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Abstract 

The main purpose of this paper is to give a thorough account of planar quadri­

lateral and offset meshes. To this end, abstract meshes, the linear spaces 

C(M), P(M), and the distance functions d*(M1 , M2 ) are defined and applied 

to planar quadrilLteral meshes. We then study the discrete analogue of the 

Gauss map as well as the defining properties of circular and conical meshes. 

The proof of the angle condition for conical meshes is given and used as moti­

vation for the study of Lie sphere geometry. We apply the theory of Laguerre 

and Moebius tramformations to conical and circular meshes respectively. All 

of this theory is then applied to the creation of a planar quadrilateral mesh 

with the face offsEt property in the context of a study project. 
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Chapter 1 

Introduction 

It is fairly unusual for a problem in the construction industry to lead to the 

development of a rich mathematical theory, but in the case of architectural 

geometry, this is exactly what happened. Originally, the problem concerned 

the design and panelization of freeform glass surfaces. Architects, structural 

engineers, and mathematicians alike sought answers to questions such as: Is it 

possible to panel 2n arbitrary shape with planar quadrilateral panels? Why, 

when the surface i3 designed as a two dimensional object, do so many errors 

occur when structmal elements are implemented? Since many innovative and 

abstract shapes hhve been designed and succesfully realized as buildings, it 

is clear that these questions are not insurmountable on an individual basis. 

However, as projects became increasingly complex, a need arose to deal with 

these design problems in a more efficient and systematic way. It turned out 

that the key to solv-ing these problems lay in combining the fields of architec­

ture, discrete differential geometry, and optimization. Although mathematics 

has always been an integral part of the design and construction process, it 
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was not until the study of panelization began that architectural geometry be­

came known as a new and emerging field. Since 2005, there have been major 

breakthroughs concerning panelization of freeform surfaces, the latest of which 

was published by Pottman et al; [7], [8], [6]. These papers are primarily sum­

maries of main results. It is my belief that in order to make the next step in 

architectural geometry, the theory and methods behind these results should 

be more transparent. In this thesis, I will attempt to give a thorough account 

of the theory behind the panelization problem, concrete methods for its im­

plementation, and demonstrate how these methods can be applied to a study 

project. 

In general, discrete differential geometry deals with multidimensional dis­

crete nets, called meshes, that display certain geometric properties. From 

this point of view, discrete surfaces are simply two dimensional layers of mul­

tidimensional nets, and the classical transformations, such as the Backlund, 

Darboux, and Bianchi transformations, can then be viewed as shifts in the 

transverse net directions. This realization led to a more fundamental under­

standing of some important geometrical constructions. Moreover, the con­

tinuous theory can be recovered by refining the mesh in two directions to 

obtain the continuous surfaces and leaving the transverse directions discrete, 

as shown in Figure 1.1 [3]. Since the heart of the panelization problem lies in 

understanding how to attach layers to a freeform surface that perserve certain 

properties, Figure 1.1 also suggests that discrete differential geometry will 

play an important part in this understanding. 

In the world of architecture and building science, the panelization problem 

2 
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------------------------------------------------

Figure 1.1: Discrete And Continuous Theories 

manifests itself in a very clear way: since glass does not bend , at least not 

economically, is it possible to panel a freeform surface so that the design in­

tent is preserved and waste is minimized? The standard technique has been to 

triangulate the surface, and since three points define a plane, such triangula­

tions are well suited for glass panels. The advantages of this method are that 

the meshing lines can be chosen to suit the taste of the designer while still 

approximating key geometrical features. However the disadvantages are fairly 

severe. Most of thE problems associated with triangular meshes stem from the 

fact that they typically have six edges intersecting at a vertex, which means 

that when structural support is added, there are six beams at every vertex. 

This will lead to visibility issues and also structural issues , since the more 

beams t hat meet a·~ a node, the harder it is to fabricate the structural element 

for each node. Secondly, t he industry standard for cutting glass panels is such 

3 
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that exactly one panel can be cut out of a given rectangular sheet of glass, 

suggesting that finding a panel that better fits the rectangular sheet will help 

minimize waste. 

It is then natural then to turn our attention to planar quadrilateral meshes 

(PQ meshes). Such a mesh, if it exists for an arbitrary surface, would have 

only four beams meeting at a typical node, thus facilitating construction and 

increasing transparency. We say "typical" node, since many surfaces will force 

the panelization scheme to have nodes with an exceptional number of edges. 

These nodes exist due to topological considerations and are dealt with in­

dividually. Nonetheless, quadrilaterals, even irregular ones, fit a bounding 

rectangle much more efficiently than triangles. Moreover, PQ meshes offer the 

additional advantage of sometimes having what are called exact offset meshes 

of the original surface. These offset meshes incorporate the geometry of the 

support structure in the mathematical description of the mesh, meaning the 

surface becomes a three dimensional structure, which more closely resembles 

the actual architectural situation. Unfortunately, panelling a freeform surface 

with a PQ mesh is a significantly more difficult problem for the simple reason 

that if four points are chosen at random in space, they will almost certainly 

not lie in a plane. We will see that if a planar quadrilateral mesh is given, then, 

in certain cases, an application of projective geometry will produce associated 

offset meshes, solving the second part of the panelization problem. However, 

in order to produce a planar quadrilateral mesh in the first place, we need to 

use optimization techniques, a key idea that is credited to H.Pottman et al [7]. 

4 
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This thesis is divided into three parts. The first part deals with the ba­

sic definitions and concepts of mesh theory, starting with the definition of a 

mesh as both a combinatorial and concrete object, and then moving on to a 

discussion of mesh parallelism and the definition of the discrete Gauss map. 

The second part briefly summarizes the main concepts of Lie sphere geometry, 

with the goal of UYLderstanding the theoretical basis for the offset construction 

and mesh manipulation. In the third section, step by step instructions of how 

to construct and manipulate meshes are given and some of the main results of 

mesh theory are applied to a study project. 

5 



Part I 

Preliminaries And Basic 
Theorems 
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Chapter 2 

What Is A Mesh? 

Intuitively, a mesh is simply the discrete analogue of a surface. While this in­

tuitive picture is hdpful, it misses some of the fundamental differences between 

surfaces and meshes. For example, meshes depend not only on the position 

of their vertices, but also on the relationships between the vertices. Preserv­

ing these relations 1ips while moving the vertices around can create families of 

meshes that are visually very different although the underlying structure re­

mains unchanged. On the other hand, it is also possible to represent the same 

surface by a numb 2r of meshes that have very different underlying structures. 

Indeed, a given surface can usually be meshed using triangular, quadrilateral, 

or even hexagonal panels. In this thesis, we are motivated by architectural ap­

plications, and so the focus will be on quadrilateral meshes. This, in part, is 

due to the fact that strips of quadrilaterals, obtained by connecting quadrilat­

erals along opposite edges, can be viewed as coordinate lines on the quadrilat­

eral surface [3], a property that helps the transition from continuous geometry 

to discrete geomet;-y. 

