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Abstract 

Constraint Handling Rules ( CHRs) are a high level language extension to 

introduce user-defined constraints into a host language. Application of CHRs 

to reformulate functional dependencies (FDs) in the Haskell type system gives 

us a more precise definition of this concept, and a better understanding of 

FD behavior. But to preserve the confluence and termination properties of 

CHRs generated from FDs, some restrictions on the syntax of FDs and type 

class definitions have been imposed which confines the expressiveness power 

of Haskell type system. 

In this thesis we use this problem as a motivation to find a solution 

for the confluence and non-termination problem in CHRs. We build a for

mal framework for CHRs and model their different aspects mathematically 

to study how non-confluence and non-termination happens. Based on this 

formalization we introduce prioritized CHRs as a solution for the confluence 

problem. To solve the non-termination problem, we propose a method to de

tect non-terminationin the constraint solver. We define a repetition candidate 

as a special type of derivation and prove that a derivation having this property 

can cause non-terminating rule applications in the system. Finally we define 

a deduction tree structure for a set of rules that can be used to find all the 

possible repetition candidates for a set of constraint rules. 
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Chapter 1 

Introduction 

Functional dependencies (FDs) are a useful extension to Haskell type classes 

that add to the expressiveness of the language and resolve ambiguities in type 

definitions. In relational algebra terminology, when a functional dependency 

exists between two attributes in a relation one attribute uniquely determines 

the other attribute. Mapping the same concept to type classes, having a 

functional dependency between two type parameters in a type class, one type 

parameter uniquely determines the other. 

Based on this informal definition, it is possible to implement functional 

dependencies as part of the type system, but formalizing functional depen

dencies in a more precise way enables us to study their properties and better 

understand their behavior. One candidate to do that is a high level language 

extension called constraint handling rules ( CHRs). This formalization can 

be useful for practical reasons too; by translating functional dependencies to 

CHRs, part of the type inference can actually be done by the constraint solver. 

Any CHR system basically consists of a set of rule definitions that 

shows how the existence of a set of constraints entails other constraints in the 

system. Starting from an initial constraint set, the constraint solver applies 

these rules and finds all the possible constraints that can be inferred or detects 

any inherent inconsistencies in the initial set. 

Formalization of FDs is based on a set of translation rules that shows 

how every type class or instance definition can be translated to CHRs. But 

3 



4 CHAPTER 1. INTRODUCTION 

to have a sound, complete and decidable type inference system that supports 

functional dependencies, we need to ensure that the generated CHRs are ter

minating and confluent. These two properties in fact come from the more 

general context of term rewriting systems, and a great deal of research has 

been done to find how it can be guaranteed that a term rewriting system is 

terminating and confluent. 

The current approach to ensure termination and confluence of the gen

erated CHRs from type class and instance definitions is to put some constraints 

on the definition of functional dependencies. This has been done by defining 

three basic properties that all type class and instance definitions should satisfy, 

namely consistency, coverage and bound variable conditions. 

Although these limitations make the resulting CHRs system have the 

the basic required properties, in many cases they are too limiting and re

ject many useful and correct programs. To solve or at least to mitigate this 

problem, some less constraining conditions, such as weak coverage conditions, 

have been found to make the system encompass more programs as valid. But 

these weaker conditions are more complex than the original ones and usually 

need some supplementary conditions to assure the basic CHRs properties are 

satisfied. The main problems that we see in the current approach are listed 

below: 

• The limitations of using CHRs to implement functional dependencies are 

excessively affecting decisions for the language syntax and semantics. 

• The complex rules to define a type class or an instance can result in a 

sound, complete and decidable inference system, but these limitations 

have a direct effect on the language syntax and are not hidden from the 

programmer. So the programmer has to take care of many rules when 

defining classes and instances, many of which have no intuitive rationale. 

• There is no guarantee that even with the new looser conditions we will 

not have reasonable definitions rejected by the system, and this in

evitably leads to a cycle of adding more refined but usually more complex 

conditions. 
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• The current preemptive approach is too conservative in that a class, 

instance or function definition that "might" be used in a wrong way is 

rejected. Giving the error when they are actually used in a wrong way 

is another approach that should be considered. 

• CHRs are not fully integrated with the rest of the typing system. Sup

porting functional dependencies as a part of the type inference system 

is another approach that can be worked on. 

To avoid these problems, some research has recently been done to find 

an alternative way to formalize functional dependencies. As we will see in the 

next chapter, associated type synonyms can be used to formalize functional 

dependencies as an integral part of the typing system [CKPJ05]. Using this 

new method enables us to include more class and instance definitions as valid, 

but still it does not accept all the reasonable definitions. Furthermore, sup

porting associated type synonyms in typing systems considerably adds to the 

complexity of the inference rules. 

Another approach to deal with the problems mentioned above is to 

continue to use the CHRs, but remove all the restricting conditions we had 

already imposed on the definition of class and instances. As we mentioned 

before, the generated CHRs may no longer be terminating and confluent, but 

non-confluent and non-terminating systems can still be practically useful pro

vided that we have a mechanism to prevent the resulting problems. 

In this thesis we study the confluence and non-termination problem of 

the generated CHRs and propose solutions to deal with them. In fact, we 

mainly use this problem in functional dependency CHRs as a motivation to 

investigate confluence and termination properties in a broader context and 

propose some solutions that are applicable to CHR systems in general. 

As we will see in Chapter 4, one solution for the confluence problem 

is to give priority to propagation rule applications over simplification rule 

applications. We will talk more about these two types of CHRs in the next 

chapter, but as an informal definition, simplification rules replace a subset of 

constraints in the constraint set with a new constraint set, but propagation 

rules add new constraints to the constraint set. It can be proved that if we 
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postpone simplification rule applications until all possible propagation rules 

are applied, the CHR system is always confluent. 

Based on the new system of rule applications that we call prioritized 

CHRs, we will deal with the problem of non-termination in Chapter 5. The 

idea is to find a way to detect non-terminating rule applications in constraint 

solvers. In this way, rather than rejecting type class or instance definitions 

because they might cause non-termination, we can accept the definitions but 

have proper checking to reject erroneous usages of these definitions in the code. 

The method presented at the end of Chapter 5 to detect infinite deriva

tions is based on the properties of a certain rule derivation, namely repetition 

candidate. A repetition candidate is a derivation that satisfies two properties. 

The first condition requires the first constraint set of the derivation to match 

with the last constraint set, and the second condition involves the behavior of 

primitive rule applications and free variables. 

We start by proving that if this kind of rule derivation occurs in the 

constraint solver a non-terminating sequence of rule applications can happen. 

The deduction tree definition at the end of Chapter 5 basically produces all 

the possible repetition candidates for a set of CHRs. So any algorithm that 

can build this tree structure for a set of rules can find us initial constraint sets 

producing repetition candidates. 

The prioritized CHR system and the infinite chain properties presented 

in Chapter 4 are based on a formal framework for different characteristics of 

CHRs built in Chapter 3. As will be explained in detail, CHRs can have 

multi-constraint heads, variables in the tail constraints that are not used in 

the head (free variables), and also primitive constraints in the tail. All these 

characteristics will be carefully studied and mathematically formalized. 

Based on this formalization we will find some important properties that 

are later used in our main theorems about non-termination. These properties 

are also interesting by themselves and can be used to study other behaviors of 

CHR systems. One of the properties in particular, is based on a novel approach 

in working with substitutions. Substitutions are widely used functions in term 

rewriting literature, but in our formalization we sometimes need to look at 

them as equational constraints. This extension of the substitution concept 
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results in some interesting consequences which can also have some applications 

in other term rewriting systems. 

Before talking about the details of our new method, we will have a quick 

review of the Haskell type system and constraint handling rules in the next 

chapter. We will also show how functional dependencies can be reformulated 

by CHRs and what conditions they should satisfy. 



Chapter 2 

Background 

The main goal of the next chapters is to show how we can relax some of the 

restrictions on the current syntax of multi-parameter type classes in Haskell 

and still have a confluent system that also has a mechanism to detect non

terminating inferences. But before going through the details of our new 

method, we will have a quick look at the current state of the Haskell type 

system and how it handles multi-parameter type classes and functional depen

dencies between types. Using Constraint Handling Rules (CHRs) as a way 

to formalize functional dependencies is also briefly discussed, and some of the 

CHR properties are explained in the more general context of term rewriting 

systems. Finally, at the end up of this chapter we will look at an alternative 

approach, called associate type synonyms, that can be used as an alternative 

to functional dependencies. 

2.1 Type Classes in Haskell 

Haskell type classes extend the Hindley-Milner type system to provide a uni

form solution to function overloading. A type class declaration consists of 

class name, class parameters, members and their type signatures. Type class 

functions can have several implementations in class instances, differentiated by 

the type of instance parameters. Imagine we need different implementations 

for an equality function depending on the type of values that should be com

pared. To define this overloaded function in Haskell, first we have to define the 

8 
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type class with the type signature of the member functions (here just (::) ). 

Different implementations of functions are next defined in different instance 

declarations: 

class Eq a vhere 

(::) :: a~ a~ BooL 

instance Eq Int vhere 

(::) = primEqint 

instance Eq Char vhere 

(::) = primEqChar 

Class and instance declarations can also include super-classes as con

texts. If the super-class is defined for a class, it means all the instances of that 

class should first have an instance of it and if an instance has a super-class, 

that specific instance needs to have the super-class implementation. In the 

next example each instance of class Ord should first have an instance of class 

Eq: 

class Eq a => Ord a vhere 

(<) a ~ a ~ BooL 
(~) ::a~ a~ BooL 

To support function overloading, programming languages need to have 

a mechanism to determine which implementation of an overloaded function 

should be used for each function call. In the next section we will explain how 

Haskell programs with single-parameter type classes handle this by translating 

the source code into an intermediate code with non-polymorphic functions. 

2.2 Implementing Type Classes in Haskell 

As discussed in [HHP JW96], one strategy to support type classes in Haskell is 

to translate the source code to an intermediate language while type checking 
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rules are applied. This intermediate code is quite similar to the original source 

code to support more readable error messages; but rather than having type 

classes, it passes some extra information to each function call to determine the 

instance of a function used. This extra information is built from each instance 

of the classes and is called a dictionary. A dictionary contains all the instance 

members and a reference to the superclass dictionary if any exists. 

While the type checking rules are applied, the correct overload of a 

called function is determined and the corresponding dictionary is passed to 

the translated function. So the translated functions are not actually the same 

functions in the source code, they are acting as selectors that find the function 

from the dictionary passed to them. 

To type check and translate the program some information about the 

classes, functions in classes, dictionaries and instances is needed. This data is 

obtained when class and instance definitions are processed and is kept in an 

a structure called an environment. The environment is divided into different 

sections and each step updates or uses one or more sections. Type checking 

and translation starts from class definitions, next instances are processed and 

finally the main body of the code is translated to the intermediate language. 

Translating class definitions updates the environment to keep the in

formation about the class, its super-classes and all the members and their 

polymorphic type signatures. Parallel to updating the environment and type 

checking, each function in a type class is also translated to a selector function 

that accepts a dictionary as parameter and returns the corresponding entity 

for it. 

