
HARD REAL-TIME MICROCONTROLLER CODE GENERATION

HARD REAL-TIME

MICROCONTROLLER CODE GENERATION

FROM

TIM D AUTOMATON SPECIFICATIONS

By
VICTOR BANDUR, B. ENG.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Applied Science

McMaster University

@Copyright by Victor Bandur, September 2008

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

BACHELOR OF ENGINEERING (2006)
(Software)

McMaster University
Hamilton, Ontario

TITLE:

AUTHOR:
SUPERVISORS:
NUMBER OF PAGES:

Hard Real-Time Microcontroller Code Generation
from Timed Automaton Specifications
Victor Bandur, B.Eng. (McMaster University)
Drs. Wolfram Kahl, Alan Wassyng
vii, 88

ii

Abstract

A method is developed for automatically synthesizing hard real-time assembly code
for simple microcontrollers directly from timed automaton software specifications.
The method uses the microcontrollers' individual instruction execution times to ap­
proximate as closely as possible the timing requirements indicated in the specification.
In order to accommodate this approximation, certain transitions in the specification
automaton require tolerances on timing constraints to be provided as part of the
specification. A second automaton is produced that is a model of the behaviour of
the implementation. The method is applied to the synthesis of a software metronome
device for the Micr chip PIC 18F452 microcontroller.

iii

M.A.Sc. Thesis- V. Bandur- CAS, McMaster University

Acknowledgments

Writing this thesis has been a radical departure from the mainstay of undergraduate­
level projects, in both magnitude, as far as writing solo goes, as well as in required
clarity and concision of presentation. I am indebted to Dr. Wolfram Kahl for pro­
viding an insight into clear, complete presentation that is, for me, unsurpassed. I am
equally indebted to Dr. Alan Wassyng for lending me his insight into the world of
real-time systems gathered from many years of experience, thus helping hone my ideas
into a presentable opus. I thank my colleagues as well for the numerous discussions
we have had on and off the subject: everything is a learning opportunity if examined
closely enough.

IV

Contents

1 Introduction 1
1.1 Computer Software Applications 1

1.1.1 Execution Time-Independent Software 2
1.1.2 So t Real-Time Software . 2
1.1.3 Hard Real-Time Software 2

1.2 The C.P.U. / M.C.U. Dichotomy 3
1.3 The Need to Automatically Generate Hard Real-Time Software 4
1.4 Related Work 4

1.4.1 Timed Automata 5
1.4.2 Statecharts 5
1.4.3 Pet ri Nets . 5
1.4.4 Languages . 6

1.5 Goal of this Work . 7
1.6 Impact 8
1. 7 Organizat ion of this Work 8

2 Theoretical B ackground 9
2.1 Timed Automata . . . 9
2.2 Time Inte rvals 11
2.3 Acceptance Conditions

3 The Assume Model
3.1 New Clock Constraint Notation
3.2 Partitioning the Alphabet
3.3 The New Model . .
3.4 Specifying Progress

v

12

15
16
17
17
19

MOAOSco Thesis- Vo Bandur- CAS, McMaster University

4 Method Introduction 21
401 Overview 0 0 0 0 0 0 21
402 Input and Output 0 23
403 Polling vso Interrupts 0 23
4.4 Time Intervals and Counter Registers 24
405 A Pseudo-Assembly Language 25
406 Exact Timing •• • •• 0 • 28
407 Implementation Functions 0 0 29

5 Transitions With No Clock Predicates 31
501 Useful Definitions 0 0 0 0 0 0 0 32
502 Transition with No Markings 0 32
503 Transitions On an Input 0 0 0 33
5.4 Transitions On an Output 0 0 34
505 Transition On an Input with Output 35
506 Defining ImplementStaylnState 0 0 0 37

6 Transitions With a Clock Predicate Over One Clock Variable, Al-
ways Reset 39
601 States with Multiple Outgoing Transitions 39
602 Definitions 0 0 0 0 0 0 0 0 0 0 0 0 0 41
603 Transitions Without Messages 0 0 0 41

60301 Timing Constraint x = a 0 0 41
60302 Timing Constraint x E [l, u] 44

6.4 Transitions with Messages 0 0 0 0 0 44
6.401 One Input, Timing Constraint x = a 45
6.402 One Output, Timing Constraint x = a 46
6.403 One Input, Timing Constraint x E [l, u] 0 47
6.4.4 One Input, One Output, Timing Constraint x E [l, u] 50
60405 One Output, Timing Constraint x E [l, u] 54

605 Defining ImplementStaylnState 0 0 0 0 0 0 0 0 0 0 55

7 Implementation
701 Implementable Automata 0 0 0 0 0

701.1 Allowable Transitions 0 0 0 0
701.2 Microcontroller Information
701.3 Feasibility Check 0 0 0 0

702 Procedure for Generating Code

Vl

59
59
59
60
60
62

M.A.Sc. Thesis - V. Bandur- CAS, McMaster University

8 Case Study
8.1 Microcontroller Characteristics .

8.1.1 Oscillator . . .
8.1.2 Registers
8.1.3 Instruction Set

8.2 Instructio Mappings and Execution Times .
8.3 Example: A Metronome
8.4 Implementation Steps .
8.5 Results

9 Conclusions
9.1 Concluding Remarks
9.2 Contribut ions

10 Future Work

A Metronome Implementation Pseudo-Assembly Code

B Metronome Implementation Assembly Code

vii

65
65
65
66
66
66
68
69
71

75
75
76

77

85

87

Chapter 1

Introduction

1.1 Computer Software Applications

Since the adop tion of microprocessors into relatively small form-factor computers,
effort has been expended on constructing software that serves a few fundamental
purposes. Primarily, computers are used to ease our daily lives, by allowing us to
edit documents of any type randomly, inserting and deleting sections at will, or by
performing data analysis and modification as diverse as picture editing to weather
prediction. These are all applications of computers where timing is important only as
far as the user experience is concerned. The timing characteristics of these applica­
tions are not critical to their correct operation, although generally "faster" is better
than "slower" . This is software in which timing is a performance requirement and as
such is secondary in importance to all other functional requirements it must fulfill.

The other end f the software spectrum involves software whose correct operation
depends on its timing as well as all other aspects of its behaviour, where timing
behaviour is moved to the set of functional requirements. This is software that may
not present a pret ty user interface with buttons and input fields . It is the software
that controls every gadget, small and large, around us every day. This is software that
must react in a timely manner to inputs: automobile engine revolutions, an operator
pressing an emergency shutdown button, erratic behaviour of the human heart and
innumerable othe s. The different natures of software are explained in more detail
below.

1

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

1.1.1 Execution Time-Independent Software

This is the common "productivity" software that we see on desktop computers:
web browsers, spreadsheet programs, algebra and math packages and all other soft­
ware that is meant to relieve us of repetitive tasks like having to type documents
on error-prone typewriters or develop pictures in a chemical lab. The only desirable
characteristic of such software as far as timing is concerned is that the faster they
execute our commands, the faster they perform their duty of relieving us of unattrac­
tive tasks. Therefore a limit is implied on the minimum desirable performance of such
systems. As the software executed on these computers increases in complexity, the
performance of the overall system degrades, and makes the user experience more and
more tedious. This is the reason for the short turn-around time of computer stock
in offices and visual design laboratories, why equipment used in everyday tasks by
employees is replaced relatively frequently. The responsiveness of the software to user
input , or having a guarantee that it will respond to a command within A seconds is
not an indication of the correctness of the software. From the users' perspective, it
would be nice to have such a guarantee, especially if the guarantee is of reasonably
fast performance, but it is not necessary, because by enlarge the system performs
adequately. However, when performance decreases below a threshold of usability, the
hardware is replaced, not the software.

1.1.2 Soft Real-Time Software

This category of software has deadlines imposed on its behaviour, but it is not
mandatory to the correct operation of the software that these deadlines be met. An
example of such a system is one which captures and displays video from a television
signal tuner card in an ordinary personal computer. It is desirable that each frame
is decoded and displayed so as to make the video stream appear realistic, but if for
some reason this is impossible, it is acceptable to continue with the task, perhaps
dealing with the delayed frame in some way. On such a system every effort is made
to ensure the deadline associated with a task, but missing this deadline does not spell
disaster, property damage or loss of life.

1.1.3 Hard Real-Time Software

This is software whose correctness depends on its ability to respond to changes in
its inputs within prescribed time bounds, just as much as on any other requirements
it must fulfill. This type of software maintains the correct operation of nuclear power

2

M.A.Sc. Thesis - - V. Bandur - CAS, McMaster University

plants, controls airplanes and ensures therapy is imparted to an errant human heart
before it causes too much pain and damage to its host. If this software fails to
meet its deadlines, it means that the process it is trying to control has moved past
a point where it can be controlled safely and the software has failed its function.
Usually catastrophes ensue from such tardiness, often ending in loss of life. It is
therefore paramount in developing software in this category that timing be treated
as a functional requirement. There are several factors which complicate this task, a
supremely important one of which is discussed in the following section.

1.2 The C.P.U. / M.C.U. Dichotomy

The development of the microprocessor has followed two main paths.

Microprocessors One path kept improving on the original architecture by adding
features such as pipelining, branch prediction, caching and others in the name of
gaining better and better performance architecturally, rather than by increasing the
clock speed, since increasing clock speed requires smaller and smaller processor dies,
better heat dissipation etc. While these improvements are effective, they introduce
timing complications, in that the time required to execute a given instruction depends
on the current state of the pipeline, on whether the last branch prediction was true
or false and other architectural factors. While it would be possible to state how long
an instruction would take to execute based on a history trace of the processor, the
number of states required is enormous, making the problem very hard to solve.

Microcontrolle s The other path has kept microprocessors true to their original
design, namely by keeping the instruction set minimal and by keeping the instruc­
tion execution architecture simple. These microprocessors have come to be named
microcontrollers and they are the processors that execute most embedded code. The
simplicity of the instruction set and that of the architecture ensures that each instruc­
tion can be timed. In fact, the amount of time (or the number of clock cycles) that
each instruction takes to execute is quoted in the manuals that accompany these mi­
crocontrollers. This timing information is crucial to the development of hard real-time
software, as we shall see below.

3

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

1.3 The Need to Automatically Generate Hard Real­
Time Software

As embedded real-time systems become larger and more complex, it becomes in­
creasingly more difficult to implement such a system reliably and to guarantee that
it will meet its timing specification. This difficulty arises in large part due to the fact
that often software is first implemented and then the implementation is validated
against its specification [BB91]. This approach becomes obsolete quickly both due
to the increasing complexity of the software and due to the resultant increase in the
number of developers working on it [Jr.95].

It therefore becomes necessary to develop such software at a level that not only
offers very high expressivity, but that also allows verification of properties of the
software at the same level. It also becomes necessary to have a method of translat­
ing the software from this high level of expressivity to the level of the machine in a
meaning-preserving way. One solution is to concentrate effort on the correctness of
the specification of the forthcoming software system and then to rely on a method
of automatically generating the machine code that is proven to generate a faithful
implementation. This approach has numerous advantages. A method for writing
specifications with a high level of expressivity allows for the development of increas­
ingly more complex software systems. The increased level of expressivity reduces the
number of developers working on a single project, therefore increasing communica­
tion efficiency. A method for automatically translating such specifications into code
that is guaranteed to be faithful to the specification removes the final connection to
the implementation, allowing developers to concentrate their development efforts and
studies on the specification, its language and methods.

We endeavour to fulfill this need at least partially with the method proposed herein.
Choosing the timed automaton formalism gives us the high level of expressivity re­
quired in dealing with very large systems, whereas the method for translating speci­
fications in this language to machine code will generate faithful implementations.

1.4 Related Work

We briefly summarize here some other developments that accommodate timing
behaviour in the specification of real-time systems, as well as what facilities exist for

4

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

generating hard real- time code from these specifications. A full survey of all available
techniques is outside the scope of this work.

1.4.1 Timed Automata

Timed Automata [AD94] are a family of finite state machines that incorporate the
passage of time mto their behaviour. This formalism forms the basis of our work
wherein it is treated as a software specification tool. The details are discussed in
Chapter 2.

1.4.2 Statecharts

The Statecharts formalism [Har87] has seen great success with its adoption into
the UML specification. Some UML-based modeling tools [Tec07, ea04] provide code
generation facilities for statecharts that generate Java or C code from a specification,
while others [LMOO, SZOl] translate statecharts to B [Abr96], another formal speci­
fication language, which can then be compiled to C code. Extensions to statecharts
include real- time facilities [KP92].

1.4.3 Petri Nets

The Petri net formalism is a popular tool in modeling and specification of con­
currency in software, as well as hardware systems (see [MR02, AVD76, YGLOO] for
instance). It has ramified immensely since its inception [Pet62, Pet77], with the de­
velopment of coloured nets [Jen96], stochastic nets [Haa04], timed nets [MF76, BD91]
and the sub-class of free choice nets [DE95], to name very few, and it has been ap­
plied extensively to the specification and verification of industrial systems. Naturally,
such exposure has bred a wide spectrum of software tool support. The Department
of Informatics at the University of Hamburg, Germany maintains a comprehensive
list of existing tool support, available online [UoH08]. Code generation from Petri
nets has received intense attention (see [LH04] for instance), especially in the field of
PLC programming [FLOO], but only few attempts at generating hard real-time code
from nets with time facilities [MGVOO] can be identified in the literature of the ACM
[fCM08] and the IEEE [oEE08].

5

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

1.4.4 Languages

Too many synchronous and flavours of synchronous languages have been devel­
oped for reactive systems programming to be listed in this small overview of existing
methods. The most prominent and successful exemplars are briefly described below.

B The B-Method [Abr96] is a software system specification and implementation
method that covers all steps of development, starting from specification (the abstract
machine notation AMN) , through refinement to ultimate implementation in C, all
steps of which are validated by formal verification through formal proofs of the con­
sistency of the specification and of each refinement step. The tools B-Toolkit [Ltd02],
Atelier B and B4free [Cle08] fully support the B Method.

