
DETECTING NON-TERMINATION IN

CONSTRAINT HANDLING RULES

DETECTING NON-TERMINATION IN

CONSTRAINT HANDLING RULES

By

ERSHAD RAHIMIKIA, B.SOFTWARE ENGINEERING

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science

Department of Computing and Software

McMaster University

© Copyright by Ershad Rahimikia, September 24, 2007

MASTER OF SCIENCE(2007)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

Detecting Non-Termination in Constraint Handling Rules

Ershad Rahimikia, B.Software Engineering
(University of Tehran)

Dr. Wolfram Kahl

NUMBER OF PAGES: iv, 61

11

Abstract

Constraint Handling Rules (CHRs) are a high level language extension to

introduce user-defined constraints into a host language. Application of CHRs

to reformulate functional dependencies (FDs) in the Haskell type system gives

us a more precise definition of this concept, and a better understanding of

FD behavior. But to preserve the confluence and termination properties of

CHRs generated from FDs, some restrictions on the syntax of FDs and type

class definitions have been imposed which confines the expressiveness power

of Haskell type system.

In this thesis we use this problem as a motivation to find a solution

for the confluence and non-termination problem in CHRs. We build a for

mal framework for CHRs and model their different aspects mathematically

to study how non-confluence and non-termination happens. Based on this

formalization we introduce prioritized CHRs as a solution for the confluence

problem. To solve the non-termination problem, we propose a method to de

tect non-terminationin the constraint solver. We define a repetition candidate

as a special type of derivation and prove that a derivation having this property

can cause non-terminating rule applications in the system. Finally we define

a deduction tree structure for a set of rules that can be used to find all the

possible repetition candidates for a set of constraint rules.

Acknowledgements

I am grateful to my supervisor Dr. Wolfram Kahl, the best math teacher I

have ever had, for his helpful inspirations and guidance and his patience in

careful reviewing of my work.

I also wish to thank my parents for their unconditional encouragement and

support throughout my life.

If you're not failing every now and again, it's a sign you're not doing anything

very innovative.

Woody Allen

Contents

1 Introduction

2 Background

2.1 Type Classes in Haskell.

3

8

8

2.2 Implementing Type Classes in Haskell. 9

2.3 Multi-parameter Type Classes and FUnctional Dependencies 11

2.4 CHR and FUnctional Dependencies 12

2.4.1 Constraint Handling Rules 13

2.4.2 CHR as a Term Rewriting System 15

2.4.3 Formalizing FUnctional Dependencies with CHRs 16

2.5 An Alternative Approach: Associated Type Synonyms . 20

2.5.1 Associated Types 20

2.5.2 Associated Type Synonyms and Type Dependencies . 22

2.5.3 Comparing the Two Approaches 23

3 A Formal Framework for CHRs 25

3.1 Substitution, Unification, Matching 26

3.2 Free Variable Instantiation 28

3.3 Primitive Constraints 29

3.4 Propagation Rule Applications and Derivations 32

4 The Confluence Problem 35

4.1 Problem Description . . 35

4.2 Prioritized CHRs 36

4.3 Prioritized CHRs by Examples . 37

4.3.1 Example 1 Coverage Condition 38

1

2

4.3.2 Example 2 Consistency Condition .

4.3.3 Example 3

4.4 Prioritized CHR and Confluence .

5 The Non-Termination Problem

5.1 Matching Constraints and Infinite Derivations

5.2 Finding Repetition Candidates

5.2.1 Deduction Trees Finiteness ..

5.2.2 Building the Deduction Tree .

5.2.3 Example

6 Conclusions

6.1 Contributions

6.2 Future Work .

CONTENTS

39
40

41

43

43

52

55

56
56

58

59
60

Chapter 1

Introduction

Functional dependencies (FDs) are a useful extension to Haskell type classes

that add to the expressiveness of the language and resolve ambiguities in type

definitions. In relational algebra terminology, when a functional dependency

exists between two attributes in a relation one attribute uniquely determines

the other attribute. Mapping the same concept to type classes, having a

functional dependency between two type parameters in a type class, one type

parameter uniquely determines the other.

Based on this informal definition, it is possible to implement functional

dependencies as part of the type system, but formalizing functional depen

dencies in a more precise way enables us to study their properties and better

understand their behavior. One candidate to do that is a high level language

extension called constraint handling rules (CHRs). This formalization can

be useful for practical reasons too; by translating functional dependencies to

CHRs, part of the type inference can actually be done by the constraint solver.

Any CHR system basically consists of a set of rule definitions that

shows how the existence of a set of constraints entails other constraints in the

system. Starting from an initial constraint set, the constraint solver applies

these rules and finds all the possible constraints that can be inferred or detects

any inherent inconsistencies in the initial set.

Formalization of FDs is based on a set of translation rules that shows

how every type class or instance definition can be translated to CHRs. But

3

4 CHAPTER 1. INTRODUCTION

to have a sound, complete and decidable type inference system that supports

functional dependencies, we need to ensure that the generated CHRs are ter

minating and confluent. These two properties in fact come from the more

general context of term rewriting systems, and a great deal of research has

been done to find how it can be guaranteed that a term rewriting system is

terminating and confluent.

The current approach to ensure termination and confluence of the gen

erated CHRs from type class and instance definitions is to put some constraints

on the definition of functional dependencies. This has been done by defining

three basic properties that all type class and instance definitions should satisfy,

namely consistency, coverage and bound variable conditions.

Although these limitations make the resulting CHRs system have the

the basic required properties, in many cases they are too limiting and re

ject many useful and correct programs. To solve or at least to mitigate this

problem, some less constraining conditions, such as weak coverage conditions,

have been found to make the system encompass more programs as valid. But

these weaker conditions are more complex than the original ones and usually

need some supplementary conditions to assure the basic CHRs properties are

satisfied. The main problems that we see in the current approach are listed

below:

• The limitations of using CHRs to implement functional dependencies are

excessively affecting decisions for the language syntax and semantics.

• The complex rules to define a type class or an instance can result in a

sound, complete and decidable inference system, but these limitations

have a direct effect on the language syntax and are not hidden from the

programmer. So the programmer has to take care of many rules when

defining classes and instances, many of which have no intuitive rationale.

• There is no guarantee that even with the new looser conditions we will

not have reasonable definitions rejected by the system, and this in

evitably leads to a cycle of adding more refined but usually more complex

conditions.

Ersbad Rahimikia McMaster University - Computer Science 5

• The current preemptive approach is too conservative in that a class,

instance or function definition that "might" be used in a wrong way is

rejected. Giving the error when they are actually used in a wrong way

is another approach that should be considered.

• CHRs are not fully integrated with the rest of the typing system. Sup

porting functional dependencies as a part of the type inference system

is another approach that can be worked on.

To avoid these problems, some research has recently been done to find

an alternative way to formalize functional dependencies. As we will see in the

next chapter, associated type synonyms can be used to formalize functional

dependencies as an integral part of the typing system [CKPJ05]. Using this

new method enables us to include more class and instance definitions as valid,

but still it does not accept all the reasonable definitions. Furthermore, sup

porting associated type synonyms in typing systems considerably adds to the

complexity of the inference rules.

Another approach to deal with the problems mentioned above is to

continue to use the CHRs, but remove all the restricting conditions we had

already imposed on the definition of class and instances. As we mentioned

before, the generated CHRs may no longer be terminating and confluent, but

non-confluent and non-terminating systems can still be practically useful pro

vided that we have a mechanism to prevent the resulting problems.

In this thesis we study the confluence and non-termination problem of

the generated CHRs and propose solutions to deal with them. In fact, we

mainly use this problem in functional dependency CHRs as a motivation to

investigate confluence and termination properties in a broader context and

propose some solutions that are applicable to CHR systems in general.

As we will see in Chapter 4, one solution for the confluence problem

is to give priority to propagation rule applications over simplification rule

applications. We will talk more about these two types of CHRs in the next

chapter, but as an informal definition, simplification rules replace a subset of

constraints in the constraint set with a new constraint set, but propagation

rules add new constraints to the constraint set. It can be proved that if we

6 CHAPTER 1. INTRODUCTION

postpone simplification rule applications until all possible propagation rules

are applied, the CHR system is always confluent.

Based on the new system of rule applications that we call prioritized

CHRs, we will deal with the problem of non-termination in Chapter 5. The

idea is to find a way to detect non-terminating rule applications in constraint

solvers. In this way, rather than rejecting type class or instance definitions

because they might cause non-termination, we can accept the definitions but

have proper checking to reject erroneous usages of these definitions in the code.

The method presented at the end of Chapter 5 to detect infinite deriva

tions is based on the properties of a certain rule derivation, namely repetition

candidate. A repetition candidate is a derivation that satisfies two properties.

The first condition requires the first constraint set of the derivation to match

with the last constraint set, and the second condition involves the behavior of

primitive rule applications and free variables.

We start by proving that if this kind of rule derivation occurs in the

constraint solver a non-terminating sequence of rule applications can happen.

The deduction tree definition at the end of Chapter 5 basically produces all

the possible repetition candidates for a set of CHRs. So any algorithm that

can build this tree structure for a set of rules can find us initial constraint sets

producing repetition candidates.

The prioritized CHR system and the infinite chain properties presented

in Chapter 4 are based on a formal framework for different characteristics of

CHRs built in Chapter 3. As will be explained in detail, CHRs can have

multi-constraint heads, variables in the tail constraints that are not used in

the head (free variables), and also primitive constraints in the tail. All these

characteristics will be carefully studied and mathematically formalized.

Based on this formalization we will find some important properties that

are later used in our main theorems about non-termination. These properties

are also interesting by themselves and can be used to study other behaviors of

CHR systems. One of the properties in particular, is based on a novel approach

in working with substitutions. Substitutions are widely used functions in term

rewriting literature, but in our formalization we sometimes need to look at

them as equational constraints. This extension of the substitution concept

Ershad Rahimikia McMaster University - Computer Science 7

results in some interesting consequences which can also have some applications

in other term rewriting systems.

Before talking about the details of our new method, we will have a quick

review of the Haskell type system and constraint handling rules in the next

chapter. We will also show how functional dependencies can be reformulated

by CHRs and what conditions they should satisfy.

Chapter 2

Background

The main goal of the next chapters is to show how we can relax some of the

restrictions on the current syntax of multi-parameter type classes in Haskell

and still have a confluent system that also has a mechanism to detect non

terminating inferences. But before going through the details of our new

method, we will have a quick look at the current state of the Haskell type

system and how it handles multi-parameter type classes and functional depen

dencies between types. Using Constraint Handling Rules (CHRs) as a way

to formalize functional dependencies is also briefly discussed, and some of the

CHR properties are explained in the more general context of term rewriting

systems. Finally, at the end up of this chapter we will look at an alternative

approach, called associate type synonyms, that can be used as an alternative

to functional dependencies.

2.1 Type Classes in Haskell

Haskell type classes extend the Hindley-Milner type system to provide a uni

form solution to function overloading. A type class declaration consists of

class name, class parameters, members and their type signatures. Type class

functions can have several implementations in class instances, differentiated by

the type of instance parameters. Imagine we need different implementations

for an equality function depending on the type of values that should be com

pared. To define this overloaded function in Haskell, first we have to define the

8

Ershad Rahimikia McMaster University- Computer Science 9

type class with the type signature of the member functions (here just (::)).

