[simp]:

assumes [simp|: trg R = trg §
. assumes [simp]: Mor R
B.23.2 Auxiliary Lemmas assumes [simp]: Mor §

lemma (in RestrlResSemi) restr-leftRes-src[simp): st S (L B e e

assumes [intro]: R: ¢ & b proof —

K have Rt S : src S < src¢ R by (rule restrleftRes-homset, rule homsetl, auto)
assumes [intro): S : a < b St e by o bl
shows src (RFS)=a qe;s ?thesis by (rule homset-trg

proof —

have (R + S) : a < ¢ by (rule restrleftRes-homset, auto)
thus ?thesis by (rule homset-src)

qed

lemma (in RestrLResSemi) restr-lres:
assumes [introl: R : ¢ < b
assumes [infro]: S :a «— b

. ; . assumes [inlro]: X : a < ¢

lemma (in RestrLResSemi) restr-leftRes-trg[simp]: shows (()[( l]i C $) A (rang X C dom R)) = (X C (R §))
assumes [intro]: R: ¢ < b = Sk =

assuen inkrols 8 5 664 § pl:‘):fh_ veLeftRes S R (R & S) by (rule restrleftRes, best+)
shows I7y (R = S) - ave faveLe, €S y (ruie restrie, €S8, Des

thesis . ;
proof — thus “thesis by (rule-tac haveRestrLeftRes, best+)
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qed

lemmas (in RestrLResSemi) restr-lresl = restr-lres [THEN iffD1]
lemmas (in RestrLResSemi) restr-lres2 = restr-lres [THEN iffD2]

Add the following two auxiliary lemmas.

lemma (in RestrLResSemi) restr-lres-incll[intro]:
assumes [intro]: X : a < ¢

assumes [intro]: R: ¢ < b

assumes [introl: S: a & b

assumes TR[intro: XC R+ §

shows rang X T dom R

proof —
from TR have ss: (X @ RC S) A (rang X C dom R)
by (rule-tac restr-lres [TITEN iffD2], auto)
from ss show ?thesis by auto

qed

lemma (in RestrLResSemi) restr-lres-incl2[intro|:
assumes [intro]: X : a & ¢

assumes [intro]: R: ¢ & b

assumes [intro]: S: a < b

assumes XR[introl: X T R+ S

shows (X @ RC S)

proof —
from XR have ss: (X © RC S) A (rang X C dom R)
by (rule-tac restr-lres [THEN iffD2], auto)
from ss show ?thesis by auto

qed

B.23.3 Equivalent axiomatization

lemma (in RestrLResSemi) incl-restr-lres|intro):

assumes [intro]: T : a & ¢

assumes [intro]: R: ¢ — b

assumes TR[intro]: rang T T dom R

shows TC R+ (T @ R)

proof —

have (Y X . X:ae¢— XLCT— X CRF(T®R))
proof (intro strip)
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fix X

assume [intro]:X € a < ¢
assume XT[simp): X T T
hence [intro]: (X © RC T - R)

by (rule-tac comp-incl-monl, best+)
hence XT[intro]: rang X C rang T by auto

from XT TR have rang X T dom R

by (rule-tac incl-trans, auto)
thus X C (R+ (T @ R)) by (rule-tac restr-lres1, best+)

qed

thus ?thesis by (rule-tac indir-ineq2, auto)

qed

lemma (in RestrLResSemi) restr-lrescmp-incl:

assumes [intro]: R : ¢ < b
assumes [intro]: S :a < b
shows (RFS)®RC S

proof —

let X =RF S

have [intro]: ?X : a < ¢ by auto

moreover have [intro]: ?X T (R + S) by (rule incl-refl, best)
have (?X & R C §) & (rang ?X C dom R)

by (rule restr-lres [THEN iffD2], auto)

thus ?thesis by (best+)
ged

Add the following new properties.

lemma (in RestrLResSemi) restr-lres-incl-new:

assumes [intro]: R:c < b
assumes [intro]: § :a — b
shows rang (R + §) C dom R
proof —

let X =R S

have [intro]: X : a < ¢ by auto

moreover have [intro]: 2X T (Rt S) by (rule incl-refl, best)
have (?X © RC §) & (rang ?X C dom R)

by (rule restr-lres [THEN iffD2], auto)

thus ?thesis by (best+)
qed
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—Residual properties in Furusawa-Kahl-1998—