SyncCharts Intended as a graphical alternative to Esterel based on Statecharts
[Har87], SyncCharts [And96] are the foremost visual tool for the specification of
software systems in the synchronous paradigm [BB91]. SyncCharts translate easily
to the synchronous programming language Esterel [BerOO] and are motivated by a
general reluctance observed in the engineering field to the adoption of synchronous
languages [And96].

Esterel Esterel is a synchronous programming language aimed at designing and
implementing reactive real-time kernels of larger applications [BerOO]. It is the most
widely accepted synchronous programming language in industry and is backed by
strong tool support by Esterel Technologies, Inc. in France [Inc08]. The tool, Esterel
Studio [ET08], provides facilities for automatically generating implementations from
Esterel definitions of reactive systems.

Signal Signal is another synchronous programming language like Esterel which
takes a slightly different approach to programming in the synchronous paradigm.
While Esterel is an imperative language based on state [BerOO], Signal is a declara­
tive language based on block descriptions of a system together with relations among
those blocks and restrictions on those relations [LGLBLM91]. This makes it a data­
flow based language. The language is supported by both a compiler (to C and Fortran
code) and a visual environment to support development.

6

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

1.5 Goal of this Work

The aim of this work is to define a method by which hard real-time control programs
can be synthesized for various microcontroller architectures from timed automaton
specifications. As we have seen above, there is extensive support for automatically
generating imple entations, covering many specification paradigms. The primary
drawback of these approaches is that they generate code in high-level languages, such
as C. This code must either be scheduled and executed by an operating system run­
ning on the embedded device: depending on the application, this may not be a viable
option. Or else it must be compiled to machine code to run as a dedicated appli­
cation on the microcontroller, but none of the technologies surveyed which generate
implementations allow for the specification of explicit timing constraints.

Our primary goal therefore becomes to allow for the specification of software sub­
ject to explicit timing constraints while eliminating the need for an operating system
to schedule and execute the code generated. Our method is not intended for devel­
oping classical control programs, such as classical closed-loop process control, due to
the complexity of these systems, nor does it address issues of concurrency and multi­
tasking - these are prime candidates for future work. Our method is aimed at simple
reactive, on/ off control programs, which react in accordance with timing constraints
to changes in the environment by turning outputs on and off. These programs are
simple enough that our goal becomes more realistic. It is hoped that this method may
serve as a possible foundation from which more complex systems may be synthesized.
A few motivating example applications of reactive real-time control programs are:

1. An automobile anti-lock braking system (ABS) must react to the wheels ' locking
during a hard-stop situation by unlocking the wheels after a certain amount of
time, usually very short. This time value is an optimum that depends on various
factors, including the coefficients of friction involved and the properties of the
vehicle. The control software for this type of system is a prime candidate for
automatic code generation from a timed automaton specification.

2. In certain user interfaces it is very important to determine when the operator
is simply p shing a button, or is insistently pressing a button because either
an emergency situation has arisen or something has not happened as expected.
A timed a tomaton can be used to specify the difference between these two
operator behaviours by defining the time intervals between button presses which
determine the operator's level of insistence. Based on this determination, the
system can react in different ways.

7

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

To make specification of real-time on/off control systems more intuitive, the original
timed automaton formalism of [AD94] will be modified in a few semantic-preserving
ways, as we shall see in Chapter 3.

1.6 Impact

The intended impact of this work on the world of reactive real-time systems de­
velopment is, though more modest, the same as the development of high-level pro­
gramming languages over assembly: to abstract away the details of the hardware
and allow the developers to express their concepts and to reason about them at a
higher level of understanding, free of "overhead", and which benefits from a strong
mathematical foundation. Armed with a method to generate compliant implementa­
tions automatically from their specifications, developers can concentrate their efforts
on creating correct specifications that can be validated using existing model checkers
such as UPPAAL [UU08].

1. 7 Organization of this Work

The remainder of this work is organized as follows. Chapter 2 makes a condensed
presentation of the timed automaton theory on which our method is based. Chapter
3 introduces the changes that we shall make to this model in order to tailor it to our
method without loss of generality. Chapter 4 gives an overview of our goal. Chapters
5, 6 and 7 develop the proposed method. Chapters 8, 9 and 10 presents the results of
the application of our method to an example specification, conclusions drawn about
the suitability of the method and future developments which would behoove this
method.

8

Chapter 2

Theoretical Background

2.1 Timed Automata

Timed automata are a class of finite state machines developed in [AD94] which
incorporate a mechanism of timers in order to selectively enable and disable transi­
tions based on the passage of time. Timer variables are defined whose values increase
at equal rates from the time they are reset and so keep track of elapsed time. An­
notations on transitions make use of valuations of these timer variables to mark
transitions as either enabled or disabled, according to predicates over these timers.
Like automata with no timing constraints, timed automata can be deterministic or
non-deterministic. We will concentrate on deterministic timed automata in this work.

Definition 1. Given a set C of real-valued variables, for all x E C and all non­
negative c E IR, <I>(C) is the set of all boolean-valued constraints 8 over the set of
variables C, where 8 is defined by the following grammar.

8 :: = X ::; c I c ::; X I ·8 I 8 (\ 8

0

We are now in a position to define timed automata.

Definition 2 (Timed Automaton). Formally, a timed automaton is a tuple T
(I:, S , So, C , E , G) where,

• L: is the alphabet

• S is the set of states

9

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

0

• S0 is the set of start states

• C is a finite set of non-negative real-valued clock variables

• E ~ S x S x Ex 2° x <I>(C) is the transition relation and each element of E is
a tuple (s, s', CJ, A, J) where,

- A ~ C is a set of clock variables to be reset to zero on the given transition

- J E <I>(C) is a clock constraint formula

A transition is enabled for all clock valuations which render its clock predicate
true. This is a necessary condition for a transition to be made on a symbol.

• G is the set of accepting states

We now present a condensed semantics of timed automata. A complete exposition,
including properties and theoretical results, can be found in the seminal paper by
Alur and Dill [AD94].

Definition 3 (Clock Valuation). A clock valuation for a set of clock variables C is
a function v : C ---t lR which assigns a time value to each clock variable in the set C.
For any v, we take v+ t to mean {x f----t v(x) + t I x E C}. For any v, Y ~ C and
c E IR, we take v[Y f----tc] to mean v EB Y x {c}.
0

Definition 4 (Timed Word). A timed word is a tuple (CJ, T) where rJ is an infinite
word over the alphabet E and T is an infinite sequence of real time values where,

• To> 0

• for all i ~ 1, Ti > Ti-l

• for all t E lR with t > 0, there exists an i such that Ti > t

0

Definition 5 (Run). A run of a timed automaton over a timed word (CJ, T) is an
infinite sequence of states and clock valuations of the form

(/3

(so, vo)

where,

10

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

• s0 E S0 and for all x E C, v0 (x) = 0.

• For all i 2:: 1 the edge (si_1, si, <Ji, \, 6i) is in E such that vi = (vi-I + Ti -

Ti-d[\ t--t 0] and vi-I + Ti -Ti-l satisfies the clock constraint bi·

A run is accepting if there is at least one state in G that appears infinitely often in
the run.

For any run of an automaton, we refer to its stay in a particular state si as the
time between Ti nd the latest time at which at least one transition outgoing from
that state is enabled.
D

For the automaton to be deterministic,

1. ISol = 1

2. For every p ir of edges outgoing from a single states on the same input symbol,
their clock constraints are mutually exclusive, i. e. the conjunction of any two
clock constraints associated with transitions on the same input symbol starting
from the same state must be unsatisfiable, for all states s of the automaton.

Intuitively, for the automaton to be deterministic, there must be only one start
state, and for each state there must be only one choice of transition for every input
symbol.

2. 2 Time Intervals

During a timed automaton's stay in any state, the total time spent in that state
is composed of subintervals of time during which the various transitions outgoing
from that state are enabled. There may be times when no transition is enabled,
during which the automaton is not allowed to move out of that state, but there are
no times during which more than one transition is enabled. Figure 2.1 illustrates this
concept. These i tervals will play a crucial role later in generating code from such a
specification automaton.

11

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

4000 < X 1\ X < IX>

X:= 0 X:= 0

I 51 to 52 , , 51 to 53 I 51 to 54

I I I 'I I' I I 'I I I I I I I I I '1'1 t I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 2.1: Specification automaton and the corresponding time intervals for state
Sl.

2.3 Acceptance Conditions

Two different types of acceptance conditions are defined for timed automata, Biichi
and Muller [AD94, Muk96], in honour of their inventors. The Biichi acceptance
condition states that for a timed automaton to accept an infinite input word, the
automaton must visit at least one of a set of states infinitely often. This set of states
would be the set Gin the definition above. The Muller acceptance condition is more
powerful in that it states that for a timed automaton to accept an infinite input word
it must visit all states in one of a number of given sets of accepting states. In our
definition above, G S: p(S) and the automaton would have to visit some set of states
F E G infinitely often to satisfy the Muller acceptance condition.

The role of accepting states in a specification automaton is not entirely clear. Ac­
cepting states and conditions can be used when one needs to check that a specification

12

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

automaton indeed specifies the behaviour intended by its author. This is an activity
that precedes automatic code generation from this specification automaton, by going
through a model-checking phase. Once this specification, containing the definition of
its accepting con itions, is checked for correctness it can be passed on to the next
stage in the development of the software, the automatic generation of code via the
method propose . As we will see, accepting conditions are not necessary for this
phase.

13

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

14

Chapter 3

The Assumed Model

The original model does not provide intuitive approaches to pragmatic issues of real­
time system specification, such as progress and bi-directional communication with the
environment. Progress may be specified in the original formalism by the introduction
of acceptance conditions, but these are a rather arcane approach to specifying a vital
property of such a system. Communication with the environment in both directions
is aggregated under the same generic notation in one set of input symbols, also not
an intuitive provision.

To cope with the first difficulty, [HNSY92] introduces the concept of Timed Safety
Automata, in which progress is forced via the specification if location invariants:
conditions on the clocks that must be satisfied as long as the automaton stays in a
particular state and which force an available transition to be taken once the condi­
tion becomes false. Timed Safety Automata are used as the underlying specification
language in the real-time verification tools UPPAAL[LPY97] and TIMES[AFM+02].

Coping with the second difficulty has necessitated the adoption of the notion of syn­
chronization on a channel from Communicating Sequential Processes [Hoa85]. This
approach has also been adopted in the verification tool UPPAAL.

In the same spirit we will make several additions to the model which will make
it amenable to specification of real-time on/off control systems and automatic code
generation.

15

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

3.1 New Clock Constraint Notation

Although this is not a modification of the theory proper, we believe that it will serve
in making the model more intuitive for users of this, as well as any other method,
based on timed automata. This first modification will allow us to migrate from
expressing clock predicates in their original form to instead expressing them as interval
membership predicates. For instance, instead of the clock constraint 3. 2 ::; x 1\ x ::; 9.1,
we will write, x E [3.2, 9.1]. This makes it easier to see how the span of time that
the automaton spends in a state is divided into sub-intervals during which individual
outgoing transitions are enabled and disabled. Definition 6 will allow us to use this
new notation in what follows.

Definition 6 (Further clock predicates). Shorthand predicates can be defined in
terms of the original clock constraint notation of [AD94].

1. x2::c=c:s;x 3. x > c = x 2:: c 1\ •(x ::; c)

2. x < c = x ::; c 1\ •(x 2:: c) 4. X = C ::= X ::; C (\ C ::; X

D

Definition 7 (Interval membership and clock predicate notation). Predicates in the
interval membership notation proposed can be expressed in the original clock con­
straint notation of [AD94].

1. x E [a, b] =a::; xl\x::; b 5. X E [0, a) ::= X < a

2. X E (a , b] ::=a< X(\ X::; b 6. X E [0, a] ::= X ::; a

3. X E (a, b) ::= a < X(\ X < b 7. x E (a , oo) =a< x

4. X E [a, b) ::= a ::; X(\ X < b 8. X E [a, 00) ::= a ::; X

D

In our new interval notation we can still combine predicates with the standard
boolean operators, 1\ and V. Note that if two clock predicates are combined with/\,
as in x E [a, b] 1\x E [c, d] then the resulting clock predicate is the single predicate on
x that satisfies both the original predicates individually. If, however, two predicates
are combined with V, as in x E [a, b] V x E [c, d] then the result is that the transition
is enabled both during the time interval [a, b] and during [c, d]. This means that

16

M.A.Sc. Thesis -- V. Bandur- CAS, McMaster University

this transition can be split into two different transitions, one for each individual clock
predicate. We shall adopt this approach later when transforming the specification
into a form that is more amenable to algorithmic code generation.

3.2 Partitioning the Alphabet

In order to make using the original formalism more natural in specifying systems
which monitor in ut channels for changing state and activate and deactivate outputs
(switches) based on these changes and their time of occurrence, we need to split
the alphabet into input and output actions which are readily identifiable. We will
therefore modify the definition of a timed automaton, much in the spirit of [TL89].

Definition 8 (R(~defined alphabet). Let us refine the alphabet by partitioning it into
two distinct sets. Let I;7 be the input alphabet, the set of all actions expected from
the environment, and let I;1 be the output alphabet, the set of all actions to be issued
to the environment. We will adopt the convention that all input symbols will have
the character '?' appended, and similarly all output symbols will have the character
' !' appended.

We also assume that neither I;7 nor I;1 contains an element E, which we will use
to denote absence of an input, respectively output.
D

Figure 3.1 illustrates the correspondence between input from the environment in
the classical notation and in ours. Figure 3.2 illustrates the same concept but with
an output.