9 
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2.1 Abstract And Quadrilateral Meshes 

Consider the following definition, 

Definition 2.1.1. An abstract mesh M is a triple M = (V, E, F), with, 

1. V = { v1 , v2 , ... , vn}, a finite set of points, referred to as vertices. 

2. E = { e1 , e2 , ... , em}, a set of two element subsets of V, referred to as 
edges. 

3. F = {JI, fz, ... , fz}, a set of cyclically ordered four element subsets of 
V, referred to as faces. Moreover, F has the property that for any 

f =(vi, Vj, vk, Vt) E F, only (vi, vj), (vJ, vk), (vk, Vt), (vt, vi) are contained 
in E, and any edge is contained in at most two faces. 

This somewhat technical definition serves to keep track of what is called 

the combinatorics of a mesh, which is no more than the information of which 

vertex is beside which and which vertices define the corner points of a face. 

Definition 2.1.2. A mesh M = (M, X, :F) is a triple consisting of, 

1. An abstract mesh M = (V, E, F) 

2. A vector space X 

3. A map :F that assigns a point in X to each point in V, i.e. a function 
:F:V--+X 

It is also important to note that two meshes that look vastly different might 

have the same underlying abstract mesh. For instance, it is possible that the 

map :F will be such that the resulting mesh will have self intersections, or 

edges that cross and perhaps degenerate. These meshes, although they satisfy 

the definitions, are not the focus of this thesis and so we will restrict our 

attention to "nice" meshes. In what follows, we use X = IR3 as the basic 

vector space. Also, if the function :F is clear from the context, we will usually 

write M = (V, E, F) where the elements in V are given points in JR3
. 

10 
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h 

Figure 2.1: The Volume Of A Tetrahedron 

Definition 2.1.3 . Two meshes M 1 and M 2 are combinatorially equivalent 
if and only if the abstract meshes M 1 , M 2 corresponding to M 1 , M2 are 
isomorphic. 

The true power of quad meshes becomes apparent by restricting our at-

tention to the dist inguished subset of quad meshes whose faces are all planar. 

More formally, 

Definition 2.1.4. A planar quadrilateral mesh (PQ mesh) is a mesh M where 
the volume of the tetrahedron formed by the four vertices of each face is zero. 

PQ meshes were first suggested by Sauer [9] as discrete analogs of surfaces 

parametrized by conjugate curves. To see the connection between smooth 

surfaces and PQ meshes , we need some definitions from classical differential 

geometry. 

Definition 2.1.5. [4] A developable surface is a surface with zero Gaussian 
curvature. 

11 
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Developable surfaces have already been the subject of intertest in the con-

struction industry, as such surfaces are well suited for constructions using sheet 

metal. 

D efinition 2 .1.6. [4] A ruled surface Sis a surface such that at every point 
on S, there exists a straight line that lies entirely on S. 

In IR3 , all developable surfaces are ruled surfaces. 

D efinition 2.1.7. [6 , p.3] A conjugate curve network consists of two families 
of curves A, and B , such that the envelope of tangent planes along a curve in 
A is a developable surface whose rulings are tangent to curves in the family 
B. 

Definition 2.1.7, while required for a complete understanding of the dis-

cretization process, is not the most useful for our purpose. For further in-

formation concerning the concepts used in the above definition, we refer the 

reader to [4]. Instead, it is more convenient to work with the following , 

Figure 2.2: A Conjugate Curve Network 

D efinition 2 .1.8. [3] A surface X(u ,v) is said to be parametrized by conju­
gate curves if, 

12 
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where Xu , X v are the first partial derivatives and Xuv is the mixed second 
partial derivative. 

The condition ;n the above definition can be regard as an "infinitesimally 

planarity"' condition. In most cases , the principal curvature lines of a surface, 

which are a conjugate curve network, will be used to create the associated PQ 

mesh, but it is als possible to model with different families of conjugate curve 

networks. One technique for doing this is discussed in Appendix A. To see 

that the limit surface of an arbitrary PQ mesh is a conjugate curve network 

note t hat the row <.nd column polylines of a PQ mesh display a discrete analog 

of the infinitesimally planar condition: each row of faces f i is a PQ strip which 

represents a discre te developable surface tangent to the mesh [6 , p.3]. 

Fig·1re 2.3: PQ Strip With Developable Surface 

The row of vert ices vo ,k , ... , Vn ,k can be seen as the polyline of tangency be-

tween t he mesh an:l the developable surface represented by the fi's. Moreover, 

the rulings of the developable surface are spanned by the edges vi ,k , vi,k+ l for 

i = 1, ... , n. The same lines are also the tangent lines of the column polylines 

13 
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vi ,o, ... , vi,m· It then follows that the system of row and column polylines are a 

discrete conjugate network of polylines. Indeed, a discrete developable surface 

tangent to a PQ mesh along a. polyline is given by a. row (or a column) of quad 

faces. We then get the following theorem: 

Proposition 2.1.1. [6, p.3} If a subdivision process preserves the PQ property, 
refines a PQ mesh, and produces a curve network in the limit, then the limit 
is a conjugate curve network on a surface. 

Figure 2.4: A Subdivision Process 

The following definitions deal with incorporating a. support structure into 

the mesh. 

D efinit ion 2 .1.9 . A system of lines passing through the vertices V of a. mesh 
M = (V, E , F) are node axes if and only if neighbouring lines are coplanar. 

The existence of node axes is particularly important when applying the 

theory of meshes to architecture. This is because the existence of node axes 

implies a. node that has support beams aligned with the neighbouring node 

axes would be torsion free [7, p.3]. 

D efinition 2.1.10. [7, p.3] A geometric support structure for a. mesh M is a 
collection of planar quadrilaterals, defined by the node axes , which are trans­
verse to M and share a. common edge on the node axis . 

14 
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2.2 The Linear Spaces C(M) and P (M) 

Definition 2.2.1. [7, p.4] Two meshes M 1 and M 2 are parallel if and only if 
they are combinatorially equivalent and corresponding edges, viewed as vec­
tors, are parallel. 

Figure 2.5: Two parallel meshes 

Identifying M \\ ith a list of its vertex vectors v1 , v2 , .. . , Vn while remembering 

the mesh combinatorics allows us to represent M as a vector in ~3n . We can 

then define the following: 

Definition 2.2.2 . [7, p.4] C(M) denotes the set ~3n and can be seen as 
consisting of all co::nbinatorially equivalent meshes to a given mesh M. P (M) 
is the subset of C( M) consisting of all meshes parallel to a given mesh M. 

Since ~3n is a vector space, C(M) is also a vector space. Moreover , we find 

that 

Proposition 2.2. 1. (7, p.4} P(M) is a linear subspace of C(M). 

Proof: Consid er two meshes M1 , M2 in P(M). Then, the vectors v~ - vj 

corresponding to the edges v~vj of M 2 must be multiples of the corresponding 

15 
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edges of M 1, namely, 

Therefore, the edges in the mesh defined by d1M1 +d2 M2 must also be multiples 

of edges in M1 . So P(M) is a linear subspace of C(M). D 

In addition, we get that P(M) is the solution space of the system of equa-

tions: 

Given any two combinatorially equivalent meshes, that is, meshes that have 

the same abstract mesh, it is reasonable to wonder what the distance between 

them is. There are in fact three different ways to measure distance: 

Definition 2.3.1. [7, p.5] Let M 1 , M 2 , be two parallel PQ meshes. Then the 
distance functions, d*(M1 , M2 ), where*= v, e, f which stand for vertex, edge, 
and face respectively, are defined by: 

1. dv(M1 , M2) =distance between corresponding vertices, i.e. llvi- v~ll 

2. de(M1 , M2 ) = distance between corresponding edges, i.e. IIPill, where 
II Pi II is the length of a line perpendicular to both edges. 