Proposition 4.4 (i)

lemma (in RestrLResSemi) restr-lrescom-incl-fs:
assumes [intro]:S : a « ¢
asswies (o] . b — ¢
assumes [intro]:T : d < ¢
shows (R+-S) « (THR)C(TFS)
proof (rule restr-lres [THEN iffD1], best)
show § : a — ¢ by aulo
next
show (R+ S) & T+ R € a « d by auto
next
show (RFS)© TFR)© TE SArang (R+S)® THR)C dom T
proof —
havel[intro]: (T + R) © T C R by (rule restr-lrescmp-incl, auto)
have(intro]: (R+ §) © R C S by (rule restr-lrescmp-incl, auto)
have (RF S) ) (TFR) = T =(RF8) o (T+R)« T)
by (rule emp-assoc, auto)
moreover have ... C (R §) ® R by auto
moreover have ... C S by auto
ultimately have [ : (R+S) © (THFR) - TCS
by (rule-tac incl-trans, auto)
have[intro: rang (T + R) C dom T
by (rule restr-lres-incl-new, auto)
have rang((R+ S) & (T + R)) C rang( rang(R+ S) «» (T + R))
by (rule ran-decomp, auto)
moreover have ... C rang (T + R) by best+
ultimately have rang((R+ S) & (T + R)) C rang (T + R)
by (rule-tac incl-trans, auto)
moreover have ... C dom T by best+
ultimately have ll: rang (R+ S) @ T+ R) C dom T
by (rule-tac incl-trans, auto)
from [ ll show ?thesis by auto
qed
qed

Proposition 4.4 (iii) holds for restricted residuals if R'=R and Q'=Q.

lemma (in RestrLResSemi) restr-lrescom-incl-ohk:
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assumes [intro]: §:a « ¢
assumes [intro]: S a « ¢
assumes [intro]: R: b« ¢
assumes S[intro]: S C S’
shows (R+ S)C (RF+ S
proof (rule-tac indir-ineq2)

show R+ S € a« bbby
next

show R+ S’ € a < b by auto
next

show VC.C€a—b— CLC(RFS)— CC(RFS)
proof (intro strip)

fix ¢

assume [intro]: C': a < b

assume Clintro]: C C (RF §)

show CC (RF S

proof —
from C have (C © R C §) by (rule-tac restr-lres-incl2, auto)
moreover have ... C S’ by auto

ultimately have r1: C & R C §' by (rule incl-trans, auto)
from C have 72: rang C C dom R by auto

from r1 r2 show ?thesis by(rule-tac restr-lresl, auto)

qed

qed

qed

Proposition 4.5 (i) holds for restricted residuals when the following FR assumption
is added.

lemma (in RestrLResSemi) restr-lrescom-incl-ex:
assumes [inlrol:F : a < b

assumes [intro]:R : b < ¢

assumes [intro]:§ : d < ¢

assumes FR: rang F' C dom R

shows (F & (SF R)) C (S (F @ R))

proof —

have[intro|: F C (R + (F @ R)) by auto

have (F & (S R)) C (RF (F : R) ® (S F R)) by auto
moreover have ... C (S + (F @ R))

by (rule restr-lrescom-incl-fs, auto)

ultimately show ?thesis by (rule incl-trans, auto)
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qed lemma (in RestrRResSemi) restrright Res-defined[simp]:
assumes [infro]: L: a < ¢
end assumes [intro]: S :a — b

shows Mor (S 4 L)
proof (rule homset-Mor)

B.24 Semigroupoids with Restricted Right Residuals show §4 Lx ¢4 bby (rule restrightRes-homaet;: auto)
' qed

theory RestrRResSemi . ) ]

imports OrdSemiRestrRes DivAllRecord lemma (in RestrRResSemi) restr-rres-src[simp]:

begin assumes [simp]: src L = src S

assumes [simp]: Mor L
assumes [simp|: Mor S
shows src (S L) =trg L

B.24.1 Definitions proof —

locale RestrRResSemi = OrdSemiRestrRes OSRR + have § 3L ¢ 'L «—»'trg S

assumes restrright Res-homset[intro,simp): [ L:a < ¢ S:a = b] ?by ‘(.1'"ule rest;ﬁ;qhtR.es-hlorlnset. rule homset!, auto)
= (SHAL):ceob thus ?thesis by (rule homset-src)

assumes restrrightRes[intro,simpl: [ L:a < ¢; S:a e b] qed

= haveRestrRightRes S L (S - L
CUESSEEgHES ( ) lemma (in RestrRResSemi) restr-rres-trg[simp):

assumes [simp]: src L = st S

B.24.2 Auxiliary Lemmas assumes [simp]: Mor L
assumes [simp|: Mor §
shows trg (S 4 L) =trg S
proof —
have S HL:trg L < trg S

by (rule restrrightRes-homset, rule homsetl, auto)
thus ?thesis by (rule homset-trg)
qed

lemma (in RestrRResSemi) restrrightRes-src[simpl:
assumes [intro]: L : a & ¢

assumes [intro: S : a < b

shows src (S 4 L) =¢

proof —

have (S 4 L) : ¢ < b by (rule restrrightRes-homset, auto)
thus ?thesis by (rule homset-src)

qed lemma (in RestrRResSemi) restr-rres:

assumes [intro): L : a < ¢

assumes [intro): §:a < b

assumes [intro]: X : ¢ < b

shows (L& X C S) A(dom X Crang L)) = (X C (S HL))
proof

have haveRestrRightRes S L (S8 4 L) by (rule restrrightRes, best+)
thus ?%thesis by (rule haveRestrRightRes, best+)

qed

lemma (in RestrRResSemi) restrrightRes-trg[simp):
assumes [intro]: L : a & ¢

assumes [intro]: S : a < b

shows trg (SHL)=1"

proof —

have (S - L) : ¢ < b by (rule restrrightRes-homset, auto)
thus ?thesis by (rule homset-trg)

qed

164 165



MSc Thesis — Jinrong Han McMaster University

Computer Science

lemmas (in RestrRResSemi) restr-rresl = restr-rres | THEN iffD1]
lemmas (in RestrRResSemi) restr-rres2 = restr-rres [THEN iffD2)