Translating instance declarations updates one environment section only. 

For each instance, a record is added to the environment which contains a ref

erence to the dictionary and also the type signature of the instance that the 

dictionary belongs to. For example for the Eq class and its Int instance we de

fined earlier, a record like dictEqint = Eq Intis added to the environment. 

The dictionary itself is built by translating the methods inside the instance, 

and putting them together in a data structure. 

Next the main body of the code is translated by a set of rules for expres

sions (The same rules are also used for translating members inside instances). 
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For each polymorphic function call, first the types of the input parameters are 

determined. Using this information and data already saved in the environ

ment, the appropriate dictionary is found and passed to the function in the 

translated code. 

2.3 Multi-parameter Type Classes and Func

tional Dependencies 

A natural extension to single-parameter type classes is to allow indexing class 

members with more than one parameter. As discussed in [PJJM97], this new 

extension adds to the expressiveness of type class definitions, but at the same 

time causes some type checking problems, and in some cases although the 

program is type-checked, the result type is not exactly what the programmer 

meant it to be. As an example of the second problem, imagine a collection 

class that is parameterized over the collection type and the element type: 

class CoLLection c e 

empty :: c 

insert :: c ~ e ~ c 

But we also need to somehow specify that all the elements of each 

collection have the same type, otherwise a function 

insert2 xs a b = insert (insert xs a) b 

for inserting two elements into a collection would have the type 

insert2 :: (CoLLection c e1, CoLLection c e2) => c ~ e1 ~ e2 ~ c 

which is not what we meant. 

These problems necessitate a mechanism to have more control over 

type class parameters. Functional dependencies are one candidate for this 

purpose by allowing the programmer to specify dependencies between different 

parameters of a type class. As an informal definition, when type b is dependent 
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to type a, a -> b, it means that fixing a should fix b or in other words in 

different instances of the class, parameters a and b should not have the same 

value for a but different values for b. We will see one formal definition of 

this concept in the next chapter when we formulate functional dependencies 

in terms of Constraint Handling Rules. Using functional dependencies, we can 

fix the problem for the class defined above: 

class Cottection c e I c ~ e 

empty :: c 

insert :: c ~ e ~ c 

The functional dependency c -> e means e is determined by c, or in 

other words we can not have two instances having the same value for parameter 

c but different values for e. The same insert2 function would now have the 

principal type: 

insert2 .. (Cottection c e)=> c ~ e ~ e ~ c 

2.4 CHR and Functional Dependencies 

Functional dependencies can be integrated with the dictionary-based type sys

tem discussed in previous sections, but to'have a sound type inference system, 

we need to put some limitations on how type dependencies can be used. The 

need to study the implications of enforcing restrictions on FDs demands a more 

formal definition of the functional dependency concept. This can be done by 

formalizing FDs in terms of Constraint Handling Rules. Using CHRs enables 

us to study the consequences of having functional dependencies in a type sys

tem. This formalization also can be of practical significance because it makes 

it possible to use constraint solvers as an integrated part of the type checking 

systems. The next sections explain more what Constraint Handling Rules are 

and how they are currently used to formalize functional dependencies. 
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2.4.1 Constraint Handling Rules 

Constraint programming is a programming paradigm where relations between 

variables can be stated in the form of constraints [Wik]. Constraints are usu

ally used in a hybrid way with other programming paradigms or as built-in 

subsystems, so that they define the properties of the solution and the con

straint solver finds solutions that satisfy these properties. But as discussed in 

[Frii98], most constraint solvers have some common problems: 

Being Domain Specific Constraint solvers are typically over some specific 

domains, such as integer, boolean or finite domains which limits their 

domain of applicability. 

Lack of Flexibility Constraint solvers are usually hard-wired as a built-in 

system. This causes the application programmer to have no control over 

the constraint rules. 

Low-Level Syntax Even those constraint solvers that allow the user to make 

modifications, mostly use low-level language syntax which makes it hard 

to work with them. 

Constraint Handling Rules (CHR) as described in [Frii98] is a high level 

language extension that allows user-defined constraints into a host language. 

In this way the user can work with a high-level, easy-to-use language which is 

not dependent on any specific domain and can be used with any host language 

having its own domain. 

Each user defined constraint solver consists of a set of rules which shows 

how a constraint set can be replaced by another equivalent constraint set 

(simplification rule) or can add new constraints to the system (propagation 

rule). Constraints in CHR systems are of two types: predefined or primitive 

constraints are those that will be handled by the host language constraint 

solver; this type of constraint is domain specific. User-defined or non-primitive 

constraints are defined by the user and are not dependent on any domain. 

The task of a CHR constraint solver is to apply the user-defined rules 

to an initial set of constraints until no other rule is applicable. If the initial 
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constraints are (inherently) inconsistent, the constraint solver would find it 

out, and if not it returns the final predefined and user-defined constraint set. 

The CHR constraint solver is always in interaction with the host language 

constraint solver by feeding it with the predefined constraints and applying 

the results to the current user-defined constraints in each step. 

To show how constraints can be defined and applied to a set of initial 

constraint, imagine the constraint solver consists of the rules below: 

rule! : E x {::} C x 

rule2 : C x, D x y => x = y 

rule1 is a simplification rule that replaces instances of E x with the 

corresponding instances of C x. We will discuss instances in the following 

chapters, but for now, constraint E' is an instance of E if there exists a 

substitution() such that 8(E) = E'. 

rule2 is a propagation rule that adds an instance of predefined con

straint x . = y to the constraint set if instances of C x and D x y (using a 

substitution 8) exist in the constraint set. This new predefined instance will 

later be applied to the constraint set by the host system. 

Assuming that we have { E a, D a b} as the initial constraint set, first 

rulel can be applied to E a and this constraint is replaced by Ca. Next C a 

and Dab are matched with the head of rule2 and a= b is generated. Applying 

this constraint to the current constraint set results in { C a, D a a} 

There are two basic properties that constraint solvers, or as we will see 

in the next section, term rewriting systems in general, are usually required 

to satisfy: termination and confluence. The termination property guarantees 

that rule applications to any initial constraint set can not continue indefinitely, 

and the confluence property ensures that different rule applications to an initial 

set will result in equivalent final constraint sets. The formal definition of 

confluence is explained in the next section when we talk about term rewriting 

systems. 

In any system working with constraint solvers, defining rules in a way 

that satisfies these two properties is critical. In functional dependencies for

malization with CHRs, this has been done by putting some limitations on the 
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definition of type classes and instances. In the following sections, we will ex

plain how FDs are formalized by CHR.s and what conditions are necessary to 

make the system confluent and terminating. As CHRs can fit in the definition 

of term rewriting systems, studying termination and confluence in this broader 

context gives us a better understanding of the limitations imposed on the def

inition of functional dependencies. The following sections briefly talks about 

the standard methods used to prove a term rewriting system is terminating 

and confluent. 

2.4.2 CHR as a Term Rewriting System 

An abstract rewriting system consists of a set of objects and one or more 

binary relations that determine the transformations between the objects in an 

abstract way. A term rewriting system(TRS) is an abstract rewriting system 

where the objects are first-order terms, and where the reduction relation is 

presented in a standard schematic format of so-called reduction rules or rewrite 

rules [Ter03]. As CHR systems are a specific form of term rewriting systems, 

in this section we briefly discuss TRS's termination and confluence properties 

which are also applicable to CHR systems. 

For most methods used to prove the termination of a TRS the notion of 

a reduction order plays an important role. As an informal definition a reduction 

order on TRS terms is a well-founded order (an order that does not admit 

infinite descending sequence) which is closed under substitutions and contexts. 

The goal is to find a reduction order on terms with which for every rule in our 

TRS the head term is greater than the tail term. It can be proved that if such 

an order can be found, the TSR is terminating. 

There are several approaches to find a reduction order for a TRS, but 

all of them have one thing in common: they check sufficient not necessary con

ditions for non-termination. In other words if a method does not prove that a 

system is terminating it does not necessarily means that it is non-terminating. 

Next we briefly explain three different categories that all reduction order meth

ods fit in. As we will see in later chapters, in our new approach to deal with 

the problem of termination none of these methods are applicable, as we al

ready know that our system is non-terminating and try to find an algorithm 
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to detect these cases. As discussed in [Ter03], three different methods to prove 

termination are: 

Semantical Methods In this method for each function in our TRS an in

terpretation function with an ordered set as its range should be found. 

Using these functions, a term evaluation can be defined that maps each 

TRS term to a member in the ordered set. In this way, a reduction order 

is defined for the terms in our TRS and, as mentioned above, if for each 

rule the rule head is greater than the tail, our TRS is terminating. This 

method is applicable to prove termination for many term rewriting sys

tems, but the downside for it is that there is no automatic way to find 

these interpretation functions. 

Syntactical Methods In syntactical methods finding reduction orders is more 

mechanical. In these methods there is no need to find an interpreta

tion function, but an arbitrary ordering on the TRS functions is chosen. 

Then, according to a syntactical recursive ordering rule, e.g recursive 

path order, all the terms in the TRS can be ordered. 

Transformation Methods For many terminating systems using the above 

methods fail to prove termination. Another common approach is to find 

a termination preserving transformations for a TRS and if it can be 

proved that the transformed system is terminating (by using previous 

methods) the original system should also be terminating. 

In (SDPJS07], the proof that CHRs generated from functional depen

dencies are terminating is based on the semantical approach. For this purpose, 

a weight function, which is basically an interpretation function, is defined and 

taking into account the restrictions imposed on the definition of type classes, it 

can be proved that for each generated rule, head instances are always greater 

than corresponding tail instances. 

2.4.3 Formalizing Functional Dependencies with CHRs 

CHRs can be used to formalize functional dependencies and class constraints 

in type class and instance definitions. This formalization not only helps to 
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better study the behavior of functional dependencies, but it can also be used 

as part of the type inference system. 

As shown in [SDPJS07], a number of generation rules are used to gen

erate a CHRs from the instance and class definitions. Two of these rules 

model the class-superclass dependencies and the other two model functional 

dependencies. For a class and an instance declaration as below: 

class C => TC al ... an I fdl, ... ,fdm 

instance C => TC t 1 . . . tn 

The following CHRs should be generated: 

• The class CHRs: For each superclass in the class definition a propa

gation rule is generated: 

rule : TC a1 ••• an => C 

• The instance CHRs: For each instance context a simplification rule 

is generated: 

rule: TCt1 ... tn {:::} C 

• The functional dependency CHRs: For each functional dependency 

f~ of the form ail ... aik---+ ~o, a propagation rule is generated: 

rule TC a1 ••• an, TC 8(bi) ... 8(bn) => aiO = bio 

where a1 ... an, b1 ... bn are distinct type variables and: 

(}(b;) = { a; if j E {.i1 ... ik} 
b; otherw1se 

• The instance improvement CHRs: If class instances are defined, 

for each functional dependency f di of the form ail, ... , aik ---+ aiO, a 

propagation rule is generated: 

where b1 ... bn are distinct type variables and: 

(}(b;) = { a; if j E {.i1 ... ik} 
b1 otherwise 
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The first two rules are quite straightforward. The first rule says if a 

type class has a super-class, for every instance of that class an instance for 

the super-class should exist. The second rule is the same but for instance 

contexts. If the instance has no context, the constraint would be simplified to 

true which means that if we a constraint that matches one of our instances, 

this constraint is satisfied. The third rule is in fact the formal definition of 

functional dependencies: For two instances of the same class, if they have the 

same type variables for the LHS of a functional dependency, the type variable 

for the RHS should also be the same. The last rule can also be considered as 

a definition of functional dependencies in a different way which says if there 

exists a constraint that matches an instance declaration and the variables in 

the left hand side of a functional dependency are the same in the constraint 

and instance declaration, the left hand side variable in the constraint should 

be the same as the one in the instance declaration. 