Different implementations of functions are next defined in different instance

declarations:

class Eq a vhere

(::) :: a~ a~ BooL

instance Eq Int vhere

(::) = primEqint

instance Eq Char vhere

(::) = primEqChar

Class and instance declarations can also include super-classes as con

texts. If the super-class is defined for a class, it means all the instances of that

class should first have an instance of it and if an instance has a super-class,

that specific instance needs to have the super-class implementation. In the

next example each instance of class Ord should first have an instance of class

Eq:

class Eq a => Ord a vhere

(<) a ~ a ~ BooL
(~) ::a~ a~ BooL

To support function overloading, programming languages need to have

a mechanism to determine which implementation of an overloaded function

should be used for each function call. In the next section we will explain how

Haskell programs with single-parameter type classes handle this by translating

the source code into an intermediate code with non-polymorphic functions.

2.2 Implementing Type Classes in Haskell

As discussed in [HHP JW96], one strategy to support type classes in Haskell is

to translate the source code to an intermediate language while type checking

10 CHAPTER 2. BACKGROUND

rules are applied. This intermediate code is quite similar to the original source

code to support more readable error messages; but rather than having type

classes, it passes some extra information to each function call to determine the

instance of a function used. This extra information is built from each instance

of the classes and is called a dictionary. A dictionary contains all the instance

members and a reference to the superclass dictionary if any exists.

While the type checking rules are applied, the correct overload of a

called function is determined and the corresponding dictionary is passed to

the translated function. So the translated functions are not actually the same

functions in the source code, they are acting as selectors that find the function

from the dictionary passed to them.

To type check and translate the program some information about the

classes, functions in classes, dictionaries and instances is needed. This data is

obtained when class and instance definitions are processed and is kept in an

a structure called an environment. The environment is divided into different

sections and each step updates or uses one or more sections. Type checking

and translation starts from class definitions, next instances are processed and

finally the main body of the code is translated to the intermediate language.

Translating class definitions updates the environment to keep the in

formation about the class, its super-classes and all the members and their

polymorphic type signatures. Parallel to updating the environment and type

checking, each function in a type class is also translated to a selector function

that accepts a dictionary as parameter and returns the corresponding entity

for it.

Translating instance declarations updates one environment section only.

For each instance, a record is added to the environment which contains a ref

erence to the dictionary and also the type signature of the instance that the

dictionary belongs to. For example for the Eq class and its Int instance we de

fined earlier, a record like dictEqint = Eq Intis added to the environment.

The dictionary itself is built by translating the methods inside the instance,

and putting them together in a data structure.

Next the main body of the code is translated by a set of rules for expres

sions (The same rules are also used for translating members inside instances).

Ershad Rahimikia McMaster University- Computer Science 11

For each polymorphic function call, first the types of the input parameters are

determined. Using this information and data already saved in the environ

ment, the appropriate dictionary is found and passed to the function in the

translated code.

2.3 Multi-parameter Type Classes and Func

tional Dependencies

A natural extension to single-parameter type classes is to allow indexing class

members with more than one parameter. As discussed in [PJJM97], this new

extension adds to the expressiveness of type class definitions, but at the same

time causes some type checking problems, and in some cases although the

program is type-checked, the result type is not exactly what the programmer

meant it to be. As an example of the second problem, imagine a collection

class that is parameterized over the collection type and the element type:

class CoLLection c e

empty :: c

insert :: c ~ e ~ c

But we also need to somehow specify that all the elements of each

collection have the same type, otherwise a function

insert2 xs a b = insert (insert xs a) b

for inserting two elements into a collection would have the type

insert2 :: (CoLLection c e1, CoLLection c e2) => c ~ e1 ~ e2 ~ c

which is not what we meant.

These problems necessitate a mechanism to have more control over

type class parameters. Functional dependencies are one candidate for this

purpose by allowing the programmer to specify dependencies between different

parameters of a type class. As an informal definition, when type b is dependent

12 CHAPTER 2. BACKGROUND

to type a, a -> b, it means that fixing a should fix b or in other words in

different instances of the class, parameters a and b should not have the same

value for a but different values for b. We will see one formal definition of

this concept in the next chapter when we formulate functional dependencies

in terms of Constraint Handling Rules. Using functional dependencies, we can

fix the problem for the class defined above:

class Cottection c e I c ~ e

empty :: c

insert :: c ~ e ~ c

The functional dependency c -> e means e is determined by c, or in

other words we can not have two instances having the same value for parameter

c but different values for e. The same insert2 function would now have the

principal type:

insert2 .. (Cottection c e)=> c ~ e ~ e ~ c

2.4 CHR and Functional Dependencies

Functional dependencies can be integrated with the dictionary-based type sys

tem discussed in previous sections, but to'have a sound type inference system,

we need to put some limitations on how type dependencies can be used. The

need to study the implications of enforcing restrictions on FDs demands a more

formal definition of the functional dependency concept. This can be done by

formalizing FDs in terms of Constraint Handling Rules. Using CHRs enables

us to study the consequences of having functional dependencies in a type sys

tem. This formalization also can be of practical significance because it makes

it possible to use constraint solvers as an integrated part of the type checking

systems. The next sections explain more what Constraint Handling Rules are

and how they are currently used to formalize functional dependencies.

Ershad Rahimikia McMaster University- Computer Science 13

2.4.1 Constraint Handling Rules

Constraint programming is a programming paradigm where relations between

variables can be stated in the form of constraints [Wik]. Constraints are usu

ally used in a hybrid way with other programming paradigms or as built-in

subsystems, so that they define the properties of the solution and the con

straint solver finds solutions that satisfy these properties. But as discussed in

[Frii98], most constraint solvers have some common problems:

Being Domain Specific Constraint solvers are typically over some specific

domains, such as integer, boolean or finite domains which limits their

domain of applicability.

Lack of Flexibility Constraint solvers are usually hard-wired as a built-in

system. This causes the application programmer to have no control over

the constraint rules.

Low-Level Syntax Even those constraint solvers that allow the user to make

modifications, mostly use low-level language syntax which makes it hard

to work with them.

Constraint Handling Rules (CHR) as described in [Frii98] is a high level

language extension that allows user-defined constraints into a host language.

In this way the user can work with a high-level, easy-to-use language which is

not dependent on any specific domain and can be used with any host language

having its own domain.

Each user defined constraint solver consists of a set of rules which shows

how a constraint set can be replaced by another equivalent constraint set

(simplification rule) or can add new constraints to the system (propagation

rule). Constraints in CHR systems are of two types: predefined or primitive

constraints are those that will be handled by the host language constraint

solver; this type of constraint is domain specific. User-defined or non-primitive

constraints are defined by the user and are not dependent on any domain.

The task of a CHR constraint solver is to apply the user-defined rules

to an initial set of constraints until no other rule is applicable. If the initial

14 CHAPTER2. BACKGROUND

constraints are (inherently) inconsistent, the constraint solver would find it

out, and if not it returns the final predefined and user-defined constraint set.

The CHR constraint solver is always in interaction with the host language

constraint solver by feeding it with the predefined constraints and applying

the results to the current user-defined constraints in each step.

To show how constraints can be defined and applied to a set of initial

constraint, imagine the constraint solver consists of the rules below:

rule! : E x {::} C x

rule2 : C x, D x y => x = y

rule1 is a simplification rule that replaces instances of E x with the

corresponding instances of C x. We will discuss instances in the following

chapters, but for now, constraint E' is an instance of E if there exists a

substitution() such that 8(E) = E'.

rule2 is a propagation rule that adds an instance of predefined con

straint x . = y to the constraint set if instances of C x and D x y (using a

substitution 8) exist in the constraint set. This new predefined instance will

later be applied to the constraint set by the host system.

Assuming that we have { E a, D a b} as the initial constraint set, first

rulel can be applied to E a and this constraint is replaced by Ca. Next C a

and Dab are matched with the head of rule2 and a= b is generated. Applying

this constraint to the current constraint set results in { C a, D a a}

There are two basic properties that constraint solvers, or as we will see

in the next section, term rewriting systems in general, are usually required

to satisfy: termination and confluence. The termination property guarantees

that rule applications to any initial constraint set can not continue indefinitely,

and the confluence property ensures that different rule applications to an initial

set will result in equivalent final constraint sets. The formal definition of

confluence is explained in the next section when we talk about term rewriting

systems.

In any system working with constraint solvers, defining rules in a way

that satisfies these two properties is critical. In functional dependencies for

malization with CHRs, this has been done by putting some limitations on the

Ershad Rahimikia McMaster University - Computer Science 15

definition of type classes and instances. In the following sections, we will ex

plain how FDs are formalized by CHR.s and what conditions are necessary to

make the system confluent and terminating. As CHRs can fit in the definition

of term rewriting systems, studying termination and confluence in this broader

context gives us a better understanding of the limitations imposed on the def

inition of functional dependencies. The following sections briefly talks about

the standard methods used to prove a term rewriting system is terminating

and confluent.

2.4.2 CHR as a Term Rewriting System

An abstract rewriting system consists of a set of objects and one or more

binary relations that determine the transformations between the objects in an

abstract way. A term rewriting system(TRS) is an abstract rewriting system

where the objects are first-order terms, and where the reduction relation is

presented in a standard schematic format of so-called reduction rules or rewrite

rules [Ter03]. As CHR systems are a specific form of term rewriting systems,

in this section we briefly discuss TRS's termination and confluence properties

which are also applicable to CHR systems.

For most methods used to prove the termination of a TRS the notion of

a reduction order plays an important role. As an informal definition a reduction

order on TRS terms is a well-founded order (an order that does not admit

infinite descending sequence) which is closed under substitutions and contexts.

The goal is to find a reduction order on terms with which for every rule in our

TRS the head term is greater than the tail term. It can be proved that if such

an order can be found, the TSR is terminating.

There are several approaches to find a reduction order for a TRS, but

all of them have one thing in common: they check sufficient not necessary con

ditions for non-termination. In other words if a method does not prove that a

system is terminating it does not necessarily means that it is non-terminating.

Next we briefly explain three different categories that all reduction order meth

ods fit in. As we will see in later chapters, in our new approach to deal with

the problem of termination none of these methods are applicable, as we al

ready know that our system is non-terminating and try to find an algorithm

16 CHAPTER 2. BACKGROUND

to detect these cases. As discussed in [Ter03], three different methods to prove

termination are:

Semantical Methods In this method for each function in our TRS an in

terpretation function with an ordered set as its range should be found.

Using these functions, a term evaluation can be defined that maps each

TRS term to a member in the ordered set. In this way, a reduction order

is defined for the terms in our TRS and, as mentioned above, if for each

rule the rule head is greater than the tail, our TRS is terminating. This

method is applicable to prove termination for many term rewriting sys

tems, but the downside for it is that there is no automatic way to find

these interpretation functions.

Syntactical Methods In syntactical methods finding reduction orders is more

mechanical. In these methods there is no need to find an interpreta

tion function, but an arbitrary ordering on the TRS functions is chosen.

Then, according to a syntactical recursive ordering rule, e.g recursive

path order, all the terms in the TRS can be ordered.

Transformation Methods For many terminating systems using the above

methods fail to prove termination. Another common approach is to find

a termination preserving transformations for a TRS and if it can be

proved that the transformed system is terminating (by using previous

methods) the original system should also be terminating.

In (SDPJS07], the proof that CHRs generated from functional depen

dencies are terminating is based on the semantical approach. For this purpose,

a weight function, which is basically an interpretation function, is defined and

taking into account the restrictions imposed on the definition of type classes, it

can be proved that for each generated rule, head instances are always greater

than corresponding tail instances.

2.4.3 Formalizing Functional Dependencies with CHRs

CHRs can be used to formalize functional dependencies and class constraints

in type class and instance definitions. This formalization not only helps to

Ershad Rahimikia McMaster University - Computer Science 17

better study the behavior of functional dependencies, but it can also be used

as part of the type inference system.