Added the following two auxiliary lemmas
lemma (in RestrRResSemi) restr-rres-inclilintrol:
assumes [inlro]: L : a & ¢
assumes [intro]: X : ¢ < b
assumes [intro]: S: a < b
assumes XL[intro: X T S 4L
shows dom X C rang L
proof —
from XL have ss: (L © X C S) A (dom X C rang L)
by (rule-tac restr-rres [THEN iffD2], auto)
from ss show ?thesis by auto

qed

lemma (in RestrRResSemi) restr-rres-incl2[intro):
assumes [intro]: L : a « ¢

assumes [intro]: X : ¢ < b

assumes [intro]: S: a « b

assumes XL[intro]: X T S+ L

shows (L X C S)

proof —
from XL have ss: (L ® X C §) A (dom X C rang L)

by (rule-tac restr-rres [THEN iffD2], auto)

from ss show ?thesis by auto

qed

B.24.3 Equivalent axiomatization

lemma (in RestrRResSemi) incl-restr-rres|intro):
assumes [intro]: L : a « ¢
assumes [intro]: T :c < b
assumes LT [intro]: dom T T rang L
shows T C (L T) 4 L)
proof —
have (V X. X:co b— XC T — X C(L o T)H L)
proof (intro strip)
fix X
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assume [intro]: X : ¢ < b
assume [simp]: X T T
hence [intro]: L& X T L& T
by (rule-tac comp-incl-mon2, best+)
hence XT[intro]: dom X C dom T by auto
from XT LT have dom X C rang L by (rule-tac incl-trans, auto)

+n YOI T T By (m
ES TR M\

thus ¥ A - pestr-rres! heeld)
qed

thus ?thesis by (rule-tac indir-ineg2, auto)

qged

lemma (in RestrRResSemi) restr-rresemp-incl:
assumes [intro]: S :a < b

assumes [intro]: L : a < ¢

shows L - (SHL)C §

proof —

let ?2X=S-L
have [intro]: ?X : ¢ < b by auto
moreover have [intro]: ¥X T S -+ L by (rule incl-refl, best)
moreover have (L ¢ ?X C §) & (dom ¢X T rang L)

by (rule restr-rres [THEN iffD2], auto)
thus ?thesis by (best+)

qed

Add the following new properties.

lemma (in RestrRResSemi) restr-rres-incl-new:

assumes [intro]: §:a < b
assumes [intro]: L : a < ¢
shows dom (§ - L) C rang L

proof —

let 2X=5-L
have [intro]: ?X : ¢ « b by auto
moreover have [intro]: ?X C § 4 L by (rule incl-refl, best)
moreover have (L & ?X C §) & (dom #X C rang L)

by (rule restr-rres [THEN iffD2], auto)
thus ?thesis by (best+)

qed

Residual properties in Furusawa-Kahl-1998
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shows (S 4 Q) C (S Q)
lemma (in RestrRResSemi) restr-rrescom-incl-fs:
assumes [intro]:S : a & ¢

proof (rule-tac indir-ineq2, best+)
show VC.Ce€b—sc— CLC(§H4Q) — CL (5'4Q)
assumes [intro]:L : a < b pf;‘;:oé st i)
assumes [intro]:U : a < d
shows (S 4 L) o (U4S)C (UL
proof —

assume [inlro]: C : b & ¢
assume Clintro]: C C (S - Q)
. ) . show CLC (S'4Q)
havel[intro] : L ® (8§ 4 L) € S by (rule restr-rresemp-incl, auto)
have[intro] : S« (U 4 S) C U by (rule restr-rrescmp-incl, auto)
have L (S 4 L) 1 (U A 8)) = (L (8 L))

proof —
have @ « C C § by auto
- (UA8) moreover have ... C S’ by auto
by (rule cmp-assoc-sym, auto)
moreover have ... C S © (U 4 S) by auto
moreover have ... C U by auto

ultimately have I: Q @ C C S’ by (rule incl-trans, auto)
ultimately have 7 : L ¢ ((S 4 L) = (U 4 8)C U

have dom C C rang () by auto

from [ show ?thesis by(rule-tac restr-rres1, auto)
by (rule-tac incl-trans, auto)

qed
qed
from r show (S 4 L) © (U 4S)C(UAL) qed
proof (rule-tac restr-rres [THEN iffD1], auto)
show dom ((S A L) = UAS)C rang L
proof —