To assure that the generated rules are terminating and confluent, class 

and instance definitions should satisfy a number of conditions. The first set of 

conditions, namely basic conditions, is not related to functional dependencies 

and only reflects the restrictions on class and instance definitions. The second 

set of conditions, FD rules, deal with functional dependencies. It is important 

to notice that these rules are sufficient but not necessary to prove termination 

and confluence of the generated CHRs. In other words, some class definitions 

can be found that do not follow these rules, their generated CHRs still have the 

necessary properties. Some research work has been done to ease these con

ditions and some alternative conditions like Paterson Conditions have been 

found that are looser, but more complex, but still they have the same above 

mentioned problem, i.e., they might rule out non-problematic class definitions 

[SDPJS07]. A summary of basic conditions and functional dependency con

ditions is presented next. For more detailed definitions refer to [JonOO] and 

[SDPJS07]. 

Basic Conditions: 

• The Context C of a class and instance declaration can mention only type 

variables and in each individual class constraint CC, all type variables 
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are distinct. 

• In an instance declaration instance C => TC t1 ... tn, at least one of the 

types ti must not be a type variable. 

• The instance declarations must not overlap. 

FD-Conditions: 

• Consistency Condition 

For each defined functional dependency, there should not exist two in

stance definitions having the same types for the LHS and different types 

for the RHS. 

• Coverage Condition For each instance definition, variables in types 

corresponding to the functional dependency range should be a subset of 

variables in types corresponding to the functional dependency domain. 

In other words, determining the types for the domain of a functional 

dependency should fully determine the type in the range. 

• Bound Variable Condition 

For each class or instance declaration, variables in the context should be 

a subset of the variables used in the instance. 

We saw how modeling functional dependencies can help us to formalize func

tional dependencies, but keeping the constraint solver terminating and con

fluent forces us to impose some restrictions that might rule out meaningful 

and useful class definitions. In the following chapters, we try to find a solu

tion to overcome this problem, but, before that, as a potential alternative to 

functional dependencies, associated type synonyms are discussed. 
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2.5 An Alternative Approach: Associated Type 

Synonyms 

Currently, standard Haskell only supports overloading of functions via type 

classes. FUnction overloading allows indexing functions by types but there 

are also many cases where we need to index data constructors by types, or in 

other words, the ability to choose a data constructor for a type based on input 

parameters. Associated types serve this purpose by extending the abstraction 

used in type classes. 

A modified version of associated types, associated type synonyms, can 

also be used as an alternative approach to the problem of type dependencies 

which is currently formulated by CHRs. This new approach is still in the early 

stages of development and before more research has been done it is hard to 

say it would be a substitute for CHRs. In the following sections we will take 

a quick look at how associated types and type synonyms work and, finally, we 

will make a comparison between CHRs and the new formulation of the type 

dependency problem. 

2.5.1 Associated Types 

To index type constructors by types, the same class structure for function 

overloads can be utilized. Imagine we want to have a Map structure that 

keeps pairs of key /values, but for some optimization purposes we would like to 

have different type constructors based on different possible types of key. We 

express this idea by defining a type class MapKey parameterized by the key 

type and also define an associated type Map as part of our class definition: 

class MapKey k where 

data Map k v 

empty : : Map k v 

lookup : : k ... Map k v ... v 

As we can see, in addition to methods in a class definition, we have an 

associated type parameterized with k. As an instance of this class for type Int, 
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we can have a specific data constructor for Map, assuming a suitable library 

implementing finite maps for integers, IntMap: 

instance MapKey Int v vhere 

data Map Int v = Mapint(IntMap.Dict v) 

empty = IntMap.emptyDict 

lookup k (Mapint d)= IntMap.tookupDict k d 

To integrate associated types with Haskell's class definitions, some ma

jor changes should be made to the way dictionaries are constructed, which 

makes the type system a lot more complex; but this complexity is hidden from 

the user. Another point about the associated type implementation is that the 

type system supporting them can still be translated into System F [CKPJ05]. 

The concept of typed-index types can also be modeled in a different 

way by functional dependencies, as for the previous example we can have: 

class MapKey k m v I k ~ m 
empty :: m 

lookup : : k ~ m ~ v 

But especially for more complex situations, using functional dependen

cies for this purpose has some drawbacks [CKPJM05]: 

• There are cases where translating associated types to functional depen

dencies would result in non-confluent CHRs. This is a major problem 

with the current typing system for functional dependencies, but as will 

be explained in later chapters, this confluence problem can be solved by 

modifying the way rule applications are done in the constraint solver. 

• Translating associate types to functional dependencies would require 

changing associated types to extra parameters for a type class and hence 

results in more complex code. But if the modifications discussed in 

the following chapters prove to increase the expressiveness of functional 

dependencies, it still might be worthwhile accepting the complexities 

caused by using functional dependencies. 
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• Defining data types in a separate module and hiding the concrete repre

sentation of the data type from the user of the module is not possible if 

we use FDs to model typed-indexed types. 

In this section, we explained how associated types can be translated 

to FDs and what the problems are for this approach. In the next section 

associated type synonyms are introduced and we will show how they can serve 

the same purpose as FDs. 

2.5.2 Associated Type Synonyms and Type Dependen

cies 

In the previous section, we showed how associated types can be defined inside 

class declarations and how different type constructors can be introduced in 

each instance. As the next natural step we would allow assignment of mono

types to be used as data constructors in instance declarations. So a data type 

instance can have the format Sii f = v, where Sis an associated type synonym, 

ii are type variables with corresponding type parameters in the class declara

tion and the f and v are monotypes. According to this definition (Sa = Int) 
would be a valid type synonym but (S = [Int]) is not, obviously because 

[Int] is not a monotype. The example below illustrates how associated type 

synonyms can be used: 

CLass C a where 

type B a 

foo :: a -+ B a 

instance C Boot where 

type B Boot = Int 

foo Fatse = 0 

foo True = 1 

In this example, the class declaration is exactly like what we had in 

associated types, but in the instance declaration we have assigned a primitive 
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type In t as a type synonym for a type constructor. Although associated type 

synonyms seem to be a trivial extension of what we already had, they raise the 

issue of non-syntactic type equality which requires a thorough revision of the 

type inference system. As for the above example, after defining this instance 

B Boot would be equal to Int even though they are not syntactically equal. 

Handling non-syntactic equalities needs some basic changes to the type 

inference rules. Firstly, we have to extend typing rules for expressions to 

include this type of equality. Secondly, new unification rules are required 

for type equalities in the presence of these type functions. We also need to 

handle pending equality constraints, which are generated during expression 

type checking and should be resolved later using the knowledge about associate 

type synonyms declarations. Subsumption algorithms should also be revised 

to conform with type functions [CKPJ05). 

Type synonyms and functional dependencies both deal with the same 

problem, but in different ways. Both approaches enable us to have one type 

depend to another. As for the above example, we can have the same concept 

by using functional dependencies.: 

Ctass C a b I a ~ b where 

foo :: a -+ b 

instance C Boot Int where 

fool Fatse = 0 

fool True= 1 

As can be seen above, the same dependency we had between a and 

B a via type synonyms is now implemented by an extra parameter b in the 

functional dependency a->b. 

2.5.3 Comparing the Two Approaches 

Associated type synonyms can be an alternative to CHR.s to model functional 

dependencies and in some cases, defining the same type dependencies with 

type synonyms would give more understandable code. But associated type 
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synonyms have their own drawbacks; they add to the complexity of the type 

system and they still do not cover all the legitimate class definitions rejected 

by basic and FD conditions. In the following chapters, we will show how 

easing basic and FD conditions and dealing with the consequent confluence 

and non-termination problem can be another potential solution. 

, 
; 



Chapter 3 

A Formal Framework for CHRs 

In this chapter we build a formal framework to model different characteristics 

of CHRs. Our solution for confluence and non-termination in the following 

chapters is based on this formalization. We have briefly discussed CHRs in 

the background chapter, but we need a formal definition for different elements 

of a CHR system. 

Definition 3.0.1. 

• A constraint, C t 1, ... , tn, is a predicate symbol, C, with terms h, ... , tn 

as arguments. 

• A constraint with equality as predicate symbol is called a primitive con

straint otherwise is a non-primitive constraint. We also write the prim

itive constraint ( =) t1. t2 as t1 = t2. 

• A simplification rule, R : 81 ¢::> 82, consists of two sets of constraints 

81 and 82 with no primitive constraints in 81. 

• A propagation rule, R : 81 => 82, is a relation between two sets of 

constraints 8 1 and 82 with no primitive constraints in 81. (A relation is 

a subset of a cartesian product, i.e., a set of tuples.) 

• A primitive rule is a propagation rule with only primitive constraints in 

the second constraint set. 

25 
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• A non-primitive rule is a rule with only non-primitive constraints in the 

second constraint set. 

• A variable x is a free variable in rule R if it occurs only in the right 

constraint set. 

• A variable x is a bound variable in rule R if it occurs in the left constraint 

set. 

Notice that in the primitive rule definition, we only allow equality as the 

predicate symbol. This limitation is not part of the definition of primitive rules 

in CHR systems, but our formalization is based on it. Although this definition 

of a primitive constraint is restrictive, there are still many CHR applications, 

including formalization of functional dependencies, that can work with it. As 

we can see, guarded conditions for rules are also not included and will not be 

part of our formalization. 

3.1 Substitution, Unification, Matching 

Throughout this chapter we will use substitutions and their properties to for

mulate different aspects of CHRs and prove properties about non-termination 

and confluence, so an exact definition of what it means by substitution is 

essential. There are different definitions for substitution depending on the 

subject area this term is used in [Ter03]. In our definition, substitutions are 

finite domain functions that map variables to terms. As we will see later in 

this chapter, sometimes we need to convert substitutions to finite primitive 

constraint sets, so the finiteness of the domain is essential. 

Definition 3.1.1. A substitution is a finite-domain function that maps vari

ables to terms. 

To denote the composition of two substitutions a and {3, we use the 

notation a· {3 in which {3 is applied first. It can be proved that composition 

of substitutions is associative, but in general not commutative. The following 

example shows that commutativity does not always hold for substitutions. 
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Example: Assume we have a = { x ~---+ a, y ~---+ b} and (3 = {a ~---+ c}. For 

constraint C x y we have: a · [3( C x y) = C a b and (3 · a( C x y) = C c b. 