As shown in [SDPJS07], a number of generation rules are used to gen

erate a CHRs from the instance and class definitions. Two of these rules

model the class-superclass dependencies and the other two model functional

dependencies. For a class and an instance declaration as below:

class C => TC al ... an I fdl, ... ,fdm

instance C => TC t 1 . . . tn

The following CHRs should be generated:

• The class CHRs: For each superclass in the class definition a propa

gation rule is generated:

rule : TC a1 ••• an => C

• The instance CHRs: For each instance context a simplification rule

is generated:

rule: TCt1 ... tn {:::} C

• The functional dependency CHRs: For each functional dependency

f~ of the form ail ... aik---+ ~o, a propagation rule is generated:

rule TC a1 ••• an, TC 8(bi) ... 8(bn) => aiO = bio

where a1 ... an, b1 ... bn are distinct type variables and:

(}(b;) = { a; if j E {.i1 ... ik}
b; otherw1se

• The instance improvement CHRs: If class instances are defined,

for each functional dependency f di of the form ail, ... , aik ---+ aiO, a

propagation rule is generated:

where b1 ... bn are distinct type variables and:

(}(b;) = { a; if j E {.i1 ... ik}
b1 otherwise

18 CHAPTER 2. BACKGROUND

The first two rules are quite straightforward. The first rule says if a

type class has a super-class, for every instance of that class an instance for

the super-class should exist. The second rule is the same but for instance

contexts. If the instance has no context, the constraint would be simplified to

true which means that if we a constraint that matches one of our instances,

this constraint is satisfied. The third rule is in fact the formal definition of

functional dependencies: For two instances of the same class, if they have the

same type variables for the LHS of a functional dependency, the type variable

for the RHS should also be the same. The last rule can also be considered as

a definition of functional dependencies in a different way which says if there

exists a constraint that matches an instance declaration and the variables in

the left hand side of a functional dependency are the same in the constraint

and instance declaration, the left hand side variable in the constraint should

be the same as the one in the instance declaration.

To assure that the generated rules are terminating and confluent, class

and instance definitions should satisfy a number of conditions. The first set of

conditions, namely basic conditions, is not related to functional dependencies

and only reflects the restrictions on class and instance definitions. The second

set of conditions, FD rules, deal with functional dependencies. It is important

to notice that these rules are sufficient but not necessary to prove termination

and confluence of the generated CHRs. In other words, some class definitions

can be found that do not follow these rules, their generated CHRs still have the

necessary properties. Some research work has been done to ease these con

ditions and some alternative conditions like Paterson Conditions have been

found that are looser, but more complex, but still they have the same above

mentioned problem, i.e., they might rule out non-problematic class definitions

[SDPJS07]. A summary of basic conditions and functional dependency con

ditions is presented next. For more detailed definitions refer to [JonOO] and

[SDPJS07].

Basic Conditions:

• The Context C of a class and instance declaration can mention only type

variables and in each individual class constraint CC, all type variables

Ershad Rahimikia McMaster University- Computer Science 19

are distinct.

• In an instance declaration instance C => TC t1 ... tn, at least one of the

types ti must not be a type variable.

• The instance declarations must not overlap.

FD-Conditions:

• Consistency Condition

For each defined functional dependency, there should not exist two in

stance definitions having the same types for the LHS and different types

for the RHS.

• Coverage Condition For each instance definition, variables in types

corresponding to the functional dependency range should be a subset of

variables in types corresponding to the functional dependency domain.

In other words, determining the types for the domain of a functional

dependency should fully determine the type in the range.

• Bound Variable Condition

For each class or instance declaration, variables in the context should be

a subset of the variables used in the instance.

We saw how modeling functional dependencies can help us to formalize func

tional dependencies, but keeping the constraint solver terminating and con

fluent forces us to impose some restrictions that might rule out meaningful

and useful class definitions. In the following chapters, we try to find a solu

tion to overcome this problem, but, before that, as a potential alternative to

functional dependencies, associated type synonyms are discussed.

20 CHAPTER 2. BACKGROUND

2.5 An Alternative Approach: Associated Type

Synonyms

Currently, standard Haskell only supports overloading of functions via type

classes. FUnction overloading allows indexing functions by types but there

are also many cases where we need to index data constructors by types, or in

other words, the ability to choose a data constructor for a type based on input

parameters. Associated types serve this purpose by extending the abstraction

used in type classes.

A modified version of associated types, associated type synonyms, can

also be used as an alternative approach to the problem of type dependencies

which is currently formulated by CHRs. This new approach is still in the early

stages of development and before more research has been done it is hard to

say it would be a substitute for CHRs. In the following sections we will take

a quick look at how associated types and type synonyms work and, finally, we

will make a comparison between CHRs and the new formulation of the type

dependency problem.

2.5.1 Associated Types

To index type constructors by types, the same class structure for function

overloads can be utilized. Imagine we want to have a Map structure that

keeps pairs of key /values, but for some optimization purposes we would like to

have different type constructors based on different possible types of key. We

express this idea by defining a type class MapKey parameterized by the key

type and also define an associated type Map as part of our class definition:

class MapKey k where

data Map k v

empty : : Map k v

lookup : : k ... Map k v ... v

As we can see, in addition to methods in a class definition, we have an

associated type parameterized with k. As an instance of this class for type Int,

Ershad Rahimikia McMaster University- Computer Science 21

we can have a specific data constructor for Map, assuming a suitable library

implementing finite maps for integers, IntMap:

instance MapKey Int v vhere

data Map Int v = Mapint(IntMap.Dict v)

empty = IntMap.emptyDict

lookup k (Mapint d)= IntMap.tookupDict k d

To integrate associated types with Haskell's class definitions, some ma

jor changes should be made to the way dictionaries are constructed, which

makes the type system a lot more complex; but this complexity is hidden from

the user. Another point about the associated type implementation is that the

type system supporting them can still be translated into System F [CKPJ05].

The concept of typed-index types can also be modeled in a different

way by functional dependencies, as for the previous example we can have:

class MapKey k m v I k ~ m
empty :: m

lookup : : k ~ m ~ v

But especially for more complex situations, using functional dependen

cies for this purpose has some drawbacks [CKPJM05]:

• There are cases where translating associated types to functional depen

dencies would result in non-confluent CHRs. This is a major problem

with the current typing system for functional dependencies, but as will

be explained in later chapters, this confluence problem can be solved by

modifying the way rule applications are done in the constraint solver.

• Translating associate types to functional dependencies would require

changing associated types to extra parameters for a type class and hence

results in more complex code. But if the modifications discussed in

the following chapters prove to increase the expressiveness of functional

dependencies, it still might be worthwhile accepting the complexities

caused by using functional dependencies.

22 CHAPTER 2. BACKGROUND

• Defining data types in a separate module and hiding the concrete repre

sentation of the data type from the user of the module is not possible if

we use FDs to model typed-indexed types.

In this section, we explained how associated types can be translated

to FDs and what the problems are for this approach. In the next section

associated type synonyms are introduced and we will show how they can serve

the same purpose as FDs.

2.5.2 Associated Type Synonyms and Type Dependen

cies

In the previous section, we showed how associated types can be defined inside

class declarations and how different type constructors can be introduced in

each instance. As the next natural step we would allow assignment of mono

types to be used as data constructors in instance declarations. So a data type

instance can have the format Sii f = v, where Sis an associated type synonym,

ii are type variables with corresponding type parameters in the class declara

tion and the f and v are monotypes. According to this definition (Sa = Int)
would be a valid type synonym but (S = [Int]) is not, obviously because

[Int] is not a monotype. The example below illustrates how associated type

synonyms can be used:

CLass C a where

type B a

foo :: a -+ B a

instance C Boot where

type B Boot = Int

foo Fatse = 0

foo True = 1

In this example, the class declaration is exactly like what we had in

associated types, but in the instance declaration we have assigned a primitive

Ershad Rahimikia McMaster University- Computer Science 23

type In t as a type synonym for a type constructor. Although associated type

synonyms seem to be a trivial extension of what we already had, they raise the

issue of non-syntactic type equality which requires a thorough revision of the

type inference system. As for the above example, after defining this instance

B Boot would be equal to Int even though they are not syntactically equal.

Handling non-syntactic equalities needs some basic changes to the type

inference rules. Firstly, we have to extend typing rules for expressions to

include this type of equality. Secondly, new unification rules are required

for type equalities in the presence of these type functions. We also need to

handle pending equality constraints, which are generated during expression

type checking and should be resolved later using the knowledge about associate

type synonyms declarations. Subsumption algorithms should also be revised

to conform with type functions [CKPJ05).

Type synonyms and functional dependencies both deal with the same

problem, but in different ways. Both approaches enable us to have one type

depend to another. As for the above example, we can have the same concept

by using functional dependencies.:

Ctass C a b I a ~ b where

foo :: a -+ b

instance C Boot Int where

fool Fatse = 0

fool True= 1

As can be seen above, the same dependency we had between a and

B a via type synonyms is now implemented by an extra parameter b in the

functional dependency a->b.

2.5.3 Comparing the Two Approaches

Associated type synonyms can be an alternative to CHR.s to model functional

dependencies and in some cases, defining the same type dependencies with

type synonyms would give more understandable code. But associated type

24 CHAPTER 2. BACKGROUND

synonyms have their own drawbacks; they add to the complexity of the type

system and they still do not cover all the legitimate class definitions rejected

by basic and FD conditions. In the following chapters, we will show how

easing basic and FD conditions and dealing with the consequent confluence

and non-termination problem can be another potential solution.

,
;

Chapter 3

A Formal Framework for CHRs

In this chapter we build a formal framework to model different characteristics

of CHRs. Our solution for confluence and non-termination in the following

chapters is based on this formalization. We have briefly discussed CHRs in

the background chapter, but we need a formal definition for different elements

of a CHR system.

Definition 3.0.1.

• A constraint, C t 1, ... , tn, is a predicate symbol, C, with terms h, ... , tn

as arguments.

• A constraint with equality as predicate symbol is called a primitive con

straint otherwise is a non-primitive constraint. We also write the prim

itive constraint (=) t1. t2 as t1 = t2.

• A simplification rule, R : 81 ¢::> 82, consists of two sets of constraints

81 and 82 with no primitive constraints in 81.

• A propagation rule, R : 81 => 82, is a relation between two sets of

constraints 8 1 and 82 with no primitive constraints in 81. (A relation is

a subset of a cartesian product, i.e., a set of tuples.)

• A primitive rule is a propagation rule with only primitive constraints in

the second constraint set.

25

26 CHAPTER 3. A FORMAL FRAMEWORK FOR CHRS

• A non-primitive rule is a rule with only non-primitive constraints in the

second constraint set.

• A variable x is a free variable in rule R if it occurs only in the right

constraint set.

• A variable x is a bound variable in rule R if it occurs in the left constraint

set.

Notice that in the primitive rule definition, we only allow equality as the

predicate symbol. This limitation is not part of the definition of primitive rules

in CHR systems, but our formalization is based on it. Although this definition

of a primitive constraint is restrictive, there are still many CHR applications,

including formalization of functional dependencies, that can work with it. As

we can see, guarded conditions for rules are also not included and will not be

part of our formalization.

3.1 Substitution, Unification, Matching

Throughout this chapter we will use substitutions and their properties to for

mulate different aspects of CHRs and prove properties about non-termination

and confluence, so an exact definition of what it means by substitution is

essential. There are different definitions for substitution depending on the

subject area this term is used in [Ter03]. In our definition, substitutions are

finite domain functions that map variables to terms. As we will see later in

this chapter, sometimes we need to convert substitutions to finite primitive

constraint sets, so the finiteness of the domain is essential.