Theoretically this type of timed automaton will behave exactly the same as one
of the original kind, only it will have the capability of showing which symbols of its
alphabet are inputs from the environment and which are issued to the environment
as outputs. It is important to note that due to the nature of the outputs we intend
to control, the environment is always ready to receive the implementation's outputs,
making communication in this direction synchronous.

3.3 The New Model

In light of these changes, we have the following definition.

17

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

1.2 ~X t\ X~ 10.0

X:= 0
PUSH

E [1.2, 10.0]

X:= 0
PUSH?

Figure 3.1: Example transition in the classical notation and the same transition in
our new notation.

Definition 9 (New Timed Automaton Model). Our assumed timed automaton model
is a tuple T = (I:7, I:', S, s0 , C, E) where,

• I:7 is the input alphabet

• I:' is the output alphabet

• S is the set of states

• s0 E S is the start state

• C is a finite set of non-negative real-valued clock variables

• E s;:; S x S x (I:7 U { E}) x (I:' U { E}) x 2° x <I>(C) is the transition relation and
each element of E is a tuple (s, s', O"

7, O"', A, 8) where,

- A s;:; C is a set of clock variables to be reset to zero on the given transition

- 8 E <I>(C) is a clock constraint formula

0

We shall restrict our method to specification automata which further satisfy the
following restrictions.

1. I C I= 1, since we chose to restrict our method to one timer variable

2. At most one outgoing transition is enabled at any time, for every state of the
automaton

18

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

10.2 :s;; X 1\ X< oo

X:= 0
ERROR

Figure 3.2: Example transition with an output action and an equivalent transition in
the new notation .

We note that our definition allows us to abbreviate certain input/output sequences
as illustrated in Figure 3.3. This is a common behaviour required of embedded reactive
systems.

3.4 Specifying Progress

We will assume that a specification written in the language of our timed automata
stipulates that whenever a transition is enabled and can be made then it must be
made. For this reason we will refrain from defining accepting conditions in our spec­
ifications.

Definition 10 (New Timed Word). A timed word in our new model is a tuple
(rJ

7, CJ
1

, T) where rJ 7 is an infinite word over the alphabet 'E7 U { E}, CJ
1 is an infinite

word over the alp abet E' U { E} and T is an infinite sequence of real time values where,

• To> 0

• for all i 2: 1, Ti > Ti-l

• for all t E IR with t > 0, there exists an i such that Ti > t

0

Definition 11 (Accepted Run). An accepted run of our new timed automaton over
a timed word (rJ7, CJ

1
, T) is an infinite sequence of states and clock valuations of the

19

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Figure 3.3: Abbreviation of an automaton that specifies the output of a symbol
immediately upon receipt of another.

form

(so, vo)

where,

0

• s0 E So and for all x E C, vo(x) = 0.

• For all i ;::: 1 there exists an edge (si-l, si, cr J, cr), \, 6i) in E such that vi =
(vi-l + Ti- Ti_ 1)[\ t-t OJ and vi-l + Ti- Ti-l satisfies the clock constraint 6i .

• For all i ;::: 1, and for all times T with Ti-l ::; T < Ti and all transitions
(si-l, s', cr7

, cr', A, 6) with cr7 = E in E, vi-l + T -Ti-l does not satisfy 6.

It is important to note that the examples that follow are treated as illustrative sub­
graphs of complete specifications over infinite words. The complete method is only
intended for infinite inputs owing to the nature of embedded hard real-time systems.

20

Chapter 4

Method Introduction

In this chapter we shall provide an introduction to the method we are developing
by exploring the characteristics of existing microcontroller technology. In this way
we intend to work our way in a sense backward toward implementations, by using the
limits of existing technology to constrain the set of all possible specifications to those
which are indeed implementable on these architectures, and to find an algorithmic way
of generating these implementations. In a similar vein [WDR05] develops a method
for determining the minimum hardware requirements for running a software system
specified as a timed automaton. Through this exploration we shall come to a set of
features which a e common to a large number of microcontrollers available on the
market and target our method to those features only.

4.1 Overview

In attempting to generate code from a timed automaton, we look at what each
type of outgoing transition dictates must happen. A simple example is illustrated
in Figure 4.1. When viewed as a requirement for a piece of software, this transition
states the following:

1. If message A arrives within a time units since the state SO is entered, the
transition to state Sl is made and the clock variable is reset to 0.

2. If message A does not arrive within this time, the transition becomes disabled.
In the case where other transitions are present, the clock variable remains un­
changed.

21

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Figure 4.1: Example Annotated Transition

When approached from the microcontroller's point of view, these requirements are
interpreted as follows:

1. Check for message A from the start until a maximum of a time units have
elapsed.

2. If the message arrives in this time, proceed with subsequent actions.

3. If the message does not arrive within this time window, halt.

Adopting a polling approach to inputs, this means that the software must enter a
loop in which it polls the channel via which message A arrives for a predetermined
period of time, until it arrives. If it does not arrive, the software is not allowed to
proceed further, essentially entering an infinite loop of inactivity. The decision to
generate implementations based on polling and not interrupts is discussed later.

Because this loop consists of instructions for reading the value of the channel,
determining whether the message has arrived and maintaining the countdown for the
time interval [0, a], it takes a certain amount of time to execute, depending on the
microcontroller. Depending on these timing characteristics, the number of repetitions
of the loop can be set as a function of the instructions being looped over, and thus
the maximum amount of time that the microcontroller spends polling for the input
can be fixed to meet the clock constraint.

In general, each type of outgoing transition is potentially implementable in code
by the targeted microcontroller. There is a finite set of types of requirement that

22

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

a transition can specify, and to each corresponds a piece of code. This is evident
from the definition of timed automata. Whether the behaviour specified by an edge
is implementable depends not on the type of behaviour specified (i. e. waiting for an
input, sending an input within a given time frame), but on the timing constraints
imposed by it, if there are any. Therefore, assuming that the specification automaton
is consistent, a transition may be unimplementable only if the hardware is too slow
to fulfill the timing requirements on an edge. We will see that in the presence of
multiple outgoing transitions from a single state, this condition is more complicated.
The chapters following present the code that corresponds to each type of outgoing
transition, along with how these code blocks are combined for states with multiple
outgoing transitions.

4.2 Input and Output

This work will assume that messages are sent and received via bits in the digital
I/0 ports of the microcontroller. Therefore, each message that appears in the timed
automaton specilication will be assigned a port, at least one bit within that port
and a mask value which will be used to isolate these bits for reading/setting. The
remainder of this work will only deal with active-high messages. Dealing with active­
low messages is a matter of choosing one method of isolating the required bit over
another and will not be treated in this thesis.

4.3 Polling vs. Interrupts

Though many reactive system implementations use interrupts to deal with input,
we choose to implement specifications under this method using the polling approach.
This choice is motivated primarily by two factors. On one hand, the simplicity of
the polling loop makes guaranteeing (re)action times straightforward. On the other
hand, there is no general method for setting up interrupts upon inputs that captures
several microcont.rollers and that can be expressed in an algorithm for generating
an implementation from the specification. The algorithm for generating an imple­
mentation based on polling, as we shall see, is very simple and relies on a handful
of pseudo-instruct ions which either correspond directly to instructions in the chosen
microcontroller's instruction set, or which can be implemented with a block of a few
of the microcontroller's instructions.

23

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

4.4 Time Intervals and Counter Registers

Since the main purpose of software specified via timed automata is to obey timing
constraints, the software must allow time to pass and, depending on the annotations
on the edges in the automaton, perform other actions during these time intervals,
such as reading and writing port values corresponding to messages. In our method
we take advantage of the fact that each instruction takes a known amount of time to
execute in order to implement these time intervals.

As discussed above, to each transition outgoing from a state there will correspond a
fragment of code that implements the behaviour specified by its annotations. Transi­
tions that specify a set of (possibly empty) actions to be taken within a time interval
will be implemented by a loop. (Some transitions specifying no timing constraints
will also be implemented using loops, but this is of no interest from the perspective
of performing some action within a prescribed amount of time). At its simplest, in
the case of a pure delay transition as seen in Figure 5.1 , the transition will be imple­
mented with a loop that will do no more than decrement a specially-chosen value in
a register until it reaches zero and then make the transition.

The time taken by the loops to execute allows the code to implement the timing
delays specified on the edges of the automaton by executing each loop a calculated
number of times such that the bounds of the time interval can be met as closely as
possible. However, since these constituent instructions individually take only very
small amounts of time to execute, depending on the timing constraint it may be
necessary to execute these loops millions of times.

The hurdle to overcome here is the 8-bit register width found in the most common
microcontroller units. An 8-bit register will only decrement a maximum of 28 = 256
times before it wraps to its original value. If, for instance, the block of code that
implements a given transition consists of ten instructions, each of which takes one
clock cycle to execute, on a micrcontroller running at 4 MHz, this block of code will
take a total of 2.5 f.LS to execute. If the number of repetitions is counted by an 8-bit
register, a maximum of 256 repetitions of such a block may be made before the value
being decremented wraps around. This yields a total delay time of 640 f.LS. Depending
on the application, this amount of time may be too small - it may be suitable for
control of a particle accelerator, but is useless for the control of an ABS system in
a vehicle. It is therefore necessary to combine at least two 8-bit registers, effectively
counting the number of repetitions of the loop with a 16-bit register.

24

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

Implementing t he loop count with such a virtual 16-bit register will yield a total
number of 216 = 65536 repetitions. In the case of the ten-instruction block above, the
total maximum delay time jumps from 640 flS to 163840 flS, about 164 milliseconds.
This is a significantly larger delay. The possibility to introduce such a large delay
hugely increases the space of applications that can be served with an 8-bit micro­
controller. With three 8-bit registers performing the loop count, we obtain a total
maximum delay of around 42 seconds, whereas four 8-bit registers will give a total
maximum delay t ime of close to three hours - better suited to the control of flood
gates for a water retention basin. This easily generalizes to any desired number of
counter registers.

As each transi tion will stipulate its own timing interval, it will be necessary to
select an appropriate number of registers, Ns; s;, to implement the required stay in
state Si (perhaps waiting for an input to arrive) before the transition is either made
to state SJ or is disabled. After the number N8i _.81 is selected, each one of these
Ns;-.s

1
registers must receive a value which will contribute to the total countdown of

the interval specified on the transition. These values are an optimum that depends on
a number of prop rties of the transition being implemented, including the actions and
the width of the time interval during which the transition is enabled. Obtaining these
values poses an integer optimization problem in Ns;-.s

1
variables which can be easily

solved with efficient implementations of optimization algorithms in packages such as
the commercial mathematics package Matlab provided by Math Works [MatOS], or
even by brute force, given the usually low number Ns;-.s

1
. It is important to note

that these integer optimizations are not solved at run-time of the implementation,
but at the time the implementation is generated and thus are not a factor in the
performance of the implementation.

4.5 A Pseudo-Assembly Language

In order to develop a method general enough that it can be used to generate code
for a wide range of microcontrollers, we now conduct a small survey of a few of the
most common microcontrollers, past and present. The microcontroller architectures
are,

• Zilog Z80 family [Inc05]

• Intel MCS-51 family [Cor94]

• Freescale MC68HC08AB16A [Sem05]

25

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

• PIC 18F452 [Inc06]

From this survey we extract the common instruction set features and then develop a
pseudo-assembly language that can be used to express the code that corresponds to
each type of transition in a specification automaton. Later we present a case study for
transforming this pseudo-code to a member of a popular family of microcontrollers,
the PIC 18F452. Each instruction in this set can be implemented on several microcon­
trollers with either a single instruction or a small sequence of instructions isolated in
such a way that they are positionally independent, i.e. the structure of each sequence
is independent of its location in the full body of code.

As we have seen, we need to find the set of instructions common to many micro­
controllers that can be used to implement port I/0, fast decrementing of values and
bit-wise logical operations.

Port I/0 For implementing port I/0, we note that while the ZSO, PIC and the
Freescale microcontrollers provide direct access to port values via registers, members
of the Intel MCS-51 family do not incorporate I/0 port electronics. Access to ports
for these microcontrollers follows a scheme more involved than simply reading the
current port value from a register. Therefore we define the need to obtain a port
value and load it into a register, where individual bits can be tested.

Timing Operations In order to count down time intervals, the microcontroller
needs to decrement specific, pre-determined values stored in registers. The term
register, for members of the ZSO, PIC and Intel families, refer to the RAM directly
addressable by the microprocessor. These registers provide a scratchpad area where
calculations can be carried out, a function call stack implemented, etc. The Freescale
MC68HC08AB16A, on the other hand, distinguishes between RAM and registers, by
referring only to the special purpose locations within the CPU as registers, and to the
rest of available scratchpad storage as RAM. Henceforth, we will refer to all scratchpad
storage available as being divided into registers. It is in this scratchpad area that we
need to store our values to be counted down for implementing timing constraints. We
therefore define the need to store literal, pre-calculated values in registers, so that
they may be counted down in order to implement the timing requirements that may
be made.

One Working Register In order to decide whether a message has arrived at a port
location, we will need to test bits within that port value. In order to do so, we define

26

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

a need to obtain this value, store it in a working register and perform logic operations
on it, such as testing or setting individual bits. All microcontrollers surveyed provide
either a dedicated working register, known as the accumulator, or provide their entire
RAM, one location in which can be set aside for this purpose.

In light of these needs, we define a pseudo-assembly language which will be the
target language of our method. This language is purposely very general and makes
very slim assumptions about the capabilities of any microcontroller. As a result, it
is likely that rna y of the modern microcontrollers relevant to this method include
instructions which could achieve a result in one instruction which would require two
or more instructions in our proposed language. As an example, consider a possible
instruction andi RO, Rl, M, which assigns to register RO the result of the bitwise AND
operation of the contents of register Rl and the literal value M. In our language, this
is achievable wit two instructions. Though peephole optimization [McK65] could
account for this seeming redundancy at the final stages of the development, it would
be an incorrect action to take, as the values calculated for implementing delays are
based on the ultimate instructions that will be executed. As the step of calculating
these values would precede any possible optimization steps, the final implementation
code must not be changed in any way in order to preserve the validity of the timing
calculations. Introducing architecture-specific optimizations in such a way that the
timing calculations are correct implies creating new timing calculations for each target
architecture, which defeats the goal of this method.