But, in some special cases, it is possible to change the order substitu

tions are applied without getting different results. Lemma 3.1.2 shows when 

this can happen. This property is used several times during the proof of our 

theorems. Var(t) is the set of all variables used in term t; ran( a) is the range 

of substitution, and by dom(a) we mean the subset of the domain where the 

substitution does not work as identity. 

Lemma 3.1.2. For every substitution function a and {3, if 

dom([3)ndom(a) = 0 and dom([3)nVar(ran(a)) = 0 andVar(ran([3))ndom(a) = 

0, 
then we have a · (3 = (3 · a. 

Proof: If a· [3(x) = y and all above conditions hold, then we have \;fs.s E 

Var(f3(x))::::} s ~ dom(a) and xis also either a member of dom(a) or dom(f3). 

So either y = a(x) or y = f3(x). If y = a(x) from the above conditions we 

know that \;fs.s E Var(a(x))::::} s ~ dom([3), soy= (3 · a(x) and if y = f3(x) we 

know that x ~ dom(a), soy= (3 • a(x). D 

A substitution can also be applied to a set of constraints, by which we 

mean it is applied to all the constraints in the set. In the rest of this thesis, 

we also use some special types of substitutions that are defined next. These 

terms are in fact part of the standard term rewriting rules terminology. 

Definition 3.1.3. The substitution a is called a unifier for terms s and t if 

we have as= at. 

Definition 3.1.4. The substitution a is called the most general unifier (mgu): 

• For the terms s and t, if as = at and for every other unifier (3 we have 

3p. (3 = p ·a. 

• For the equational constraint t = s, if a is an mgu for t and s. 

• For the equational constraint set T, if for every equational constraint in 

T, i.e. t = s, a is a unifier for t and s and for every other unifier with 

the same property we have 3(3 = p ·a. 
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Definition 3.1.5. The terms is matched with the term t by substitution a and 

we write a= match{s, t), if as= t and for all {3 if {3s = t then 3p. {3 = p ·a. 

3.2 Free Variable Instantiation 

To prove any properties for a CHR system with free variables, we first need 

to find a mathematical way to formalize them. As we know, free variables are 

represented the same way as bound variables in rules, but every time a rule is 

applied, new instances for the free variables in the tail constraints should be 

generated. 

In our formalization, we define a substitution 8i,k that maps each free 

variable in rule Rt to a free variable instance. We will use the second index 

in 8i,k to generate new instances of the same free variable each time rule Rt is 

called. As shown in our next formal definition, 8i,k substitutions with different 

values of k have disjoint ranges. In later sections we will bind the index k to 

the derivation number the rule is applied in. 

Throughout the proofs for non-termination, we also need to have access 

to the next instance of a free variable knowing the current instance. The 

substitution f3i,k is defined for this purpose; it gives the value of 8i,k+l knowing 

the value of 8i,k· Definition 3.2.1 shows the properties 8i,k and f3i,k substitutions 

should satisfy. 

Definition 3.2.1. For every rule Rt in rule sequence R = (R1 ... Rn), instan

tiation substitutions 8i,k and f3i,k are defined with the following properties: 

• Vi, k. i E {1 .. n} => dom(8i,k) = FV(R.t). 

• Vi, k, x, y. 8i,k(x) = 8i,k(Y) => x = y {8i,k is injective) 

• Vi, i', k, k'. i E {1 .. n} A i' E {1 .. n} A (i =f. i' V k =f. k') => ran(8i,k) n 
ran(8i',W) = 0. 

• Vi, k. i E {1 .. n} => 8i,k+l = f3i,k · 8i,k 

It is important to note that rule names in the rule sequence are in 

fact meta-level names referring to the actual rules. So it is possible to have 
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two rule names in the sequence referring to the same rule. But the same 

rules in a sequence generate different free variable instances, because they 

have different ~ substitutions differentiated with the rule name indexes, and 

the second property of Def. 3.2.1 prevents instance name clashes. This fact 

is especially important for derivations and we will return back to it in later 

sections. 

3.3 Primitive Constraints 

Primitive constraint applications can also be transformed into substitution 

applications. Imagine we have a primitive rule R : H => T in which H 

is a set of constraints and T is a set of primitive constraints. If rule R is 

applicable to constraint set S with substitution a, we should first apply the 

same substitution to the left and right hand sides of constraints in T, which 

gives us new instances of primitive constraints in T. Finally, the most general 

unifier (mgu) of the new primitive constraints gives us a substitution that can 

be applied to the constraint set S. 

Example: Assume that we have primitive rule C x y, D (x] => y = [x] 

and constraint set { C a (b], D (a], E b}. The substitution a that matches the 

rule head to the constraint set is a = { x ~ a, y ~ [b]}. As we explained 

before, first we apply a to S = {y = [x]} which gives us aS = {[b] = (a]}. 
Finally we apply the mgu of this equation {a = b} to the original constraint 

set which gives us { C b (b], D [b], E b}. 

As we showed in the previous example, we need to find the mgu of the 

primitive constraint set to apply the result substitution to the initial constraint 

set, but sometimes the mgu for a set does not exist. Undefined primitive 

constraints add to the complexity of our non-termination properties and we will 

see this problem in the following chapters when we define repetition candidate 

properties. 

Definition 3.3.1. A primitive constraint set T is called defined if mgu(T) 

exists. 

We will get back to the primitive rule applications later when we define 
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derivation steps, but before that, we study some properties related to the 

application of substitutions to primitive constraint sets which are later used 

in our proofs for non-termination and confluence. 

Lemma 3.3.2. For every defined constraint set T and variable x we have: 

(mgu(T))x = t => (mgu(T))t = t 

In other words, mgu(T) is idempotent. 

Proof: We know that for every constraint set T, dom(mgu(T))nVar(ran(mgu(T))) = 
0. So if x E dom(mgu(T)), none of the variables in t can be in dom(mgu(T)), 

which means (mgu(T))t = t. 0 

Lemma 3.3.3. If for a variable x, mgu(T)x = t, for every substitution() if 

BT is defined, we have: 

(mgu(BT))(B(x)) = (mgu(BT))(B(t)) 

Proof: Assume that mgu(T) =a and mgu(BT) =a'. We know that a' unifies 

constraint pairs in BT. So for each constraint pair ()81 and ()82 in T we have 

a' · ()81 = a' · ()82 which means a' · () is also a unifier for T. 

On the other hand, as a is the mgu for T we will have a' · () = u · a 

for some substitution u. Also a(x) = t = a(t) (Lemma 3), so we should have 

cl · B(x) = u · a(x) = u(t) = u · a(t) =a'· B(t). 0 

Corollary 3.3.4. For every substitution() and primitive constraint set T, if 

T and BT are defined then: 

mgu(BT) · () = mgu(BT) · () · mgu(T) 

Proof: We show that for any arbitrary variable x, we have (mgu(BT) ·B)(x) = 

(mgu(BT) · () · mgu(T))(x): 

• If x ft dom(mgu(T)) the equation is trivial. 
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• If x E dom(mgu(T)) lett= (mgu(T))x, so the RHS of equation equals 

mgu(OT)(O(t)) and the LHS is mgu(OT)(O(x)). According to Lemma 4, 

these two terms are equal. 0 

Transforming primitive constraints into substitutions enables us to bet

ter study how they work. As a natural extension of this concept we can 

also look at substitutions as primitive constraints. This new interpretation of 

substitutions results in an important property that will later be used in the 

following sections. 

Definition 3.3.5. We define a conversion of substitutions to sets of equa

tional constraints, mapping a substitution u = { x1 ~ t1, ... , Xn ~ tn} to the 

constraint set~ u ~ := {x1 = t1, ... , Xn = tn}· 0 

As some point in our proofs for non-termination we need to know when 

OT is defined for a primitive constraint set T and a specific substitution 0. 

Next we relate OTto 0~ mgu(T) ~'which makes it possible to decide about OT 
definedness. 

Lemma 3.3.6. lfT is defined, every unifier f3 for 0~ mgu(T) ~ is also a unifier 

for OT. 

Proof: First we prove 'Vx.x E Var(T) => f3·0(x) = f3·0·a(x). Let a= mgu(T), 

then for every x E Var(T) we have: 

If x E dom(a.): Lett= a(x) then f3·0(x) = f3·0(t) and so f3·0(x) = f3·0·a(x). 

If x fj. dom(a.): We have a.(x) = x so f3 · O(x) = f3 · 0 · a(x). 

Next we show that f3 is also a unifier for OT. We know that for every constraint 

pair in T, a(T1) = a(T2), so f3 · 0 · a.(T1) = f3 · 0 · a(T2) and from the equation 

we found for substitutions we will finally have f3·0(T1) = f3·0(T2) which means 

f3 is also a unifier for O(T). 

Theorem 3.3. 7. For every primitive constraint set T and substitution 0 we 

have: 

mgu(O~ mgu(T) ~) = mgu(OT) 
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Proof: From Lemma 3.3.6 we know that every unifier for mgu(B~ mgu(T) ~)is 

also a unifier for mgu(BT). So we only need to show every unifier for mgu(BT) 

is also a unifier for mgu(B~ mgu(T) ~ ). From Lemma 3.3.3 we know that if 

mgu(T)x = t for a variable x, we have (mgu(8T))(8(x)) = (mgu(8T))(8(t)). 

This means mgu(BT) is the unifier for the set of equational constraints 8(x) = 
B(t) or in other words for mgu(B~ mgu(T) ~ ). 

Corollary 3.3.8. If 8~ mgu(T) ~ is defined then BT is defined. 

Proof: Trivial from Theorem 3.3.7. 

The next theorem show a new property for primitive constraints which 

is an essential part of our confluence proof in the next chapter. 

Theorem 3.3.9. For every two primitive constraint sets Q1 and Q2 we have: 

Proof: We prove that both sides of the equation are the most general unifier 

for Ql U Q2. Starting from the lhs, as mgu(Qt U Q2) is also a unifier for Ql! 

for some o: we should have mgu(Q1 U Q2) = o: · mgu(QI)· So mgu(QI) is first 

applied to Q1 U Q2 which unifies Q1. So we only need the most general unifier 

for mgu(Qt)Q2 which is mgu(mgu(Qt)Q2)· This means o: = mgu(mgu(Q1)Q2) 

and mgu(Q1 U Q2) = mgu(mgu(Qt)Q2) · mgu(QI). The same argument can be 

repeated for the rhs. 

3.4 Propagation Rule Applications and Deriva

tions 

In this section we clarify what we mean by a sequence of rule applications. 