Definition 3.1.1. A substitution is a finite-domain function that maps vari

ables to terms.

To denote the composition of two substitutions a and {3, we use the

notation a· {3 in which {3 is applied first. It can be proved that composition

of substitutions is associative, but in general not commutative. The following

example shows that commutativity does not always hold for substitutions.

Ershad Rahimikia McMaster University- Computer Science 27

Example: Assume we have a = { x ~---+ a, y ~---+ b} and (3 = {a ~---+ c}. For

constraint C x y we have: a · [3(C x y) = C a b and (3 · a(C x y) = C c b.

But, in some special cases, it is possible to change the order substitu

tions are applied without getting different results. Lemma 3.1.2 shows when

this can happen. This property is used several times during the proof of our

theorems. Var(t) is the set of all variables used in term t; ran(a) is the range

of substitution, and by dom(a) we mean the subset of the domain where the

substitution does not work as identity.

Lemma 3.1.2. For every substitution function a and {3, if

dom([3)ndom(a) = 0 and dom([3)nVar(ran(a)) = 0 andVar(ran([3))ndom(a) =

0,
then we have a · (3 = (3 · a.

Proof: If a· [3(x) = y and all above conditions hold, then we have \;fs.s E

Var(f3(x))::::} s ~ dom(a) and xis also either a member of dom(a) or dom(f3).

So either y = a(x) or y = f3(x). If y = a(x) from the above conditions we

know that \;fs.s E Var(a(x))::::} s ~ dom([3), soy= (3 · a(x) and if y = f3(x) we

know that x ~ dom(a), soy= (3 • a(x). D

A substitution can also be applied to a set of constraints, by which we

mean it is applied to all the constraints in the set. In the rest of this thesis,

we also use some special types of substitutions that are defined next. These

terms are in fact part of the standard term rewriting rules terminology.

Definition 3.1.3. The substitution a is called a unifier for terms s and t if

we have as= at.

Definition 3.1.4. The substitution a is called the most general unifier (mgu):

• For the terms s and t, if as = at and for every other unifier (3 we have

3p. (3 = p ·a.

• For the equational constraint t = s, if a is an mgu for t and s.

• For the equational constraint set T, if for every equational constraint in

T, i.e. t = s, a is a unifier for t and s and for every other unifier with

the same property we have 3(3 = p ·a.

28 CHAPTER 3. A FORMAL FRAMEWORK FOR CHRS

Definition 3.1.5. The terms is matched with the term t by substitution a and

we write a= match{s, t), if as= t and for all {3 if {3s = t then 3p. {3 = p ·a.

3.2 Free Variable Instantiation

To prove any properties for a CHR system with free variables, we first need

to find a mathematical way to formalize them. As we know, free variables are

represented the same way as bound variables in rules, but every time a rule is

applied, new instances for the free variables in the tail constraints should be

generated.

In our formalization, we define a substitution 8i,k that maps each free

variable in rule Rt to a free variable instance. We will use the second index

in 8i,k to generate new instances of the same free variable each time rule Rt is

called. As shown in our next formal definition, 8i,k substitutions with different

values of k have disjoint ranges. In later sections we will bind the index k to

the derivation number the rule is applied in.

Throughout the proofs for non-termination, we also need to have access

to the next instance of a free variable knowing the current instance. The

substitution f3i,k is defined for this purpose; it gives the value of 8i,k+l knowing

the value of 8i,k· Definition 3.2.1 shows the properties 8i,k and f3i,k substitutions

should satisfy.

Definition 3.2.1. For every rule Rt in rule sequence R = (R1 ... Rn), instan

tiation substitutions 8i,k and f3i,k are defined with the following properties:

• Vi, k. i E {1 .. n} => dom(8i,k) = FV(R.t).

• Vi, k, x, y. 8i,k(x) = 8i,k(Y) => x = y {8i,k is injective)

• Vi, i', k, k'. i E {1 .. n} A i' E {1 .. n} A (i =f. i' V k =f. k') => ran(8i,k) n
ran(8i',W) = 0.

• Vi, k. i E {1 .. n} => 8i,k+l = f3i,k · 8i,k

It is important to note that rule names in the rule sequence are in

fact meta-level names referring to the actual rules. So it is possible to have

Ershad Rahimikia McMaster University- Computer Science 29

two rule names in the sequence referring to the same rule. But the same

rules in a sequence generate different free variable instances, because they

have different ~ substitutions differentiated with the rule name indexes, and

the second property of Def. 3.2.1 prevents instance name clashes. This fact

is especially important for derivations and we will return back to it in later

sections.

3.3 Primitive Constraints

Primitive constraint applications can also be transformed into substitution

applications. Imagine we have a primitive rule R : H => T in which H

is a set of constraints and T is a set of primitive constraints. If rule R is

applicable to constraint set S with substitution a, we should first apply the

same substitution to the left and right hand sides of constraints in T, which

gives us new instances of primitive constraints in T. Finally, the most general

unifier (mgu) of the new primitive constraints gives us a substitution that can

be applied to the constraint set S.

Example: Assume that we have primitive rule C x y, D (x] => y = [x]

and constraint set { C a (b], D (a], E b}. The substitution a that matches the

rule head to the constraint set is a = { x ~ a, y ~ [b]}. As we explained

before, first we apply a to S = {y = [x]} which gives us aS = {[b] = (a]}.
Finally we apply the mgu of this equation {a = b} to the original constraint

set which gives us { C b (b], D [b], E b}.

As we showed in the previous example, we need to find the mgu of the

primitive constraint set to apply the result substitution to the initial constraint

set, but sometimes the mgu for a set does not exist. Undefined primitive

constraints add to the complexity of our non-termination properties and we will

see this problem in the following chapters when we define repetition candidate

properties.

Definition 3.3.1. A primitive constraint set T is called defined if mgu(T)

exists.

We will get back to the primitive rule applications later when we define

30 CHAPTER 3. A FORMAL FRAMEWORK FOR CHRS

derivation steps, but before that, we study some properties related to the

application of substitutions to primitive constraint sets which are later used

in our proofs for non-termination and confluence.

Lemma 3.3.2. For every defined constraint set T and variable x we have:

(mgu(T))x = t => (mgu(T))t = t

In other words, mgu(T) is idempotent.

Proof: We know that for every constraint set T, dom(mgu(T))nVar(ran(mgu(T))) =
0. So if x E dom(mgu(T)), none of the variables in t can be in dom(mgu(T)),

which means (mgu(T))t = t. 0

Lemma 3.3.3. If for a variable x, mgu(T)x = t, for every substitution() if

BT is defined, we have:

(mgu(BT))(B(x)) = (mgu(BT))(B(t))

Proof: Assume that mgu(T) =a and mgu(BT) =a'. We know that a' unifies

constraint pairs in BT. So for each constraint pair ()81 and ()82 in T we have

a' · ()81 = a' · ()82 which means a' · () is also a unifier for T.

On the other hand, as a is the mgu for T we will have a' · () = u · a

for some substitution u. Also a(x) = t = a(t) (Lemma 3), so we should have

cl · B(x) = u · a(x) = u(t) = u · a(t) =a'· B(t). 0

Corollary 3.3.4. For every substitution() and primitive constraint set T, if

T and BT are defined then:

mgu(BT) · () = mgu(BT) · () · mgu(T)

Proof: We show that for any arbitrary variable x, we have (mgu(BT) ·B)(x) =

(mgu(BT) · () · mgu(T))(x):

• If x ft dom(mgu(T)) the equation is trivial.

Ershad Ra.himikia McMaster University- Computer Science 31

• If x E dom(mgu(T)) lett= (mgu(T))x, so the RHS of equation equals

mgu(OT)(O(t)) and the LHS is mgu(OT)(O(x)). According to Lemma 4,

these two terms are equal. 0

Transforming primitive constraints into substitutions enables us to bet

ter study how they work. As a natural extension of this concept we can

also look at substitutions as primitive constraints. This new interpretation of

substitutions results in an important property that will later be used in the

following sections.

Definition 3.3.5. We define a conversion of substitutions to sets of equa

tional constraints, mapping a substitution u = { x1 ~ t1, ... , Xn ~ tn} to the

constraint set~ u ~ := {x1 = t1, ... , Xn = tn}· 0

As some point in our proofs for non-termination we need to know when

OT is defined for a primitive constraint set T and a specific substitution 0.

Next we relate OTto 0~ mgu(T) ~'which makes it possible to decide about OT
definedness.

Lemma 3.3.6. lfT is defined, every unifier f3 for 0~ mgu(T) ~ is also a unifier

for OT.

Proof: First we prove 'Vx.x E Var(T) => f3·0(x) = f3·0·a(x). Let a= mgu(T),

then for every x E Var(T) we have:

If x E dom(a.): Lett= a(x) then f3·0(x) = f3·0(t) and so f3·0(x) = f3·0·a(x).

If x fj. dom(a.): We have a.(x) = x so f3 · O(x) = f3 · 0 · a(x).

Next we show that f3 is also a unifier for OT. We know that for every constraint

pair in T, a(T1) = a(T2), so f3 · 0 · a.(T1) = f3 · 0 · a(T2) and from the equation

we found for substitutions we will finally have f3·0(T1) = f3·0(T2) which means

f3 is also a unifier for O(T).

Theorem 3.3. 7. For every primitive constraint set T and substitution 0 we

have:

mgu(O~ mgu(T) ~) = mgu(OT)

32 CHAPTER 3. A FORMAL FRAMEWORK FOR CHRS

Proof: From Lemma 3.3.6 we know that every unifier for mgu(B~ mgu(T) ~)is

also a unifier for mgu(BT). So we only need to show every unifier for mgu(BT)

is also a unifier for mgu(B~ mgu(T) ~). From Lemma 3.3.3 we know that if

mgu(T)x = t for a variable x, we have (mgu(8T))(8(x)) = (mgu(8T))(8(t)).

This means mgu(BT) is the unifier for the set of equational constraints 8(x) =
B(t) or in other words for mgu(B~ mgu(T) ~).

Corollary 3.3.8. If 8~ mgu(T) ~ is defined then BT is defined.

Proof: Trivial from Theorem 3.3.7.

The next theorem show a new property for primitive constraints which

is an essential part of our confluence proof in the next chapter.

Theorem 3.3.9. For every two primitive constraint sets Q1 and Q2 we have:

Proof: We prove that both sides of the equation are the most general unifier

for Ql U Q2. Starting from the lhs, as mgu(Qt U Q2) is also a unifier for Ql!

for some o: we should have mgu(Q1 U Q2) = o: · mgu(QI)· So mgu(QI) is first

applied to Q1 U Q2 which unifies Q1. So we only need the most general unifier

for mgu(Qt)Q2 which is mgu(mgu(Qt)Q2)· This means o: = mgu(mgu(Q1)Q2)

and mgu(Q1 U Q2) = mgu(mgu(Qt)Q2) · mgu(QI). The same argument can be

repeated for the rhs.

3.4 Propagation Rule Applications and Deriva

tions

In this section we clarify what we mean by a sequence of rule applications.

We start by defining the building block of a rule sequence, derivation step. A

derivation step corresponds to the definition of reduction in the abstract term

rewriting rules context [Ter03]. We give a formal definition for this term based

on our formalizations of primitive and non-primitive rules.