The generic n ture of our language allows straightforward translation to any mi­
crocontroller instruction set. An example can be found in Chapter 8.

Definition 12. The pseudo-code language is comprised of the following instructions.
Any of the instructions can be prepended by a textual label followed by a colon, as
long as the label is an unique token.

• load immediate register value - load the literal value value in the register register

• decrement register - decrement the value in register by 1

• jump label - unconditional jump to the label label

• jump if not zero register label - check if the value stored in the register register
is not 0 and if so jump to the label label

27

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

0

• jump if zero register label - check if the value stored in the register register is
0 and if so jump to the label label

• load port to register port register -load the value at port to the register register

• load register to port register port - load the register register to the port port

• AND register mask - perform the bitwise AND of the value in register and the
literal value mask and store the resulting value back in register

• OR register mask - perform the bitwise OR of the value in register and the
literal value mask and store the resulting value back in register

The set of all program listings obtainable from these instructions is defined as
follows.

Definition 13. Let Assembly be the set of all program listings obtainable from the
language defined above.
0

4. 6 Exact Timing

Since exactly satisfying a timing constraint such as "output message A 50 millisec­
onds after entering state S" in hardware is at best a coincidence [WDR05], we will
choose the closest value that the microcontroller can satisfy.

For clock predicates of the form x = a we will require that a tolerance value 8 be
provided as part of the specification that will accommodate the hardware. Therefore,
for this type of clock constraint, we will implement the closest value a* that the
microcontroller can achieve, such that a ~ a* ~ (a + 8).

For clock predicates of the form x E [a, b] we will instead implement the values a*
and b* closest to a and b respectively, such that a ~ a* and b* ~ b. As we shall see
later, these transitions are implementable only if the largest sampling period is not
larger than the width of the time interval [a, b].

28

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

4. 7 Implementation Functions

We now introduce two functions, ImplementTransition and ImplementStaylnState
with the following signatures, where TA is the set of all timed automata, Assembly
is the set of all program listings as defined above and the restriction of a graph
G = (V , E) to a set of nodes R ~ V is the sub-graph of G obtained by removing
all nodes in V - R and the corresponding edges [Pif91]. The start and end states
of the restriction are set by the direction of the remaining edge. In the context of
this method, the restrictions passed to ImplementTransition will always comprise two
nodes and one e ge, as we shall see in Chapters 6 and 7.

• Implement Transition: (TAxlR) -t (Assemblyx TAxlR), a function that takes as
an argument the restriction of the specification automaton to the two vertices
of any chosen edge and the time at which this edge becomes enabled in the
implementation. It returns the pseudo-assembly listing of the implementation,
a timed automaton that models the behaviour of the implementation, and the
time at which this edge becomes disabled in the implementation if it is not made.
This time value is used by ImplementStaylnState below to deal with small gaps
introduced by the implementation during which no transition is enabled.

• Implement8taylnState : TA-t Assembly x TA , a function that uses Implement­
Transition on each edge outgoing from a state in order to build up the assembly
listing impl menting the behaviour of the system while in that particular state.
This function will be called for restrictions of the specification automaton to
each state and its immediate neighbours and it will return the pseudo-assembly
listing oft e implementation and a timed automaton modeling the behaviour
of this implementation.

Used together, these functions will enable us to create an algorithmic approach to
synthesizing from a specification the implementation, as well as a timed automa­
ton model of the behaviour of the implementation. Chapters 5 and 6 construct the
definitions of these two functions which will be used in Chapter 7 in building this
algorithm.

29

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

30

Chapter 5

Transitions With No Clock
PredicCJttes

This chapter will develop code for each type of outgoing transition that does not
exhibit a timing constraint, i. e. whose clock predicate is always True. This type of
transition makes no requirement regarding the time at which the transition is made.
Therefore whether the transition is taken or not depends only on other actions that
the transition sti ulates:

1. The transition has no other stipulations, in which case it is made at will, or not
at all.

2. The transition stipulates an input action, meaning that the transition is only
made when that input becomes available.

3. The transit ion stipulates an output action, in which case the transition is made
when that output is generated, or not at all.

4. The transition stipulates both an input and an output action, in which case the
input is necessary for the transition to be made, but once the input is received
the transiti n still need not be made.

Transitions which exhibit timing constraints are different in that on top of actions
shown on the transition, the timing constraint must also be taken into account in
deciding when the transition is made. For this reason the code for transitions with
no timing constraints is simpler and will be developed in this chapter. Chapter 6
generalizes this code by introducing the timer mechanism described in Chapter 4 into
the code generated for transitions with timing constraints.

31

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

It is important to note that any state of a deterministic timed automaton having
outgoing transitions with no timing requirements can only have one outgoing tran­
sition. Because of this, for such transitions the input automata to both Implement­
Transition and ImplementStaylnState are very similar. For each transition we present
the listing of the implementation together with an automaton that models the be­
haviour of this implementation. These are the corresponding outputs of the function
ImplementStaylnState.

5.1 Useful Definitions

Before we proceed, we must define a new function that will be used in carrying out
our timing calculations.

Definition 14. Let the function T : Assembly ---+ JR. map to a program listing in the
set Assembly the amount of time that the chosen microcontroller takes to execute the
command or group of commands that together implement that program listing. Note
that these listings can be individual pseudo-assembly instructions. At implementation
time, this function must be defined for every architecture considered.
D

5.2 Transition with No Markings

Figure 5.1: Transition with No Markings

The transition illustrated in Figure 5.1 does not make any requirement of the
software. The clock predicate on this transition is True, so it is always enabled. It is
up to the implementation to decide when to make the transition. It is noteworthy that
for the automaton to remain deterministic, if this transition is part of a number of
outgoing transitions from any state, it will be the only enabled transition. Therefore,
the only thing that the software can do is move on to the next state. For simplicity,

32

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

however, we choose to remove transient states such as SO from our allowable automata
by changing each edge whose target state is SO to an edge whose target state is S 1 and
also removing the node SO. This approach will be adopted later in the algorithmic
approach to generating the implementation.

5.3 Transitions On an Input

These transitions specify that the software must check the input corresponding
to the message on the edge for the value that prescribes a message being received.
Timing constraints that are omitted from edges are assumed to be True, therefore
this transition s ecifies that the software must wait in this state until the input is
received. The transition is enabled, but only once the message is received is the
automaton allowed to make the transition. While in this state, the software must

E [Tmin, Tmax]

X:= 0

Figure 5.2: Transition on an input only and the behaviour of its implementation.

simply loop whil checking whether the message has arrived (corresponding message
bit(s) has/have the correct value) and duly make the transition when it does, or
remain in place indefinitely. The following pseudo-code illustrates how this is done.
Let P be the port , WR the working register and M the mask value.

33

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

so_o_o: load port to register P WR
AND WR M
jump if not zero WR SLO_O
jump so_o_o

From the code above it is easy to see that once the input has been generated in the
real world, the earliest that the software can detect it is

Tmin = T(load port to register)+ T(AND) + T(true jump) (5.1)

time units after this moment. At the latest, the input will be detected

Tmax =2T(load port to register)+ 2T(AND)

+ T(false jump)+ T(true jump)
(5.2)

time units after this moment. If the signal is generated in the real world before
the state S0 is entered, the time to detection once the state is entered will lie in
[T min, T max]· The transition that models the implementation's behaviour is shown in
Figure 5.2. Therefore, for input automata like that shown on the left of Figure 5.2,
the function Implement Transition is defined as the tuple formed by the listing above
and the automaton on the right in Figure 5.2.

5.4 Transitions On an Output

The clock constraint for this type of transition is True, meaning that the automaton
can stay in state SO indefinitely before it decides to send the message A. Therefore the
implementation has the freedom of choosing when the signal is sent. Practically, the
software can most quickly achieve this by, without any delay or extra work, sending
the message and moving to the next state. This behaviour yields the simplest code,
though operational aspects may dictate a different approach to implementing this
kind of transition. Let P be the port, WR the working register and M be the mask
value.

so_o_o: load port to register P WR
OR WRM
load register to port
jump SLO_O

34

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

Figure 5.3: Transition on an output only and the behaviour of its implementation.

The message can be sent in exactly

T0 = T(load port to register)+ T (OR) + T(load register to port) (5.3)

time units and the jump to the next state can be made in an additional

T1 = T(unconditional jump) (5.4)

time units. The ehaviour of the implementation is modeled by the automaton on
the right in Figure 5.3. Therefore, for input automata like that on the left in Figure
5.3, the function Implement Transition is defined as the t uple formed by the listing
given above, together with the automaton on the right in Figure 5.3.

5.5 Transition On an Input with Output

This is a combmation of the two previous types of transition, where the software
must wait until it receives a particular input before it can send an output. As before,
the clock constrai t on this transition is True, though the ordering of the two events is
strict: B can only be sent after A is received. Therefore it is at the implementation's
discretion how late after the arrival of A the message B is sent and the transition to

35

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

B!
E [Tmin, Tmax]

X:= 0

Figure 5.4: Transition on an input with output and the behaviour of its implementa­
tion.

the next state is made. This is achieved as follows. Let Prcv be the port where the
message is received, Psnd the port where the message is sent, Mrcv the mask value for
the received message, Msnd the mask value for the sent message and WR the working
register.

so_o_o:

SO_O_l:

load port to register Prcv WR
AND WR Mrcv
jump if not zero WR SO_O_l
jump so_o_o
load port to register Psnd WR
OR WR Msnd

load register to port WR Psnd

36

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

jump SLO_O

The best and worst times for sending the message upon receipt of the input are
therefore defined as follows , and the behaviour is modeled in Figure 5.4.

Tmin =T(lo d port to register)+ T(AND) + T(true jump)

+ T(load port to register) + T(OR) + T(load register to port)
(5.5)

T max =3 T (load port to register) + 2 T (AND)

+ T(false jump)+ T(true jump)+ T(unconditional jump) (5.6)

+ T(OR) + T(load register to port)

T0 = T(unconditional jump) (5.7)

Therefore, for timed automata like that on the left in Figure 5.4, the function Implement­
Transition is defi ed as the tuple formed by the code listing presented above, together
with the behaviour automaton on the right in Figure 5.4.

5.6 Defining ImplementStaylnState

For transitions of the type presented in this chapter, the function ImplementStayinState
is defined as the first and second projections of the function Implement Transition on
the same input.

37

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

38

Chapter 6

Transitions With a Clock Predicate
Over One Clock Variable, Always
Reset

This chapter will deal with each type of outgoing transition exhibiting a timing con­
straint. These transitions are different from those treated in the previous chapter in
that they are used to specify timing constraints on the implementation. A transition
exhibiting a timing constraint only remains enabled as long as the timing constraint
is satisfied by th current value of the clock variable on which it is predicated. For
simplicity, and without restricting the space of useful applications approachable by
this method too much, we have chosen to restrict our attention to a single clock
variable which is · eset on each transition.

6.1 States with Multiple Outgoing Transitions

Whereas transit ions with no timing constraints can exist only as singleton outgoing
transitions, transitions exhibiting timing constraints can exist in sets of at least one
edge outgoing from the same state. For this reason, we need to develop an uniform
way for the implementation to step through the code blocks implementing the var­
ious transitions as they become disabled and enabled. To this end, for transitions
with timing constraints we need to define an additional value, the time at which it
will become inactive if the transition is not taken. That is, the time when the im­
plementation moves from a block of code implementing one transition to the code
block implementing the transition that becomes enabled next, according to the clock

39

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

0

f: Inactivity ·~
I delay I

lnactlvlty k
dl!lay I

Transition j enabled

Times that the implementation
can meet due to granularity

Figure 6.1: Approximating time intervals at implementation time.

predicates. This also indicates an ordering in time exhibited by the set of outgoing
transitions from any state.

Naturally, a practical automaton will contain a majority of states containing mul­
tiple outgoing transitions. The time that the automaton spends in any such state
will be divided into (perhaps contiguous) non-overlapping sub-intervals as suggested
by Figure 2.1. Assume two of the outgoing transitions from a given state, i and j,
such that transition i spans [li, ui] and j spans (l1, u1]. In the case where ui = z1, if
transition i is not made, a gap in time will be introduced until the next transition
becomes enabled, due to the granularity of the polling loop during the time [li, ui]·
To account for this gap in the general case, and to ensure that transition j is indeed
enabled at a time l1* ~ z1, a delay will be introduced between u; and l1*. In the case
in which these sub-intervals are not contiguous, this delay will be extended to cover
this gap. The values u; and uj are the values at which the microcontroller stops
executing the block of code implementing the currently enabled transition when it
becomes disabled. This situation is summarized in Figure 6.1. For each transition
i, the value u; will be one of the outputs of the function JmplementTransition. The
other two outputs will be the code listing implementing that transition and the timed
automaton modeling the behaviour of the implementation.

The necessary delay can be implemented with code that is identical to the code
implementing the type of transition in Figure 6.2, where a now targets the value
(z1 - u;), and the value a* that is actually implementable, will satisfy lj = u; + a*.
Every state having multiple outgoing transitions will require this delay mechanism.

40

M.A.Sc. Thesis - - V. Bandur - CAS, McMaster University

Please note tha.t because we have chosen to only implement automata with one
clock variable, the clock variable is implicitly reset between transitions. This will
appear in the calculations following.

6.2 Definitions

First we define a function which will be used in determining the optimal counter
register values. We also introduce new notation for term substitution.