havelintro]: dom(S - L) C rang L

Proposition 4.5 (i) holds for restricted residuals when the following TQ assumption
is added.
by (rule restr-rres-incl-new, auto) lemma (in ResirRResSemi) Restr-rrescom-incl-ex:
have dom((S 4 L) ® (U 4 8)) E dom((S 4 L) ® dom(U 4 S)) assumes [intro|:U : a < b
by (rule dom-decomp, auto) assumes [intro:Q : a < ¢
moreover have ... T dom (S - L) by best+ assumes [intro]:T : ¢ & d
ultimately have dom((S + L) @ (U 4 8)) C dom (S 4 L) assumes 7Q: dom T C rang Q
by (rule-tac incl-trans, auto) shows (Q1 U)o T)C ((Q¢ T)H V)
moreover have ... C rang L by best+ proof —
ultimately show dom((S 4 L) ® (U 4 S)) C rang L from TQ have[intro]: T C ((Q ® T) 4 Q) by auto
by (rule-tac incl-trans, auto) have (QH4U) ® T)E ((QHU) = ((Q ® T) 4 Q)) by auto
qed moreover have ... C ((Q < T) 4 U) by(rule restr-rrescom-incl-fs, aulo)
qed ultimately show ?thesis by (rule incl-trans, auto)
qed qed

Proposition 4.4 (iii) holds for restricted residuals if R’=R and Q'=Q. end
lemma (in RestrRResSemi) restr-rrescom-incl-ohk:
assumes [iniro]: § : a < ¢ B.25 Semigroupoids with restricted residuals
assumes [intro]: S a « ¢
assumes [introl: Q: a < b theory RestrResSemi
assumes S[intro]: § C S’ imports RestrLResSemi RestrRResSemi
168
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begin moreover have X C rang L & R = L X C S Adom X C rang L
proof(rule conjl)

locale RestrResSemi = RestrLResSemi RRS + RestrRResSemi RRS show X Crang Lo R=L = XC §
proof —

end have [intro]: rang L ~ R C R by auto

have [intro]:X C rang L © R= XC R

Yy (rule tar inel trame anin)
by (rule-tac )

B.26 Restricted Residuals and Standard Residuals. from R have[intro]: X T R = L © X C S by auto
show X C rang L & R = L & X C S by auto

theory RestrResAndRes qed

imports OrdSemiRestrRes OrdSemiRes next show X C rang L & R => dom X C rang [,

begin proof —

have dom (rang L ~ R) C rang L by auto
also havel[intro]: X C rang L © R = dom X C dom (rang L © R)
B.26.1 Theorems by (rule dom-incl-mon, auto)

lemma (in OrdSemiRestrRes) RestrRightRes-RightRes: have(intro]: dom X T dom (rang L ® R)lzdom X Crang L
assumes [simp,intro]: S: a < b . ‘ by (rule-tac incl-trans, auto)

assumes [:qimp‘i,;l,,.a}; l{.: ce b show X C rang L & R = dom X C rang L by auto

assumes [simp,intro|: L : a < ¢ f;d

Moo hebeBonehie & b (g 165 ultimately show (L © X C A dom X C rang L) = (X € rang L © R)
proof (rule haveRestrRight Res-def [THEN sym, TIEN iffD1),best+) by (rule iffI, best+)

show ¥ X€c « b. (L ® X C S A dom X C rang L) = (X C rang L ® R)) Z‘Zld
proof (intro strip) q:d

assumel(intro]: X : ¢ «» b

show (L © X C S A dom X C rang L) = (X C rang L. & R)

proof — ” R : ) N .
have R:(L © X C S) = (X C R) by (rule haveRightRes, best+) lz::::‘:ne(sl?iv(l)trrzfegu"{:bzlzl: FAEESIREE
have L ©» XC SAdom XCrang L= X CrangL - R assumes [mtm] R.' ¢+ b

proof — citrals I &
have X: X C dom X ® X by auto GRSWIMES [Z." i) & 4 et
from B hinve (L @ X C 5 A-dom X £ rong L) assumes [intro|:haveLeftRes S R L
= {dom X T rang LA X C B) by auto shows haveRestrLeftRes S R (L < dom R)
== 9 = y proof (rule haveRestrLeftRes-def [THEN sym, THEN iffD1],best+ )

also have ... = (dom X & X C rang L. © R) by auto - -
2 e (X E ~ XC =(XC(L®
from X have (dom X © X C rang L ® R) => (X C rang L - R) mheryt of .\Ea e (= B I &0 vomg 3 & doms Bypes: (X0 (OB ot ol B
proof (intro strip)

by (rule incl-trans, auto) fix X
ultimately show L & X C § A dom X C rang L = X C rang L ® R assumelintro]: X : a < c