Ershad Rahimikia McMaster University- Computer Science 33

Definition 3.4.1. For the rule~ : Hi ::} 7i, constraint sets S, S', Q, and

an arbitrary number k, we define two kinds of derivation step:

• S ~ S' is a non-primitive derivation, if ~ is a non-primitive rule
lc

and we have:

3a, Q. (Q ~ S) A (a= match(Hi, Q)) A (S' = S U (a· di,k)(Ti))

• S ~ S' is a primitive derivation step, if ~ is a primitive rule and we
lc

have:

3a, Q. (Q ~ S) A (a= match(Hi, Q)) A (S' = (mgu((a · di,k)Ti))S)

A derivation stepS ~ S' is called trivial if S = S', and non-trivial other-
lc

wise.

In [SDPJS07], when operational semantics of CHRs are discussed, dif

ferent types of derivation steps are also explained. But some differences be

tween that formulation and our approach are observable:

• Here we have merged the solve step with the primitivederivation step.

In fact, the solve step presented in [SDP JS07] is always done implicitly

when primitive rules are applied. Furthermore having only two main

steps makes our future theorems easier to present.

• In our primitive derivation we do not keep the primitive constraints after

they are applied to the constraint set. The idea is that when primitive

constraints are applied, the updated constraints can never generate new

primitive constraints that are inconsistent with the current ones. This

is obvious because every time a primitive constraint is applied all the

variables in the domain of mgu are substituted and no longer exist. So

the already applied primitive constraints are in fact never used again.

• Derivation steps in [SDP JS07] are based on the fact that every time a rule

is applied, all the variables are renamed. But in the following theorems

we will need a more sophisticated way to formulate the definition of free

variables.

34 CHAPTER 3. A FORMAL FRAMEWORK FOR CHRS

Based on the definition of the derivation step, now we can define what

we mean exactly by a sequence of rule applications or a derivation.

Definition 3.4.2. A derivation Dk : S1 ~ 82 ~ ... , with the deriva-
k k

tion number k, is a sequence of primitive or non-primitive derivation steps

in which every middle rule is applied on the result constraint set of the pre

vious derivation step. (R1, R2 •• •) is the rule sequence for derivation Dk. A

derivation with infinite derivation steps is called an infinite derivation. For

derivation Dk, we define:

• R;.,k is the application of ruleR;. in derivation Dk.

• ai,k is the substitution that matches the lhs of R;. to the subset of si in

derivation Dk underlying the application of R;..

• Hi,k is the head instance of ruleR;. after application of ai,k·

As we discussed before, R11 ••• , Rn are meta-level names referring to

the rules. So we can have different R;. 's referring to the same rule.

Based on the definition of derivation we can now define what we mean

by a chain of derivations.

Definition 3.4.3. A chain Nn : D1 ... Dn is a sequence of derivations with

the same rule sequence R1 ... Rk where the first constraint set of each sequence

is equal to the last constraint set of the previous derivation.

Chapter 4

The Confluence Problem

The current approach to guarantee confluent CHRs for functional dependen

cies imposes the Basic and FD conditions on instance and class definitions to

exclude cases that might cause non-confluent (or non-terminating) rules. Our

new approach relaxes the conditions by keeping only those that are inherent in

the definition of functional dependency and deals with the confluence problem

by focusing on the behavior of CHRs and constraint solvers to find where the

problem initially stems from and what can be done to prevent it.

4.1 Problem Description

In a non-confluent system, different orders of applying CHRs to constraints

can result in different sets of constraints that are syntactically unjoinable, but

the logical meanings of the constraint sets are the same [Abd97]. (Logical

equivalence exists only if the rules are well defined, i.e., they are consistent

and complete. We consider this case later in example 3.)

As we will see, it can be proved that non-confluence happens due to

applying simplification rules, but as an informal argument, when we simplify

a subset of the constraint set, we are removing it from our constraint set

and hence we might limit our choices for the next rules to apply, so in the

presence of simplification rules the order of rule application might matter. The

interesting observation is that although different constraint sets generated by

35

36 CHAPTER 4. THE CONFLUENCE PROBLEM

non-confluent CHR systems are logically equivalent but some constraint sets

contain more information for the client using the constraints. As an example

consider the rules:

D#C

D#AI\BI\C

The above CHRs are non-confluent as we can have C or A A B A C as

the final states, by applying the first or the second rule to constraint D. As

can be seen the final two sets are logically equivalent but the second set gives

us more information about our initial goal set.

Even though CHR theory rejects the non-confluent systems, these sys

tems can be of practical importance for certain applications, especially if the

constraint set containing more information is obtainable. By making some

changes to the existing CHRs and the way CHRs are applied to constraint

sets by the constraint solver, we can change a non-confluent system into a

confluent one which provides the most complete final set and in some cases

reveals inconsistencies that are hidden in other constraint sets.

4.2 Prioritized CHRs

Our solution for this problem is based on giving priority to propagation rules

over simplification rules. To do so we use this fact that applying a simpli

fication rule H <=> T, has the same effect as applying the simplification rule

H <=> true after application of propagation rule H =? T.

Definition 4.2.1. A prioritized CHR system is the combination of two CHR

systems that are executed consecutively, the first one with only propagation

rules and the second one with only simplification rules.

i) Replace every simplification rule H <=> T with H :::::} T and H <=> true.

ii) Build the first CHR system with all the propagation rules of the modified

CHR system in step 1.

Ershad Rahimikia McMaster University- Computer Science 37

iii) Build the second CHR system with all the simplification rules of the modified

CHR system in step 1.

Changing a CHR System to a Prioritized CHR System

The reason behind this approach is that by postponing the application

of simplification rules we do not lose any constraints that might match with

other rules.

Using this method for the above example gives us A ABACA D

after applying propagation rules in the first CHR system and A A B A C after

applying the simplification rules in the second CHR system, so the final result

is the one we are interested in: a set of constraints having all the information

derivable from the rules.

Using this method to generate CHRs from functional dependencies

yields some interesting results that will be discussed next; but before look

ing at some examples we revise the three FD conditions to see which are

really necessary and which are defined just to avoid non-confluence and non

termination.

The first FD condition, the consistency condition, rules out inconsistent

conditions and is in fact another definition for what we mean by functional

dependencies. But the next two conditions are apparently defined to prevent

non-confluent and non-terminating CHRs. Currently we focus on the conflu

ence problem and postpone the termination problem to be dealt with in later

chapters. So the ideal is to have only the consistency condition for instance

declarations and our system still be terminating and confluent. In the next

section we will study some examples to see how giving priority to propagation

rules can solve the confluence problem.

4.3 Prioritized CHRs by Examples

In this section we study some class and instance definitions that violate FD

conditions and are not confluent. For each example we will see how the new

38 CHAPTER 4. THE CONFLUENCE PROBLEM

method of CHR application can solve the problem.

4.3.1 Example 1 Coverage Condition

Consider the following class and instance declarations that violate the coverage

condition (b is not a free variable in [a]):

class C a b I a ~ b

instance Db => C [a] (a,b)

The CHRs generated from the above declaration with the new method

are:

The first CHR system with propagation rules:

rule C [a] (a,b) ==> Db

rule C a b1 , C a b2 ==> b1 = b2

rule C [a] b ==> b = (a,b1)

The second CHR system with simplification rules:

rule C [a] (a,b) <==> true

Examine the two constraints: C [c) d.1 and C [c) d.2. After ap

plying propagation rules we would have

C [c] (c,b1) , C [c] (c,b2),

D b1, D b2, d1 = d2 ,

d1 = (c,b1), d2 = (c,b2), b1 = b2·

And finally by applying simplification rule we find that

d1 = d2 = (c,b1), D b1

that completely conforms to the functional dependency and instance

declaration we had in the program.

Ershad Rahimikia McMaster University- Computer Science 39

4.3.2 Example 2 Consistency Condition

Consider the inconsistent instance declarations below:

class C a b I a -+ b

instance c [a] (Maybe a)

instance c [b] b

Above declarations would generate the following rules:

The first CHR system with propagation rules:

C a bl, C a bl ==> bl = b2

C [a] al ==> al = Maybe a

c [b] bl ==> bl = b

C [a] (Maybe a) ==> true

C [a] a ==> true

The second CHR system with simplification rules:

C [a] (Maybe a) <==> true

C [a] a <==> true

For the two constraints C [a] b 1 and C [a] b2, we would have:

C [a] bl , C [a] b2 ,

bl = b2, bl = Maybe a ,

bl = a, b2 = Maybe a, b2 = a

The result is clearly inconsistent because a and Maybe a are not unifi

able. This was expected as we violated the consistency rule. Example 3 shows

how we can detect problems like this in our instance declarations by utilizing
CHRs rules.

40 CHAPTER 4. THE CONFLUENCE PROBLEM

4.3.3 Example 3

Consider the following class and instance declarations:

class D a b

class D a b => C a b

instance C (a] a

Here are the CHRs arising from the above declarations:

C [a] a <==> True

Cab ==> Dab

Here we have both basic conditions and Jones's FD conditions satisfied,

but the program logically implies that we should have an instance declaration

for D [a] a. As the CHR generation rules assume that the instance and class

declarations are correctly defined, the resulting CHRs are non-confluent (Con

sider D [a] a; applying the rules above can either generate true or D [a] a

that are not only non-joinable but also logically inequivalent). As the current

formulation of CHRs are theoretically useful but in practice there is no guaran

tee that the programmer has defined correct and consistent class and instance

declarations, so a mechanism to check declarations is necessary. Currently

part of this is done by Basic and FD conditions but some other cases like the

above example should be taken care of separately. Here we propose a method

to utilize the generated CHRs themselves to detect such errors in them. Below

is the general procedure to check the declaration part of a program:

i) Build an initial constraint set from instance declarations by adding the con

straint TC t 1. . tn for every instance declaration instance T => TC t 1. . tn.

ii) Apply the propagation rules of the first CHR system. If the rule application

fails it mean there are problems in the class and instance definitions (consis

tency violation, for example).

Ershad Rahimikia McMaster University- Computer Science 41

iii) Apply simplification rules of the second CHR system. If there is any constraint

rule left in the constraint set after the rule applications, it means some instance

declarations are missing in our declarations.

Detecting Unsound Rule Definitions

Applying the above procedure to our example would result in D[a] a,

that can not be simplified to true, meaning that an instance declaration for

this class D is missing.

4.4 Prioritized CHR and Confluence

In this section we prove why prioritized CHR systems are deterministic and

always give us the same final result set for any initial constraint set.

Lemma 4.4.1. A CHR system with only propagation rules is confluent.

Proof: We prove confluence via the diamond property, namely we show that

for every rule R1 and R2 and constraint sets 8, 81 and 82 if 8 ~ 81 and

8 ~ 82, then there exists a constraint set 8' where 81 R
2 8' and 82 Rt 8'.

If R1 and R2 are non-primitive: From Def. 3.4.1 81 = 8Ua1(T1) and 82 =
8 U a2(T2) for some substitutions a 1 and a2. Applying R2 to 81 and R1

to 82 gives the same constraint set 8' = 8 U a 1(T1) U a 2(T2).

If R1 is primitive, R2 is non-primitive: From Def. 3.4.1 81 = O(S) and

82 = 8 U a(T2) for some substitutions (Janda. Applying R2 to 81 and

R1 to 82 gives the same constraint set 8' = 0(8) U (J • a(T2).

If R1 and R2 are primitive: From Def. 3.4.1 81 = mgu(a1(T1))8 and 82 =

mgu(a2(T2))8 for some substitutions a 1 and a 2. We need to prove the

result of applying R2 to 81 is the same result of applying R1 to 82, that

is:

42 CHAPTER 4. THE CONFLUENCE PROBLEM

mgu(mgu(a1(T1)) ·a2(T2)) ·mgu(a1(TI))S = mgu(mgu(a2(T2)) ·a1(T1)) ·

mgu(a2(T2))S

Using Theorem 3.3.9 (Q1 = a 1 (T1) and Q2 = a 2(T2)) the equation holds.