We start by defining the building block of a rule sequence, derivation step. A 

derivation step corresponds to the definition of reduction in the abstract term 

rewriting rules context [Ter03]. We give a formal definition for this term based 

on our formalizations of primitive and non-primitive rules. 
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Definition 3.4.1. For the rule~ : Hi ::} 7i, constraint sets S, S', Q, and 

an arbitrary number k, we define two kinds of derivation step: 

• S ~ S' is a non-primitive derivation, if ~ is a non-primitive rule 
lc 

and we have: 

3a, Q. (Q ~ S) A (a= match(Hi, Q)) A (S' = S U (a· di,k)(Ti)) 

• S ~ S' is a primitive derivation step, if ~ is a primitive rule and we 
lc 

have: 

3a, Q. (Q ~ S) A (a= match(Hi, Q)) A (S' = (mgu((a · di,k)Ti))S) 

A derivation stepS ~ S' is called trivial if S = S', and non-trivial other-
lc 

wise. 

In [SDPJS07], when operational semantics of CHRs are discussed, dif

ferent types of derivation steps are also explained. But some differences be

tween that formulation and our approach are observable: 

• Here we have merged the solve step with the primitivederivation step. 

In fact, the solve step presented in [SDP JS07] is always done implicitly 

when primitive rules are applied. Furthermore having only two main 

steps makes our future theorems easier to present. 

• In our primitive derivation we do not keep the primitive constraints after 

they are applied to the constraint set. The idea is that when primitive 

constraints are applied, the updated constraints can never generate new 

primitive constraints that are inconsistent with the current ones. This 

is obvious because every time a primitive constraint is applied all the 

variables in the domain of mgu are substituted and no longer exist. So 

the already applied primitive constraints are in fact never used again. 

• Derivation steps in [SDP JS07] are based on the fact that every time a rule 

is applied, all the variables are renamed. But in the following theorems 

we will need a more sophisticated way to formulate the definition of free 

variables. 
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Based on the definition of the derivation step, now we can define what 

we mean exactly by a sequence of rule applications or a derivation. 

Definition 3.4.2. A derivation Dk : S1 ~ 82 ~ ... , with the deriva-
k k 

tion number k, is a sequence of primitive or non-primitive derivation steps 

in which every middle rule is applied on the result constraint set of the pre

vious derivation step. (R1, R2 •• • ) is the rule sequence for derivation Dk. A 

derivation with infinite derivation steps is called an infinite derivation. For 

derivation Dk, we define: 

• R;.,k is the application of ruleR;. in derivation Dk. 

• ai,k is the substitution that matches the lhs of R;. to the subset of si in 

derivation Dk underlying the application of R;.. 

• Hi,k is the head instance of ruleR;. after application of ai,k· 

As we discussed before, R11 ••• , Rn are meta-level names referring to 

the rules. So we can have different R;. 's referring to the same rule. 

Based on the definition of derivation we can now define what we mean 

by a chain of derivations. 

Definition 3.4.3. A chain Nn : D1 ... Dn is a sequence of derivations with 

the same rule sequence R1 ... Rk where the first constraint set of each sequence 

is equal to the last constraint set of the previous derivation. 



Chapter 4 

The Confluence Problem 

The current approach to guarantee confluent CHRs for functional dependen

cies imposes the Basic and FD conditions on instance and class definitions to 

exclude cases that might cause non-confluent (or non-terminating) rules. Our 

new approach relaxes the conditions by keeping only those that are inherent in 

the definition of functional dependency and deals with the confluence problem 

by focusing on the behavior of CHRs and constraint solvers to find where the 

problem initially stems from and what can be done to prevent it. 

4.1 Problem Description 

In a non-confluent system, different orders of applying CHRs to constraints 

can result in different sets of constraints that are syntactically unjoinable, but 

the logical meanings of the constraint sets are the same [Abd97]. (Logical 

equivalence exists only if the rules are well defined, i.e., they are consistent 

and complete. We consider this case later in example 3.) 

As we will see, it can be proved that non-confluence happens due to 

applying simplification rules, but as an informal argument, when we simplify 

a subset of the constraint set, we are removing it from our constraint set 

and hence we might limit our choices for the next rules to apply, so in the 

presence of simplification rules the order of rule application might matter. The 

interesting observation is that although different constraint sets generated by 

35 
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non-confluent CHR systems are logically equivalent but some constraint sets 

contain more information for the client using the constraints. As an example 

consider the rules: 

D#C 

D#AI\BI\C 

The above CHRs are non-confluent as we can have C or A A B A C as 

the final states, by applying the first or the second rule to constraint D. As 

can be seen the final two sets are logically equivalent but the second set gives 

us more information about our initial goal set. 

Even though CHR theory rejects the non-confluent systems, these sys

tems can be of practical importance for certain applications, especially if the 

constraint set containing more information is obtainable. By making some 

changes to the existing CHRs and the way CHRs are applied to constraint 

sets by the constraint solver, we can change a non-confluent system into a 

confluent one which provides the most complete final set and in some cases 

reveals inconsistencies that are hidden in other constraint sets. 

4.2 Prioritized CHRs 

Our solution for this problem is based on giving priority to propagation rules 

over simplification rules. To do so we use this fact that applying a simpli

fication rule H <=> T, has the same effect as applying the simplification rule 

H <=> true after application of propagation rule H =? T. 

Definition 4.2.1. A prioritized CHR system is the combination of two CHR 

systems that are executed consecutively, the first one with only propagation 

rules and the second one with only simplification rules. 

i) Replace every simplification rule H <=> T with H :::::} T and H <=> true. 

ii) Build the first CHR system with all the propagation rules of the modified 

CHR system in step 1. 
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iii) Build the second CHR system with all the simplification rules of the modified 

CHR system in step 1. 

Changing a CHR System to a Prioritized CHR System 

The reason behind this approach is that by postponing the application 

of simplification rules we do not lose any constraints that might match with 

other rules. 

Using this method for the above example gives us A ABACA D 

after applying propagation rules in the first CHR system and A A B A C after 

applying the simplification rules in the second CHR system, so the final result 

is the one we are interested in: a set of constraints having all the information 

derivable from the rules. 

Using this method to generate CHRs from functional dependencies 

yields some interesting results that will be discussed next; but before look

ing at some examples we revise the three FD conditions to see which are 

really necessary and which are defined just to avoid non-confluence and non

termination. 

The first FD condition, the consistency condition, rules out inconsistent 

conditions and is in fact another definition for what we mean by functional 

dependencies. But the next two conditions are apparently defined to prevent 

non-confluent and non-terminating CHRs. Currently we focus on the conflu

ence problem and postpone the termination problem to be dealt with in later 

chapters. So the ideal is to have only the consistency condition for instance 

declarations and our system still be terminating and confluent. In the next 

section we will study some examples to see how giving priority to propagation 

rules can solve the confluence problem. 

4.3 Prioritized CHRs by Examples 

In this section we study some class and instance definitions that violate FD 

conditions and are not confluent. For each example we will see how the new 
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method of CHR application can solve the problem. 

4.3.1 Example 1 Coverage Condition 

Consider the following class and instance declarations that violate the coverage 

condition (b is not a free variable in [a]): 

class C a b I a ~ b 

instance Db => C [a] (a,b) 

The CHRs generated from the above declaration with the new method 

are: 

The first CHR system with propagation rules: 

rule C [a] (a,b) ==> Db 

rule C a b1 , C a b2 ==> b1 = b2 

rule C [a] b ==> b = (a,b1) 

The second CHR system with simplification rules: 

rule C [a] (a,b) <==> true 

Examine the two constraints: C [c) d.1 and C [c) d.2. After ap

plying propagation rules we would have 

C [c] (c,b1) , C [c] (c,b2), 

D b1, D b2, d1 = d2 , 

d1 = (c,b1), d2 = (c,b2), b1 = b2· 

And finally by applying simplification rule we find that 

d1 = d2 = (c,b1), D b1 

that completely conforms to the functional dependency and instance 

declaration we had in the program. 



Ershad Rahimikia McMaster University- Computer Science 39 

4.3.2 Example 2 Consistency Condition 

Consider the inconsistent instance declarations below: 

class C a b I a -+ b 

instance c [a] (Maybe a) 

instance c [b] b 

Above declarations would generate the following rules: 

The first CHR system with propagation rules: 

C a bl, C a bl ==> bl = b2 

C [a] al ==> al = Maybe a 

c [b] bl ==> bl = b 

C [a] (Maybe a) ==> true 

C [a] a ==> true 

The second CHR system with simplification rules: 

C [a] (Maybe a) <==> true 

C [a] a <==> true 

For the two constraints C [a] b 1 and C [a] b2, we would have: 

C [a] bl , C [a] b2 , 

bl = b2, bl = Maybe a , 

bl = a, b2 = Maybe a, b2 = a 

The result is clearly inconsistent because a and Maybe a are not unifi

able. This was expected as we violated the consistency rule. Example 3 shows 

how we can detect problems like this in our instance declarations by utilizing 
CHRs rules. 
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4.3.3 Example 3 

Consider the following class and instance declarations: 

class D a b 

class D a b => C a b 

instance C (a] a 

Here are the CHRs arising from the above declarations: 

C [a] a <==> True 

Cab ==> Dab 

Here we have both basic conditions and Jones's FD conditions satisfied, 

but the program logically implies that we should have an instance declaration 

for D [a] a. As the CHR generation rules assume that the instance and class 

declarations are correctly defined, the resulting CHRs are non-confluent (Con

sider D [a] a; applying the rules above can either generate true or D [a] a 

that are not only non-joinable but also logically inequivalent). As the current 

formulation of CHRs are theoretically useful but in practice there is no guaran

tee that the programmer has defined correct and consistent class and instance 

declarations, so a mechanism to check declarations is necessary. Currently 

part of this is done by Basic and FD conditions but some other cases like the 

above example should be taken care of separately. Here we propose a method 

to utilize the generated CHRs themselves to detect such errors in them. Below 

is the general procedure to check the declaration part of a program: 

i) Build an initial constraint set from instance declarations by adding the con

straint TC t 1. . tn for every instance declaration instance T => TC t 1. . tn. 

ii) Apply the propagation rules of the first CHR system. If the rule application 

fails it mean there are problems in the class and instance definitions ( consis

tency violation, for example). 
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iii) Apply simplification rules of the second CHR system. If there is any constraint 

rule left in the constraint set after the rule applications, it means some instance 

declarations are missing in our declarations. 

Detecting Unsound Rule Definitions 

Applying the above procedure to our example would result in D[a] a, 

that can not be simplified to true, meaning that an instance declaration for 

this class D is missing. 

4.4 Prioritized CHR and Confluence 

In this section we prove why prioritized CHR systems are deterministic and 

always give us the same final result set for any initial constraint set. 

Lemma 4.4.1. A CHR system with only propagation rules is confluent. 

Proof: We prove confluence via the diamond property, namely we show that 

for every rule R1 and R2 and constraint sets 8, 81 and 82 if 8 ~ 81 and 

8 ~ 82, then there exists a constraint set 8' where 81 R
2 8' and 82 Rt 8'. 

If R1 and R2 are non-primitive: From Def. 3.4.1 81 = 8Ua1(T1) and 82 = 
8 U a2(T2) for some substitutions a 1 and a2. Applying R2 to 81 and R1 

to 82 gives the same constraint set 8' = 8 U a 1(T1) U a 2(T2). 