aed by best+ show ((X «» RC 8) A (rang X C dom R)) = (X C (L <) dom R))
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proof —
have L:(X ® RC S)=(XC L)
by (rule haveLeftRes, best+)
have X © RC SArang XC domR=— X C L& dom R
proof —
have X: X C (X © rang X) by auto
from L have (X & RC S A rang X C dom R)
= (X C L A rang X C dom R) by auto
also have (X C L A rang X C dom R)=—>
((X « rang X) C (L & dom R)) by auto
from X have ((X @ rang X) C (L ® dom R)) = X C (L @ dom R)
by (rule-tac incl-trans, auto)
ultimately show X & RC S A rang X C dom R
= X C L dom R by auto
qed
moreover have X C L @ dom R = X © RC S A rang X C dom R
proof (rule conjI)
show XC L& domR=—= X ©®RLC S
proof
have [intro]: L @ dom R C L by auto
have [intro: X CL ® domR= XC L
by (rule-tac incl-trans, auto)
from L have[intro]: X T L => X @ RC S by auto
show X C L @ dom R = X ® R C S by auto
qed
next show X C L -, dom R = rang X C dom R
proof —
have rang( L = dom R) C dom R by auto
also have[intro]: X C L ¢ dom R =
rang X C rang (L = dom R) by (rule ran-incl-mon, auto)
have[intro|: rang X C rang( L ® dom R) = rang X C dom R
by (rule-tac incl-trans, auto)
show X C L © dom R = rang X C dom R by auto
qed
qed
ultimately show ((X ' R C S) A (rang X C dom R))
= (X C (L @ dom R)) by (rule iff, best+)
qed
qged
qed
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end

B.27 OSGC with Standard Residuals

theory ResOSGC
imports ResSemi ConvOrdSemi
begin

B.27.1 Definitions
locale ResOSGC = ResSemi ROSGC + ConuvOrdSemi ROSGC

B.27.2 Theorems

—Residual property (Proposition 4.1) in Furusawa-Kahl-1993—
lemma (in ResOSGC) resOSGC-eq:
assumes [iniro):Q : a < b
assumes [intro]:§ : a — ¢
shows (S = Q) =(Q~ = §7)~
proof (rule indirect-equality [THEN iffD2], best+)
showVC.Ce€beoc— (CES—=Q)=(CC(Q™ ~ §7))
proof (intro strip)
fix C
assume [intro]:C' : b < ¢
show (CE S —= Q) =(CE(Q~ « §7)7)
proof —
have CC S~ Q= CLC (@~ ~ §7)~
proof —
assume ¢: CC § — Q
show CC (@~ — §7)~
proof —
from ¢ have [intro]: (Q = C C §) by (rule-tac rres2, auto)
have ((Q & C)~ C §=) by (auto)
have cI: (C~ @ Q) C S~ by (rule conv-cmp [THEN subst],auto)
from cI have ¢2: C~ C (Q~ < §7) by (rule-tac lres1, auto)
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from c2 have ¢3:(C~)~ C (Q~ — S~)~ by auto
from ¢3 show C C (Q~ « S~)~ by (rule-tac conv-idem [THEN subst],auto)
ged
qed
moreover have CC (Q~ «~ S™)" = CLC S~ @
proof —
assume C: C L (¢ <5 )
show CC § — @
proof —
from C have CI: (C7)~" C(Q~ « §7)~
by (rule-tac conv-idem [THEN sym, THEN subst], auto)
from C1 have C2: C~ C (@~ «— §7)
by (rule-tac conv-incl [THEN iffD1], auto)
from C2 have C3: (C~ © Q) C S~ by (rule-tac lres2, auto)
from C3% have [intro]: (Q « C)~ C §~
by (rule-tac conv-cmp [THEN sym, THEN subst],auto)
have [intro]: (Q & C) C §
by (rule-tac conv-incl [THEN iffD1],auto)
show C C § — Q by (rule-tac rresl, auto)
qed
qed
ultimately show %thesis by(rule iffI, best+)
qed
qed
qed

end

B.28 OSGC with Domain and Range Operators

theory RDConvOrdSemi

imports DomSemi RanSemi ConvOrdSemi
begin

Add the theory to provide some properties of OSGC with Domain and Range Op-

crators. The properties in the theory are used to support the properties of restricted
residuals in RestrResOSGC theory.
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B.28.1 Definitions

locale RDConvOrdSemi = DomSemi RDCOS + RanSemi RDCOS + ConvOrdSemi

RDCOS

B.28.2 Theorems

conv(rang R) is subidentity.

lemma (in RDConvOrdSemi ) RDCOS-convRan-left:

assumes [intro]: R : a « b

assumes [intro]: f : b < ¢

shows (rang R)~ - fC f

proof —

have [intro]: f~ © rang R C f~ by auto

have (f~ @ rang R)~ C (f~)~ by auto

have (rang R)~ © (f~)~ C (f~)~ by (rule conv-cmp [THEN subst],auto)

hence L: (rang R)~ © [ C [ by (rule-tac conv-idem [THEN subst], best)
from L show ?thesis by aulo
qed

lemma (in RDConvOrdSemi ) RDCOS-convRan-right:
assumes [infro]: R : a — b
assumes [intro]: f: ¢ < b
shows f @ (rang R)~ C f
proof —
have [intro]: rang R » [~ C [~ by auto
have (rang R @ f~)~ C (f~)~ by auto
have (f~)~ ¢ (rang R)~ C (f~)~ by (rule conv-cmp [THEN subst|,auto)
hence L: f ¢ (rang R)~ C f by (rule-tac conv-idem [THEN subst], best)
from L show ?thesis by auto

qed

conv(rang R) : ISId b

lemma (in RDConvOrdSemi ) RDCOS-convRan-1:
assumes [intro]: R : a < b

shows (rang R)~ = (rang R)~ = (rang R)~
proof —

have i: (rang R @ rang R) = rang R

proof (rule isISId-2)