Theorem 4.4.2. Reductions to normal form using a prioritized CHR system

are deterministic.

Proof: As the first CHR system of a prioritized CHR system contains only

propagation rules and according to Lemma 4.4.1 is confluent, reductions to

normal form using the first system is deterministic. Confluence of the second

CHR system is also trivial and so the following reductions done by the second

system are also deterministic. This means the reductions done by the whole

system are deterministic.

Chapter 5

The Non-Termination Problem

Type class and instance declarations with no FD restrictions imposed, can re

sult in CHR.s that are not terminating. In this chapter we attempt to find a way

to detect these non-terminations in the constraint solver. Using this method

enables us to still work with CHR.s that are non-terminating in general, but

only cause non-termination in certain situations and in this way incorporate

more class definitions as valid. Before showing how to detect non-termination

cases, we introduce a special type of derivation and prove that if this derivation

happens during rule applications, the constraint solver never terminates.

All the findings of this chapter are based on the formalized framework

we constructed in Chapter 3. We also assume that the constraint solver is pri

oritized, so we only need to focus on propagation rule applications, because the

last step of applying simplification rules would never cause non-termination.

(Recall that all new simplification rules simplify a constraint to true.)

5.1 Matching Constraints and Infinite Deriva

tions

The method to detect non-termination presented at the end of this chapter

is based on the theory we will introduce next. The first lemma relates two

different derivation steps with the same rule. This lemma is in fact the building

block of our main theorem.

43

44 CHAPTER 5. THE NON-TERMINATION PROBLEM

Lemma 5.1.1. Assume that we have a derivation step, 81 ~ 82 for the
lc

rule~: Hi=> 7i. For a substitution 0 let 8~ = 081, then we have:

ii) We can have a derivation step 8~ ~ 8~ such that 30' · ()' 82 = 8~
lc+l

{provided Ti,k+l is defined if ~ is primitive).

Proof: (1) From the derivation step 81 ~ 82 we know that 3a.a(Hi) ~ 81.
lc

So from a(Hi) ~ 8 1 and 081 = 8~ we can find a' = 0 ·a that satisfies the

predicate o:' (Hi) ~ 8~ .

(2) From (1) and the lemma assumption that 7i,k+1 is defined (if~ is

primitive), we know that~ can be applied to 8~ and so it is possible to have

a derivation step 8~ ~ 8~. To find 0' and 8~ we consider two cases:
lc+l

Rt, is non-primitive Starting from 8~:

8~ - 8i U (a'· oi,k+I)Ti Def. 3.4.1

- 081 u (a'. oi,k+I)Ti 08t = 8~
- 081 u (O · o:. oi,k+I)Ti o:' = 0. a

- 081 u (O • o:. f3i,k · oi,k)Ti Def. 3.2.1

081 u (o. f3i,k · o: · oi,k)Ti Lemma 3.1.2

- 081 U (0 · f3i,k)(82- 81) (a· oi,k)Ti = 82- 81

Also we know that f3i,k has no effect on 8 1, because we can not have the

kth instances of the~ free variables in 81, so we have 81 = {3i,k81. Using

this equation:

081 U (0 · {3i,k)(82- 81) = (0 · f3i,k)81 U (0 · f3i,k)(82- 81) = (0 · {3i,k)(81 U

(82- 8t)) = (0 · f3i,k)(81 u 82).

Also from Def. 3.4.1 we know that 82 = 81 U (o: · oi,k)Hi so 81 U 82 = 82

and finally we will have 8~ = (0 · {3i,k)82 which means:

0' = 0 . f3i,k

Ershad Rahimikia McMaster University- Computer Science 45

[4 is primitive Starting from 82:

S' 2 - mgu((a' · 8i,k+I)1i)8~ Def. 3.4.1

- (mgu((a' · 8i,k+t)7i) · 8)81 8{ = 881

(mgu((8 ·a· 8i,k+I)7i) · 8)81 a'= 8.a

- (mgu((8 ·a· /3i,k · 8i,k)1i) · 8)81 Def. 3.2.1

- (mgu((8 · /3i,k ·a· 8i,k)1i) · 8)81 Lemma 3.1.2

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8)81

Also for the same reason as the non-primitive part of proof, we know

81 = /3i,k81, so:

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8)81 = (mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k)81

Now we can use Corollary 3.3.4. We already know that (a· 8i,k)T is

defined because we have the derivation step 81 ~ 82 , also from the
k

assumptions we know that 1i,k+l = (8 · /3i,k)((a · 8i,k)1i) is defined, so we

can apply Corollary 3.3.4 that gives us:

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k)81

- (mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k · mgu((a · 8i,k)1i))8t

- (mgu((8 · .Bi,k)((a · 8i,k)1i)) · 8 · /3i,k)82

Corollary 3.3.4

Def. 3.2.1

We reached mgu((8 · /3i,k)((a · 8i,k)1i)) from mgu((a' · 8i,k+I)1i), so by

replacing it in above equation we have:

82 = (mgu((a' · 8i,k+t)1i) · 8 · /3i,k)82 = (mgu(7i,kH) · 8 · /3i,k)82

Which gives us 8' for the primitive rule case:

8' = mgu(7i,k+I) · 8 · .Bi,k D

From the results of Lemma 5.1.1 we can find a relation between 8

substitutions of different derivations. Assume that a chain has (R1, ••. , R,,)
rule sequence. We define rule sequence (M11 ••• , Mm) as the subsequence

{Rt, ... , R,,) with only primitive rules and if Mi in this sequence corresponds

toRi in (Rl! ... , R,.,), we use Mi,k to refer to 1j,k and J.li,k to refer to mgu(1j,k)·

46 CHAPTER 5. THE NON-TERMINATION PROBLEM

We define ei,k a.s the substitution that maps the ith constraint set in

derivation Dk to the ith constraint set in derivation Dk+l and we intend to

find a relation between Oi,k and ei,k+l· We also assume that M9 is the first

primitive rule after the rule il?.-1 (if any primitive rules exist after il?.-I) and

Mt is the first primitive rule before the rule il?. (if any primitive rules exist

before the rule il?.).

From Lemma 5.1.1 we know that Oi+I,k = Oi,k · /3i,k if the rule is non

primitive and (}i+I,k = 1i,k+I • Oi,k • /3i,k· So we have:

On+l,k-1 = /-Lm,k •.• J.L9 ,k • ei,k-1 • /3i,k-I ••• f3n,k-I

ei,k = J.Lt,k+l ..• /-Ll,k+l • ol,k • f3I,k . •• f3i-l,k·

On the other hand from the definition of chain we know that 01 k = .
On+I,k-I· So substituting the first equation in the second one gives us:

Oi,k = /-Ll,k+l ... /-LI,k+l . /-Lm,k ... /-Lg,k . ei,k-1 • /3i,k-l ... f3n,k-l • f3I,k ..• /3i-l,k

Next we introduce a special kind of derivations, repetition candidates,

and will show how these derivations can repeat themselves. Informally it

means if we start with the la.st constraint set of a repetition candidate, we can

apply the same rule sequence of the first derivation and have another repeti

tion candidate. Next definition shows what exactly it means by a repetition

candidate.

Definition 5.1.2. Derivation Dk : 81

a repetition candidate if:

Rt Rn
---+ 82 . . . ---+ Sn+l in chain Nk is

k k

ii) For all i (1 $ i $ n), if il?. is a primitive rule:

Vc E dom(mgu(7i,k)).(:3i', k'. c E ran(c5i',k')A((k' = kAi' < i)V(k' = k-1Ai' ~ i)))

which means all the members of dom(mgu(7i,k)) are the latest free vari

able instances that existed before the application of ~
k

Ershad Rahimikia McMaster University- Computer Science 47

iii) For all i,j (1 < i ~ n), if [4 and R; are primitive rules {i and i' can be

equal):

v .. , k' k" J,J' ' .
Vc E dom(mgu(1i,k)) n ran(8;,w) .

Vd E dom(mgu(Ti',k)) n ran(8;',k") . c #- d => (8j,~.(c) #- 8.fl,(d) V j #- j')

which means that free variable instances in different dom(mgu(1i,k))s,

are from different free variables.

At first glance, it might seem that if (ii) is true, (iii) is automatically

satisfied, but there are some cases that we also need the third condition. As

sume that the rule [4 has free variable v. In derivation Dk we can have

8i,k-l (v) instantiated before the application of [4, and 8i,k (c) instantiated af

ter the application of [4. In this case the second condition is satisfied but

the third condition rejects that, because in the domain of two primitive rule

applications in a derivation we can not have two variable instances from the

same free variable.

We also have an extra condition 8j,~(c) #- 8.fl,(d) to allow cases that

both free variable instances are coming from the same rule but are from differ

ent free variables. But we can not use this condition when c and d are coming

from different rules, because our definition of derivation allows having a rule

appear more than once in a derivation. For this reason, we have j f. j' to allow

c and d both have the same free variable but come from different positions j

and j' in a derivation.

The next theorem uses these properties to show how repetition candi

dates can be repeated in a chain.

Theorem 5.1.3. If derivation

D S R1 S R2 Rn
k : 1 ~ 2 ~ · • • ~ Sn+l

k k k

is a repetition candidate in chain Nk, then chain Nk+l also exists and

the last derivation of Nk+l {i.e. Dk+l) is a repetition candidate.

Proof: We need to prove that the derivation Dk+l : S~

48 CHAPTER 5. THE NON-TERMINATION PROBLEM

with S~ = Sn+1 exists and is a repetition candidate. We prove by

induction on derivation steps of Dk+l·

For the induction step, we prove that if S~

following conditions hold:

i) Bi,ksi = SI for a substitution Bi,k·

R1
---+ ... s: exists and the

k

ii) For every substitution /-Lj,k+l, where Mi is a primitive rule before ~ in

rule sequence we have: Vc E dom(J.Li,k+t).::l/3, d E dom(J.Lj,k)· /3d = c

where /3 is an instantiation substitution (it means all the members of

dom(J.Lj,k+I) are the next instances of dom(J.Lj,k)).

then ~.k+l can be applied to s: and the above conditions hold this

time for si+l (replacing all i's with i + 1's in above conditions).

If~ is non-primitive, from Lemma 5.1.1 and the first condition, we

know that 14.,k+1 is applicable and we also have Bi+1,kSi+1 = s:+l. The second

condition also holds after the application of ~ because we still have the same

primitive rule applications in Dk+l·

If 14, is primitive, according to Lemma 5.1.1, ~.k+l is applicable to s:
if7i,k+l is defined. We know that (Bi,k'O.i,k)Ti = Ti,k+l· From Theorem 3.3.7, to

prove that mgu((Bi,k'ai,k)1i) exists, we can prove that mgu(Bi,k~ mgu(o.i,k11) ~) =

mgu(Bi,k~ mgu(Ti,k) ~) exists. First we look at the result of Bi,k~ mgu(Ti,k) ~·

We substitute Bi,k with its equivalent we found in terms of Bi,k-1. So

we have:

Bi,k~ mgu(Ji,k) ~ = 11-t,k+I ... /-L1,k+l · /-Lm,k ... 11-u,k · Bi,k-1 · /3i,k-1 ... /3n,k-1 ·

/J1,k ... /3i-l,k~ mgu(Ti,k) ~

where J.Lm,k is the last primitive rule application in Dk and J.lt,k+l the

one immediately before the application of ~.k+l and 11-u,k equals to mgu(7i,k)

(because 14, is primitive).