If R1 is primitive, R2 is non-primitive: From Def. 3.4.1 81 = O(S) and 

82 = 8 U a(T2) for some substitutions (Janda. Applying R2 to 81 and 

R1 to 82 gives the same constraint set 8' = 0(8) U (J • a(T2). 

If R1 and R2 are primitive: From Def. 3.4.1 81 = mgu(a1(T1))8 and 82 = 

mgu(a2(T2))8 for some substitutions a 1 and a 2. We need to prove the 

result of applying R2 to 81 is the same result of applying R1 to 82, that 

is: 
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mgu(mgu(a1(T1)) ·a2(T2)) ·mgu(a1(TI))S = mgu(mgu(a2(T2)) ·a1(T1)) · 

mgu(a2(T2))S 

Using Theorem 3.3.9 ( Q1 = a 1 (T1) and Q2 = a 2(T2)) the equation holds. 

Theorem 4.4.2. Reductions to normal form using a prioritized CHR system 

are deterministic. 

Proof: As the first CHR system of a prioritized CHR system contains only 

propagation rules and according to Lemma 4.4.1 is confluent, reductions to 

normal form using the first system is deterministic. Confluence of the second 

CHR system is also trivial and so the following reductions done by the second 

system are also deterministic. This means the reductions done by the whole 

system are deterministic. 



Chapter 5 

The Non-Termination Problem 

Type class and instance declarations with no FD restrictions imposed, can re

sult in CHR.s that are not terminating. In this chapter we attempt to find a way 

to detect these non-terminations in the constraint solver. Using this method 

enables us to still work with CHR.s that are non-terminating in general, but 

only cause non-termination in certain situations and in this way incorporate 

more class definitions as valid. Before showing how to detect non-termination 

cases, we introduce a special type of derivation and prove that if this derivation 

happens during rule applications, the constraint solver never terminates. 

All the findings of this chapter are based on the formalized framework 

we constructed in Chapter 3. We also assume that the constraint solver is pri

oritized, so we only need to focus on propagation rule applications, because the 

last step of applying simplification rules would never cause non-termination. 

(Recall that all new simplification rules simplify a constraint to true.) 

5.1 Matching Constraints and Infinite Deriva

tions 

The method to detect non-termination presented at the end of this chapter 

is based on the theory we will introduce next. The first lemma relates two 

different derivation steps with the same rule. This lemma is in fact the building 

block of our main theorem. 

43 
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Lemma 5.1.1. Assume that we have a derivation step, 81 ~ 82 for the 
lc 

rule~: Hi=> 7i. For a substitution 0 let 8~ = 081, then we have: 

ii) We can have a derivation step 8~ ~ 8~ such that 30' · ()' 82 = 8~ 
lc+l 

{provided Ti,k+l is defined if ~ is primitive). 

Proof: (1) From the derivation step 81 ~ 82 we know that 3a.a(Hi) ~ 81. 
lc 

So from a(Hi) ~ 8 1 and 081 = 8~ we can find a' = 0 ·a that satisfies the 

predicate o:' (Hi) ~ 8~ . 

(2) From (1) and the lemma assumption that 7i,k+1 is defined (if~ is 

primitive), we know that~ can be applied to 8~ and so it is possible to have 

a derivation step 8~ ~ 8~. To find 0' and 8~ we consider two cases: 
lc+l 

Rt, is non-primitive Starting from 8~: 

8~ - 8i U (a'· oi,k+I)Ti Def. 3.4.1 

- 081 u (a'. oi,k+I)Ti 08t = 8~ 
- 081 u (O · o:. oi,k+I)Ti o:' = 0. a 

- 081 u (O • o:. f3i,k · oi,k)Ti Def. 3.2.1 

081 u (o. f3i,k · o: · oi,k)Ti Lemma 3.1.2 

- 081 U (0 · f3i,k)(82- 81) (a· oi,k)Ti = 82- 81 

Also we know that f3i,k has no effect on 8 1, because we can not have the 

kth instances of the~ free variables in 81, so we have 81 = {3i,k81. Using 

this equation: 

081 U (0 · {3i,k)(82- 81) = (0 · f3i,k)81 U (0 · f3i,k)(82- 81) = (0 · {3i,k)(81 U 

(82- 8t)) = (0 · f3i,k)(81 u 82). 

Also from Def. 3.4.1 we know that 82 = 81 U (o: · oi,k)Hi so 81 U 82 = 82 

and finally we will have 8~ = (0 · {3i,k)82 which means: 

0' = 0 . f3i,k 
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[4 is primitive Starting from 82: 

S' 2 - mgu((a' · 8i,k+I)1i)8~ Def. 3.4.1 

- (mgu((a' · 8i,k+t)7i) · 8)81 8{ = 881 

(mgu((8 ·a· 8i,k+I)7i) · 8)81 a'= 8.a 

- (mgu((8 ·a· /3i,k · 8i,k)1i) · 8)81 Def. 3.2.1 

- (mgu((8 · /3i,k ·a· 8i,k)1i) · 8)81 Lemma 3.1.2 

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8)81 

Also for the same reason as the non-primitive part of proof, we know 

81 = /3i,k81, so: 

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8)81 = (mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k)81 

Now we can use Corollary 3.3.4. We already know that (a· 8i,k)T is 

defined because we have the derivation step 81 ~ 82 , also from the 
k 

assumptions we know that 1i,k+l = (8 · /3i,k)((a · 8i,k)1i) is defined, so we 

can apply Corollary 3.3.4 that gives us: 

(mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k)81 

- (mgu((8 · /3i,k)((a · 8i,k)1i)) · 8 · /3i,k · mgu((a · 8i,k)1i))8t 

- (mgu((8 · .Bi,k)((a · 8i,k)1i)) · 8 · /3i,k)82 

Corollary 3.3.4 

Def. 3.2.1 

We reached mgu((8 · /3i,k)((a · 8i,k)1i)) from mgu((a' · 8i,k+I)1i), so by 

replacing it in above equation we have: 

82 = (mgu((a' · 8i,k+t)1i) · 8 · /3i,k)82 = (mgu(7i,kH) · 8 · /3i,k)82 

Which gives us 8' for the primitive rule case: 

8' = mgu(7i,k+I) · 8 · .Bi,k D 

From the results of Lemma 5.1.1 we can find a relation between 8 

substitutions of different derivations. Assume that a chain has (R1, ••. , R,,) 
rule sequence. We define rule sequence (M11 ••• , Mm) as the subsequence 

{Rt, ... , R,,) with only primitive rules and if Mi in this sequence corresponds 

toRi in (Rl! ... , R,.,), we use Mi,k to refer to 1j,k and J.li,k to refer to mgu(1j,k)· 



46 CHAPTER 5. THE NON-TERMINATION PROBLEM 

We define ei,k a.s the substitution that maps the ith constraint set in 

derivation Dk to the ith constraint set in derivation Dk+l and we intend to 

find a relation between Oi,k and ei,k+l· We also assume that M9 is the first 

primitive rule after the rule il?.-1 (if any primitive rules exist after il?.-I) and 

Mt is the first primitive rule before the rule il?. (if any primitive rules exist 

before the rule il?.). 

From Lemma 5.1.1 we know that Oi+I,k = Oi,k · /3i,k if the rule is non

primitive and (}i+I,k = 1i,k+I • Oi,k • /3i,k· So we have: 

On+l,k-1 = /-Lm,k •.• J.L9 ,k • ei,k-1 • /3i,k-I ••• f3n,k-I 

ei,k = J.Lt,k+l ..• /-Ll,k+l • ol,k • f3I,k . •• f3i-l,k· 

On the other hand from the definition of chain we know that 01 k = . 
On+I,k-I· So substituting the first equation in the second one gives us: 

Oi,k = /-Ll,k+l ... /-LI,k+l . /-Lm,k ... /-Lg,k . ei,k-1 • /3i,k-l ... f3n,k-l • f3I,k ..• /3i-l,k 

Next we introduce a special kind of derivations, repetition candidates, 

and will show how these derivations can repeat themselves. Informally it 

means if we start with the la.st constraint set of a repetition candidate, we can 

apply the same rule sequence of the first derivation and have another repeti

tion candidate. Next definition shows what exactly it means by a repetition 

candidate. 

Definition 5.1.2. Derivation Dk : 81 

a repetition candidate if: 

Rt Rn 
---+ 82 . . . ---+ Sn+l in chain Nk is 

k k 

ii) For all i (1 $ i $ n), if il?. is a primitive rule: 

Vc E dom(mgu(7i,k)).(:3i', k'. c E ran(c5i',k' )A((k' = kAi' < i)V(k' = k-1Ai' ~ i))) 

which means all the members of dom(mgu(7i,k)) are the latest free vari

able instances that existed before the application of ~ 
k 
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iii) For all i,j (1 < i ~ n), if [4 and R; are primitive rules {i and i' can be 

equal): 

v .. , k' k" J,J' ' . 
Vc E dom(mgu(1i,k)) n ran(8;,w) . 

Vd E dom(mgu(Ti',k)) n ran(8;',k") . c #- d => (8j,~.(c) #- 8.fl,(d) V j #- j') 

which means that free variable instances in different dom(mgu(1i,k))s, 

are from different free variables. 

At first glance, it might seem that if (ii) is true, (iii) is automatically 

satisfied, but there are some cases that we also need the third condition. As

sume that the rule [4 has free variable v. In derivation Dk we can have 

8i,k-l ( v) instantiated before the application of [4, and 8i,k (c) instantiated af

ter the application of [4. In this case the second condition is satisfied but 

the third condition rejects that, because in the domain of two primitive rule 

applications in a derivation we can not have two variable instances from the 

same free variable. 

We also have an extra condition 8j,~(c) #- 8.fl,(d) to allow cases that 

both free variable instances are coming from the same rule but are from differ

ent free variables. But we can not use this condition when c and d are coming 

from different rules, because our definition of derivation allows having a rule 

appear more than once in a derivation. For this reason, we have j f. j' to allow 

c and d both have the same free variable but come from different positions j 

and j' in a derivation. 

The next theorem uses these properties to show how repetition candi

dates can be repeated in a chain. 

Theorem 5.1.3. If derivation 

D S R1 S R2 Rn 
k : 1 ~ 2 ~ · • • ~ Sn+l 

k k k 

is a repetition candidate in chain Nk, then chain Nk+l also exists and 

the last derivation of Nk+l {i.e. Dk+l) is a repetition candidate. 

Proof: We need to prove that the derivation Dk+l : S~ 
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with S~ = Sn+1 exists and is a repetition candidate. We prove by 

induction on derivation steps of Dk+l· 

For the induction step, we prove that if S~ 

following conditions hold: 

i) Bi,ksi = SI for a substitution Bi,k· 

R1 
---+ ... s: exists and the 

k 

ii) For every substitution /-Lj,k+l, where Mi is a primitive rule before ~ in 

rule sequence we have: Vc E dom(J.Li,k+t).::l/3, d E dom(J.Lj,k)· /3d = c 

where /3 is an instantiation substitution (it means all the members of 

dom(J.Lj,k+I) are the next instances of dom(J.Lj,k)). 

then ~.k+l can be applied to s: and the above conditions hold this 

time for si+l (replacing all i's with i + 1's in above conditions). 