175



MSc Thesis — Jinrong Han

McMaster University — Computer Science

show rang R € b < b by auto
next

show isISId (rang R) by (rule ISId,auto)
qed

from i have ii: (rang R @ rang R)~ = (rang R)™

by (rule-tac conv-equality [THEN iffD2], auto)
from ii show %thesis by (rule-tac conv-cmp [THEN subst],auto)
qed

conv(dom R) is subidentity.

lemma (in RDConvOrdSemi ) RDCOS-convRan-isISId([simp, intro
assumes [intro]:R : a < b
shows (rang R)~: ISId b
proof (rule [SId-intro)

show (rang R)~ € b < b by auto

next

show isISId ((rang R)™)
proof (rule islSId-intro)

show (rang R)~ € b < b by auto
next

show isSId ((rang R)™)

proof (rule isSId-def [TITEEN iffD2])
havelintro]: (rang R)~ € b < b by auto
show Vc.(Vf. febe ¢ — (rang R)~ @ f C f)

A(Vg.gece—b— g = (rang R)~ C g)

proof(intro strip)

fix ¢

show (Vf. fe€be ¢ — (rang R)~ & fC f)

A(Vg.gece b— g© (rang R)~ C g)
proof (rule congl)

showVf. febe— ¢ — (rang R)~ & fC f
proof (intro strip)
fix f
assume [intro: f € b ¢
show (rang R)~ @ f C f by (rule RDCOS-convRan-left, auto)
qed
next
show Vg.gec—b— g (rangR)" C g

proof (iniro strip)
fix g
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assume [intro]: g € ¢ < b

show ¢ @ (rang R)~ C g by (rule RDCOS-convRan-right, auto)
qed
qed
qed
next
show (rang R)~ € b < b by aulo
qed
next

show (rang R)~ © (rang R)~ = (rang R)™

by (rule RDCOS-convRan-1, auto)
qed

qed

lemma (in RDConvOrdSemi ) RDCOS-convDom-left:
assumes [intro]: R : a b

assumes [intro]: f : a < ¢

shows (dom R)~ & fC f

proof

have [intro]: f~ @ dom R C f~ by auto
have (f~ © dom R)~ C (f~)~ by auto

have (dom R)~ @ (f~)~ C (f~)~ by (rule conv-cmp [THEN subst|.auto)
hence L: (dom R)~ = [ C [ by (rule-tac conv-idem [THEN subst], best)
from L show ?thesis by auto
qed

lemma (in RDConvOrdSemi ) RDCOS-convDom-right:
assumes [intro]: R:a — b

assumes [intro]: f: ¢ < a

shows f & (dom R)~ C f

proof —

have [intro]: dom R @ [~ C f~ by auto

have (dom R @ f~)~ C (f~)~ by auto

have (f~)~ : (dom R)~ C (f~)~ by (rule conv-cmp [THEN subst],auto)

hence L: f = (dom R)~ C f by (rule-tac conv-idem [THEN subst|, best)
from L show ?lhesis by auto
qed

conv(rang R) : ISId a

lemma (in RDConvOrdSemi )RDCOS-convDom-I:
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assumes [intro]: R :a < b