3. dt(M1 , M2) = distance between corresponding faces, 1.e. llnill, where 
llni II is the length of a line normal to both planes. 

It is important to note that the distance functions defined above depend on 

the particular vertex, edge, or face at which it is being evaluated, that is, it is 

a local measure of distance. Indeed, the issue at the heart of the panelization 

problem is understanding for what kinds of meshes is this distance function a 

constant function. 

16 
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Definition 2.3.2. [7, p.5] Two meshes M 1 , M 2 , are said to be offsets of each 
other if and only if they are parallel and d* ( M 1 , 1M2 ) = d, where dis a constant. 
Note that d* ( M1 , ).12 ) = d means that the distance function is measured in 
one of the three admissible ways. Moreover, we call O*(M) the set of all offset 
meshes to given m3sh. 

From here on, the focus will be on understanding offset meshes. 

17 



Chapter 3 

Mesh Properties 

3.1 The l)iscrete Gauss Map 

In classical differential geometry, the Gauss map assigns a point on the unit 

sphere to each poirt on a two dimensional surface by placing the unit normal at 

the point on the surface at the origin. By looking at the resulting points on the 

sphere, it is possib !e to gain some understanding of the original surface. In the 

discrete theory, th1~re is no way to uniquely define a normal vector at a vertex, 

and so an exact analogue of the Gauss map is not possible. However, in the 

case that a mesh 1111 has an offset mesh M2 , the line connecting corresponding 

vertices will be a rode axis, and can be used as a normal vector. We can now 

define the discrete Gauss map. 

Definition 3.1.1. [7, p.5] Let M1 be a mesh such that there exits a mesh M2 

where d*(M1 , M2 ) =d. Then the discrete Gauss map is a mapping: 

This means that if we are given a mesh M1 = (V, E, F), we can construct 

the discrete GausE map of M1 by considering another mesh M2 = (V', E, F) 

such that d* ( M1 , Af2 ) = d and constructing the mesh S, whose vertices are 

19 
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given by the linear combination of vectors, 

It is clear that 5 is a mesh parallel to M. In the case that dv(M1 , M 2 ) = d, 

the discrete Gauss map sends the vertices of M 1 to points on the unit sphere, 

but this is not true in the other two cases. The following theorem is therefore 

somewhat surprising: 

Theorem 3.1.1. [7, p.5} The following holds true for a PQ mesh M 1 and the 
unit sphere in JR3

: 

1. A mesh M1 has a vertex offset M2 at distance d ~ vertices vi of 5 
lie on 5 2

. 

2. A mesh M1 has a edge offset M2 at distance d ~ edges ei of 5 are 
tangent to 5 2

. 

3. A mesh M 1 has a face offset M 2 at distance d ~ faces fi of 5 are 

tangent to 5 2
. 

Proof: 

(1) (=?)Assume M1 has a vertex offset M2. Since dv(Ml,M2) = d, 

and therefore lie on 5 2
. 

(-¢:::) Assume that 5 has vertices the lie on 5 2 and that 5 E P( M). Clearly, 

vz = dvf + vJ 

defines the vertices of a mesh M 2 such that dv(M1 , M 2 ) = d (Figure 3.1). 

(2) ( =?) Assume M 1 has an edge offset Jlv12 . Construct a line segment 

through vz and perpendicular to ei and denote the intersection point of that 

20 
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line with e}, A. Since de(M1 , M2 ) = d, l(v?- A) I = d. Now, construct the 

discrete Gauss map S. Then, the line passing through the origin and perpen-

dicular to ef will be parallel to the vector ( v? - A), and therefore, 

(~)Assume that S has edges tangent to 5 2 and that S E P(M). Construct 

a line segment between the point of tangency A' between ef and 5 2 and the 

origin. As before, construct the mesh M 2 with vertices v? = dvf + vl. Then, 

the line perpendicular to ei and passing through v? will be parallel to n, and 

therefore, 

IA'I = 1 

Refer to FigurE 3.2. 

(3) The face of'set case is similar to the edge offset case (Figure 3.3). D 

3.2 Circular And Conical Meshes 

Having defined the Gauss map for PQ meshes, we can now focus on two 

important classes <)f offset meshes, namely circular and conical meshes. It is 

desirable to know, for instance, what conditions an arbitrary mesh M 1 must 

satisfy in order fo:~ it to admit one of the three offset constructions. These 

results will follow from Theorem 3.1.1. Consider the following definitions, 

Definition 3.2.1. [3]A circular mesh is a PQ mesh such that for all fi 

{ vi1 , vi2 , vi3 , vi4 } E F, the vi/s lie on the circumference of a circle. 

Definition 3.2.2. [6, p.5] A conical mesh is PQ mesh such that for every 
vertex vi E V the four faces fi that contain vi are tangent to a cone whose 
axis passes through vi. 

21 
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Figure 3.1: The Gauss Map Of A Vertex Offset Mesh 

Figure 3.2: The Gauss Map Of A Edge Offset Mesh 

22 
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Figure 3.3: The Gauss Map Of A Face Offset Mesh 

It is a well known fact that a planar quadrilateral is inscribed in a circle if 

and only if the angles at the vertices of t he quadrilateral satisfy a + 1 = (3 + 8. 

It is shown in [7] that circular meshes have a discrete Gauss map with 

vertices that lie on the unit sphere. So, by Theorem 2.15 , all circular meshes 

admit the vertex ffset construction. Thus, in order to decide if a given mesh 

admits a vertex ofl"set, it suffices to check whether or not the above angle bal-

ance is satisfied at every vertex. Moreover , a given mesh can be transformed 

into a circular me.3h by perturbing the vert ices so that the angle balance is 

achieved. This last st atement is actually a statement about minimizing a 

non-convex penalt; function , so there are some init ialization condit ions on the 

init ial mesh that r1eed to be satisfied in order for the optimization algorithm 

23 
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Figure 3.4: An inscribed quadrilateral 

to be successful. It turns out that conical meshes also satisfy an angle bal­

ance,namely, a + 1 = (3 + 6 where these angles are measured at a vertex. The 

proof of this is due to [10] and an outline of it will be given in the next section. 

24 
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---------------------------------------------

Figure 3.5: A Circular Mesh 

I 

'v 

Figure 3.6: A Conical Mesh 
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Chapter 4 

The Angle Criteria For Conical 
Meshes 

4.1 Proof Of Geometry Fact 1 

Theorem 4.1.1. j 10, p. 2} A vertex v of a planar, quadrilateral, mesh is conical 
if and only if the sums of the opposite angles are equal, that is, if a+ 1 = ;3 + 5. 

Proof: [10, p.~] We will only consider a special case of the proof, and for 

further details refer the reader to [10]. We first need a lemma: 

Lemma 4.1.2. {1 0, p.2} Suppose a spherical convex quadrilateral with consec­
utive sides e1 , ... , e,l has an inscribed circle, referred to as an "incircle" '. Let 
ai be the length of the side ei. Then a 1 + a 3 = a 2 + a4. Conversely, a convex 
spherical quadrilat.;ral with the property a 1 + a3 = a2 + 0:4 has an incircle. 