Definition 15. Tspec(N) is the total amount of time that the microcontroller takes
to execute a fragment of code indicated by spec using N counter registers.
D

Notation 1. For a recursively defined function F(N), let F(N)[A ~---? B] denote the
recursive substitution of the variable A in F(N) by the term B. D

6.3 Transitions Without Messages

6.3.1 Timing Constraint x = a

This type of tr nsition states that once in this state, the software must wait exactly
a time units before moving to the next state, essentially delaying execution. Since it
is impossible for an implementation to meet an ideal requirement such as this, the
best case scenari is that the implementation make the transition on a value a* such
that a ~ a* ~ (a+ <5). If it is impossible to choose a value a* to satisfy the condition

Figure 6.2: Transition at an exact point in time and the behaviour of its implemen­
tation.

41

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

above, then under the framework of this method the hardware can not satisfy the
tolerance set on the value a and it must be relaxed or different hardware chosen.

The development of this code starts from the simple case where a single register
counting down to 0 provides a time delay large enough to implement this transition.
If a is too large to be implemented using one counter register, more registers can be
added.

SO_i__O:

SO_i__l:

SO_i__N:

load immediate R1 a1

load immediate RN aN
decrement R 1

jump if 0 R 1 SO_L2
jump 1

decrement RN
jump if 0 RN SLO_O
load immediate RN-1 aN-1

load immediate R1 a 1

jump SO_L1

For any number N of registers, the maximum delay that can be introduced by this
code is,

where

T max(N) = Tsetup(N) + Tdelay(N) + Texit(N)

Tsetup(N) =NT(load immediate)

Tdelay(N) =(MaxRegVal- 1)[Tdelay(N- 1) + Texit(N- 1)
+ T(decrement) + T(false jump)

+ (N- 1) T(load immediate)+ T(unconditional jump)]

Texit(N) = Tdelay(N- 1) + Texit(N- 1) + T(decrement)

+ T(true jump)

42

(6.1)

(6.2)

(6.3)

(6.4)

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

and MaxRegVal is the maximum value that can be stored in a register in the chosen
microcontroller (255 for an 8-bit register, 65535 for a 16-bit register etc.)

In order to select the number of registers required for the delay, we need to find
the smallest integer N such that a ~ T max (N). By the formula T max (N) above,
this gives us the largest delay possible for N registers. However, in order to satisfy
the timing requirement, we need to find a delay D such that a ~ D ~ (a + c5),
where D = Tmax(N)[MaxRegValt--t aN]· Therefore, we solve the integer optimization
problem

min{D-a} (6.5)

subject to
a~ D ~(a+ c5) (6.6)

for the values of ai, Vi E [1, N]. This will give us a new value a* at which the
microcontroller will make the transition in the real world.

If such a value a* does not exist, then this method can not implement this transition.
The behaviour of the implementation is modeled by the automaton in Figure 6.2. It
is noteworthy th t as this will be the last transition to become enabled from this
particular state, the function ImplementTransition is defined to return -1 for the
time at which this transition becomes disabled. Therefore for automata like that on
the left in Figure 6.2 the function ImplementTransition returns a tuple formed of the
listing provided bove, the behaviour automaton on the right in Figure 6.2, and the
value -1.

Note This type of transition models exactly the type of delay that must be im­
plemented between transitions of a state with multiple outgoing transitions. The
development shown here is therefore intended to support that aspect of the code gen­
eration procedure. Usually, however, whenever this type of transition co-exists with
others outgoing from a state, it will either be the first transition to become enabled
or the last to be made. In the first case, the value a appearing on the transition in
Figure 6.2 will remain unchanged per the discussion at the beginning of the chapter,
and code will be generated for it per the development above. In the second case,
however, the value a will be the target of the inter-transition delay described at the
beginning of the chapter. The value a* as determined by the analysis in this section
will then instead be determined by the phase of the method that generates the delay
between this transition and the one immediately preceding it. Therefore this code

43

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

need not be generated again and the transition to the state Sl can be made directly
after the preceding transition becomes disabled at time a* as desired.

6.3.2 Timing Constraint x E [l, u]

Figure 6.3: Transition at a timex E [l, u] and the behaviour of its implementation.

At implementation time, this type of constraint (see Figure 6.3) can be treated
as a constraint of the form x = a, with a anywhere in the interval [l, u]. That is,
the microcontroller can choose any value a* E [l, u] at which it is able to make the
transition. For the purposes of re-using the code and the timing analysis developed
in the previous section, a value l~u may be chosen as the target value a, without any
need for a value 8. This choice obviously depends on how the width of the interval
[l, u] relates to the timing resolution specified.

If it is impossible to make the transition at some time a* E [l, u] then the transition
is not implementable. The behaviour of the implementation is modeled by the au­
tomaton in Figure 6.3. Therefore for automata like that on the left in Figure 6.3, the
function ImplementTransition is defined as the tuple formed by the listing provided
above, the behaviour automaton on the right in Figure 6.3, and the value -1.

6.4 Transitions with Messages

These are transitions that satisfy more common needs of reacting to inputs from
the environment and sending outputs, all subject to timing constraints.

44

M.A.Sc. Thesis - - V. Bandur - CAS, McMaster University

6.4.1 One Input, Timing Constraint x =a

Figure 6.4: Tran.'ition on an input at a time x = a and the behaviour of its imple­
mentation.

Since this transition can be made only if the input A is available at the exact point
in time a, the closest interpretation applicable to an implementation is that a single
sample of the signal A be taken at a time a* such that a ::; a* ::; (a + 8) and the
transition be made if A is available.

As mentioned in Section 6.1, at implementation time the value a* will be deter­
mined, if it exists , by a previous phase in the code generation procedure, and the time
up to a* filled up either by other transitions being enabled, or by a delay. Therefore
all that is left to be done, once the time x = a* is reached, is for the implementation
to sample the message A. Assume that P is the port, M is the message mask and
WR the working register.

SO_i_O: loa port to register P WR
AND WR M
jump if not zero WR SLO_O

45

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Once the message is sampled, the transition to the next state can either be completed
at

T0 = T(load port to register)+ T(AND) + T(true jump) (6.7)

if A is available, or the transition becomes disabled at

T1 = T(load port to register)+ T(AND) + T(false jump) (6.8)

Therefore (a* + TI) is returned by Implement Transition as the time at which the
transition becomes disabled. Figure 6.4 models the behaviour of the implementation.
For automata like that on the left in Figure 6.4 the function ImplementTransition is
defined as the tuple formed by the listing provided above, the behaviour automaton
on the right in Figure 6.4, and the value (a*+ T1).

6.4.2 One Output, Timing Constraint x = a

This is a common type of transition. It stipulates that the output B be issued
at time a. As before, the implementation will aim for a value a* such that a ::;
a* ::; (a + <5). If this value can not be found, this transition can not be implemented.
Similarly, the time up to x = a* will be filled by other actions. Assuming the same
register, port and mask names as in the previous case, the transition is implemented
by the following code.

SO_i_O: load port to register P WR
OR WRM
load register to port WR P
jump SLO_O

This behaviour of the implementation is shown in Figure 6.5.

To= T(load port to register)+ T(OR) + T(load register to port)

T1 = T(unconditional jump)

(6.9)

(6.10)

This transition, once enabled, will be taken, so ImplementTransition is defined as the
tuple formed by the listing provided above, the behaviour automaton in Figure 6.5,
and the value -1.

46

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

B!
=a*+ TO
X:= 0

Figure 6.5: Transition on an output at a time x = a and the behaviour of its imple­
mentation.

6.4.3 One Input, Timing Constraint x E [l, u]
These transitions can only occur if the specified input is received in the time frame

defined in the clock constraint. The software must check for the input until the last
possible moment, making sure that the arrival of the input is not missed at the very
moment when the transition is about to be disabled. Based on how much time the
microcontroller takes to decode the input and decide upon the symbol's arrival, an
exact value can be determined for the upper endpoint of the time interval up to
which the microc ntroller is guaranteed to detect arrival of the input symbol, given
that the signal sa tisfies the timing resolution [WLH05] specified for it. As mentioned
in Section 6.1, the implementation will only be able to activate this transition at some
time l*, l ~ l* ~ u (usually l ~ l* « u, as the inteval [l, u] will be much wider than
[l, l*]).

In the general case of N registers, where P is the port, WR is the working register
and M is the mask value, we have,

SO_i__O: load immediate R1 a 1

47

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

E [Tmin, Trnax]

X:= 0

Figure 6.6: Receiving an input within a time frame and the behaviour of its imple­
mentation.

SO_i__1:

SO_i_N:

load immediate RN aN
decrement R1
jump if 0 R1 SO_i__2
jump SO_i__(N + 1)

decrement RN
jump if 0 RN SO_i__O_NoRcv
load immediate RN-1 aN-1

load immediate R1 a1
jump SO_i_(N + 1)

SO_i__(N + 1): load port to register P WR
AND WR M
jump if not 0 WR SLO_O
jump SO_i_1

48

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

In order to determine the values ai we need to determine how many registers are
required to allow for a maximum delay equal to the total width of the time interval.
The largest total delay for any number N of registers is given by the formula,

The constituents of this formula, along with the base cases are as follows.

Tsetup(N) =(N) T(load immediate)

Tdelay(N) =(MaxRegVal -1)[Tdelay(N -1) + Texit(N -1)

+ T(decrement) + T(false jump)

+ (N- 1)T(load immediate)+ T(unconditional jump)

+ T(load port to register)+ T(AND)

+ T(false jump)+ T(unconditional jump)]

Texit(N) = Tdelay(N- 1) + Texit(N- 1) + T(decrement)

+ T(true jump)

Tsetup(O) = Tdelay(O) = Texit(O) = 0

(6.11)

(6.12)

(6.13)

(6 .14)

The number N of registers chosen must allow a delay large enough to cover the
interval [l*, u], with (u - l*) ~ T max (N). Therefore, the number of registers N is the
smallest integer that satisfies the inequality above.

Once N has been selected, the values ai that must be stored in each of these
registers must be determined. In order to do so, we need the last possible moment at
which the transition is still enabled. This time is given by the following formula.

Tlatest(N) =Tlsetup(N) + Tldelay(N) + Tlexit(N) (6.15)

The constituents of this formula and the base cases are as follows.

Tlsetup(N) ==NT(load immediate) (6.16)

49

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Tzdelay(N) =(aN- 1)[Ttdelay(N -1) + Ttexit(N- 1) + T(decrement)

+ T(false jump)+ (N- 1) T(load immediate)

+ T(unconditional jump)+ T(load port to register)

+ T(AND) + T(false jump)+ T(unconditional jump)]

Ttexit(N) =Tzdelay(N- 1) + Ttexit(N- 1) + T(decrement)

+ T(true jump)

Ttdelay (0) = Tlexit (0) = Tzsetup (0) = 0

(6.17)

(6.18)

In order to select our values for ai we solve the integer optimization problem,

min (u -l*)- Tzatest(N) (6.19)

subject to
Tzatest (N) :::; (U - l*) (6.20)

This will give us the time u* = T max(N)[MaxReg Val 1----t aN] at which the transition
becomes disabled if the message does not arrive.

In this general case, the reaction time to the input A from the real world will be
t E [Tmin, Tmax] where,

Tmin =T(load port to register)+ T(AND) + T(true jump) (6.21)

Tmax =T(load port to register)+ T(AND) + T(false jump)

+ T(unconditional jump)+ (N- l)[T(decrement) + T(true jump)]

+ T(decrement) + T(false jump)+ T(load port to register)

+ T(AND) + T(true jump)

(6.22)

The behaviour of the implementation is illustrated in Figure 6.6. For automata
like that on the left in Figure 6.6, the function ImplementTransition is defined as
the tuple formed by the listing provided in this section, the behaviour automaton on
the right in Figure 6.6, and the value (l* + u*) as the time at which the transition
becomes disabled.

6.4.4 One Input, One Output, Timing Constraint x E [l, u]
Within the time frame allowed by the clock constraint, these transitions stipulate

exactly the same behaviour as those treated in the previous section, with the addi­
tional requirement that the software generate an output in the time interval specified.

50

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

B!
E [Tmin, Tmax.]

X. := 0

= T(unconditional jump)
X.:= 0

Figure 6. 7: Input and output within a time frame and the behaviour of its implemen­
tation.

In the general case of N registers, where WR is the working register, Prcv is the
port on which the message is received, Psnd is the port on which the message is sent,
Mrcv is the mask value for the received message and Msnd is the mask value for the
sent message, we have,

SO_LO:

SO_i_l:

SO_i_N:

load immediate R1 a1

load immediate RN aN
decrement R 1

jump if 0 R1 SO_i_2
jump SO_i_(N + 1)

decrement RN

51

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

jump if 0 RN SO__i_O_NoRcv
load immediate RN-1 aN-1

load immediate R1 a1
jump SO_i_(N + 1)

SO__i_(N + 1): load port to register Prcv WR
AND WR Mrcv

jump if not 0 WR SO__i_(N + 2)
jump SO_L1

SO__i_(N + 2): load port to register Psnd WR
OR WR Msnd

load register to port WR Psnd

jump SLO_O

We determine the values ai similarly. The largest total delay for any N registers is
given by the formula,

(6.23)

The constituents of this formula and the base cases are as follows.

Tsetup(N) =(N) T(load immediate) (6.24)

Tdelay(N) =(MaxRegVal- 1)[Tdelay(N -1) + Texit(N- 1)
+ T(decrement) + T(false jump)

+ (N- 1) T(load immediate)+ T(unconditional jump)

+ T(load port to register)+ T(AND) (6.25)

+ T(false jump)+ T(unconditional jump)]

Texit(N) =Tdelay(N- 1) + Texit(N- 1) + T(decrement)

+ T(true jump)

Tsetup(O) = Tdelay(O) = Texit(O) = 0 (6.26)

As before, the number of registers N needed is the smallest integer that satisfies
(u -l*) :S Tmax(N).