qed
shows (dom R)™ & (dom R)~ = (dom R)™ next
proof — show Vg. g€ c—a— g (domR)~“Cyg
have i: (dom R © dom R) = dom R proof (intro strip)
proof (rule isISId-2) fix g
show dom R € a < a by auto assume [inlro]: g € ¢ < a
next show ¢ & (dum R)~ C g by (iule RDCOS
show isISId (dom R) by (rule ISId,auto) qed
qed qed
from i have ii: (dom R ) dom R)~ = (dom R)~ qed
by (rule-tac conv-equality [THEN ifJD2], auto) next
from ii show fthesis by (rule-tac conv-cmp [THEN subst],auto) show (dom R)~ € a < a by auto
qed qed
next
show (dom R)~ ' (dom R)~ = (dom R)~
lemma (in RDConvOrdSemi ) RDCOS-convDom-isISId[simp, intro]: by (rule RDCOS-convDom-1, auto)
assumes [intro]:R : a < b qed
shows (dom R)—: ISId a gedlemma (in RDConvOrdSemi) RDCOS-incll:
proof (rule ISId-intro) assumes [introl:R : a < b
show (dom R)~ € a « a by auto shows (dom(R~))~ C rang R
next proof —
show isISId ((dom R)™) have R C R @ rang R by auto
proof (rule isISId-intro) have R~ C (R ©® rang R)™ by auto
show (dom R)~ € a < a by auto have d: R~ C (rang R)~ @ R~ by (rule-tac conv-cmp [THEN subst|, auto)
next from d have dom(R~) C dom((rang R)~ @ R~) by auto
show isSId ((dom R)™) moreover have ... C (rang R)~ by auto
proof (rule isSId-def [THEN iffD2]) ultimately have dom(R~) C (rang R)~ by (rule incl-trans, auto)
have[intro]: (dom R)~ € a < a by auto hence dd: (dom(R~))~ C ((rang R)~)~ by aulo
show Ve. (Vf. feae ¢ — (dom R)~ ® fC f) from dd show ?thesis by (rule-tac conv-idem [THEN subst], auto)
A(Vg.gecea— go(domR)~ Cg) qed
proof(intro strip)
fix ¢ lemma (in RDConvOrdSemi) ResOSGC-incl2:
show (Vf. f€a e ¢ — (dom R)~ & fC f) assumes [introl:R : a < b
A(Vg.g€Ece—a— g& (domR)~ C g) shows (rang(R~))~ C dom R
proof (rule conjI) proof —
showVf. fea— ¢ > (dom R~ - fCf have R C dom R - R by auto
proof (intro strip) have R~ C (dom R © R)~ by auto
fix f have d: R~ C R~ @ (dom R)~ by (rule-tac conv-cmp [THEN subst], auto)
assume [intro]: f € a < ¢ from d have rang(R~) C rang(R~ & (dom R)~) by auto
show (dom R)~ - [ C [ by (rule RDCOS-convDom-left, auto) moreover have ... C (dom R)™ by aulo
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ultimately have rang(R~) C (dom R)~ by (rule incl-trans, auto)
hence dd: (rang(R~))~ C ((dom R)~)~ by auto

from dd show ?thesis by (rule-tac conv-idem [THEN subst], auto)
qed

lemma (in RDConvOrdSemi) RDCOS-incl3:
assumes [intro]:R : a < b
shows rang R C (dom(R~))~
proof —
let YR'= R~
have (?R’)~ = R by auto
moreover have (rang((?R’) 7))~ C dom(?R’) by (rule ResOSGC-incl2, auto)
ultimately have r: (rang R)~ C dom(R™) by auto
from r have rr: ((rang R)~)~ C (dom(R™))~ by auto

from rr show ?thesis by (rule-tac conv-idem [THEN subst|, auto)
qed

lemma (in RDConvOrdSemi) RDCOS-incly:
assumes [intro|:R : a < b
shows dom R C (rang(R™))~
proof —
let ?R'= R~
have (?R’)~ = R by auto
moreover have (dom((?R’)~))~ C rang(?R’) by (rule RDCOS-incll, auto)
ultimately have r: (dom R)~ C rang(R~) by auto
from r have rr: ((dom R)~)~ C (rang(R™))~ by auto

from rr show ?thesis by (rule-tac conv-idem [THEN subst], auto)
qed

lemma (in RDConvOrdSemi) RDCOS-ran:

assumes [introl:R : a < b

shows rang R = (dom(R~))~

proof (rule indirect-equality [ TIIEN iffD2], best+)

showVC. C € b b — (CC rang R) = (C C (dom (R™))™)
proof (intro strip)

fix ¢

assume [intro]: C € b < b
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show (C C rang R) = (C C (dom (R™))™)

proof —

have C C rang R = C C (dom (R™))~

proof —
assume cr: C' C rang R

show C C (dom (R™))~
proof —

\MSc Thesis — Jinrong Han

have RR:rang R C (dom(R~))~ by (rule RDCOS-incl3, auto)

ged
qed

moreover have C' C (dom (R7))~ = C C rang R

proof —

assume cr: C C (dom (R™))~

show C C rang R
proof —

from cr RR show ?thesis by(rule incl-trans, auto)

have RR :(dom(R~))~ C rang R by (rule RDCOS-incll, auto)

ged
qed

ged

qed
qed

lemma (in RDConvOrdSemi) RDCOS-dom:

assumes [intro]:R : a — b

shows dom R =
proof —

(rang(R™))~

let ?R'= R~
have (?R’)~ = R by auto
moreover have rang R’ = (dom(?R'~))~ by (rule RDCOS-ran, auto)

ultimately have r1: rang(R~) = (dom R)~ by auto
from r1 have r2: (rang(R~))~ = ((dom R)~)~ by auto

from cr RR show ?thesis by(rule incl-trans, auto)

ultimately show fthesis by (rule iffI, best+)

from 72 have r8: (rang(R~))~ = dom R

from r3 show dom R =

qed

by (rule-tac conv-idem [THEN subst], auto)
(rang(R~))~ by (rule-tac sym, auto)