It is interesting to note that the above lemma does not use any properties 

particular to spherical geometry, and so we can use the same argument that 

is used to prove th3 well known Euclidean version of this statement. 

Proof: [10, p.3] Assume that a convex quad has an incircle. Suppose also 

that the incircle touches the four sides ei at the points Pi E ei as shown in 

Figure 4.1. Let ui denote the vertex which is at the intersection point of the 

29 
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Figure 4.1: A quad with incircle 
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sides ei and ei+l· Also, let d(a, b) denote the distance between the points a 

and b, and is defined to be the angle of the smallest arc of a great circle on S2 

connecting a and o. From the fact that the two sides incident with a vertex 

are tangents of thE same incircle, we get that, 

It then follows that, 

d( u2, P2) = d( u2, P3) 

d(u3,p3) = d(u3,p4) 

d(u4,p4) = d(u4,p1) 

To show the other direction, assume that. 

(1) 

Also, suppose tha; the quad Q = u1 u2u3u4 does not have an incircle. To 

derive the contradiction, consider the family of circles that are contained in 

the convex quad Q and tangent to e2 and e3 . This family either contains a 

circle, which we will call C, which is tangent to e1 but not to e4 , or a circle 

which is tangent to e4 but not to e1 . Without loss of generality, suppose that 

the first case is true. Now, let u~ be the unique point on e1 that lies between 

p1 and u4, such th<:Lt the side e~ = u3u~ is tangent to the circle C at p4. Then, 
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by the same reasoning as above, the convex quad Q' = u1 u2u3u~ satisfies the 

angle criterion, 

(2) 

where a~= d(u1 ,u~) and a~= d(u3 ,u~). Subtracting (1) from (2) gives, 

It then follows that a4 = a~ + a 1 - a~ 

triangle inequality gives that, 

a4 + d(u4, u~). In addition, the 

which is a contradiction. Therefore, Q has an incircle. D 

Although Theorem 4.1.1 will prove to be essential for creating conical 

meshes by optimization, it will also be necessary to know how to construct 

the tangent cone of a vertex vi, knowing only that the faces meeting at that 

vertex are planar and that the angle criterion is satisfied. To do this, construct 

a unit sphere centered at the vertex vi, and intersect it with the planes meet-

ing at that vertex to produce a spherical quadrilateral, as above. We know 

now that this spherical quadrilateral must have an inscribed circle, which is 

constructed in exactly the same way as in Euclidean geometry: one simply 

bisects the vertex angles. In this case, will do this with planes. The resulting 

inscribed circle then serves as the base of the vertex cone. Figure 4.2 depicts 

these steps. 
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E'igure 4.2: Constructing A Vertex Cone 

33 



McMaster - Dept. Mathematics M.Sc Thesis- D. Hambleton 

4.2 Edge Offset Meshes 

Edge offset meshes are theoretically the most difficult type offset mesh to deal 

with in the sense that so far, it is not completely understood what kind of 

shapes admit an edge offset mesh. What is known, though, is that if a mesh 

M has an edge offset mesh M', then the discrete Gauss map of M will create 

what is known as a Koebe polyhedron [8]. Moreover, A. Bobenko has shown 

in [3] that it is possible to create Koebe polyhedra by minimizing a nonlinear 

functional. So, at the moment, it is possible to create any number of edge 

offset meshes, but constructing one that closely approximates a given surface 

is still an open problem. 
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Chapter 5 

Lie Sphere Geometry 

5.1 The Lie Quadric 

The theory of Lie sphere geometry was originally introduced by Sophus Lie 

in [5] and has recently been revived in the context of circular and conical 

meshes by H. Pot1man ([7], [8]), and by A. Bobenko ([3]). The basis of the 

Lie sphere geometry is the bijective correspondence between the set of all Lie 

spheres, that is ori·~nted hyperspheres, oriented hyperplanes viewed as spheres 

with infinite radii, and point spheres viewed as spheres with zero radii, and 

the set of all point3 on the quadric hypersurface Qn+l in real projective space 

pn+2 as described by the equation (x, x) = 0, where (·, ·) is an indefinite scalar 

product with signature (n+ 1, 2) on JRn+3 . The hypersurface Qn+l is called the 

Lie quadric and contains projective lines but no higher dimensional subspaces 

[2]. 

Having constructed the space of Lie spheres, it is natural to ask about the 

kind of transformations that the space admits. Indeed, a Lie sphere trans­

formation is a pro.iective transformation of pn+2 which maps the Lie quadric 

Qn+l to itself. Thi3 amounts to sending Lie spheres to Lie spheres. Lie proved 
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the "fundamental theorem of Lie sphere geometry" for the case n = 3 which 

U. Pinkall then generalized to higher dimensions. The theorem states that a 

diffeomorphism of the Lie quadric Qn+l that preserves lines is the restriction 

to Qn+1 of a projective transformation of ]pm+2. More succinctly, an oriented 

contact preserving transformation of the space of Lie spheres is a Lie sphere 

transformation [2]. 

In this context, we will be using Lie sphere geometry to manipulate meshes 

with the offset property. This is natural, since the conditions for having an 

offset of one of the three admissible kinds can be reformulated in the language 

of spherical geometry, via the discrete Gauss map. First, however, we must 

construct the framework in which Lie sphere geometry takes place. 

Our notation will be that JR~+2 stands for the n + 2-dimensional Euclidean 

space equipped with a scalar inner product of the form, 

If there is only one minus sign, that is, if we are working in JR~+2 , we get the 

following definitions. 

Definition 5.1.1. [2, p.lO] The set of vectors, called lightlike vectors, given 
by, 

2 2 2 
xl = x2 + ... + xn+2 

is called a light cone. Those vectors that satisfy (v, v) < 0 are inside the cone 
and are called timelike vector, and those that satisfy (v, v) > 0 are outside the 
cone and are called spacelike vectors. 

We can then let wn+l be the set of vectors in JR~+2 that satisfy ((, () = 1. 

Geometrically, these are the position vectors of points lying on a hyperboloid of 

revolution of one sheet in JR~+2 . If a is a spacelike point in ]pm+l, or equivalently 
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a line in JR~+2 wit h a spacelike direction vector , then there are exactly two 

vectors, ± ( E w n+l such that a = [(]. Later on , these two vectors will be 

t aken to correspo d to t he orientations of the oriented sphere or hyperplane 

represented by a. [n order to establish t he correspondence between a and t he 

two oriented spheres , we first embed JR~+2 into ]pm+2 by sending z --+ [(z, 1)]. 