From Def. 5.1.2.ii) we know that for every c E dom(mgu(7i,k)), we

have c = oic,kc (v) for some free variable v and for some ic and kc satisfying

((kc = k 1\ ic < i) V (kc = k -l 1\ ic ~ i)). We study the effect of /-Ll,k+l ... J.l1,k+l ·

11-m,k ... J.lg,k · Bi,k-1 · /3i,k-1 ... /3n,k-l · /3t,k ... /3i-1,k on c (as we mentioned c E

dom(mgu(7i,k))).

Ershad Rahimikia McMaster University - Computer Science 49

If kc = k /\ ic < i: Substitution f3ic,k in f31.k ... f3i-1,k changes c to f3ic,k(c). Sub

stitution Oi,k-1 has no effect on f3ic,k(c) because members of dom(Oi,k-1)

are variables in Dk-1 and can not be equal to f3ic,k(c).

Jlm,k ... /lg,k also has no effect on f3ic,k(c) because domain members of

each of these substitutions are variables in Dk and can not be equal to

f3ic,k(c).

Also, f3ic,k(c) can not be in domain of any substitution in Jl1,k+l· .. Jll,k+b

because from (ii) in the induction step conditions, c should be in domain

of a substitution in Jll,k ... Jlt,k, which is not possible, because if cis in the

domain, it has already been substituted by a term and can not reappear

in dom(mgu(7i,k)).

This means that Oi,k(c) = f3ic,k(c).

If kc = k- 1 /\ ic ~ i: Substitution f3ic,k-1 in f3i,k-1 ... f3n,k-1 changes c to f3ic,k-1 (c).

The substitution Oi,k-1 has no effect on f3ic,k- 1 (c) because members of

dom(Oi,k-d are variables in Dk-1 and can not be equal to f3ic,k-1(c).

Jlm,k ... /lg,k also has no effect on f3ic,k-1 (c) because we know that c E

dom(mgu(7i,k)) and if f3ic,k-l(c) is a member of one of the domains in

Jlm,k ... /lg,k it contradicts Def. 5.1.2.iii).

f3ic,k-l(c) can not be in domain of any substitution in Jll,k+l· .. /ll,k+l,

because from the second condition of our inductive step c should be in

/ll,k ... /ll,k which contradict the third condition of Def. 5.1.2.iii).

This means that Oi,k(c) = f3ic,k-l(c).

So the substitution Oi,k changes every member of dom(mgu(7i,k)) to

their next instances.

ran(Oi,kmgu(7i,k)) also can not have any members of dom(Oi,kmgu(7i,k))

because otherwise mgu(7i,k) contradicts Lemma 3.3.2. This means Oi,kmgu(7i,k) =

mgu(Oi,kmgu(Ti,k)) and so mgu(Oi,kmgu(7i,k)) is defined.

This proves that ~.k+ 1 is applicable to s: also if ~ is primitive. As we

saw, the members of dom(mgu(Oi,k7i,k)) are the next instances of dom(mgu(7i,k)),

so the second condition of our inductive step still holds after the application

of ~.k+l and the inductive step proof is done.

50 CHAPTER 5. THE NON-TERMINATION PROBLEM

For the initial step we only need to show that our inductive step condi

tions are true fori = 1. From the theorem's condition we know that fh,kS1 = S~
so the first inductive condition is true. The second inductive condition is trivial

because we do not have any primitive rules before R1.

We proved that Dk+l can exist and we know that every domain member

of /-Lj,k+l in Dk+l is the next instance of a domain membe~ in 1-Li,k· From this

it is trivial that the second and third conditions of repetition candidates hold

for Dk+l· The first condition is also trivial from our inductive step. So Dk+l

is a repetition candidate. D

Corollary 5.1.4. If in chain Nk derivation Dk is a repetition candidate we

can continue the chain infinitely.

Proof: From Theorem 5.1.3 we know that if Dk is derivation candidate,

Dk+l can also exist and is a a repetition candidate. The same argument can

be repeated this time for Dk+l and so on. So we can build infinite number of

derivations for chain Nk.

The next lemma shows that after a finite number derivations in a chain,

all the domain members of primitive rule applications are free variable in

stances and so we can check repetition candidate conditions.

Lemma 5.1.5. In every infinite chain, after a finite number of derivations,

for every primitive rule application R;,,k all the members of dom(mgu(1i,k)) are

free variable instances.

Proof: Every time a primitive rule is applied, a variable is replaced by a

term in the constraint set. As the number of bound variables are finite, we

can not have infinite number of primitive constraint applications with the

bound variables in their domain. So from some point in the chain, bound

variables as domain of primitive rule applications will never occur. D

Until now we showed that the occurrence of a certain type of derivation

can cause infinite chains in constraint solver. On the other hand we already

saw in previous chapter that a CHR system with only propagation rules is

confluent. This means if a derivation candidate exists for a CHR system all

the other derivations are also infinite.

Ershad Rahimikia McMaster University- Computer Science 51

Possible Completeness Argument

Based on the findings of this section we can build an algorithm that can find all

the possible repetition candidates for a set of CHRs. But it does not mean that

all non-terminating cases stem from repetition candidates. The completeness

proof of our method is still an open problem and can be dealt with in two

different levels.

We propose repetition of repetition candidates via Theorem 5.1.3 as

the basic tool for detecting non-termination. We conjecture that it will be

possible to weaken the premises of Theorem 5.1. 3 by eliminating the repetition

candidate conditions Def. 5.1.2.ii) and (iii).

Having the current or any other definition of repetition candidates with

weaker conditions, the first step of completeness proof is to show that if for

a derivation in a chain with all the primitive rule applications, 1i,k 's, having

free variable instances as domain, the first condition of repetition candidate

holds but other conditions are violated, then the chain can not be continued

infinitely. The intuition behind the current conditions of repetition candidates

is that if the domain variables of 1i,k are not the last instances of free vari

ables, they will not be replaced by their next instance after the application of

/3i,k-1 ... f3n,k-1 · f31,k ... f3i-1,k in fJi,k· This can be a potential danger as they

can next be replaced by another term after the application of the second part

of fJi,k and make mgu(8i,k1i,k) have no answers.

The second step of the completeness proof is to show that all non

terminating derivations are caused by the repetition of a finite derivation. This

part of the proof can benefit from finiteness properties of CHR systems, such

as finite number of rules, finite number of function symbols (type constructors

in our case) and finite number of rule pairs that can be applied consecutively.

Even though we do not yet have the proofs for completeness, as we will

see in the next section, the algorithm based on repetition candidate properties

can detect non-termination for the examples presented in [SDPJS07] as the

classic non-termination problems of violating FD conditions.

52 CHAPTER 5. THE NON-TERMINATION PROBLEM

5.2 Finding Repetition Candidates

In previous sections we showed how repetition candidates can cause infinite

derivations in the constraint solver. In this section we explain how from a

set of CHR.s all the possible repetition candidates can be found. Using this

method we can find the constraint sets that can produce repetition candidates

and detect these sets in the constraint solver.

The idea is to build a deduction tree from the rule set and explore

different possible derivations among which all the derivations having repetition

candidates as postfix exist as leaf nodes.

Definition 5.2.1. A deduction tree for a set of CHRs is a tree with the fol

lowing properties:

i) Every node label is a derivation, D : So !!!... S1 •.. Rn Sn with the

(omitted) derivation number equal to 1 where f4: Hi~ 1i {0 ~ i < n).

The root node label is a derivation with an empty constraint set and no

rules: D: S0 , where S0 = {}. Also, if a rule is applied more than once

in a derivation, rule instances used in the application are differentiated

by variable renaming.

ii} Every node with the label containing D : So ~ S1... Rn Sn, has

all the possible child nodes having the derivation with the format:

which should satisfy the following conditions:

{a) S E Hn+l where 3a. aHn+l ~ a(S USn) and VP. P C S ~

~a'. a' Hn+l ~ a'(P USn)

{b) Q ~ Sn US where 3C E Q.C fl. Sn-1·

{c) () = 'Y · f3 where:

i. /3 is defined as: f3(Q) = f3(Hn+l) 1\ V/3'. (f3'(Q) = f3'(Hn+I)) ~

(3p.f3' = p . /3)
ii. If Rn+l is non-primitive r = {}.

Ershad Rahimikia McMaster University- Computer Science 53

iii. If Rn+l is primitive 'Y is any substitution satisfying:

'Y ~ p 1\ dom('Y) = P1 1\ card(dom('Y)) = card(P2)
where p = P1 x P2 and P1 = Var(S1 n S) and P2 is the set of

all the bound variables in Var(f3Q).

(d) a 0 = {} and ak = ak-l if Rk is non-primitive and ak = mgu((ak-1"

OH mgu(T1,k) ~) · ak-1 if Rk is primitive.

(e) For every 14 (1 ::::; i ::::; n), that is the same rule as Rn+1, there

should be at least one primitive rule R; (i ::::; j ::::; n + 1) and also for

the constraint set Q' ~ Si_1 underlying the the application of 14 we

should have 30. O(Q') = Q.

iii) A node, N in the tree is a leaf node iff there exists a repetition candi

date as the postfix of the derivation in the label of N or N can have no

children.

Def. 5.2.1.i) defines the label of nodes. Each node in a reduction tree

has a derivation as the label and the root node's label is a derivation with only

an empty constraint set. Def. 5.2.1.ii) shows the relation between a parent

derivation and its child derivations. The idea is to make the "minimum"

changes to the parent derivation to make its extension by another derivation

step possible.

Two types of changes are made to the parent derivation for this purpose.

As you can see in Def. 5.2.1.ii), first a constraint set S is added to every

constraint set in the parent derivation. S is in fact the minimum necessary

constraint set that should be added to the last constraint set of the parent

derivation to make the next rule application possible. Notice that according

to Def. 5.2.l.iia), we only add constraints when it is not possible to match the

constraints in the rule head with unification. For the root derivation this is

obviously the case, because no unification can match a rule head to an empty

set.

The second change to the parent derivation is to apply the most general

substitution that makes Hn+l and a subset of Sn U 8, i.e. Q, equal. This

substitution is defined in Def. 5.2.1.ii(c)i). Notice that this is different from

matching the head to the constraint set as we do not apply the substitution

54 CHAPTER 5. THE NON-TERMINATION PROBLEM

only to the constraint head. We are allowed to do that because we also have

the option to change the constraint set to make it equal to the rule head and

this in fact is how the second change to the parent derivation works.

The idea is to update the whole derivation in a way that at the end

the last constraint set has the 8 applied to it. To do this we apply 8 to

the first constraint set and by using the properties proved in Chapter 3 we

show that this substitution is propagated through the derivation up to the

last constraint set. We deal with this changing of substitutions by introducing

O!is. Def. 5.2.l.iid) shows a recursive definition for the O!i substitutions applied

in the child derivations. This formula can be obtained as follows.

Assume that we have the derivation step 81 ~ 82, in which R is prim

itive and the derivation step O!k-1 · 881 ~ O!k · 882 exists. We want to find

the relation between O!k and O!k_1. From the first derivation we know that for

some substitution {3 we have 82 = mgu({3T)81. For the second derivation, the

right constraint set would be equal to mgu(ak_1 · 8 · {3T) · O!k-1 · 881. From

Theorem 3.3. 7, this is equal to:

mgu(ak-1 · 8~ mgu(f3T) ~) · O!k-1 · 881

and from Corollary 3.3.4 it is equal to:

mgu(ak-1·8~ mgu({3T) ~)·O!k-1·8·mgu({3T)81 = mgu(ak-1·8~ mgu({3T) ~)·

O!k-l . ()82.