181



MSc Thesis — Jinrong Han McMaster University — Computer Science

The following two theorems are proved based on rang R = conv(dom(conv R));
dom R = conv(rang(conv R). They are used to support proving the property of
restricted residuals in RestrResOSGC theory.

lemma (in RDConvOrdSemi) RDCOS-domRanl:
assumes [intro): Q : a « b
acsnimes [mvm]- b e
assumes CQ: dom C C rang Q
shows rang (C~) C dom (Q™)
proof
from CQ have CQI:dom C C (dom(Q~))~
by (rule-tac RDCOS-ran [THEN subst], auto)
from CQI have CQ2:(rang(C~))"C (dom(Q~))~
by(rule-tac RDCOS-dom [THEN subst]. auto)
from CQ2 show rang(C~)C dom(Q™)
by (rule-tac conv-incl [THEN iffD1], auto )
ged

lemma (in RDConvOrdSemi) RDCOS-domRan2:
assumes [intro]: Q : a < b
assumes [intro]: C : b« ¢
assumes CQ: rang (C~) C dom (Q™)
shows dom C' C rang Q
proof —
let #Q'= Q~
have [intro]: (?Q")~ = Q by auto
from CQ have rang (C~) C dom (?Q") by auto
also have ... = (rang(?Q"))~ by(rule RDCOS-dom, auto)
ultimately have CQ1I: rang (C~) C (rang(?Q"~))~ by auto
moreover have ... = (rang Q)™ by (rule-tac subst, auto)
ultimately have CQ2: rang(C~) C (rang Q)™ by(rule-tac subst, auto)
have CQ3: (rang(C~))~ = dom C
by (rule-tac RDCOS-dom [THEN sym], auto )

from CQ3 have CQ4: ((rang(C~))~)~ = (dom C)~

by (rule-tac conv-equality [THEN i[fD2], auto )
from CQ4 have CQ5:rang(C~) = (dom C)~

by (rule-tac conv-idem [THEN subst], auto)
from CQ2 have CQG6: (dom C)~ C (rang Q)™

by (rule-tac CQ5 [THEN subst], auto)
from CQ6 show ?thesis by (rule-tac conv-incl [THEN iffD1], auto)
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qed

end

B.29 OSGC with Restricted Residuals

theory iestritesUSGC
imports RestrResSemi RDConvOrdSemi
begin

B.29.1 Definitions
locale RestrResOSGC = RestrResSemi RROSGC + RDConvOrdSemi RROSGC

B.29.2 Theorems

Residual property (Proposition 4.1) in Furusawa-I{ahl-1998 holds for restricted resid-
uals

lemma (in RestrResOSGC) restr-resOSGC-eq:
assumes [iniro]:Q : a < b
assumes [intro]:S : a < ¢
shows (S 4 Q) = (@~ + §7)~
proof (rule indirect-equality [THEN iffD2])
showVC.Cebe—c - (CESHQ)=(CC(Q™F 7))
proof (intro strip)
fix C
assume [intro]:C : b < ¢
show (CESH4Q)=(CE(Q™F&7)7)
proof —
have CCS-H Q= CLC(Q~F §)
proof —
assume ¢: CC 54 @Q
show CLC (Q~+S§)~
proof —
from ¢ have [intro]: (Q « C C S ) by (rule-tac restr-rres-incl2, auto)
from ¢ have [intro]: dom C C rang Qby (rule-tac restr-rres-incll, auto)
have (Q @ C)~ C S~ by (auto)
have (C~ © Q=) C S~ by (rule conv-cmp [THEN subst],auto)
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also have rang (C~) C dom (Q~) by (rule RDCOS-domRanl, auto)
ultimately have c2: C~ C (Q~ F S~) by (rule-tac restr-lresl, auto)
from ¢2 have ¢3:(C~)~ C (@~ F S7)~ by auto
from ¢3 show C C (Q~ + S7)~ by (rule-tac conv-idem [THEN subst],auto)
qed
qed
moreover have CC (Q~ FS7)" = CLC §S4Q
proof —
assume C: CC (Q- FS7)~
show CC §HQ
proof —
from C have CL (C-)~ C (Q~ F §-)~
by (rule-tac conv-idem [THEN subst], auto)
from C1 have C2: C~ C (Q~ F §7)
by (rule-tac conv-incl [TIEN iffD1), aulo)
from C2 have [intro]: (C~ ©® Q) C S~ by auto
from C2 have [intro]: rang(C~) C dom(Q~) by auto
have (Q =~ C)~ C §~
by (rule-tac conv-cmp [THEN sym, THEN subst],auto)
also have [intro]: (Q © C) C §
by (rule-tac conv-incl [THEN iffD1],auto)
moreover have dom C C rang Q by (rule RDCOS-domRan2, auto)
ultimately show C C S 4 Q by (rule-tac restr-rresl, auto)
qed
qed
ultimately show ?thesis by(rule iffI, best+)
qed
qed
next
show § 4 Q € b < ¢ by auto
next
show (Q~ + §7)~ € b « ¢ by aulo
qed

end
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