Notice that if ( E w n+ 1 , then 

This means that the point [((, 1)] E pn+2 must lie on the quadric Q n+l E pn+2 

given, in homogeneous coordinates, by the equation, 

1 ) 2 2 2 2 Q ,x , X = - X l + X2 + .. . + Xn+2 - Xn+3 = 

The quadric Q n+ l is called the Lie quadric equipped with the Lie metric defined 

above [2 , p.15]. Now, suppose that x E Q n+l with homogeneous coordinate 

Xn+3 not equal to zero. It is then possible to represent x by a vector of t he 

form ((, 1), wit h Lorentz scalar product ((, () = 1. Moreover, suppose t hat 

t he first two coordinates of ( satisfy ( 1 + (2 not equal to zero, then [(] can be 

represented by a v ctor of the form , 

X 
= ( 1 + p · p - r

2 
1 - p · p + r 2 

) 
2 2 ,p 

where p E lRn and r E lR [2 , p. 12]. This part icular way of writing ( comes 

from the formulae for stereographic projection. In addition , 

which implies that ( must be one of ±x/r. So, in pn+2
, we get that , 

[((, 1)] = [(x/r, 1)] = [(x, r)] 
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At this point we establish the convention that a positive signed radius means 

an inward pointing field of unit normals on the sphere, whereas a negatively 

signed radius signals an outward pointing field of unit normals. Thus, given 

a sphere in Rn with center p and unsigned radius r > 0, we can represent the 

two orientations of the sphere by the two projective points [2, p.15], 

Moreover, x is the pole of the hyperplane that cuts out the original sphere in 

5.2 Lie Sphere Transformations 

Having constructed the Lie quadric Qn+l, we want to study those transforma-

tions that preserve Qn+l. Indeed, we get the following definition: 

Definition 5.2.1. [2, p.25] A Lie sphere transformation is a projective trans­
formation that sends Qn to itself. 

A linear transformation A induces a projective transformation by acting 

on a representative of the equivalence class denoted by homogeneous coordi-

nates. That is, if A is a linear transformation, then we can define the in-

duced projective transformation by letting P(A)[x] = [Ax]. The map P sends 

GL(n + 1) --+ PGL(n), and it's kernel consists of all non-zero scalar multiples 

In order to determine the group of Lie Sphere transformations, we need 

the following theorem: 

Theorem 5.2.1. [2, p.26} Let A be an non-singular, linear transformation 

on the indefinite scalar product space Rk, 1 ::; k ::; n - 1, such that A takes 

lightlike vectors to lightlike vectors. 
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1. Then there i:; a nonzero constant A such that (Av, Aw) = A(v, w) for all 
v, w in ffi.k. Here, (, ) denotes the scalar product on ffi.k. 

2. Furthermore if k =!= n- k, then A> 0. 

Proof: [2, p.26] (1) The inequality 1 :::;: k:::;: n- 1 implies that there exist 

both timelike and spacelike vectors in ffi.k. Supposing that v is a unit timelike 

vector and w is a unit spacelike vector such that (v, w) = 0, we get that 

(v + w, v + w) = (v, v) + 2(v, w) + (w, w) = 0 

(v- w, v- w) = (v, v) - 2(v, w) + (w, w) = 0 

So, both v + w and v- w are lightlike. However, the theorem states that 

A(v + w) and A(v- w) are both lightlike. So, 

(A(v + w), A(v + w)) = (Av, Av) + 2(Av, Aw) + (Aw, Aw) 

(A(v- w),A(v- w)) = (Av,Av)- 2(Av,Aw) + (Aw,Aw) 

Subtracting th(~ second from the first equation, we get (Av, Aw) = 0, and 

substituting this into either equation gives, 

--(Av, Av) = (Aw, Aw) =A (1) 

for some A E R Now, it is a basic property of the scalar product space ffi.k 

that we can construct an orthonormal basis v1 , ... ,vk,w1 , ... ,wn-k, where the 

v's are timelike and thew's are spacelike. From the reasoning above, we know 

that (A vi, Awi) = 1) for all i and j. In addition, if we hold v constant and vary 

w and vice versa, we get that -(Avi, Avi)) = (Awj, Awi) for all i and j. To 

show that (Avi, A1'i) = 0 and (Awi, Awi) = 0 fori =!= j, consider the vector 
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w = (wi~wj). Clearly, w is a unit spacelike vector orthogonal to v1 and so we 

can apply (1) implying, (Aw, Aw) =A. We can rewrite this as, 

Substituting vi for wj in the above reasoning, we get that (Avi, Avj) = 0 for 

i =1- j. Since the relation holds on all orthonormal basis vectors, 

(Ax, Ay) = A(x, y) 

holds for all vectors x, y E ~k. 

(2) Note that on~}.:, (,)has signature (k, n- k). So k =1- n- k must mean 

that Avi is timelike and so Awi must be spacelike. This implies A > 0 [2]. D 

It is now clear which what the group of Lie sphere transformations actually 

is, [2, p. 28]: 

Corollary 5.2.2. {2, p.27} following are true, 

1. The group G of Lie sphere transformations zs isomorphic to 0( n + 
1, 2)/±I 

2. The group H of Moebius transformations is isomorphic to O(n+1, 1)/±I 

Proof: [2, p.27] (1) Let P(A) be a Lie sphere transformation. Theorem 

2 states that (Av, Aw) = A(v, w) for all v, w in ~}.:, with A > 0. Define a 

new transformation B = A/ v,\. We then get that B E O(n + 1, 2) and 

P(A) = P(B), meaning that every Lie sphere transformation can be written 

as an element in O(n+ 1, 2). Conversely, for any BE O(n+ 1, 2), P(B) is a Lie 

sphere transformation. It remains to show that the map¢: O(n + 1, 2) ---+ G, 
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which is the restric·;ion of the homomorphism P: GL(n+1) ~ G to O(n+1, 2), 

is surjective. To do this, simply note that the kernel of ¢ is equal to the 

intersection of Ker(P) with O(n + 1, 2), that is, Ker(¢) = ±I. Thus, ¢is 

surjective. 

(2) The second statement of the corollary follows in exactly the same way 

except that instead of using the Lie metric, we use the Lorentz metric. 

5.3 Laguerre Transformations 

We now shift our ai tention to a specific subgroup of Lie sphere transformations, 

namely the Laguerre transformations. After establishing the construction of 

the group of Laguerre transformations, we will use them to manipulate conical 

meshes. 

Using the corre:;pondence between spheres in JRn and points in Qn+l, planes 

in JRn are mapped to points in the Lie quadric Qn+l that satisfy x 1 + x2 = 0. 

Geometrically this can be seen as the intersection of the plane x 1 + x2 = 0 

with the Lie quadric. The remaining points satisfy the condition x 1 + x2 =/= 0 

and correspond to spheres in JRn with radius r ~ 0 [2, p.37]. 

Lemma 5.3.1. [f:., p.38} A Lie sphere transformation is determined by its 
restriction to the set of points [x] E Qn+l with x1 + x2 =/= 0. 

Proof: [2, p.3~;] All that is needed to prove this lemma is to construct a 

basis for JR~+3 com:isting of lightlike vectors that satisfy x1 + x2 =/= 0. Indeed, 
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is such a basis. D 

Moreover, if we multiply by the appropriate scalar multiple, we can assume 

that the homogeneous coordinates of [x] satisfy x1 + x2 = 1. Denote, 

and let 

be the restriction of the scalar product (,) to JR~+ 1 . The condition x 1 + x2 = 1 

implies, 

0 = (x,x) =-xi+ x~ +(X, X)= -x1 + x2 +(X, X) 

Thus, x1 - x2 = (X, X), and so, 

1 +(X, X) 
2 

1-(X,X) 
X2 = -----'--

2
------'--

We now have a diffeomorphism [x] --+ X that maps the open set U of points 

in Qn+1 such that x1 + x2 -1- 0 to points X E JR~+l [2, p.38]. 