If~ is non-primitive, from Lemma 5.1.1 and the first condition, we 

know that 14.,k+1 is applicable and we also have Bi+1,kSi+1 = s:+l. The second 

condition also holds after the application of ~ because we still have the same 

primitive rule applications in Dk+l· 

If 14, is primitive, according to Lemma 5.1.1, ~.k+l is applicable to s: 
if7i,k+l is defined. We know that (Bi,k'O.i,k)Ti = Ti,k+l· From Theorem 3.3.7, to 

prove that mgu((Bi,k'ai,k)1i) exists, we can prove that mgu(Bi,k~ mgu(o.i,k11) ~) = 

mgu(Bi,k~ mgu(Ti,k) ~) exists. First we look at the result of Bi,k~ mgu(Ti,k) ~· 

We substitute Bi,k with its equivalent we found in terms of Bi,k-1. So 

we have: 

Bi,k~ mgu(Ji,k) ~ = 11-t,k+I ... /-L1,k+l · /-Lm,k ... 11-u,k · Bi,k-1 · /3i,k-1 ... /3n,k-1 · 

/J1,k ... /3i-l,k~ mgu(Ti,k) ~ 

where J.Lm,k is the last primitive rule application in Dk and J.lt,k+l the 

one immediately before the application of ~.k+l and 11-u,k equals to mgu(7i,k) 

(because 14, is primitive). 

From Def. 5.1.2.ii) we know that for every c E dom(mgu(7i,k)), we 

have c = oic,kc ( v) for some free variable v and for some ic and kc satisfying 

( ( kc = k 1\ ic < i) V ( kc = k -l 1\ ic ~ i)). We study the effect of /-Ll,k+l ... J.l1,k+l · 

11-m,k ... J.lg,k · Bi,k-1 · /3i,k-1 ... /3n,k-l · /3t,k ... /3i-1,k on c (as we mentioned c E 

dom(mgu(7i,k))). 
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If kc = k /\ ic < i: Substitution f3ic,k in f31.k ... f3i-1,k changes c to f3ic,k(c). Sub

stitution Oi,k-1 has no effect on f3ic,k(c) because members of dom(Oi,k-1) 

are variables in Dk-1 and can not be equal to f3ic,k(c). 

Jlm,k ... /lg,k also has no effect on f3ic,k(c) because domain members of 

each of these substitutions are variables in Dk and can not be equal to 

f3ic,k( c). 

Also, f3ic,k(c) can not be in domain of any substitution in Jl1,k+l· .. Jll,k+b 

because from (ii) in the induction step conditions, c should be in domain 

of a substitution in Jll,k ... Jlt,k, which is not possible, because if cis in the 

domain, it has already been substituted by a term and can not reappear 

in dom(mgu(7i,k)). 

This means that Oi,k(c) = f3ic,k(c). 

If kc = k- 1 /\ ic ~ i: Substitution f3ic,k-1 in f3i,k-1 ... f3n,k-1 changes c to f3ic,k-1 (c). 

The substitution Oi,k-1 has no effect on f3ic,k- 1 (c) because members of 

dom(Oi,k-d are variables in Dk-1 and can not be equal to f3ic,k-1(c). 

Jlm,k ... /lg,k also has no effect on f3ic,k-1 (c) because we know that c E 

dom(mgu(7i,k)) and if f3ic,k-l(c) is a member of one of the domains in 

Jlm,k ... /lg,k it contradicts Def. 5.1.2.iii). 

f3ic,k-l(c) can not be in domain of any substitution in Jll,k+l· .. /ll,k+l, 

because from the second condition of our inductive step c should be in 

/ll,k ... /ll,k which contradict the third condition of Def. 5.1.2.iii). 

This means that Oi,k(c) = f3ic,k-l(c). 

So the substitution Oi,k changes every member of dom(mgu(7i,k)) to 

their next instances. 

ran(Oi,kmgu(7i,k)) also can not have any members of dom(Oi,kmgu(7i,k)) 

because otherwise mgu(7i,k) contradicts Lemma 3.3.2. This means Oi,kmgu(7i,k) = 

mgu(Oi,kmgu(Ti,k)) and so mgu(Oi,kmgu(7i,k)) is defined. 

This proves that ~.k+ 1 is applicable to s: also if ~ is primitive. As we 

saw, the members of dom(mgu(Oi,k7i,k)) are the next instances of dom(mgu(7i,k)), 

so the second condition of our inductive step still holds after the application 

of ~.k+l and the inductive step proof is done. 
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For the initial step we only need to show that our inductive step condi

tions are true fori = 1. From the theorem's condition we know that fh,kS1 = S~ 
so the first inductive condition is true. The second inductive condition is trivial 

because we do not have any primitive rules before R1. 

We proved that Dk+l can exist and we know that every domain member 

of /-Lj,k+l in Dk+l is the next instance of a domain membe~ in 1-Li,k· From this 

it is trivial that the second and third conditions of repetition candidates hold 

for Dk+l· The first condition is also trivial from our inductive step. So Dk+l 

is a repetition candidate. D 

Corollary 5.1.4. If in chain Nk derivation Dk is a repetition candidate we 

can continue the chain infinitely. 

Proof: From Theorem 5.1.3 we know that if Dk is derivation candidate, 

Dk+l can also exist and is a a repetition candidate. The same argument can 

be repeated this time for Dk+l and so on. So we can build infinite number of 

derivations for chain Nk. 

The next lemma shows that after a finite number derivations in a chain, 

all the domain members of primitive rule applications are free variable in

stances and so we can check repetition candidate conditions. 

Lemma 5.1.5. In every infinite chain, after a finite number of derivations, 

for every primitive rule application R;,,k all the members of dom(mgu(1i,k)) are 

free variable instances. 

Proof: Every time a primitive rule is applied, a variable is replaced by a 

term in the constraint set. As the number of bound variables are finite, we 

can not have infinite number of primitive constraint applications with the 

bound variables in their domain. So from some point in the chain, bound 

variables as domain of primitive rule applications will never occur. D 

Until now we showed that the occurrence of a certain type of derivation 

can cause infinite chains in constraint solver. On the other hand we already 

saw in previous chapter that a CHR system with only propagation rules is 

confluent. This means if a derivation candidate exists for a CHR system all 

the other derivations are also infinite. 
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Possible Completeness Argument 

Based on the findings of this section we can build an algorithm that can find all 

the possible repetition candidates for a set of CHRs. But it does not mean that 

all non-terminating cases stem from repetition candidates. The completeness 

proof of our method is still an open problem and can be dealt with in two 

different levels. 

We propose repetition of repetition candidates via Theorem 5.1.3 as 

the basic tool for detecting non-termination. We conjecture that it will be 

possible to weaken the premises of Theorem 5.1. 3 by eliminating the repetition 

candidate conditions Def. 5.1.2.ii) and (iii). 

Having the current or any other definition of repetition candidates with 

weaker conditions, the first step of completeness proof is to show that if for 

a derivation in a chain with all the primitive rule applications, 1i,k 's, having 

free variable instances as domain, the first condition of repetition candidate 

holds but other conditions are violated, then the chain can not be continued 

infinitely. The intuition behind the current conditions of repetition candidates 

is that if the domain variables of 1i,k are not the last instances of free vari

ables, they will not be replaced by their next instance after the application of 

/3i,k-1 ... f3n,k-1 · f31,k ... f3i-1,k in fJi,k· This can be a potential danger as they 

can next be replaced by another term after the application of the second part 

of fJi,k and make mgu(8i,k1i,k) have no answers. 

The second step of the completeness proof is to show that all non

terminating derivations are caused by the repetition of a finite derivation. This 

part of the proof can benefit from finiteness properties of CHR systems, such 

as finite number of rules, finite number of function symbols (type constructors 

in our case) and finite number of rule pairs that can be applied consecutively. 

Even though we do not yet have the proofs for completeness, as we will 

see in the next section, the algorithm based on repetition candidate properties 

can detect non-termination for the examples presented in [SDPJS07] as the 

classic non-termination problems of violating FD conditions. 
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5.2 Finding Repetition Candidates 

In previous sections we showed how repetition candidates can cause infinite 

derivations in the constraint solver. In this section we explain how from a 

set of CHR.s all the possible repetition candidates can be found. Using this 

method we can find the constraint sets that can produce repetition candidates 

and detect these sets in the constraint solver. 

The idea is to build a deduction tree from the rule set and explore 

different possible derivations among which all the derivations having repetition 

candidates as postfix exist as leaf nodes. 

Definition 5.2.1. A deduction tree for a set of CHRs is a tree with the fol

lowing properties: 

i) Every node label is a derivation, D : So !!!... S1 •.. Rn Sn with the 

(omitted) derivation number equal to 1 where f4: Hi~ 1i {0 ~ i < n). 

The root node label is a derivation with an empty constraint set and no 

rules: D: S0 , where S0 = {}. Also, if a rule is applied more than once 

in a derivation, rule instances used in the application are differentiated 

by variable renaming. 

ii} Every node with the label containing D : So ~ S1... Rn Sn, has 

all the possible child nodes having the derivation with the format: 

which should satisfy the following conditions: 

{a) S E Hn+l where 3a. aHn+l ~ a(S USn) and VP. P C S ~ 

~a'. a' Hn+l ~ a'(P USn) 

{b) Q ~ Sn US where 3C E Q.C fl. Sn-1· 

{c) () = 'Y · f3 where: 

i. /3 is defined as: f3(Q) = f3(Hn+l) 1\ V/3'. (f3'(Q) = f3'(Hn+I)) ~ 

(3p.f3' = p . /3) 
ii. If Rn+l is non-primitive r = {}. 
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iii. If Rn+l is primitive 'Y is any substitution satisfying: 

'Y ~ p 1\ dom('Y) = P1 1\ card(dom('Y)) = card(P2) 
where p = P1 x P2 and P1 = Var(S1 n S) and P2 is the set of 

all the bound variables in Var(f3Q). 

(d) a 0 = {} and ak = ak-l if Rk is non-primitive and ak = mgu((ak-1" 

OH mgu(T1,k) ~) · ak-1 if Rk is primitive. 

(e) For every 14 (1 ::::; i ::::; n), that is the same rule as Rn+1, there 

should be at least one primitive rule R; ( i ::::; j ::::; n + 1) and also for 

the constraint set Q' ~ Si_1 underlying the the application of 14 we 

should have 30. O(Q') = Q. 

iii) A node, N in the tree is a leaf node iff there exists a repetition candi

date as the postfix of the derivation in the label of N or N can have no 

children. 

Def. 5.2.1.i) defines the label of nodes. Each node in a reduction tree 

has a derivation as the label and the root node's label is a derivation with only 

an empty constraint set. Def. 5.2.1.ii) shows the relation between a parent 

derivation and its child derivations. The idea is to make the "minimum" 

changes to the parent derivation to make its extension by another derivation 

step possible. 

Two types of changes are made to the parent derivation for this purpose. 