52

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

Similarly the values ai that must be stored in each of these registers must be
determined. As before, we need the last possible time at which the transition is
enabled.

Tlatest (N) = Ttsetup (N) + Tldelay (N) + Ttexit (N)

T lsetup (N) =NT (load immediate)

Tldelay(N) =(aN- 1)[Ttdelay(N- 1) + Ttexit(N -1)
+ T(decrement) + T(false jump)

+ (N- 1) T(load immediate)+ T(unconditional jump)

+ T(load port to register)+ T(AND) + T(false jump)

+ T(unconditional jump)]

Ttexit(N) = Ttdelay(N- 1) + Ttexit(N- 1) + T(decrement)

+ T(true jump)

Ttdelay(O) = Ttexit(O) = Tlsetup(O) = 0

(6.27)

(6.28)

(6.29)

(6.30)

Also as before, if the message does arrive at this latest possible time, the software
needs time to process the input, and it also needs to generate the output B before
making the transition to the next state. This must be done within the upper limit
of the time interval, (u - l*). Therefore we solve the following integer optimization
problem for the values ai.

. { (u - · l*)- [Ttatest(N) + T(load port to register)+ T(OR)}
mm

+ T(load register to port)+ T(unconditional jump)]

subject to

{
Ttatest(N) + T(load port to register) + T(OR) } < (u _ l*)
+ T(load register to port)+ T(unconditional jump) -

(6.31)

(6.32)

This will give us the time u* = Tmax(N)[MaxRegVal~-t aN] at which the transition
becomes disabled if the message does not arrive. The behaviour of the implementation
is modeled in Figure 6.7. Therefore, for automata like that on the left in Figure 6.7,
the function ImplementTransition is defined as the tuple formed from the listing
provided in this section, the behaviour automaton on the right in Figure 6.7, and the
value (l* + u*) as the time at which the transition becomes disabled.

53

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Also, the transition will be made within the time interval [T min, T max] within ap­
pearance of message A in the real world.

Tmin =2T(load port to register)+ T(AND) + T(true jump)

+ T(OR) + T(load register to port)

Tmax =3T(load port to register)+ 2T(AND) + 2T(false jump)

+ T(unconditional jump)+ N[T(decrement) + T(true jump)]

+ T(OR) + T(unconditional jump)

6.4.5 One Output, Timing Constraint x E [l, u]

(6.33)

(6.34)

As with transitions with only a timing constraint and no input/output, these tran­
sitions can be implemented by selecting a time anywhere in the interval [l, u] at which
to send the symbol. The simplest strategy here is to send the symbol once the tran­
sition becomes enabled. The time up to l will either be time during which other
transitions are enabled, or a delay, or a combination of the two, and the implementa­
tion will only be able to start execution of the corresponding block of code at some
time l* ~ l.

Let WR be the working register, P the port and M the mask value. The following
code implements this transition.

SO_i_O: load port to register P WR
OR WRM
load register to port WR P
jump SLO_O

If the message can not be sent and the jump to the next state made at time
(l* + T0) E [l*, u] then the transition is not implementable. The behaviour of the
implementation is modeled in Figure 6.8. Therefore for automata like that on the left
in Figure 6.8 the function ImplementTransition is defined as the tuple formed by the
code listing provided in this section, the behaviour automaton on the right in Figure
6.8, and the value -1.

T0 = T(load port to register)+ T(OR) + T(load register to port)

T1 = T(unconditional jump)

54

(6.35)

(6.36)

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

B!
=I*+ TO

Figure 6.8: Transition on an output in a time interval and the behaviour of its
implementation.

6.5 Defining ImplementStaylnState

We are now in a position to define the function that puts together the code im­
plementing each t ransition out of a state to construct the code for the total stay in
that state. One approach to this task is to define an algorithm by which the function
computes its outputs.

First it must be noted that the inputs to this function will be conditioned by the
main algorithm. We start by taking each outgoing edge and creating a list containing
the edges ordered in terms of the times at which they become enabled relative to
each other. This is straightforward from the clock predicate on each edge. Next, we
determine if the first edge is enabled at the time of entry into the source state. If
this is not the case, a delay is implemented per Chapter 6 until the time at which the
t ransition becomes enabled. We continue in this fashion with each pair of transitions,
generating code for them and for any gaps that may exist between them until the end
of the list.

This approach can be implemented by means of the following algorithm , where
'++' is used to denote appending an element to the tail of a list and '@@' denotes

55

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

string concatenation.

1: StateN a me +- N arne of current state
2: EdgeList +- All edges, ordered in time
3: NoEdges +-1 EdgeList I
4: Efirst +- Head (EdgeList)
5: Etast +- Head(Reverse(EdgeList))
6: StateCodeListing +- []
7: StatelmplAut +- (0, 0)
8: t t- 0
9: STA +- The restriction of the specification automaton to the source and target

nodes edge of Efirst
10: EOl +- Left boundary of time interval of edge Efirst
11 : if EOl =f. 0 then
12: (StateCodeListing, t) +- ImplementNoRcvDelay(STA, EOl)
13: end if
14: if State has only one outgoing edge Etast then
15: STA +-The restriction of the specification automaton to the source and target

nodes of Etast
16: (SCL, SIA, t) +- ImplementTransition(STA, t)
17: StateCodeListing +- SCL ++ DelayListing
18: StatelmplAut +- (Nodes(StatelmplAut) U Nodes(SIA), Edges(StatelmplAut) U

Edges(SIA))
19: Return (StateCodeListing, StatelmplAut)
20: end if
21 : for Each pair of edges Ei , Ej such that Ej immediately follows Ei i the order do
22: STA +-The restriction of the specification automaton to the source and target

nodes of Ei
23: (SCL, SIA, t) +- ImplementTransition(STA, t)
24: StatelmplAut +- (Nodes(StatelmplAut) U Nodes(SIA), Edges(StatelmplAut) U

Edges (SIA))
25: DelayListing +- []
26: if t =f. 0 then
27: Ejl +- Left boundary of time interval of edge Ej
28: (DelayListing, t) +- ImplementNoRcvDelay(STA , (Ejl- t))
29: end if
30: StateCodeListing +- StateCodeListing ++ SCL ++ DelayListing

56

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

31: end for
32: STA +-- The restriction of the specification automaton to the source and target

nodes of Etast

33: (SCL, SIA, t) +-- ImplementTransition(STA, t)
34: StateCodeListing +-- StateCodeListing ++ SCL
35: State!mplAut +-- (Nodes(State!mplAut)UNodes(SIA), Edges(State!mplAut)UEd­

ges(SIA))
36: Return (StateCodeListing, StatelmplAut)

The function ImplementNoRcvDelay : (TA x IR) - (Assembly x IR) is defined as
returning, for an input automaton and a delay value, the listing developed in section
6.3.1 with all the labels having "NoRcv" appended together with the actual delay
value that the hardware can provide. The automaton provided as input is used in
extracting the correct state names to be used in the code listing produced.

The meaning of the functions Union, Nodes and Edges used in the algorithm is
clear from the context.

57

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

58

Chapter 7

Implementation

7.1 lmplementable Automata

In this section we will develop a procedure for checking whether an automaton spec­
ifies an implementable system given the chosen architecture.

7.1.1 Allowable Transitions

Earlier we developed code for every possible type of outgoing transition that can
appear in a time automaton specification under this scheme. This is intentionally a
subset of all possible transition types available to a timed automaton. However, the
t ransitions outgoing from each state in the automaton can only ever be in one of two
arrangements:

Type I Arrangement The state contains only one outgoing transition exhibiting
no clock predicate. All transitions described in Chapter 5 fall in this category.

Type II Arrangement The state has at least one outgoing transition which is
either

• a transition on a bounded time interval (predicates of the form x E [0, oo) are
disallowed)

• a transition on a single point in time with a clock predicate of the form x = a

59

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

For this type of transition we shall assume that contiguous time intervals specified
as closed at both ends do not overlap, and that the specification did not intend any
overlap. That is, any two intervals [a, b] and [b, c] are treated as [a, b) and [b , c]. 1

If any state contains outgoing transitions in any combination other than types I
and II above, the automaton would exhibit overlapping time intervals and thus non­
determinism. Non-determinism is beyond the scope of the present method.

7 .1. 2 Microcontroller Information

In order to determine if a specification is implementable we require a set of infor­
mation about the microcontroller:

1. The names of all the registers that are available for implementing the timer.

2. The names of all the ports on which each message in the automaton will be
received/sent.

3. The corresponding message masks for retrieving/sending messages via ports.

4. The assembly code that corresponds to each instruction found in the pseudo­
assembly code developed hitherto.

5. The amount of time that each block of code above takes to execute on the
chosen platform.

7.1.3 Feasibility Check

The nature of both the microcontroller as well as the implementation that we target
dictate what subset of all timed automata specifications are indeed implementable.
Here we shall explore the aspects of our method that dictate what constitutes a
"feasible" specification.

1 During the course of developing this method it was found that all different combinations of
contiguousness arising in time intervals, i. e. [a, b] and [c, d], [a, b] and (c, d], [a, b) , (c, d], [a, b)
and [c, d] , yielded the same implementation. For this reason we adopted the convention of treat­
ing all contiguous intervals as [a, b], (c, d], even if they appear in any other combination in the
implementation.

60

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

First, we choose to target single-threaded, linear code with no other means of
structuring other than simple conditional jumps. This restriction in the implemen­
tation restricts any concurrency implied in a specification, namely nondeterminism
introduced by the concurrent activation of two or more transitions outgoing from the
same state. We therefore restrict implementable specifications to those that do not
exhibit nondeterrninism.

Second, the need to implement time intervals, effectively finite delays, poses a
restriction on implementable time intervals vis-a-vis the number of registers available
on the microcontroller targeted. Therefore, implementable specifications are further
restricted to those whose time intervals are implementable using the total number of
registers or amount of memory available on the target microcontroller.

Third, since our implementations employ polling in waiting for inputs from the
environment, the polling frequency will dictate the shortest time interval that can
be implemented to guarantee at least one sample inside the time interval. There­
fore, the space of implementable specifications is restricted further yet by the chosen
microcontroller to only those whose time intervals can all be implemented, given its
operating speed.

Therefore, a specification is implementable if the following conditions are all satis­
fied.

1. The specification exhibits no nondeterminism, i. e. no two edges outgoing from
the same state have overlapping time intervals, for all states of the specification.

2. For all transitions with timing constraints, the sample interval of the implemen­
tation must be small enough to accommodate the time intervals.

3. For all transitions with timing constraints, the microcontroller has enough free
registers to implement all the time intervals.

Condition 1 can be checked explicitly before any other work is done in the way of
generating an implementation. For conditions 2 and 3, explicit procedures can be
created to check them before any other work is done, or they can be checked along
the way for every transition in the specification as code is being generated. In what
follows, the latter approach is adopted without compromising correctness.

61

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

7. 2 Procedure for Generating Code

In this section we will develop a procedure for generating code for each state of
the specification automaton in accordance with the conditions for feasibility outlined
above. Since they must be checked for each transition of the specification automaton,
it is assumed that if at any step of the procedure conditions 2 and 3 are violated then
the procedure is terminated.

Using the two functions we defined before, ImplementTransition and Implement­
StaylnState, we can approach the problem of generating a complete implementation
as follows. Initially, we sanitize the specification automaton in order to make the algo­
rithm easier to visualize. This is achieved by removing transient states, as discussed
in Section 5.2, and by treating disjunctions and conjunctions in transitions exhibiting
them as discussed in Section 3.1. Next we check that no state has outgoing transitions
with clock constraints which overlap. At this point each edge will contain a single
clock constraint of the form x = cor x E [a, b], so it is easy to dertermine which time
intervals overlap. If no such transitions are found, we can continue. Iterating through
each node of the specification automaton, we incrementally construct the code listing
by concatenating the output of the function ImplementStay!nState (see Section 6.5)
on each state. At the same time, the model of the behaviour of the implementation
is constructed by combining the resulting implementation automaton for each state
into the final model.

This approach is implemented in the following algorithm. The input to the algo­
rithm is the complete specification automaton, Spec. Its output is the assembly code
listing for the chosen microcontroller, CodeListing, together with the timed automa­
ton model of its behaviour, ImplAut.

1: Split all edges in Spec with disjunctive clock constraints into multiple edges per
Section 3.1.

2: Remove all transient states from Spec per Section 5.2.
3:
4: if Spec exhibits nondeterminism then
5: Abort.
6: end if
7:

8: ImplAut +--- (0, 0) {The behavioural model of the implementation}

62

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

9: CodeListing +- Any platform-specific preamble code {The final code listing, a list
of instructions}

10:
11: for Each state S of the automaton do
12: StateAut +-The restriction of Spec to the stateS and its immediate neighbours
13: (State Code Listing, StatelmplA ut) +- ImplementStay!nState (StateA ut)
14: CodeListing +- CodeListing ++ StateCodeListing
15: ImplAut +- (Nodes(ImplAut) U Nodes(State!mplAut), Edges(ImplAut) U Ed-

ges (StatehnplA ut))
16: end for
17:

18: CodeListing +- CodeListing ++ Any platform-specific cleanup code

The performa ce of this algorithm is O(N +E) in the number of nodes N and
edges E in the specification, but depending on the method chosen for optimizing
the register valU<)S for each time interval, the performance can vary greatly. This
algorithm was followed manually in generating the implementation shown in the next
chapter.

63

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

64

Chapter 8

Case Study

This chapter shows the results of the application of our method to an example
specification. The nature of the example we have chosen to develop clarifies how
certain aspects of the interface between the environment and the implementation can
be treated. This chapter shows the applicability of this method to real problems and
gives an indication of the class of problems that can be tackled.

We start by exploring the microcontroller we chose to target and how information
can be gathered about any desired target microcontroller in the general case. We
then move on to xploring the example specification and how inputs and outputs are
linked to the environment. Finally, we follow our own method manually and generate
the implementation for the microcontroller we chose.