A fundamental concept of Laguerre geometry is the tangential distance 

between two spheres in lRn. Indeed, Laguerre transformations preserve the 

tangential distance between two spheres. However, some spheres, such as 

concentric spheres, don't admit a tangent plane, and so the tangential distance 

is undefined on these pairs. The following lemma characterizes those pairs of 

spheres for which the measure of tangential distance is applicable. 

Lemma 5.3.2. [2, p.40} The oriented sphere in lRn corresponding to the points 
X andY in JR~+l have a common tangent plane if and only if X- Y is lightlike 
or spacelike. 
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By definition a Laguerre transformations maps the improper point to itself. 

However, Laguerre transformations also preserve oriented contact, since ori-

ented contact occurs when the tangential distance is zero. This is implies that 

Laguerre transforrr ations also send planes to planes. This last statement com­

bined with the rea~;oning above shows that Laguerre transformations map the 

open set U consisting of points that satisfy x1 + x2 =J 0 to itself. Moreover, the 

diffeomorphism between U and JR~+l implies that Laguerre transformations 

induce a transformation sending JR~+l onto itself. In fact, this transformation 

is affine and so Laguerre transformations must have the form, 

Y =TX +B 

where T E O(n, 1) and B is some translation vector [2, p.42]. 

As an example consider the sphere S in JR3 with center p = (1, 2, 3) and 

radius r = 5. We find the appropriate point on the Lie quadric and the use 

the diffeomorphism from Qn+l ---+ JR~+l, 

Now, act on the point X = (1, 2, 3, 5) by the transformation T E 0(3, 1), 

where, 

1 0 0 0 

T= 
0 1 0 0 

0 0 cos(12) - sin(12) 

0 0 sin(12) cos(12) 
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(1.2, 3,5) 

----·----I 

• (1,2.3,0) 

....... _ - ""' 
- ------ - - s 

Figure 5.1: Recovery of Sphere in IR3 

So, 

1 

2 
TX= =Y 

2.486 

5.275 

Thus, Sis mapped to S', where S' has center (1 , 2, 2.486) and radius (5.275). 

To recover the sphere S' from the its corresponding point on the quadric 

geometrically, we construct the lightlike cone with vertex at (' and a plane 

through the point (1 , 2, 3, 0) with normal vector (0, 0, 0, 5). Note that the 

transformation T , is not an isometry of IR3 , since it does not keep the radius 

of S constant. The intersection of the light cone and the plane will produce 

the circle S' in IR3 , as shown in Figure 5. 1. 

Laguerre transformations have a very nice connection to conical meshes . 

Recall that a conical mesh is a mesh M such that at every vertex vi of M it is 
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Figure 5.2: Recovery of Tangent Plane in IR3 

possible to constn;ct a cone that is tangent to the four faces t hat meet at vi· 

However , a cone i ~; uniquely determined by two spheres that satisfy Lemma 

5.3.2 , and of course, given a cone , it is possible to construct two spheres whose 

centers lie on the cone axis and that are tangent to the cone, and so it is possible 

to map conical me~ :hes to conical meshes using Laguerre transformations. This 

relationship has been briefly stat ed in the literature ( [6], [7]) , but not formally 

shown to be true. 

Theorem 5.3.3. Let M be a conical mesh, and A = T X + B a Laguerre 
transformation. Let r = {r( vl), r( v2), ... , r( Vn)} be the set of cones with ver­
tices corresponding to vertices of M. If A is applied to all elements in r , then 
the vertices of the resulting set of cones f' is again a conical m esh. 

Proof: The basic idea of this proof is to construct a bijective map L using 

Laguerre transformations that sends the vertices of M to new points in IR3 

such that when the combinatorial structure of M is imposed on this new set 

of points, the resuiting mesh is again a conical mesh. First , we construct the 
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Figure 5.3: Spheres With A Common Tangent Plane in IR3 

map L. As noted above, r is the set of cones with vertices coinciding with the 

vertices of 1\!1. Define f' to be the the set of cones obtained by acting on the 

two spheres associated with each r( vi) E r by a Laguerre transformation A. 

Define V' to be the set of vertices of the cones in f', that is V' = { v~, v~, ... , v~}. 

The map L is then defined by 

To show that the mesh M' = (V', E, F) is conical we need to show that every 

face of M' is planar and that for each v: there exits a cone with with vertex 

v: that is tangent to the four faces meeting at v:. First , consider two non­

concentric spheres in IR3
, 51 and 52 and their corresponding points in IR4

, X 

and Y. To construct a common tangent plane, first choose any light like vector 

n in the space perpendicular to the line [(X - Y)], denoted (X- Y).L. The 

hyperplane 1r with pole n will contain [(X - Y)] and so will be tangent to 
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F; 

Figure 5.4: Application To A Single Face 

both light cones. [ntersection of 1r with t he copy of IR3 spanned by the x ,y , 

and z axes will then give a plane in IR3 that is tangent to both spheres. This 

is shown in Figure 5. 2. Of course, there are many choices for n , and indeed 

the envelope of all tangent planes defined by the different choices of n is the 

unique cone tange t to 51 and 52 . Moreover, if a series of spheres, 51 , ... , 54 

with associated points X 1 , ... , X 4 , share a common tangent plane T , then T 

must be the inters ction of IR3 with the plane 1r containing the line segments 

[(X1 - X2 )], [(X2 ·- X3 )], [(X3 - X4 )]. Thus, the points X1 , .. . , X 4 must be 

coplanar , in the sense that they are contained in a single hyperplane 1f , as 

shown in Figure 5.3. 

Applying t his ::easoning to a single face f i of M , together with the four 

vertex cones and iheir pairs of inscribed spheres, 51 , ... , 58 , we get a picture 

similar to the one shown in Figure 5.4. Since the plane P defined by f i is 

tangent to all eight spheres, the corresponding points X 1 , .... X 8 in IR4 must 

be coplanar. No" , we act on these points by the Laguerre transformation 

A= TX +B. Since T E 0(3, 1), A is a linear transformation , and so it does 
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not affect the linear dependence of the vectors [(Xi- X 1 ) ]. Thus, the resulting 

points X~, ... . X~ must also be coplanar. Intersecting the plane containing 

the Xi's with R3 yields a plane P' tangent to the eight spheres S~, ... , S~. 

Following the definition of the map L, we now construct the cones defined by 

the appropriate pairs of spheres and call their vertices vi, the vertices of the 

new mesh M'. To see that M' a planar quad mesh, notice that images of the 

vertices contained in any face fi must lie on the plane P', and so must be 

coplanar. Moreover, applying L to a square of nine vertices with center vertex 

vi, the planes Pi, ... R+3 must pass through the vertex of the cone f(v:). Since 

R, ... Pi+4 also contain the images of the other eight vertices, it is possible to 

construct a cone at each vertex of M' that is tangent to the faces of M' meeting 

at that vertex. Thus, M' is conical D 

This technique is particularly effective when a basic starting conical mesh 

is chosen, such as a piece of a sphere, or cylinder. Since the curvature lines of 

these shapes are well known, their associated conical meshes are easily created. 