As you can see in Def. 5.2.1.ii), first a constraint set S is added to every 

constraint set in the parent derivation. S is in fact the minimum necessary 

constraint set that should be added to the last constraint set of the parent 

derivation to make the next rule application possible. Notice that according 

to Def. 5.2.l.iia), we only add constraints when it is not possible to match the 

constraints in the rule head with unification. For the root derivation this is 

obviously the case, because no unification can match a rule head to an empty 

set. 

The second change to the parent derivation is to apply the most general 

substitution that makes Hn+l and a subset of Sn U 8, i.e. Q, equal. This 

substitution is defined in Def. 5.2.1.ii(c)i). Notice that this is different from 

matching the head to the constraint set as we do not apply the substitution 
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only to the constraint head. We are allowed to do that because we also have 

the option to change the constraint set to make it equal to the rule head and 

this in fact is how the second change to the parent derivation works. 

The idea is to update the whole derivation in a way that at the end 

the last constraint set has the 8 applied to it. To do this we apply 8 to 

the first constraint set and by using the properties proved in Chapter 3 we 

show that this substitution is propagated through the derivation up to the 

last constraint set. We deal with this changing of substitutions by introducing 

O!is. Def. 5.2.l.iid) shows a recursive definition for the O!i substitutions applied 

in the child derivations. This formula can be obtained as follows. 

Assume that we have the derivation step 81 ~ 82, in which R is prim

itive and the derivation step O!k-1 · 881 ~ O!k · 882 exists. We want to find 

the relation between O!k and O!k_1. From the first derivation we know that for 

some substitution {3 we have 82 = mgu({3T)81. For the second derivation, the 

right constraint set would be equal to mgu(ak_1 · 8 · {3T) · O!k-1 · 881. From 

Theorem 3.3. 7, this is equal to: 

mgu(ak-1 · 8~ mgu(f3T) ~) · O!k-1 · 881 

and from Corollary 3.3.4 it is equal to: 

mgu(ak-1·8~ mgu({3T) ~ )·O!k-1·8·mgu({3T)81 = mgu(ak-1·8~ mgu({3T) ~ )· 

O!k-l . ()82. 

So we have ak = mgu(ak-1 · 8~ mgu(f3T) ~) · ak-1· 

The second part of the 8 substitution, 'Y, is only for the primitive rule 

applications and it deals with all the possible ways that variables in the first 

constraint set can be equal to the last constraint. This is important because 

we have to consider all the possible effects that the application of a primitive 

rule can have on a constraint set. Here we consider only the simple case of 

equality between variables. The more general dependencies between variables 

necessitates introducing second order variables and higher order unification 

which is not discussed here due to its complications. 

Updating the derivation to make the new derivation step possible some

times results infinite branches even though the rule set can not cause infinite 

derivations itself. As a simple example consider a rule set with a single rule 
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R : C [x] :::::} C x. This rule can never cause infinite derivations. but when 

we are making a deduction tree, at every step a substitution () can update the 

derivation and make the next application of R possible and this can go on 

infinitely. Def. 5.2.1.iie) avoids these situations by restricting application of a 

rule more that once in each derivation. The only case that allows more that 

one application of the same rule is when between the two rules there exists a 

primitive rule and the first constraint set of derivation between the the two 

rules matches with the last constraint set. In this case, the repetition of the 

same rule sequence can result a derivation candidate, and we should allow the 

rule application, otherwise we might miss a repetition candidate that can be 

produced by the rule set. 

Finally Def. 5.2.1.iii) defines leaves of a reduction tree. Every node in 

the tree with a derivation that is not extendable is a node. Also if the derivation 

of a node has a repetition candidate as postfix it is also a leaf. Derivations with 

repetition candidates as postfix are in fact what we were looking for. Having 

them, we can avoid infinite chains by finding the constraint sets that can lead 

to repetition candidates (these constraint sets are in facts the first constraint 

sets of derivations having repetition candidates). 

5.2.1 Deduction Trees Finiteness 

To be of practical use deduction trees should be finite, otherwise any algorithm 

building them would be non-terminating. The first part of the finiteness argu

ment for deduction trees is based on the completeness argument that we had 

for repetition candidate. Assuming that repetition candidates are the only 

reason that infinite derivations happen, we can not have a deduction tree with 

an infinite branch. Because if the branch is infinite, it should have a repetition 

candidate inside it and we have a checking in our definition of deduction trees 

to stop extending the derivation more when we reach a repetition candidate. 

Also as we explained before, Def. 5.2.l.iie) prevents updating derivations and 

adding new derivation steps infinitely. 

The number of branches for every node is also always finite. Because 

what determines the number of branches is the number of rules in the system 

and also the number of 'Y substitutions which are both finite. 
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5.2.2 Building the Deduction Tree 

The general strategy to build a deduction tree from a set of rules is to start 

from the root with an empty constraint set as its derivation and perform a 

BFS or DFS traversal. At each step a new child is added by updating the 

parent derivation and extending it with a new derivation step. To update 

the parent derivation, a new rule is first picked to be applied to the last 

constraint set. Next S in Def. 5.2.1.ii) is found using Def. 5.2.l.iia). After 

having S, substitution {3 is found by using Def. 5.2.1.ii(c)i). If the rule is 

primitive 'Y substitutions satisfying Def. 5.2.1.ii(c)iii) and Def. 5.2.1.ii(c)ii) are 

next found. As there can exist more than one 'Y substitution, we can have 

more than one child by the same rule application. After finding 'Y we use the 

recursive definition for ai to find all the a0 ••• an substitutions. 

Also, every algorithm that builds a deduction tree needs to use unifica

tion and matching algorithms. There are standard algorithms in term rewrit

ing systems literature that we can use for unification and matching [Klo92], 

but the only problem is how we should deal with free variables. The point is 

that even though free variables are a type of variable in CHR systems, but 

when unifying two constraints they should not be substituted with a term so 

we treat free variables as constants (type constructors with no parameters) 

when applying unifying and matching rules. 

5.2.3 Example 

In this section we build the deduction tree for the example presented in 

[SDPJS07] as the case that not obeying FD conditions causes non-termination. 

From the class and instance declarations and the generated CHRs presented 

next a deduction tree can be generated. 

class D a 

class F a b I a ~ b 

instance F [a] [[a]] 

instance (D c, F a c) => D [a] 
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{ D[z] } ~ {D [z], D c, D z c } 

I 
R1 

{ D[[x]] } ~ {D [[x]], D c, D [x] c } ~ {D [[x]], D [x] [[x]] } 

R1: F [x] y => y =[[x]] 
R2: D [z] => D c, F z c 

Figure 5.1: Deduction Tree 

We start with an empty set and apply R1 and R2 to it. The left branch 

can not be extended any more because there is no other rule to be applied 

to the last constraint set of the derivation and for the right branch we have 

a repetition candidate as the leaf node. This means that for this set of rules 

if we start with any instance of the constraint set { D [[x]]}, we will have a 

non-terminating derivation. 



Chapter 6 

Conclusions 

CHRs have proven to be a useful tool to formalize functional dependencies 

in type systems. But restrictions on FD definitions in order to make the 

resulting CHR system terminating and confluent greatly affect the benefits of 

this approach. 

As an alternative way to deal with the problem of confluence, we in

troduced prioritized CHRs and showed how applying propagation rules prior 

to simplification rules can solve the problem of confluence in CHRs without 

affecting the semantics. 

Based on this modified system of rule applications, we studied the prop

erties of non-terminating CHR systems. We built a formal framework that 

included all the main characteristics of CHRs. Based upon that, we defined 

a special type of derivation named repetition candidate and proved that if a 

repetition candidate exists, we can build an infinite derivation by repeating 

application of the same rule sequence in the repetition candidate. Based on 

this property and the confluence of propagation rules discussed in Chapter 4, 

we showed that the existence of a repetition candidate makes a CHR system 

non-terminating. 

Finally, we introduced deduction trees as a way to find all the possible 

repetition candidates for a set of CHRs. This algorithm can be applied to the 

CHRs generated from the type class and instance declarations and enables us 

to judge whether a class or instance declaration causes non-termination. 

58 
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There are in fact two distinguishable types of repetition candidates in 

the algorithm results. If the first constraint set of the derivation that has a 

repetition candidate exactly matches head constraints of the first rule (except 

for variable renaming), it means any application of this rule will cause non

termination. In this case, the instance or class declaration which produced the 

rules in the repetition candidate should be rejected. 

But in many cases, such as the examples we presented in the previous 

chapter, the first constraint set is an instance of the rule head but not exactly 

the same. In this case we have two options, either reject the class or instance 

declaration, or postpone the error until instances of any constraint set in the 

repetition candidate are generated during rule applications. In this way more 

class definitions are accepted as valid and we can only prevent wrong usages 

of type class member functions in the code body. 

6.1 Contributions 

• By finding the initial constraint sets that can cause non-termination in 

CHRs generated from class and instance definitions, we can remove the 

FD conditions and reject only those function definitions that can produce 

those initial constraints. This gives us a more expressive type system by 

only checking some extra conditions in the constraint solver, without the 

need to change the current type inference system. 

• As, in general, detecting non-termination in term rewriting systems is not 

decidable, the main focus has always been on finding sufficient conditions 

to ensure a term rewriting system is terminating. But, by focusing on a 

special type of term rewriting system we showed that working on non

terminating systems can result in interesting observations and help us to 

understand how exactly non-termination might happen. 

• The findings of this thesis are not limited to the application of CHRs in 

formalizing type dependencies. Any other system that works with CHR 

systems with only equality as the primitive constraint symbol can use 

the presented algorithm to detect cases that cause non-termination in 
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constraint solvers. 

• Having free variables is usually rejected in term rewriting systems be

cause of their unwanted consequences. In this research we presented a 

formal definition for these types of variables that enabled us to study 

their behavior. This formalization can also have applications in other 

term rewriting systems. 

• Substitutions have never been interpreted as primitive constraint sets, 

as far as we know. This new approach can also be used in other term 

rewriting systems to discover new properties for these systems. 

• The formal framework we built in Chapter 3 can also be used to study 

other properties of CHRs. 

• Some of the strategies and theorems used to formalize CHRs are general 

enough to be useful for other constraint solving systems. 

6.2 Future Work 

In Chapter 5 we showed how a sequence of rule applications can repeat in

finitely and cause non-termination. But proving that all the non-termination 

cases stem from a repetition candidate is still an open problem. We believe 

that our formulation of the problem can be a good starting point to work on 

the completeness proof. Furthermore, even without the completeness proof, 

our algorithm can still be useful because practically it covers the known non

termination cases. 

Also, in the deduction tree definition discussed in Chapter 5, we only 

considered the simple case of equality between different variables. But this 

does not cover all the cases that might happen. In general if we have two sets 

of variables S = {x 1 ... Xn} and S' = {y1 •.• Ym} (Sis the first constraint set 

and S' is the set of all the bound variables in the primitive rule application), we 

will have the substitution a = { Xt ~----+ Vt (YI ... Ym) ... Xn ~----+ Vn(YI ... Ym)} in 

which v1 ... Vn are second order variables, and so the unification algorithm used 

to update the parent node derivation should support second order unification. 
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