8.1 Micro controller Characteristics

Our microcontroller of choice is the Microchip PIC 18F452 [Inc06]. This microcon­
troller is relatively average in terms of core complexity, a key feature in providing an
unbiased case st dy of our method. As with any other micrcontroller available on the
market, the information below gathered for the 18F452 is available in the datasheet
provided by the manufacturer of the unit.

8.1.1 Oscillator

In general a microcontroller will have a maximum clock input frequency specified for
stable operation. This means that different input frequencies and oscillating sources
may be chosen for a microcontroller, depending on the application, as long as the

65

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

maximum frequency specified is not exceeded. A lower frequency will mean lower
power consumption but slower performance, suitable for a pacemaker or any other
application connected to a limited power source, whereas a higher frequency draws
more power but provides better performance, suitable for circuits connected to an
abundant power source.

Our particular setup has a 4 MHz crystal oscillator generating the clock input that
drives the microcontroller. Instructions take either four or eight cycles to execute, as
described below, yielding execution times of either 1.0 p,-second or 2.0 p,-seconds per
instruction.

8.1.2 Registers

The PIC 18F452 contains a total of 1536 bytes of random access memory. This
memory is accessible via banks of 256 bytes each, effectively 256 8-bit registers per
bank. Additionally, bank 0 is divided into two halves, the lower half, addresses
OxOOO to Ox07F provide 128 8-bit registers which are most conveniently addressable.
Therefore, in order to minimize the complexity of the code generated for this case
study we will only use those 128 registers in the first half of bank 0 and avoid the
overhead of switching banks for RAM (register) access. The accumulator register is
accessed by its mnemonic, WREG, and it will be used as the intermediate register
for the load port to register, load register to port, AND and OR instructions.

8.1.3 Instruction Set

The instruction set is of RISC design. All the instructions of the instruction imple­
mented by the 18F456 together with the timing characteristics of each can be found
in the unit's data sheet [Inc06].

8.2 Instruction Mappings and Execution Times

In order to implement our pseudo-assembly language on this, as well as any other
microcontroller, we need to know the mappings between each instruction in the set
proposed in Section 4.5 and the instruction set of the microcontroller. This mapping
is shown in the list below. Each instruction in the language proposed is implemented
by a group of at least one instruction in the microcontroller's instruction set in such a
way that they are positionally independent, that is, the correct operation of any one

66

~I.A.Sc. Thesis - V. Bandur - CAS , McMaster University

block in implementing the intended function of the corresponding pseudo-assembly
instruction is independent of its position among other such blocks.

Pseudo-Instruction

load immediate register value

decrement register-

jump label

jump if zero 1·egister label

jump if not zm-o register label

load port to 1 egister port WREG

load register to port WREG port

AND WREG mask

0 R WREG location

PIC 18F452 Code Time (J.Ls)

clrf WREG , 0
addlw value
movwf r·egister, 0

decf register, 1, 0

bra label

movf register, 0, 0
incf WREG , 0, 0
decf WREG, 0, 0
bz label

movf register, 0, 0
incf WREG , 0, 0
decf WREG , 0, 0
bnz label

movf port, 0, 0

movwf port, 1

a.ndlw mask

iorlw mask

3.0

1.0

2.0

4.0 if not tak­
en, 5.0 if tak­
en

4.0 if not tak­
en, 5.0 if tak­
en

1.0

1.0

1.0

1.0

Similar tables ca.n be compiled for any microprocessor with predictable instruction
execution times, i. e. incorporating no architectural enhancements, such as pipelining
and caching. lndE'ed this possibility makes our method applicable to a la rge gamut
of RISC microcont rollers.

67

:\I.A.Sc. Thesis - V. Bandur -- CAS, Mdviaster University

8.3 Example: A Metronome
1 A metronome is a mechanical device whose function is to sound out the expiration

of a time interval, helping a musician keep tempo. The timed automaton in Figure
8.1 specifies a metronome that keeps a tempo of 120, indicating two beats per second.
Serving as the indicator , we have selected a simple light signal that can be turned on
and off. The metronome can be started and stopped via the signals Start and Stop.
\Ve assume that these signals come from a push button, used as both the Start and
the Stop signals, depending on context.

Stop?
[0 ms, 500 ms)

X :=0

Light_ Off!

x = 500 ms
X:= 0

Stop?
E [0 ms, 500 ms)

X:= 0

Figure 8.1: Specifying a metronome.

We choose the input Start? to come from an active-low push-button connected to
bit 4 of port A. We choose the input Stop! to also come from the same button, but
in an active-high capacity. The light we intend to control is connected to bit 0 of
port B, so the output LighLOn! is an active-high message, whereas LighLOff! is an
active-1m"· message on the same bit. The pseudo-assembly code that implements this
automaton follows appears in Appendix A. The corresponding PIC18F4.52 assembly

10wing to the enormous effort invested in this work and the limited time allowed for its prepa­
ration, it is hoped that a modest and manual example application of the method will sufhce to
demonstrate its completeness and feasibility.

68

M.A.Sc. Thesis -- V. Bandur- CAS, McMaster University

listing is given in Appendix B and the timed automaton model of the implementation
is shown in Figure 8.3. Please note that the necessary platform-specific preamble is
a section of code that can appear at the beginning of the implementation proper and
can not be avoided. In our case it is the following section of code.

processor p18f452
#include "p18f452"
movlw OxOO ;set pins to output
movwf TRISB
movwf PORTB ;turn light off

Likewise it is possible that some architectures require cleanup code that, although
may never be rea hed at run-time, is required by the assembler. In our case this code
is the single com1 nand end that signifies the end of the listing.

8.4 Implementation Steps

We try to de onstrate that this method is implementable in a software tool by
explaining the more abstract steps fo the algorithm in detail.

• Step 1 As the method is only concerned with one clock variable, each term of
a disjunctive clock constraint defines a time interval over which the transition
is enabled. By comparing the interval endpoints, such a clock constraint can
be split up by removing the current edge from the set of edges and adding
individual edges to the set corresponding to each term in part.

• Step 4 As discussed before, non-determinism is introduced by time overlapping
time intervals. The clock constraint on each edge can be compared to every
other by comparing endpoints, and if found to overlap, the automaton is non­
deterministic.

• Step 12 Restrictions (essentially subgraphs) can be obtained for any two nodes
by finding in the set of edges all those whose source and target nodes are the
same, and which correspond to those chosen for the restriction.

The algorithmic definition of ImplementStaylnState is explained below.

• Step 2 At this point each edge outgoing from a state contains only one time
interval. Ordering all these edges in time is a trivial task on the interval end­
points.

69

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

X:= 0

X :=0

x E [0.006 ms, 0.013 ms]
X:= 0

Stop?
x E [0 ms, 500 ms)

X:= 0

X:= 0

E [0.008 ms, 0.028 ms]
X:= 0

Stop?
x E [0 ms, 500 ms)

E [0.008 ms, 0.028 ms]
X:= 0

Figure 8.2: Behaviour model of the implementation of the metronome specification.

70

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

The rest of the steps are straightforward. An implementation would benefit greatly
from the choice of a functional language, as lists are a natural choice of data structure.

8.5 Results

The metronome specification above was implemented by manually following the
method laid out in this thesis. As the specification indicates a frequency of the out­
put of 1 Hz, this was measured at run-time of the implementation with a Mastercraft
52-00052-2 multi eter [Mas] and found to be 0.999 Hz. This value agrees with the
predictions of the behaviour automaton. Part of the assembly code was also traced
manually and found to yield the time values indicated on the implementation automa­
ton. These two easurements give us confidence that the implementation is correct
with respect to its specification.

As only small ulse widths are measurable accurately with available equipment, a
Tektronix TDS 1 02 oscilloscope [Tek] was used to measure the timing characteristics
of the implementation of a much faster version of the specification. The specification
and behaviour a tomata are shown in Figures 8.5 and 8.5. The values measured
at run-time of this implementation agree with those predicted on the behaviour au­
tomaton within 0.1 p,s. Figure 8.5 shows these measurements. The first image notes
that the rising edge from the microcontroller 's pin is offset by 1.400 p,s from what the
oscilloscope records. The second figure shows the width of the pulse to be 258.4 p,s.
Subtracting the offset we obtain a pulse width of 257 p,s, in accordance with our
model's prediction.

Following all t e steps of the algorithm in Chapter 7 led to a straightforward and
error-free implementation process, easily automatable in a software tool. Such a
software tool would have to be provided with a database of code blocks implementing
the pseudo-assembly language in Section 4.5 and the corresponding amounts of time
required to execute these blocks, once the input clock frequency has been chosen
for the application at hand. The tool could either rely on third-party software for
solving the integer optimization problems associated with timed transitions, or it
could implement a brute-force (i. e. value-by-value) approach, at the very least, for
solving these problems. The latter approach is feasible due to the usually relatively
small number of counter registers per transition, as discussed in Chapter 4. A single­
threaded Python implementation of a brute-force algorithm for finding the optimum
register assignments, running on a computer equipped with a 2.0 GHz Intel Core Duo

71

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Stop?
x E [0 ms, 0.244 ms)

X:= 0

Stop?
E [0 ms, 0.244 ms)

X :=0

Figure 8.3: Specification of a faster metronome device.

processor takes under two seconds to yield a result for two registers, and just under
ten minutes for three registers. A brute-force implementation in an uninterpreted
language would perform far better.

The algorithm provides a timed automaton model of the implementation as one
of its outputs. Though we made no use of this output, other than to present it for
comparison with the specification, this automaton can be used to further study and
validate the implementation using a model checker.

72

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

X:= 0

x E [0.006 ms, 0.013 ms]

X:= 0

Stop?
x E [0 ms, 0.244 ms)

X:= 0

)(:= 0

E [0.008 ms, 0.028 ms]

X :=0

Stop?
x E [0 ms, 0.244 ms)

X :=0

E [0.008 ms, 0.028 ms]

X :=0

Figure 8.4: Behaviour of the implementation of the faster metronome device.

73

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

Figure 8.5: Oscilloscope measurements of the faster metronome device.

74

Chapter 9

Conclusions

This chapter summarizes our work and outlines what we believe are the major
contributions of this thesis to the field of hard real-time software development.

9.1 Concluding Remarks

This thesis develops a method for automatically synthesizing applications from their
specifications. It targets the synthesis of hard real-time code from timed automaton
specifications for simple microcontrollers that do not contain any architectural im­
provements for speed at the cost of instruction execution determinism, such as caching
and pipelining.

Our method starts with the characteristics of the microcontroller and works back­
ward toward a set of implementable specifications, determining what provisions those
specifications must make in order to obtain an usable implementation that satis­
fies as closely as possible the specification. This is primarily a matter of trying to
find implementations for timing requirements of the form, "emit output A at exactly
t = 230ms". Th ugh fulfilling such a timing requirement is practically impossible,
this method shows that it is possible to meet a very close approximation to this
requirement dete ministically.

We apply the method to the development of a software metronome on the Mi­
crochip PIC 18F452 microcontroller. We believe that the results obtained, within
the limitations of our testing methods, confirm the validity of our method and pro­
vide an optimistic outlook on the applicability of this method to embedded industrial

75

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

systems sitting very close to hardware in the control hierarchy. The most important
contributing factor to this outlook is the simplicity of the method in its approach to
generality: in targeting a very common subset of microcontroller instruction sets, the
method is applicable to any microcontroller architecture with deterministic instruc­
tion execution behaviour, through the collection and definition of a compact set of
attributes of the chosen architecture.

9.2 Contributions

This thesis makes two primary contributions to the field of hard real-time systems
specification and implementation.

• We propose a method for the automatic generation of implementations of hard
real-time systems from their timed automaton specifications. One result of
each implementation is a second timed automaton, a model of the behaviour of
the implementation that the implementation is guaranteed to fulfill, up to the
tolerances found inside the hardware, such as crystal oscillation frequency vari­
ations. This method can relieve designers of implementation details and of the
time and cost associated with implementation validation against specification by
providing a correct-by-construction method for generating the implementation.
Designers can thus concentrate on creating correct specifications.

• A second major contribution is the introduction of a way of dealing with specify­
ing timing tolerances in hard real-time systems specifications. A major obstacle
in hard real-time systems specification is dealing with constraints of the form
mentioned above. One way of dealing with such a constraint is trying to approx­
imate it as closely as possible and as well guarantee as little deviation from that
approximation as possible at run-time. This allows for more useful verification
results, as it reduces overall variability. To this end, a tolerance value must be
specified on the time value within which, if possible, the implementation will
choose a target value which it will always satisfy at run-time. We believe this
is a step forward in the specification of timing tolerances for real-time systems.

76

Chapter 10

Future Work

In developing this method several issues and opportunities for improvement arose
which could not be treated here. We believe that these avenues are natural extensions
and some of them improvements to this method and deserve their due mention.

Tool Support A natural extension to this method would be the development of
a tool that accepts a specification automaton, and together with a database of the
capabilities of any number of existing microcontrollers, generates the code automati­
cally.

Optimal Number N of Registers We have made a choice in this method to select
the smallest num· er N of countdown registers that will give us the necessary delays.
It seems that within the total number of registers available on a microcontroller for
this purpose, it may be possible to choose an optimal number N of registers that
will give a tradeoff between how closely we can match the specified values, either as
exact delays of the form x = a or as intervals, x E [l, u], and the overhead incurred in
initializing these registers at the beginning of the corresponding code segment, that
will yield a smaller sampling interval.

N ondeterminism As Choice Since nondeterminism is used often in software spec­
ification to introduce the notion of "choice" at implementation time, it may be possible
to use non-deterministic timed automata to this end.