Since a well chosen Laguerre transformation will change the radii of the spheres 

it is acting on, the angle of the new vertex cone will change, and as a result 

the curvature and geometry of the resulting mesh will not be as trivial as the 

original surface. 

A specific example of this is the offset operation for face offset meshes and 

is shown in Figure 5.5. In that transformation, A= I 4 x4 and C = (0, 0, 0, d), 

where d is the offset distance. 
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Figure 5.5: The Offset Transformation 
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5.4 Moebius Transformations 

In the same way that Laguerre transformations can be used to manipulate 

conical meshes, Moebius transformations can be used to manipulate circular 

meshes. In Corollary 1, it was shown that the group of Moebius transforma­

tions is isomorphic to the group O(n + 1, 1)/ ±I. Geometrically, this means 

that points in the Lie Quadric Qn+l that have zero in the last coordinate, that 

is, they correspond to spheres of zero radius, get mapped to other such points 

when acted upon by a Moebius transformation. Moreover, although tangential 

distance between spheres in IR3 is not preserved, the angle between their cen­

tres is. Indeed, it this property that ensures that the circular property, which 

is that every face of a mesh M can be inscribed in a circle, is preserved un­

der Moebius transformations. Since the architectural applications of circular 

meshes are limited, we will not pursue them further. 
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Applications And Numerical 
Experiments 
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Chapter 6 

Mesh Creation 

In practice, it is m·cessary to know how to approximate a given surface with a 

discrete one, a process known as discretization. In architecture, this is partic­

ularly important ~: ince most often the defining geometrical characteristics of 

a surface are contained in sketches , which are inherently smooth. As always, 

the focus here is o planar quadrilateral meshes, and so we will develop tech­

niques that will produce discretizations of smooth surfaces that are not only 

accurate representations of that surface, but that are also conducive for the 

construction of pknar quadrilateral meshes. 

6.1 PQ M~eshes By Optimization 

In order to construct a PQ mesh based on a given smooth surface, a discretiza­

tion of that surface needs to be chosen. In general, there are many different 

discretizations with different characteristics and different uses. However , a 

basic property that is fund amental to all of them is that if a discretization is 

refined enough , it will approximate the original surface arbitrarily well. This 

just means that the defining characteristics of the smooth surface, such as 
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genus or curvature, are encoded in the discrete version. For different examples 

of discretizations of the same smooth surface, refer to Figure 6.1. 

To create a mesh M from a discretization, we simply apply the appropriate 

combinatorial structure, which could be anything in general, but in this case, 

it is that of quadrilateral mesh. This can be done by taking the intersection 

points of the curve network that defines the discretization as the vertices of 

the mesh. The edges are defined as straight line segments connecting adjacent 

vertices. At this point, it is not possible to realize the faces as actual geomet-

rical objects, as the region that is enclosed by the appropriate four vertices 

might not be planar, and therefore not unique. However, as a combinatorial 

entity, the face is perfectly well defined: it is the ordered four element subset 

of the vertex set. So, given a smooth surface, we can construct a quad mesh 

M whose approximation of the surface depends on how fine the mesh is. 

The question is, how can the vertices of M be rearranged so that the the set 

of points in each face are coplanar, but that no edges degenerate. The current 

solution to this problem was introduced in [6] and involves a fairly complex 

non linear optimization. It is important to note that with the introduction of 

numerical techniques, the term "planar" will mean "planar to within a very 

small error" and not "geometrically planar". 

The general idea of the optimization is this, given a quadrilateral mesh 

M, define a penalty function P that measures the aggregate amount of "non 

planarity" of the mesh. More formally, 

n 

p = LWJJ 2 

i=O 

That is, P measures the sum of the volumes of the verex tetrahedra. Indeed, P 

54 



McMaster - Dept. Mathematics M.Sc Thesis- D. Hambleton 
------------------------------------------------

Figure 6.]: Geodesic , UV, and Principal Curvature Meshes 
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will be zero if and only if each quadrilateral of the mesh is planar. This is a non­

linear, non-convex, optimization problem, and therefore it is not guaranteed 

that a global minimum will be found. However, recall that Proposition 2.1.1 

states that if a PQ mesh is refined, it becomes a conjugate curve network. This 

implies that if the original surface is discretized by such a curve network, the 

optimization process will in fact arrive at a minimum, and indeed numerical 

experiments support this. Moreover, they show that if the optimization process 

is started on a mesh that is not derived from a conjugate curve network then 

the vertices will be moved so far that the mesh will not approximate the 

original surface. For more details of the numerical methods used to minimize 

this penalty function, see [6]. 

In summary, if the original surface can be parametrized by a conjugate 

curve network, then the associated mesh can be optimized into a PQ mesh 

without perturbing the vertices very much. If the original surface is discretized 

in some other way, then the associated mesh can still be optimized, but it is 

unclear whether the result will be desirable. 

6.2 Conical Meshes From Principal Curvature 
Networks 

It is also desirable to know, given a surface, if it is possible to approximate an 

arbitrary surface with a PQ mesh that admits the constant offset construction. 

Of course, since there are three different types offsets, a surface could admit, 

for example, a vertex offset and not an edge offset. In its most general form, 

this question is still unanswered, and this is due to the fact that the theory 
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Figure 6. 2: Computation of Principal Curvature Lines 

of edge offsets is significantly more complicated than that of both vertex and 

face offsets. 

Let us now see how it is possible to go from an arbit rary, init ial surface 

to a discrete mesh that allows for the face offset property. This method was 

introduced and de::cribed in [6] . 

In the previom section , it was shown how to construct a PQ mesh t hat 

approximates an arbit rary smooth surface, wit h the key step being the dis­

cretization by a conjugate curve network. In [6] it is shown that face offset 

meshes are the disc rete analogs of networks of Principal curvature lines. So, in 

order to init ialize the opt imization process , the surface needs t o be discretized 

by its maximum c,nd minimum Principal curvature lines. There are many 

techniques to for oing this, in particular the one in [1] is very efficient . For 

the purposes of t hi paper, we will use a simplified integration technique that 
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simply starts at a point on the surface, computes the unit principal direction 

vectors, and then projects down onto the surface to get the next point of the 

iteration, as displayed in Figure 6.2. Although very sensitive to noise and 

not efficient, this technique, if refined enough, will produce a line of principal 

curvature. Since in addition to being the continuous analog to a face offset 

mesh, the network of principal curvature lines is a conjugate curve network, 

the mesh constructed from the intersection points of the principal curvature 

lines will be a good initialization for a discrete offset mesh. As before, we 

define a penalty function PF to be 

Pp ~ A1P + .\2 ( t,[(a, + b, + r, + d,) - 21r] 2
) 

where P is the planarity penalty function defined above, the second term is 

difference between the sum of the angles at a vertex and 21r summed over all 

the vertices, and ,\1 , >.2 are scalar multiples. Since a PQ mesh is conical if and 

only if at each vertex it is possible to construct a cone tangent to all faces 

meeting at that vertex, if the above function is zero, the resulting mesh will 

be a conical mesh. 
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Chapter 7 