So we have ak = mgu(ak-1 · 8~ mgu(f3T) ~) · ak-1·

The second part of the 8 substitution, 'Y, is only for the primitive rule

applications and it deals with all the possible ways that variables in the first

constraint set can be equal to the last constraint. This is important because

we have to consider all the possible effects that the application of a primitive

rule can have on a constraint set. Here we consider only the simple case of

equality between variables. The more general dependencies between variables

necessitates introducing second order variables and higher order unification

which is not discussed here due to its complications.

Updating the derivation to make the new derivation step possible some

times results infinite branches even though the rule set can not cause infinite

derivations itself. As a simple example consider a rule set with a single rule

Ershad Rahimikia McMaster University- Computer Science 55

R : C [x] :::::} C x. This rule can never cause infinite derivations. but when

we are making a deduction tree, at every step a substitution () can update the

derivation and make the next application of R possible and this can go on

infinitely. Def. 5.2.1.iie) avoids these situations by restricting application of a

rule more that once in each derivation. The only case that allows more that

one application of the same rule is when between the two rules there exists a

primitive rule and the first constraint set of derivation between the the two

rules matches with the last constraint set. In this case, the repetition of the

same rule sequence can result a derivation candidate, and we should allow the

rule application, otherwise we might miss a repetition candidate that can be

produced by the rule set.

Finally Def. 5.2.1.iii) defines leaves of a reduction tree. Every node in

the tree with a derivation that is not extendable is a node. Also if the derivation

of a node has a repetition candidate as postfix it is also a leaf. Derivations with

repetition candidates as postfix are in fact what we were looking for. Having

them, we can avoid infinite chains by finding the constraint sets that can lead

to repetition candidates (these constraint sets are in facts the first constraint

sets of derivations having repetition candidates).

5.2.1 Deduction Trees Finiteness

To be of practical use deduction trees should be finite, otherwise any algorithm

building them would be non-terminating. The first part of the finiteness argu

ment for deduction trees is based on the completeness argument that we had

for repetition candidate. Assuming that repetition candidates are the only

reason that infinite derivations happen, we can not have a deduction tree with

an infinite branch. Because if the branch is infinite, it should have a repetition

candidate inside it and we have a checking in our definition of deduction trees

to stop extending the derivation more when we reach a repetition candidate.

Also as we explained before, Def. 5.2.l.iie) prevents updating derivations and

adding new derivation steps infinitely.

The number of branches for every node is also always finite. Because

what determines the number of branches is the number of rules in the system

and also the number of 'Y substitutions which are both finite.

56 CHAPTER 5. THE NON-TERMINATION PROBLEM

5.2.2 Building the Deduction Tree

The general strategy to build a deduction tree from a set of rules is to start

from the root with an empty constraint set as its derivation and perform a

BFS or DFS traversal. At each step a new child is added by updating the

parent derivation and extending it with a new derivation step. To update

the parent derivation, a new rule is first picked to be applied to the last

constraint set. Next S in Def. 5.2.1.ii) is found using Def. 5.2.l.iia). After

having S, substitution {3 is found by using Def. 5.2.1.ii(c)i). If the rule is

primitive 'Y substitutions satisfying Def. 5.2.1.ii(c)iii) and Def. 5.2.1.ii(c)ii) are

next found. As there can exist more than one 'Y substitution, we can have

more than one child by the same rule application. After finding 'Y we use the

recursive definition for ai to find all the a0 ••• an substitutions.

Also, every algorithm that builds a deduction tree needs to use unifica

tion and matching algorithms. There are standard algorithms in term rewrit

ing systems literature that we can use for unification and matching [Klo92],

but the only problem is how we should deal with free variables. The point is

that even though free variables are a type of variable in CHR systems, but

when unifying two constraints they should not be substituted with a term so

we treat free variables as constants (type constructors with no parameters)

when applying unifying and matching rules.

5.2.3 Example

In this section we build the deduction tree for the example presented in

[SDPJS07] as the case that not obeying FD conditions causes non-termination.

From the class and instance declarations and the generated CHRs presented

next a deduction tree can be generated.

class D a

class F a b I a ~ b

instance F [a] [[a]]

instance (D c, F a c) => D [a]

Ersbad Rahimikia

{F [x] y } ~ {F [x] [[x]]}

McMaster University- Computer Science 57

{ D[z] } ~ {D [z], D c, D z c }

I
R1

{ D[[x]] } ~ {D [[x]], D c, D [x] c } ~ {D [[x]], D [x] [[x]] }

R1: F [x] y => y =[[x]]
R2: D [z] => D c, F z c

Figure 5.1: Deduction Tree

We start with an empty set and apply R1 and R2 to it. The left branch

can not be extended any more because there is no other rule to be applied

to the last constraint set of the derivation and for the right branch we have

a repetition candidate as the leaf node. This means that for this set of rules

if we start with any instance of the constraint set { D [[x]]}, we will have a

non-terminating derivation.

Chapter 6

Conclusions

CHRs have proven to be a useful tool to formalize functional dependencies

in type systems. But restrictions on FD definitions in order to make the

resulting CHR system terminating and confluent greatly affect the benefits of

this approach.

As an alternative way to deal with the problem of confluence, we in

troduced prioritized CHRs and showed how applying propagation rules prior

to simplification rules can solve the problem of confluence in CHRs without

affecting the semantics.

Based on this modified system of rule applications, we studied the prop

erties of non-terminating CHR systems. We built a formal framework that

included all the main characteristics of CHRs. Based upon that, we defined

a special type of derivation named repetition candidate and proved that if a

repetition candidate exists, we can build an infinite derivation by repeating

application of the same rule sequence in the repetition candidate. Based on

this property and the confluence of propagation rules discussed in Chapter 4,

we showed that the existence of a repetition candidate makes a CHR system

non-terminating.

Finally, we introduced deduction trees as a way to find all the possible

repetition candidates for a set of CHRs. This algorithm can be applied to the

CHRs generated from the type class and instance declarations and enables us

to judge whether a class or instance declaration causes non-termination.

58

Ershad Rahimikia McMaster University- Computer Science 59

There are in fact two distinguishable types of repetition candidates in

the algorithm results. If the first constraint set of the derivation that has a

repetition candidate exactly matches head constraints of the first rule (except

for variable renaming), it means any application of this rule will cause non

termination. In this case, the instance or class declaration which produced the

rules in the repetition candidate should be rejected.

But in many cases, such as the examples we presented in the previous

chapter, the first constraint set is an instance of the rule head but not exactly

the same. In this case we have two options, either reject the class or instance

declaration, or postpone the error until instances of any constraint set in the

repetition candidate are generated during rule applications. In this way more

class definitions are accepted as valid and we can only prevent wrong usages

of type class member functions in the code body.

6.1 Contributions

• By finding the initial constraint sets that can cause non-termination in

CHRs generated from class and instance definitions, we can remove the

FD conditions and reject only those function definitions that can produce

those initial constraints. This gives us a more expressive type system by

only checking some extra conditions in the constraint solver, without the

need to change the current type inference system.

• As, in general, detecting non-termination in term rewriting systems is not

decidable, the main focus has always been on finding sufficient conditions

to ensure a term rewriting system is terminating. But, by focusing on a

special type of term rewriting system we showed that working on non

terminating systems can result in interesting observations and help us to

understand how exactly non-termination might happen.

• The findings of this thesis are not limited to the application of CHRs in

formalizing type dependencies. Any other system that works with CHR

systems with only equality as the primitive constraint symbol can use

the presented algorithm to detect cases that cause non-termination in

60 CHAPTER 6. CONCLUSIONS

constraint solvers.

• Having free variables is usually rejected in term rewriting systems be

cause of their unwanted consequences. In this research we presented a

formal definition for these types of variables that enabled us to study

their behavior. This formalization can also have applications in other

term rewriting systems.

• Substitutions have never been interpreted as primitive constraint sets,

as far as we know. This new approach can also be used in other term

rewriting systems to discover new properties for these systems.

• The formal framework we built in Chapter 3 can also be used to study

other properties of CHRs.

• Some of the strategies and theorems used to formalize CHRs are general

enough to be useful for other constraint solving systems.

6.2 Future Work

In Chapter 5 we showed how a sequence of rule applications can repeat in

finitely and cause non-termination. But proving that all the non-termination

cases stem from a repetition candidate is still an open problem. We believe

that our formulation of the problem can be a good starting point to work on

the completeness proof. Furthermore, even without the completeness proof,

our algorithm can still be useful because practically it covers the known non

termination cases.

Also, in the deduction tree definition discussed in Chapter 5, we only

considered the simple case of equality between different variables. But this

does not cover all the cases that might happen. In general if we have two sets

of variables S = {x 1 ... Xn} and S' = {y1 •.• Ym} (Sis the first constraint set

and S' is the set of all the bound variables in the primitive rule application), we

will have the substitution a = { Xt ~----+ Vt (YI ... Ym) ... Xn ~----+ Vn(YI ... Ym)} in

which v1 ... Vn are second order variables, and so the unification algorithm used

to update the parent node derivation should support second order unification.

Bibliography

[Abd97] Slim Abdennadher. Operational semantics and confluence of con
straint propagation rules. In Proc. of the Third International
Conference on Principles and Practice of Constraint Program
ming, 1997.

[CKPJ05] Manuel M. T. Chakravarty, Gabriele Keller, and Simon L. Pey
ton Jones. Associated type synonyms. Proceedings of the tenth
ACM SIGPLAN international conference on Functional program
ming, pages 241-253, 2005.

[CKPJM05] Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Pey
ton Jones, and Simon Marlow. Associated types with class. ACM
Conference on Principles of Programming Languages, pages 1-
13, 2005.

(Frii98] Thorn Friihwirth. Theory and practice of constraint handling
rules. Special issue on constraint logic programming. Journal of
Logic Programming, 37(1-3):95-138, 1998.

[HHP JW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. Type classes in haskell. ACM Transactions on
Programming Languages, 18:109-138, 1996.

[Jon93]

[JonOO]

(Klo92]

Mark P. Jones. A system of constructor classes: overloading and
implicit higher-order polymorphism. In FPCA '93: Conference
on Functional Programming and Computer Architecture, Copen
hagen, Denmark, pages 52-61, New York, N.Y., 1993. ACM
Press.

Mark P. Jones. Type classes with functional dependencies. In
G. Smolka, editor, ESOP 2000, volume 1782 of LNCS, pages
23Q-244. Springer, March 2000.

J.W. Klop. Term rewriting systems. Handbook of Logic in Com
puter Science, 2:1-116, 1992.

61

62 BIBLIOGRAPHY

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[PJJM97] Simon L. Peyton Jones, Mark Jones, and Erik Meijer. Type
classes: an exploration of the design space. In Proc. Haskell
Workshop 1997, 1997.

[SDPJS07] Martin Sulzmann, Gregory J. Duck, Simon L. Peyton Jones,
and Peter J. Stuckey. Understading functional dependencies via
constraint handling rules. Journal of Functional Programming,
17:83-129, 2007.

[SS02] Peter J. Stuckey and Martin Sulzmann. A theory of overloading.
In Proc. of ICFP'02, pages 167-178, 2002.

[Ter03] Terese, editor. Term Rewriting Systems, volume 55 of Cambridge
Tracts Theoret. Comput. Sci. Cambridge Univ. Press, 2003.

[Wik] Wikipedia. Constraint programming.
http:/ /en.wikipedia.org/wiki/Constraint_programming.

3071 10