Drift Analysis Loops in the specification can introduce drift because when a state
is revisited it may be revisited a bit later or earlier than specified. Using the original
implementation for the revisited state will introduce drift, as it may not take into

77

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

account this difference in arrival times. We would need to somehow assess the total
round-trip time for loops and use that value when generating code.

More Complex Behaviour It may be possible to augment the method to ac­
commodate more complex specifications that include global variables and actions on
those variables, multiple and outputs, as well as multiple clock variables.

78

Bibliography

[Abr96]

[AD94]

[AFM+02]

[And96]

[AVD76]

[BB91]

[BD91]

[BerOO]

Jean-Raymond Abrial. The B Book: Assigning Programs to Meaning.
Cambridge University Press, Cambridge, UK, 1996.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoret­
ical Computer Science, 126:183- 235, 1994.

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson,
and Wang Yi. Times - A tool for modelling and implementation of
embedded systems. pages 460-464. Springer-Verlag, 2002.

Charles Andre. Representation and analysis of reactive behaviors: A
synchronous approach. In Proc. CESA '96, pages 19 - 29, July 1996.

Pierre Azema, Robert Valette, and Michel Diaz. Petri nets as a com­
m n tool for design verification and hardware simulation. In DA C
'16: Proceedings of the 13th conference on Design automation, pages
109- 116, New York, NY, USA, 1976. ACM.

A. Benveniste and G. Berry. The synchronous approach to reactive
and real-time systems. Proceedings of the IEEE, 79(9):1270-1282, Sep
1991.

B. Berthomieu and M. Diaz. Modeling and verification of time de­
pendent systems using time Petri nets. Software Engineering, IEEE
Transactions on, 17(3):259- 273, Mar 1991.

Gerard Berry. The foundations of Esterel. In Proof, language, and
interaction: essays in honour of Robin Milner, pages 425- 454. MIT
Press, Cambridge, MA, USA, 2000.

79

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

[Cle08]

[Cor94]

[DE95]

[DOTY96]

[ea04]

[ET08]

[fCM08]

[FLOO]

[Haa04]

[Har87]

[HNSY92]

[Hoa85]

ClearSy. Clearsy system engineering, experte en specification
formelle systeme et logicielle avec la methode B. Online, 2008.
http:/ jwww.clearsy.com.

Intel Corporation. Intel MCS 51 micro-
controller family user's manual. Online,
http:/ /download.intel.comjdesign/MCS51/MANUALS/27238302.pdf,
February 1994.

Jorg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge
University Press, Cambridge, 1995.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos.
pages 208- 219. Springer-Verlag, 1996.

Alejandro Ramirez et. al. ArgoUML user manual. Online,
http:// argouml-stats. tigris.org/ documentation/manual-0.24, 2004.

Inc. Esterel Technologies. Esterel Studio.
http:/ jwww.esterel-eda.com/products/index.html.

Online, 2008.

Association for Computing Machinery. ACM Portal. Online, 2008.
http:/ jportal.acm.orgjportal.cfm.

Georg Frey and Lothar Litz. Formal methods in PLC programming. In
Proceedings of the IEEE Conference on Systems, Man and Cybernetics
SMC 2000, New York, NY, USA, Oct 2000. Institute of Electrical and
Electronics Engineers.

Peter Haas. Stochastic Petri Nets: Modelling, Stability, Simulation.
Springer, Dordrecht, 2004.

David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231- 274, June 1987.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Logic in Computer Science, 1992. LICS
'92., Proceedings of the Seventh Annual IEEE Symposium on, pages
394- 406, June 1992.

C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21:666- 677, 1985.

80

M.A.Sc. Thesis - - V. Bandur - CAS, McMaster University

[Inc05]

[Inc06]

[Inc08]

[Jen96]

[Jr.95]

[KP92]

Zilog Inc. Zilog Z80 family CPU user manual UM008005-0205. Online,
www.zilog.com/docs/z80/um0080.pdf, February 2005.

Microchip Technology Inc. PIC 18FXX2 data sheet. Online,
http: / /ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf,
2006.

Esterel Technologies Inc. About us, Esterel technologies. Online, 2008.
http: / /www.esterel-technologies.com/company.

K rt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use. Springer, New York, 1996.

Fwderick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley,
Reading, MA, USA, 1995.

Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their
textual representation. In J. Vytopil, editor, Formal Techniques in
Real- Time and Fault- Tolerant Systems 2nd International Symposium,
volume 571, pages 591- , Nijmegen, The Netherlands, 1992. Springer­
Verlag.

[LGLBLM91] P. LeGuernic, T . Gautier, M. Le Borgne, and C. LeMaire. Program­
ming real-time applications with SIGNAL. Proceedings of the IEEE,
79(9):1321- 1336, Sep 1991.

[LH04]

[LMOO]

[LPY97]

[Ltd02]

Trong-Yen Lee and Pao-Ann Hsiung. Embedded software synthesis and
prototyping. Consumer Electronics, IEEE Transactions on, 50(1):386-
392, Feb 2004.

R. Laleau and A. Mammar. An overview of a method and its sup­
po t tool for generating B specifications from UML notations. Auto­
m ted Software Engineering, 2000. Proceedings ASE 2000. The Fif­
teenth IEEE International Conference on, pages 269- 272, 2000.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1:134- 152,
1997.

B-Core (UK) Ltd. The B-Toolkit. Online, 2002. http: / jwww.b­
core.com/ btoolkit.html.

81

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

[Mas]

[MatOS]

[McK65]

[MF76]

[MGVOOJ

[MR02]

[Muk96]

[oEE08]

[Pav06]

[Pet62]

[Pet77]

[Pif91]

[Sem05]

Mastercraft. Auto-Ranging Digital Multimeter 52-0052-2.

The Math Works. The Math Works - MATLAB and Simulink for tech­
nical computing. Online, 2008. http:/ /www.mathworks.com.

W. M. McKeeman. Peephole optimization. Commun. ACM, 8(7):443-
444, 1965.

P. Merlin and D. J. Faber. Recoverability of communication protocols.
IEEE Transactions on Communications, 24(9) , 1976.

Luis Montano, Francisco Jose Garcia, and Jose Luis Villaroel. Using
the time Petri net formalism for specification, validation, and code
generation in robot-control applications. The International Journal of
Robotics Research, 19(59), 2000.

Ashok K. Murugavel and N. Ranganathan. Power estimation of sequen­
tial circuits using hierarchical colored hardware Petri net modeling. In
ISLPED '02: Proceedings of the 2002 international symposium on Low
power electronics and design, pages 267- 270, New York, NY, USA,
2002. ACM.

Madhavan Mukund. Finite-state automata on infinite inputs. Technical
report , SPIC Mathematical Institute, 1996.

Institute of Electrical and Electronics Engineers. IEEE Xplore release
2.5. Online, 2008. http:/ /ieeexplore.ieee.org/Xplore/dynhome.jsp.

Mark H. Pavlidis. Symbolic timing analysis of real-time systems. Mas­
ter's thesis, McMaster University, 2006.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Uni­
versity of Bonn, 1962.

James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223- 252,
1977.

Mike Piff. Discrete Mathematics, An introduction for software engi­
neers. Cambridge University Press, Cambridge, 1991.

Freescale Semiconductor. MC68HC08AB16A/D data sheet. Online,
http:/ /www.freescale.com/files/microcontrollers/ doc/ data_sheet/MC-
68HC08AB16A.pdf, July 2005.

82

M.A.Sc. Thesis -- V. Bandur - CAS, McMaster University

[SZ01]

[Tec07]

[Tek]

[TL89]

[UoH08]

[UU08]

[WDR05]

[WLH05]

[YGLOO]

Emil Sekerinski and Rafik Zurob. iState: A statechart translator. In
UML 2001 - The Unified Modeling Language. Modeling Languages,
C ncepts and Tools, volume 2185 of Lecture Notes in Computer Sci­
ence. Springer Berlin, 2001.

Teclogic. Teclogic Statemate: Rapid development of complex embed­
ded systems. Online, http:/ jwww.teclogic.com, 2007.

Tektronix, Inc. TDSl 000- and TDS2000-Series Digital Storage Oscil­
loscope.

Mark R. Thttle and Nancy A. Lynch. An introduction to input/output
au tomata. CWI Quarterly, 2(3):219 - 246, September 1989.

Department of Informatics University of Hamburg. Petri nets world:
Online services for the international Petri nets community. Online,
2008. http:/ jwww.informatik.uni-hamburg.de/TGI/PetriNets.

Uppsala Universitet and Aalborg University. UPPAAL. Online, 2008.
http:/ /www.uppaal.com.

Martin De Wulf, Laurent Doyen, and Jean-Fran<;ois Raskin. Almost
ASAP semantics: From timed models to timed implementations. For­
mal Aspects of Computing, 17(3):319 - 341, 2005.

Al n Wassyng, Mark Lawford, and Xiayong Hu. Timing tolerances in
safety-critical software. In John Fitzgerald, Ian J. Hayes, and Andrzej
Tarlecki, editors, FM 2005: Formal Methods, volume 3582 of Lecture
Notes in Computer Science. Springer, July 2005.

Al x Yakovlev, Luis Gomes, and Luciano Lavagno, editors. Hard­
w ,re Design and Petri Nets. Kluwer Academic Publishers, Boston,
Masachusetts, USA, 2000.

83

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

84

Appendix A

Metronlome Implementation
Pseudo-Assembly Code

so_o_o:

SLO_O:

SLO_l:

SL0_2:

SL0_3:

load port to register PORTA WREG
AND WREG Ox1 0
jump if zero WREG SLO_O
jump so_o_o
load immediate OxOOO 199
load immediate Ox001 161
decrement OxOOO
jump if zero OxOOO SL0_2
jump SL0_3
decrement OxOO 1
jump if zero Ox001 SLO_O_NoRcv
load immediate OxOOO 199
jump SL0_3
load port to register PORTA WREG
AND WREG Ox1 0
jump if not 0 so_o_o
jump SL0_1

SLO_O__NoRcv: load immediate OxOOO 2
S LO_LN oRcv: decrement OxOOO

jump if zero OxOOO SLLO
'ump SLO_LNoRcv

SLLO: load port to register PORTE WREG

85

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

S2_0_0:

S2_0_1:

S2_0_2:

S2_Q_3:

OR WREG Ox01
load register to port WREG PORTE
jump 82_0_0
load immediate OxOOO 199
load immediate Ox001 161
decrement OxOOO
jump if zero OxOOO 82_0_2
jump 82_0_3
decrement OxOO 1
jump if zero Ox001 82_0_0_NoRcv
load immediate OxOOO 199
jump 82_0_3
load port to register PORTA WREG
AND WREG Ox1 0
jump if not 0 80_0_0
jump 8L0_1

S2_0_0_NoRcv: load immediate OxOOO 2
S2_0_LNoRcv: decrement OxOOO

S2_LO:

jump if zero OxOOO 82_LO
jump 82_0_LNoRcv
load port to register PORTE WREG
AND WREG OxFE
load register to port WREG PORTE
jump 8LO_O

86

Appendix B

Metronome Implementation
Assembly Code

incf WREG, 0, 0
processor p18f452 decf WREG, 0, 0
#include " p18f4.)2" bz SL0_2

bra SL0_3
movlw OxOO ;set · ins to output SL0_2: decf Ox001, 1, 0
movwf TRISB movf Ox001 , 0, 0
movwf PORTB ;t urn light off incf WREG, 0, 0
so_o_o: movf PORTA, 0, 0 decf WREG , 0, 0

andlw Ox10 bz SLO_O_NoRcv
movf WREG, 0, 0 clrf WREG, 0
incf WREG, 0, 0 addlw OxC7
decf WREG, 0, 0 movwf OxOOO, 0
bz SLO_O bra SL0_3
bra so_o_o SL0_3: movf PORTA, 0, 0

SLO_O: clrfWREG, 0 andlw Ox10
addlw OxC7 movf WREG, 0, 0
movwf OxOOO, 0 incf WREG, 0, 0
clrf WREG, 0 decf WREG, 0, 0
addlw OxA7 bnz so_o_o
movwf OxOOl bra SL0_1

SL0_1: decf OxOOO, 1, 0 SLO_O_NoRcv: clrf WREG, 0
movf OxOOO, 0, 0 addlw Ox02

87

M.A.Sc. Thesis - V. Bandur - CAS, McMaster University

movwf OxOOO, 0 clrf WREG, 0
SLO_LNoRcv: decf OxOOO, 1, 0 addlw OxC7

movf OxOOO, 0, 0 movwf OxOOO, 0
incf WREG, 0, 0 bra 82_0_3
decf WREG, 0, 0 82_0_3: movf PORTA, 0, 0
bz SLLO andlw Ox10
bra SLO_LNoRcv movf WREG, 0, 0

SLLO: movf PORTB, 0, 0 incf WREG, 0, 0
iorlw OxOl decf WREG, 0, 0
movwf PORTB, 0 bnz so_o_o
bra 82_0_0 bra 82_0_1

82_0_0: clrfWREG, 0 S2_0_0_NoRcv: clrf WREG, 0 ~ ...:.; l>

addlw OxC7 addlw Ox02
movwf OxOOO, 0 movwf OxOOO, 0
clrf WREG, 0 S2_0_LNoRcv: decf OxOOO, 1, 0
addlw OxA7 movf OxOOO, 0, 0
movwf Ox001 incf WREG, 0, 0

82_0_1: decf OxOOO, 1, 0 decf WREG, 0, 0
movf OxOOO, 0, 0 bz S2_LO
incf WREG, 0, 0 bra S2_0_LNoRcv
decf WREG, 0, 0 S2_LO: movf PORTB, 0, 0
bz 82_0_2 andlw OxFE
bra 82_0_3 movwf PORTB, 0

82_0_2: decf Ox001 , 1, 0 bra SLO_O
movf Ox001, 0, 0
incf WREG , 0, 0 end
decf WREG, 0, 0
bz S2_0_0_NoRcv

88

')072 60