Case St·udy- A Freeform Glass 
Roof 

Throughout this paper, we have been discussing the theoretical framework 

behind mesh creation and mesh manipulation. Indeed, at the very beginning 

of the paper, we :;tated that the main application of the theory of meshes 

is in the architect 1re and construction industry, particularly concerning the 

problem of paneling freeform glass surfaces. In order to demonstrate the true 

power of discrete differential geometry, we will apply all of the techniques 

discussed in this paper to a fictional, but plausible, project. The general scope 

of the project is to design a surface that can be paneled with glass elements, 

that has no inhenmt symmetry (i.e a freeform surface), and that spans the 

open area bordered by the existing buildings at College St. and University 

A venue, in Toronto, Ontario. The purpose of the project is to cover that open 

area in order to pwmote pedestrian traffic. In Figure 7.1, the site plan along 

with the initial skEtch of the surface is depicted. To further mimic the process 

that a real project might go through, we will assume that an architect proposed 

a surface, but not a panelization scheme. Moreover, although the architect is 
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Figure 7.1: The Site Plan 

in principle willing to modify the shape slightly, the goal is to stay as close as 

possible to the existing sketch. The first step is to construct a parametrization 

of the surface based on a conjugate curve network. In addition, since we will 

want to take advantage of the offset construction, we will need to parametrize 

this surface by principal curvature lines. To do this , we use the integration 

technique outlined in the Chapter 6 to construct the nodes of the mesh. 

A quick visual inspection of the principal curvature mesh of the original 

surface , Figure 7.3, shows that the geometry of the surface will have to be 

modified slightly in order for such a mesh to be viable. By decreasing the 

curvature in the centre region of the surface and rerunning the principal curv­

ture line computation, we arrive at a surface and its discretization that is well 

suited for panelization. Figure 7.4 shows this modified surface. 
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I 

Figure 7. :~: Computation of Principal Curvature Directions 

Figure 7.3: Computation of Principal Curvature Lines 
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Figure 7.4: The Modified Surface 

Using the discretization by principal curvature lines, we have a quadrilat­

eral mesh M that approximates the original surface. The panels, however, are 

not yet planar. Not only do we want planar panels, but we want the mesh 

M to satisfy the conical angle condition at every vertex. We then run the 

modified optimization algorithm that optimizes both the planarity and the 

conical penalty functions. Figure 7.5 shows a comparison between two mesh 

M and M' before and after the optimization. Notice that although the pla­

narity function stays more or less constant, implying that the original mesh 

was already very planar, the conical penalty function is extremely different. 

Once the mesh has satisfied the planarity and conical conditions up to 

an acceptable error, the offset construction can be used to create a series of 

parallel meshes where the distance between corresponding faces is constant 

over the whole mesh. This allows for the design of an extremely "clean" node, 
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since it is not necessary to design elements that deal with eccentricities present 

in other discretizations of the same surface. Figure 7.6 depicts such a node. 

In addition, know that the distance between faces is constant means that is 

possible to design standardized spacing elements between the layers of glass 

in a typical panel. 
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Figure 7.6: A Conical Node 
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Figure 7. 7: The Final P anel Layout 
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Chapter 8 

SummaJry 

In thesis, we have :>een that by aligning an initial mesh with a conjugate curve 

network on a givEn surface, it is possible to transform it into a PQ mesh. 

Since conjugate curve networks possess the continuous version of the planarity 

condition, the resulting PQ mesh will still approximate the given surface. 

Moreover, if the principal curves are chosen as the conjugate curve network, 

the resulting PQ mesh will also possess a one parameter family of face offset 

meshes [7]. These meshes are called conical meshes and are extremely useful in 

the design of freeform glass surfaces. Given a conical mesh, we can transform it 

by using Laguerre transformations, which preserve the conical property. These 

transformations can be used to generate meshes with interesting geometries 

from very simple ones. 

Thus, pure mc.thematics has been used to solve an extremely pragmatic 

problem, namely that of attaching structure to an otherwise two dimensional 

surface. Fortunatdy, there are many more unsolved problems. For instance, 

edge offset meshes seem to lend themselves naturally to beam standardization, 

since such a mesr would allow beams to have a constant width. However, 
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they have proved to be theoretically the most difficult to deal with, and the 

kinds of shapes that can be discretized by edge offset meshes are not yet 

fully understood. Furthermore, the dependency of face offset meshes on the 

principal curvature lines often leads to unusable or visually bizarre meshes. 

While there have been some results that address this issue, it has by no means 

been fully dealt with. 

It is interesting to note that without the theory of conjugate curve networks 

and projective geometry, it would not be possible to arrive at the arrangement 

of vertices that are found in an offset mesh "by hand". This implies that 

the study of offset meshes has given designers and engineers a tool that truly 

expands the scope of freeform geometry. However, inasmuch as projective 

geometry is an unlikely topic of conversation in an architecture office, beam 

and node layout for glass panels is an unusual problem for pure mathematicians 

to tackle. Yet, thinking about this problem is what led researchers to develop 

a whole new field of thought, coined "architectural geometry". It is perhaps 

due to this latest symbiotic relationship between application and theory that 

architectural geometry is shaping up to be an intellectually rich and exciting 

field. 
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Appendjx A 

Append.ix 

A.l Modeling with Conjugate Curve Networks 

In the section above, we outlined a process that would take an arbitrary surface 

as input , and produce a PQ mesh with t he face offset property as output. What 

about the other \my? It is, in many cases , desirable to be able to explore 

different surfaces that still have the PQ property. As an example of such a 

technique, we will restrict our attent ion to surfaces that have polynomials in 

two variables of dEgree three as coordinate functions. That is, 

where, 

and the first few partial derivatives can be written as , 

Fi( \ i + i + 2 i + 2 i + i 2 + 3 i 2 u u , v 1 = a10 a11 v a20u a21 uv a12v a30u 
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The idea is that we will construct a surface X ( u, v) whose parameter curves 

are in fact a family of conjugate curves. To do this, recall that the definition 

of a surface to be parametrized by conjugate curves is, 

Combining the conjugacy condition with the partial derivatives of the coordi-

nate functions and comparing coefficients, we get the following relations: 

1. ail = cla~o + c2abl 

2. 2a~ 1 = 2c1a~0 + c2ah 

3. 2i-2 i+ i a 12 - c2a02 c1 a 11 

4. 0 = 2cl a~ 1 + 2c2ai2 

5. 0 = c1 ai2 + 3c2ab3 

6. 0 = 3cl a~0 + c2a2I 

These relations can be used to write all the coefficients as linear combina-
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5. aoa = - ~aL2 3c2 

6 a30 = _..£La.,l 
. 3cl ·• 

It is also necesEary to choose c1 , c2 E Rand a00 E R 3 , which is simply the 

constant term in the polynomial functions. To illustrate this procedure, let, 

aw= m ,~. = m ,a~= m 
and let, c1 = c2 = 1. This gives the following surface, 

where, 

1( ) 2 1 2 1 2 1 3 1 3 F u. v = u + uv - v + -u v - -uv - -u + -v . 2 2 6 6 

2( ) 2 1 2 1 2 1 3 1 3 F u. v = v + uv - v + -u v - -uv - -u + -v 
2 2 6 6 

1 1 
F3(u v) = u2 

- v2 + u2v - uv2 
- -u3 + -v3 

' 3 3 

Figures 7 and :3 show the continuous and discrete versions of the surface. 
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Figure A.2: T e Associated PQ Mesh To A Conjugate Curve Network 
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